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Zero mode in the time-dependent symmetry breaking ol ¢* theory
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We apply the quartic exponential variational approximation to the symmetry breaking phenomena of a scalar
field in three and four dimensions. We calculate the effective potential and effective action for the time-
dependent system by separating the zero mode from other nonzero modes of the scalar field and treating the
zero mode quantum mechanically. It is shown that the quantum mechanical properties of the zero mode play a
nontrivial role in the symmetry breaking of the scakap® theory.
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I. INTRODUCTION (3+1)-dimensional case in Sec. IV. Finally, we summarize
our results and present some discussions in Sec. V.

The variational approach for scalar field theory using the
Gaussian effective potential was well studied in Rgfs2],
and references therein. The renormalizability and initial
value problems for the Gaussian approximation are checked
in [3,4]. Many authors have studied the symmetry breaking e first separate the zero-mode from other non-zero ex-
phase structures in the lar@eapproximation5]. The non-  citations and present the concept of effective action adapted
equilibrium dynamics of symmetry breakifi§] and the sec- in the present paper. The Lagrangian of the scafatheory
ond order phase transitidii] have also been studied in the in n+1 dimensions is
Gaussian framework.

On the other hand, it is known that the Gaussian approach
is inappropriate to treat the time-dependent symmetry break- L= J d"x
ing of initially symmetric states because of their own limits
[8] that they cannot be applied to a double well type potential 1 N
for large dispersions. To overcome this difficulty, many ap- — = pP(t) p3(x") — — p*(X") |, (1)
proaches have attempted to go beyond Gaussian methods by 2 4!
using a quartic exponential ansd@], perturbative expan-
sion around the Gaussian approximat{dd], and variation ~where we explicitly included the volume integral so that we
including higher excited states of the Gaussian approximaean write the volume factor in the zero mode part of the
tion [11]. Lagrangian angk?(t) asymptotically approaches to a nega-

It is therefore important to understand the limit of the tive value M2<0 so that the system undergoes symmetry
approaches based on the Gaussian wave functional and peaking. Let the theory be defined in a box of volulie
develop a consistent method going beyond the Gaussian aphen, its zero mode can be extracted by the following defi-
proximation. Recently, the present authors have developed itions:
new quartic exponential type variational approximatitg]
which is suitable for systems with double well type poten- 1
tials in the quantum mechanical context. In this paper, by d’(t):—f d"(x,1),  ¢(x,)=d(x,t)—p(t). (2)
applying the approximation to the zero mode of the scalar \
field, we found the renormalized equations of motion which
can describe the symmetry breaking phenomena startinghe new field,, satisfiesf d"xy(x,t)=0. The Lagrangian
from the symmetric states of the scalaf theory in three (1),
and four dimensions. This kind of zero mode separation was
considered in the previous papéiS8] using the autonomous 2
renormalization of¢* or speculating on the—0 limit of L=V[1¢2(t)— ) H2(t)— Ad)“(t)}
spontaneous symmetry breaking. 2 4!

The paper is organized as follows. First we separate the 1
zero mode of the scalar field from other modes in Sec. Il and T f d“x{—a“z//(x”)a (XY
then calculate the formal expression for the effective action. 2 .
We then calculate the renormalized effective potentials and
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then, becomes a coupled Lagrangian of a quantum mechanpy°, in the Lagrangiari3) vanishes. Following Ref12] we
cal quartic oscillator$ and a scalar fields which has only  define some physical quantities of the zero mode:

nonzero mode excitations.
The effective action for a time-dependent system is given
by the functional integral

r= [ dus.uia—Hls.u, @

where the statée,y) is the one that extremizeE. The
effective potential is given by the negative of its static limit.

Before we consider the quantum mechanical corrections, we

give the tree level analysis first. The effective masgaind
¢ are given by

mi(t) = 2+—f d"x({ 2 (x,1)),

A
mi(t) = u?+ (A1), (5)

where(A) denotes the expectation valueAfor a symmet-
ric wave functional®(#,#) given below.(#?(x)) usually
become independent &f, the spatial coordinates, due to the
translational invariance of Green’s function and its spatial
integral cancels the volume factor at the denominator in the
first equation of(5). In the presence of symmetry breaking,
we expect that the expectation value of the figdP(x,t))
increases to a larger valug®~ —6u?/\. This allows the

