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Transport coefficients from the two particle irreducible effective action

Gert Aarts and Jose M. Maniez Resco
Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
(Received 25 March 2003; published 22 October 2003

We show that the lowest nontrivial truncation of the two-particle irredudipi) effective action correctly
determines transport coefficients in a weak coupling br éxpansion at leadingogarithmio order in several
relativistic field theories. In particular, we consider a single real scalar field with cubic and quartic interactions
in the loop expansion, th®(N) model in the 2PI-IM expansion, and QED with single and many fermion
fields. Therefore, these truncations will provide a correct description, to ledduayithmig order, of the long
time behavior of these systems, i.e. the approach to equilibrium. This supports the promising results obtained
for the dynamics of quantum fields out of equilibrium using 2PI effective action techniques.
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INTRODUCTION diagrams to yield the correct result for transport coefficients
to leading (logarithmig order. This result provides strong
Recent developments in heavy-ion collisions and cosmolsupport for the applicability of truncations of the 2PI effec-
ogy have spurred the theoretical understanding of the dytive action to describe the equilibration of quantum fields.
namics of quantum fields out of equilibrium. In particular,
the thermalization of quantum fields is a subject of both fun- 2P| EFFECTIVE ACTION
damental and practical relevance. For quantum fields far .
from equilibrium, promising results have been obtained from "€ Kubo formula relates transport coefficients to the ex-
a systematic use of the two-particle irreducik®&Pl) effec- pectatlon.valllue of appropriate composite operators in ther-
tive action [1], formulated along the Schwinger-Keldysh Mal equilibrium(to be precise, to the imaginary part of re-
contour. While the basic formulation of this approach is wellfarded correlators at zero momentum and vanishing
known [2] (see Refs[3] for recent applications in equilib- frequency. The correlator we will be interested in here is
rium), the recent progress has been the numerical solution dherefore of the form
the resulting evolution equations for th@ne- angl two-point
functions w?thout any fur?her approximation. This allgws one (O(x)0(y)) ={O(x))(O(¥)), (1)
to go far from equilibrium and describe, e.g., the emergence

of quasiparticles in a completely self-consistent way. Thigvith O an operator bilinear in the fundamental fields. For

program has been carried out for a single scalar field Withexample, for _the shear V'SCOS'?(X): mij(x), where for a
quartic self-interactions using a three-loop expansionin 1 real scalar fieldw;; =0, Pdjp— 55ii‘9k¢‘9k¢'_a_nd for the
dimensiong 4], for the O(N) model using the 2PI- ex-  electrical conductivityO(x) =j'(x), with j'=¢y'¢f.
pansion[5] in 1+1 [6,7] and 3+1 dimensiong8], and re- We first demonstrate that the 2PI effective action gener-
cently also for a chirally invariant Yukawa model int3  ates precisely correlators of the forfh). We consider the
dimensions[9]. The (mostly numerical results obtained so case of a real fieldp, coupled to a bilinear sourc (the
far suggest that the lowest nontrivial truncation beyond theextension to fermions is straightforward’he path integral is
mean-field approximation is necessary and sufficient to de-
scribe in one formalism both the dynamics far from equilib- Z[K]:eiW[K]:j D¢ei[5[¢]+(1/2)¢i|<ij¢i] 2)
rium as well as the subsequent equilibration. '

A necessary requirement for any method to successfully
describe nonequilibrium field dynamics is that it encom-With S the classical action(We use a condensed notation
passes the correct long-time behavior. Close to equi|ibriumwhere latin indices summarize space-time as well as internal
the evolution of the system on long time and length scales i#dices, and integration and summation over repeated indices
characterized by transport coefficients, which have bee@re understoodlFor the application we discuss here it is not
computed at leading order in a weak coupling dd Bxpan- necessary to couple a source ¢oitself and we assume
sion[10-17. In order to assess the validity of truncations of throughout that(¢') vanishes. The 2PI effective action is
the 2Pl effective action, it is therefore crucial that transportdefined as the Legendre transform W, I'[G]=W[K]
coefficients obtained within the 2PI formalism agree, in the
weak coupling limit, with those results.

