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Transport coefficients from the two particle irreducible effective action

Gert Aarts and Jose M. Martı´nez Resco
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~Received 25 March 2003; published 22 October 2003!

We show that the lowest nontrivial truncation of the two-particle irreducible~2PI! effective action correctly
determines transport coefficients in a weak coupling or 1/N expansion at leading~logarithmic! order in several
relativistic field theories. In particular, we consider a single real scalar field with cubic and quartic interactions
in the loop expansion, theO(N) model in the 2PI-1/N expansion, and QED with single and many fermion
fields. Therefore, these truncations will provide a correct description, to leading~logarithmic! order, of the long
time behavior of these systems, i.e. the approach to equilibrium. This supports the promising results obtained
for the dynamics of quantum fields out of equilibrium using 2PI effective action techniques.
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INTRODUCTION

Recent developments in heavy-ion collisions and cosm
ogy have spurred the theoretical understanding of the
namics of quantum fields out of equilibrium. In particula
the thermalization of quantum fields is a subject of both fu
damental and practical relevance. For quantum fields
from equilibrium, promising results have been obtained fr
a systematic use of the two-particle irreducible~2PI! effec-
tive action @1#, formulated along the Schwinger-Keldys
contour. While the basic formulation of this approach is w
known @2# ~see Refs.@3# for recent applications in equilib
rium!, the recent progress has been the numerical solutio
the resulting evolution equations for the~one- and! two-point
functions without any further approximation. This allows o
to go far from equilibrium and describe, e.g., the emerge
of quasiparticles in a completely self-consistent way. T
program has been carried out for a single scalar field w
quartic self-interactions using a three-loop expansion in 111
dimensions@4#, for the O(N) model using the 2PI–1/N ex-
pansion@5# in 111 @6,7# and 311 dimensions@8#, and re-
cently also for a chirally invariant Yukawa model in 311
dimensions@9#. The ~mostly numerical! results obtained so
far suggest that the lowest nontrivial truncation beyond
mean-field approximation is necessary and sufficient to
scribe in one formalism both the dynamics far from equil
rium as well as the subsequent equilibration.

A necessary requirement for any method to successf
describe nonequilibrium field dynamics is that it enco
passes the correct long-time behavior. Close to equilibri
the evolution of the system on long time and length scale
characterized by transport coefficients, which have b
computed at leading order in a weak coupling or 1/N expan-
sion @10–12#. In order to assess the validity of truncations
the 2PI effective action, it is therefore crucial that transp
coefficients obtained within the 2PI formalism agree, in t
weak coupling limit, with those results.

In this paper we show how the calculation of transp
coefficients is organized in the framework of the 2PI effe
tive action. We then consider a variety of theories and sh
by comparing with results obtained previously, that trun
tions currently used in far-from-equilibrium applications i
clude in the weak coupling or largeN limit the appropriate
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diagrams to yield the correct result for transport coefficie
to leading ~logarithmic! order. This result provides stron
support for the applicability of truncations of the 2PI effe
tive action to describe the equilibration of quantum fields

2PI EFFECTIVE ACTION

The Kubo formula relates transport coefficients to the
pectation value of appropriate composite operators in th
mal equilibrium~to be precise, to the imaginary part of re
tarded correlators at zero momentum and vanish
frequency!. The correlator we will be interested in here
therefore of the form

^O~x!O~y!&2^O~x!&^O~y!&, ~1!

with O an operator bilinear in the fundamental fields. F
example, for the shear viscosityO(x)5p i j (x), where for a
real scalar fieldp i j 5] if] jf2 1

3 d i j ]kf]kf, and for the
electrical conductivityO(x)5 j i(x), with j i5c̄g ic.