(¢*V)
WO=($W), Y=
g () =(¢%(1)), y(t) TORE
By introducing the integral12]
Q4 2xQ2
f(x)=—= j dQexp( 5 )
= %IXI”ZGXZ[I 1) +sgrx)l 3], (8)
we get
2. 9F _ 1+2xf/f
Q(t)—ﬁ, y(t)—m_ 9)

We additionally introduce the notation

dn
dy

_2xf’(x)
f(x)

51 [1+Y
4 Ny@B3-y)

Using these, we write the effective actioh) as a func-

as in Ref.[12].

possibility of (¢2(t)) having large enough value so that tional of g(t), p(t), y(t), m(t), II(xy;t), andG(xy;t):

m3<0 andm3>0. This case is exactly what we are inter-
ested in in this paper. Since the mm% is positive definite,

the (%) cannot grow to larger value and be confined to a
near zero value. The stable equilibrium @b is at

= J(BIN)[— u®—(N2V) [ d"x(¢?)]. Therefore,¢ stays in

the degenerate ground state since the large volume fsctor
makes the potential wall between the positive and negative
minima infinitely high.

These discussions justify the use of the Gaussian approxi-
mation for they field. On the other hand, we use the quartic
exponential approximation for the zero modf, to include
better guantum mechanical effects. To describe the evolution
of the symmetric state we use the trial wave functional of the
form

where V@ =2+ (N /2)g?(t)
8V2q2]+ (u?/2)q?+ (M /41)yg*. We do not need the explicit
form of V¢, instead, it is enough to know th&f becomes
divergent aty=1. Therefore, in larg&/ limit,

+im(t)|p*

1 1
<I>[¢,w]=Nexp{—§ 27

X(t) .
o0 +|p<t>} fxy w(x)

G Hxy;t)
ol v

—iH(x,y;t)}w(y)], (6)

.
r= f dt[yq il

0?p?

\Y,

y—3

2 ar_
a*p—2y|y= g

\Y

tyq —p_VVeff(q,Y)+f HG—ZJ' HGII
Xy Xyz

1 1_,
—f SG Hx,x) = 5 ViG(xy;1)
X 8 2 X=y

+EV(2)G(X x;t) —EJ G(x,X1)G(X,X;t) (10)
2 o 8Jx 7 e

and  Vei(a,y) =[Ve(y)/

1 A
~120%+ —vyq*, y=1 andq=0,
Vett= e TR A q (11

o0, otherwise.

Note thatV¢; is finite even in the limits of zero dispersion

where [, = [ d"x and we use the unit which makés=1.
The use of this symmetric trial wave functional simplifies the

q?—0 ory—1.

After solving thep and = equations, and using the trans-

computation since the contribution from the interaction termJational invariance ofs equation of motion we get
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|

II(k,t)G(Kk,t) — 2I13(k, ) G(k,t)

97

2

2 g2
+ ?_Veff(qay)

I'[q,y;G,II1]= J dtd“x[

o,

1
8

Gk, t)— %(k2+v(2))6(k,t)

: (12

N
- gG(k,t) Jq G(q,t)

where G(k,t) and II(k,t) are the Fourier transforms of
G(x,y;t) andII(x,y;t):

GOyt = Jke<k,t)eik'<x—y>,

I(x,y;t)= JKH(k,t)eik'(X_V), (13

where [, = [ d"k/(2m)".
The time-dependent variational equations are given by

9 @i+ 2 gt=0 14
4Dy +759°=0, (14)
. ) Y A 3
a+[M*() - (D]a+ 5 (y=3)a*=0, (19
. 1 1 .
G(k,t)=EG’l(k,t)JrEG’l(k,t)Gz(k,t)
—2m?(t)G(k,t), (16)
where
A A
mz(t)=M2(t)+—q2(t)+—f G(k,t). (17)
2 2 Jk
The potential divergences come from the integral

J«G(k,t). D(y) becomes divergent ay=1 such that
D(y)~(1/4)(1Ny—1) asy—1.

Ill. EFFECTIVE ACTION IN  (2+1) DIMENSIONS

Since the Gaussian effective potential for the scatér
field theory in(2+1) dimensions shows symmetry breaking,
(2+1)-dimensional theory is the best place to test our ap
proximation method that uses zero-mode separation and t

PHYSICAL REVIEW D58, 085011 (2003

A. Effective potential

In this section we shall briefly discuss how the static ef-
fective potential is renormalized in the quartic exponential
treatment of the zero mode. The definition of an effective
potential in this paper is slightly different from the standard
one. In this paper we separate the field into the zero mode
and nonzero mode parts, then we integrate out the nonzero
mode [by solving the gap equatiol6) of the nonzero
modeg to get the effective potential for the zero mode. This
definition gives a slightly different effective potential, since
the zero mode is treated quantum mechanically in this paper,
while the traditional method treats it as a background classi-
cal field. In spite of these conceptual differences the calcula-
tional procedure is similar to that of the Gaussian approxi-
mation.

