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Next-to-leading order calculation of three-jet observables in hadron-hadron collisions
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The production of three jets in hadron-hadron collisions is the first complex process which allows us to
define a branch of variables in order to make more precise measurements of the strong coupling and the parton
distribution function of the proton. This process is also suitable for studying the geometrical properties of the
hadronic final state at hadron colliders. This requires a next-to-leading order prediction of the three-jet observ-
ables. In this paper we describe the theoretical formalism of such a calculation with sufficient detail. We use the
dipole method to construct a Monte Carlo program for calculating three-jet observables at next-to-leading order
accuracy. We present a theoretical prediction for inclusive and exclusive cross sections and for some relevant
event shape variables such as the transverse thrust, transverse jet broadenitg,vandble.
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[. INTRODUCTION deal with different types of singularities. The ultraviolet sin-
gularities are present in the virtual contributions and they are
In high-energy hadron-hadron collisions the processesemoved by the renormalization. The infrared singularities
with a purely hadronic final state is one of the clearest proare present in both the virtual and real contributions but the
cesses to test quantum chromodynani@€D) and measure sum of them is finite. In the last few years theoretical devel-
its parameters simultaneously. According to perturbativeopments have made possible next-to-leading order calcula-
QCD the cross section of this processes is a convolution of flons for three-jet quantities. There are several general meth-
long- and short-distance part. ods available for the cancellation of the infrared divergences
The |0ng—distance—dependent pal‘t iS the parton distributhat can be used for Setting up a Monte Carlo progli'aﬁ'g]
tion function of the incoming hadrons. This function is uni- | computing the NLO correction we use the dipole formal-
vers_al and process independent, and we can measure itin a3 of Catani and Seymoug], which we modified slightly
basic process such as, for example, deep inelastic scattering. orqer to have better control of the numerical calculation.
The short-distance part is the partonic cross section that,iq geheme is discussed in detail in the next section.
can be calculated in perturbatwe' QCD as a f%‘”c“o"‘ of a The advantages of using the dipole method are the follow-
single parameter, the strong couplings]. The main advan- ing: (i) no approximation is madeii) the exact phase space

tage of the hadronic final states at hadron-hadron colliders 'Pctorization allows full control over the efficient generation
that it is possible to measure the strong coupling and the 9

parton distribution functiofPDP simultaneously. of the phase spacéiji) the use of neither color-ordered sub-

The production of three jets is the first process which Caﬁampl_itudes nor s_ymmet_r iza_tion nor par_tial fraction_ing OT the
provide a complex final state to define a branch of jet ob.matrix elements is requirediv) Lorentz invariance is main-

servables in order to be able to do more precise measurg-‘i”ed' and therefore the switch between various frames can
ments of the strong coupling and give a better determinatio® 2chieved by simply transforming the momeiftathe use

of the parton distribution function. On the other hand, this®f €rossing functions is avoidedvi) it can be implemented

process allows us to do more advanced studies of the had? @0 actual program in a fully process-independent way.
ronic final states by measuring their geometrical properties, | N€ important theoretical development that made possible

In order to be able to make quantitative predictions it isthe three-jet calculation was that relevant one-loop ampli-

essential to perform the computations at least next-to-leadinly/des for the relevant subprocesses became available. For the
order (NLO) accuracy. In hadron collisions the most easily0—999gg [10], 0—qqggg subprocesses the amplitudes
calculated one- and two-jet cross sections have so far beatere calculated by Bern, Dixon, and Kosowéd] and for
calculated at the NLO leve[l,2]. At the next-to-leading the 0—qqQQg subprocess it was given by Kunszt, Signer,
level some inclusive three-jet observables were calculated band Trasanyi [12]. Relevant six-parton tree-level matrix el-
Giele and Kilgore[3,4] and by the authof5]. Furthermore, ements are also availabl&3—16.
Trocsanyi also calculated the three-jet cross section in an In this paper we give sufficient details of our work and
effective parton distribution function approximatip@i. present several new results for next-to-leading order predic-
The main difficulty of next-to-leading order calculations tions of three-jet observables in hadron-hadron collisions that
is the presence of singularities. In general, when evaluatingere not published before and they could be interesting in an
higher-order QCD cross sections, one has to consider reagxperimental analysis. In Sec. Il we give details of the ana-
emission contributions and virtual corrections and one has ttytic and numeric calculation and describe the structure of
our result. In Sec. 11l we present complete NLO predictions
for three-jet inclusive cross sections and their energy fraction
*Email address: nagyz@physics.uoregon.edu; URL: distribution (Dalitz variable$ using the inclusivek, algo-
http://www.cpt.dur.ac.ukinagyz/nlot+ + rithm [17] and the midcone algorithifil8]. We define the
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thrust and jet broadening event shape variables in the transum a slightly modified version of the Catani-Seym@f
verse plane. We show some subjet result using the exclusiv@ipole method is used in our calculations.

