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We study the most general supersymmetric warped M-theory backgrounds with a non@rflial of the
type RM?xMg and AdSXMg. We give a set of necessary and sufficient conditions for preservation of
supersymmetry which are phrased in term&astructures and their intrinsic torsion. These equations may be
interpreted as calibration conditions for a static “dyonic” M-brane, that is, an M5-brane with a self-dual
three-form turned on. When the electric flux is turned off we obtain the supersymmetry conditions and
non-linear PDEs describing M5-branes wrapped on associative and special Lagrangian three-cycles in mani-
folds with G, andSU(3) structures, respectively. As an illustration of our formalism, we recover the 1/2 BPS
dyonic M-brane, and also construct some new examples.
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[. INTRODUCTION For instance, if1,5,7] new examples were found this way,
while in lower dimension$2,9,10 the general form foall
Recently there has been considerable interest in trying t§Upersymmetric solutions was given. _
understand the types of geometries that arise in supersym- In this paper we study M-theory on eight manifolds— that
metric solutions of supergravity theories. When all fields ard>: supersymmetric Warped M-_theory _backgrounds of the
turned off, apart from the metric, it has long been known tha ype Myx Mg, with Mg either Minkowsky or AdS; space.

supersymmetric solutions are described by special holonom upersymmetric compactifications of M-theory to three di-
persy . Y SP . ensions have been considered beforel5+-20. The types
manifolds—for example, Calabi-Yau manifolds or manifolds

o -~ of geometries described in these papers may be thought of as
of G, holonomy. However, for many applications one is in- \2-prane solutions where the transverse space is a manifold
terested in solutions where the fluxes are turned on. Thes(gf Specia| ho|on0my' A|ternative|y’ one may think of them as
include important areas of research, such as the AdS confocompactifications on a special holonomy manifold where one
mal field theory(CFT) correspondence, or phenomenologicalincludes some number of space-filling M2-branes in the
models based on string/M-theory compactifications. vacuum.

Until recently, the study of supersymmetric solutions with  One of our motivations was to investigate more general
non-vanishing fluxes has been based mostly on physicallfypes of supersymmetric solutions to M-theory on eight
motivated ansatze for the supergravity Killing spinor equa-manifolds. In particular, there should clearly be another way
tions. While this method has led to many interesting resultsto obtain anA/=1 Minkowski vacuum from M-theory—

a more systematic approach is clearly desirabl¢ljit was  namely, one may wrap M5-branes over a supersymmetric
advocated that thé structures defined by the Killing spinors three-cycle in &5,-holonomy manifold(times anS'). After
provide such a formalism. Subsequent works have used thiacluding the back-reaction of the M5-brane on the geom-
approach to analyze and classify supersymmetric backetry, one no longer expects the eight manifold to have special
grounds in various supergravity theorigs-10]. Using the  holonomy, but rather a more gene@j structure with intrin-
language of5 structures and their “intrinsic torsion” one can sic torsion related to theG flux. Similarly, M5-branes
rewrite the supersymmetry equations of interest in terms ofvrapped on special Lagrangian three-cycles in a Calabi-Yau
an equivalent set of first-order equations for a particular sethreefold yield\V=2 in three dimensions. We will show how
of forms. these various geometries may be obtained by relaxing the

Another point, emphasized i1] (and based ofill]), is  assumptions df15,18); in particular we relax the assumption
the fact that some of the resulting conditions have an interthat the internal spinor is chiral. Furthermore, this generali-
pretation in terms of “generalized calibrationgl’2,13. This  zation yields supersymmetric Ad8ompactifications, which
was further elaborated on [B] and[7]. Generalized calibra- were excluded before. The method we use relies on local
tions extend to backgrounds with fluxes, the original notionequations, and thus also covers non-compact geometries; ex-
of calibrations in special holonomy manifolfis4], and their ~ amples of typical interest are solutions describing wrapped
physical significance is then that supersymmetric probéyranes or brane intersections.
branes have minimanergy On a more practical level, the The M-theory five-brane has a self-dual three-form gauge
formalism based of® structures can often be very useful for field that propagates on its world volume. Turning on this
actually finding new solutions in a given supergravity theory.field induces an electric coupling to tiixfield, and therefore

also an M2-brane charge. Thus the back reaction of such a

“dyonic” M5-brane should correspond to some more general
*Email address: d.martelli@gmul.ac.uk supersymmetric solution with electric and magnegidlux.
"Email address: j.sparks@qgmul.ac.uk In fact, we will see how such solutions arise in our formal-
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ism. One can argue that the most general supersymmetrigith a weak G,-holonomy manifold as internal space. We
solution of the form MX Mg is of this type, with the M2- show how the compactifications pf5,18,2Q are recovered
brane solutions being a limit in which the M5-brane disap-in a degenerate limit in which the internal spinor becomes
pears completely. chiral and, therefore, theG, structure becomes a
The plan of the paper is as follows. In Sec. Il we give aSpin(7)-structure.
brief summary of what is known about M-theory on e|ght As an illustration of our formalism in Sec. VIl we give
manifolds. This will also allow us to introduce our notations SOme explicit examples. We easily recover the dyonic
and conventions. We then describe how one extends thd-brane solution of22]. This solution describes a 1/2 BPS
analysis to allow for more general supersymmetric solutiond5/M2 bound state and serves as a simple example of the
with fluxes. The key point is to allow for a generic spinor on essential features of our geometries. We discuss also the rel-
the internal space—in particular, we do not impose that it bé&vance of our work to the recent “dielectric flow” solutions
chiral. Thus, in addition to the M2-brane type of solutions,of [23—23. These in fact also lie within our class of geom-
one also expects M5-brane-type solutions, including “dy-€tries. We present a class of singular solutions based on
onic” or “interpolating” solutions which have both charges G2-holonomy manifolds, where the M5-brane is completely
present, and also AdSsolutions. smeared over th&, manifold.

In Sec. Ill we show how the conditions for supersymme-  Appendix A gives a discussion @, structures. Appendix
try may be recast into the language @fstructures and in- B includes a brief discussion of the Hamiltonian formulation

trinsic torsion. In particular, we argue that there is aof the M5-brane theory. Appendix C contains some relations

G,CSO(8) structure and obtain a simple set of differential useful in the main text.

conditions on the forms that comprise it. By examining the

intrinsic torsion one can show that these conditions are nec-

essary and sufficient for supersymmetry. We also give the Il. M-THEORY ON EIGHT MANIFOLDS

Bianchi identity and equations of motion in this formalism |, this section we begin the analysis of eight-dimensional
and briefly discuss the issue of compact eight manifoldswarped compactifications of M-theory. After summarizing
When the external manifold &' a simple inspection of o ‘status quoregarding the M2-brane-like solutions of
the Einstein equations shows that one cannot have compaﬁtsil&zq’ we then go on to describe how one extends the
manifolds with flux, unless higher order corrections are IN-analysis to allow for more general supersymmetric solutions
cluded. with fluxes.

In Sec. IV we turn our attention to the physical interpre-  The fields of 11-dimensional supergravity consist of a
tation of the differential conditions on th®, structure. We metric@MN, a three-form potentiaC with field strengthG

show how these may be interpreted as generalized calibration dC, and a gravitinaj, . Supersymmetric backgrounds are

conditions for the MS-brane. We argue that the geometrieﬁqose for which the gravitino vanishes and there is at least
that these equations describe correspond to “dyonic” M5- . gravr
one solution to the equation

branes wrapped over associative three-cycles in a
G,-holonomy manifold. Moreover, we show that supersym-
metric probe M5-branes saturate a calibration bound on their . 1 - -
energy. We find that the M5-brane world-volume theory 8¢mw=Vun— @(GNPQRFNPQRM_SGMNPQFNPQMZO-
gives rise not only to an M5-brane type of calibration, but 2.1)
also one gets the M2-brane calibration “for free.”

In Sec. V we specialize our discussion to the case of

“pure” M5-branes(that is, with no electric fluxwrapped on  are 7 is a spinor of Spin(1,10), and fM form a

associative and special LagrangiBLAG) three-cycles. We  epresentation of the 11-dimensional Clifford algebra,
recover the results for wrapped NS5-branes in type IIA

theory[1] in the special case that the vector constructed as & M+ I'nt=20mn. We take the spacetime signature to
spinor bilinear is Killing so that one can dimensionally re-be (—,+, ... ,+), so that one may taki,, to be Hermitian
duce along this direction. We also comment on the relationfor M#0 and anti-Hermitian foM =0. Geometrically, Eq.
ship of our approach with the work ¢21]. In particular, we (2.1 is a parallel transport equation for a generalized con-
give the supersymmetry constraints and the non-linear PDB3ection, taking values in the full Clifford algebra, whose ho-
(following from the Bianchi identity that one must solve to lonomy lies inSL(32,R) [26]. In our conventions the equa-
find solutions describing M5-branes wrapped over associdions of motion are
tive and SLAG three-cycles. Furthermore, we discuss how
our approach may be extended straightforwardly to obtain a 1
similar description of five-branes wrapped on other cali-p, _ — A PQR_ A APQRS| _
bratod cycles.p PP Run— 75| GmporCn 19IMNCPorRE =0, (2.2

In Sec. VI we discuss the case in which the intenahg-
netic) G flux is switched off. In this case our equations sim-
plify drastically and we are able to give the most general Fet EG/\G=0
solution. In particular, we show that all AdSolutions may 2 '
be viewed as AdgSsolutions, foliated by copies of AdS (2.3
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One also has the Bianchi identityGd=0. Generically the 1 1 aa
field equations(2.2) and (2.3 receive higher order correc-  6¢m=Vm7+ 5(1® Ym Inl) 7+ ° 0 Ue Ym OnYe) 7
tions. In particular, the latter equation has a contributign

on the right-hand side, where 1 ., 1 . s
- ge (1® ¥9)Imn— 288 [(}I@qurs'ypq m)
(2m)?