The effective potential per unit volume in the present ap-
proximation is given by

1
Ve, :6(0) ~Ver(.0)* 7 | 6710
k

)\[ ka(k)r.

-3 (18)
The potential is minimized at=1 andG is the solution of
the gap equation

1 N,
—G_Z(k)=k2+m2=k2+,u,2+—q2+—f G(k),
4 2 2 Jk

(19

which givesG(q). The possible source of divergence comes
from the integral

(20

The present form oG is the same as that of the Gaussian
approximation of Ref[1] with a slight modification thag?

is now the expectation value of the dispersion of zero mode.
This divergence il o(m) is absorbed inu? by defining the
renormalized mass

2_ o, M
mg=p"+ > G(k) , (21
k q=0
with the help of the formula
m_mR
lo(m)—Ilo(Mmg)=— pp. (22

Then, the gap equatiofi9) can be written to give the ratio
the mass with respect to the renormalized mass for general

1l

guartic Gaussian trial wave functional. During these calcula¥

tions we assumemjzo always. Therefore, the nonzero

modes stay always in symmetry restored states with the zero

expectation value{#(x,t))=0, and the zero mode is in a
symmetry broken state.

A
167TmR

A +
167mg

m
\/;Em_R:

a1
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B. Renormalization of the effective action
0. 4t 3 .6/1.4 1.2 1 . .
It is known in Ref[4] that not all states are allowed as the
initial states in the Gaussian variational approximation. What
0.2} we consider in this paper is that the evolution of symmetric
initial states. Even though we treat the zero mode separately,
0.2 0.4—06 08 1 12

our method uses the Gaussian approximation for the nonzero
modes. This implies that the renormalizability condition for
the time-dependent variational equations in Réf.applies
also to the present case. Thus we simply outline the initial
condition and then write down the equations of motion. We
-0.4; choose the initial state of nonzero modes as a Gaussian with
G(x,y;0)=G(x,y), andII(x,y;0)=1II(x,y), and the initial
state of the zero mode as a quartic exponential wjth
=g, Y=Y0, P(0)=0, w(0)=0 in Eqg.(6). Here we assume
that there is naj(x,t) — ¢(t) correlation in the initial state

for simplicity. Then the nonzero overlapping condition for
the initial states with the vacuum, prescribed in Réfi, are

FIG. 1. The effective potentiaM/m’ as a function ofq
=q/ymg. In this figure we seth=4mg, qg=0, and the curves
represent the cases pf=1, 1.2, 1.4, 1.6, 3.

The effective potential in2+1) dimensions can then be

i b
calculated to be given by
lim G(k.0)= L, gcosat me
1 A ms im G(k,0)= 5 — |,
= —m3g? D 4 —R — 2 K— o0 k
V(@.y) = 5mR0%+ 4 yat = o —(Vx=1)
lim G(k,0) B cosBk) + A (26)
imG(k,0)= ——— + —,
X|2xr1d el 020, (24 h— K 2

) i wherea and B are nonoscillatory and, A, B, andm arek
which exactly reproduces the result of Rif] if y=1. Note  jndependent constants.

also that the potential fax— < becomes The renormalization conditiof21) can be generalized to
the time-dependent case

V(q.y) A .. 9 2mq* 8wq® N
me 2am s YV om T T T e mé(t)=u2(t)+§fk Gy(kt) . 27
gq=0
+O(1/N). 29 \where
This form shows two things: First is that there is symmetry Gy(k.t)= 1
VIR, L) — 172

breaking fory<<3 for large enough/mg always. Therefore

we have a critical valué/mg=AX. such that ifA/mg>X
there is symmetry breaking fgr<3. Second is that the po-
tential for g at y=3 does not have the symmetry breakingis the value ofG in the instantaneous vacuum for a givgn
form for any large value ok/mg. This fact shows that there The finite time-dependent mass is

is a critical valuey=y.(\) such that fory<y.<3 and

A mg>\. symmetry breaking occurs. We draw the effective m2(t) =

potential for variousy values as a function of in Fig. 1.

