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N=2 super Yang-Mills action as a Becchi-Rouet-Stora-Tyutin term,
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By constructing a nilpotent extended Becchi-Rouet-Stora-Ty(RIRST) operatorgthat involves theN
=2 global supersymmetry transformations of one chirality, we show that the staNdagdoff-shell super
Yang-Mills action can be represented as an exact BRST sdrmif the gauge fermionV is allowed to depend
on the inverse powers of supersymmet8USY) ghosts. By using this nonanalytical structure of the gauge
fermion (via inverse powers of supersymmetry ghgstee give field redefinitions in terms of composite fields
of SUSY ghosts andN=2 fields and we show that Witten’s topological Yang-Mi(lEYM) theory can be
obtained from the ordinary Euclideai=2 super Yang-Mills(SYM) theory directly by using such field
redefinitions. In other words, TYM theory is obtained as a change of varidhlitsout twisting. As a
consequence it is found that physical and topological interpretatioMé=a2 SYM theory are intertwined
together due to the requirement of analyticity of global SUSY ghosts. Moreover, after an instanton-inspired
truncation of the model is used, we show that the given field redefinitions yield the Baulieu-Singer formulation
of topological Yang-Mills theory.
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[. INTRODUCTION that the twisting procedure can be thought of as variable
redefinitions in flat space-time.
N=2 super Yang-Mills(SYM) theory has been exten- However, up to now no explicit variable redefinitions

sively studied in recent years after the work of Seiberg andhave been given in order to obtain the topological theory. For
Witten [1], in which a self-consistent nonperturbative effec-instance, even if the twist can be considered as a linear
tive action was calculated by using certéinsdzedictated change of variables, after twisting, the physical interpretation
by physical intuition. This solution is unique]. of some fields changes, i.e., some become ghosts or antig-
After this seminal papefl], one of the main areas of hosts. The dimensions of the topological fields are also dif-
research ilMN=2 SYM theory has been to calculate directly ferent from their untwisted counterparts.
the multi-instanton contributions to the holomorphic prepo- Our main aim in this paper is to derive explicit field re-
tential and consequently to check the correctness of the ralefinitions in order to obtain the topological fields with cor-
sults of [1]. These multi-instanton contributions are calcu-rect dimensionality and ghost number. The strategy that we
lated in a pioneering work3] for one and two instantons by follow is to use the extension of the BRST formaligaiso
using a semiclassical expansion arowpproximatesaddle called the BV or field-antifield formalisifil4,15) to include
points of the actiofi3].! The results are found to be in agree- global supersymmetrySUSY) [16—18.2 By using this for-
ment with those of1]. (For a self-contained review, see Ref. malism we show that the=2 SYM action can be written as
[6].) However, a natural question was posed by several rean exact term and both of the formulations of TYM theory
searchers: how could it be possible that an approximate agjiven by Witten[9] and Baulieu and Singeil0] can be
proach gives an exact result and what was the mechanisgbtained as a change of variables without twisting.
behind it[7]? The paper is organized as follows. In Sec. Il, we review
In order to get an answer to the above questions, in Rebriefly how to include SUSY in an extended BRST operator.
[8] the instanton calculus was performed in the framework ofSince the actions of SYM theories can be represented as
topological Yang-Mills(TYM) theory and it was found that chiral (or antichira) multiple supervariations of lower di-
the results are the same as that of ttalitional instanton  mensional gauge invariant field polynomigld, 12, in Sec.

calculus off3]. As noted in[8], the underlying fact of this || we construct a nilpotent extended BRST operatan the
result is that the action of TYM theory, which can be ob-fig|q space that only contains the chiral part of tKe-2

taiped as a twist of.ordinaryI=2 SYM theory[9], can be gysy as a global symmetry in addition to gauge symme-
written as a Becchi-Rouet-Stora-TyutiBRST) exact term

[10] and the functional integration over the antifields of the
topolog?cal theory gives the same field Configurati_ons of the 2Such an extension of BRST transformations that includes rigid
constrained instantons of the ordinary theory without anygymmetries is first introduced if19]. The problem of how to ex-
approximation. Therefore, the authors of R@ have noted  teng the BRST formalism to include arbitrary global symmetries
can be found in Ref.20].
3For a similar approach of constructiti=1 globally and locally
*Email address: kulker@gursey.gov.tr supersymmetric actions and also for the discussion of anomalies,
10ne instanton contribution is also calculated 4n5). see[13].
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tries. It is then straightforward to find an expression as a s=so—i§‘Q-—iE§—in“a (4)
gauge fermiorof which the full off-shellN=2 action is its ' ' w

BRST (s) variation under some conditions in Minkowski .o So is the ordinary BRST transformation§, Q' are

space. !n Se_c. IV, we give a Euchdegn f‘?’fm“'at'or_‘ .O.f thechiral and antichiral parts oN=2 SUSY transformations,
result given in Sec. Ill in order to derive field redefinitions e . .
and¢'“, &, , and gy, are the constant commuting chiral- an-

by comparing the EuclideaN=2 SYM action written as an ¢ hiral SUSY ah d . . . .