— 2
Xg=~ g5 (P1~4P2): (2.9 —8(1® G pq¥* 1) 17=0 (2.11)

Here p; is the ith Pontryagin form, and we have set the which we refer to as the external and internal equations,
' ' respectively.

M2-brane tension equal to one. In the rest of this section we will assume, ag[ib,1§
We will consider supersymmetric geometries with F)om_that the internal spinor is chiral. We will briefly review the

careor AdS invariance in three external dimensions. Thus 6};onse uences of this restriction, before lifting it in the rest of
general such ansatz for the metric is of the form d ’ 9

the paper. If¢ is chiral, without loss of generality, one may
~ take yqé=¢. Requiring thatV, =0 in Eq. (2.11) then im-
A&, =€ (dS2+ gpndX™dX") 25  plies “

and for theG field we take the maximally symmetric ansatz 1 ., 1 4, 1
- _AB Gmpqr?’mpqr"' EAB gm7m+ Z?’m‘?m logAg &

G =€,,,0

mvpm prpIdm
= (2.12
Gmnpg= arbitrary, (2.6 . ] ] i
where, for easier comparison witth5,18, we have defined
Y o . )

where here, and henceforth, Greek indices run over 0,1,2 arfd€ Warp factol = — 3 log Ag. Projecting this equation onto
latin indices run over 3. ..,10—that is, over the internal its positive and negative chirality pattee obtain
manifold. We adopt the standard realization of the 11- _ap mpar
dimensional Clifford algebra CIiff*{R*9)= Mat (32RR) Im=ImAg~"s  Gmpary " €=0. (2.13
= Cliff (R} Cliff (R%®), namely, . . _ ,
Upon rescaling the spinor and the internal metric &s
=AY and gnn=A3%,., respectively, the relations
(2.13 allow one to simplify the internal part of the gravitino
equation, yielding

I,=e*(7,07%)

Lp=e(1® ypy). (2.7
~~ 1 ~
- 3/4, -
A convenient explicit representation of the three-dimensional Viné + ﬁAB Gmpary™"'é=0. (214
Clifford algebra is given byyy,=ioq, y1=03, v2=03,
where {oyk=1,2,3 are the Pauli matrices. The eight- One again notes that the two terms in E214 have oppo-
dimensional gamma matrices are X166 real, symmetric  sjte chirality, and must therefore vanish separately. In par-
matrices. We have alspgf]l. An 11-dimensional spinop is  icyar it follows that the metrig,,, hasSpin(7) holonomy
likewise decomposed into three- and eight-dimensionalq the internal flux satisfies
spinors as
Gmnpq’)’npquo- (2.19
N=yeE. (2.8
_ o _ _ _ implying that some, but not all, of th8pin(7) irreducible
The Majorana condition in 11 dimensions then imposes theomponents of the flux must vanish. Recall that on manifolds

following reality constraints: with Spin(7) structure four-forms may be decomposed into
four irreducible component¥0 — 35+27+7+1 under
Y=y, EF =6 (29  sSQO(8)—Spin(7) (see, e.g[27]). A convenient way to un-

derstand the conditiof2.15 is to recast it into a tensorial
Thus ¢ has two real components agchassixteenreal com-  equation[20]. Multiplying Eg. (2.15 on the left with&Ty'
ponents. The supersymmetry equation of intef8st) may  one obtains
now be decomposed into two parts

1
1 1 TmnngmPQr\I’pqrnzo (2.16
3, =Vt 58 (7, 89mY™) 1 5 (7,8 9mA Y ve) 7

l 1 . . . . . .ps . .
_ —3A npqr _ Notice that this projection simplifies somewhat the analysis in the
G pa =0 2.1
288 (7u®Gnpary™" " v9) 7 (210 original paperg15,18.

085014-3



D. MARTELLI AND J. SPARKS PHYSICAL REVIEW D68, 085014 (2003

where ¥ is the Cayley four-form, characterizing the branes transverse to Calabi-Yau fourfolds, and the role of the
Spin(7) structure. A general two-index tensor decomposesnternal flux is to provide an additional source term in the
into the SO(8) irreducible representation85+28+1, equation for the warp factor.

which, underSQ(8)—Spin(7), further reduces t85+21+

7+1. However, given the representation content of the four- Generalization

form G, T, must contain only the irreducible representa-
tions 35+7+1. One therefore concludes that only tB&
component of the internal flux is allowed. A characterization
of this representation may also be given as follows:

As we have summarized, imposing that the internal spinor
be chiral leads to M2-brane-type solutions. However, there
clearly should be another way to obtain a supersymmetric
Minkowski; vacuum from M-theory: one may wrap space-
filling M5-branes over a supersymmetric three-cycle in a
GZ7mnpq:§GZ7rs[mn\llpq]rS- (2.17  special holonomy manifold. Such cycles are calibrated. In

particular, one may wrap the M5-branes over an associative
three-cycle in aG,-holonomy manifold(times a circle to
obtain anA/=1 vacuum, or a special Lagrangian cycle in a
Calabi-Yau threefoldtimes a two-torusto obtain anN=2
vacuum. When one includes the back reaction of the brane
o L 5 . on the initial geometry, one no longer has a manifold of
G=dx"Adx*A\dx*/Nd(H™ %)+ Gy special holonomy, but rather some more general geometry
(218 with flux. However, theG, or SU(3) structures still remain,
respectively. Such manifolds admit tw@our) invariant
Majorana-Weyl spinors, ongwo) of eachchirality. Thus to
describe more general supersymmetric solutions with fluxes
CIH + EGZ7/\G27= Xg (2.19  ©one has to generalize the form of the internal spinor. We will
2 also find that when one lifts the chirality assumption, one can
find supersymmetric AdSsolutions, and we will present a
where G,; is harmonic, and we have not included any eX-simple class of examples in this paper.
plicit space-filling M2-brane sources. Integrating E2.19 From a more mathematical viewpoint, there is no reason
over a compack gives to restrict the spinor to be chiral. The M-theory Killing
spinor equation is geometrically a parallel transport equation
1 Gy, Gor ) ~ x(X) for a supercovariant connection taking values in the Clifford
EJXE 27 EZJX Pi=4ps="5 (220 algebra CIiff"®{R>19)~ Mat (32R). Indeed, in the three/
eight split of the 11-dimensional spingy; the internal spinor

In general, the existence of a nowhere vanishing sectiod turns out to have 16 real components, i.e. it belongs to
of a vector bundle requires that the Euler class of that bundI&Pin(8). ®Spin(8)_. We are therefore led to consider an
is zero. Thus existence of a nowhere vanishing positiveinternal 16-dimensional spinor of indefinite chirafityvhich
negative chirality spinor requires tha{S.)=0, and it is in general can be written in the following form:
this condition which gives the relation between the topologi- _
cal invariants in the last equality in E¢R.20 (see, for ex- n=e Yo et ) (2.2
ample,[28]). One then has compact solutions with flux pro-
vided the flux is quantized appropriately.

Note that these solutions describe M2-branes where th
transverse space is 8pin(7) holonomy manifold. Non-
compact examples of such solutions may be found2i|
and[30]. Notice thatG,; decouples from the supersymmetry
conditions, but it does play a role in the equations of motion,
providing the “transgressive” termg29]. €+:i(§ +E) (2.22

The present analysis is readily extended to cases with J2 toes '
more supersymmetry. For example wh&is acomplexchi-

ral spinor[15] we have twoSpin(7) structures of the same 5.4 € =yqe" =(&,—£.)/\2. The advantage of working
chirality or, equivalently, arBU(4)-structure. Repeating the \ith ¢* as opposed tg. , is that the former will turn out to
same steps, one shows~that the general solution is now of thgyye constant norms, which, without loss of generality, we
form (2.18, (2.19 with g,,, having SU(4) holonomy. The take to be unity, whereas the chiral spinors do not have this
magnetic flux which drops out of the supersymmetry equacdesirable property.

tions is given byG, 5 (that is, the four-form has two holo-

morphic and two anti-holomorphic indices with respect to

the corresponding complex structurehere G, ,) is also %For a four-seven decomposition, it was noticed3a] and more
primitive, so that taking the wedge-product with thehe  recently also in32,33, that in order to have non-trivia® flux a
form gives zero. Again, these solutions are akin to M2-generic spinor ansatz must be allowed.

In conclusion, the general solution takes the form

dsi,;=H™ 2%y, dx*dx"+ H¥g, dx"dx"

with the warp factor satisfying the equation

where yqé. =+ &, are real chiral spinors in eight dimen-
ions andy is a Majorana spinor in three dimensions. The
actor € /2 has been inserted for later convenience. For cal-
culational convenience it is useful to introduce the non-chiral
16-dimensional spinors
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Since we wish to allow for Adgcompactifications in our K.=&T
. . ) . m= &1 Ymé-
analysis, we impose the following condition on the external
spinor: _
P ¢mnp: g-r%—'ymnp‘f—
V.+my,=0. (2.23 —, .

