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G structures, fluxes, and calibrations in M theory
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We study the most general supersymmetric warped M-theory backgrounds with a non-trivialG flux of the
type R1,23M8 and AdS33M8. We give a set of necessary and sufficient conditions for preservation of
supersymmetry which are phrased in terms ofG structures and their intrinsic torsion. These equations may be
interpreted as calibration conditions for a static ‘‘dyonic’’ M-brane, that is, an M5-brane with a self-dual
three-form turned on. When the electric flux is turned off we obtain the supersymmetry conditions and
non-linear PDEs describing M5-branes wrapped on associative and special Lagrangian three-cycles in mani-
folds with G2 andSU(3) structures, respectively. As an illustration of our formalism, we recover the 1/2 BPS
dyonic M-brane, and also construct some new examples.
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I. INTRODUCTION

Recently there has been considerable interest in tryin
understand the types of geometries that arise in supers
metric solutions of supergravity theories. When all fields
turned off, apart from the metric, it has long been known t
supersymmetric solutions are described by special holon
manifolds—for example, Calabi-Yau manifolds or manifol
of G2 holonomy. However, for many applications one is i
terested in solutions where the fluxes are turned on. Th
include important areas of research, such as the AdS con
mal field theory~CFT! correspondence, or phenomenologic
models based on string/M-theory compactifications.

Until recently, the study of supersymmetric solutions w
non-vanishing fluxes has been based mostly on physic
motivated ansatze for the supergravity Killing spinor equ
tions. While this method has led to many interesting resu
a more systematic approach is clearly desirable. In@1# it was
advocated that theG structures defined by the Killing spinor
provide such a formalism. Subsequent works have used
approach to analyze and classify supersymmetric ba
grounds in various supergravity theories@2–10#. Using the
language ofG structures and their ‘‘intrinsic torsion’’ one ca
rewrite the supersymmetry equations of interest in terms
an equivalent set of first-order equations for a particular
of forms.

Another point, emphasized in@1# ~and based on@11#!, is
the fact that some of the resulting conditions have an in
pretation in terms of ‘‘generalized calibrations’’@12,13#. This
was further elaborated on in@5# and@7#. Generalized calibra-
tions extend to backgrounds with fluxes, the original not
of calibrations in special holonomy manifolds@14#, and their
physical significance is then that supersymmetric pro
branes have minimalenergy. On a more practical level, th
formalism based onG structures can often be very useful f
actually finding new solutions in a given supergravity theo

*Email address: d.martelli@qmul.ac.uk
†Email address: j.sparks@qmul.ac.uk
0556-2821/2003/68~8!/085014~19!/$20.00 68 0850
to
m-
e
t
y

se
r-

l

lly
-
s,

is
k-

f
et

r-

n

e

.

For instance, in@1,5,7# new examples were found this wa
while in lower dimensions@2,9,10# the general form forall
supersymmetric solutions was given.

In this paper we study M-theory on eight manifolds— th
is, supersymmetric warped M-theory backgrounds of
type M33M8, with M3 either Minkowski3 or AdS3 space.
Supersymmetric compactifications of M-theory to three
mensions have been considered before in@15–20#. The types
of geometries described in these papers may be thought
M2-brane solutions where the transverse space is a man
of special holonomy. Alternatively, one may think of them
compactifications on a special holonomy manifold where o
includes some number of space-filling M2-branes in
vacuum.

One of our motivations was to investigate more gene
types of supersymmetric solutions to M-theory on eig
manifolds. In particular, there should clearly be another w
to obtain anN51 Minkowski vacuum from M-theory—
namely, one may wrap M5-branes over a supersymme
three-cycle in aG2-holonomy manifold~times anS1). After
including the back-reaction of the M5-brane on the geo
etry, one no longer expects the eight manifold to have spe
holonomy, but rather a more generalG2 structure with intrin-
sic torsion related to theG flux. Similarly, M5-branes
wrapped on special Lagrangian three-cycles in a Calabi-
threefold yieldN52 in three dimensions. We will show how
these various geometries may be obtained by relaxing
assumptions of@15,18#; in particular we relax the assumptio
that the internal spinor is chiral. Furthermore, this gener
zation yields supersymmetric AdS3 compactifications, which
were excluded before. The method we use relies on lo
equations, and thus also covers non-compact geometries
amples of typical interest are solutions describing wrapp
branes or brane intersections.

The M-theory five-brane has a self-dual three-form gau
field that propagates on its world volume. Turning on th
field induces an electric coupling to theC field, and therefore
also an M2-brane charge. Thus the back reaction of suc
‘‘dyonic’’ M5-brane should correspond to some more gene
supersymmetric solution with electric and magneticG flux.
In fact, we will see how such solutions arise in our forma
©2003 The American Physical Society14-1
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D. MARTELLI AND J. SPARKS PHYSICAL REVIEW D68, 085014 ~2003!
ism. One can argue that the most general supersymm
solution of the form M33M8 is of this type, with the M2-
brane solutions being a limit in which the M5-brane disa
pears completely.

The plan of the paper is as follows. In Sec. II we give
brief summary of what is known about M-theory on eig
manifolds. This will also allow us to introduce our notatio
and conventions. We then describe how one extends
analysis to allow for more general supersymmetric soluti
with fluxes. The key point is to allow for a generic spinor o
the internal space—in particular, we do not impose that it
chiral. Thus, in addition to the M2-brane type of solution
one also expects M5-brane-type solutions, including ‘‘d
onic’’ or ‘‘interpolating’’ solutions which have both charge
present, and also AdS3 solutions.

In Sec. III we show how the conditions for supersymm
try may be recast into the language ofG structures and in-
trinsic torsion. In particular, we argue that there is
G2,SO(8) structure and obtain a simple set of different
conditions on the forms that comprise it. By examining t
intrinsic torsion one can show that these conditions are n
essary and sufficient for supersymmetry. We also give
Bianchi identity and equations of motion in this formalis
and briefly discuss the issue of compact eight manifo
When the external manifold isR1,2, a simple inspection of
the Einstein equations shows that one cannot have com
manifolds with flux, unless higher order corrections are
cluded.

In Sec. IV we turn our attention to the physical interpr
tation of the differential conditions on theG2 structure. We
show how these may be interpreted as generalized calibra
conditions for the M5-brane. We argue that the geomet
that these equations describe correspond to ‘‘dyonic’’ M
branes wrapped over associative three-cycles in
G2-holonomy manifold. Moreover, we show that supersy
metric probe M5-branes saturate a calibration bound on t
energy. We find that the M5-brane world-volume theo
gives rise not only to an M5-brane type of calibration, b
also one gets the M2-brane calibration ‘‘for free.’’

In Sec. V we specialize our discussion to the case
‘‘pure’’ M5-branes~that is, with no electric flux! wrapped on
associative and special Lagrangian~SLAG! three-cycles. We
recover the results for wrapped NS5-branes in type
theory@1# in the special case that the vector constructed a
spinor bilinear is Killing so that one can dimensionally r
duce along this direction. We also comment on the relati
ship of our approach with the work of@21#. In particular, we
give the supersymmetry constraints and the non-linear P
~following from the Bianchi identity! that one must solve to
find solutions describing M5-branes wrapped over asso
tive and SLAG three-cycles. Furthermore, we discuss h
our approach may be extended straightforwardly to obta
similar description of five-branes wrapped on other ca
brated cycles.

In Sec. VI we discuss the case in which the internal~mag-
netic! G flux is switched off. In this case our equations sim
plify drastically and we are able to give the most gene
solution. In particular, we show that all AdS3 solutions may
be viewed as AdS4 solutions, foliated by copies of AdS3,
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with a weakG2-holonomy manifold as internal space. W
show how the compactifications of@15,18,20# are recovered
in a degenerate limit in which the internal spinor becom
chiral and, therefore, theG2 structure becomes a
Spin(7)-structure.

As an illustration of our formalism in Sec. VII we give
some explicit examples. We easily recover the dyo
M-brane solution of@22#. This solution describes a 1/2 BP
M5/M2 bound state and serves as a simple example of
essential features of our geometries. We discuss also the
evance of our work to the recent ‘‘dielectric flow’’ solution
of @23–25#. These in fact also lie within our class of geom
etries. We present a class of singular solutions based
G2-holonomy manifolds, where the M5-brane is complete
smeared over theG2 manifold.

Appendix A gives a discussion ofG2 structures. Appendix
B includes a brief discussion of the Hamiltonian formulati
of the M5-brane theory. Appendix C contains some relatio
useful in the main text.

II. M-THEORY ON EIGHT MANIFOLDS

In this section we begin the analysis of eight-dimensio
warped compactifications of M-theory. After summarizin
the status quo regarding the M2-brane-like solutions o
@15,18,20#, we then go on to describe how one extends
analysis to allow for more general supersymmetric solutio
with fluxes.

The fields of 11-dimensional supergravity consist of
metric ĝMN , a three-form potentialC with field strengthG
5dC, and a gravitinocM . Supersymmetric backgrounds a
those for which the gravitino vanishes and there is at le
one solution to the equation

dcM5¹̂Mh2
1

288
~GNPQRĜ

NPQR
M28GMNPQĜNPQ!h50.

~2.1!

Here h is a spinor of Spin(1,10), and ĜM form a
representation of the 11-dimensional Clifford algeb

$ĜM ,ĜN%52ĝMN . We take the spacetime signature

be (2,1, . . . ,1), so that one may takeĜM to be Hermitian
for MÞ0 and anti-Hermitian forM50. Geometrically, Eq.
~2.1! is a parallel transport equation for a generalized c
nection, taking values in the full Clifford algebra, whose h
lonomy lies inSL(32,R) @26#. In our conventions the equa
tions of motion are

R̂MN2
1

12S GM PQRĜN
PQR2

1

12
ĝMNGPQRSĜ

PQRSD50, ~2.2!

d*̂ G1
1

2
G`G50.

~2.3!
4-2
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One also has the Bianchi identity dG50. Generically the
field equations~2.2! and ~2.3! receive higher order correc
tions. In particular, the latter equation has a contributionX8
on the right-hand side, where

X852
~2p!2

192
~p1

224p2!. ~2.4!

