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Next-to-leading order calculation of three-jet observables in hadron-hadron collisions

Zoltán Nagy*
Institute of Theoretical Science, 5203 University of Oregon, Eugene, Oregon 97403-5203, USA

~Received 24 July 2003; published 5 November 2003!

The production of three jets in hadron-hadron collisions is the first complex process which allows us to
define a branch of variables in order to make more precise measurements of the strong coupling and the parton
distribution function of the proton. This process is also suitable for studying the geometrical properties of the
hadronic final state at hadron colliders. This requires a next-to-leading order prediction of the three-jet observ-
ables. In this paper we describe the theoretical formalism of such a calculation with sufficient detail. We use the
dipole method to construct a Monte Carlo program for calculating three-jet observables at next-to-leading order
accuracy. We present a theoretical prediction for inclusive and exclusive cross sections and for some relevant
event shape variables such as the transverse thrust, transverse jet broadening, andEt3 variable.
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I. INTRODUCTION

In high-energy hadron-hadron collisions the proces
with a purely hadronic final state is one of the clearest p
cesses to test quantum chromodynamics~QCD! and measure
its parameters simultaneously. According to perturbat
QCD the cross section of this processes is a convolution
long- and short-distance part.

The long-distance-dependent part is the parton distr
tion function of the incoming hadrons. This function is un
versal and process independent, and we can measure it in
basic process such as, for example, deep inelastic scatte

The short-distance part is the partonic cross section
can be calculated in perturbative QCD as a function o
single parameter, the strong coupling (as). The main advan-
tage of the hadronic final states at hadron-hadron collide
that it is possible to measure the strong coupling and
parton distribution function~PDF! simultaneously.

The production of three jets is the first process which c
provide a complex final state to define a branch of jet
servables in order to be able to do more precise meas
ments of the strong coupling and give a better determina
of the parton distribution function. On the other hand, t
process allows us to do more advanced studies of the
ronic final states by measuring their geometrical propert
In order to be able to make quantitative predictions it
essential to perform the computations at least next-to-lea
order ~NLO! accuracy. In hadron collisions the most eas
calculated one- and two-jet cross sections have so far b
calculated at the NLO level@1,2#. At the next-to-leading
level some inclusive three-jet observables were calculate
Giele and Kilgore@3,4# and by the author@5#. Furthermore,
Trócsányi also calculated the three-jet cross section in
effective parton distribution function approximation@6#.

The main difficulty of next-to-leading order calculation
is the presence of singularities. In general, when evalua
higher-order QCD cross sections, one has to consider r
emission contributions and virtual corrections and one ha
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deal with different types of singularities. The ultraviolet si
gularities are present in the virtual contributions and they
removed by the renormalization. The infrared singularit
are present in both the virtual and real contributions but
sum of them is finite. In the last few years theoretical dev
opments have made possible next-to-leading order calc
tions for three-jet quantities. There are several general m
ods available for the cancellation of the infrared divergen
that can be used for setting up a Monte Carlo program@7–9#.
In computing the NLO correction we use the dipole form
ism of Catani and Seymour@9#, which we modified slightly
in order to have better control of the numerical calculatio
This scheme is discussed in detail in the next section.

The advantages of using the dipole method are the follo
ing: ~i! no approximation is made;~ii ! the exact phase spac
factorization allows full control over the efficient generatio
of the phase space;~iii ! the use of neither color-ordered su
amplitudes nor symmetrization nor partial fractioning of t
matrix elements is required;~iv! Lorentz invariance is main-
tained, and therefore the switch between various frames
be achieved by simply transforming the momenta;~v! the use
of crossing functions is avoided;~vi! it can be implemented
in an actual program in a fully process-independent way.

The important theoretical development that made poss
the three-jet calculation was that relevant one-loop am
tudes for the relevant subprocesses became available. Fo
0→ggggg @10#, 0→qq̄ggg subprocesses the amplitude
were calculated by Bern, Dixon, and Kosower@11# and for
the 0→qq̄QQ̄g subprocess it was given by Kunszt, Signe
and Trócsányi @12#. Relevant six-parton tree-level matrix e
ements are also available@13–16#.

In this paper we give sufficient details of our work an
present several new results for next-to-leading order pre
tions of three-jet observables in hadron-hadron collisions
were not published before and they could be interesting in
experimental analysis. In Sec. II we give details of the a
lytic and numeric calculation and describe the structure
our result. In Sec. III we present complete NLO predictio
for three-jet inclusive cross sections and their energy frac
distribution ~Dalitz variables! using the inclusivek' algo-
rithm @17# and the midcone algorithm@18#. We define the
©2003 The American Physical Society02-1
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ZOLTÁN NAGY PHYSICAL REVIEW D 68, 094002 ~2003!
thrust and jet broadening event shape variables in the tr
verse plane. We show some subjet result using the exclu
k' algorithm @19#. Section IV contains our conclusion.

II. DETAILS OF THE CALCULATION

A. Method

The next-to-leading order cross section for the proc
with two initial-state hadrons is the convolution of the part
density functions of the incoming hadrons and the hard s
tering cross section,

s~p,p̄!5(
a,b

E
0

1

dh f a/H~h,mF
2 !E

0

1

dh̄ f b/H̄~ h̄,mF
2 !