exact term and the topological theory. We demonstrate exiC 'r? ) hg OSts an c_:or:stalgt magmarg antlcommutlngf

plicitly that Witten’s topological Yang-Mills theory can be transiation ghost, respectlve y. Note that the parameters o
the global transformations are promoted to the status of con-

obtained from the ordinary Euclidedt~=2 SYM theory di- h d their G it is oh d h
rectly by using such field redefinitions. In Sec. V, by using an>t@nt ghosts, and their Grassmann parity is changed so that

instanton- inspired truncation of the model given by Zuminogl)en extended transformatiaris a homogeneous transforma-

[25], we also show how to obtain the approach of Baulieu-"-_ )
Singer of TYM theory with the help of field redefinitions. The extended BRST transformations on the elements of

Finally, Sec. VI is devoted to concluding remarks. the N=2 vector multiplet read ds

B sA,=D,c+é&o N +Ea,Ni—in"d,A,, (5
II. N=2 SYM THEORY AND EXTENDED

BRST TRANSFORMATIONS : S
shi=i{c, N} —io* EF,, +E[ b 0]
N=2 SYM theory is a rather old and well studied theory. i =P
In this work, we will study the off-shell formulation of the —\20 ED o+ & D—in®d N, (6)
theory given in26,27] by using the conventions §28]. The
action of the theory is given in Minkowski space as sﬁ=i{cf}—i;“VEFM—?[gb,dﬁ]
. 1 o —\20#¢D ,¢"— &7 - D—in*a,\, @)
SN:2=—2Trf d4x< - ZFM,,F’“’—i)\'lZ))\ivL(ﬁDMD“cﬁT _
9 sp=ilc,¢]=iV2EN =i n"d, 0, ®)
V2 S S T -
~ 7 (MMM 4D so=i[c, ¢ =i V28N i 79,4, ©)
_%[d,'d,f]z%ﬁﬁ), ) sD=i[c,D]+il(&DN— DN+ V2E [N}, ¢']
—\2&[N,¢1)—in*a,D. (10)

where the gauge field,, and the scalar fields, ¢' are
singlets, the Weyl spinors;, T& are doublets, and the aux-
iliary field Disa triplet under th&&U(2)g symmetry group. s2=0. (11)
These fields are members of =2 vector multiplet V

=(A,,#,¢" o\, D) [26,27. The SU(2)g indices of The Fadeev-Popov ghost field and the global ghosts are re-

On the other hand, in order to get a nilpotent

the spinors are raised and lowered due to quired to transform as
)\' 5'1)\1-, )\i—)\]gji, (2) sc= E{C’C}_Zigio,,uglAM_\/§§i§I¢T
N=EN, A=\ El, &) —\28¢&¢—inta,c, (12)
where the antisymmetric tensét! is given a8 sn,=—280,&, (13
Ei=EP=—Ey=—E2=1. s&=s&=0. (14)

The extension of the BRST transformations with the glo- Note that with the help of extra terms 8t, the charac-

bal N=2 SUSY and translation Symmetry was first given in teristic Complication that SUSY algebra is modified by field-
Ref.[17], dependent gauge transformations is solved, whereas the clo-

sure on translations disappears due to inclusion of translation

“Note that in our convention th@'l is different than the ones, 4,
used for spinor indices. Here, 7's are Pauli spin matrices.
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TABLE I. DimensionsD, Grassmann parity GP, ghost number

Gh, andR weights of the fields and ghosts. STu= S =5 =0. (25)

A ¢ ¢ N N B ¢ & g o _ _
Sinces contains gauge transformations and chiral SUSY

D 1 1 1 32 32 2 0 -12 -12 -1  and the action is gauge invariant, it is straightforward to
Gh 0 0 0 0 0 0 1 1 1 1 assume that the action can be written also as exact term

R 0 -2 2 -1 1 0 0 -1 1 0 of a gauge invariant field polynomial which is independent
GP 0 0 0 1 1 0 1 0 0 1

of Fadeev-Popov ghost fields,

ghosts. We summarize the dimension, ghost number, and the
R charges of the fields and ghosts in Table I. =SV, (26)
. N=2 SYM ACTION AS AN EXACT TERM

It is known from cohomological arguments that the ac-
tions of SYM theories can be represented as clialanti- It is clear that¥, the so-called gauge fermion in the BV
chiral) multiple supervariations of lower dimensional gaugeformalism, has a negative ghost number, ®h¢ —1.
invariant field polynomial§11,12. For instanceN=2 SYM  However, since no fields with negative ghost number have
action can be written as a fourfold chiral SUSY transforma-been introduced and since we have chosen the gauge fermion
tion of Tr ¢? in component formalism of SUSY. to be free of Fadeev-Popov ghosts, the only way to assign a

On the other hand, from the definition sft is still pos-  negative ghost number ¥ is to choosel' to depend on the
sible to derive another nilpotent operator by using a suitabl@egative powers of the global SUSY ghosts. In other words,
filtration of global ghosts. We choose this filtration to be  ihe action can be written as an exacterm only if the

5 extended BRST operatar is defined on the space of field
polynomials that are not necessarily analytic in constant
ghosts.