Here pi is the i th Pontryagin form, and we have set th
M2-brane tension equal to one.

We will consider supersymmetric geometries with Po
caréor AdS invariance in three external dimensions. Thu
general such ansatz for the metric is of the form

dŝ11
2 5e2D~ds3

21gmndxmdxn! ~2.5!

and for theG field we take the maximally symmetric ansa

Gmnrm5emnrgm

Gmnpq5arbitrary, ~2.6!

where here, and henceforth, Greek indices run over 0,1,2
latin indices run over 3, . . . ,10—that is, over the interna
manifold. We adopt the standard realization of the 1
dimensional Clifford algebra Cliffeven(R1,10). Mat (32,R)
. Cliff ( R1,2) ^ Cliff ( R0,8), namely,

Ĝm5eD~gm ^ g9!

Ĝm5eD~1^ gm!. ~2.7!

A convenient explicit representation of the three-dimensio
Clifford algebra is given byg05 is1 , g15s2 , g25s3,
where $skuk51,2,3% are the Pauli matrices. The eigh
dimensional gamma matrices are 16316 real, symmetric
matrices. We have alsog9

251. An 11-dimensional spinorh is
likewise decomposed into three- and eight-dimensio
spinors as

h5c ^ j. ~2.8!

The Majorana condition in 11 dimensions then imposes
following reality constraints:

c* 5g2c, j* 5j. ~2.9!

Thusc has two real components andj hassixteenreal com-
ponents. The supersymmetry equation of interest~2.1! may
now be decomposed into two parts

dcm5¹mh1
1

6
e23D~gm ^ gmgm!h2

1

2
~gm ^ ]mDgmg9!h

2
1

288
e23D~gm ^ Gnpqrg

npqrg9!h50 ~2.10!
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dcm5¹mh1
1

2
~1^ gm

n]nD!h1
1

12
e23D~1^ gm

ngng9!h

2
1

6
e23D~1^ g9!gmh2

1

288
e23D@~1^ Gpqrsg

pqrs
m!

28~1^ Gmpqrg
pqr!#h50 ~2.11!

which we refer to as the external and internal equatio
respectively.

In the rest of this section we will assume, as in@15,18#,
that the internal spinor is chiral. We will briefly review th
consequences of this restriction, before lifting it in the rest
the paper. Ifj is chiral, without loss of generality, one ma
takeg9j5j. Requiring that¹mc50 in Eq. ~2.11! then im-
plies

F2
1

288
DB

3/2Gmpqrg
mpqr1

1

6
DB

3/2gmgm1
1

4
gm]m logDBGj

50 ~2.12!

where, for easier comparison with@15,18#, we have defined
the warp factorD52 1

2 logDB . Projecting this equation onto
its positive and negative chirality parts1 we obtain

gm5]mDB
23/2, Gmpqrg

mpqrj50. ~2.13!

Upon rescaling the spinor and the internal metric asj

5DB
21/4j̃ and gmn5DB

3/2g̃mn , respectively, the relations
~2.13! allow one to simplify the internal part of the gravitin
equation, yielding

¹̃mj̃1
1

24
DB

23/4Gmpqrg̃
pqrj̃50. ~2.14!

One again notes that the two terms in Eq.~2.14! have oppo-
site chirality, and must therefore vanish separately. In p
ticular it follows that the metricg̃mn hasSpin(7) holonomy
and the internal flux satisfies

Gmnpqg
npqj50, ~2.15!

implying that some, but not all, of theSpin(7) irreducible
components of the flux must vanish. Recall that on manifo
with Spin(7) structure four-forms may be decomposed in
four irreducible components70 → 351271711 under
SO(8)°Spin(7) ~see, e.g.@27#!. A convenient way to un-
derstand the condition~2.15! is to recast it into a tensoria
equation@20#. Multiplying Eq. ~2.15! on the left withjTg r

one obtains

Tmn[
1

3!
GmpqrC

pqr
n50 ~2.16!

1Notice that this projection simplifies somewhat the analysis in
original papers@15,18#.
4-3
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D. MARTELLI AND J. SPARKS PHYSICAL REVIEW D68, 085014 ~2003!
where C is the Cayley four-form, characterizing th
Spin(7) structure. A general two-index tensor decompo
into the SO(8) irreducible representations3512811,
which, underSO(8)°Spin(7), further reduces to351211
711. However, given the representation content of the fo
form G, Tmn must contain only the irreducible represen
tions 351711. One therefore concludes that only the27
component of the internal flux is allowed. A characterizati
of this representation may also be given as follows:

G27mnpq5
3

2
G27rs[mnCpq]

rs. ~2.17!

In conclusion, the general solution takes the form

dŝ11
2 5H22/3hmndxmdxn1H1/3g̃mndxmdxn

G5dx0`dx1`dx2`d~H21!1G27
~2.18!

with the warp factor satisfying the equation

h̃H1
1

2
G27̀ G275X8 ~2.19!

whereG27 is harmonic, and we have not included any e
plicit space-filling M2-brane sources. Integrating Eq.~2.19!
over a compactX gives

1

2 EX

G27

2p
`

G27

2p
52

1

192EX
p1

224p45
x~X!

24
. ~2.20!

In general, the existence of a nowhere vanishing sec
of a vector bundle requires that the Euler class of that bun
is zero. Thus existence of a nowhere vanishing posit
negative chirality spinor requires thatx(S6)50, and it is
this condition which gives the relation between the topolo
cal invariants in the last equality in Eq.~2.20! ~see, for ex-
ample,@28#!. One then has compact solutions with flux pr
vided the flux is quantized appropriately.

Note that these solutions describe M2-branes where
transverse space is aSpin(7) holonomy manifold. Non-
compact examples of such solutions may be found in@29#
and@30#. Notice thatG27 decouples from the supersymmet
conditions, but it does play a role in the equations of moti
providing the ‘‘transgressive’’ terms@29#.

The present analysis is readily extended to cases
more supersymmetry. For example whenj is acomplexchi-
ral spinor@15# we have twoSpin(7) structures of the sam
chirality or, equivalently, anSU(4)-structure. Repeating th
same steps, one shows that the general solution is now o
form ~2.18!, ~2.19! with g̃mn having SU(4) holonomy. The
magnetic flux which drops out of the supersymmetry eq
tions is given byG(2,2) ~that is, the four-form has two holo
morphic and two anti-holomorphic indices with respect
the corresponding complex structure! where G(2,2) is also
primitive, so that taking the wedge-product with the Ka¨hler
form gives zero. Again, these solutions are akin to M
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branes transverse to Calabi-Yau fourfolds, and the role of
internal flux is to provide an additional source term in t
equation for the warp factor.

Generalization

As we have summarized, imposing that the internal spi
be chiral leads to M2-brane-type solutions. However, th
clearly should be another way to obtain a supersymme
Minkowski3 vacuum from M-theory: one may wrap spac
filling M5-branes over a supersymmetric three-cycle in
special holonomy manifold. Such cycles are calibrated.
particular, one may wrap the M5-branes over an associa
three-cycle in aG2-holonomy manifold~times a circle! to
obtain anN51 vacuum, or a special Lagrangian cycle in
Calabi-Yau threefold~times a two-torus! to obtain anN52
vacuum. When one includes the back reaction of the br
on the initial geometry, one no longer has a manifold
special holonomy, but rather some more general geom
with flux. However, theG2 or SU(3) structures still remain,
respectively. Such manifolds admit two~four! invariant
Majorana-Weyl spinors, one~two! of eachchirality. Thus to
describe more general supersymmetric solutions with flu
one has to generalize the form of the internal spinor. We w
also find that when one lifts the chirality assumption, one c
find supersymmetric AdS3 solutions, and we will present a
simple class of examples in this paper.

From a more mathematical viewpoint, there is no reas
to restrict the spinor to be chiral. The M-theory Killin
spinor equation is geometrically a parallel transport equa
for a supercovariant connection taking values in the Cliffo
algebra Cliffeven(R1,10). Mat (32,R). Indeed, in the three
eight split of the 11-dimensional spinorh, the internal spinor
j turns out to have 16 real components, i.e. it belongs
Spin(8)1 % Spin(8)2 . We are therefore led to consider a
internal 16-dimensional spinor of indefinite chirality,2 which
in general can be written in the following form:

h5e2D/2c ^ ~j1 % j2! ~2.21!

where g9j656j6 are real chiral spinors in eight dimen
sions andc is a Majorana spinor in three dimensions. T
factor e2D/2 has been inserted for later convenience. For c
culational convenience it is useful to introduce the non-ch
16-dimensional spinors

e15
1

A2
~j11j2! ~2.22!

and e2[g9e15(j12j2)/A2. The advantage of working
with e6, as opposed toj6 , is that the former will turn out to
have constant norms, which, without loss of generality,
take to be unity, whereas the chiral spinors do not have
desirable property.

2For a four-seven decomposition, it was noticed in@31# and more
recently also in@32,33#, that in order to have non-trivialG flux a
generic spinor ansatz must be allowed.
4-4
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Since we wish to allow for AdS3 compactifications in our
analysis, we impose the following condition on the exter
spinor:

¹mc1mgmc50. ~2.23!

Writing the G flux as

G5e3D~F1vol3` f ! ~2.24!

with F andf parametrizing the magnetic and electric comp
nents, respectively, the supersymmetry conditions may
written in terms ofe6 as follows:

¹me66
1

24
Fmpqrg

pqre62
1

4
f ngm

n e76mgme750

~2.25!