. q’mnprzgt')’mnpr*ft . (3.1

Writing the G flux as
In the calculations it is useful to re-express these in terms of
G=¢€>*(F +voly/\f) (2.24  the € spinors, and it is also useful to define the following

auxiliary bilinear:
with F andf parametrizing the magnetic and electric compo-

nents, respectively, the supersymmetry conditions may be Ymnpr= € Ymnpi€ - (3.2

written in terms ofe™ as follows: _ _ , ,
Notice that, for a generic Clifford connection, the corre-

L1 L1 N B sponding Killing spinors are not in general orthonormal, in
mefiﬂFmpqn’pqrf*— anynm6+im7m€+:0 contrast to the case of a connection on 8ywin(d) bundle
(2.25 [7]. In particular, we have that, using Eq(2.25,
V(e'Te')=V(e e )=0. Thus we can normalize the
1 1 - - spinors so as to obey
E&mA'ymetI—Fmpqr'ympqret—gfm'yme Fme =0.

288 1
(2.26 lerllP=[le =5 (&P +I[E-1H=1. (3.3

These equations are the starting point for our analysis. On the other handV(e*Te~)#0, and we parametrize this

non-trivial function, which takes values in the interval
IIl. SUPERSYMMETRY AND THE G, STRUCTURE [—-1,1], as

In [1] it has been recognized that the notionG@fstruc- 1
tures and their intrinsic torsion provides a powerful tech- e Te ==(||£L]|?—|&_]|?)= sin¢. (3.4
nique for studying Killing spinor equations in the presence of 2
fluxes. A rigorous account of the mathematics may be found
for example, in[27]. For our purposes, & structure ind
dimensions is a collection of locally defin&invariant ob-
jects, each in some irreducible representation of (gpEn
cover of the tangent space grouppin(d) D G. Notice that,

ft follows that the chiral spinors have norm.||?=1

* sin¢Z, and in the limit sik— =1 one of the two vanishes.
The stabilizer of each chiral spingr. is Spin(7).., and

their common subgroup i8,. In order to discuss the super-

a priori, our equations need only be defined in some Opeﬁymmetry cpnditions in terms of th@ struciure i.t IS conve-
set, which is why we use the terf@ structure in this local hient to_l_lntroduce rescialllgd forms, defm?d a
sense. When the objects in question extend globally over the ( €0S) "¢ andK =(cosf) K. These are canonically nor-
whole manifold one has & structure in the stricter math- Malized, namely [[K[|*=1,[|¢||*=7, and define a
ematical sense that the principal frame bundle admits a su32C SO(8) structure in eight dimensions. One can give an
bundle with fiberG. Of course, there may be topological explicit expression folY in terms of the other bilinears
obstructions, and indeed the structure may break down, for . .

example at horizons. Y=—ir ¢+ ¢/\Ksing, 39

The way that intrinsic torsion enters into the Killing \here here, and henceforthdenotes the Hodge dual on the

spinor equations is via the fluxes. Exploiting this, one canpternal eight manifold. The forms are also subject to the
study a supersymmetric geometry by extracting from the suzgnstraint

persymmetry conditions the differential constraints on a set
of forms that comprise the structure. These forms may be ikp=0. (3.6
constructed as spinorial bilinears. The intrinsic torsion is an
element ofA'®g" (see, for exampld,7] or [5] for a brief ~ Notice that¢ defines a unique seven-dimensional metric via
review), which may be decomposed into irreduciBenod-  the equations
ultes, denotedV, in this paper. The manifold will hav& 7 —1/9
holonomy only when all the components vanish. gjj = (detb)”"bjj,

In the following we apply these methods to the case at
hand, showing that one in general ha&astructure on the b = — ieml M7 b b (3.7)
internal eight manifold. It is also important to establish what U144 MMz TiMaMMy T MsMeMy7 '
other conditions must be imposed on the structure for it to 1234567 2 ]
correspond to a solution of the supergravity theory. We adWheree =1, and we therefore hawg;K'=0. The in-

dress this issue towards the end of the section. trinsic torsion of the structure lives in the spaté®g;
We can construct explicitly a one-form, a three-form, andwhereg,®g; =so(8). The Liealgebraso(8)= 28 decom-
two four-forms as bilinears in the spinors poses a®8 — 2(7)+14, so the orthogonal complement of
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the g, algebra is given byg, =7+7. The intrinsic torsion e 3Ad(e** sin{)=f—4mKcos{ (3.19

then decomposes into ten modules A BA .
e %2d(e®* ¢ cos?)=—*F+F sin{

+4m(ig* p— Pp/\K sin{).
(1+7)X(T+7)—2(1)+ 4(7)+2(14 +2(27). (3.9 (3.16

TeAlogi=0 W,

It turns out that the ten classes are determined by the exteridks we will discuss more extensively in Sec. IV, these equa-
derivatives of the forms. These have the following decompotions can be interpreted as generalized calibrations for mem-

sitions into irreducibleG, representations: branes or five-branes wrapped on supersymmetric cyales
least wherm=0). An important point to emphasize is that
dK—=7"+7"+14' the conditions derived are also sufficient to ensure solutions
to the Killing spinor equations. Notice that genericalyis
dp—1+ 1" +7+7" +27+27 (3.9  nota Killing vector. However, we see from E¢Q.11) that it
is in fact hypersurface orthogonal or, equivalently, defines an
d*¢p— 1" +7+7" +14+ 27, integrable almost product structufé] which allows us to

) write the metric in the canonical form
Note that some representations appear more than once, and

we have denoted different representations with different d%f :ezA(x,y)[d§+gz(x y)dxidxi]

numbers of primes. In particular, the representatibng+ ! S

14+27 are those relevant to;¢ and d+*;¢ discussed in 1

Appendix A. Using the identitie$A14)—(A16) one shows +mef4“x'y)dy2- (3.17

that dx ¢ and dy* ;¢ contain the same representations, de-
noted with1'+7'+27'. Finally, K= a/\K+ B, with the
one-formea corresponding t&” and the two-formg to 7"
+14'. Notice that we have an eight manifold &, ho-
lonomy if and only if K=d¢=d* ¢=0. Note also thaK is
Killing if and only if the representation’ + 7' + 27’ vanish.
This follows on noticing that the non-trivial components of

the Lie derivativeLyg can be computed fromiy¢=ixd¢ o aion Continuing, the rest of the equations may be used

using Eq.(3.7). . A .
We can proceed now to analyze the constraints imposeE? determineall the components of the intrinsic torsion. One

on he sinctire by the supersymmety condiions. Rahel® P05 COrSIeL 2 comecton Wit v orson
than presenting all the details of the calculations, we shal P 2 ' P P

instead present a simple illustrative computation. Conside wo spinors of opposite chiralijcy, correspondin_g to solutio_ns
' of the supersymmetry equations. For simplicity we will

for instance,V,Ky,. Using the definition of as a spinor  yresent some details of the calculation in the case of purely
bilinear, together with the Killing spinor equatiorig.25, magnetic solutions in Sec. V.

after some straightforward gamma algebra one calculates  The four-form flux is completely determined in terms of
1 1 the structure by Eq¥3.195 and(3.16. In fact it is easy to
=—Fe YK e —2msinig,m— = fldim. show that there are no components which automatically drop
m12t ik " meo2s out of the supersymmetry equatiof.25 and (2.26), in
(310  contrast to Sec. II. First let us decompose the four-form flux

Next, the first identity in Appendix Qwith the Clifford ele- into SO(7) irreducible representations:

The remaining conditions may be thought of as setting con-
straints on the seven-dimensional part of tBg structure.
Consider, for example, Eq3.12. From this we read off
immediately that thel4 representation is absent and thés
given by the Lee formW,=18 d,A. Likewise, Eq.(3.13
relatesaylog@7 to 9,A anddy,¢, hence fixing thel’ repre-

V,K

mentA=1y,,), can be used to compute the antisymmetric F=F,+Fa/\K. (3.18
part of Eq.(3.10, obtaining Eq(3.11) below. Similar calcu-
lations yield the following constraints on tt&, structure: We thus want to check if there af@, irreducible compo-

nents whose Clifford actiof " annihilates both the

3A —
d(e**K cos{) =0 (3.19 SPINOTS..., NaMelyF 4 mnpqy"P% - =F 3 mnp'}’t]pg.i =0. This
KA o )= 0 (3.12 would imply that the following tensors vanish:
1
e 2d(e'?vol, cos¢) = —8m vol,/\K sin¢ 513 ZF3mpq¢pqn: 0
— A% 1
dép/\ ¢ cos¢ = 24m vol,—4*d{+ 2 cos{* l‘(3 1 §|:4mpqr(*7¢)9qfn:0. (3.19

where vo}= 1 ¢/\ig* ¢. The electric and magnetic compo- As discussed in Appendix A these tensors contain all the
nents of the flux are then determined as follows: components ofF; and F,, which should therefore vanish
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identically. This situation is to be contrasted with the caseshese arguments typically neglect the corresponding terms in
where we have spin®) of a fixed chirality, as recalled in the Einstein equations. In our case, a non-2€5cseems to
Sec. II. Each spinor defines@pin(7) structure and th@7  allow for the possibility of compact solutiodsOne must
component of the flux, with respect to that structure, is unthen also satisfy

determined by the supersymmetry equations. The existence

of two spinors with opposite chirality means that the associ-

atedSpin(7) structures have opposite self-duality, and the f Ginternal’ \Ginterna= 0 (3.26
undetermined flux should therefore simultaneously be in the X

27, and27_, and hence is trivial.