Therefore, a further assumption to assign a negative ghost
g= 2 s [NsM]=nsM, (15) number toW is to choose a gauge fermion that has the fol-
lowing form:

N=Fm
_glaagA

la

+7]’u5—7],u,

so that the zeroth order in the above expansion is an operator
that includes ordinary BRST and chiral SUSY on the space
of the fields of theN=2 vector multiplet, 1

/P —
&é

fi J' d4Xlr//i ’ (27)
s=50=5,-1¢'Q;, (16)

which is also nilpotent, . : : . .
P where (" is a dimension 7/2 fermion that is made from the

$2=0. (17) fields of theN=2 vector multiplet. The most general such
gauge fermion that is covariant in its Lorentz, spinor, and
The s transformations of the fields are now given as SU(2)g indices is easy to find,
SA,=D,C+&o,\, (18)
1 . s N
_ . - - 4 ) t .
shi=i{e N} —ic* EF ,, tE[ .01+ 7€ D, V= fkfkTrf d{(kig'Ni[ ¢, 6]+ k€' 1IN D
(19
_ _ _ + ka8 *NF K pEDN))}. (28)
SN=i{c N} —204£D 4, (20) ° S '
s¢=ifc,¢]—i \/Egiw’ (22) Herek’s are constants. In order that tevariation of ¥ to
— . be free of chiral ghosts, after some algebra it is seen that
s¢'=i[c,¢'], (22 constantk should be fixed and as a result
sD=i[c,D]+i7(&DN +2& [N, 1), (23)

8In other words, we assume that the action can be chosen to be a

— i . . o — :
sc=—{c,c\—\2&E o 24 trivial element of equivariant conomology sf See, for instance,
2{ } \/—g'g ¢ 24) Refs.[21-23 and references therein.
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?qr—?iTr d*x 1gix-[ *]—Egi *Jx--ﬁ—i—gi KU\ F +E EDN; (29)
- gkgk 2 i ¢1¢ 2 Tj | 2 o it v 2 ¢ i ’
4 1 v I 2% N T I\/E T NI
=Tr | d%| = ZF = g e F Py, —INDN + 6D, D T~ == (NN, 6T+ NTN 6])

1 1. .
—§[¢,¢T]2+ ED'D)

is found. This expression is exactly the actidn of N=2
SYM theory with a topological term“”“’FWF)\p,

1 —
In=2= 7 IM[Y(s¥)]

0
=Sy_o— ETrJ d*xe*"™F , Fy,, (31

where Y is the complex coupling constan,= (i4m/g?)
+(6/27).

One can argue that the action written in this form is ob-

(30

show that TYM action can be written as a BRST-exact term
up to some field redefinitio4.0]. Therefore, TYM theory is
called a topological theory of cohomological type and it is
natural to look for an analogy between the results of the
previous section and TYM theory by rewriting the results of
the previous section in Euclidean space.

However, before formulating the results of Sec. Il in Eu-
clidean space, we find it useful to clarify our approach to
EuclideanN=2 SYM theory. First of all, obviously in Eu-
clidean space the chiral and antichiral spinors are not related
with each other. Nevertheless, it is still possible to find con-
sistent reality conditions for the spinors of extended super-

vious since the action can be obtained by applying all fousymmetry[30]. We will take these reality conditions in our

supersymmetry transformations to the prepotentiatpr
However, it has important consequences.

First of all, the operatos is strictly nilpotent. It is a well
known fact that the cohomology of the complete operator

conventions as

(N T=ie€ N, (N9 T=ie e NP (32

given in Eq.(4), is isomorphic to a subspace of the cohomol-On the other hand, since the spinors of different chirality are
ogy of s, sinces is obtained after using a suitable filtration of independent of each other and since supersymmetry is mani-
s (see, for instancd,24,21]). If the functional space is de- fest, it is clear that one should also consider the complex
fined to be the polynomials of the fields that are not necesscalar field¢ and its Hermitean conjugateé’ defined in
sarily analytic in the constant ghosgs, as is shown above, Minkowski space as independent fields from each other in
the action belongs to the trivial cohomology ©fnd there- Euclidean space. Indeed, this somehow unusual treatment
fore to that of the complete operatsr appears naturally if one defines a continuous Wick rotations

Second, the above nonanalyticity argument plays an imt0 Euclidean spacg31]: pseudoscalar fiel® where ¢=A
portant role in obtaining the topological Yang-Mills theory *+iB goes over intdBg in Euclidean space, i.e., Euclidean
from EuclideanN=2 SYM theory by identifying the topo- scalar fields becomég=Ag+ B and¢f=Ac—Bc. By ap-
logical fields with certain functions of fields and SUSY plying the above-mentioned continuous Wick rotationNo
ghosts ofN=2 SYM theory(which are also partly nonana- =2 SYM theory in Minkowski space, one geft31] the N
lytic &'s). These points will be clarified in the next sections. =2 supersymmetric Euclidean theory that is constructed by
Zumino [25]. Note that corresponding action in Euclidean
space is Hermitean.