1

2
]mDgme67

1

288
Fmpqrg

mpqre62
1

6
f mgme77me750.

~2.26!

These equations are the starting point for our analysis.

III. SUPERSYMMETRY AND THE G2 STRUCTURE

In @1# it has been recognized that the notion ofG struc-
tures and their intrinsic torsion provides a powerful tec
nique for studying Killing spinor equations in the presence
fluxes. A rigorous account of the mathematics may be fou
for example, in@27#. For our purposes, aG structure ind
dimensions is a collection of locally definedG-invariant ob-
jects, each in some irreducible representation of the~spin
cover of the! tangent space groupSpin(d).G. Notice that,
a priori, our equations need only be defined in some op
set, which is why we use the termG structure in this local
sense. When the objects in question extend globally over
whole manifold one has aG structure in the stricter math
ematical sense that the principal frame bundle admits a
bundle with fiberG. Of course, there may be topologic
obstructions, and indeed the structure may break down,
example at horizons.

The way that intrinsic torsion enters into the Killin
spinor equations is via the fluxes. Exploiting this, one c
study a supersymmetric geometry by extracting from the
persymmetry conditions the differential constraints on a
of forms that comprise the structure. These forms may
constructed as spinorial bilinears. The intrinsic torsion is
element ofL1

^ g' ~see, for example,@7# or @5# for a brief
review!, which may be decomposed into irreducibleG mod-
ultes, denotedWi in this paper. The manifold will haveG
holonomy only when all the components vanish.

In the following we apply these methods to the case
hand, showing that one in general has aG2 structure on the
internal eight manifold. It is also important to establish wh
other conditions must be imposed on the structure for i
correspond to a solution of the supergravity theory. We
dress this issue towards the end of the section.

We can construct explicitly a one-form, a three-form, a
two four-forms as bilinears in the spinors
08501
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K̄m5j1
T gmj2

f̄mnp5j1
T gmnpj2

C̄mnpr
6 5j6

T gmnprj6 . ~3.1!

In the calculations it is useful to re-express these in terms
the e6 spinors, and it is also useful to define the followin
auxiliary bilinear:

Ymnpr5e6Tgmnpre
6. ~3.2!

Notice that, for a generic Clifford connection, the corr
sponding Killing spinors are not in general orthonormal,
contrast to the case of a connection on theSpin(d) bundle
@7#. In particular, we have that, using Eq.~2.25!,
¹(e1Te1)5¹(e2Te2)50. Thus we can normalize th
spinors so as to obey

uue1uu25uue2uu25
1

2
~ uuj1uu21uuj2uu2!51. ~3.3!

On the other hand,¹(e1Te2)Þ0, and we parametrize thi
non-trivial function, which takes values in the interv
@21,1#, as

e1Te25
1

2
~ uuj1uu22uuj2uu2![ sinz. ~3.4!

It follows that the chiral spinors have normsuuj6uu251
6 sinz, and in the limit sinz→61 one of the two vanishes

The stabilizer of each chiral spinorj6 is Spin(7)6 , and
their common subgroup isG2. In order to discuss the supe
symmetry conditions in terms of theG structure it is conve-
nient to introduce rescaled forms, defined asf
5( cosz)21f̄ andK5( cosz)21K̄. These are canonically nor
malized, namely uuKuu251, uufuu257, and define a
G2,SO(8) structure in eight dimensions. One can give
explicit expression forY in terms of the other bilinears

Y52 i K* f1f`K sinz, ~3.5!

where here, and henceforth,* denotes the Hodge dual on th
internal eight manifold. The forms are also subject to t
constraint

i Kf50. ~3.6!

Notice thatf defines a unique seven-dimensional metric
the equations

gi j
7 5~ detb!21/9bi j ,

bi j 52
1

144
em1 . . . m7f im1m2

f jm3m4
fm5m6m7

~3.7!

wheree123456751, and we therefore havegi j
7 K j50. The in-

trinsic torsion of the structure lives in the spaceL1
^ g2

'

whereg2% g2
'5so(8). The Liealgebraso(8). 28 decom-

poses as28 → 2(7)114, so the orthogonal complement o
4-5
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the g2 algebra is given byg2
'5717. The intrinsic torsion

then decomposes into ten modules

TPL1
^ g2

'5 % i 51
10 Wi ,

~117!3~717!→2~1!14~7!12~14!12~27!. ~3.8!

It turns out that the ten classes are determined by the ext
derivatives of the forms. These have the following decom
sitions into irreducibleG2 representations:

dK→7917-1148

df→1118171781271278 ~3.9!

d*f→18171781141278.

Note that some representations appear more than once
we have denoted different representations with differ
numbers of primes. In particular, the representations1171
14127 are those relevant to d7f and d7* 7f discussed in
Appendix A. Using the identities~A14!–~A16! one shows
that ]Kf and ]K* 7f contain the same representations, d
noted with 181781278. Finally, dK5a`K1b, with the
one-forma corresponding to7- and the two-formb to 79
1148. Notice that we have an eight manifold ofG2 ho-
lonomy if and only if dK5df5d*f50. Note also thatK is
Killing if and only if the representations181781278 vanish.
This follows on noticing that the non-trivial components
the Lie derivativeLKg can be computed fromLKf5 i Kdf
using Eq.~3.7!.

We can proceed now to analyze the constraints impo
on the structure by the supersymmetry conditions. Ra
than presenting all the details of the calculations, we s
instead present a simple illustrative computation. Consi
for instance,¹r K̄m . Using the definition ofK̄ as a spinor
bilinear, together with the Killing spinor equations~2.25!,
after some straightforward gamma algebra one calculate

¹r K̄m5
1

12
Fri jk e1Tg i jk

me122m sinzgrm2
1

2
f j f̄ j rm .

~3.10!

Next, the first identity in Appendix C~with the Clifford ele-
ment A5g rm), can be used to compute the antisymmet
part of Eq.~3.10!, obtaining Eq.~3.11! below. Similar calcu-
lations yield the following constraints on theG2 structure:

d~e3DK cosz!50 ~3.11!

K`d~e6Di K* f!50 ~3.12!

e212Dd~e12Dvol7 cosz!528m vol7`K sinz
~3.13!

df`f cosz524m vol724*dz12 cosz* f
~3.14!

where vol75 1
7 f` i K* f. The electric and magnetic compo

nents of the flux are then determined as follows:
08501
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e23Dd~e3D sinz!5 f 24mK cosz ~3.15!

e26Dd~e6Df cosz!52* F1F sinz

14m~ i K* f2f`K sinz!.

~3.16!

As we will discuss more extensively in Sec. IV, these eq
tions can be interpreted as generalized calibrations for m
branes or five-branes wrapped on supersymmetric cycle~at
least whenm50). An important point to emphasize is tha
the conditions derived are also sufficient to ensure soluti
to the Killing spinor equations. Notice that genericallyK is
not a Killing vector. However, we see from Eq.~3.11! that it
is in fact hypersurface orthogonal or, equivalently, defines
integrable almost product structure@7# which allows us to
write the metric in the canonical form

dŝ11
2 5e2D(x,y)@ds3

21gi j
7 ~x,y!dxidxj #

1
1

cos2 z~x,y!
e24D(x,y)dy2. ~3.17!

The remaining conditions may be thought of as setting c
straints on the seven-dimensional part of theG2 structure.
Consider, for example, Eq.~3.12!. From this we read off
immediately that the14 representation is absent and the7 is
given by the Lee formW4518 d7D. Likewise, Eq.~3.13!
relates]ylogAg7 to ]yD and]yz, hence fixing the18 repre-
sentation. Continuing, the rest of the equations may be u
to determineall the components of the intrinsic torsion. On
can thus construct a connection with non-trivial torsi
which preserves theG2 structure, and in particular preserve
two spinors of opposite chirality, corresponding to solutio
of the supersymmetry equations. For simplicity we w
present some details of the calculation in the case of pu
magnetic solutions in Sec. V.

The four-form flux is completely determined in terms
the structure by Eqs.~3.15! and ~3.16!. In fact it is easy to
show that there are no components which automatically d
out of the supersymmetry equations~2.25! and ~2.26!, in
contrast to Sec. II. First let us decompose the four-form fl
into SO(7) irreducible representations:

F5F41F3`K. ~3.18!

We thus want to check if there areG2 irreducible compo-
nents whose Clifford actionFmnpqg

npq annihilates both the
spinorsj6 , namelyF4 mnpqg

npqj65F3 mnpg
npj650. This

would imply that the following tensors vanish:

1

2!
F3mpqf

pq
n50

1

3!
F4mpqr~* 7f!pqr

n50. ~3.19!

As discussed in Appendix A these tensors contain all
components ofF3 and F4, which should therefore vanish
4-6
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identically. This situation is to be contrasted with the ca
where we have spinor~s! of a fixed chirality, as recalled in
Sec. II. Each spinor defines aSpin(7) structure and the27
component of the flux, with respect to that structure, is
determined by the supersymmetry equations. The existe
of two spinors with opposite chirality means that the asso
atedSpin(7) structures have opposite self-duality, and t
undetermined flux should therefore simultaneously be in
27¿ and27À, and hence is trivial.

All the non-zero components of the flux can be extrac
from the conditions~3.11!–~3.16!. As examples, and for late
reference, let us give the expressions for the1 and7 compo-
nents ofF3 ~cf. Appendix A!

p1~F3!5
2

7
~]Kz22m!f

p7~F3!52
1

2
e23Dd7~e3D cosz!4 i K* f ~3.20!

and ofF4

p1~F4!5
2

7
~4m sinz2e23D]K~e3D cosz!!i K* f

p7~F4!5
1

2
f`d7z. ~3.21!