k, algorithm[19]. Section IV contains our conclusion. The reason for modifying the original dipole formalism is
numerical. The essence of the dipole method is to define a
. . A . .
Il. DETAILS OF THE CALCULATION single subtraction terndo”, the dipole subtraction term,
' which regularizes the divergences in the real term which
A. Method comes form the soft and collinear regions. Thus, the three

The next-to-leading order cross section for the proces§ingular integrals in Eq(3) are substituted by three finite

with two initial-state hadrons is the convolution of the parton
density functions of the incoming hadrons and the hard scat- NLO(p p)=a 0 (p.p)+ N2 (p,p)
tering cross section, abi4 ab3)
o L = [ g ooxnp + 4158 up xp))
0(p,p)=§) fo d77fa/H(77uU~|2:)f0 dnf (7, 18) e e

(5
LO R NLO N
X[oap (7P, 7P)+ oap (7P, 7P) ], (1) where the four-parton integral is given by

wheref;, is the density of partons of tygdan the incoming NLO /. — R, — A=
hadronH at the u¢ factorization scale. The corresponding Ta(3)(P.P) = L[d‘fab(p’p)fzo_d‘fab(p'p)FO]' ©®)
parton-level cross sections are
We have two three-parton contributions to the NLO correc-
— — tion. The second term on the right-hand side of & is the
a5 (P.p)= Lda?b(p'p) = J3dr(3)<|M SIHFY. @ sum of the one-loop contributio% and a Born terrr(:jq(i,onvoluted
by a universal singular factdr,

and the next-to-leading order correction is the sum of three

integrals: T3y (P.p) = L[dozb<p,5>+daib<p,ﬁ>®|]5=o. (7)
NLO NLO I i
(p, p f daly°(p, p)_ f doR (p, p) The factorl contains all thee poles which come from the
o do” and do® that are necessary to cancel ttegual and

with opposite sighpoles inda". The last term in Eq(5) is
+f dUVb(p,EHdeCb(D,H), 3y  afinite remainder that is left after factorization of initial-state
3 @ 3 @ collinear singularities into the nonperturbative distribution
functions(parton density function
wheredo® anddaV are the real and Xirtual contributions to
the cross section. The contributiato™ represents the col- NLO
linear subtraction counterterm. The pole structure of thISJ 4X0 2573, (X.XP.P)
term is well defined but the finite part is factorization scale .
dependent. The actual form of the finite part in the expres-  _ B S aa’
sion of thedo© defines the factorization scheme. In our cal- 2 J dXL{dUa'b(Xp'p)@[P(XHK(X)] Je-o.
culations we chose the commonly used modified minimal
subtraction M_S) scheme. The [ i ®
. parton density functions are
also scheme dependent, so that this dependence cancelswhere thex-dependent function® and K are similar (but
the hadronic cross section of EQ). finite for e—0) to the factorl. These functions are univer-
The three integrals on the right-hand side of E8).are  sal; that is, they are independent of scattering process and of
separately divergent but their sum is finite provided by the jethe jet observables.
function Fgm), which defines an infrared-safe quantity, — There are several ways to define the” dipole subtrac-

which formally means that tion term, but all must lead to the same finite next-to-leading
order correction. In this program a slight modification of the
FWF®, (4)  Catani-Seymour subtraction term was implemented by defin-

ing the dipole term as a function of a parametet (0,1]
in any case where the four-parton and three-parton configuyhich controls the volume of the dipole phase space. In the
rations are kinematically degenerate. The presence of singe"e~ annihilation case this modification of the dipole for-
larities means that the separate pieces have to be regularizathlism was discussed in R¢R0], which we generalize for
and the divergences have to be canceled. We use the dimefadron-hadron collisions.
sional regularization inl=4—2e dimensions in which case In this subsection we recall only those dipole factorization
the divergences are replaced double poleg Bhd single formulas that are relevant in our calculation. We do not want
poles 1£. We assume that the ultraviolet renormalization ofto give a precise definition of every variable, function, and
all Green functions to one-loop order has been carried out, sfactor; we just use the same notation of the original paper of
the divergences are infrared origin. In order to get the finitehe dipole method9].
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The do” local counterterm is provided by the dipole factorization of the tree-level squared matrix element. Thus we can
define

1 ~ o~
doge=2 dF@(pa.py.pr, - PG —{ 2 2 Dij(ParPo.Pu. - - PFS(PaiPo.Pr. - - Pij Prs - - Pa)
{4} 4} | pairs K#1,j
1]
XO(Yi<a)+ 2 [Df(ParboiPr. - POFS(ParPoPrr - Dy POO(LX <)+ (a=b)]

i

+g‘k [D2(Pa,Po:P1s - - POFP(PasPo.P1s - - Prs - - - P2)O(U <)+ (acb)]