Following the above remarks, we perforn{@ntinuous
Wick rotation to formulate the results of the previous section
in Euclidean space, i.e., Minkowskian vector quantites

=°%v), ©=0,1,2,3 become Euclidean onesv,,
=(J,iu°), ©n=1,2,3,4 and Euclidean sigma matrices are
aken a®,,, = (i7,1) ande%“=(—ir,1). We will also take

he gauge field anti-Hermitean rather than Hermitean in or-
der to follow the instanton literatufeand to avoid confusion
we will denote Euclidean scalar fields &b:=¢g, N:= ¢E.

The Euclidears transformations of the fields now read

IV. EUCLIDEAN N=2 SYM AND TYM THEORY
AS A VARIABLE REDEFINITION

As is well known, TYM theory can be obtained by twist-
ing N=2 SYM theory in Euclidean spad®]. In summary,
the twisting procedure is simply identifying tf&U(2)g in-
dex i with the spinor index of one chirality, i.eq’ and R
charges of the fields with ghost number. It is then possible t

In R4, the symmetry group oN=2 SYM theory isSU(2),
®SU(2)r®SU(2)g®@U(1)g. The twist (=«) consists of replac-
ing the rotation grouBU(2), ® SU(2)g with SU(2) @ SU(2)R,
where SU(2), is the diagonal sum o8U(2) ® SU(2)g. For a

detailed analysis of topological theories, see, for instaf24, 8We use the Euclidean conventions of R&f].

085005-4



N=2 SUPER YANG-MILLS ACTION AS ABECCH4. .. PHYSICAL REVIEW D 68, 085005 (2003

sA,=D,c—&e, N, (33 sD=—[c,D]+7(&e,D, N +i2¢[\; ,N]), (38
shi=—{c\i}—e,,&F ,,+ E[M,N]+7l¢- D, (34)
SN=—{c N} +iv2e,£D,N, (35 3‘3:_%{0'0}+iﬁ5ifi'\' (39
SM=—[c,M]+iy2&N,, (36)

. and consequently the gauge fermi@8) in Euclidean space
sN=—[c,N], (370  is given as

iV2

2

1 1. 1. . - 1 ) _
“’E:ﬁﬁf A% ZENIMNI= 587N D= £, N F = 5= MEeDA | (40

k

The N=2 supersymmetric Euclidean action, that is constructed by Zuh®Bp can now be written as the variation of
Ve,

ey — 4 1 1 e i\/E i —
lg=sWe=Tr | d* ZFWFM,ﬂ— gew)\pFWF)\p—)\ D)\i+MDMDMN—T()\i[)\ JNJ+N[N; ,M])

1 .
~5[M,N?+ 55D (41

N| =

up to the topological terng,,,,F,,F\, and the auxiliary N=2 fields and SUSY ghosts which are also partly nonana-
term %5 [_5, since in our approach the inclusion of the aux- Iyth in these constant ghOStS. These relations can be found
iliary fields, i.e., off-shell formulation is mandatory. by using the nonanalytic structure of the gauge fermion

As noted before, the only way to write the action as andiven in Eq.(40). The only consistent field redefinitions that
s-exact term is to allow the gauge fermion to depend on th@ssign the correct dimensionality and ghost number to the

negative powers of SUSY ghost. In other wordss has to fopological fields are found to Be

be defined on the space of field polynomials that are not A=A, (42)
necessarily analytic in these constant ghosts.
On the other hand, the above-mentioned nonanalyticity b,=— fie,f, (43)

argument can be used to derive a relation between the above

expressions and topological theory. Note that after twisting, o i

the physical nature of some fields are interpreted differently, d=j \/EgigiN, O=——M,
i.e., some fields become ghosts while some others become \/§§i§'
antighostg9,29]. We summarize the dimensions and ghost
numbers of the topological fieldsA(,,®,®,¢,,7,X,,, _ 1 _ T2

B,,) in Table II. k . . 7= &8 &k X’“’_gkgké Curhiy (45

(44)

In order to get the topological fields that are given in
Table Il that have the correct dimensions and ghost numbers -2
we note that the SUSY ghosg& have ghost number 1 and B =" ‘e, 7€ D. (46)
dimension 1/2. Therefore, it is natural to think that the topo- &€

logical fields can be written as certain functions of ordlnaryIt is straightforward to show that when the above variable
redefinitions are inserted in the ordinary Euclidean action
(41) and in the transformation&33)—(39), the action and

corresponding BRST transformations that are found are ex-

TABLE I1l. Dimensions D, Grassmann parity GP, and ghost
numbers Gh of the topological fields.