All the non-zero components of the flux can be extractedvhich is implied by integrating Eq3.23. Here one uses the
from the conditiong3.11)—(3.16). As examples, and for later fact thatXg integrates to zero. This is so because the exis-
reference, let us give the expressions for trend7 compo-  tence of two linearly independent spinors of opposite chiral-
nents ofF; (cf. Appendix A ity implies that y(5..)=0. Equivalently, the vectoK con-

structed from the spinors is nowhere vanishing, which

2 implies that the Euler number of the eight-manifold is zero.

m1(Fa) =5 (dkd~ 2m) ¢ Comparing with the results reviewed in Sec. Il we see that
allowing the internal spinor to be non-chiral has led to a

1 substantially enlarged number of possible geometries and
m7(F3)=— §<573Ad7(e3A cos{) Jig* ¢ (320  fluxes. We emphasize the fact that AdSolutions are not
ruled out any more, and generically the internal manifold is
and of F, not conformal to &pin(7) [or SU(4)] holonomy manifold.

Note also that the function sifplays a role in our equations,
and setting it to zero, or constant, rules out many supersym-
metric geometries. In particular, from E@.15 it should be
clear that sir{ is related to M2-brane charges, as we will see
more explicitly in the next section.

2
m(Fg)= 7(4m sing—e 329, (e®* cos?))ig* ¢

1
777(F4):§¢/\d7§- (3.29

. . . . IV. GENERALIZED CALIBRATIONS
A solution will also have to obey the equations of motion AND DYONIC M-BRANES

and Bianchi identity. Using the above expressions for the
fluxes, it is straightforward to show that these reduce to the In this section we show how the supersymmetry con-
two equations straints on theG structure are related to a generalized cali-
bration condition for the M5-brane. For simplicity we will
d(e**F)=0 (3.22  restrict our analysis to Minkowksibackgounds, and hence
we setm=0 throughout this section. We argue that the su-
persymmetric geometries we have been describing so far
may be thought of as being generated by M5-branes wrapped
over an associative three-cycle inGg-holonomy manifold.
One can now show, using the resultd 6f, that the Einstein  An interesting twist to the story arises from the otherwise
equation is automatically implied as an integrability condi-mysterious function sig, introduced in the preceding sec-
tion for the supersymmetry conditions, once tfefield tion.
equation and Bianchi identity are imposed. It is useful to Recall that the M-theory five-brane has a self-dual three-
give explicitly the external part of the Einstein equation: ~ form field strengthH propagating on its world volume,
which induces an M2-brane charge on the M5-brane via a
Wess-Zumino coupling. The supergravity description of the
M5-brane should account for this feature. Thus we expect
“dyonic” backgrounds—that is, solutions with non-trivial
One may use this to prove that, whem=0, there are no electric and magnetic fluxes. Placing a dyonic M-brane
compact solutions with electric and/or magnetic flux. Explic-probe in its corresponding background should not then break
itly, one easily integrates E¢3.24 over the compact mani- any further supersymmetry, and in particular a generalized
fold X to get calibration condition for such a probe should exist. We will
find that all of the supersymmetry equatidiexcept for ong
N 2 9A 2 may be interpreted as generalized calibration conditions for a
Jx e?||F[[*+2 fxe 1f]1*=0 (329 probe M5-brane in our background. For example, BqL6
is the generalization of the associative calibratiah=D in
which required==0 andf=0. This is a rather general prop-
erty of supergravity theorig84]. The common lore to evade
such “no-go theorems” is to appeal to higher derivative SEquation (3.25 receives a correction proportional to
terms, such as th&g term mentioned in Sec. Il, although [y €® sin{X.

1
e *d(e* )+ SFAF=0. (3.23

3
e*%Dge%—§||F||2—3||f||2+72n2=0. (3.24
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G,-holonomy manifolds to dyonic M5-branes in warped
backgrounds with flux. SLpgvols= 2 j*u+j* x\/\H (4.9
. . . A=12

Supersymmetric probes should saturate a generalized cali-
bration bound which minimizes their energy. [IB5] a cali-
bration bound for the M5-brane was derived. Although som
comments were made about general backgrounds the com-
putation there was for a flat space background with Z&ro
flux. It is easy to extend their analysis to the case of hon-zero
G flux by taking into account the Wess-Zumino terms. In
Appendix B we use the Hamiltonian formalism [86] to
obtain an expression for the energy of a class of static M5-
branes with non-zero backgroum flux and world-volume
three-formH. This formula may then be used to show that 1 1
supersymmetric branes are calibrated and saturate a bound = — ﬁ—,ﬂlro un 7, XM A XN
on the energy. (1 7al[2+ 721 ]%) 2!

The very alert reader may notice an obstacle in carrying 4.9
out the above program. The calibration bound derive@§j
requires the existence of a time-like Killing vector which in and j* denotes a pull-back to the M5-brane world volume.
turn one uses to define the energy in a Hamiltonian formulsing Eq.(4.3) we obtain a bound on the energy density
lation. Moreover, such a vector should arise as a spinor bi=Evols:
linear. However, the supersymmetric geometries we are con-
sidering belong to the “null” class, namely the stabilizer of 1 . .
the spinory (for any choice ofy) is[Spin(7)X R®] xR and Wf;; )\:El 5 (*mt+i*x/\H)+Covols - (4.6
the vector one constructs from it is a null vecf{87,5]. As ° '
discussed if5], in this case the interpretation of the super- h
symmetry conditions as calibration conditions is less clearV"er®
However, by some sleight of hand, we may still use the static 1
formulatlon of the I\/_I5-brane_:. The key to this |s_S|mpIy that Covols=i,Cg— =i, C/\(C—2H) 4.7)
we in fact havetwo linearly independent null spinors, from 2
which we may construct a time-like Killing vector.

As discussed in Appendix B, an M5-brane probe will beand a pull-back is understood on the right-hand side of this
supersymmetric if, and only if, equation.

Given a static supersymmetric background, a pair
(25,H), with %5 a 5-cycle andH=h+j*C a three-form on
35 satisfying H=j* G, is said to becalibratedif the bound
(4.6) is saturated on all tangent planes H§. As we will
where P_ is a x-symmetry projector, andy is the 11-  show below, such a calibrated M5-brane world space then
dimensional supersymmetry parameter. We have two linearlygs minimal energy in its equivalence cl@é&s,H)]. Here,
independent null spinorsy, = V26 42y, @ e, where ¥, apair @4,H’) is in the same equivalence class &g (H) if
for A=1,2, are two linearly independent constant spinors ory . js homologous toS{ via a six-chainBg (that is, 9B

R12 With an appropriate choice af, , the vectors one con- —¥,—3 1) over whichH andH’ extend to the same three-
structs from these spinors a#éit + 9/ 9X,. Both vectors are form, H, satisfying ¢4 =j* G on Be. In fact, sinceC clearly

null, _but their sum 3=2a/&t is tlr"ne—_llke. Thus we are led to extends(it is defined over all of space-tinit is enough to
consider the following Bogomol'nyi-type bound: extendh overBg as a closed form. Now, by Poincadeality
on the M5-brane world volumeh defines a two-cycle
5 1. 3,C3s, where[2,] is isomorphic to[h] under Poincare
A:Elz |P- | |?= A:ZLZ >MP-m=0. (42 quality. h induces an M2-brane charge via the Wess-Zumino
coupling (B5), and thus®, may be thought of as the effec-

, ) , tive M2-brane world space, sitting inside the M5-brane.
One then rewrites this bound in terms of the energy. From T4 prove the calibration bound on the energy the forms

ewhere we have defined the space-time forms

1

U= T 5 . .
(7l +11 721 1)

1 ..
X1 o My .o AXMIA L AdXMS

P_n=0 4.1

Appendix B we have X», ¥\ must obey suitable differential conditions. As we
show below, these combine to give the general conditions on
E=Tu (Cot € Lpgi) (4.3  the forms defining th¢ Spin(7)x R¥]X R structures in 11

dimensiong5]. These reat

WhereTM5 is the M5-brane tensioif is the contribution of

a Wess-Zumino-like term to the energy, angl, is a Dirac- 40ur conventions differ from those §5]. To rectify this, one can
Born-Infeld action(cf. Appendix B. The bound may there- simply change the sign of the gamma matrice§5df This leads to
fore be written some extra minus signs when using their results.
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dX)\: i w)\G

dV)\: i w)\; G_X)\/\G

where in our case the one-forms

1

_ T M
= 7o M dX (4.9
(Ul mall2+ 7205

(N

(4.8 are both null. With our choice af, , we may take their sum

w1+ w,=—dte?®. The dual vector is then simply |
+ w,)*=algt=k. A calibrated pair £5,H) therefore obeys

. 1
E(25,H): J‘E )\le(v)\_l_X)\/\H)_}—IkCG_EIKC/\(C—ZH)
sA=1,

= > [dy,+d(x,/\H)]+d(i,Cq) — %d[ikC/\(C—ZH)]

Bg \=1,2

1
., 2 (n+x/AH)FiCe 51 CA(C—2H)

L
S5A=12

1
=0+ > (v xyAH) +i,Cs— =i, CA(C—2H")
SiN=12 2

<E(Zs,H') (4.10
|
for any (&£,H’) in the same equivalence class &;(H). d(vq+ v,) = —vol,/\d(e®* ¢ cos?) + dt/A\d(eP2Y)
Notice that we have used, for example, i )= R
—i(dCg)=—i(*G+1CAG), in order to show that the =i G—(x1+x2)/\G

integral overBg vanishes.