We first demonstrate that the 2PI effective action gen
ates precisely correlators of the form~1!. We consider the
case of a real fieldf, coupled to a bilinear sourceK ~the
extension to fermions is straightforward!. The path integral is

Z@K#5eiW[K]5E Dfei [S[f] 1(1/2)f iKi j f
j ] , ~2!

with S the classical action.~We use a condensed notatio
where latin indices summarize space-time as well as inte
indices, and integration and summation over repeated ind
are understood.! For the application we discuss here it is n
necessary to couple a source tof itself and we assume
throughout that̂ f i& vanishes. The 2PI effective action
defined as the Legendre transform ofW, G@G#5W@K#

+

FIG. 1. Expectation value of bilinear operators~black dots! from
the 2PI effective action. The shaded square denotes the conn
4-point function~with the external legs amputated!.
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21
2G

ijKij , with dW@K#/dKi j 5
1
2 Gi j , and dG@G#/dGi j 5

2 1
2 Ki j . The two-point functionGi j 5^TCf if j& is the ~con-

nected! time-ordered two-point function along the contourC
in the complex-time plane. Our discussion will be gene
and we do not need to specify the contour here; at any
ment one may specialize to the Matsubara contour or
Schwinger-Keldysh contour.

In order to obtain a correlator of the form~1!, we differ-
entiateW twice with respect toK:

d2W@K#

dKi j dKkl
5

i

4
@^TCf if jfkf l&2Gi j Gkl#

5
i

4
@Gc

i j ;kl1GikGjl 1Gil Gjk#, ~3!

whereGc
i j ;kl is the usual connected 4-point function~semi-

colons separate indices with a different origin!. We note that
W does not generate connected Green functions, inste
generates a 4-point function which, after identifyingi , j with
x andk,l with y, is precisely of the form~1! ~see Fig. 1!. To
proceed further we remove the external legs,Gc

i j ;kl

5Gii 8Gj j 8Gkk8Gll 8G i 8 j 8;k8 l 8
(4) , and concentrate on the 4-poin

vertex functionG (4). Note that in a theory with cubic inter
actionsG (4) is not 1-particle irreducible. The vertex functio
obeys an integral equation that can be obtained using s
dard functional relations@1#. It reads~see Fig. 2!

G i j ;kl
(4) 5L i j ;kl1

1

2
L i j ;mnG

mm8Gnn8Gm8n8;kl
(4) , ~4!

where the 4-point kernel follows from

L i j ;kl52
dS i j @G#

dGkl
, S i j 52i

dG2@G#

dGi j
, ~5!

when the effective action is written as@1#

G@G#5
i

2
Tr ln G211

i

2
Tr G0

21~G2G0!1G2@G#. ~6!

Here, iG0
21 is the free inverse propagator andG2@G# is the

sum of all 2PI diagrams with no external legs and ex
propagators on the internal lines. We emphasize that Eq~4!

1/2+=

FIG. 2. Integral equation for the 4-point function, derived fro
the 2PI effective action.

FIG. 3. Contributions to the 2PI effective action in the loo
expansion up to three loops in a theory with cubic and qua
interactions.
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is exact and applies out of equilibrium. The first derivative
G@G# determines the gap equationG215G0

212S in the ab-
sence of sources.

To apply the Kubo formula, we specialize to a system
thermal equilibrium that is invariant under space-time tra
lations. In momentum space, Eq.~4! then reads

G (4)~p,k!5L~p,k!1
1

2Eq
L~p,q!G2~q!G (4)~q,k!. ~7!

The importance of using Eq.~7! in the renormalization of the
gap equation has been emphasized recently@13,14#. Equation
~7! is valid both in the imaginary time as well as in th
real-time formalism, where the 4-point function and kern
have a more complicated tensor structure@15#.

We note that the 4-point function appears in the integ
equation with a particular momentum configuration: the m
mentump ~k! enters and leaves on the left~right! and the two
intermediate propagators carry the same momentumq. This
configuration suffers therefore from pinching poles: wh
the loop momentumq is nearly on-shell, the product o
propagators is potentially very large and all terms in the l
der series may be equally important. This situation is p
cisely the one that appears in the diagrammatic evaluatio
transport coefficients@10#: computing transport coefficient
diagrammatically amounts to studying an integral equat
of the type~7!, specialized to the case that the external m
mentap and k as well as the internal momentumq are on-
shell @10,15#.

LOOP EXPANSION

As a first example, we consider a real scalar field w
cubic and quartic interactions,

S5E
x
F1

2
~]mf!22

1

2
m2f22

g

3!
f32

l

4!
f4G . ~8!

c

FIG. 4. Zero- and one-loop skeleton kernel from the contrib
tions to the 2PI effective action shown in Fig. 3.