A ® > U 7 X, B, c actly the TYM action of Witten 9] Wit.h an auxiliary term
* - * " and the(extendedl BRST transformations defined in TYM
D 1 0 2 1 2 2 2 0
Gh 0 2 -2 1 -1 -1 0 1
GP 0 0 0 1 1 1 0 1 %We have chosen the coefficients in the definitions of the topologi-

cal fields in order to get the conventions[@B].
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theory which contain Witten’s scalar SUSY. In other words, SX = —[c, X, ]+F" +B (53)
as mentioned by several authdbsit not shown explicitly to mr VoL gy et

the best of our knowledgeTYM theory in flat Euclidean - +
space can be obtained directly as variable redefinitions from $B,y=~[C.Buy ] [P, X ] = (Duth, = Do) (54
the ordinaryN=2 SYM theory. As is obvious from the

above definitions of the topological fields, the ghost numbergyhere FZV: F+ %Euw\p v
and the dimensions that are assigned to the fields in the tWiSﬁ'eld strengthF . If one decomposeg on the fields
ing procedure by hand appear here naturally due to the conz— — e

posite structure of the topological fields in terms of global Ap @@, ,7,X,,) 8S
ghosts¢; and the original fields, i.e., with respect to the

power of&/'s in the definitions.
To be clear(and hoping not to be too tedioysve dem-  \heres, is the ordinary BRST transformation, one can see
onstrate the above points explicitly. By using the field redefihat 5 transformations are exactly the same with the scalar
nitions (33)—(39), s transformations can be rewritten'4s supersymmetry transformations introduced by Wit{én.
Note that this scalar SUSY generator can also be written as a

F ., is the self-dual part of the

S=5,+ 6, (55)

gA;FDﬂCﬂL v, (47)  composite generator,
sy, =—{c,¥,}-D,®, (48) 5=—i¢Q;,
<o o], (49 whereQ; are the chiral SUSY generators.

In terms of topological fields given in Eq&t2)—(46), the
gauge fermior{40) now reads

— 1
sc=—={c,c}+ &, (50
2 4 1 — 1 N
Wiop=Tr | d™| — > [P, D]+ ngFW
and
S — 1 _
sb=—[c, ]|+ 7, (51 —gXWBM,nLCDDﬂwM (56)
sp=—{c,p}+[D,P], (52)  and the corresponding action is found as
|
Itop:§\lftop (57

1 1 — 1 1 —
:TrJ’ d4x(§|::l:l/|::l:v+ 77Dp.¢,u._ Z‘X/.LV(D,LLlIbV_DV¢M)+_CDD2CD_§®{ 77177}_ gq){X/.wiX,uv}—i_(D{lp,u!l//M}

1 — 1
—E[CI),(D] _gB/.LVB,LLV . (58)

The above given actior,, is exactly the topological N=2 SYM theory is just a topological theory. It has its own
Yang-Mills action[9,29] with an auxiliary field term. We physical degrees of freedom. However, it becomes a topo-
remark once more that the inclusion of the auxiliary field islogical theory(of cohomological typgif the analyticity re-
crucial in order to write the action as an exact téfm. quirement of the SUSY ghosts is relaxed. This fact has also

We should stress here that above results do not mean thggen pointed out in Ref§21—23, for twistedN=2 SYM

theory that the twist of th&l=2 theory can be interpreted as
a topological theory only if the analyticity is lost iscalay
%Here we note that the derivation of the above results dependgysy ghosts. Note that, in many cases the cohomology of
crucially on the commuting nature of the global ghést For ex- o pe understood by studying a simpler operator that is
ample, it is easy to verify thas transformation ofn; [Eq. (34]  found by using a suitable filtration &f[24]. In our case we

(ie(():omposes into E¢52),(53) by using £'e,,§=0 and £'71¢; 3165 as the filtered operator. The cohomologysaé empty

UThe reason why the action could not be written as an exact ter@NlY if whens is allowed to act on the field polynomials that
in the original papef9] is that the twisted theory was obtained from are not necessarily analytic in the parametgrsSince the
the on-shell SYM theory. Note that, sindé,, given in Eq.(56) is ~ cohomology of complete operatsris isomorphic to a sub-

gauge invariant, we havig,,=5sV,p= 0¥ qp,. space of the filtrated operate{24], the cohomology of is
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also empty when the analyticity requirement is relaxed and SA,=D,c—¢e N (65)
the theory can be interpreted as a topological theory. pooTeE o BERT

