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Zero mode in the time-dependent symmetry breaking oflf4 theory

Hyeong-Chan Kim* and Jae Hyung Yee†

Department of Physics, Yonsei University, Seoul, Republic of Korea
~Received 16 June 2003; published 24 October 2003!

We apply the quartic exponential variational approximation to the symmetry breaking phenomena of a scalar
field in three and four dimensions. We calculate the effective potential and effective action for the time-
dependent system by separating the zero mode from other nonzero modes of the scalar field and treating the
zero mode quantum mechanically. It is shown that the quantum mechanical properties of the zero mode play a
nontrivial role in the symmetry breaking of the scalarlf4 theory.
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I. INTRODUCTION

The variational approach for scalar field theory using
Gaussian effective potential was well studied in Refs.@1,2#,
and references therein. The renormalizability and ini
value problems for the Gaussian approximation are chec
in @3,4#. Many authors have studied the symmetry break
phase structures in the largeN approximation@5#. The non-
equilibrium dynamics of symmetry breaking@6# and the sec-
ond order phase transition@7# have also been studied in th
Gaussian framework.

On the other hand, it is known that the Gaussian appro
is inappropriate to treat the time-dependent symmetry bre
ing of initially symmetric states because of their own lim
@8# that they cannot be applied to a double well type poten
for large dispersions. To overcome this difficulty, many a
proaches have attempted to go beyond Gaussian method
using a quartic exponential ansatz@9#, perturbative expan-
sion around the Gaussian approximation@10#, and variation
including higher excited states of the Gaussian approxi
tion @11#.

It is therefore important to understand the limit of th
approaches based on the Gaussian wave functional an
develop a consistent method going beyond the Gaussian
proximation. Recently, the present authors have develop
new quartic exponential type variational approximation@12#
which is suitable for systems with double well type pote
tials in the quantum mechanical context. In this paper,
applying the approximation to the zero mode of the sca
field, we found the renormalized equations of motion wh
can describe the symmetry breaking phenomena sta
from the symmetric states of the scalarf4 theory in three
and four dimensions. This kind of zero mode separation w
considered in the previous papers@13# using the autonomou
renormalization off4 or speculating on thep→0 limit of
spontaneous symmetry breaking.

The paper is organized as follows. First we separate
zero mode of the scalar field from other modes in Sec. II a
then calculate the formal expression for the effective acti
We then calculate the renormalized effective potentials
actions for the~211!-dimensional case in Sec. III, and th

*Electronic address: hckim@phya.yonsei.ac.kr
†Electronic address: jhyee@phya.yonsei.ac.kr
0556-2821/2003/68~8!/085011~8!/$20.00 68 0850
e

l
ed
g

ch
k-

l
-
by

a-

to
p-
a

-
y
r

ng

s

e
d
.
d

~311!-dimensional case in Sec. IV. Finally, we summari
our results and present some discussions in Sec. V.

II. MODE SEPARATION OF THE SELF-INTERACTING
SCALAR FIELD

We first separate the zero-mode from other non-zero
citations and present the concept of effective action adap
in the present paper. The Lagrangian of the scalarf4 theory
in n11 dimensions is

L5 E dnxF1

2
]mf~xn!]mf~xn!

2
1

2
m2~ t !f2~xn!2

l

4!
f4~xn!G , ~1!

where we explicitly included the volume integral so that w
can write the volume factor in the zero mode part of t
Lagrangian andm2(t) asymptotically approaches to a neg
tive value m2,0 so that the system undergoes symme
breaking. Let the theory be defined in a box of volumeV.
Then, its zero mode can be extracted by the following d
nitions:

f~ t !5
1

V E dnxf~x,t !, c~x,t !5f~x,t !2f~ t !. ~2!

The new field,c, satisfies* dnxc(x,t)50. The Lagrangian
~1!,

L5VF1

2
ḟ2~ t !2

m2~ t !

2
f2~ t !2

l

4!
f4~ t !G

1 E dnxH 1

2
]mc~xn!]mc~xn!

2
1

2 Fm2~ t !1
l

2
f2~ t !Gc2~xn!2

l

4!
c4~xn!