FIG. 5. One-loop perturbative kernel from the 2PI effective a
tion at two-loop order in a theory with cubic interactions. Th
dashed line indicates how to cut the diagrams to make the con
tion with the scattering kernel in kinetic theory.
9-2
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In the loop expansion forG2@G#, we include terms up to
three loops~see Fig. 3!. The self-energyS is obtained by
cutting the diagrams once. Cutting the result once m
yields the kernelL in the integral equation for the 4-poin
function ~see Fig. 4!.

We now show that this truncation includes the phys
relevant for the leading-order result of the shear viscosity
the weak-coupling limit,l;(g/m)2!1. In order to do this,
it is sufficient to show that Eq.~7! includes all diagrams in
the appropriate kinematic configuration which are known
contribute at leading order@10#. We therefore specialize to
on-shell momentap, k, and q, where the leading pinching
pole limit arises. One must then proceed to a careful anal
of all the possible perturbative contributions to the integ
equation from the kernelL(p,k). For example, the single
rung with a bare propagator does not contribute straight
wardly due to kinematics, but it does when either it is it
ated in the integral equation to get a one-loop kernel o
one-loop self-energy correction is included, as depicted
Fig. 5 ~for detailed power-counting arguments, see R
@10#!. In general, Eq.~7! will contain contributions that are
subleading in the weak-coupling limit. For instance, the fo
final rungs in Fig. 4 can be seen as vertex corrections to
single rung and contribute at subleading order only. Wh
the result of the power-counting analysis of Ref.@10# is car-
ried over to this case, one finds that the leading-order con
bution to the kernel can be written as an integral over
effective scattering kernel ul1g2@GR(s)1GR(t)
1GR(u)#u2, where we writes,t,u to indicate the contribu-
tions from the three scattering channels andGR denotes the
retarded Green’s function. This kernel is the square of
sum of all 2-to-2 processes in a theory with cubic and qua
interactions, which establishes the connection with kine
theory @10#. It is instructive to see how this result is pu
together. Consider for a moment only the two-loop diagr
with cubic interactions~see Fig. 5!. The scattering kernel tha
arises from this diagram reads explicitly~see, e.g.@15#!:
g4@ uGR(s)u21uGR(t)u21uGR(u)u2#, i.e., the sum of the
squares of the matrix elements, however, without inter
ence terms. Indeed, it is easy to see that the interfere
terms originate from the 3-loop diagrams.

FIG. 6. Contributions to the 2PI effective action in theO(N)
model in the 2PI–1/N expansion at LO and NLO. Only the first few
diagrams at NLO are shown.

1/2+

1/2+ 1/2+

+= +

FIG. 7. Integral equation for the 4-point function in the 2PI–1N
expansion of theO(N) model at NLO.
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We conclude therefore that the 3-loop approximation
the 2PI effective action is necessary and sufficient to yi
the leading-order result for the shear viscosity in a wea
coupled scalar theory@16#.

O„N… MODEL

We now consider a real scalarN-component quantum
field fa (a51, . . . ,N) with a classicalO(N)-invariant ac-
tion and an interaction term (l/4!N)(fafa)2. Instead of the
loop expansion, we will use the 2PI–1/N expansion to next-
to-leading order~NLO!, which is discussed in detail in Refs
@5,6#. The 2PI part of the effective action can be written
G2@G#5G2

LO@G#1G2
NLO@G#1 . . . , with ~see Fig. 6!

G2
LO@G#52

l

4!NEx
Gaa~x,x!Gbb~x,x!, ~9!

G2
NLO@G#5

i

2
Tr ln B~G!, ~10!

where B(x,y;G)5dC(x2y)1( il/6N)Gab(x,y)Gab(x,y)
sums bubbles~which can be seen by re-expanding the log
rithm!. In this case the kernel reads~see Fig. 7!

Lab;cd
LO ~p,k!52

il

3N
dabdcd , ~11!

Lab;cd
NLO ~p,k!52@dacdbd1daddbc#D~p2k!