V. INSTANTONS AND BAULIEU-SINGER APPROACH o _ ,
TO TYM THEORY s\'=—{c,\'}+iy2e,ED,N, (66)

As is well known, instantons are finite action solutions of
the Euclidean field theories. Aiming to incorporate the in-
stantons into supersymmetric theories, Zumino constructed a 'sN=—[c,N], (67)
supersymmetric field theory directly in the Euclidean space
[25]. This theory has®N=2 supersymmetry with a Hermitean
action. (Recently, this theory has been derived by defining a 1
continuous Wick rotatiof31] and also by using dimensional T T ; i
reduction via time direction from six dimensional=1 S¢ Z{C’C}+ 26N, (68)
SYM theory[30].) It is observed by Zumino that when one
imposes for instance an anti-self-dual field strength,

and
Frv=Fut 5 €umpF =0 (59) |
SM=i2&\;, (69)
with the following restrictions:
M=A;=0 (60 S\=1¢-D, (70
the equations of motion from Ed41) reduce to a simple
form [25], -~
sD=0. (77)
. 1
Fo=Fut Ee,mpszo, (61

The reason why we do not slet=|5=0 in Eq.(69),(70) is

i\2 that the pairs i1,£\;) and ¢ 7/\;,D) behave like trivial
2N — NV . . . L=

D N—T{)\ i (62 pairs (sometimes called BRST doublgts.e., like (c,b),

such thatsc=b, sb=0, wheresis a nilpotent operator. It is

e D N=0 63) known that the cohomology of an operator does not depend
' on inclusion of such trivial pairgsee, for instancg,15,24).

=
These restriction§59),(60) and Eq.(61)—(63) are covariant It is straightforward to derive that is also nilpotent,
under the supersymmetry transformations found by applying
the above restrictiong25]. _
Equationg61)—(63) are also the ones whose solutions are s?=0,
used as approximate solutions of the saddle point equations
in the context of constraint instanton meth[®J6]. On the
other hand, similar equations are obtained in TYM theoryand after performing the field redefinition given in Egs.
without any approximatiofi8] from an action functional that  (42)—(46), s transformations are found to be exactly that of
can be written as a BRST transformation of a gauge fermioBaulieu-Singef10,29.
given by Baulieu-Singef10]. Both of the approaches to the  On the other hand, the gauge fermion that is compatible
instanton calculations give the same re$8lt with the restrictions of Zuming25] has to be chosen slightly
Therefore, since Euclidea¥=2 SYM action can be writ-  different from the one given for the Euclidean c446),
ten as a BRST exact ter(d1) and Wittens TYM theory9]
can be obtained by using simple field redefinitioh2)—(46),
we look for another analogy between the above instanton- 1 a . o1 .
inspired truncation of EuclideaN=2 SYM theory and the \I’inst:_kTrf d4X( —5¢ mINj-D— §§'eﬂy)\i':;y
Baulieu-Singer approach to TYM theory. &ké
The first step towards this purpose is to define a truncated iV2
s, +T§'eﬂ)\iD#M>. (72

§:S|F;V:E)F=M:>\i:o, (64)
The reason for this modification becomes apparent when the

such that, corresponding action is driven,
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a 1 N i — i\/z ——
_gB;wB,uv"' ZBMVFMV_)\ e,D \i+M D#D#N—T{A A}

1 1 .
+ ookl Ef e,LLV)\i[C7F/,LV]

Ii(r?gt:S\Pinst:Trf d*x oy

i\V2 _ _
+ TM{C,f'eﬂDﬂ)\i}

1 ~i2
+@Trf d“xaﬂ(sTMg'eﬂ)\i), (73

where we have used the definition Bf,, in order to have notational simplification.

First of all, the gauge fermio¥;,s; (72) and the above actioh,s; are exactly the ones given in Baulieu-Singer approach
[10] up to ordinary gauge fixin& It is straightforward to rewrite the above given gauge fermigps; and the action;,; by
using the field redefinitions given in Eq&t2)—(46) in order to get the results ¢fl0]. However, if the above relations are
considered on their own, to be able to derive the instanton equdBdns(63) from the action functional without having any
dependence on the constant ghosts, the Euclidgaihas to be modified. For instance when the restrictionN26f are used

the & dependence that comes from theariation of T&'\;[ M,N] cannot be eliminated. Therefore, the coefficient of this term

has to be chosen to vanish. The coefficient o?ﬁg—ﬁ-f)\j -D can be left arbitrary since after performing the Gaussian integration
over the auxiliary field,,, the action is

1) _E\I’inst

inst™

=Tr f d*x

1 1. . i\2 i o
+ @ - Ef elu,)\i[C,Flw]-i- TM{C,g e,uD,uAi}

iV2

D,D,N- T{FE})

1 + e+ i N
%F#VF#V—)\ eMDM)\i+M

1 R iV2
:Trf d'X| g=F L~ MNeD N+ M DMDMN—T\/—{)\',M})
1 iV2 . _ 1 ~iN2
+§k§k( 5> &'ewNilC.F ]+ —-M{c,£'e,D A} +§k§kTrf d X%(S 2 'V'f'em) (74)

and the Fadeev-Popov ghost fietrlindependent part of the action is also SUSY ghfdtee. The form of the last term in
Vst is inspired from Ref[8] in order to get a surface contribution, since

Trsé'e,\iD,M=Tr“s¢'e,\,\M—TrsMé'e,D \;

if the scalar field has nontrivial boundary conditions. Therefore, the gauge feMnjnis the only consistent choice up to
total derivatives that gives the right action to derive the exact instanton equations, when the truncated transformations
(65—(71) are used.