3@sab
LO~hp,h̄ p̄!1sab

NLO~hp,h̄ p̄!#, ~1!

wheref i /H is the density of partons of typei in the incoming
hadronH at the mF factorization scale. The correspondin
parton-level cross sections are

sab
LO~p,p̄![E

3
dsab

B ~p,p̄!5E
3
dG (3)^uM ab

(3)u2&FJ
(3) , ~2!

and the next-to-leading order correction is the sum of th
integrals:

sab
NLO~p,p̄![E dsab

NLO~p,p̄!5E
4
dsab

R ~p,p̄!

1E
3
dsab

V ~p,p̄!1E
3
dsab

C ~p,p̄!, ~3!

wheredsR anddsV are the real and virtual contributions t
the cross section. The contributiondsC represents the col
linear subtraction counterterm. The pole structure of t
term is well defined but the finite part is factorization sca
dependent. The actual form of the finite part in the expr
sion of thedsC defines the factorization scheme. In our c
culations we chose the commonly used modified minim
subtraction (MS) scheme. The parton density functions a
also scheme dependent, so that this dependence canc
the hadronic cross section of Eq.~1!.

The three integrals on the right-hand side of Eq.~3! are
separately divergent but their sum is finite provided by the
function FJ

(m) , which defines an infrared-safe quantit
which formally means that

FJ
(4)→FJ

(3) , ~4!

in any case where the four-parton and three-parton confi
rations are kinematically degenerate. The presence of si
larities means that the separate pieces have to be regula
and the divergences have to be canceled. We use the di
sional regularization ind5422e dimensions in which case
the divergences are replaced double poles 1/e2 and single
poles 1/e. We assume that the ultraviolet renormalization
all Green functions to one-loop order has been carried ou
the divergences are infrared origin. In order to get the fin
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sum a slightly modified version of the Catani-Seymour@9#
dipole method is used in our calculations.

The reason for modifying the original dipole formalism
numerical. The essence of the dipole method is to defin
single subtraction termdsA, the dipole subtraction term
which regularizes the divergences in the real term wh
comes form the soft and collinear regions. Thus, the th
singular integrals in Eq.~3! are substituted by three finit
ones:

sab
NLO~p,p̄!5sab$4%

NLO ~p,p̄!1sab$3%
NLO ~p,p̄!

1E
0

1

dx@ŝab$3%
NLO ~x,xp,p̄!1ŝab$3%

NLO ~x,p,xp̄!#,

~5!

where the four-parton integral is given by

sab$3%
NLO ~p,p̄!5E

4
@dsab

R ~p,p̄!e502dsab
A ~p,p̄!e50#. ~6!

We have two three-parton contributions to the NLO corre
tion. The second term on the right-hand side of Eq.~5! is the
sum of the one-loop contribution and a Born term convolu
by a universal singular factorI ,

sab$3%
NLO ~p,p̄!5E

3
@dsab

V ~p,p̄!1dsab
B ~p,p̄! ^ I #e50 . ~7!

The factorI contains all thee poles which come from the
dsA and dsC that are necessary to cancel the~equal and
with opposite sign! poles indsV. The last term in Eq.~5! is
a finite remainder that is left after factorization of initial-sta
collinear singularities into the nonperturbative distributi
functions~parton density function!,

E
0

1

dxŝab$3%
NLO ~x,xp,p̄!

5(
a8

E
0

1

dxE
3
$dsa8b

B
~xp,p̄! ^ @P~x!1K ~x!#aa8%e50 ,

~8!

where thex-dependent functionsP and K are similar~but
finite for e→0) to the factorI . These functions are univer
sal; that is, they are independent of scattering process an
the jet observables.

There are several ways to define thedsA dipole subtrac-
tion term, but all must lead to the same finite next-to-lead
order correction. In this program a slight modification of t
Catani-Seymour subtraction term was implemented by de
ing the dipole term as a function of a parameteraP(0,1#
which controls the volume of the dipole phase space. In
e1e2 annihilation case this modification of the dipole fo
malism was discussed in Ref.@20#, which we generalize for
hadron-hadron collisions.

In this subsection we recall only those dipole factorizati
formulas that are relevant in our calculation. We do not w
to give a precise definition of every variable, function, a
factor; we just use the same notation of the original pape
the dipole method@9#.
2-2
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The dsA local counterterm is provided by the dipole factorization of the tree-level squared matrix element. Thus w
define

dsab
A 5(

$4%
dG (4)~pa ,pb ,p1 , . . . ,p4!

1

S$4% H (
pairs
i , j

(
kÞ i , j

Di j ,k~pa ,pb ,p1 , . . . ,p4!FJ
(3)~pa ,pb ,p1 , . . . ,p̃i j ,p̃k , . . . ,p4!