2
l

6
f~ t !c3~xn!J , ~3!
©2003 The American Physical Society11-1
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then, becomes a coupled Lagrangian of a quantum mech
cal quartic oscillatorf and a scalar fieldc which has only
nonzero mode excitations.

The effective action for a time-dependent system is giv
by the functional integral

G5 E dt^f,cu i ] t2Huf,c&, ~4!

where the stateuf,c& is the one that extremizesG. The
effective potential is given by the negative of its static lim
Before we consider the quantum mechanical corrections
give the tree level analysis first. The effective mass off and
c are given by

mf
2 ~ t !5m21

l

2V E dnx^c2~x,t !&,

mc
2~ t !5m21

l

2
^f2~ t !&, ~5!

where^A& denotes the expectation value ofA for a symmet-
ric wave functionalF(f,c) given below.^c2(x)& usually
become independent ofxi , the spatial coordinates, due to th
translational invariance of Green’s function and its spa
integral cancels the volume factor at the denominator in
first equation of~5!. In the presence of symmetry breakin
we expect that the expectation value of the field^f2(x,t)&
increases to a larger valuef2;26m2/l. This allows the
possibility of ^f2(t)& having large enough value so th
mf

2 ,0 andmc
2.0. This case is exactly what we are inte

ested in in this paper. Since the massmc
2 is positive definite,

the ^c2& cannot grow to larger value and be confined to
near zero value. The stable equilibrium off is at
6A(6/l)@2m22(l/2V) * dnx^c2&#. Therefore,f stays in
the degenerate ground state since the large volume factV
makes the potential wall between the positive and nega
minima infinitely high.

These discussions justify the use of the Gaussian appr
mation for thec field. On the other hand, we use the quar
exponential approximation for the zero mode,f, to include
better quantum mechanical effects. To describe the evolu
of the symmetric state we use the trial wave functional of
form

F@f,c#5N expH 2
1

2 F 1

2g2~ t !
1 ip~ t !Gf4

1F x~ t !

g~ t !
1 ip~ t !Gf22 E

xy
c~x!

3FG21~x,y;t !

4!
2 iP~x,y;t !Gc~y!J , ~6!

where*x 5 * dnx and we use the unit which makes\51.
The use of this symmetric trial wave functional simplifies t
computation since the contribution from the interaction ter
08501
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fc3, in the Lagrangian~3! vanishes. Following Ref.@12# we
define some physical quantities of the zero mode:

q2~ t !5^f2~ t !&, y~ t !5
^f4~ t !&

~^f2~ t !&!2
. ~7!

By introducing the integral@12#

f ~x!5
1

Ag
E

2`

`

dQ expS 2
Q4

2g2
1

2xQ2

g D
5

p

A2
uxu1/2ex2

@ I 21/4~x2!1sgn~x!I 1/4~x2!#, ~8!

we get

q2~ t !5
g f8

2 f
, y~ t !5

112x f8/ f

f 82/~2 f 2!
. ~9!

We additionally introduce the notation

dh

dy
[D5

1

4
A 11Y

y~32y!
, Y5

2x f8~x!

f ~x!

as in Ref.@12#.
Using these, we write the effective action~4! as a func-

tional of q(t), p(t), y(t), p(t), P(x,y;t), andG(x,y;t):

G5 E dtH yq4ṗ

2
2q2ṗ22yFy2

y23

Y11G q6p2

V
22

q2p2

V

1yq4
pp

V
2VVe f f~q,y!1 E

xy
PĠ22 E

xyz
PGP

2 E
x
F1

8
G21~x,x!2

1

2
¹x

2G~x,y;t !U
xÄy

1
1

2
V(2)G~x,x;t !G2

l

8 E
x

G~x,x;t !G~x,x;t !J , ~10!

where V(2)5m21(l/2)q2(t) and Ve f f(q,y)5@VF(y)/
8V2q2#1(m2/2)q21(l/4!)yq4. We do not need the explici
form of VF , instead, it is enough to know thatVF becomes
divergent aty51. Therefore, in largeV limit,

Ve f f5H 1

2
m2q21

l

4!
yq4, y>1 andq>0,

`, otherwise.

~11!

Note thatVe f f is finite even in the limits of zero dispersio
q2→0 or y→1.