On the other hand, the free parametercan be thought of as a gauge parameter, since it is so in the Baulieu-Singer
approacH 10]. By choosing directlyo=0, the action(71) takes the form

iV2

D,D,N- T{F,ﬂ})

1 R
7BuF i~ NeD, N+ M

Iinst:hs‘q,inst:-rrf d*x

1 1, L2 i _ 1 ~iN2
+@(—ESeW)\i[c,F,w]JrTM{C,geﬁD#)\i} +@Trf d4X(9M<STM§eM)\i) (75

and by performing a functional integration over the fieldsM, and B,,, the configurations of the constraint instanton
method(61)—(63) are obtained without using any approximation procedure. In other words, as is demonstrated above, the
Baulieu-Singer approach can also be obtained by using field redefinitions given idBgg46) when an instanton-inspired

truncation(59),(60) of the Euclidean model is used.

L2For instance, adding [ d*x cd“A,, to W, such thaisc=b, sb=0.
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VI. CONCLUSION AND DISCUSSION techniques of algebraic renormalization framew|d4].
. . On the other hand, when the restrictions on the fields are

In this paper, we have shown how to Wr|.te the O.ﬁ'She”used in order to get supersymmetric instanton configurations
N=2 SYM action as an exact term by using a nilpotent o5} e show that with the help of a truncated BRST opera-
extended BRST operatos that includes supersymmetry (o5 an action can be written as arexact term. After using
transformations of one chirality. The corresponding gaugethe given variable redefinitions, it is seen that this formula-
fixing fermion is found _tq be nonanalytic in global SUSY tion is exactly TYM theory in the approach of Baulieu-
ghosts. In other words, it is shown that the action belongs t&inger[10]. The instanton equations, which are used in the
trivial cohnomology of the extended BRST operaspiif this  traditional instanton computatiori8,6], can be derived from
operator is allowed to act on the field polynomials that arethis action(73) without using any approximation. Moreover,
not necessarily analytic in these global ghosts. it is known that Witten’s actiofi9] can be obtained from the

Due to this nonanalytical structure, we have found fieldone given in the Baulieu-Singer approach by a continuous
redefinitions such that Witten's TYM theof@] can be ob- deformation of gauge fixin§10]. As a consequence, a simi-
tained from the EuclideaN=2 SYM theory by identifying lar relation also occurs between the Euclidéés2 SYM
the fields of TYM theory with composite fields of an—2  action (41) and the truncatedinstanton action (73) since
vector multiplet and the chiral SUSY ghosisin Euclidean  Poth of the formulations of TYM theory can be obtained by
space. These field redefinitions are also partly nonanalytic i¥Sing the variable redefinitions. _
global SUSY ghosts. The ghost numbers and the dimensions Finally, it is worthwhile to mention that the instanton cal-
of the topological fields, which are assigned by hand when i€ulations performed in the Baulieu-Singer approach of TYM
is formulated by twisting, appear in our approach naturallytheory[8] give exactly the same result as the one performed
according to this composite structure. In other words, wdh N=2 SYM theory[3,6]. Since bottN=2 SYM and TYM
have shown explicitly that TYM theory can be found from theories are shown to be equivalent by simple variable re-
N=2 SYM theory exactly as a change of variablg®., deflnltlons, it Would. also be mterestl_ng to reinvestigate the
without twisting. equivalence of the instanton calculationshof 2 SYM and

The above mentioned analyticity requirement also plays d YM theory and to find out whether the instantons localize
decisive role in understanding whéh=2 SYM theory can 1N the topqloglcal sector of_ the theory Wh_ere the fL_m(_:tlonaI
be interpreted as a topological theory. Note that the topologiSPace of field polynomials is not necessarily analytic in glo-
cal theory is obtained via a change of variables only wherP@l SUSY ghosts.
the requirement of analyticity of the constant ghostss
relaxed. Therefore, physipal an(_j topological interpretati(_)ns ACKNOWLEDGMENTS
of N=2 SYM theory are intertwined together. However, in
order to have a better understanding of implications of the | am indebted to R. Flume for an initiation into the sub-
results presented above, it would be interesting to investigatect. | also gratefully acknowledge the numerous enlighten-
the perturbative regime of the theory by using the standaréhg discussions with OF. Dayi and M. Hortgsu.