3Q~yi j ,k,a!1(
pairs
i , j

@D i j
a ~pa ,pb ,p1 , . . . ,p4!FJ

(3)~ p̃a ,pb ,p1 , . . . ,p̃i j , . . . ,p4!Q~12xi j ,a,a!1~a↔b!#

1(
iÞk

@D k
ai~pa ,pb ,p1 , . . . ,p4!FJ

(3)~ p̃a ,pb ,p1 , . . . ,p̃k , . . . ,p4!Q~ui,a!1~a↔b!#

1(
i

@D ai,b~pa ,pb ,p1 , . . . ,p4!FJ
(3)~ p̃a ,pb ,p̃1 , . . . ,p̃4!Q~ ṽ i,a!1~a↔b!#J , ~9!
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wheredG (4) is the four-parton phase space including all t
factors that are QCD independent,($4% denotes the sum ove
all the configurations with four partons, andS$4% is the Bose
symmetry factor of identical partons in the final state. T
Di j ,k , D i j

a , D k
ai , andD ai,b are the dipole terms. The func

tion FJ
(3) is the jet function which acts over the three-part

dipole phase space. Theyi j ,k , xi j ,a , ui , ṽ i are dipole vari-
ables defined by dipole factorization of the phase space.
dipole factorization of the phase space is exact phase s
factorization which means that there is no approximat
used in the kinematically degenerated regions~soft, collinear,
and soft-collinear!. We found that it makes the Monte Car
integral more stable because the real contribution and
traction terms are defined in same phase space point.

In Eq. ~9! thea51 case means full dipole subtraction a
it gives back the original dipole subtraction terms. In a co
puter program the large number of dipoles terms and c
plicated analytic structure of the expressions makes eva
tion of the subtraction terms rather time consuming. Us
this cut dipole phase space we can speed up the prog
The parametera is also useful to check our program b
varying the value ofa and checking whether the full correc
tion is independent of this parameter.

The most serious numerical defect of the subtract
schemes is the missed binning. This happens when a h
positive weight from the real part and the correspond
huge negative weight that form the subtraction term are fi
into different histogram bins. It is obvious that this cut c
increase the numerical stability of the Monte Carlo progr
by decreasing the size of the dipole phase space which
duces the chance of the missed binning.

The introduceda phase space cut parameter requires
to redefine theI andK (x) flavor kernels. The singular facto
I is given by

I ~p1 , . . . ,pm ;a;e!

52
as

2p

1

G~12e! (
I

1

TI
2
VI~a,e!(

JÞI
TI•TJS 4pm2

2pIpJ
D e

,

~10!
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where the indicesI ,J run over both final- and initial-state
partons and thepI•pJ dot products are always positive an

Vi~a,e!5T i
2S 1

e2
2

p2

3 D 1g i

1

e
1g i1Ki~a!1O~e!,

~11!

where

Ki~a!5Ki2T i
2ln2a1g i~a212 ln a!. ~12!

TheKi andg i constants are defined in Eqs.~5.90! and~7.28!
in Ref. @9#. TheK (x,a) flavor kernel is given by

Ka,a8~x,a!

5
as

2p H K̄aa8~x,a!2KFS
aa8~x!2Tb•Ta8

1

Ta8
2 K̃aa8~x,a!

1daa8(
i

T i•Ta

g i

T i
2 F S 1

12xD
12a

1ad~12x!G J ,

~13!

whereKFS
aa8(x) is defined by the factorization scheme. In th

case of theMS scheme these functions are identically ze
The flavor functionsK̄ab(x,a) are

K̄ab~x,a!

5 P̂ab8 ~x!1Preg
ab ~x!ln

a~12x!

x
1dabTa

2d~12x!ln2a

1dabFTa
2S 2

12x
ln

12x

x D
1

2d~12x!S ga1Ka~a!2
5

6
p2Ta

2D G
1dabTa

2 2

12x S ln
a~22x!

11a2x
2 ln

22x

12x
Q~x,12a! D .

~14!
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ZOLTÁN NAGY PHYSICAL REVIEW D 68, 094002 ~2003!
The K̃ab(x,a) flavor kernels are defined by

K̃ab~x,a!5Preg
ab ~x!ln

12x

a
1^P̂a,b~x,e50!& ln a~x!

2dabTa
2F S 2

12x
ln

1

12xD
12a

1
p2

3
d~12x!G

1dabTa
2 2

12x F ln
11a2x

a

2 ln~22x!Q~x.12a!G , ~15!

where the functiona(x) is given by

a~x!5minH 1,
a

12xJ . ~16!

The definitions of the Altarelli-Parisi probabilitie

@Preg
ab (x), P̂ab8 (x)# and splitting functions (̂P̂a,b(x,e)&) are

given in Appendix C in Ref.@9#. The ‘‘b512a ’’ prescrip-
tion is defined by

E
0

1

dxS 1

12xD
b

f ~x!5E
b

1

dx
f ~x!2 f ~1!

12x
. ~17!

B. Structure of the results

Once the phase space integrations are carried out,
write the NLO jet cross section in the form

sAB
njet5(

a,b
E

0

1

dhE
0

1

dh̄ f a/A~h,mF
2 ! f b/B~ h̄,mF

2 !

3ŝab
njet@pa ,pb ,as~mR

2 !,mR
2/QHS

2 ,mF
2/QHS

2 #, ~18!

wheref i /H(h,mF
2) represents the patron distribution functio

of the incoming hadron defined at the factorization sc
mF5xFQHS , ha,b is the fraction of the proton momentum
carried by the scattered partonspa,b , QHS is the hard scale
that characterizes the parton scattering which could beET of
the jet, jet mass of the event, etc., andmR5xRQHS is the
renormalization scale.