From Fig. 1 we can deduce the dynamics of a zero-mode

wave packet with 'ghe initia] valuegg,yo=3). The dynam— + EJ [G(k,t)—Gy(k,t)]

ics of the system is described by two processes. First is the 2 Jx

dynamics untily decreases tp=y. . During this process, the 5 -

ground state for is atq=0. The dispersiom? will oscil- =my(t)+m(t), (28

lates around zero. The second process begins whede-

creases to a value beloyy, so that the potential has sym-

metry breaking form. From this timey increases until it

takes a stable equilibrium value arydoscillates around/ 20N 2 E 2 f B —
: : omy()=p(t+59%(t)+ >

=1. During these processes, the zero mode continually in- 2 2 Jk2[k?+md(1)]Y?

teracts with the non-zero modes and may loose much of its \ \

energy. If one wants to understand these dynamical processes 2 _

bettegr, we need to calculate the effective action. P T2 O+ 3lo(my) = lo(me)] 29

2

N . A
2, 2 N oo N
K2+ p2(0)+ 54 +kaGV

A A
W0+ 50+ [ Gv(k,t)}

where

m&(t)

085011-4
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Using Eq.(22) we get
N A
167 +mR(t)+§mR(t)
1/2

A
my(t)=— 76—+

A 2
5040 (30)

One can show that the difference of mass-squanée m?

_m\2/1
~ A
=3 [ [eko-cukol @

is finite by using the explicit asymptotic form & in Eq.
(26) att=0. Now we need to show that?(t) is finite for all

t. This can be done by solving the renormalized equation of
motion forG. We do not write this calculation explicitly here

since it is a mere repetition of E¢.11) of Ref. [4].
The renormalized equations of motion fqrand G(k,t)
become

. ~ A .
q+[mi(t) +m*(t)]a+ zya’=7’q, (32)
. 1 1 .
G(k,t)= EG_l(k,t)+§G_1(k,t)GZ(k,t)
—2[K2+m2(t)+ mA(1)]G(k,t). (33

Note that neary=1, D~1/(4\y—1) diverges. Therefore

%% becomes almost constant in this region. Then, the driv-

ing term of q in the right-hand side of Eq32) becomes
divergent as 4° for smallqg. This may enable to take over
the low potential wall located betweegy=0 and the true
vacuum in the effective potential in Fig. 1.

PHYSICAL REVIEW D58, 085011 (2003

Gaussian effective potential of the four-dimensional scalar
¢* theory. At the present case, if—0_, the effective po-
tential loses theg dependent term angldynamics decouples
from the rest of the effective potential. If we start from the
effective action, however, thedynamics leads to a repulsive
potential proportional to &7, which may give rise to the
symmetry breaking form of the potential even though some
interpretational difficulties remain.

A. Effective potential in the standard method

Let us consider the effective potential first. Since the
present form forG in Eqg. (19) is the same as that of the
Gaussian approximation with a slight modification thatis
now the expectation value of dispersion, the renormalized
guantities are similarly defined as in Re4]:

2
MR M _ 1
)\_R_ )\ +2|11 Il_ jkzkv (34)
1—1+1| M
e N2 2(M),
I,(M)= ! f L —1 35
M= ) 2K 20 o) 39

whereM is an arbitrary mass scale, at which the renormal-
ization is performed. The gap equati¢iB) becomes a kind
of mass renormalization formula,

A A
M?=pgt 5 02+ 5 M 1H(M) = 1o(m)]

AR 2, m?
m=in—:.
3272 M?2

AR
=prt 5 4*F (36)

We have thus shown that for the initial states, which be- ) o ) ) )
long to the Fock space built on the vacuum, the time-We obtain a finite expression of the effective potential:

dependent variational equation is made finite by the static

renormalization used in the vacuum sectol2a-1) dimen-

sions. The present method naturally incorporates the quan-

tum mechanical correction by to the classical potential

which is given byy=1. A notable conceptual difference

4_ 4 4
m’—ug

2\r

M2 1 .
In——5|+—=—\q"

m? 2
(37)

+

V(y,q)=

6472

coming from the quantum treatment of the zero mode of thavhere we have adjusted a constant.*/2\ in the limit of
(2+1)-dimensional scalar field theory is that a Gaussianinfinite cutoff, \ —0_. At y=1, this effective potential37)
wave packet is not a minimum energy packet even for amnd the gap equatio(86) reproduce the results of Pi and

unbroken nondegenerated vacuum. From @d), we see
thaty is stable only ay=1, the two deltalike packets limit.