+Ei [Dai’b(palpbipli e 1p4)Fgg)(5avpb !Bll e !~p4)®(;i<a)+(a<_)b)]]a (9)

wheredI'™ is the four-parton phase space including all thewhere the indices,J run over both final- and initial-state
factors that are QCD independeBty, denotes the sum over partons and th@, - p, dot products are always positive and
all the configurations with four partons, asgy, is the Bose . 5 L
symmetry factor of identical partons in the final state. The e ™

Dij k. D, DE', andDa"® are the dipole terms. The func- Vi(a,e)=T; (2_ 3| gt ritKi(a)+0Ce),
tion F$¥ is the jet function which acts over the three-parton (11)
dipole phase space. Thg , Xjj a, Ui, v; are dipole vari- where

ables defined by dipole factorization of the phase space. The

dipole factorization of the phase space is exact phase space Ki(@)=K;—Tan?a+ y,(a—1-Ina). (12
factorization which means that there is no approximation , ,

used in the kinematically degenerated regitswit, collinear, 1heK; andy; constants are defined in E45.90 and(7.29
and soft-collinear We found that it makes the Monte Carlo N Ref.[9]. TheK(x,a) flavor kernel is given by

integral more stable because the real contribution and sub-

a,a’
traction terms are defined in same phase space point. K (x.a)
In Eqg. (9) thea= 1 case means full dipole subtraction and ag [ — ) 1.,
it gives back the original dipole subtraction terms. In a com- = 2—| K2 (x,a) = KE§ (X) = Ty Tar 5K (X, )
puter program the large number of dipoles terms and com- & a’

plicated analytic structure of the expressions makes evalua-

tion of the subtraction terms rather time consuming. Using al i L) _

this cut dipole phase space we can speed up the program. o Z T TaTi2 (1—X 17a+ ad(l X)”’

The parameterr is also useful to check our program by

varying the value otxr and checking whether the full correc- (13
tion is independent of this parameter. whereK23 (x) is defined by the factorization scheme. In the

The most serious numerical defect of the subtraction:ase of theMS scheme these functions are identically zero.
schemes is the missed binning. This happens when a hu%e flavor functionsl?ab(x «) are

positive weight from the real part and the corresponding
huge negative weight that form the subtraction term are filledk2°(x, ar)
into different histogram bins. It is obvious that this cut can

increase th_e numeri(_:al stability (_)f the Monte Carlo program  _ 'Agéb(XH Pfebg(x)ln a(l—Xx)  ST25(1—x) In%a
by decreasing the size of the dipole phase space which re- X
duces the chance of the missed binning. 5 1-x
The introducedr phase space cut parameter requires one 1+ 570 Tg(—ln—)
to redefine theé andK (x) flavor kernels. The singular factor 1-x X )4
| is given by 5
I(P1, - Pmiase) — 1) 7a+Ka<a>—g7T2T§”
as 1 1 (477#«2)5 a(2-x)  2-x
=TT T —Vi(a,e T-Tol 57—/, b2 — —
20 F(l_f) El T|2 I( );I | J 2p|pJ +6a Tal—X Inl+a—X |n1_x@(x<l a))
(10 (14)
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The K2°(x, ) flavor kernels are defined by is based on theiLoJET++ program library{21], which was
used in other already well-tested processes.
- 1-x . In the NLO calculation the difference of the real contri-
KaP(x,a) = Pfgg(x)mT+<Pa,b(X,E:0)>|n a(X) butions and the dipole subtraction terms is still singular but
these are integrable square-root singularities. Integrating

2 these singularities by a simple Monte Carlo integration tech-

o
— T2 (m'”m + 5 0(1-x) nique (choosing random values of the integration variables
1-a uniformly) is not an efficient way because the variance of the
2 1+ a—Xx estimate of the integral is infinite and we are not able to
+ ﬁbTim In——— estimate the statistical error of the integral. To improve the
“« stability and convergence of the Monte Carlo integral the
phase space is generated by a multichannel weighted phase
—In(2-x)0(x>1-a)|, (15  space generatd@4].
where the functionx(x) is given by . RESULTS

_ a In this section we study those jet observables which could
a(x):mln( 1,m]- (16)  be interesting in jet studies at hadron-hadron colliders. We
show some examples of inclusive three-jet cross sections,
energy fraction distributions of the jets, event shapes vari-
ables, and subjet rates. To present inclusive jet cross sections
and some related jet observables like the energy fraction dis-
tribution we use the Ellis-Soper inclusike algorithm[17]
and the midpoint cone algorithfii8]. To do subjet studies
N and calculate some jet-clustering algorithm-related event
1 1 f(x)—f(1) . . e ;
J dx( _) f(X):J dx——— =7 (17)  shape variables like the flipping variable we use the exclu-
0 1- B B 1-x sivek, algorithm which was defined by Catagii al. in Ref.
[19]. We also present some jet-clustering-independent event
shape distributions which are defined in the transverse plane
(transverse thrust and transverse jet broadening
Once the phase space integrations are carried out, we
write the NLO jet cross section in the form