A solution will also have to obey the equations of moti
and Bianchi identity. Using the above expressions for
fluxes, it is straightforward to show that these reduce to
two equations

d~e3DF !50 ~3.22!

e26Dd~e6D* f !1
1

2
F`F50. ~3.23!

One can now show, using the results of@5#, that the Einstein
equation is automatically implied as an integrability con
tion for the supersymmetry conditions, once theG-field
equation and Bianchi identity are imposed. It is useful
give explicitly the external part of the Einstein equation:

e29Dh8e9D2
3

2
uuFuu223uu f uu2172m250. ~3.24!

One may use this to prove that, whenm50, there are no
compact solutions with electric and/or magnetic flux. Expl
itly, one easily integrates Eq.~3.24! over the compact mani
fold X to get

E
X

e9DuuFuu212 E
X

e9Duu f uu250 ~3.25!

which requiresF50 andf 50. This is a rather general prop
erty of supergravity theories@34#. The common lore to evad
such ‘‘no-go theorems’’ is to appeal to higher derivati
terms, such as theX8 term mentioned in Sec. II, althoug
08501
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these arguments typically neglect the corresponding term
the Einstein equations. In our case, a non-zeroX8 seems to
allow for the possibility of compact solutions.3 One must
then also satisfy

E
X

Ginternal̀ Ginternal50 ~3.26!

which is implied by integrating Eq.~3.23!. Here one uses the
fact thatX8 integrates to zero. This is so because the ex
tence of two linearly independent spinors of opposite chir
ity implies thatx(S6)50. Equivalently, the vectorK con-
structed from the spinors is nowhere vanishing, wh
implies that the Euler number of the eight-manifold is ze

Comparing with the results reviewed in Sec. II we see t
allowing the internal spinor to be non-chiral has led to
substantially enlarged number of possible geometries
fluxes. We emphasize the fact that AdS3 solutions are not
ruled out any more, and generically the internal manifold
not conformal to aSpin(7) @or SU(4)] holonomy manifold.
Note also that the function sinz plays a role in our equations
and setting it to zero, or constant, rules out many supers
metric geometries. In particular, from Eq.~3.15! it should be
clear that sinz is related to M2-brane charges, as we will s
more explicitly in the next section.

IV. GENERALIZED CALIBRATIONS
AND DYONIC M-BRANES

In this section we show how the supersymmetry co
straints on theG structure are related to a generalized ca
bration condition for the M5-brane. For simplicity we wi
restrict our analysis to Minkowksi3 backgounds, and henc
we setm50 throughout this section. We argue that the s
persymmetric geometries we have been describing so
may be thought of as being generated by M5-branes wrap
over an associative three-cycle in aG2-holonomy manifold.
An interesting twist to the story arises from the otherw
mysterious function sinz, introduced in the preceding sec
tion.

Recall that the M-theory five-brane has a self-dual thr
form field strengthH propagating on its world volume
which induces an M2-brane charge on the M5-brane vi
Wess-Zumino coupling. The supergravity description of t
M5-brane should account for this feature. Thus we exp
‘‘dyonic’’ backgrounds—that is, solutions with non-trivia
electric and magnetic fluxes. Placing a dyonic M-bran
probe in its corresponding background should not then br
any further supersymmetry, and in particular a generali
calibration condition for such a probe should exist. We w
find that all of the supersymmetry equations~except for one!
may be interpreted as generalized calibration conditions f
probe M5-brane in our background. For example, Eq.~3.16!
is the generalization of the associative calibration df50 in

3Equation ~3.25! receives a correction proportional t
*X e3D sinzX8.
4-7
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G2-holonomy manifolds to dyonic M5-branes in warpe
backgrounds with flux.

Supersymmetric probes should saturate a generalized
bration bound which minimizes their energy. In@35# a cali-
bration bound for the M5-brane was derived. Although so
comments were made about general backgrounds the c
putation there was for a flat space background with zeroG
flux. It is easy to extend their analysis to the case of non-z
G flux by taking into account the Wess-Zumino terms.
Appendix B we use the Hamiltonian formalism of@36# to
obtain an expression for the energy of a class of static M
branes with non-zero backgroundG flux and world-volume
three-formH. This formula may then be used to show th
supersymmetric branes are calibrated and saturate a b
on the energy.

The very alert reader may notice an obstacle in carry
out the above program. The calibration bound derived in@35#
requires the existence of a time-like Killing vector which
turn one uses to define the energy in a Hamiltonian form
lation. Moreover, such a vector should arise as a spinor
linear. However, the supersymmetric geometries we are c
sidering belong to the ‘‘null’’ class, namely the stabilizer
the spinorh ~for any choice ofc) is @Spin(7)›R8#3R and
the vector one constructs from it is a null vector@37,5#. As
discussed in@5#, in this case the interpretation of the supe
symmetry conditions as calibration conditions is less cle
However, by some sleight of hand, we may still use the st
formulation of the M5-brane. The key to this is simply th
we in fact havetwo linearly independent null spinors, from
which we may construct a time-like Killing vector.

As discussed in Appendix B, an M5-brane probe will
supersymmetric if, and only if,

P2h50 ~4.1!

where P2 is a k-symmetry projector, andh is the 11-
dimensional supersymmetry parameter. We have two line
independent null spinors,hl5A2e2D/2cl ^ e1, wherecl ,
for l51,2, are two linearly independent constant spinors
R1,2. With an appropriate choice ofcl , the vectors one con
structs from these spinors are]/]t6]/]X1. Both vectors are
null, but their sum 2k52]/]t is time-like. Thus we are led to
consider the following Bogomol’nyi-type bound:

(
l51,2

uuP2hluu25 (
l51,2

1

2
hl

†P2hl>0. ~4.2!

One then rewrites this bound in terms of the energy. Fr
Appendix B we have

E5TM5
~C01eDLDBI! ~4.3!

whereTM5
is the M5-brane tension,C0 is the contribution of

a Wess-Zumino-like term to the energy, andLDBI is a Dirac-
Born-Infeld action~cf. Appendix B!. The bound may there
fore be written
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eDLDBIvol5> (
l51,2

j * nl1 j * xl`H ~4.4!

where we have defined the space-time forms

nl5
1

~ uuh1uu21uuh2uu2!

3
1

5!
hl

†Ĝ0 M1 . . . M5
hldXM1` . . . `dXM5

xl52
1

~ uuh1uu21uuh2uu2!

1

2!
hl

†Ĝ0 MNhldXM`dXN

~4.5!

and j * denotes a pull-back to the M5-brane world volum
Using Eq.~4.3! we obtain a bound on the energy densityE
5Evol5:

1

TM5

E> (
l51,2

~ j * nl1 j * xl`H !1C0vol5 ~4.6!

where

C0vol55 i kC62
1

2
i kC`~C22H ! ~4.7!

and a pull-back is understood on the right-hand side of
equation.

Given a static supersymmetric background, a p
(S5 ,H), with S5 a 5-cycle andH5h1 j * C a three-form on
S5 satisfying dH5 j * G, is said to becalibratedif the bound
~4.6! is saturated on all tangent planes ofS5. As we will
show below, such a calibrated M5-brane world space t
has minimal energy in its equivalence class@(S5 ,H)#. Here,
a pair (S58 ,H8) is in the same equivalence class as (S5 ,H) if
S5 is homologous toS58 via a six-chainB6 ~that is, ]B6

5S52S58) over whichH andH8 extend to the same three
form, H, satisfying dH5 j * G on B6. In fact, sinceC clearly
extends~it is defined over all of space-time!, it is enough to
extendh overB6 as a closed form. Now, by Poincare´ duality
on the M5-brane world volume,h defines a two-cycle
S2,S5, where @S2# is isomorphic to@h# under Poincare´
duality. h induces an M2-brane charge via the Wess-Zum
coupling ~B5!, and thusS2 may be thought of as the effec
tive M2-brane world space, sitting inside the M5-brane.

To prove the calibration bound on the energy the for
xl , nl must obey suitable differential conditions. As w
show below, these combine to give the general conditions
the forms defining the@Spin(7)›R8#3R structures in 11
dimensions@5#. These read4

4Our conventions differ from those of@5#. To rectify this, one can
simply change the sign of the gamma matrices of@5#. This leads to
some extra minus signs when using their results.
4-8
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dxl5 i vl
G

dnl5 i vl*̂ G2xl`G ~4.8!

where in our case the one-forms
i
to

f

m
a

i-
av

e

08501
vl5
1

~ uuh1uu21uuh2uu2!
hl

†Ĝ0 MhldXM ~4.9!

are both null. With our choice ofcl , we may take their sum
v11v252dte2D. The dual vector is then simply (v1
1v2)#5]/]t5k. A calibrated pair (S5 ,H) therefore obeys
E~S5 ,H !5 E
S5

(
l51,2

~nl1xl`H !1 i kC62
1

2
i kC`~C22H !

5 E
B6

(
l51,2

@dnl1d~xl`H !#1d~ i kC6!2
1

2
d@ i kC`~C22H !#

1 E
S58

(
l51,2

~nl1xl`H8!1 i kC62
1

2
i kC`~C22H8!

501 E
S58

(
l51,2

~nl1xl`H8!1 i kC62
1

2
i kC`~C22H8!

<E~S58 ,H8! ~4.10!
be
.

n
re
no
is

tric
lly

nal

ra-
for any (S58 ,H8) in the same equivalence class as (S5 ,H).
Notice that we have used, for example, d(i kC6)5

2 i k(dC6)52 i k( *̂ G1 1
2 C`G), in order to show that the

integral overB6 vanishes.
Note also that this result holds for all cases where it

possible to construct an appropriate time-like Killing vec
from the Killing spinors~not necessarily as a bilinear!, and
thus it holds in particular for the entire ‘‘time-like’’ class o
@5#.