After solving thep andp equations, and using the tran
lational invariance ofG equation of motion we get
1-2
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G@q,y;G,P#5 E dtdnxH Fq2ḣ2

2
1

q̇2

2
2Ve f f~q,y!G

1 E
k
FP~k,t !Ġ~k,t !22P2~k,t !G~k,t !

2
1

8
G21~k,t !2

1

2
~k21V(2)!G~k,t !

2
l

8
G~k,t ! E

q
G~q,t !G J , ~12!

where G(k,t) and P(k,t) are the Fourier transforms o
G(x,y;t) andP(x,y;t):

G~x,y;t !5 E
k

G~k,t !eik•(xÀy),

P~x,y;t !5 E
k

P~k,t !eik•(xÀy), ~13!

where*k5 * dnk/(2p)n.
The time-dependent variational equations are given b

d

dt
~q2Dẏ!1

l

4D
q450, ~14!

q̈1@m2~ t !2ḣ2~ t !#q1
l

6
~y23!q350, ~15!

G̈~k,t !5
1

2
G21~k,t !1

1

2
G21~k,t !Ġ2~k,t !

22m2~ t !G~k,t !, ~16!

where

m2~ t !5m2~ t !1
l

2
q2~ t !1

l

2 E
k

G~k,t !. ~17!

The potential divergences come from the integ
*k G(k,t). D(y) becomes divergent aty51 such that
D(y);(1/4)(1/Ay21) asy→1.

III. EFFECTIVE ACTION IN „2¿1… DIMENSIONS

Since the Gaussian effective potential for the scalarf4

field theory in~211! dimensions shows symmetry breakin
~211!-dimensional theory is the best place to test our
proximation method that uses zero-mode separation and
quartic Gaussian trial wave functional. During these calcu
tions we assumemc

2>0 always. Therefore, the nonzer
modes stay always in symmetry restored states with the
expectation value,̂c(x,t)&50, and the zero mode is in
symmetry broken state.
08501
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A. Effective potential

In this section we shall briefly discuss how the static
fective potential is renormalized in the quartic exponen
treatment of the zero mode. The definition of an effect
potential in this paper is slightly different from the standa
one. In this paper we separate the field into the zero m
and nonzero mode parts, then we integrate out the non
mode @by solving the gap equation~16! of the nonzero
modes# to get the effective potential for the zero mode. Th
definition gives a slightly different effective potential, sinc
the zero mode is treated quantum mechanically in this pa
while the traditional method treats it as a background cla
cal field. In spite of these conceptual differences the calcu
tional procedure is similar to that of the Gaussian appro
mation.

The effective potential per unit volume in the present a
proximation is given by

Ve f f„y,q;G~q!…5Ve f f~y,q!1
1

4 Ek
G21~k!

2
l

8 F E
k

G~k!G2

. ~18!

The potential is minimized aty51 andG is the solution of
the gap equation

1

4
G22~k!5k21m25k21m21

l

2
q21

l

2 E
k

G~k!,

~19!

which givesG(q). The possible source of divergence com
from the integral

E
k

G~k!5I 0~m!5 E
k

1

2Ak21m2
. ~20!

The present form ofG is the same as that of the Gaussi
approximation of Ref.@1# with a slight modification thatq2

is now the expectation value of the dispersion of zero mo
This divergence inI 0(m) is absorbed inm2 by defining the
renormalized mass

mR
25m21

l

2 E
k

G~k!U
q50

, ~21!

with the help of the formula

I 0~m!2I 0~mR!52
m2mR

4p
. ~22!

Then, the gap equation~19! can be written to give the ratio
of the mass with respect to the renormalized mass for gen
q

Ax[
m

mR
52

l

16pmR
1F S l

16pmR
11D 2

1
l

2mR
2

q2G 1/2

.

~23!
1-3



e

try

-
ng

ve

od

t

-

i
f i
s

e
hat
tric
tely,
zero
or

tial
e

with

or

H.-C. KIM AND J. H. YEE PHYSICAL REVIEW D68, 085011 ~2003!
The effective potential in~211! dimensions can then b
calculated to be

V~q,y!5
1

2
mR

2q21
l

4!
yq42

mR
3

24p
~Ax21!2

3F2Ax111
3l

16pmR
G , q>0, ~24!

which exactly reproduces the result of Ref.@1# if y51. Note
also that the potential forl→` becomes

V~q,y!

mR
3

.2
l

24mR
3 ~32y!q41

q2

2mR
1

2pq4

mR
2

1
8pq6

3mR
3

1O~1/l!. ~25!