In the presented leading and next-to-leading order res
we use theC/C11 implementation@21# of the LHAPDF li-
brary @22# with CTEQ6@23# parton distribution function and
with the correspondingas expression which is included in
this library. The CTEQ6 set was fitted using the two-lo
running coupling withas(MZ0)50.118.

To ensure the correctness of the result several checks
performed:~i! the Born-level two-, three-, and for-jet cros
sections were compared to the prediction of theNJETS @16#
program and perfect agreement was found;~ii ! the singular
behavior of the real and dipole subtraction terms w
checked numerically in randomly chosen phase space po
~iii ! the total NLO correction was independent of thea pa-
rameters that control the dipole phase space;~iv! the program
09400
e

e

lts

re

s
ts;

is based on theNLOJET11 program library@21#, which was
used in other already well-tested processes.

In the NLO calculation the difference of the real cont
butions and the dipole subtraction terms is still singular
these are integrable square-root singularities. Integra
these singularities by a simple Monte Carlo integration te
nique ~choosing random values of the integration variab
uniformly! is not an efficient way because the variance of
estimate of the integral is infinite and we are not able
estimate the statistical error of the integral. To improve
stability and convergence of the Monte Carlo integral t
phase space is generated by a multichannel weighted p
space generator@24#.

III. RESULTS

In this section we study those jet observables which co
be interesting in jet studies at hadron-hadron colliders.
show some examples of inclusive three-jet cross sectio
energy fraction distributions of the jets, event shapes v
ables, and subjet rates. To present inclusive jet cross sec
and some related jet observables like the energy fraction
tribution we use the Ellis-Soper inclusivek' algorithm @17#
and the midpoint cone algorithm@18#. To do subjet studies
and calculate some jet-clustering algorithm-related ev
shape variables like the flipping variable we use the exc
sivek' algorithm which was defined by Cataniet al. in Ref.
@19#. We also present some jet-clustering-independent ev
shape distributions which are defined in the transverse p
~transverse thrust and transverse jet broadening!.

A. Three-jet inclusive cross sections

The most important jet quantities are the inclusive
cross section and its transverse distribution. In hadr
hadron collisions for jet studies a variant of the cone alg
rithms was used. Unfortunately those algorithms which w
used at the first run of the Tevatron are infrared and/or c
linear unsafe or only safe up to a given order in the pert
bative calculation. It is essential that the used jet algorithm
be infrared safe at all orders; otherwise, the perturbative
culation and the perturbative prediction are unstable. Us
an almost-infrared-unsafe jet algorithm we are not able
estimate the effect of the higher-order contributions due
the variation of the renormalization and factorization scal
The other problem with this type of jet algorithms is th
they are logarithmically sensitive to the detector resolut
~energy and angular resolution!. That is bad because in th
fixed-order perturbative calculation it is impossible or dif
cult to consider or simulate precisely these effects@25#.

In this subsection we use the Ellis-Soper inclusivek' al-
gorithm and the midcone iterative cone algorithm which a
infrared and collinear safe to all orders. In both cases
consider only those jets as hard final-state jets which hav
least 20 GeV transverse energy and are in theuhu,2 pseu-
dorapidity interval. The total jet transverse energy must
larger than 80 GeV. The renormalization and factorizat
scales are characterized by the hard scale which is a thir
the total jet transverse momentum:
2-4
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QHS5
1

3 (
j 51

nJ

pT
jet~ j !. ~19!

All jets contribute to this sum which passed the cuts.
Calculating the transverse energy distribution of the le

ing jet and comparing the leading and next-to-leading or
fixed-order predictions we can see in thek' case, if the
scales are set toxR,F51, the NLO correction is about 25%
30% as shown in Fig. 1. TheK5sNLO/sLO factor strongly
depends on the scale choice but the NLO prediction is sta
Varying the scales between 0.5 and 2 the scale uncertain
the NLO prediction is about 8%–10% which is significan
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FIG. 1. ~Color online! The fixed-order QCD predictions for th
inclusive three-jet differential cross sections of the transverse
mentum of the leading jet obtained using the inclusivek' and mid-
cone algorithms. The bands indicate the theoretical uncertainty
to the variation of the scalesxR,F between 0.5 and 2. The gray ban
is the leading order and the dark gray band is the next-to-lea
order. The insets show theK factor and its scale dependence. T
solid line represents thexR,F51 scale choice.
09400
-
r
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smaller than the leading order uncertainty which is ab
100% or more.

Using the midcone algorithm we got a very similar resu
In this calculation the cone size isR50.7 and the merge and
split threshold parameter isf 50.5. In this case the NLO
correction is about 20%–30% with thexR,F51 scales.

In Table I the NLO cross sections are tabulated. Comp
ing the values we can see that thek' algorithm gives a
higher cross section in the low-ET region while in the high-
ET region the cone result is higher. The difference betwe
the two results is less than 10% almost everywhere.

B. Topology of the three-jet events

One can study the structure of the three-jet events. We
define variables which test certain properties of the je
These quantities could be any azimuthal correlation betw
the jets or the energy fraction of the three leading jets.

The energy fraction of the three leading jets~leading in
transverse energy! was measured by the CDF Collaboratio
@26,27#. This quantity is defined in the center-of-mass fram

o-

ue

g

TABLE I. Next-to-leading order results for the differential dis
tribution of the three-jet inclusive cross sections as a function of
transverse energy of the leading jet. The scales arexR,F51. The
errors are the statistical error of the Monte Carlo integration.