It is now a simple matter to relate this to the supersy
metry equations of the preceding section. Indeed, these
equivalent to~4.8! on rewriting them in terms of the quant
ties defined in the preceding section. In particular, we h
that

n11n252vol2`e6Df cosz2dt`e6DY ~4.11!

x11x251vol2e3D sinz1dt`e3DK cosz ~4.12!

where vol25dX1`dX2 is the spatial two-volume. Thus w
have

d~x11x2!5vol2`d~e3D sinz!2dt`d~e3DK cosz!5 i kG

5vol2`e3D f ~4.13!

which shows the equivalence of Eqs.~3.11! and ~3.15! with
the first equation in~4.8!, and also
s
r

-
re

e

d~n11n2!52vol2`d~e6Df cosz!1dt`d~e6DY!

5 i k*̂ G2~x11x2!`G

52vol2`~2e6D* F1e6D sinzF !

2dt`e6D coszF`K. ~4.14!

This equation is clearly equivalent to the condition~3.16!
together with

e26Dd~e6DY!52F`K cosz. ~4.15!

On expanding the various terms, this can be shown to
equivalent to Eqs.~3.12!, ~3.13!, and the contraction of Eq
~3.14! with K. The relation~A17! is useful for establishing
this result.

Interestingly, Eqs.~3.15! and ~3.11! may also be derived
from considerations of the M2-brane. In fact@5#, the first
condition in Eq.~4.8! is a generalized calibration conditio
for the M2-brane world-volume theory. The latter is mo
straightforward than the M5-brane theory as there is
form-field propagating on the M2-brane. Specifically, there
a simple Nambu-Goto term plus the Wess-Zumino elec
coupling to theC field. In this case, the energy is essentia
just the action. Equation~3.15! is then a calibration condition
for a space-filling M2-brane, whereas Eq.~3.11! is a calibra-
tion condition for an M2-brane wrapped over theK direction.
Notice that the remaining component of Eq.~3.14! did not
enter the M5-brane calibration and in fact its 11 dimensio
origin is in Eq.~2.18! of @5# for the Killing one-form dk. We
suspect that this should ultimately be related to a ‘‘calib
4-9
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D. MARTELLI AND J. SPARKS PHYSICAL REVIEW D68, 085014 ~2003!
tion’’ for momentum carrying branes, or waves. It would
interesting to understand this point further.

V. M5-BRANES WRAPPED ON ASSOCIATIVE
AND SLAG THREE-CYCLES

In this section we specialize our results to the case
which the electric component of the fluxf is set to zero as
well as the massm. This situation corresponds to pure
magnetic M5-branes wrapping three-cycles inside the tra
verse eight manifold, with vanishing world-volume thre
form field H. The geometries we consider are then of t
form R1,23M8, whereM8 generically admits aG2 structure
corresponding toN51 in the external Minkowski3 space, or
an SU(3) structure corresponding toN52. We will also
briefly discuss how one can easily extend these results to
case of M5-branes wrapping various four-cycles.

A. Associative calibration andNÄ1

Specializing the equations of Sec. III to the case at h
we get the following set of conditions on theG2 structure:

d~e3DK !50 ~5.1!

K`d~e6Di K* f!50 ~5.2!

d~e12Dvol7!50 ~5.3!

df`f50 ~5.4!

e26Dd~e6Df!52* F. ~5.5!

The metric takes the following form:

dŝ11
2 5e2D@ds2~R1,2!1ds7

2#1e24Ddy2. ~5.6!

Notice that Eq.~5.3! is equivalent to]ylogAg75212]yD.
Thus M5-branes wrapped on associative three-cycles
rise to an almost product structure geometry on the tra
verse eight manifold which, at any fixed value ofy, admits a
G2 structure of the typeW3% W4. Explicit solutions were
presented in@38#. The close relation to the results of@1# is of
course not accidental. Recall thatK is generically not a Kill-
ing vector. However, when it is, one can Kaluza-Klein r
duce along they direction ~identifying the dilaton asF5
23D) to get solutions of the type IIA theory, which describ
NS5-branes wrapped on associative three-cycles@1#. Of
course, if additional Killing vectors are present in speci
solutions one can also reduce along those directions to ob
type II backgrounds which may contain RR fluxes in ad
tion to the NS three-form.

Let us comment here on the relationship of our appro
to the work initiated in@21# and expanded upon in a series
papers~see@39# for a review!. The strategy in@21# is to write
down an appropriate ansatz for the solution and then su
tute this into the supersymmetry equations. Eventually on
left with a non-linear PDE for some metric functions whic
parametrize the ansatz~after imposing the Bianchi identity!.
It should be clear that using the techniques ofG structures
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one can easily recover the various constraints obtained u
the approach of@21#. As a bonus we have in addition a phys
cal interpretation of the constraints in terms of generaliz
calibrations5 and, thanks to the machinery of intrinsic to
sion, we can apply the technique to more general ca
which do not admit complex geometries. The work of@8#,
using theG-structure approach, recovers theN51 geom-
etries of @44#, corresponding to M5-branes wrapped o
Kähler two-cycles in Calabi-Yau threefolds~times S1), i.e.
seven manifolds withSU(3) structure, after including the
flux back reaction. These in turn reduce in type IIA to t
complex geometries first described in@45,46# in the context
of Type I/Heterotic, as can easily be checked using
equivalent formulation given in@7#. It is straightforward to
see that a similar formulation exists for theN52 geometry
of @21# corresponding to M5-branes wrapped on Ka¨hler two-
cycles in seven-manifolds withSU(2) structure. In this case
the supersymmetry conditions are exactly those discusse
the type IIA limit in Sec. VI of@7#, with the transverse spac
R2 replaced byR3. Clearly, all the geometries discussed
@7# have a direct counterpart in M-theory as wrapped M
branes.

Thus, imposing the Bianchi identity onG, we can write
down the associative analogue of the non-linear equation
@21#, which reads

d7@e26D* 7d7~e6Df!#1]y
2~e6D* 7f!50 ~5.7!

where we have used the following expression for theG field:

G5]y~e6D* 7f!1e26D* 7d7~e6Df!`dy. ~5.8!

This is equivalent to the generalized calibration conditi
~5.5!. Here we do not write down possible source term
Note that Eq.~2.3! is automatically satisfied, withG`G and
d *̂ G being separately zero@using Eqs.~5.4!, ~5.5!, respec-
tively#.

Next, as promised in Sec. III, we address more explic
the issue of sufficiency of the conditions we have deriv
This is ensured by the careful counting of irreducible co
ponents of the intrinsic torsion, but it is perhaps instructive
look also at the Killing spinor equations directly. The stra
egy is essentially to substitute our conditions back into
Killing spinor equations and check that they indeed ad
solutions. Substituting the conditions~5.1!–~5.5! into the su-
persymmetry equations, we find that the external part~2.26!
gives

23g i] iDj71
1

12
F3i jkg i jkj71

1

48
F4i jkl g

i jkl j6

23e3D]yDj650 ~5.9!

5The relation of the work of@21# to generalized calibrations wa
noticed in @40–43#. These papers consider a class of geomet
where the internal space is Hermitian. This is related to the fact
these geometries describe M5- or M2-branes wrapped on holom
phic cycles.
4-10
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while the internal part~2.25! gives

¹ i
(7)j61

1

8
F3i jkg jkj61

1

4
e3D]y~gi j

7 !g jj7

1
1

24
F4i jkl g

jklj750 ~5.10!

]yj61
1

4
ei

[a]yeb] ig
abj650 ~5.11!

where here the indices run from 1 to 7 and¹ (7) is the Levi-
Civita connection constructed fromgi j

7 . Next, we can sim-
plify these equations using the fact that

1

3!
F4iklm~* 7f!klm

j52e3D]y~gi j
7 ! ~5.12!

which can be computed from the expression for the flux~5.5!
and the conditions~5.3!, ~5.4!. Notice that, as discussed i
Appendix A, this means that the7 representation inF4 van-
ishes, as is implied by the second equation in Eq.~3.21!. One
can then show that Eqs.~5.9! and~5.10! reduce, respectively
to

g i] iF j1
1

12
F3i jkg i jkj50

¹ i
(7)j1

1

8
F3i jkg jkj50 ~5.13!

wherej is the unique seven-dimensional spinor correspo
ing to j6 in eight dimensions, and we have intentiona
used the notationF523D to demonstrate that the resultin
equations are essentially the dilatino and gravitino equat
of type IIA. Thus, by the results of@47,48,1#, we indeed have
a solution. Equation~5.11! is solved by taking the spinor to
be y independent and thevyab component of the spin con
nection to be in the14 of G2: this simply corresponds to th
standard choice of a local frame wherefabc has constant
coefficients.

B. SLAG calibration and NÄ2

Following the same line of reasoning as above, the eq
tions describing M5-branes wrapping SLAG three-cycles
manifolds with anSU(3) structure may almost be extrap
lated from those pertaining to NS5-branes wrapping
same cycles obtained in@1#. By repeating the arguments o
@1,7# we have that doubling the amount of supersymme
yields the presence of twoG2 structures, whose maxima
common subgroup gives us anSU(3) structure. One may
then carry over the previous analysis by considering a K
ing spinor of the typec ^ (j1 % j2) wherec andj6 are now
complexspinors. Thus one can also think ofSU(3) as aris-
ing from two SU(4) structures having opposite chiralitie
each defined by a complex Weyl spinor. Notice that this
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ometry then belongs to both the ‘‘null’’ and ‘‘time-like’’
classes of@5#, asSU(3) embeds into@Spin(7)›R8#3R as
well as intoSU(5).