= —vol,/\(—e®** F + €52 sin{F)

Note also that this result holds for all cases where it is
possible to construct an appropriate time-like Killing vector —dt/\e® cos¢FAK. (4.19
from the Killing spinors(not necessarily as a bilinearand

thus it holds in particular for the entire “time-like”

[5].

class of This equation is clearly equivalent to the conditic®16

together with

It is now a simple matter to relate this to the supersym-
metry equations of the preceding section. Indeed, these are oA A
equivalent to(4.8) on rewriting them in terms of the quanti- e "2d(e’*Y)=—F/\Kcos{. (4.19
ties defined in the preceding section. In particular, we have

that
v1+ vp=—vol,/Ae®* ¢ cos; — dt/\eBrY

X1+ x2= *+vol,e** sin¢+dt/\e®*K cos¢

where vop=dX'/\dx? is the spatial two-volume. Thus we

have

d(x1+ x2) =Vvol,Ad(e® sing)—dt/\d(e**K cos{) =i, G

=vol,/\e®*

On expanding the various terms, this can be shown to be
equivalent to Egs(3.12), (3.13, and the contraction of Eq.
(3.14 with K. The relation(A17) is useful for establishing

(4.1 this result.

Interestingly, Eqs(3.15 and(3.11) may also be derived
from considerations of the M2-brane. In fd&], the first

(4.12 condition in Eq.(4.8) is a generalized calibration condition

for the M2-brane world-volume theory. The latter is more
straightforward than the Mb5-brane theory as there is no
form-field propagating on the M2-brane. Specifically, there is
a simple Nambu-Goto term plus the Wess-Zumino electric
coupling to theC field. In this case, the energy is essentially
just the action. Equatio(8.15) is then a calibration condition
for a space-filling M2-brane, whereas E§.11) is a calibra-

(4.13 tion condition for an M2-brane wrapped over thalirection.

Notice that the remaining component of E§.14) did not
enter the M5-brane calibration and in fact its 11 dimensional

which shows the equivalence of Ed8.11) and (3.15 with origin is in Eq.(2.18 of [5] for the Killing one-form d&. We

the first equation ir(4.8), and also

suspect that this should ultimately be related to a “calibra-
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tion” for momentum carrying branes, or waves. It would be one can easily recover the various constraints obtained using

interesting to understand this point further. the approach df21]. As a bonus we have in addition a physi-
cal interpretation of the constraints in terms of generalized

V. M5-BRANES WRAPPED ON ASSOCIATIVE calibrations and, thanks to the machinery of intrinsic tor-
AND SLAG THREE-CYCLES sion, we can apply the technique to more general cases

which do not admit complex geometries. The work[8f,

In this section we specialize our results to the case irUsing the G-structure approach, recovers thé=1 geom-
which the electric component of the flixs set to zero as etries of [44], corresponding to M5-branes wrapped on
well as the massn. This situation corresponds to purely kanler two-cycles in Calabi-Yau threefoldimes S, i.e.
magnetic M5-branes wrapping three-cycles inside the transseyen manifolds witfSU(3) structure, after including the
verse eight manifold, with vanishing world-volume three- fyx pack reaction. These in turn reduce in type I1A to the
form field H. The geometries we conS|d_er are then of thecomplex geometries first described[#5,46] in the context
form R*?x Mg, whereMg generically admits & structure  of Type I/Heterotic, as can easily be checked using the
corresponding tdv=1 in the external Minkowskispace, or  equivalent formulation given ifi7]. It is straightforward to
an SU(3) structure corresponding t/=2. We will also  see that a similar formulation exists for thé=2 geometry
briefly discuss how one can easily extend these results to ths [21] corresponding to M5-branes wrapped orhia two-

case of M5-branes wrapping various four-cycles. cycles in seven-manifolds witBU(2) structure. In this case
the supersymmetry conditions are exactly those discussed in
A. Associative calibration and N'=1 the type IIA limit in Sec. VI of[ 7], with the transverse space

2 replaced byR®. Clearly, all the geometries discussed in

Specializing the equations of Sec. Ill to the case at han : .
7] have a direct counterpart in M-theory as wrapped M5-

we get the following set of conditions on ti@&, structure:

branes.
d(e**K)=0 (5.1 Thus, imposing the Bianchi identity o8, we can write
down the associative analogue of the non-linear equations of
KAd(e%ic* ¢)=0 (5.2  [21], which reads
d(e'*vol,) =0 (5.3 drf e * dr (e )]+ 05(e™x74)=0  (5.7)
dp/\p=0 (5.4  where we have used the following expression for@ifeld:
e ®Ad(ef2 )= —*F. (5.5 G=0d,(%*7¢p) +& ®%x 70y (%4 ) /\dly. (5.8
The metric takes the following form: This is equivalent to the generalized calibration condition
R (5.5. Here we do not write down possible source terms.
ds?,=A[d(RY) + ds3]+ e *Ady?. (5.6)  Note that Eq(2.3) is automatically satisfied, wit/\G and

d * G being separately zefmusing Egs.(5.4), (5.5, respec-
Notice that Eq.(5.3) is equivalent to&ylogﬁz—lwyA. tively]. 9 sep Y zelusing Eqs(5.4). (3.9 P
Thus M5-branes wrapped on associative three-cycles give Next, as promised in Sec. Ill, we address more explicitly
rise to an almost product structure geometry on the transhe issue of sufficiency of the conditions we have derived.
verse eight manifold which, at any fixed valueyofadmits a  This is ensured by the careful counting of irreducible com-
G, structure of the typ@/V;®W,. Explicit solutions were  ponents of the intrinsic torsion, but it is perhaps instructive to
presented i38]. The close relation to the results[df] is of  |ook also at the Killing spinor equations directly. The strat-

course not accidental. Recall thatis generically not a Kill- - egy is essentially to substitute our conditions back into the
ing vector. However, when it is, one can Kaluza-Klein re-illing spinor equations and check that they indeed admit
duce along they direction (identifying the dilaton asb=  sojutions. Substituting the conditios.1)—(5.5) into the su-

—3A) to get solutions of the type IIA theory, which describe persymmetry equations, we find that the external (26
NS5-branes wrapped on associative three-cy¢ls Of  gives

course, if additional Killing vectors are present in specific

solutions one can also reduce along those directions to obtain _ 1 . 1 -~
type 1l backgrounds which may contain RR fluxes in addi- —3Y'9;Aé+ + 1_2|:3i]_m,m<51JFEEI:‘“J_M7,|Jk|§i
tion to the NS three-form.
Let us comment here on the relationship of our approach —3é5A&yA§i=0 (5.9

to the work initiated i 21] and expanded upon in a series of

papergsee[39] for a review. The strategy if21] is to write

down an appropriate ansatz for the solution and then substi-5the relation of the work of21] to generalized calibrations was
tute this into the supersymmetry equations. Eventually one igoticed in[40—43. These papers consider a class of geometries
left with a non-linear PDE for some metric functions which where the internal space is Hermitian. This is related to the fact that
parametrize the ansatafter imposing the Bianchi identity  these geometries describe M5- or M2-branes wrapped on holomor-
It should be clear that using the techniquesGétructures phic cycles.
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while the internal part2.25 gives ometry then belongs to both the “null” and “time-like”
classes of5], asSU(3) embeds intg Spin(7)X R8]X R as

) 1 " aa N well as intoSU(5).
ViTeet gFaijy 6t 7€70y(05) v &= In a real notation, we take our spinors to be
! i 7= 2o ({Pei®), a=12 (514
YR Yé-=0 (5.10

where each of the(® has two independent real components,

thus corresponding td&/=2 in three dimensions. To realize

(5.11) the SU(3) structure explicitly one can now construct addi-
tional bilinears. We refer to Appendix B ¢f] for details.
Notice that we have two vectors, which in a local frame are

where here the indices run from 1 to 7 aWfl) is the Levi-  given byK(M=ge” K(?)=¢® and a two-form given by

Civita connection constructed frogy, . Next, we can sim-

: ; : ! Jn= €13 Ymn€d: (5.15
plify these equations using the fact that mn= €(1) Ymn€(2)

1.
&yfi + Zel[a(?yeb]i yabgi =0

where, as befores(;y = (£ + ¢®)/42 and in a local frame

§F4ik|m(*7¢)k'mj= —e*ay(g/) (5.12  we havel=e'+e34e%. There are, of course, other bilin-
' ears that one can consider, but this is all we need. In fact, in

which can be computed from the expression for the ffu%) terms of the associative three-forms, we have

and the conditiong5.3), (5.4). Notice that, as discussed in @ =IANKD+1m O (5.16
Appendix A, this means that thérepresentation i, van-
ishes, as is implied by the second equation inBR1). One  with Q=(el+ie?)A(e3+iet)/\(e®+ie®). The SU(3)
can then show that Eq5.9) and(5.10 reduce, respectively, strycture is given byk®, J, Q with the last two defining
to the structure in its canonical dimension of six, aig)J
=ik@Q=0.