12E
q
Gab~p2q!D2~q!Gcd~k2q!,

~12!

where we used the auxiliary correlatorD5( il/3N)B21 to
sum the chain of bubbles~see Fig. 8!: D(p)5( il/3N)@1
1P(p)D(p)#, with P(p)52 1

2 *qGab(q)Gab(p1q) @5#.
The advantage of the largeN expansion employed here i

that it allows for a computation of the shear viscosity to fi
nontrivial order in the 1/N expansionwithouta restriction to
small l. This is especially pressing for applications of th
O(4) model to QCD phenomenology in which the couplin
constantl has to be taken large. As far as we know, suc
calculation of the shear viscosity has not yet been perform

= +

FIG. 8. Integral equation for the auxiliary correlatorD.

a) b) c)

FIG. 9. Contributions to the 2PI effective action in QED in th
loop expansion with~a! 2 and~b! 3 loops or in the 2PI-1/N expan-
sion at~a! NLO and ~b,c! NNLO.
9-3
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The integral equation derived here provides a conven
starting point for that and work in this direction is current
underway@17#.

QED

As a last example we consider QED. Although for gau
theories there are a number of issues related to the g
symmetry~dependence on the gauge-fixing parameter@18#,
Ward identities@19#! which have not been resolved com
pletely, we think it is nevertheless worth analyzing to wh
accuracy transport coefficients can be expected to be c
puted within a specific truncation of the 2PI effective actio

In the loop expansion~see Fig. 9!, we restrict the discus
sion to the 2-loop approximation. The corresponding integ
equations are shown in Fig. 10. In order to analyze w
processes are included in the weak-coupling limit, we foll
the strategy of the scalar theory and rewrite the integral eq
tion such that the external momenta are on-shell. The p
sible one-loop contributions to the kernel are shown in F
11. This kernel contains the sum of the squares of all 2-t
processes, but not the interference terms. Indeed, it is
3-loop diagram that is responsible for interference. Using
results from the diagrammatic analysis@20#, we find that, in
order to determine the shear viscosity and the electrical c
ductivity to leading-logarithmic order, only the first tw
rungs in Fig. 11 need to be considered, with the momen
flowing through the rung being soft and below the light con
We conclude that the integral equations in the 2-loop
proximation sum the necessary diagrams@20,21# to obtain
the shear viscosity and electrical conductivity in QED
leading-logarithmic order.

Finally, we consider QED withN identical fermions and a
rescaled couplinge2→e2/N in the largeN limit ~see Fig. 9!.
We consider only the NLO contribution. In this case t
kernel is dominated by the first and the fourth diagrams

 

 

 1/2+

 1/2+

=

=

=

=

FIG. 10. Integral equations for the 4-point functions in QED
2-loop order in the loop or at NLO in the 1/N expansion.
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Fig. 11, the other contributions are suppressed by 1/N. The
photon propagator still resums fermion bubbles and is in f
similar to the auxiliary correlator in theO(N) model. Cutting
the first and fourth diagrams as in Fig. 5 shows that th
correspond to Coulomb scattering in all three chann
which are indeed@12# the dominant processes in a kinet
theory with many fermions. We conclude that the 2PI–1N
expansion in QED withN fermions at NLO would yield the
correct leading-order result for the shear viscosity and e
trical conductivity.

SUMMARY

We have shown how the calculation of transport coe
cients is organized in the framework of the 2PI effecti
action. For a variety of models, we have discussed the
nontrivial truncations in a weak coupling or 1/N expansion
and found that these truncations yield ladder integral eq
tions with the particular kinematic configuration and run
appropriate to obtain transport coefficients at leading~loga-
rithmic! order in the weak coupling or 1/N expansion. This
formulation offers therefore a systematic starting point
the derivation of these integral equations. Methods for
actual solution of the integral equations~a topic not dis-
cussed here! can be found in the literature.

In the wider context of nonequilibrium quantum fie
theory, our findings provide theoretical support for the su
cessful description of quantum fields out of equilibrium u
ing truncations of the 2PI effective action, which are cu
rently actively under investigation. We would like t
emphasize that any scheme which aspires to properly
scribe the nonequilibrium evolution and ensuing thermali
tion of a system has to render transport coefficients correc
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FIG. 11. One-loop perturbative kernel in the 2-loop approxim
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