In a real notation, we take our spinors to be

h (a)5e2D/2c (a)
^ ~j1

(a)
% j2

(a)!, a51,2 ~5.14!

where each of thec (a) has two independent real componen
thus corresponding toN52 in three dimensions. To realiz
the SU(3) structure explicitly one can now construct add
tional bilinears. We refer to Appendix B of@7# for details.
Notice that we have two vectors, which in a local frame a
given byK (1)5e7, K (2)5e8 and a two-form given by

Jmn5e (1)
1Tgmne (2)

1 , ~5.15!

where, as before,e (a)
1 5(j1

(a)1j2
(a))/A2 and in a local frame

we haveJ5e121e341e56. There are, of course, other bilin
ears that one can consider, but this is all we need. In fac
terms of the associative three-forms, we have

f (a)5J`K (1)6Im V ~5.16!

with V5(e11 ie2)`(e31 ie4)`(e51 ie6). The SU(3)
structure is given byK (a), J, V with the last two defining
the structure in its canonical dimension of six, andi K(a)J
5 i K(a)V50.

Using the Killing spinor equations, after some calcu
tions one arrives at the following set of conditions:

d~e3DK (a)!50 ~5.17!

d~e3DJ!50 ~5.18!

K (1)`K (2)`d~e3DRe V!50 ~5.19!

d~ Im V!`Im V50 ~5.20!

e26Dd~e6DIm V!52* F. ~5.21!

The two vectors give rise to an almost product metric str
ture of the form

dŝ11
2 5e2D@ds2~R1,2!1ds6

2#1e24D~dy21dz2!.
~5.22!

As discussed in@7# the six-dimensional slices at fixedy and
z have anSU(3) structure with intrinsic torsion lying in the
class W2% W4% W5 with warp-factor 6d6D52W45W5
@see@49,7# for details about the intrinsic torsion ofSU(3)
structures#. Notice that these geometries arenot Hermitian,
which mirrors the fact that the M5-branes wrap SLAG thre
cyles: Eq.~5.21! is the corresponding generalized calibrati
condition. Explicit solutions of this type were presented
@50#. The proof that the above equations are also sufficien
ensure the existence of four solutions to the Killing spin
equations amounts to the observation that with these one
construct twoG2 structures, as in the preceding subsecti
each of which corresponds to two Killing spinors with opp
site chiralities.
4-11
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As in the previous case, let us write down the equat
implied by the Bianchi identity dG50. This is the SLAG-3
analogue of the equations of@21# and reads

d6@e29D* 6d6~e6DIm V!#1nyz~e3DRe V!50,
~5.23!

where nyz5]y
21]z

2 is the flat Laplacian in the transvers
directions. To derive this equation we have made use of
conditions above to rewrite the flux in the following form:

G52e29D* 6d6~e6DIm V!`dy`dz1]z~e3DRe V!`dy

2]y~e3DRe V!`dz. ~5.24!

The G equation of motion~2.3! is again automatically
satisfied.

C. More wrapped M5-branes

We have presented the general conditions on the geom
of M5-branes wrapped on associative and SLAG thr
cycles, giving explicitly the non-linear PDE which resul
from imposing the Bianchi identity. M5-branes wrapped
Kähler two-cycles in Calabi-Yau twofolds and threefol
were described in@21,44#, and in@8# from the point of view
of G structures. Consulting the tables in@7# one realizes tha
to complete the analysis of wrapped M5-branes one need
consider four-cycles, yielding geometries of the typeR1,1

3M9. Clearly, it is straightforward to extend our analysis
cover all the remaining cases of M5-brane configuratio
wrapping supersymmetric cycles. These will essentially
the M-theory lifts of the conditions derived in@7# for all
possible wrapped NS5-branes in the type IIA theory. F
instance, we anticipate that, for static purely magnetic M
branes, the flux is given by the generalized calibration c
dition

* 9F5e26Dd~e6DJ! ~5.25!

whereJ is the relevant calibrating form. Thus when fiv
branes wrap coassociative four-cycles inG2 manifolds
~times T2) we have J5* 7f; for Kähler four-cyclesJ
5 1

2 J`J, and so on. Imposing the Bianchi identity gives t
corresponding non-linear PDE. Notice that the ‘‘time-like
case in@5# covers the case of M5-branes wrapped on SLA
five-cycles in Calabi-Yau fivefolds, and the resultingSU(5)
structure is described there in detail.

VI. ALL PURELY ELECTRIC SOLUTIONS

In this section we discuss supersymmetric solutions w
no internal components of the flux; namely, we setF50.
Suppose first thatmÞ0. In this case, setting to zero the1
and7 components of the flux in Eqs.~3.20! and ~3.21! one
can solve forK, f andD in terms of the functionz, which
one may take as a coordinate on the internal space,
obtaining
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K5
1

2m
dz

f 53 seczdz

e2D5 cosz. ~6.1!

Using these, one finds that the supersymmetry conditi
~3.11!–~3.16! reduce to the single equation

d~e3Df!54me4Di K* f. ~6.2!

We can now define a conformally rescaled three-formf̃

5e23Df, and the corresponding four-form and metric*̃ 7f̃

5e24D* 7f andg̃mn5e22Dgmn , in terms of which Eq.~6.2!
becomes

df̃54m *̃ 7f̃. ~6.3!

The genereral solution is therefore given by

dŝ2
115 sec2 zS ds3

2~AdS3!1
1

4m2
dz2D 1ds̃7

2

G53vol3` sec4 zdz ~6.4!

where the seven-dimensional metric has weakG2 holonomy,
as dictated by Eq.~6.3!. Notice that theG equation of motion
~3.23! is automatically satisfied since e6D* f 56m vol̃7.

Compactifications of M-theory on weakG2 manifolds
were studied extensively in the 1980s~see, for example,
@51#!. The simplest example is the well-known AdS43S7

compactification, which is in fact maximally supersymme
ric. Indeed, by a suitable change of coordinates, one
check that the solution~6.4! is of the form AdS43M7, where
M7 has weakG2 holonomy. Setting secz5 cosh (2mr), the
11-dimensional metric becomes

dŝ11
2 5 cosh2~2mr!ds2~AdS3!1dr21ds̃7

2 . ~6.5!

The four-dimensional piece is the metric on AdS4 with ra-
dius l 51/2m, foliated with copies of AdS3. The seven-
metric ds̃7

2 is a weakG2 manifold, with the metric normal-

ized such that the Ricci tensor satisifies Ric56m2g̃.
Let us consider briefly the case whenm50, so that the

three-dimensional external space is flatR1,2. In this case,
setting to zero the components of the internal flux~3.20! and
~3.21! implies that sinz561. This is the limit in which one
of the chiral spinors vanishes, leaving only the spinor
opposite chirality. The one-formK and the three-formf are
then identically zero, while there is only one independe
four-form, C1 or C2. This defines aSpin(7)-structure in
the usual way.

Although this case has been reviewed already in Sec
let us check that one correctly recovers it from our equatio
In taking the limit one needs to be careful and consider o
those equations obtained from spinor bilinears with fo
gamma matrices as these are the only equations which
4-12
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non-trivial. In fact, as written, the conditions on theG2 struc-
ture in Sec. III are, naively, all trivial in the limit sinz→
61. This is just because they are written inG2-invariant
form, whereas in this limit there is noG2 structure at all. An
appropriate combination to consider is in fact Eq.~4.15!
which we encountered in Sec. IV. This reduces to the con
tion d(e6DC6)50 when sinz→61, and determines the in
ternal space to be conformal to aSpin(7) manifold, as in
Sec. II. The electric flux reduces accordingly to

Gelectric56vol3`d~e3D!. ~6.6!

Notice that in fact we have set to zero only the irreduci
G2 components1 and7 of the magnetic flux, and in principle
some components are still allowed. Indeed, we recover
constraint on the magnetic flux from Eq.~3.10! which re-
duces to Eq.~2.16!, requiring the flux to be in the271 or
272 of Spin(7)6 , respectively.

Note that taking theSpin(7) manifold to be a cone ove
a weak G2 manifold and choosing the harmonic functio
e23D51/(mr)6 one again obtains AdS43M7 solutions, al-
though now AdS4 is foliated by R1,2 horospheres, with
metric

dŝ11
2 5e24ymds2~R1,2!1dy21ds̃7

2 . ~6.7!

To summarize, we have shown that warped supersymm
ric solutions with purely electric flux are of only two type
the AdS3 compactifications are in fact more naturally writte
as AdS4 compactifications, foliated by copies of AdS3, with
the transverse space being weakG2 holonomy. On the other
hand, in Minkowski3 compactifications the internal manifol
must be conformal to aSpin(7)-holonomy manifold, as dis
cussed in@18#, with a single chiral spinor. Note that in th
AdS3 slicing case, the internal manifoldM8 provides a
simple realization of a space whose spinor ‘‘interpolate
between two spinors of opposite chirality.

VII. EXAMPLES

In this section we demonstrate that the formalism we h
developed may be useful for finding supersymmetric so
tions. In particular, we easily recover the dyonic M-bra
solution of @22#. This describes a 1/2-BPS M5/M2 boun
state. We also argue that the recently discovered dyonic
lutions of @24,25# lie within this class, although we will no
attempt to rederive these solutions here. Indeed, all of th
solutions involve M5-branes with an M2-brane sitting insid
Finally, we present some simple solutions to the equation
Sec. V.

A. The dyonic M-brane

As explained in Sec. IV, Eq.~3.16! is a generalized cali-
bration condition for an M5-brane wrapping an associat
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three-cycle in aG2 manifold. Presently we shall regardT3

% R4 as aG2 holonomy space6 in which M5-branes wrap the
three-torus T3. The remaining three unwrapped world
volume directions span aR1,2 Minkowski space, and we ac
cordingly setm50. Thus, it is natural to write down the
following simple metric ansatz describing such a wrapp
brane:

dŝ11
2 5e2D@ds2~R1,2!1Adu•du1Hdx•dx#. ~7.1!