ET
(1) k' algorithm Midcone algorithm

~GeV! ~nb/GeV! ~nb/GeV!

20–30 (6.74560.240)31021 (4.96160.387)31021

30–40 (1.24560.009)3101 (1.17460.019)3101

40–50 (1.25260.009)3101 (1.14860.014)3101

50–60 (6.96660.042)3100 (6.52260.077)3100

60–70 (3.50960.020)3100 (3.33860.034)3100

70–80 (1.79960.009)3100 (1.66260.017)3100

80–90 (9.17560.049)31021 (9.00360.096)31021

90–100 (4.99160.026)31021 (4.88460.054)31021

100–110 (2.75560.015)31021 (2.71360.028)31021

110–120 (1.58360.009)31021 (1.59560.018)31021

120–130 (9.36260.057)31022 (9.45260.011)31022

130–140 (5.55460.035)31022 (5.60760.069)31022

140–150 (3.46160.022)31022 (3.51760.045)31022

150–160 (2.16460.015)31022 (2.15260.030)31022

160–170 (1.35060.010)31022 (1.39860.019)31022

170–180 (8.78460.068)31023 (9.10360.135)31023

180–190 (5.72560.049)31023 (6.11060.099)31023

190–200 (3.80660.032)31023 (4.01460.065)31023

200–210 (2.59260.022)31023 (2.69860.048)31023

210–220 (1.74060.016)31023 (1.78660.034)31023

220–230 (1.18560.011)31023 (1.24360.025)31023

230–250 (7.04860.057)31024 (7.50360.121)31024

250–270 (3.27060.036)31024 (3.47160.080)31024

270–290 (1.64660.020)31024 (1.79760.042)31024

290–320 (7.04160.068)31025 (7.75460.155)31025

320–350 (2.53060.031)31025 (2.78160.057)31025

350–410 (6.47160.064)31026 (6.99360.129)31026

410–560 (3.86460.044)31027 (4.39160.096)31027
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of the three jets. The jets are ordered and labeled by en
in the rest frame (E1.E2.E3). The energy fraction vari-
ables~usually called Dalitz variables! are given by

Xi5
2Ei

E11E21E3
, i 51,2,3. ~20!

The variableX1 varies between 2/3 and 1,X2 between 1/2
and 1, andX3 between 0 and 2/3. There are only two ind
pendent variables sinceX11X21X352. We use only the
first two variables.

In the experimental analysis the iterative cone algorit
was used with an additional cut on the jets. It was requi
that the jets be well separated. This additional cut ensu
that the cross section is calculable order by order in per
bation theory but the jet algorithm is still not fully infrare
safe; it is almost infrared unsafe@25#.

To get stable theoretical predictions in our calculations
use the inclusivek' and midcone jet algorithms to resolv
jets with the same cuts that were used in Ref.@27#. All jets
are required to have at least 20 GeV transverse energy
they must lie in theuhu,2 pseudorapidity window. We cal
culate the normalized differential distributions of theX1 and
X2 variables and the double differential distribution of the
variables. In these calculations the renormalization and
torization scales are set to a third of the total jet transve
energy, Eq.~19!.

The distributions are normalized by the total three-
cross section plotted in Fig. 2. We can see that the N
correction reduced the scale dependence of the perturb
prediction. The scale uncertainty of the NLO result is ab
10%–12%, varying the scales in the 0.6,xR,F,2 range,
while the LO uncertainty is much higher, 38%–40%. T
corrections with thexR,F51 scale choice are about 30%.

The double differential distributions of the variablesX1
andX2 are plotted in Fig. 3. The phase space would popu

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
/QHS

0

10
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30

40

50

3j
et

[n
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Midcone and inclusive k algorithms

Inclusive k algorithm
Midcone algorithm

R = F =
QHS = pT/3

pT > 175GeV
pT > 20GeV & | | < 2

NLO
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FIG. 2. ~Color online! The scale dependence of the total thre
jet cross sections.
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the availableX1 , X2 region uniformly. Deviation from the
uniform distribution shows the effect of the QCD dynamic

Taking the double differential distribution and projectin
on either axis the distributions of variablesX1 andX2 can be
obtained. In Fig. 4 the differential distributions of the ener
fractions are plotted in the inclusivek' and midcone algo-
rithm cases.

Comparing the leading order result to the next-to-lead
order result we can see that the NLO distribution of the le

-

Midcone algorithm

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

0

2.5

5

7.5

10

12.5

15

17.5

20

X 1X
2

Inclusive k⊥ algorithm

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

0

2

4

6

8

10

12

14

16

18

20

X 1X
2

FIG. 3. ~Color online! Next-to-leading order perturbative pre
diction for the normalized double differential distributio
(1/sds/dX1dX2) of the energy fraction variablesX1 andX2 using
the midcone and inclusivek' algorithms.
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ing jet is less peaked than the LO but in the case of theX2

distribution the NLO result is more peaked around 0.65. T
NLO correction of the distributions is small.

Comparing the two algorithms to each other we can
that the distributions are very similar and there is not
much difference. TheX1 distribution of the inclusivek' al-
gorithm is a little bit more peaked and theX2 distribution is
a little bit flatter than in the midcone case. The correspond
peaks are in the same positions.