The definitions of the Altarelli-Parisi probabilities
[P2P (x), PL,(x)] and splitting functions (P, ,(x,€))) are

reg

given in Appendix C in Ref[9]. The “B=1—a" prescrip-
tion is defined by

B. Structure of the results

A. Three-jet inclusive cross sections

O_RjthE fldnfld;fam(n,ME)fb/B(;,Mé) The most importa_mt jet quantities' are the inclusive jet
ab Jo 0 cross section and its transverse distribution. In hadron-

. hadron collisions for jet studies a variant of the cone algo-
X o35 {Pa.Po ,as(Mé),Mé/Qas:Mé/Qas], (18) rithms was used. Unfortunately those algorithms which were

used at the first run of the Tevatron are infrared and/or col-

wheref;;(7,12) represents the patron distribution function linear unsafe or only safe up to a given order in the pertur-
of the incoming hadron defined at the factorization scalebative calculation. It is essential that the used jet algorithm to
me=XeQus, 74y is the fraction of the proton momentum be infrared safe at all orders; otherwise, the perturbative cal-
carried by the scattered partopg,, Qus is the hard scale culation and the perturbative prediction are unstable. Using

that characterizes the parton scattering which coul&pef  an almostinfrared-unsafe jet algorithm we are not able to
the jet, jet mass of the event, etc., apgd=xgQus is the  estimate the effect of the higher-order contributions due to

renormalization scale. the variation of the renormalization and factorization scales.
In the presented leading and next-to-leading order result§he other problem with this type of jet algorithms is that
we use thec/c++ implementatior{21] of the LHAPDF li-  they are logarithmically sensitive to the detector resolution

brary[22] with CTEQ6[23] parton distribution function and (energy and angular resolutiprirhat is bad because in the
with the correspondingrs expression which is included in fixed-order perturbative calculation it is impossible or diffi-
this library. The CTEQ6 set was fitted using the two-loopcult to consider or simulate precisely these eff¢ef].
running coupling withag(M z0) =0.118. In this subsection we use the Ellis-Soper includgiveal-

To ensure the correctness of the result several checks wegerithm and the midcone iterative cone algorithm which are
performed:(i) the Born-level two-, three-, and for-jet cross infrared and collinear safe to all orders. In both cases we
sections were compared to the prediction of tieTs[16]  consider only those jets as hard final-state jets which have at
program and perfect agreement was foufiid; the singular least 20 GeV transverse energy and are in|thle<2 pseu-
behavior of the real and dipole subtraction terms wasdorapidity interval. The total jet transverse energy must be
checked numerically in randomly chosen phase space pointigrger than 80 GeV. The renormalization and factorization
(iii ) the total NLO correction was independent of thgpa-  scales are characterized by the hard scale which is a third of
rameters that control the dipole phase spéeethe program the total jet transverse momentum:
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TABLE |. Next-to-leading order results for the differential dis-

Inclusive k ; algorithm o ed - : :
tribution of the three-jet inclusive cross sections as a function of the

1
10 LU LR AR AR AN errors are the statistical error of the Monte Carlo integration.
0 ]
— 101 EM k, algorithm Midcone algorithm
g 10 oF o (GeV) (nb/GeV) (nb/GeV)
2 10” LO 08 - 20-30 (6.745:0.240)< 101 (4.961+0.387)x10 ¢
s e Ve Vet FPPETIVSE P | 30-40  (1.2450.009x10'  (1.174-0.019)x 10"
) b pr>20GeV, <2 e 40-50  (1.2520.009)x10'  (1.148+0.014)x 10"
g 10 2_pr > 80GeV 50-60 (6.966:0.042)x 10° (6.522+0.077)x 1¢°
5 60-70 (3.509:0.020)x 10° (3.338+0.034)x 1¢°
10 Qus=2_pr/3
. 05 < xpr <2 70-80 (1.799-0.009)x 10° (1.662+0.017)x 1¢°
10 80-90 (9.175:0.049)x10°!  (9.003+0.096)x 10!
0 — ‘180‘ — ‘2c‘>o‘ — ‘3(‘)0‘ — ‘4(‘)0‘ — ‘500 90-100  (4.99%0.026)x10 *  (4.884-0.054)x10 *
) 100-110  (2.7550.015)x10 !  (2.713-0.028)x10 !
pr [Gev] 110-120  (1.5830.009)<10 !  (1.595+0.018)x10 !
120-130  (9.3620.057)x10°2  (9.452+0.011)x 10 2
Midcone agorithm 130-140  (5.5540.035)x10°2  (5.607+0.069)x 102
L L e e 140-150  (3.4610.022)x10 %2  (3.517=0.045)x 10 2
10 o [T I I ey 150-160  (2.1640.015)<10°?  (2.152+0.030)< 10 2
1° e - 160-170  (1.358:0.010)x 10_2 (1.398-0.019)x 10" 2
_ P 170-180  (8.7840.068)x10°%  (9.103+0.135)x 103
3 10" i ] 180-190  (5.72%0.049)x10° 3  (6.110+0.099)x 10 3
g 102 = hfo o - 190-200  (3.806:0.032)x10°3  (4.014+0.065)x 10 3
< - - 200-210  (2.5920.022)x10°3  (2.698+0.048)x 10 3
85 10° R=07f=05 : 0““1(‘)3“‘2(‘)3‘ “3(‘)3‘ ‘L,JX‘)‘ g 210-220  (1.7480.016)x10°3  (1.786+0.034)x 1073
S .4 Pr > 20GeV, || < 2 p 220-230  (1.18%0.011)x10° %  (1.243t0.025)x10 3
510 2.pr > 80GeV 230-250  (7.0480.057)<10°%  (7.503-0.121)x 10~*
©
10° Qus=Ypi/3 250-270  (3.2780.036)<107*  (3.471+0.080)x 10~ *
. 05<Xgp<2 270-290  (1.646:0.020)x10°*  (1.797+0.042)x 104
o T 290-320  (7.0410.068)x10°5  (7.754+0.155)x 10 5
0 100 200 300 400 500 320-350  (2.538:0.031) 10*2 (2.781=0.057) 10*2
0 [Gev] 350-410  (6.4710.064)X 1077 (6.993+0.129)x 1077
410-560  (3.8640.044)x 10 (4.391+0.096)x 10