Samiullah[4] and Stevensofi], where it was shown that the
scalar ¢* model does not have symmetry breaking in (3

In Eq. (32) y plays a dual role as a potential which rolls + 1) dimensions in the Gaussian approximation. As the cou-

downg for y>y., then, as an external force which boogts
to a larger value foy<y.. This quantum correction from
contributes taG only indirectly throughg.

IV. EFFECTIVE ACTION IN  (3+1) DIMENSIONS

In (3+1) dimensions, the situation is quite different from

pling A goes to zero, thg dependence in the quartic term
disappears. We interpret this potential as the effective poten-
tial for g. The explicit form of the effective potential with
respect tag can be obtained by replacing? in Eq. (37) by
using Eq.(36).

the (2+1)-dimensional case. This is because of the renormaI-B' Renormalization of the effective action in 3+1 dimensions

ization condition, which demands— 0_ which in turn leads

The conditions for the initial statd], in (3+1) dimen-

to the conclusion that there is no phase transition in thesions, are given by

085011-5
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m? g cosa(k)

ImGk0O==|1-—+——— m2(t)= 2(t)+E 2(t)+£f;
ko 2k T k2 k) ViR 21 2 Jk2(k2+md(1)) Y2
A A mi(t)
. A+ B cosp(k =42 “Rg2 R m2 v
lim G(k,0)= g B( ), 39) rR(D+ 50 (t)+32w2mv(t) In YR (44)
Kk—s oo
where
with nonoscil@orya and B and k-independent constants
g, A, B, andm, the last being a mass parameter that we ~, = A B
shall specify shortly. m=(t)= 2 k[G(k’t) Gu(kD)]
We generalize the renormalization condition to the time
dependen? as follows: AR AR~
pencenk: =7fk[e<k,t>—ev<k,t>]+7m2<t>|2<M>,
2 2
LR pA(t) 1
WY +§|1, (39 (45)
with ug(t) becoming independent of time after the symme-
1 1 1 try breaking process is over. After rearranging these terms we
— ==+ =15(M). (40 t
AR N2 ge

This renormalization condition implies—0_ . Therefore,

the first equation ir(14) for y givesq?»=C, a constant of
motion. With this condition, we remove the dependence

A A
m?(t)= (D) + 5 WA+ 5 GA(L),

d write th d ti 2\ 1 ma(t
and write the second equation (f4) as W2(t)= m2(t) In v(t)
1672 M?2
. c?
+m2(t)g— — =0. 41) -
AT ( + [ 16k -Guk01+ R0, @8
k

Then, the effective actiofil2) we are to solve becomes o 5 . - )

The finiteness ofu(t) at t=0 givesm“=m*(0)=my(0)
+m?(0), where we use the asymptotic for(88) for G at
t=0. In  the  time-independent limit, u?

=(1/167%)m? In (m/M?). The renormalized set of equations
of motion is given by

2 2
q_ C 122

I'[q,G,I1]= f dtd3x[

o),

1 1
- =G YKk, t)— E(|<2+v(2>)c;(k,t)

TH(k,1)G(k,t)— 2IT2(k, 1) G(k,1)

AR c?
q+—9°~—=0, (47
270§

q+

A
pE(D+ 5 U

8
.1 1 . A
\ G=56"14 561622/ K2+ uR(t) + 5 UA(Y)
—gG(k,t)f G(q,t)} : (42)
q e
, , o + 5 dA(1)|G. (48)
In the present approach;(t) =(¢“(t)) cannot vanish if

C#0, and should be dynamical. This fact gives a slight dif- h . ¢ . finds that th -
ference to the renormalization procedure from that of Ref ™0M the equation of motiof7) one finds that the mini-

[4]. The finite time-dependent mass becomes mum of the potential is given at the poigj determined by
V' A A c?
A A _ _ 2 R 2 R o >~
m2(t) = 12(t)+ 5 G%(1)+ 5 o(my(t) 0="q | “Wurt 5 U5 g 49
2 2 q:qv qu
A . . - -
Lo G(K,t)— Gy(k.t which signals that;, =0 cannot be a minimum of the poten-
ka[ (kD= Gulkt)] tial if C#0.
) _ Finally, let us examine the effective potential again after
=mg(t)+m*(t), (43)  integrating out the equation of motion fgwith nonzeroC.
Let us assume that the system is quasi-static so Ghat
therefore described by its vacuum value. Since the potential is diver-
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an

q

FIG. 2. The effective potential as a function@fDetaiIs of the

analysis forgpeay are the same afl] and gpn=—®2. At this
point g?=0.