C. Three-jet event shapes

We can distinguish two types of event shapes. One
calculate and measure the event shapes which are asso
with a jet algorithm. Generally we can say that this type
variable gives information about any geometrical property
the jets in ann-jet event. Or we can define event shape va
ables which measure any geometrical property of the ev
e.g., thrust or jet bordering.

Using the exclusivek' algorithm there is a natural way t
introduce event shape variables. The prescription of this
gorithm introduces a stopping parameterdcut ~resolution
variable!, which defines the hard scale of the process a
separates the event into a hard scattering part and a lowpT
part ~beam jet!.

Defining thedcut resolution variable event by event w
can calculate the differential distribution of theEtn event
shape variable. Denoting bydm the smallest resolution vari
able when the event hasm hard final state jets theEtn event
shape variable is defined by

0.5 0.6 0.7 0.8 0.9 1.0
Xi

0

1

2

3

4

5

6

1/
d

/d
X

i(c
on

e
al

g.
)

0
1
2
3
4
5
6
7
8

1/
d

/d
X

i(k
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g.
)

Midcone and iclusive k algorithms

NLO
LO

R = F = pT/3

pT > 175GeV
pT > 20GeV & | | < 2

X2

X2

X1

X1

FIG. 4. The energy fraction distribution of the leading (X1) and
second leading (X2) jets. The upper figure is result with the inclu
sive k' algorithm and the lower figures shows the midcone res
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Etn
2 5max

m>n
$dm%. ~21!

We plot the differential distribution of theEt3 event shape
variable in Fig. 5. In this calculation theuhu,2 pseudorapid-
ity cut was applied for every hard final state jet. The ren
malization and factorization scales were given bymR,F
5xR,FQHS where the hard scale is the average transve
momentum of the three jets:

QHS5
1

3 (
j 51

3

pT
jet~ j !. ~22!

Comparing the next-to-leading order result to the lead
order result we see that the LO prediction strongly depe
on the scales. Varying the scale parametersxR,F between 0.5
and 2 the scale uncertainty of the NLO result is about 15%
contrast to the LO scale uncertainty which is about 80
Setting the scales toxR,F51 we see that the NLO correctio
is about 20%–35%.

One can define event shapes on the transverse plane
important example is the transverse thrust which is defi
by

T'5max
nW

(
i PCN

upW',i•nW u

(
i PCN

upW',i u
, ~23!

wherepW',i is the transverse component of the parton~had-
ron! momentum. The unit vector thatnW maximizes the ratios
of the sums is usually called the thrust axis. In these su
only those particles are counted which fulfill all selectio

.

0 50 100 150 200 250 300
Et3

10
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10
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10
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1

10
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10
3

10
4

E
t3

d
/d

E
t3

Exclusive k algorithm

0.5 < xR,F < 2
QHS = pT/3
| | < 2

NLO
LO

0 100 200 300
Et3

0.8

1.0

1.2

1.4

1.6

1.8

K
(E

t3
)

FIG. 5. ~Color online! Distribution of theEt3 event shape vari-
able at the LO an NLO levels. The bands indicate the theoret
uncertainty due to the variation of the scalesxR,F between 0.5 and
2. The gray band is the leading order and the black band is
next-to-leading order. The inset shows theK factor and its scale
dependence. The solid line represents thexR,F51 scale choice.
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ZOLTÁN NAGY PHYSICAL REVIEW D 68, 094002 ~2003!
criteriaCN . This selection must be infrared safe. In this c
culation we required that the pseudorapidity of those p
ticles which contribute toT' be in the@21.1,1.1# pseudora-
pidity window; thus, we have

CN5$ i : uh i u,1.1, i 51, . . . ,N%, ~24!

whereN is the number of particles in the event. This defin
tion of the thrust for hadron colliders gives an infrared-s
longitudinally boost-invariant quantity.

The jet broadeningB' is an associated quantity to th
thrust. Using the thrust axis we can defineB' on the trans-
verse plane by the formulas

B'5

(
i PCN

upW',i3nW u

2 (
i PCN

upW',i u
. ~25!

In Fig. 6 the differential distributions of the transverse thru
and transverse jet broadening are plotted at the LO and N
levels. In this calculation the total transverse energy is lar
than 100 GeV:

HT[ (
i PCN

ET,i.100 GeV. ~26!

The perturbative results are logarithmically divergent at
edge of the phase space. This divergence occurs atT'51
and T52/3 in the thrust distribution and atB'50 and B
51/3 in the jet broadening distribution. Setting the scale
the total transverse energy the NLO order correction in
middle of the distribution where the effect of the logarithm
small is 30%–35% for the thrust and 20%–45% for
broadening as is shown in the inset. It is necessary to do

0.0 0.1 0.2 0.3 0.4 0.5
1-T , B

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1/
O

3d
/d

O
3

Event shapes on the transverse plane

HT > 100GeV
| | < 1.1

NLO
LO

0.0 0.1 0.2
1-T , B

0.6

0.8

1.0

1.2

1.4

1.6

K
(O

3)

B
1-T

B

1-T

FIG. 6. Distribution of 12T' andB' event shape variables a
the LO ~dashed line! and NLO ~solid line! levels. The scales were
set tomR,F5HT . The inset shows theK factors.
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all-order resummation of the leading and next-to-lead
logarithms to be able to do a quantitative comparison of
theory to the data.