transverse energy of the leading jet. The scalesxafe=1. The

FIG. 1. (Color onling The fixed-order QCD predictions for the

inclusive three-jet differential cross sections of the transverse mo- ) ) o
mentum of the leading jet obtained using the inclusiveand mid- ~ smaller than the leading order uncertainty which is about

cone algorithms. The bands indicate the theoretical uncertainty dué00% or more.

to the variation of the scaleg,  between 0.5 and 2. The gray band ~ Using the midcone algorithm we got a very similar result.
is the leading order and the dark gray band is the next-to-leadingn this calculation the cone size ®B=0.7 and the merge and
order. The insets show th¢ factor and its scale dependence. The split threshold parameter i5=0.5. In this case the NLO
solid line represents the; =1 scale choice. correction is about 20%—-30% with the =1 scales.

In Table | the NLO cross sections are tabulated. Compar-
ing the values we can see that tke algorithm gives a
higher cross section in the lot; region while in the high-

E region the cone result is higher. The difference between
the two results is less than 10% almost everywhere.

13 .
Qus=3 2, PF(I). (19

All jets contribute to this sum which passed the cuts.
Calculating the transverse energy distribution of the lead-
ing jet and comparing the leading and next-to-leading order One can study the structure of the three-jet events. We can
fixed-order predictions we can see in the case, if the define variables which test certain properties of the jets.
scales are set kz =1, the NLO correction is about 25%— These quantities could be any azimuthal correlation between
30% as shown in Fig. 1. Th&=oN"%/¢-© factor strongly  the jets or the energy fraction of the three leading jets.
depends on the scale choice but the NLO prediction is stable. The energy fraction of the three leading jéksading in
Varying the scales between 0.5 and 2 the scale uncertainty tfansverse energywas measured by the CDF Collaboration
the NLO prediction is about 8%—10% which is significantly [26,27]. This quantity is defined in the center-of-mass frame

B. Topology of the three-jet events
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Midcone and inclusive k| agorithms Midcone algorithm
50i\‘!\\\\‘HH‘HH‘HH‘H\\‘HH‘HH‘HH‘HHH
40 \L-O pr>20GeV & <2 o
= > opr > 175GeV 3 g
= = 20 -
; Qus=2_pr/3 ; 175
o 30— HR=PE= = 1
S E e 154
R 3 125 -
[s2] - - ]
© 20 = 10
g E 75
10 = —— Midcone algorithm = 5
- --- Inclusivek, agorithm E 25
‘:HH\\‘\\H‘HH‘H\\‘H\\‘HH‘HH‘HH‘HHE 0:
02 04 06 08 10 12 14 16 18 20

Qus

FIG. 2. (Color onling The scale dependence of the total three-
jet cross sections.

of the three jets. The jets are ordered and labeled by energy
in the rest frame E,>E,>E;). The energy fraction vari- Inclusive k, agorithm
ables(usually called Dalitz variablesare given by

2E;

I
Xi= E,+E,+Ej’

i=1,2,3. (20

The variableX, varies between 2/3 and X, between 1/2
and 1, andX; between 0 and 2/3. There are only two inde-
pendent variables sinc¥;+X,+X3;=2. We use only the
first two variables. 1