Using the Killing spinor equations, after some calcula-

) 1 .
i ZE, . Ake=
Ya® &t HFapye=0 tions one arrives at the following set of conditions:

1 d(e*K@)=0 (5.17
VD¢t —Faiy*é=0 (5.13
T gk d(e7)=0 (5.19
where¢ is the unique seven-dimensional spinor correspond- KOAK@Ad(E*Re Q)=0 (5.19
ing to £+ in eight dimensions, and we have intentionally
used the notatiod = — 3A to demonstrate that the resulting d(Im Q)A\Im Q=0 (5.20
equations are essentially the dilatino and gravitino equations
of type lIA. Thus, by the results ¢#7,48,1, we indeed have e 52d(e Im Q)= —*F. (5.21

a solution. Equatiori5.11) is solved by taking the spinor to
bey independent and the, ., component of the spin con- The two vectors give rise to an almost product metric struc-
nection to be in thd 4 of G,: this simply corresponds to the ture of the form
standard choice of a local frame whe¢g,. has constant
coefficients. ds?, = [dA(RY) +dsi]+e *A(dy?+dZ).
(5.22

As discussed if7] the six-dimensional slices at fixgdand

Following the same line of reasoning as above, the equaz have anSU(3) structure with intrinsic torsion lying in the
tions describing M5-branes wrapping SLAG three-cycles inclass W, W,®Ws with warp-factor 6¢gA=—W,=Ws
manifolds with anSU(3) structure may almost be extrapo- [see[49,7] for details about the intrinsic torsion &U(3)
lated from those pertaining to NS5-branes wrapping thestructures Notice that these geometries aret Hermitian,
same cycles obtained iri]. By repeating the arguments of which mirrors the fact that the M5-branes wrap SLAG three-
[1,7] we have that doubling the amount of supersymmetrycyles: Eq.(5.21) is the corresponding generalized calibration
yields the presence of tw&, structures, whose maximal condition. Explicit solutions of this type were presented in
common subgroup gives us &@WU(3) structure. One may [50]. The proof that the above equations are also sufficient to
then carry over the previous analysis by considering a Kill-ensure the existence of four solutions to the Killing spinor
ing spinor of the type/® (£, © ¢_) wherey andé. are now  equations amounts to the observation that with these one can
complexspinors. Thus one can also think 81J(3) as aris-  construct twoG, structures, as in the preceding subsection,
ing from two SU(4) structures having opposite chiralities, each of which corresponds to two Killing spinors with oppo-
each defined by a complex Weyl spinor. Notice that this gesite chiralities.

B. SLAG calibration and N'=2
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As in the previous case, let us write down the equation 1
implied by the Bianchi identity @=0. This is the SLAG-3 K= ﬁdé“
analogue of the equations 1] and reads
f=3sec/d?
dg[ € 92* 6ds(€°4Im Q)]+ A (**Re Q) =0,
(5.23 e 4= cos!. (6.1

Using these, one finds that the supersymmetry conditions

here A, = d2+ 92 is the flat Laplacian in th ; .
whnhere yz é’y (?Z I1s the flat aplacian In the transverse 83-11)_(3-1@ reduce to the smgle equatlon

directions. To derive this equation we have made use of th
conditions above to rewrite the flux in the following form: d(€32 b) = 4me™i  * . 6.2

G=—e %% ds(e®* Im Q) A\dy/\dz+ d,(e’*Re Q)/\dy We can now define a conformally rescaled three-fogm

—o(2Re 0)Adz (5.24 =e 3¢, and the corresponding four-form and metrigh
Y =e *+,¢ andg,,=e ?*gmnn, in terms of which Eq(6.2)
The G equation of motion(2.3) is again automatically becomes
satisfied. db=4m %,3. 6.3
C. More wrapped M5-branes The genereral solution is therefore given by

We have presented the general conditions on the geometry 1
of M5-branes wrapped on associative and SLAG three- d§211: seé{ d%(AdSs,H—Zdé’z +d§§
cycles, giving explicitly the non-linear PDE which results 4m
from imposing the Bianchi identity. M5-branes wrapped on
Kahler two-cycles in Calabi-Yau twofolds and threefolds G=3voly/\ se¢ {d{ (6.4
were described ifi21,44], and in[8] from the point of view _ _ ]
of G structures. Consulting the tables[ifi one realizes that Where the seven-dimensional metric has w&akholonomy,
to complete the analysis of wrapped M5-branes one needs & dictated by Eq6.3). Notice that the5 equation of motion
consider four-cycles, yielding geometries of the type!  (3.23 is automatically satisfied sincé f=6m vol,.
X Mg. Clearly, it is straightforward to extend our analysis to ~Compactifications of M-theory on weat, manifolds
cover all the remaining cases of M5-brane configurationgvere studied extensively in the 1980see, for example,
wrapping supersymmetric cycles. These will essentially bé51]). The simplest example is the well-known AgSS’
the M-theory lifts of the conditions derived if¥] for all ~ compactification, which is in fact maximally supersymmet-
possible wrapped NS5-branes in the type lIA theory. Forric. Indeed, by a suitable change of coordinates, one can
instance, we anticipate that, for static purely magnetic M5<heck that the solutio(6.4) is of the form AdgX M, where
branes, the flux is given by the generalized calibration conM; has weakG, holonomy. Setting se¢= cosh (2nr), the
dition 11-dimensional metric becomes

*gF=e *4d(eE) (5.29 d22,= cosR(2mn)dsX(AdSy) +dr2+d&. (6.5

where = is the relevant calibrating form. Thus when five- The four-dimensional piece is the metric on Ad8ith ra-
branes wrap coassociative four-cycles @, manifolds ~dius | =1/2m, foliated with copies of Ad& The seven-
(times T2) we have E=x,¢; for Kahler four-cycles= metric ds? is a weakG, manifold, with the metric normal-

=3J/\J, and so on. Imposing the Bianchi identity gives thejzed such that the Ricci tensor satisifies RBM?g.

corresponding non-linear PDE. Notice that the “time-like” | et us consider briefly the case when=0, so that the
case in[5] covers the case of M5-branes wrapped on SLAGthree-dimensional external space is flét2 In this case,
five-cycles in Calabi-Yau fivefolds, and the resulti®(5)  setting to zero the components of the internal 820 and

structure is described there in detail. (3.21) implies that si’=+1. This is the limit in which one
of the chiral spinors vanishes, leaving only the spinor of
VI. ALL PURELY ELECTRIC SOLUTIONS opposite chirality. The one-forid and the three-forng are

then identically zero, while there is only one independent
In this section we discuss supersymmetric solutions wittfour-form, ¥ or ¥ ~. This defines é&Spin(7)-structure in

no internal components of the flux; namely, we BetO. the usual way.
Suppose first thamn#0. In this case, setting to zero tHe Although this case has been reviewed already in Sec. Il
and 7 components of the flux in Eq$3.20 and(3.21) one let us check that one correctly recovers it from our equations.
can solve forK, f andA in terms of the functior?, which  In taking the limit one needs to be careful and consider only
one may take as a coordinate on the internal space, thubose equations obtained from spinor bilinears with four
obtaining gamma matrices as these are the only equations which are
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non-trivial. In fact, as written, the conditions on t8g struc-  three-cycle in aG, manifold. Presently we shall regafif
ture in Sec. Ill are, naively, all trivial in the limit sifi— @®R* as aG, holonomy spackin which M5-branes wrap the
+1. This is just because they are written Gyp-invariant  three-torus 3. The remaining three unwrapped world-
form, whereas in this limit there is n@, structure at all. An  volume directions span B'? Minkowski space, and we ac-
appropriate combination to consider is in fact E4.15  cordingly setm=0. Thus, it is natural to write down the
which we encountered in Sec. IV. This reduces to the condifollowing simple metric ansatz describing such a wrapped
tion d(*¥*)=0 when si—+1, and determines the in- brane:

ternal space to be conformal toSpin(7) manifold, as in R

Sec. Il. The electric flux reduces accordingly to dst,=e*[ds?(RY) +Adu-du+Hdx-dx]. (7.1

Hereu=(u,,u,,u3) are coordinates on the three-torus and
Geectric= * Volg/Ad(e34). (6.6) X=(Xg,...Xs) are coordinates on the Euclidean five-space
transverse to the M5-brane. At this poiat A andH are
arbitrary functions on the internal eight manifold. It is con-
Notice that in fact we have set to zero only the irreduciblevenient to choose the following orthonormal frame for the
G, componentd and7 of the magnetic flux, and in principle latter:
some components are still allowed. Indeed, we recover the

constraint on the magnetic flux from E.10 which re- e’ =AYy,

duces to Eq(2.16), requiring the flux to be in th@7, or sia Ly

27_ of Spin(7).., respectively. e a=Hx; (7.2
Note that taking th&Spin(7) manifold to be a cone over _

a weak G, manifold and choosing the harmonic function Wherei=1,2,3 anda=1, ...,5. Wethen take the following

e 3*=1/(mr)® one again obtains AldéS<M7 solutions, al- G2 structure on this eight manifold

tmhg'tjrigch now Adg is foliated by R~“ horospheres, with b= — e35_ g3\ (57— &89 _ g\ (584 6T9)

_ 85/\(669— 678)
dsf,=e ¥Mds?(RY?) +dy?+ds3. (6.7) K=ell (7.3

Thus we have writteik®=ImHe He R, where Intle H de-

To Summarize, we have shown that Warped Supersymmeﬂotes ther structure in its canonical dimension of seven,
ric solutions with purely electric flux are of only two types: andR is theK direction. This appears to break the invariance
the AdS, compactifications are in fact more naturally written Of the space transverse to the five-brane under the five-
as AdS compactifications, foliated by copies of AgSnith ~ dimensional Euclidean group, but in fact the solution we
the transverse space being weak holonomy. On the other Shall obtain respects this invariance—it is simply not mani-
hand, in Minkowskj compactifications the internal manifold fest in the above notation.

must be conformal to 8 pin(7)-holonomy manifold, as dis- We now solve the e_quations of Se(_:. IIl. Let us start with
cussed in18], with a single chiral spinor. Note that in the EQ.(3.11) for K which is solved by taking
A.dS3 shcmg case, the internal mamfoIqVIB F{[OVIdeS a ) M HY2c0s¢=c, (7.4
simple realization of a space whose spinor “interpolates
between two spinors of opposite chirality. wherec; is a constant. Equatiof8.12 gives the conditions
2 AH=c3 (7.5
VII. EXAMPLES