Here u5(u1 ,u2 ,u3) are coordinates on the three-torus a
x5(x1 , . . . ,x5) are coordinates on the Euclidean five-spa
transverse to the M5-brane. At this pointD, A and H are
arbitrary functions on the internal eight manifold. It is co
venient to choose the following orthonormal frame for t
latter:

e21 i5A1/2dui

e51ā5H1/2dxā ~7.2!

wherei 51,2,3 andā51, . . . ,5. Wethen take the following
G2 structure on this eight manifold

f52e3452e3`~e672e89!2e4`~e681e79!

2e5`~e692e78!

K5e10. ~7.3!

Thus we have writtenR85ImH% H% R, where ImH% H de-
notes theG2 structure in its canonical dimension of seve
andR is theK direction. This appears to break the invarian
of the space transverse to the five-brane under the fi
dimensional Euclidean group, but in fact the solution w
shall obtain respects this invariance—it is simply not ma
fest in the above notation.

We now solve the equations of Sec. III. Let us start w
Eq. ~3.11! for K which is solved by taking

e3DH1/2cosz5c1 ~7.4!

wherec1 is a constant. Equation~3.12! gives the conditions

e6DAH5c2
2 ~7.5!

d~e6DH2!`dx1234550. ~7.6!

One may solve the latter by takingH5H(x), D5D(x),
which is natural as the solution should depend only on
coordinates transverse to the brane. Using these relations
computes

A5S c2

c1
D 2

cos2 z. ~7.7!

Equation ~3.13! is now automatically satisfied. One als
computes

6One may also consider the universal covering spaceR7, and
wrap the brane overR3.
4-13
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d~e6Df cosz!5
c2

3

c1
du123̀ d~H21 cos2 z! ~7.8!

which implies that df`f50. Thus Eq.~3.14! gives

f 52 seczdz ~7.9!

and inserting this into the definition off ~3.15! yields the
following relation:

H1/2 tanz5c4 . ~7.10!

We now setc251 without loss of generality~by rescaling
the coordinatesui). The magnetic flux is obtained from Eq
~3.16! and reads

e3DF52c4du123̀ d~AH21!1c1 *̃ 5dH ~7.11!

where*̃ 5 denotes the Hodge dual with respect to the me
dx•dx. Thus the Bianchi identity~3.22! imposes

h̃H50. ~7.12!

That is,H is an harmonic function on the five flat transver
directions. One may easily check that the equation of mo
~3.23! is identically satisfied. It appears that we now have
solution with two free parameters, but this is not so: one
remove c1 by rescaling the coordinatesxā . However, to
recover7 the solution of@22# we in fact need to set

c452 tanj, c15 cosj. ~7.13!

We can choosec452 tanj for some anglej without loss of
generality, and then settingc15 cosj corresponds to a spe
cific choice of normalization for the harmonic function.
conclusion, the metric takes the following form@22#:

dŝ11
2 5H22/3~sin2 j1H cos2 j!1/3Fds2~R1,2!

1
H

sin2 j1H cos2 j
du.du1Hdx.dxG . ~7.14!

Notice that the functionz is given by

tan2 z5
1

H
tan2 j ~7.15!

and that the M2-brane and M5-brane are recovered in
limits j→p/2 andj→0, respectively.

Note that the solution actually preserves 16 Killin
spinors@22#, as for the ordinary flat M5 brane. However, w
have shown that the existence of aG2 structure of the type

7We disagree by factor of 6 with their expression for the flu
However, this appears to be a simple typographical error in tak
the M-theory lift.
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we have been discussing is enough information to derive
full solution straightforwardly.8

B. ‘‘Dielectric flow’’ solutions

The solutions recently constructed in@23–25# fall in our
general class of ‘‘dyonic’’ solutions. Indeed they have
warped Minkowski3 factor times an internal eight manifold
and most importantly they have non-trivial electric and ma
netic fluxes turned on. Thus they may be thought of as so
M5-brane distribution with induced space-filling M2-brane
Note that the solution of@24#, in particular, admits 16
supersymmetries—as many as the dyonic M-brane of@22#.
In principle one should be able to recover these solution
much the same way as we did for the standard dyo
M-brane solution above. All one has to do is to provide
ansatz for the three-formf, or equivalently for the metric.
Thus as shown in Sec. III the fluxes are determined by
supersymmetry constraints, and one is left finally with a no
linear PDE to be solved. Indeed, we have turned the prob
into ‘‘ algebraic’’ equations for the fluxes. While the solu
tions of @22,24# preseve 16 supercharges, and that of@25#
eight, our equations describe the most general dyonic s
tion, which admits at least two Killing spinors with opposi
chiralities. Thus these might be used to look for more gene
examples.

C. Smeared solutions

Here we show that one may derive a simple class of
lutions to the equations of Sec. V. One can think of these
describing M5-branes wrapped on an associative three-c
and completely smeared over aG2 manifold. Unfortunately,
these solutions are singular. Of course, many of the sin
larities of supergravity solutions are ‘‘resolved’’ in M-theor
It would be interesting to know if this were the case here

One makes the ansatz

f5e23A(y)f0 ~7.16!

wheref0 is the associative three-form for aG2-holonomy
manifold, and we assume in additionD5D(y). Thus, geo-
metrically, we have a family ofG2-holonomy manifolds fi-
bered over they direction. One finds that all of the differen
tial equations for the structure are satisfied automatica
apart from one, which imposes

d~e12Dvol7!50⇔12D~y!57A~y!1c. ~7.17!

Notice that one may setc50 by redefiningf0. Thus it re-
mains to satisfy the Bianchi identity~5.7!. This imposes

e26D/75a1by ~7.18!

wherea andb are constants. Thus the solution is

.
g

8By a circle reduction to type IIA, followed by T-duality, on
obtains D-brane bound states in type IIB. The supersymmetry of
D5/D3 bound state@52# is discussed in@53#.
4-14
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dŝ11
2 5~a1by!27/3ds2~R1,2!1~a1by!14/3dy2

1~a1by!5/3ds2~G2! ~7.19!

whereds2(G2) is anyG2-holonomy metric, and theG flux is
given by

G5b~* 7f!0 ~7.20!

where (* 7f)0 is the coassociative four-form on theG2 mani-
fold. Setting b50 gives R1,3 times aG2 manifold. For b
Þ0 one may make a change of variables to write the me
as

dŝ11
2 5dr21r 1/2ds2~G2!1r 27/10ds2~R1,2!. ~7.21!

Clearly this is singular atr 50, although it is a perfectly
regular supersymmetric solution everywhere else.

VIII. OUTLOOK

In this paper we have studied the most general war
supersymmetric M-theory geometry of the typeM33M8,
with the external spaceM3 being either Minkowski3 or
AdS3. The key ingredient which allowed us to extend t
analysis of@15,18,20# was to allow for an internal Killing
spinor of indefinite chirality. This is in fact the most gener
form compatible with the three-eight decomposition and
Majorana condition in 11 dimensions. The geometries w
shown to admit a particularG2 structure. This is a specia
case of the most general 11-dimensional geometry of
‘‘null’’ type, for which the corresponding structure i
@Spin(7)›R8#3R @37,5#.

One of our motivations was to extend the analysis
@15,18# to more general supersymmetric geometries. Ho
ever, it is a rather general result that, in the case
Minkowski3 vacua, ignoring higher order corrections or si
gularities rules out compact solutions. We have noticed
such corrections allow, in principle, compact geometries
would be interesting to see if compact examples can be c
structed.

We have found that the supersymmetry constraints a
have a physical interpretation in terms of generalized calib
tions @11,5,7#. In particular, we have shown most of the co
ditions arise as generalized calibrations for dyonic M
branes, namely M5-branes with M2-brane charge induced
the world volume by the three-form. We have shown th
when there is a suitable time-like Killing vector, one c
construct a Bogomol’nyi bound in the presence of ba
groundG flux. This applies for the entire class of geometri
considered here, and also to the ‘‘time-like’’ class of@5#. It
would be interesting to understand more precisely the r
tion of generalized calibrations to the supersymmetry con
tions in the general case of a@Spin(7)›R8#3R structure,
when the Killing vector is null.

The generality of our method implies that the conditio
we have derived apply to a variety of situations. Thus, ap
from ‘‘compactifcations,’’ one can use the same results
describe non-compact geometries of physical interest. T
cal examples are wrapped branes or intersecting brane
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these, as in all other cases, the supersymmetry constraint
relatively easy to implement, while ensuring that the Bian
identity is satisfied is often a challenging task. One gen
cally obtains non-linear PDEs whose explicit solutions a
typically beyond reach. In any case, as illustrated in Sec. V
should be clear that our approach is suitable for generaliz
the work of@21#. In particular, we have given the condition
and PDEs describing M5-branes wrapped on associative
SLAG three-cycles. In the last case one can show that
Calabi-Yau threefold becomes a non-Hermitian manifold
ter allowing for the back reaction. This is to be contrast
with the case where M5-branes~or NS5-branes in type II!
wrap holomorphic cycles. Here the holomorphic structure
the manifold is preserved@45,46,21,44,7,8#.

Rewriting the Killing spinor equations in terms of th
underlying G structure provides an elegant organization
principle, and sheds light on the geometry of supersymme
solutions. Namely, it turns out that the geometrical interp
tation of the fluxes is given by the intrinsic torsion. Muc
physical insight comes from the interpretation of these
terms of branes and calibrations. On the other hand, the c
plication that arises from solving the equations implied
the Bianchi identitity seems to be a limitation on the meth
for finding new solutions. It is conceivable that using t
geometrical and physical insights of our approach in com
nation with other techniques, such as those related to gau
supergravities, will improve the situation. Some ideas in t
direction have already appeared~see, e.g.,@25#! and it would
be interesting to elaborate on them further.
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APPENDIX A: G2 STRUCTURES

A G2 structure on a seven-dimensional manifold is spe
fied by an associative three-formf, which in a local frame
may be written

f5e2462e2352e1452e1361e1271e3471e567. ~A1!