gent atq=0, we define the renormalized mass gt q,
where the potential takes the minimum

2
Mg

M2

A
2_ 2 2 R
mg=purt+ Ap/205+ 322

mzIn (50)

By setting the arbitrary mass scaM=mg, we get m2R

A
:M§+ 7Rq3. Following the calculation of Stevenson, the

mass-square ratio=m?/ m§ is given by

x—1—§) =xInx,
K

wherex=3272/\g andq= 1677 (q%— q2)/m3]. The effec-
tive potential is, then, given by

(51)

K

2

64wV c
)= e 1)

4
R

V' (x,®)=

1
Inx+ =

)
X 2

(52

where®?=16m2g%/m3 andc=3272C/m3. Unlike the pre-
vious result(37), this potential in Fig. 2 has the symmetry
breaking form, due to th€%/®2 term, which comes frony
dynamics.

The presence of a symmetry breaking potential dug to

dynamics appears to be surprising. However, many authors

have been searching for a second order phase transition
the scalarg* theory in(3+1) dimensions through the study
of nonequilibrium dynamics. For example, the spinodal in-

PHYSICAL REVIEW D58, 085011 (2003

satz (6) cannot describe regions with>3. Therefore, we
cannot predict anything for>3. In this sense, more careful
study with the trial wave functional, which includes the re-
gion withy>3, is needed to clarify the issue of the existence
of symmetry breaking in the scalaf* theory in(3+1) di-
mensions. One of methods to considgr; 3, is to include
the excited states db) as suggested in Rdf12].

V. SUMMARY AND DISCUSSIONS

We have calculated the effective action of a self-
interacting scalar field in three and four dimensions with the
use of a quartic exponential wave-functional ansatz for the
zero mode. In(2+1) dimensions, we have calculated the
renormalized effective potential and action. It is shown that

the symmetry breaking occurs flsn‘mR>)A\c as in the Gauss-
ian case. The effective potential is dependent on the syape,
of the wave function of the zero mode, so that there is a
critical value,y., such that there is no symmetry breaking if
y>y.. Especially, ify=3 there is no symmetry breaking for
any value ofA/mg. The shape of the symmetry breaking
potential has a double well type of the first order transition.
If the renormalized mass is defined at finig,

(53

q=4ag

A A
mg=u?+ S ag+ Eka(k)

then the ratio of the mass for genegghnd the renormalized
mass is given by

2

=2 N | R}
e 16mmg || 167mg
b (@) i (54)
2”@ q qR

This definition allows the possibility that12|q:0s mﬁ, and

2 —
m?|g=q,,,, =0 at

. (55

If we setqg,,=0, we get the second order transition and
(M2)qi=m&+Amg/(87). The effective potential if2+1)
dimensions in this case becomes

3

AMmg A mg
V@y)=— 15— 2+ HYQL‘—E(\&—UZ
in
X| 24X+ 1+ T (56)

stability leads to a better understanding of the increase in the

correlation length leading to the possibility of symmetry
breaking[7,14] or the autonomous renormalization with the

This is a new possibility for thé2+1) dimensionaky* scalar
field theory since the center=0 of this potential is an un-

saddle-point approximation for the zero mode leads to symstable maxima now.

metry breakind13]. In this sense, the presence of the sym-

We also have calculated the renormalized effective action

metry breaking potential is not surprising, but more carefull'[q(t),y(t);G,II] and then the effective potenti&(q,y)
study is needed. The reason is that our wave-functional aras its static limit in(3+1) dimensions. Thg-dependent term

085011-7



H.-C. KIM AND J. H. YEE PHYSICAL REVIEW D68, 085011 (2003

in V(q,y) disappears after renormalization due to the renorform. To take this result seriously, however, we need more
malization condition\—0_, and it leads to the result that careful study since in our trial wave function@) y cannot
the symmetry breaking does not occur in four-dimensionatake values larger than 3.
¢* theory as in the case of the Gaussian approximation.

Sincey dependence decouples from the rest during the
renormalization process, one can integrate outytdgnam- ACKNOWLEDGMENTS
ics from the effective actiod’[q(t),y(t);G,II] to obtain a
new effective actionl''[q(t);G,I1] before one takes the This work was supported in part by Korea Research
static limit. The new effective potential’(q) obtained by Foundation under Project number KRF-2001-005-D2003
the static limit ofI"'[q(t);G,IT] has the symmetry breaking (H.-C.K. and J.H.Y.
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