In the experimental analysis the iterative cone algorithm & 7'
was used with an additional cut on the jets. It was required 6 7
that the jets be well separated. This additional cut ensures4 5
that the cross section is calculable order by order in pertur- 2 &
bation theory but the jet algorithm is still not fully infrared 0 -
safe; it is almost infrared unsafes]. 1

To get stable theoretical predictions in our calculations we %%
use the inclusivek, and midcone jet algorithms to resolve X
jets with the same cuts that were used in R2%]. All jets
are required to have at least 20 GeV transverse energy and
they must lie in thg 5| <2 pseudorapidity window. We cal-
culate .the hormalized dlﬁerem.lal dISt.nbm.lon.s Of. thig and FIG. 3. (Color online Next-to-leading order perturbative pre-
X, variables and the double differential distribution of thesed. . . . - S

. - . iction for the normalized double differential distribution
var_lab!es. In these calculations _the renormallzz_mon and fac'l/odo/dxldxz) of the energy fraction variables, andX, using
torization scales are set to a third of the total jet transvers e midcone and inclusivie, algorithms.
energy, Eq(19).

The distributions are normalized by the total three-jetthe availableX;, X, region uniformly. Deviation from the
cross section plotted in Fig. 2. We can see that the NLQuniform distribution shows the effect of the QCD dynamics.
correction reduced the scale dependence of the perturbative Taking the double differential distribution and projecting
prediction. The scale uncertainty of the NLO result is abouton either axis the distributions of variabl¥s andX, can be
10%—-12%, varying the scales in the €8z <2 range, obtained. In Fig. 4 the differential distributions of the energy
while the LO uncertainty is much higher, 38%—-40%. Thefractions are plotted in the inclusivie and midcone algo-
corrections with theg =1 scale choice are about 30%.  rithm cases.

The double differential distributions of the variabl&s Comparing the leading order result to the next-to-leading
andX, are plotted in Fig. 3. The phase space would populaterder result we can see that the NLO distribution of the lead-

10 4
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Midcone and iclusive k | algorithms Exclusive k| algorithm
8;\ T ‘ T T ‘ T T ‘ T T ‘ I ‘\‘ ‘E 104 \\HH‘HH\HH‘\HHHH‘\HHHH‘H\HHH‘HHH\
A7% pr > 20GeV & | < 2 /\\ — 3 TTT T[T rT[rrt
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FIG. 4. The energy fraction distribution of the leading,j and dependence. The solid line representsxthe=1 scale choice.

second leadingX,) jets. The upper figure is result with the inclu-

sivek, algorithm and the lower figures shows the midcone result. Ef=maxXdpy,}. (21
m=n

We plot the differential distribution of th&;; event shape
ing jet is less peaked than the LO but in the case ofXhe yariable in Fig. 5. In this calculation tHey| <2 pseudorapid-
distribution the NLO result is more peaked around 0.65. Tthy cut was app“ed for every hard final state Jet The renor-
NLO correction of the distributions is small. malization and factorization scales were given py ¢

Comparing the two algorithms to each other we can say=xg Qs where the hard scale is the average transverse
that the distributions are very similar and there is not toomomentum of the three jets:
much difference. The; distribution of the inclusivek, al-
gorithm is a little bit more peaked and ti distribution is
a little bit flatter than in the midcone case. The corresponding Qus=
peaks are in the same positions.

w| =

3
j; pY(j). (22)

Comparing the next-to-leading order result to the leading
order result we see that the LO prediction strongly depends
on the scales. Varying the scale parametgys between 0.5

We can distinguish two types of event shapes. One caand 2 the scale uncertainty of the NLO result is about 15% in
calculate and measure the event shapes which are associatehtrast to the LO scale uncertainty which is about 80%.
with a jet algorithm. Generally we can say that this type ofSetting the scales &z =1 we see that the NLO correction
variable gives information about any geometrical property ofis about 20%—35%.
the jets in am-jet event. Or we can define event shape vari- One can define event shapes on the transverse plane. An
ables which measure any geometrical property of the evenimportant example is the transverse thrust which is defined

C. Three-jet event shapes

e.g., thrust or jet bordering. by
Using the exclusivé, algorithm there is a natural way to
introduce event shape variables. The prescription of this al- 2 |» _'ﬁ|
gorithm introduces a stopping parametgy,; (resolution icCn P
variablg, which defines the hard scale of the process and T =max———, (23
separates the event into a hard scattering part and gJow- o> IpLl
part (beam jel. ieCy

Defining thed,,; resolution variable event by event we R
can calculate the differential distribution of thg, event ~Wherep, ; is the transverse component of the partbad-
shape variable. Denoting iy, the smallest resolution vari- ron) momentum. The unit vector thatmaximizes the ratios
able when the event has hard final state jets thE,, event  of the sums is usually called the thrust axis. In these sums
shape variable is defined by only those particles are counted which fulfill all selection
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FIG. 7. (Color onling Average value of the £ T, event shape
variable at6=0 at the LO (dashed ling¢ and NLO (solid line)
levels. The scales were set fgs r=H+1. The inset shows th&
factor.