In this paper we show how the calculation of transport +
coefficients is organized in the framework of the 2Pl effec-
tive action. We then consider a variety of theories and show,
by comparing with results obtained previously, that trunca- FIG. 1. Expectation value of bilinear operatdback dots from
tions currently used in far-from-equilibrium applications in- the 2P!I effective action. The shaded square denotes the connected
clude in the weak coupling or large limit the appropriate  4-point function(with the external legs amputated
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FIG. 2. Integral equation for the 4-point function, derived from A
the 2Pl effective action.
/ ~ I

—3G'K;;, with SW[K]/8K;;=3G", and ST[G]/6G" = ,

_ %Kij . The two-point functionG' :<Tc¢'¢]> is the (con- _ FIG. A;] Zero- ;nd _one-lo_op sI;eIetor_\ ke_rnel from the contribu-
nected time-ordered two-point function along the contaur tons to the 2P effective action shown in Fig. 3.

in the complex-time plane. Our discussion will be general ) o ] o

and we do not need to specify the contour here; at any mds exact and applies out of equilibrium. The first derivative of
ment one may specialize to the Matsubara contour or th&[G] determines the gap equati@ *=G, '~ X in the ab-

= +1/2

ANMMNNANRAN
|
ANMINNANRANY

Schwinger-Keldysh contour. sence of sources. - .
In order to obtain a correlator of the for(t), we differ- To apply the Kubo formula, we specialize to a system in
entiateW twice with respect td: thermal equilibrium that is invariant under space-time trans-

, . lations. In momentum space, E@,) then reads
—;KW([SE] = [(Teti ¢ ¢0') G GH] L

1T ) - = 20\ @
'*(p,k)=A(p,k)+ 2qu(lo,q)G (@I (q,k). (7)

— I—[Gi:j;kl-f—Giijl +G”ij], (3)
4 The importance of using Eq7) in the renormalization of the
gap equation has been emphasized recéh8yl4. Equation
(7) is valid both in the imaginary time as well as in the
r?al—time formalism, where the 4-point function and kernel
Have a more complicated tensor structLis].
. . ) . We note that the 4-point function appears in the integral
x andk,| with y, is precisely of the fornfl) (see Fig. J'ij-.l;? equation with a particular momentum configuration: the mo-
prop_e:ed__ . furt,her, we remove the external legSc’ mentump (k) enters and leaves on the léfight) and the two
=G"'GI'GG"' T, .|, and concentrate on the 4-point intermediate propagators carry the same momenguifhis
vertex functionI’®. Note that in a theory with cubic inter- configuration suffers therefore from pinching poles: when
actionsI'® is not 1-particle irreducible. The vertex function the loop momentuny is nearly on-shell, the product of
obeys an integral equation that can be obtained using stapropagators is potentially very large and all terms in the lad-
dard functional relationgl]. It reads(see Fig. 2 der series may be equally important. This situation is pre-
cisely the one that appears in the diagrammatic evaluation of

whereGU*! is the usual connected 4-point functiésemi-
colons separate indices with a different origitWe note that
W does not generate connected Green functions, instead
generates a 4-point function which, after identifying with

1 e : : .
4) _ A A mm’ ~nn’ (4) transport coefficient§10]: computing transport coefficients
Tk = Aija+ ZA”?”‘“G G Loy @ diagrammatically amounts to studying an integral equation
_ of the type(7), specialized to the case that the external mo-
where the 4-point kernel follows from mentap andk as well as the internal momentuenare on-
shell[10,15.
03[ G] OI[G]
Aij;szLH, ij= T ©)
oG 6G LOOP EXPANSION
when the effective action is written %] As a first example, we consider a real scalar field with

cubic and quartic interactions,

i

_ -lc—

2TrGO (G—Gy)+TI',[G]. () 1 1L, 9, A
SZJ' 50,9 =M P =7 ¢ %t ®

Here,iG, ! is the free inverse propagator afig[ G] is the X ' '

sum of all 2Pl diagrams with no external legs and exact

propagators on the internal lines. We emphasize tha{4q.
—_— - SR A

FIG. 5. One-loop perturbative kernel from the 2P| effective ac-
FIG. 3. Contributions to the 2Pl effective action in the loop tion at two-loop order in a theory with cubic interactions. The
expansion up to three loops in a theory with cubic and quarticdashed line indicates how to cut the diagrams to make the connec-
interactions. tion with the scattering kernel in kinetic theory.