One can define the average value of the event shape
ables as a function of the total transverse energy. This qu
tity is given by the ratio

^O3&d5S ds

dHT
D 21E

d

1

dO3O3

ds

dO3dHT
, ~27!

whereO3 could be either 12T' or B' .
Figure 7 shows the average value of the transverse th

With the mR,F5HT scale choice it was found that the NLO
correction is small, about 15%. The NLO correction does
change the shape of the distribution as is shown by
K-factor plot. This result indicates that the NLO fixed-ord
prediction might describe the data with good accuracy.

Figure 8 shows the average value of the transverse
broadening. The CDF collaboration@28# measured this dis-
tribution with thed50 choice and the data were compar
to the leading order QCD prediction. Comparing the data
the NLO prediction the difference between the data a
theory is huge. This can happen because the contributio
large logarithms from the small-B' region is very large and
in the NLO case it causes a huge negative effect. It is c
that the fixed-order calculation is unable to describe the d
Resummation of the large logarithms is important@29#.

As shown in Fig. 6 the large negative contributions com
from the small-B' region (B',0.02). Resumming the lead
ing and the next-to-leading logarithms theB'ds/dB' distri-
bution is positive definite and we can expect that it is re
sonably small in the small-B' region. On the other hand, Fig
6 indicates that the NLO fixed-order calculation is a sta
prediction in the large (B'.0.2) region. Assuming that the
all-order contribution of theB',0.02 region to the averag
value is small and changing thed parameter we can make
better comparison of the data and NLO prediction. In Fig

100 200 300 400
HT [GeV]

0.04

0.06

0.08

0.1

<
1-

T
>

0.
0

Transverse thrust

| | < 1.1

NLO
LO

R,F = HT

100 200 300 400
HT [GeV]

1.0

1.1

1.2

K
(H

T
)

FIG. 7. ~Color online! Average value of the 12T' event shape
variable atd50 at the LO ~dashed line! and NLO ~solid line!
levels. The scales were set tomR,F5HT . The inset shows theK
factor.
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we can see that thêB'&0.0 and the^B'&0.001 NLO results
suffer on the effect of the large logarithm but changing thed
parameter between 0.005 and 0.02 the NLO prediction
stable and hardly depends on thed parameter and the agree
ment with the data is much better. The inset shows theKd

5^B'&d
NLO/^B'&d

LO factor. For 0.005,d,0.02 the NLO cor-
rection is positive, nearly constant, and is maximum 30%

Of course this is not a precise analysis and without
resummation of the leading and next-to-leading logarith
the quantitative comparison of the current data and theor
impossible but it can help to understand the huge disc
ancy between the data and NLO prediction. It also indica
that the NLO prediction can describe the data very wel
d.0.005.

D. Subjet fractions

In this subsection we study the subjet multiplicities of t
events. We use the exclusivek' algorithm@19#. The jets are
defined in a two-step clustering procedure. The first step
the algorithm identifies the low-pT scattering fragments an
includes them in the beam jets, thus factorizing the h
scattering subprocess. The scale of the hard final state je
Ecut , the stopping parameter of this clustering step. Defin
the subjet resolution variableycut5Q0 /Ecut the second step
of the algorithm resolves the subjet structure of the h
final-state jets.

The n-subjet rate is defined by the ratio of then-subjet
cross section and the total cross section as

Rn~Ecut ,ycut!5
sn~Ecut ,ycut!

s tot~Ecut!
, ~28!

where thes is the total cross section defined by the sum
the n-jet cross section at theEcut scale

100 200 300 400
HT [GeV]

0.1

0.15

0.2

0.25

<
B

>
Transverse jet broadening

NLO ( = 0.02)
NLO ( = 0.01)
NLO ( = 0.005)
NLO ( = 0.001)
NLO ( = 0)
LO ( = 0)

| | < 1.1
R,F = HT

100 200 300 400
HT [GeV]

0.4

0.6

0.8

1.0

1.2

1.4

K
(H

T
)

FIG. 8. ~Color online! Average value of theB' event shape
variable at d50 at the LO and NLO levels for d
50,0.001,0.005,0.01,0.02. The scales were set tomR,F5HT . The
markers~diamonds! and the error bars represent the CDF data@28#
and their statistical error. The inset shows theK factors.
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s tot~Ecut!5 (
n52

`

sn~Ecut!5E
Ecut

`

dEt2

ds

dEt2
. ~29!

The Et2 variable is the smallest value of theEcut resolution
variable where the event has two jets. Using the similar ev
shape variablesyn andyn11 of the second step we can defin
the exclusive subjet cross section at a givenEcut scale by

sn~Ecut ,ycut!5E
Ecut

`

dEt2F E
ycut

`

dyn

ds

dEt2dyn

2E
ycut

`

dyn11

ds

dEt2dyn11
G . ~30!

In the fixed-order perturbation calculation we ca
calculate the three-subjet ratio at the NLO lev
@R3

NLO(Ecut ,ycut)# and the four-subjet ratio at the LO leve
@R4

LO(Ecut ,ycut)#. From the definition of then-subjet ratios
we have the normalization condition

15(
i 52

`

Rn~Ecut ,ycut!. ~31!