This form shows two things: First is that there is symme
breaking fory,3 for large enoughl/mR always. Therefore
we have a critical valuel/mR5l̂c such that ifl/mR.l ĉ
there is symmetry breaking fory,3. Second is that the po
tential for q at y53 does not have the symmetry breaki
form for any large value ofl/mR . This fact shows that there
is a critical valuey5yc(l) such that fory,yc,3 and
l/mR.l̂c symmetry breaking occurs. We draw the effecti
potential for variousy values as a function ofq in Fig. 1.
From Fig. 1 we can deduce the dynamics of a zero-m
wave packet with the initial values (q0 ,y053). The dynam-
ics of the system is described by two processes. First is
dynamics untily decreases toy5yc . During this process, the
ground state forq is at q50. The dispersionq2 will oscil-
lates around zero. The second process begins wheny de-
creases to a value belowyc , so that the potential has sym
metry breaking form. From this time,q increases until it
takes a stable equilibrium value andy oscillates aroundy
51. During these processes, the zero mode continually
teracts with the non-zero modes and may loose much o
energy. If one wants to understand these dynamical proce
better, we need to calculate the effective action.

0.2 0.4 0.6 0.8 1 1.2

-0.4

-0.2

0.2

0.4 11.21.41.63

FIG. 1. The effective potentialV/mR
3 as a function of q̄

5q/AmR. In this figure we setl54mR , qR50, and the curves
represent the cases ofy51, 1.2, 1.4, 1.6, 3.
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B. Renormalization of the effective action

It is known in Ref.@4# that not all states are allowed as th
initial states in the Gaussian variational approximation. W
we consider in this paper is that the evolution of symme
initial states. Even though we treat the zero mode separa
our method uses the Gaussian approximation for the non
modes. This implies that the renormalizability condition f
the time-dependent variational equations in Ref.@4# applies
also to the present case. Thus we simply outline the ini
condition and then write down the equations of motion. W
choose the initial state of nonzero modes as a Gaussian
G(x,y;0)5G(x,y), andP(x,y;0)5P(x,y), and the initial
state of the zero mode as a quartic exponential withq
5q0 , y5y0 , p(0)50, p(0)50 in Eq.~6!. Here we assume
that there is noc(x,t)2f(t) correlation in the initial state
for simplicity. Then the nonzero overlapping condition f
the initial states with the vacuum, prescribed in Ref.@4#, are
given by

lim
k→`

G~k,0!5
1

2k S 11
g cosa~k!

k
1

m̄2

k2 D ,

lim
k→`

Ġ~k,0!5
B cosb~k!

k
1

A

k2
, ~26!

wherea andb are nonoscillatory andg, A, B, andm̄ arek
independent constants.

The renormalization condition~21! can be generalized to
the time-dependent case

mR
2~ t !5m2~ t !1

l

2 E
k

GV~k,t !U
q50

, ~27!

where

GV~k,t !5
1

2Fk21m2~ t !1
l

2
q21

l

2 E
k

GVG1/2

is the value ofG in the instantaneous vacuum for a givenq.
The finite time-dependent mass is

m2~ t !5Fm2~ t !1
l

2
q2~ t !1

l

2 E
k

GV~k,t !G
1

l

2 E
k

@G~k,t !2GV~k,t !#

5mV
2~ t !1m̃2~ t !, ~28!

where

mV
2~ t ![m2~ t !1

l

2
q2~ t !1

l

2 E
k

1

2@k21mV
2~ t !#1/2

5mR
2~ t !

1
l

2
q2~ t !1

l

2
@ I 0~mV!2I 0~mR!#. ~29!
1-4
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Using Eq.~22! we get

mV~ t !52
l

16p
1F S l

16p D 2

1mR
2~ t !1

l

8p
mR~ t !

1
l

2
q2~ t !G1/2

. ~30!