i
F[G]zzTrlnG*1+
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FIG. 8. Integral equation for the auxiliary correlar
FIG. 6. Contributions to the 2PI effective action in tl&N)
model in the 2P1-M expansion at LO and NLO. Only the firstfew ~ We conclude therefore that the 3-loop approximation of
diagrams at NLO are shown. the 2PI effective action is necessary and sufficient to yield
the leading-order result for the shear viscosity in a weakly

In the loop expansion foF,[G], we include terms up to Ccoupled scalar theory16].
three loops(see Fig. 3. The self-energy. is obtained by
cutting the diagrams once. Cutting the result once more O(N) MODEL

yields the kernelA in the integral equation for the 4-point We now consider a real scalii-component guantum

function (see Fig. 4. , a . ; r ) i
We now show that this truncation includes the physicsfleld ¢a (a=1,... N) with a classicalO(N)-invariant ac

. . . | 2
relevant for the leading-order result of the shear viscosity irfgoonpaenxdpgggirgﬁr%:mlrirgg‘gﬁé'\lz)é?_&f gz(p;alr?ssitoer??oo;éz(:
the weak-coupling limith ~(g/m)?<1. In order to do this, . ’ oo ; . ]
it is sufficient to show that Eq.7) includes all diagrams in to-leading ordeNLO), which is discussed in detail in Refs.

the appropriate kinematic configuration which are known to[5’6]' TheL%PI part NoEothe effective _aC“O” can be written as
contribute at leading orddgr0]. We therefore specialize to PAGI=TZ TG+ [Gl+ ..., with (see Fig. 6

on-shell momentag, k, and g, where the leading pinching- N

pole limit arises. One must then proceed to a careful analysis FEO[G]z - _f Gaa(X,X)Gpp(X,X), 9)

of all the possible perturbative contributions to the integral 4N Jx

equation from the kerneh(p,k). For example, the single
rung with a bare propagator does not contribute straightfor-
wardly due to kinematics, but it does when either it is iter-
ated in the integral equation to get a one-loop kernel or a
one-loop self-energy correction is included, as depicted iwhere B(X,y;G)= 6o(X—Y) + (iA6N) G p(X,Y) Gap(X,Y)
Fig. 5 (for detailed power-counting arguments, see Refsums bubblegwhich can be seen by re-expanding the loga-
[10]). In general, Eq(7) will contain contributions that are rithm). In this case the kernel rea¢see Fig. 7

subleading in the weak-coupling limit. For instance, the four _

final rungs in Fig. 4 can be seen as vertex corrections to the ALO = — 15 s 11
single rung and contribute at subleading order only. When abcd(PK)= 3N “abed: (12)
the result of the power-counting analysis of Rdf0] is car-

rieq over to this case, one finds _that the Ieading-order contri- AQ‘&?d(p,k): —[ 82864+ S2ddpc]D(P—k)

bution to the kernel can be written as 2an integral over an

effective scattering kernel |\+g“ Gg(s)+Gg(t) 2

+Gg(u)]|?, where we writes,t,u to indicate the contribu- +2quab(P_Q)D (q)Gea(k—a),

tions from the three scattering channels & denotes the

retarded Green’s function. This kernel is the square of the (12
sum of all 2-to-2 processes in a theory with cubic and quartic

. . 1
interactions, which establishes the connection with kineticWhere we used the auxiliary correlatdr=(iA/3N)B " to

theory [10]. It is instructive to see how this result is put sum the chain of bubblesee Fig. & D(p)=(iA/3N)[1

i =_1
together. Consider for a moment only the two-loop diagramJr l}_ﬁ]p) Dép)].t with If]t(hp)l_ 2quab(q)Gab(qu) d[ﬂ .
with cubic interactiongsee Fig. 5 The scattering kernel that € advantage of the largéexpansion employed here is

s Tom s Gt r6ucs cpiee egl1s) L alows o2 compuiaton of e et scosy o
9 |GR(S) |2+ |Gr(1)|2+|Gr(U)|?], i.e., the sum of the P

squares of the matrix elements, however, without interfer-smaII A. This is especially pressing for applications of the

ence terms. Indeed, it is easy to see that the interferenc(a(4) model to QCD phenomenology in which the coupling
terms originate from the 3-loop diagrams. constantx has to be taken large. As far as we know, such a

calculation of the shear viscosity has not yet been performed.
a) b) )