FIG. 6. Distribution of -T, andB, event shape variables at
the LO (dashed ling and NLO (solid line) levels. The scales were
set tour p=H+. The inset shows thK factors.

criteriaCy . This selection must be infrared safe. In this cal- gll-order resummation of the leading and next-to-leading
culation we required that the pseudorapidity of those partogarithms to be able to do a quantitative comparison of the
ticles which contribute td’, be in the[ —1.1,1.1 pseudora- theory to the data.
pidity window; thus, we have One can define the average value of the event shape vari-
ables as a function of the total transverse energy. This quan-
Ca={i: |m|<l.1,i=1,... N}, (24) ity is given by the ratio

do

-1
whereN is the number of particles in the event. This defini- <O3>6:(dd|j ) fldo303do - -
T S5 3 T

tion of the thrust for hadron colliders gives an infrared-safe
longitudinally boost-invariant quantity. )
The jet broadenind3, is an associated quantity to the WhereOg could be either +T, orB, .

correction is small, about 15%. The NLO correction does not
change the shape of the distribution as is shown by the

> |pixn| K-factor plot. This result indicates that the NLO fixed-order
_eCn prediction might describe the data with good accuracy.
L= . (25 . )
5 E |a | Figure 8 shows the average value of the transverse jet
i 2, P broadening. The CDF collaboratid@8] measured this dis-

tribution with the =0 choice and the data were compared
In Fig. 6 the differential distributions of the transverse thrust!® the leading order QCD prediction. Comparing the data to

and transverse jet broadening are plotted at the LO and NLE€ NLO prediction the difference between the data and

levels. In this calculation the total transverse energy is IargeF1eory is huge. This can happen because the contribution of
than 100 GeV: arge logarithms from the smal; region is very large and

in the NLO case it causes a huge negative effect. It is clear
that the fixed-order calculation is unable to describe the data.
Hi= >, Er;>100 GeV. (26) Resummation of the large logarithms is importg2@)].
ieCn As shown in Fig. 6 the large negative contributions come
from the smallB, region B, <0.02). Resumming the lead-
The perturbative results are logarithmically divergent at theéng and the next-to-leading logarithms tBedo/dB, distri-
edge of the phase space. This divergence occufs, atl bution is positive definite and we can expect that it is rea-
and T=2/3 in the thrust distribution and &, =0 andB sonably small in the smaB-, region. On the other hand, Fig.
=1/3 in the jet broadening distribution. Setting the scale to6 indicates that the NLO fixed-order calculation is a stable
the total transverse energy the NLO order correction in therediction in the large B, >0.2) region. Assuming that the
middle of the distribution where the effect of the logarithm is all-order contribution of thé3, <0.02 region to the average
small is 30%-35% for the thrust and 20%—-45% for jetvalue is small and changing theparameter we can make a
broadening as is shown in the inset. It is necessary to do apetter comparison of the data and NLO prediction. In Fig. 8
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In the fixed-order perturbation calculation we can
100 ?_?S (Gev] 300 400 calculate the three-subjet ratio at the NLO level

[RY-C(Ecut,Yeun] and the four-subjet ratio at the LO level
FIG. 8. (Color onling Average value of theB, event shape [R§°(Ecut,Yeu]. From the definition of the-subjet ratios
variable at =0 at the LO and NLO levels foré we have the normalization condition
=0,0.001,0.005,0.01,0.02. The scales were sgige=H. The
markers(diamond$ and the error bars represent the CDF da@& *
and their statistical error. The inset shows kKéactors. 1:i22 Rn(EcutsYeur) - (31

we can see that théB, )oo and the(B, o001 NLO results  ysing this relation the two-subjet relation can be obtained at
suffer on the effect of the large logarithm but changinghe the next-to-next-to-leading order levéINLO):

parameter between 0.005 and 0.02 the NLO prediction is

stable and hardly depends on th@arameter and the agree- RYNO(E(,Ycur)

ment with the data is much better. The inset showsKhe NLO Lo 3

= <BL>§LO/<BL>|§O factor. For 0.005: 6<0.02 the NLO cor- =1-Ry (Ecut:Yeu) = Rg (EcutsYeu) + O(ag). (32

rection is positive, nearly constant, and is maximum 30%.
Of course this is not a precise analysis and without th

resummation of the leading and next-to-leading logarithm

éAnangoust to thee*e™ annihilation we can define the sub-
det multiplicity

the quantitative comparison of the current data and theory is o

impossible but it can help to understand the huge discrep- N(E _ nR.(E 33
ancy between the data and NLO prediction. It also indicates (Bcut:Yeud nZZ Ral Eeut:Yeud) 33
that the NLO prediction can describe the data very well if

5>0.005. and at up to second order

N(Ecut,Yeu =2+ R’:;“_O( Ecut:Yeut)
+2RE(Ecu Yeud +O(ad).  (34)