This defines uniquely a metricg75(e1)21 . . . 1(e7)2 and
an orientation vol75e1` . . . `e7. We then have

* f5e12341e12561e34561e13572e14672e23672e2457.
~A2!

The adjoint representation ofSO(7) decomposes as21→7
114 where14 is the adjoint representation ofG2. We there-
fore haveg2

'. 7. The intrinsic torsion then decomposes in
four modules@54#:

TPL1
^ g2

'5W1% W2% W3% W4 ,

737→111412717. ~A3!
4-15
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The components ofT in each moduleWi are encoded in
terms of df and d*f which decompose as

dfPL4>W1% W3% W4

35→112717 ~A4!

d*fPL5>W2% W4

21→1417.

Note that theW4 component in the7 representation appear
in both df and d*f. It is the Lee form, given by

W4[f4 df52* f4 d* f. ~A5!

TheW1 component in the singlet representation can be w
ten as

W1[* ~f`df!. ~A6!

The remaining components of df and d*f encodeW3 and
W2, respectively. TheG2 manifold hasG2 holonomy if and
only if the intrinsic torsion vanishes, which is equivalent
df5d* f50. Note thatG2 structures of the typeW1% W3
% W4 are called integrable as one can introduce aG2 Dol-
beault cohomology@55#.

On a manifold with aG2 structure forms decompose int
irreducibleG2 represenations. In particular, we have the f
lowing decompositions of the spaces of two-forms and thr
forms:

L25L7
2

% L14
2

L35L1
3

% L7
3

% L27
2 . ~A7!

The Hodge dual spacesL5 andL4 decompose accordingly
For applications in the main part of the paper, it is useful
write down explicitly the decompositions of the three-form
and four-forms. A three-formVPL3 is decomposed intoG2
irreducible representations as

V5p1~V!1p7~V!1p27~V! ~A8!

where the projections are given by

p1~V!5
1

7
~V4f!f

p7~V!52
1

4
~V4* f!4* f

p27~V! i jk5
3

2
Q̂r [ ifr

jk] ~A9!

and Q̂i j is the traceless symmetric part of the tensorQi j

51/2! V ikrf j
kr , namely,
08501
t-

-
-

o

Qi j 5
3

7
~V4f!gi j 2

1

2
f i j

k~V4* f!k1Q̂i j . ~A10!

Similarly, a four-formJPL4 decomposes intoG2 irreduc-
ible represenations as

J5p1~J!1p7~J!1p27~J! ~A11!

where the preojections are given by

p1~J!5
1

7
~J4* f!* f

p7~J!52
1

4
~f4J!`f

p27~J! i jkm522Ûr [ i* f r
jkm] ~A12!

and Û i j is the traceless symmetric part of the tensorUi j

5(1/3!)J ikrm* f j
krm , namely,

Ui j 52
4

7
~J4* f!gi j 2

1

2
f i j

k~f4J!k1Û i j . ~A13!

Consider an infinitesimal variation of the associati
three-formdf and the induced variations of the metricdgi j ,
and coassociative four-formd* f. Using the various identi-
ties obeyed by theG2 structure, we obtain an explicit decom
position ofdf, namely,

p1~df!5
3

7
d logAg f

p7~df!52
1

4
~df4* f!4* f

p27~df! i jk5
3

2
dgr [ if

r
jk]2

3

7
d logAg f i jk .

~A14!

The irreducible components ofd* f are similarly given by

p1~d* f!5
4

7
d logAg* f

p7~d* f!52
1

4
~f4d* f!`f

p27~d* f! i jkm52dgr [ i* f r
jkm]2

4

7
d logAg * f i jkm .

~A15!

The following relations also hold:
4-16



ef

th
e
n
x

so

es
e
ry

i-

o
e
5
’’

s
to

o

ld
5-

e,

n-
ity.

ral
case
s
gh

ay

in
s-

d
tic
m,
e

G STRUCTURES, FLUXES, AND CALIBRATIONS IN M . . . PHYSICAL REVIEW D68, 085014 ~2003!
1

2!
df ( i ukrf

kr
j )5dgi j 1gi j d logAg

1

3!
d* f~ i ukrm* fkrm

j )52dgi j 22gi j d logAg

f4d* f52df4* f

p27~d* f!52* p27~df!. ~A16!

Using these expressions one can derive the following us
equation:

d* f52* df1d logAg* f1
1

2
~df4* f!`f.

~A17!

APPENDIX B: THE M5-BRANE HAMILTONIAN

In this appendix we present a brief discussion of
Hamiltonian formulation of the M5-brane world volum
theory @36#. We use this to obtain an expression for the e
ergy of a class of static M5-branes, which, in the main te
is shown to satisfy a Bogomol’nyi-type inequality. We al
recall some details of the M5-branek-symmetry.

The action of the M5-brane is complicated by the pr
ence of a self-dual three-formH which propagates on th
world-volume. This requires one to introduce an auxillia
scalar fielda ~see @56# for a review!, with a normalized
‘‘field strength’’ v i5] ia/A2(]a)2. One then has an add
tional gauge invariance that one may use to gauge fixa, at
the expense of losing manifest space-time covariance. H
ever, the Hamiltonian treatment requires one to mak
choice of time coordinate. Using the symmetries of the M
brane action, one may then choose the ‘‘temporal gaugea
5s05t, wheres i5(s0,sa) are world-volume coordinate
(a51, . . .,5), and thebackground spacetime is assumed
take the static formdŝ11

2 52e2Ddt21ds10
2 . One then pro-

ceeds with the Hamiltonian approach@36#, which yields the
constraints

P̃21TM5

2 LDBI
2 50

]aXMP̃M50. ~B1!

HereXM5(t,XI) are the embedding coordinates,TM5
is the

M5-brane tension,LDBI5A det (da
b1Ha*

b) is a Born-Infeld-
like term, and

P̃M5PM1TM5
~Va]aXM2CM !. ~B2!

We have that

Vc5
1

4
H* abHabc ~B3!

where the two-formH* 5* 5H is theworld-spacedual of H
~theH0ab components ofH will not contribute to the energy!
08501
ul

e

-
t,

-

w-
a
-

and the termCM is a contribution from the Wess-Zumin
couplings of the M5-brane, namely,

CM5* 5F i MC62
1

2
i MC`~C22H !G ~B4!

where i M denotes interior contraction with the vector fie
]/]XM. Recall that the Wess-Zumino coupling of the M
brane is given by

I WZ5 E
W

C61
1

2
C`H ~B5!

whereH is the three-form field strength on the five-bran
coupled to the backgroundC-field

H5h1 j * C. ~B6!

Here h is closed, and locally of the formh5d b for some
two-form potentialb. Notice that dH5 j * G, where j is the
M5-brane embedding map.

We may now use the Hamiltonian and momentum co
straints~B1! to obtain an expression for the energy dens
We consider static configurations withP̃I50. This is suffi-
cient to satisfy the momentum constraint, but not in gene
necessary. One could extend our analysis to the general
~with more effort!, but we will not do this here — the clas
of static configurations we consider will be general enou
for our purposes. One defines the energy in the usual w

E52PMkNĝMN52P05e2DP0 ~B7!

wherek is the time-like Killing vector field]/]t. The Hamil-
tonian constraint now allows one to solve for the energy

E5TM5
~C01eDLDBI!. ~B8!

In addition to the energy, the other ingredient we use
the main text is thek-symmetry and supersymmetry tran
formations of the fermions. These combine to give

du5P1k1h ~B9!

whereP65 1
2 (16G̃) are projector operators.h is the back-

ground supersymmetrySpin(1,10) spinor, andG̃ is a trace-

less Hermitian product structure, that is, trG̃50, G̃251, G̃†

5G̃. Explicitly, we have

G̃5
1

LDBI
e2DĜ0FV•g̃1

1

2
g̃abHab* 1

1

5!
g̃a1 . . . a5

ea1 . . . a5G
~B10!

where g̃a are the pull-backs of the 11-dimensional Cliffor
matrices to the M5-brane world space. If we consider sta
configurations with a rest frame that has zero momentu
then Va50. This is the form of the projector used in th
main text. One can show@57# that the variation~B9! van-
ishes if, and only if,
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P2h50 ~B11!

which therefore characterizes bosonic supersymmetric c
figurations.

APPENDIX C: USEFUL RELATIONS

Given the supersymmetry equations~2.26!, and using the
symmetry properties of the gamma matrices, one can de
some useful identities which we have used extensively
deriving our results. For the reader’s convenience we
them here:

1

288
Fpqrse

6T@gpqrs,A#2e67
1

2
]mDe6T@gm,A#2e6

1m~e7TAe62e6TAe7!7
1

6
f me6TAgme7

6
1

6
f me7TgmAe650 ~C1!
-

S
ty

s.

s-

hr

gs

ys

lu-
,’’

-
,’’

h

Re

.

08501
n-

ve
n
t

1

288
Fpqrse

6T@gpqrs,A#1e67
1

2
]mDe6T@gm,A#1e6

1m~e7TAe61e6TAe7!6
1

6
f me6TAgme7

6
1

6
f me7TgmAe650 ~C2!

1

288
Fpqrse

1T@gpqrs,A#6e22
1

2
]mDe1T@gm,A#7e2

1m~e2TAe26e1TAe1!7
1

6
f me1TAgme1

1
1

6
f me2TgmAe250 ~C3!

where @•,•#6 refers to an anticommutator or commutato
andA is a general Clifford matrix.
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