[1] N. Seiberg and E. Witten, Nucl. PhyB426, 19 (1994; B431, [10] L. Baulieu and I. M. Singer, Nucl. Phys. @roc. Supp).5, 12

19 (1994. (1985.
[2] R. Flume, M. Magro, L. O'Raifeartaigh, |. Sachs, and O. [11] K. Ulker, Mod. Phys. Lett. AL, 881 (2001.
Schnetz, Nucl. Phys8494, 331(1997. [12] K. Ulker, Mod. Phys. Lett. AL7, 739(2002.
[3] N. Dorey, V. V. Khoze, and M. P. Mattis, Phys. Rev. 3,  [13] F. Brandt, Nucl. PhysB392 428 (1993; Class. Quantum
2921(1996. Grav. 11, 849 (1994; Ann. Phys.(N.Y.) 259, 253 (1997.
[4] D. Finnell and P. Pouliot, Nucl. Phy8453 225 (1995. [14] 1. A. Batalin and G. A. Vilkovisky, Phys. Lett69B, 309
[5] K. Ito and N. Sasakura, Phys. Lett. 382, 95 (1996, gggg? Phys. Rev. D28, 2567 (1983; Phys. Lett.1028 27

[6] N. Dorey, T. J. Hollowood, V. V. Khoze, and M. P. Mattis,
Phys. Rep371, 231(2002. . ;
e . a self-contained review.
[7] R. Flume, L. O’'Raifeartaigh, and_ I Sac_h_s, talk presented at tths] P. L. White, Class. Quantum Gra®, 413 (1992; 9, 1663
Inaugural Conference of the Asia Pacific Center for Theoreti- (1992

cal Physics, Segul, 1996, the XXlst Conference on Grou 17] N. Maggiore, Int. J. Mod. Phys. A0, 3937 (1995; 10, 3781
Theor. Methods in Physics, Goslar, Germany, 1996, and 2n (1995

SIMI Conference, Thilisi, 1996, hep-th/26118; R. Flume, [18] N. Maggiore, O. Piguet, and S. Wolf, Nucl. Phy&458 403
talk presented at the 9th Max Born Symposium, Karpacz,  (1996; B476 329(1996.

1996, hep-th/9702192; D. Bellisai, F. Fucito, A. Tanzini, and [19] A. Blasi and R. Collina, Nucl. Phys3285, 204 (1987; C.

[15] J. Gomis, J. Paris, and S. Samuel, Phys. R8&p, 1 (1995 for

G. Travaglini, hep-th/9812145. Becchiet al, Commun. Math. Phys120, 121 (1988.
[8] D. Bellisai, F. Fucito, A. Tanzini, and G. Travaglini, Phys. Lett. [20] F. Brandt, M. Henneaux, and A. Wilch, Phys. Lett3B7, 320
B 480 365(2000; J. High Energy Phys07, 017 (2000. (1996; Nucl. Phys.B510, 640(1998.
[9] E. witten, Commun. Math. Phy417, 353(1988. [21] F. Fucito, A. Tanzini, L. C. Vilar, O. S. Ventura, C. A. Sasaki,

085005-9



K. ULKER PHYSICAL REVIEW D 68, 085005 (2003

and S. P. Sorella, Algebraic Renormalization: Perturbative[25] B. Zumino, Phys. Lett69B, 369 (1977).

twisted considerations on topological Yang-Mills theory and[26] R. Grimm, M. F. Sohnius, and J. Wess, Nucl. PHy$33 275
on N=2 supersymmetric gauge theories, lectures given at the  (1978.

First School on Field Theory and Gravitation, Victoria, Es- [27] M. Sohnius, Phys. Refd.28 39 (1985.

printo, Brazil, 1997, hep-th/9707209. [28] J. Wess and J. BaggeSupersymmetry and SupergraviBrin-
[22] A. Blasi, V. E. Lemes, N. Maggiore, S. P. Sorella, A. Tanzini, ceton University Press, Princeton, NJ, 1992
O. S. Ventura, and L. C. Vilar, J. High Energy Ph¢§, 039 [29] D. Birmingham, M. Blau, M. Rakowski, and G. Thompson,
(2000. Phys. Rep209, 129 (1991.
[23] V. E. Lemes, M. S. Sarandy, S. P. Sorella, O. S. Ventura, and L[30] A. V. Belitsky, S. Vandoren, and P. van Nieuwenhuizen, Phys.
C. Vilar, J. Phys. A34, 9485(2002. Lett. B 477, 335(2000.
[24] O. Piguet and S. P. Sorellalgebraic RenormalizatignLec- [31] P. van Nieuwenhuizen and A. Waldron, Phys. Lett3&9, 29
ture Notes in Physics Vol. 26pringer-Verlag, Berlin, 1995 (1996.

085005-10