6A 142 —
In this section we demonstrate that the formalism we have d(€°"H?)/\dx12345=0. (7.6
developed may be useful for finding supersymmetric solupe may solve the latter by taking=H(x), A=A(x)

tions. In particular, we easily recover the dyonic M-brane,hich is natural as the solution should depend only on the

solution of [22]. This describes a 1/2-BPS M5/M2 bound ¢,qrdinates transverse to the brane. Using these relations one
state. We also argue that the recently discovered dyonic SQomputes

lutions of[24,25 lie within this class, although we will not

attempt to rederive these solutions here. Indeed, all of these C,

solutions involve M5-branes with an M2-brane sitting inside. A:(

Finally, we present some simple solutions to the equations of

Sec. V. Equation (3.13 is now automatically satisfied. One also
computes

2

cos ¢. (7.7

1

A. The dyonic M-brane

As explained in Sec. IV, Eq:3.16 is a generalized cali-  ®0One may also consider the universal covering spiée and
bration condition for an M5-brane wrapping an associativewrap the brane oveR®.
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cg we have been discussing is enough information to derive the
d(e®* ¢ cost) = C—ldulza/\d(H “1cog () (7.8)  full solution straightforwardly.

which implies that &/\¢$=0. Thus Eq.3.14) gives B. “Dielectric flow” solutions

The solutions recently constructed [i23—25 fall in our
general class of “dyonic” solutions. Indeed they have a
warped Minkowslkd factor times an internal eight manifold,
and most importantly they have non-trivial electric and mag-
netic fluxes turned on. Thus they may be thought of as some
HY2tan¢=c,. (7.10 M5-brane distributior_l with inducgd spa(_:e-filling M2_—branes.

Note that the solution of24], in particular, admits 16

We now setc,=1 without loss of generalityby rescaling SUPersymmetries—as many as the dyonic M-brang2af.

the coordinates;). The magnetic flux is obtained from Eq. In principle one should be able to recover these solutions in
(3.16 and readsl much the same way as we did for the standard dyonic

M-brane solution above. All one has to do is to provide an
SAE= —cudu d(AH- 1)+ % odH 71 ansatz for the three—fomﬁ, or equivalently for thPT metric.
40123/ \d( J+e*s (71D Tps as shown in Sec. IIl the fluxes are determined by the
~ . . supersymmetry constraints, and one is left finally with a non-
wherex 5 denotes t_he Hc_)c_jge d_ual W'th. respect to the mem(iingar gDE to ge solved. Indeed, we have turneéi/ the problem
dx-dx. Thus the Bianchi identity3.22 imposes into “algebraic’ equations for the fluxes. While the solu-
~ tions of [22,24] preseve 16 supercharges, and tha{2H]
LH=0. (7.12  eight, our equations describe the most general dyonic solu-
tion, which admits at least two Killing spinors with opposite

That is,H is an harmonic function on the five flat transverse chjralities. Thus these might be used to look for more general
directions. One may easily check that the equation of motioRyamples.

(3.23 is identically satisfied. It appears that we now have a
solution with two free parameters, but this is not so: one can
remove c,; by rescaling the coordinates,. However, to

f=2 seczdl (7.9

and inserting this into the definition df (3.15 yields the
following relation:

C. Smeared solutions

recovef the solution of[22] we in fact need to set Here we show that one may derive a simp'le class of so-
lutions to the equations of Sec. V. One can think of these as
c,=—tané, c;= cosé. (7.13 describing M5-branes wrapped on an associative three-cycle

and completely smeared oveiGy manifold. Unfortunately,
We can choose,= — tan¢ for some angle without loss of  these solutions are singular. Of course, many of the singu-
generality, and then settingy = cosé corresponds to a spe- larities of supergravity solutions are “resolved” in M-theory.
cific choice of normalization for the harmonic function. In It would be interesting to know if this were the case here.
conclusion, the metric takes the following fof®2]: One makes the ansatz

p=e"3AWg, (7.16

ds?,=H~23(sir? ¢+H cod £)Y3 ds?(R1)

where ¢ is the associative three-form for @,-holonomy
manifold, and we assume in additidn=A(y). Thus, geo-

+ du.du+Hdx.dx|. (7.1 metrically, we have a family o6,-holonomy manifolds fi-
si? é+H cos ¢ Had xdx|. (714 bered over thg direction. One finds that all of the differen-
tial equations for the structure are satisfied automatically,
Notice that the functiorf is given by apart from one, which imposes
1 d(e'*vol;)=0<12A(y) = 7A(y) +C. 7.1
tar? 7= ﬁtanzg (7.15 ( 7) (y) (y) (7.17)

Notice that one may set=0 by redefiningsy. Thus it re-
and that the M2-brane and M5-brane are recovered in thgains to satisfy the Bianchi identit.7). This imposes
limits é&— 7/2 andé—0, respectively.

Note that the solution actually preserves 16 Killing e ’=a+by (7.18
spinors[22], as for the ordinary flat M5 brane. However, we
have shown that the existence ofzg structure of the type wherea andb are constants. Thus the solution is

"We disagree by factor of 6 with their expression for the flux. ®By a circle reduction to type IIA, followed by T-duality, one
However, this appears to be a simple typographical error in takingbtains D-brane bound states in type IIB. The supersymmetry of the
the M-theory lift. D5/D3 bound stat¢52] is discussed in53].
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d‘silz (a+by) Rd2(RY?) + (a+ by)*dy? thesg, asin all other cases, the supersymmetry constrgints are
relatively easy to implement, while ensuring that the Bianchi
+(a+by)**ds’(G,) (7.19 identity is satisfied is often a challenging task. One generi-

cally obtains non-linear PDEs whose explicit solutions are
whereds*(G,) is anyG,-holonomy metric, and th& flux is  typically beyond reach. In any case, as illustrated in Sec. V, it
given by should be clear that our approach is suitable for generalizing
the work of[21]. In particular, we have given the conditions
G=Db(*7¢)o (7.20 and PDEs describing M5-branes wrapped on associative and
. i . SLAG three-cycles. In the last case one can show that the
where {7¢)o is the coassociative four-form on ti# mani- Calabi-Yau threefold becomes a non-Hermitian manifold af-
fold. Settingb=0 gives k'3 times aG, manifold. Forb aa” ing for the back ion. This i b q
#0 one may make a change of variables to write the metri%;.r allowing for the back reaction. ThIS IS to be contraste
as ith the case where M5-brandéer NS5-branes in type )i
wrap holomorphic cycles. Here the holomorphic structure of
the manifold is preservefd5,46,21,44,7 B
Rewriting the Killing spinor equations in terms of the
underlying G structure provides an elegant organizational
principle, and sheds light on the geometry of supersymmetric
solutions. Namely, it turns out that the geometrical interpre-
tation of the fluxes is given by the intrinsic torsion. Much
physical insight comes from the interpretation of these in
In this paper we have studied the most genera| Warpe&.rms- of branes .and Calibratior!s. On the Other harjd, the com-
supersymmetric M-theory geometry of the typsX Mg, plication that arises from solving the equations implied by
with the external spacél, being either Minkowskj or  the Bianchi identitity seems to be a limitation on the method
AdS,. The key ingredient which allowed us to extend thefor finding new solutions. It is conceivable that using the
analysis of[15,18,20 was to allow for an internal Killing ~9€ometrical and physical insights of our approach in combi-
spinor of indefinite chirality. This is in fact the most general nation with other techniques, such as those related to gauged
form compatible with the three-eight decomposition and theSUpergravities, will improve the situation. Some ideas in this
Majorana condition in 11 dimensions. The geometries werdlirection have already appeareste, e.g}25]) and it would
shown to admit a particula®, structure. This is a special De interesting to elaborate on them further.
case of the most general 11-dimensional geometry of the
“‘null” type, 8for which the corresponding structure is ACKNOWLEDGMENTS
[Spin(7)X R°TXR [37,5]. .
One of our motivations was to extend the analysis of Ve would like to thank Jerome Gauntlett and Dan

[15,18 to more general supersymmetric geometries. HOW_Waldram for very useful discussions. D.M. is supported by

ever, it is a rather general result that, in the case ofhe EC Marie Cur[e fund under contract number HPMF-CT-
Minkowskis vacua, ignoring higher order corrections or sin- 2002-01539. J.S. is supported by the EPSRC.

gularities rules out compact solutions. We have noticed that

such corrections allow, in principle, compact geometries. It APPENDIX A: G, STRUCTURES

would be interesting to see if compact examples can be con- . . . . .
structed. A G, structure on a seven-dimensional manifold is speci-

We have found that the supersymmetry constraints alsged by an _assomatlve three-forgh, which in a local frame
have a physical interpretation in terms of generalized calibra™@ be written
tions[11,5,7. In particular, we have shown most of the con-
ditions arise as generalized calibrations for dyonic M5-
branes, namely M5-branes with M2-brane charge induced on, . , . 2 72
the world volume by the three-form. We have shown that! IS defines unlquel¥ a metrlg;—(e )+ ... +(e)” and
when there is a suitable time-like Killing vector, one can@n orientation vgi=e*/A ... /\e’. We then have
construct a Bogomol'nyi bound in the presence of back-
groundG flux. This applies for the entire class of geometries
considered here, and also to the “time-like” class[6f. It
would be interesting to understand more precisely the rela1-_

tion of generalized calibrations to the supersymmetry condi- he adjoint re.presenta.tu')n §A7) decpmposes aal=7
tions in the general case of[&pin(7)x RE]x R structure + 14 wherel4is the adjoint representation &f,. We there-
when the Killing vector is null ' fore haveg; = 7. The intrinsic torsion then decomposes into

The generality of our method implies that the conditionsfoUr modules/S4]:
we have derived apply to a variety of situations. Thus, apart

ds2,=dr2+rVds(G,) +r~ MMX(RY?).  (7.21)

Clearly this is singular at =0, although it is a perfectly
regular supersymmetric solution everywhere else.