One can show that the difference of mass-squaredm̃25m2

2mV
2 ,

m̃2~ t ![
l

2 E
k

@G~k,t !2GV~k,t !#, ~31!

is finite by using the explicit asymptotic form ofG in Eq.
~26! at t50. Now we need to show thatm̃2(t) is finite for all
t. This can be done by solving the renormalized equation
motion forG. We do not write this calculation explicitly her
since it is a mere repetition of Eq.~4.11! of Ref. @4#.

The renormalized equations of motion forq and G(k,t)
become

q̈1@mV
2~ t !1m̃2~ t !#q1

l

6
yq35ḣ2q, ~32!

G̈~k,t !5
1

2
G21~k,t !1

1

2
G21~k,t !Ġ2~k,t !

22@k21mV
2~ t !1m̃2~ t !#G~k,t !. ~33!

Note that neary51, D;1/(4Ay21) diverges. Therefore
q2ḣ becomes almost constant in this region. Then, the d
ing term of q in the right-hand side of Eq.~32! becomes
divergent as 1/q3 for smallq. This may enableq to take over
the low potential wall located betweenq50 and the true
vacuum in the effective potential in Fig. 1.

We have thus shown that for the initial states, which b
long to the Fock space built on the vacuum, the tim
dependent variational equation is made finite by the st
renormalization used in the vacuum sector in~211! dimen-
sions. The present method naturally incorporates the qu
tum mechanical correction byy to the classical potentia
which is given byy51. A notable conceptual differenc
coming from the quantum treatment of the zero mode of
~211!-dimensional scalar field theory is that a Gauss
wave packet is not a minimum energy packet even for
unbroken nondegenerated vacuum. From Eq.~14!, we see
that y is stable only aty51, the two deltalike packets limit
In Eq. ~32! y plays a dual role as a potential which rol
downq for y.yc , then, as an external force which boostsq
to a larger value fory,yc . This quantum correction fromy
contributes toG only indirectly throughq.

IV. EFFECTIVE ACTION IN „3¿1… DIMENSIONS

In ~311! dimensions, the situation is quite different fro
the~211!-dimensional case. This is because of the renorm
ization condition, which demandsl→02 which in turn leads
to the conclusion that there is no phase transition in
08501
f

-

-
-
ic

n-

e
n
n

l-

e

Gaussian effective potential of the four-dimensional sca
f4 theory. At the present case, ifl→02 , the effective po-
tential loses they dependent term andy dynamics decouples
from the rest of the effective potential. If we start from th
effective action, however, they dynamics leads to a repulsiv
potential proportional to 1/q2, which may give rise to the
symmetry breaking form of the potential even though so
interpretational difficulties remain.

A. Effective potential in the standard method

Let us consider the effective potential first. Since t
present form forG in Eq. ~19! is the same as that of th
Gaussian approximation with a slight modification thatq2 is
now the expectation value of dispersion, the renormaliz
quantities are similarly defined as in Ref.@4#:

mR
2

lR
5

m2

l
1

1

2
I 1 , I 1[ E

k

1

2k
, ~34!

1

lR
5

1

l
1

1

2
I 2~M !,

I 2~M ![
1

M2 Ek
F 1

2k
2

1

2~k21M2!1/2G , ~35!

whereM is an arbitrary mass scale, at which the renorm
ization is performed. The gap equation~19! becomes a kind
of mass renormalization formula,

m25mR
21

lR

2
q21

lR

2
m2@ I 2~M !2I 2~m!#

5mR
21

lR

2
q21

lR

32p2
m2 ln

m2

M2
. ~36!

We obtain a finite expression of the effective potential:

V~y,q!5
m42mR

4

2lR
1

m4

64p2 S ln
M2

m2
2

1

2D 1
y22

24
lq4,

~37!

where we have adjusted a constant2m4/2l in the limit of
infinite cutoff, l→02 . At y51, this effective potential~37!
and the gap equation~36! reproduce the results of Pi an
Samiullah@4# and Stevenson@1#, where it was shown that the
scalar f4 model does not have symmetry breaking in
11) dimensions in the Gaussian approximation. As the c
pling l goes to zero, they dependence in the quartic term
disappears. We interpret this potential as the effective po
tial for q. The explicit form of the effective potential with
respect toq can be obtained by replacingm2 in Eq. ~37! by
using Eq.~36!.