Using this relation the two-subjet relation can be obtained
the next-to-next-to-leading order level~NNLO!:

R2
NNLO~Ecut ,ycut!

512R3
NLO~Ecut ,ycut!2R4

LO~Ecut ,ycut!1O~as
3!. ~32!

Analogously to thee1e2 annihilation we can define the sub
jet multiplicity

N~Ecut ,ycut!5 (
n52

`

nRn~Ecut ,ycut! ~33!

and at up to second order

N~Ecut ,ycut!521R3
NLO~Ecut ,ycut!

12R4
LO~Ecut ,ycut!1O~as

3!. ~34!

The fixed-order perturbative predictions depend on the
physical renormalization and factorization scales. In th
calculations the scales are given on an event-by-event b
We use the invariant mass of the two hard final-state
found at theEt2 scale as the renormalization and factoriz
tion scales:

mR,F
2 5~p11p2!2. ~35!

Figure 9 shows the subjet ratios and subjet multiplici
The result is given as a function ofEcut parameter and the
base-ten logarithm of the subjet resolution variable. The d
tributions are plotted on the 10,Ecut,110 GeV and23.9
, log10(ycut),0 region. We can see that the subjet ratios
strongly dominated by the large logarithms in the low-Ecut
and -ycut regions. To be able to do any quantitative compa
son to the experimental data in this region it is necessar
2-9
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FIG. 9. ~Color online! The fixed-order QCD prediction for the two-, three-, and four-jet subjet rates and for the subjet multiplicity
two-jet rate is calculated at the NNLO, the three-jet rate is calculated at the NLO, and the four-jet at the LO levels.
t a

io
av
de
s
a
he

uce
nu-
e

of
ing
e
by
en-
tion
ar-
sum at least the leading and next-to-leading logarithms a
order and match them to the fixed-order calculation.

IV. CONCLUSION

This paper dealt with the next-to-leading order calculat
of three-jet observables in hadron-hadron collisions. We g
a modification of the original dipole method that it ma
possible to construct a Monte Carlo program for this proce
We find that this modified dipole subtraction method w
very useful from the point of the numerical calculation. T
09400
ll

n
e

s.
s

introduced phase space cut in the dipole term could red
the evaluation time of subtraction terms and increase the
merical stability of the Monte Carlo integral by reducing th
probability of the missed binning.

We calculated the transverse momentum distribution
the leading jet of the three-jet inclusive cross section us
the inclusivek' an midcone algorithms. We found that th
NLO correction can stabilize the theoretical prediction
reducing the renormalization and factorization scale dep
dences significantly. We also calculated the energy frac
distribution of the three-jet inclusive cross section. Comp
2-10
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ing the leading order result to the next-to-leading order re
we found that the NLO corrections are negligible in the
analyses.

We defined event shape variables in the transverse pl
We calculated the differential distribution of the transve
thrust and transverse jet broadening and the transverse
ergy dependence of the average values. We found tha
size of the NLO correction is not too large and accepta
but at the edge of the available phase space the result su
in the contribution of large logarithm. In this region a nex
to-leading logarithmic approximation~NLL ! matched with
the fixed-order prediction can give a reasonable result.
average value of the transverse jet broadening was comp
to the CDF data and we found that a comparison of
current data and theory without NLL resummation is impo
sible. Using a rough approximation in the small-B' region
we were able to do some qualitative comparison between
data and NLO QCD prediction and we found reasona
good agreement.

We also calculated the subjet rates and subjet multipli
using the exclusivek' algorithm. These quantities were d
fined in a way that mimicked ane1e2 annihilationlike situ-
ation at hadron colliders. The result is very similar to wh
we have ine1e2 annihilation. The subjet ratios are strong
s.

;
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dominated by the final-state large logarithm. Upgrading
fixed-order calculation with the next-to-leading logarithm
approximation this quantity may provide a sensitive me
surement of the strong coupling at hadron colliders.

Recently two general methods have been developed
Banfi, Salam, and Zanderighi@29# and by Boncianiet al.
@30# to carry out the next-to-leading logarithmic resumm
tion for any observable. These methods can help us to
prove our fixed-order calculation and to be able to mak
more precise comparison between the data and theory.
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and suggestions, as well as for collaboration on various
ments of this project. This work was supported in part by
U.S. Department of Energy, contract DE-FG0396ER409
by Research Training Network ‘‘Particle Physics Pheno
enology at High Energy Colliders,’’ contract HPRN-CT
2000-00149, as well as by Hungarian Scientific Resea
Fund grant OTKA T-038240. I also thank the Institute P
ticle Physics Phenomenology~IPPP! at the University of
Durham and the Fermi National Laboratory for making
possible for me to use their computer facilities.
er,

2.

d-
gy

n,
@1# W.T. Giele, E.W.N. Glover, and D.A. Kosower, Nucl. Phy
B403, 633 ~1993!.

@2# Z. Kunszt and D.E. Soper, Phys. Rev. D46, 192 ~1992!.
@3# W.B. Kilgore and W.T. Giele, hep-ph/9903361

hep-ph/0009176; hep-ph/0009193.
@4# W.B. Kilgore and W.T. Giele, Phys. Rev. D55, 7183~1997!.
@5# Z. Nagy, Phys. Rev. Lett.88, 122003~2002!.
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