VIIl. OUTLOOK

¢ — e246_ e235_ e145_ e136+ e127+ 6347+ 9567. (Al)

* gh= 1234 1256, 03456, o1357_ 01467 2367 _ 02457
(A2)

from “compactifcations,” one can use the same results to TeA'®g; =Wie W0 W38 W,
describe non-compact geometries of physical interest. Typi-
cal examples are wrapped branes or intersecting branes. In TXT—1+14+27+7. (A3)
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The components of in each module)V, are encoded in 3 1 i} .
terms of dp and d*¢ which decompose as Qij==(QJd)gij— 5 ¢ (L I* )+ Qi (AL0)

4
A < A =WOWsD W, Similarly, a four-form= € A* decomposes int, irreduc-
ol .
35,1427+ 7 (Ad) ible represenations as

E=m(E)+m/(E)+ 7oA E All
d*¢eASEW2@W4 m(B)+ 7o)+ 7o 2) ( )

where the preojections are given by
21-14+7.

Note that thew, component in th& representation appears m(E)= E(EJ* D)k P
in both dp and d*¢. It is the Lee form, given by 7

W=l dop=—* ¢ d* ¢b. A5 1
ol de - m(2)= =7 (BIE)N
TheW; component in the singlet representation can be writ-
ten as -
oA E)ijkm= — 2Ui* &' jkm (A12)
W=+ (p/\deb). (AB) )

and Uj; is the traceless symmetric part of the ten&hy
The remaining components ofpdand d*¢ encodeW; and = (1/31) 5, ,m* ¢=<fm, namely,
W,, respectively. Th&, manifold hasG, holonomy if and
only if the intrinsic torsion vanishes, which is equivalent to 4 1 R
dp=d* $=0. Note thatG, structures of the typa); & W Uij=—=(Elx¢)g;j— §¢ijk(¢JE)k+ Ujj. (A13)
®W, are called integrable as one can introduc&aDol-

beault conomology55]. . e . .
9y55] Consider an infinitesimal variation of the associative

On a manifold with &G, structure forms decompose into three-forms d the induced variat f1h i
irreducibleG, represenations. In particular, we have the fol- ree-form ‘75 and the induced variations of the metug;; ,
and coassociative four-formi* ¢. Using the various identi-

lowing decompositions of the spaces of two-forms and threef : -
formsg P P ties obeyed by th&, structure, we obtain an explicit decom-

position of 5¢, namely,
A?2=A2@ A%,

3
m1(8p)==4blo
A3:A§@A§@A%7. (A7) l( ¢) 7 g \/§¢

The Hodge dual spaces® and A* decompose accordingly. 1

For applications in the main part of the paper, it is useful to m(6¢)=— (8¢ d) *x
write down explicitly the decompositions of the three-forms

and four-forms. A three-forn) e A® is decomposed intG,

. ; . 3 3
irreducible representations as T2 8)ij= §5gr[i¢rjk]— 75Iog\/§ ik -
Q=m(Q)+77(Q)+ 7,AQ) (A8) (A14)
where the projections are given by The irreducible components @ ¢ are similarly given by
1 4
m(Q)=Z(Q1¢)¢ (8% )= 5logyg+ ¢
1 1
T (Q) == 7 (Q1x ) 1x ¢ w55 §) == Z(dI* )\
3. 4
7727(9)ijk:EQf[idﬁk] (A9) oA 0% ¢)ijkm=25gr[i*¢rjkm]_75|09\/§*¢ijkm-

R (A15)
and Q;; is the traceless symmetric part of the ten€yy
=1/2! Qikr¢}", namely, The following relations also hold:
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1 K and the termCy, is a contribution from the Wess-Zumino
219Gk d™ )= 89ij+gij 51ogVg couplings of the M5-brane, namely,
1
1 =% i Crae i -
aﬁ* d’(i\krm* ¢krmj): _59” _29” 6'09\/5 CM *5 IMCG 2|MC/\(C ZH) (B4)

whereiy, denotes interior contraction with the vector field

¢Ioc$=—0¢1* ¢ aloxM. Recall that the Wess-Zumino coupling of the M5-

T 5% )= —% o 5b). (A16) brane is given by
Using these expressions one can derive the following useful lwz= f Ce+ EC/\H (B5)
equation: w 2
1 whereH is the three-form field strength on the five-brane,
&% p=—* Sp+ Slog\g* p+ 5 (801 P)\ . coupled to the backgroun@-field

(A17) .
H=h+j*C. (B6)

APPENDIX B: THE M5-BRANE HAMILTONIAN Here h is closed, and locally of the forrh=d b for some

In this appendix we present a brief discussion of thetWo-form potentialb. Notice that ¢i=j*G, wherej is the
Hamiltonian formulation of the M5-brane world volume MS-brane embedding map.
theory[36]. We use this to obtain an expression for the en- We may now use the Hamiltonian and momentum con-
ergy of a class of static M5-branes, which, in the main text,stralnts(Bl) to obtain an expressmnjor the energy density.
is shown to satisfy a Bogomol'nyi-type inequality. We also We consider static configurations witfl =0. This is suffi-
recall some details of the M5-branesymmetry. cient to satisfy the momentum constraint, but not in general
The action of the M5-brane is complicated by the pres-necessary. One could extend our analysis to the general case
ence of a self-dual three-forrd which propagates on the (with more effor}, but we will not do this here — the class
world-volume. This requires one to introduce an auxilliary of static configurations we consider will be general enough
scalar fielda (see[56] for a review, with a normalized for our purposes. One defines the energy in the usual way
“field strength” v;=d;a/\/—(da)?. One then has an addi- R
tional gauge invariance that one may use to gauge,fiat E=—PMkNgyn=—Po=¢€**P° (B7)
the expense of losing manifest space-time covariance. How-
ever, the Hamiltonian treatment requires one to make avherek is the time-like Killing vector fields/ dt. The Hamil-
choice of time coordinate. Using the symmetries of the M5-tonian constraint now allows one to solve for the energy
brane action, one may then choose the “temporal gawge”

=o%=t, whereo'=(0°,0?) are world-volume coordinates E=Ty,(Cot € Log)).- (B8)
(a=1,...,5), and thebackground spacetime is assumed to
take the static formjAsflz _eZAdt2+dSio. One then pro- In addition to the energy, the other ingredient we use in

the main text is thec-symmetry and supersymmetry trans-

ds with the Hamiltoni , which yields th ) : ) .
ceeds wi e Hamiltonian approafB6], which yields the formations of the fermions. These combine to give

constraints

ﬁ2+TfA5L%BI:O 00=P,k+n (B9)
whereP. = %(1if) are projector operators; is the back-
ground supersymmetrgpin(1,10) spinor, and is a trace-
HereXM=(t,X') are the embedding coordinatél’&‘M5 is the  less Hermitian product structure, that isf’nt 0, fzzl, Tt

M5-brane tension.,.pg,= +/ det (5a5+ Hgﬁ) is a Born-Infeld-  =T. Explicitly, we have
like term, and

9 XMPy,=0. (B1)

T_ . —AT -~ l~ab * 1~ aj...a

'f)M:PM+TM5(Va&axM_CM). (Bz) I‘_Ee l—10 V7+ E‘y Hab+ ayal"'ase 1 5

(B10)
We have that _
where y? are the pull-backs of the 11-dimensional Clifford
matrices to the M5-brane world space. If we consider static
configurations with a rest frame that has zero momentum,
thenV,=0. This is the form of the projector used in the
where the two-fornrH* =+*:;H is theworld-spacedual ofH main text. One can shoyb7] that the variation(B9) van-
(theHy,, components oH will not contribute to the energy ishes if, and only fif,

Vo= H*aH (B3)
¢4 abc
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P_n=0 (B11) 1 . L1 . .
2_88qursf_T['ypqrst]+€_+§’9mA€_T[7m-A]+€_
which therefore characterizes bosonic supersymmetric con-
figurations. _ _ 1 _
+m(e“’TAei+Ei-rAe“’)igfmeiTAyme+

APPENDIX C: USEFUL RELATIONS

1 _
Given the supersymmetry equatiof@26), and using the igfme“'T'ymAet:O (C2
symmetry properties of the gamma matrices, one can derive
some useful identities which we have used extensively in 1
deriving our results. For the reader’s convenience we list - -
them hgere 2_88qurS€+T[ypqrsiA]i6 - E&mAE+T[ ymlA]Ie
+T + 1 +T, + -Ta — +TpA + —1 +T m_+
ﬁppqrsef [—ypqu'A]_efizﬁmAE* [y™A]_e* +m(e 'Ae e 'Ae )+§fme AyTe
x + + ¥ 1 + x 1 -T.m -
+m(e+TA6*—E*TA6+)IEfme*TAyme+ +€fme Y "Ae =0 (C3)
+1f FT MAEE — (C1) where[ -,-]. refers to an anticommutator or commutator,
—p me Y e andA is a general Clifford matrix.
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