FIG. 9. Contributions to the 2Pl effective action in QED in the
FIG. 7. Integral equation for the 4-point function in the 2PIN1/ loop expansion with{a) 2 and(b) 3 loops or in the 2PI-N expan-
expansion of th@(N) model at NLO. sion at(a) NLO and(b,c) NNLO.

rYerel= IETrIn B(G), (10
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FIG. 11. One-loop perturbative kernel in the 2-loop approxima-
tion in QED. In the 1N expansion, the first and the fourth diagrams
dominate.

Fig. 11, the other contributions are suppressed Y. T’he
photon propagator still resums fermion bubbles and is in fact
similar to the auxiliary correlator in th@(N) model. Cutting
the first and fourth diagrams as in Fig. 5 shows that they
FIG. 10. Integral equations for the 4-point functions in QED atcorrespond to Coulomb scattering in all three channels,
2-loop order in the loop or at NLO in the M/expansion. which are indeed12] the dominant processes in a kinetic
theory with many fermions. We conclude that the 2PN-1/
The integral equation derived here provides a conveniengxpansion in QED witiN fermions at NLO would yield the
starting point for that and work in this direction is currently correct leading-order result for the shear viscosity and elec-
underway[17]. trical conductivity.

QED SUMMARY

As a last example we consider QED. Although for gauge We have shown how the calculation of transport coeffi-
theories there are a number of issues related to the gauggents is organized in the framework of the 2PI effective
symmetry(dependence on the gauge-fixing paraméié, action. For a variety of models, we have discussed the first
Ward identities[19]) which have not been resolved com- nontrivial truncations in a weak coupling orNLlexpansion
pletely, we think it is nevertheless worth analyzing to whatand found that these truncations yield ladder integral equa-
accuracy transport coefficients can be expected to be contions with the particular kinematic configuration and rungs
puted within a specific truncation of the 2P| effective action.appropriate to obtain transport coefficients at leadioga-

In the loop expansiofisee Fig. 9, we restrict the discus- rithmic) order in the weak coupling or I/ expansion. This
sion to the 2-loop approximation. The corresponding integraformulation offers therefore a systematic starting point for
equations are shown in Fig. 10. In order to analyze whathe derivation of these integral equations. Methods for the
processes are included in the weak-coupling limit, we followactual solution of the integral equatioria topic not dis-
the strategy of the scalar theory and rewrite the integral equazussed hepecan be found in the literature.
tion such that the external momenta are on-shell. The pos- In the wider context of nonequilibrium quantum field
sible one-loop contributions to the kernel are shown in Figtheory, our findings provide theoretical support for the suc-
11. This kernel contains the sum of the squares of all 2-to-2Zessful description of quantum fields out of equilibrium us-
processes, but not the interference terms. Indeed, it is thieg truncations of the 2Pl effective action, which are cur-
3-loop diagram that is responsible for interference. Using theently actively under investigation. We would like to
results from the diagrammatic analy$®0], we find that, in  emphasize that any scheme which aspires to properly de-
order to determine the shear viscosity and the electrical corscribe the nonequilibrium evolution and ensuing thermaliza-
ductivity to leading-logarithmic order, only the first two tion of a system has to render transport coefficients correctly.
rungs in Fig. 11 need to be considered, with the momentum
flowing through the rung being soft and below the light cone.
We conclude that the integral equations in the 2-loop ap-
proximation sum the necessary diagrai26,21] to obtain Discussions with E. Braaten, U. Heinz, G. Moore, E. Mot-
the shear viscosity and electrical conductivity in QED totola and A. Schwenk are gratefully acknowledged. This work
leading-logarithmic order. was supported by the DOHContract No. DE-FGO02-

Finally, we consider QED witiN identical fermions and a 01ER41190 the Basque Government and in part by the
rescaled coupling®?— e?/N in the largeN limit (see Fig. 9.  Spanish Science MinistryGrant FPA 2002-02037and the
We consider only the NLO contribution. In this case theUniversity of the Basque CountrgGrant UPV00172.310-
kernel is dominated by the first and the fourth diagrams in14497/2002
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