D. Subjet fractions

In this subsection we study the subjet multiplicities of the
events. We use the exclusike algorithm[19]. The jets are
defined in a two-step clustering procedure. The first step
the algorithm identifies the loy+ scattering fragments and
includes them in the beam jets, thus factorizing the har
scattering subprocess. The scale of the hard final state jets {5
E.ut, the stopping parameter of this clustering step. Defining[i

0?’he fixed-order perturbative predictions depend on the un-

physical renormalization and factorization scales. In these
alculations the scales are given on an event-by-event basis.
e use the invariant mass of the two hard final-state jets
und at theE,, scale as the renormalization and factoriza-

the subjet resolution variable. ;= Qq/E., the second step on scales:
o_f the algquthm resolves the subjet structure of the hard /—L%,F=(D1+pz)2- (35)
final-state jets.
The n-subjet rate is defined by the ratio of timesubjet Figure 9 shows the subjet ratios and subjet multiplicity.
cross section and the total cross section as The result is given as a function &, parameter and the
oo(E ) base-ten logarithm of the subjet resolution variable. The dis-
R.(E _ 9n(Ecut-Yeu) 28 tributions are plotted on the ¥0E. ;<110 GeV and—3.9
n(EcutsYeur) E , (28) 3 . .
oot Ecur) <log;o(Ycup) <O region. We can see that the subjet ratios are

strongly dominated by the large logarithms in the IBw;,
where theo is the total cross section defined by the sum ofand vy, regions. To be able to do any quantitative compari-
the n-jet cross section at thE,,,; scale son to the experimental data in this region it is necessary to
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FIG. 9. (Color online The fixed-order QCD prediction for the two-, three-, and four-jet subjet rates and for the subjet multiplicity. The
two-jet rate is calculated at the NNLO, the three-jet rate is calculated at the NLO, and the four-jet at the LO levels.

sum at least the leading and next-to-leading logarithms at alhtroduced phase space cut in the dipole term could reduce
order and match them to the fixed-order calculation. the evaluation time of subtraction terms and increase the nu-
merical stability of the Monte Carlo integral by reducing the
probability of the missed binning.

We calculated the transverse momentum distribution of

This paper dealt with the next-to-leading order calculationthe leading jet of the three-jet inclusive cross section using
of three-jet observables in hadron-hadron collisions. We gavéhe inclusivek, an midcone algorithms. We found that the
a modification of the original dipole method that it made NLO correction can stabilize the theoretical prediction by
possible to construct a Monte Carlo program for this processeducing the renormalization and factorization scale depen-
We find that this modified dipole subtraction method wasdences significantly. We also calculated the energy fraction
very useful from the point of the numerical calculation. Thedistribution of the three-jet inclusive cross section. Compar-

IV. CONCLUSION
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ing the leading order result to the next-to-leading order resuliominated by the final-state large logarithm. Upgrading the
we found that the NLO corrections are negligible in thesefixed-order calculation with the next-to-leading logarithmic
analyses. approximation this quantity may provide a sensitive mea-
We defined event shape variables in the transverse plansurement of the strong coupling at hadron colliders.
We calculated the differential distribution of the transverse Recently two general methods have been developed by
thrust and transverse jet broadening and the transverse eBanfi, Salam, and Zanderigh29] and by Boncianiet al.
ergy dependence of the average values. We found that tH&80] to carry out the next-to-leading logarithmic resumma-
size of the NLO correction is not too large and acceptabldion for any observable. These methods can help us to im-
but at the edge of the available phase space the result suffgpsove our fixed-order calculation and to be able to make a
in the contribution of large logarithm. In this region a next- more precise comparison between the data and theory.
to-leading logarithmic approximatiofNLL) matched with
the fixed-order prediction can give a reasonable result. The
average value of the transverse jet broadening was compared
to the CDF data and we found that a comparison of the | wish to thank Zolta Trocsanyi for useful discussions
current data and theory without NLL resummation is impos-and suggestions, as well as for collaboration on various ele-
sible. Using a rough approximation in the sm@ll-region  ments of this project. This work was supported in part by the
we were able to do some qualitative comparison between theg.S. Department of Energy, contract DE-FGO396ER40969,
data and NLO QCD prediction and we found reasonablédyy Research Training Network “Particle Physics Phenom-
good agreement. enology at High Energy Colliders,” contract HPRN-CT-
We also calculated the subjet rates and subjet multiplicity2000-00149, as well as by Hungarian Scientific Research
using the exclusivéd, algorithm. These quantities were de- Fund grant OTKA T-038240. | also thank the Institute Par-
fined in a way that mimicked ae@" e~ annihilationlike situ- ticle Physics PhenomenologyPPP at the University of
ation at hadron colliders. The result is very similar to whatDurham and the Fermi National Laboratory for making it
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