B. Renormalization of the effective action in 3¿1 dimensions

The conditions for the initial states@4#, in ~311! dimen-
sions, are given by
1-5
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lim
k→`

G~k,0!5
1

2k S 12
m̄2

2k2
1

g cosa~k!

k2 D ,

lim
k→`

Ġ~k,0!5
A1B cosb~k!

k2
, ~38!

with nonoscillatorya and b and k-independent constant
g, A, B, and m̄, the last being a mass parameter that
shall specify shortly.

We generalize the renormalization condition to the tim
dependentm2 as follows:

mR
2~ t !

lR
5

m2~ t !

l
1

1

2
I 1 , ~39!

1

lR
5

1

l
1

1

2
I 2~M !. ~40!

This renormalization condition impliesl→02 . Therefore,
the first equation in~14! for y givesq2ḣ5C, a constant of
motion. With this condition, we remove they dependence
and write the second equation of~14! as

q̈1m2~ t !q2
C2

q3
50. ~41!

Then, the effective action~12! we are to solve becomes

G8@q,G,P#5 E dtd3xH F q̇2

2
2

C2

2q2
2

1

2
m2q2G

1 E
k
FP~k,t !Ġ~k,t !22P2~k,t !G~k,t !

2
1

8
G21~k,t !2

1

2
~k21V(2)!G~k,t !

2
l

8
G~k,t ! E

q
G~q,t !G J . ~42!

In the present approach,q2(t)5^f2(t)& cannot vanish if
CÞ0, and should be dynamical. This fact gives a slight d
ference to the renormalization procedure from that of R
@4#. The finite time-dependent mass becomes

m2~ t !5Fm2~ t !1
l

2
q2~ t !1

l

2
I 0~mV~ t !!G

1
l

2 E
k

@G~k,t !2GV~k,t !#

5mV
2~ t !1m̃2~ t !, ~43!

therefore
08501
e

-
f.

mV
2~ t ![m2~ t !1

l

2
q2~ t !1

l

2 E
k

1

2~k21mV
2~ t !!1/2

5mR
2~ t !1

lR

2
q2~ t !1

lR

32p2
mV

2~ t ! ln
mV

2~ t !

M2
, ~44!

where

m̃2~ t ![
l

2 E
k

@G~k,t !2GV~k,t !#

5
lR

2 E
k

@G~k,t !2GV~k,t !#1
lR

2
m̃2~ t !I 2~M !,

~45!

with mR(t) becoming independent of time after the symm
try breaking process is over. After rearranging these terms
get

m2~ t !5mR
2~ t !1

lR

2
u2~ t !1

lR

2
q2~ t !,

u2~ t !5
1

16p2
mV

2~ t ! ln
mV

2~ t !

M2

1 E
k

@G~k,t !2GV~k,t !#1m̃2~ t !I 2~M !. ~46!

The finiteness ofu2(t) at t50 gives m̄25m2(0)5mV
2(0)

1m̃2(0), where we use the asymptotic form~38! for G at
t50. In the time-independent limit, u2

5(1/16p2)m2 ln (m2/M2). The renormalized set of equation
of motion is given by

q̈1FmR
2~ t !1

lR

2
u2~ t !Gq1

lR

2
q32

C2

q3
50, ~47!

G̈5
1

2
G211

1

2
G21Ġ222Fk21mR

2~ t !1
lR

2
u2~ t !

1
lR

2
q2~ t !GG. ~48!

From the equation of motion~47! one finds that the mini-
mum of the potential is given at the pointqv determined by

05
]V8

]q U
q5qv

5qvFmR
21

lR

2
u21

lR

2
qv

22
C2

qv
4 G , ~49!

which signals thatqv50 cannot be a minimum of the poten
tial if CÞ0.

Finally, let us examine the effective potential again af
integrating out the equation of motion fory with nonzeroC.
Let us assume that the system is quasi-static so thatG is
described by its vacuum value. Since the potential is div
1-6
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gent at q50, we define the renormalized mass atq5qv
where the potential takes the minimum

mR
25mR

21 lR/2 qv
21

lR

32p2
mR

2 ln
mR

2

M2
. ~50!

By setting the arbitrary mass scaleM5mR , we get mR
2

5mR
21

lR

2
qv

2 . Following the calculation of Stevenson, th

mass-square ratiox5m2/mR
2 is given by

kS x212
q̄

k
D 5x ln x, ~51!

wherek532p2/lR andq̄516p2@(q22qv
2)/mR

2 #. The effec-
tive potential is, then, given by

V8~x,F!5
64p2Ve f f

mR
4 ~x,q!5

c2

F2
1k~x221!

2x2S ln x1
1

2D , ~52!

whereF2516p2q2/mR
2 andc532p2C/mR

3 . Unlike the pre-
vious result~37!, this potential in Fig. 2 has the symmet
breaking form, due to theC2/F2 term, which comes fromy
dynamics.

The presence of a symmetry breaking potential due ty
dynamics appears to be surprising. However, many aut
have been searching for a second order phase transitio
the scalarf4 theory in ~311! dimensions through the stud
of nonequilibrium dynamics. For example, the spinodal
stability leads to a better understanding of the increase in
correlation length leading to the possibility of symmet
breaking@7,14# or the autonomous renormalization with th
saddle-point approximation for the zero mode leads to s
metry breaking@13#. In this sense, the presence of the sy
metry breaking potential is not surprising, but more care
study is needed. The reason is that our wave-functional

q

V

q
-
min

q
-
=q
-
break

FIG. 2. The effective potential as a function ofq̄. Details of the

analysis forq̄break are the same as@1# and q̄min52Fv
2 . At this

point q250.
08501
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satz ~6! cannot describe regions withy.3. Therefore, we
cannot predict anything fory.3. In this sense, more carefu
study with the trial wave functional, which includes the r
gion with y.3, is needed to clarify the issue of the existen
of symmetry breaking in the scalarf4 theory in ~311! di-
mensions. One of methods to consider,y.3, is to include
the excited states of~6! as suggested in Ref.@12#.

V. SUMMARY AND DISCUSSIONS

We have calculated the effective action of a se
interacting scalar field in three and four dimensions with
use of a quartic exponential wave-functional ansatz for
zero mode. In~211! dimensions, we have calculated th
renormalized effective potential and action. It is shown th
the symmetry breaking occurs forl/mR.l̂c as in the Gauss-
ian case. The effective potential is dependent on the shapy,
of the wave function of the zero mode, so that there is
critical value,yc , such that there is no symmetry breaking
y.yc . Especially, ify53 there is no symmetry breaking fo
any value ofl/mR . The shape of the symmetry breakin
potential has a double well type of the first order transitio
If the renormalized mass is defined at finiteqR ,

mR
25m21

l

2
qR

21
l

2 E
k

G~k!U
q5qR

, ~53!

then the ratio of the mass for generalq and the renormalized
mass is given by

Ax[
m

mR
52

l

16pmR
1F S l

16pmR
11D 2

1
l

2mR
2 ~q22qR

2 !G 1/2

. ~54!

This definition allows the possibility thatm2uq50<mR
2 , and

m2uq5qmin
50 at

qmin
2

mR
5

qR
2

mR
2

2mR

l
2

1

4p
. ~55!

If we set qmin50, we get the second order transition a
(l/2)qR

25mR
21lmR /(8p). The effective potential in~211!

dimensions in this case becomes

V~q,y!52
lmR

16p
q21

l

4!
yq42

mR
3

24p
~Ax21!2

3F2Ax111
3l

16pmR
G . ~56!

This is a new possibility for the~211! dimensionalf4 scalar
field theory since the centerq50 of this potential is an un-
stable maxima now.

We also have calculated the renormalized effective ac
G@q(t),y(t);G,P# and then the effective potentialV(q,y)
as its static limit in~311! dimensions. They-dependent term
1-7
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in V(q,y) disappears after renormalization due to the ren
malization conditionl→02 , and it leads to the result tha
the symmetry breaking does not occur in four-dimensio
f4 theory as in the case of the Gaussian approximation.

Since y dependence decouples from the rest during
renormalization process, one can integrate out they dynam-
ics from the effective actionG@q(t),y(t);G,P# to obtain a
new effective actionG8@q(t);G,P# before one takes the
static limit. The new effective potentialV8(q) obtained by
the static limit ofG8@q(t);G,P# has the symmetry breakin
D

l

08501
r-

l

e

form. To take this result seriously, however, we need m
careful study since in our trial wave functional~6! y cannot
take values larger than 3.
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