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NÄ2 super Yang-Mills action as a Becchi-Rouet-Stora-Tyutin term,
topological Yang-Mills action, and instantons

K. Ülker*
Feza Gu¨rsey Institute, C¸ engelko¨y, 81220 I˙stanbul, Turkey

~Received 28 May 2003; published 16 October 2003!

By constructing a nilpotent extended Becchi-Rouet-Stora-Tyutin~BRST! operators̄ that involves theN
52 global supersymmetry transformations of one chirality, we show that the standardN52 off-shell super

Yang-Mills action can be represented as an exact BRST terms̄C, if the gauge fermionC is allowed to depend
on the inverse powers of supersymmetry~SUSY! ghosts. By using this nonanalytical structure of the gauge
fermion ~via inverse powers of supersymmetry ghosts!, we give field redefinitions in terms of composite fields
of SUSY ghosts andN52 fields and we show that Witten’s topological Yang-Mills~TYM ! theory can be
obtained from the ordinary EuclideanN52 super Yang-Mills~SYM! theory directly by using such field
redefinitions. In other words, TYM theory is obtained as a change of variables~without twisting!. As a
consequence it is found that physical and topological interpretations ofN52 SYM theory are intertwined
together due to the requirement of analyticity of global SUSY ghosts. Moreover, after an instanton-inspired
truncation of the model is used, we show that the given field redefinitions yield the Baulieu-Singer formulation
of topological Yang-Mills theory.

DOI: 10.1103/PhysRevD.68.085005 PACS number~s!: 11.30.Pb, 11.27.1d, 12.60.Jv
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I. INTRODUCTION

N52 super Yang-Mills~SYM! theory has been exten
sively studied in recent years after the work of Seiberg a
Witten @1#, in which a self-consistent nonperturbative effe
tive action was calculated by using certainAnsätzedictated
by physical intuition. This solution is unique@2#.

After this seminal paper@1#, one of the main areas o
research inN52 SYM theory has been to calculate direct
the multi-instanton contributions to the holomorphic prep
tential and consequently to check the correctness of the
sults of @1#. These multi-instanton contributions are calc
lated in a pioneering work@3# for one and two instantons b
using a semiclassical expansion aroundapproximatesaddle
points of the action@3#.1 The results are found to be in agre
ment with those of@1#. ~For a self-contained review, see Re
@6#.! However, a natural question was posed by several
searchers: how could it be possible that an approximate
proach gives an exact result and what was the mechan
behind it @7#?

In order to get an answer to the above questions, in R
@8# the instanton calculus was performed in the framework
topological Yang-Mills~TYM ! theory and it was found tha
the results are the same as that of thetraditional instanton
calculus of@3#. As noted in@8#, the underlying fact of this
result is that the action of TYM theory, which can be o
tained as a twist of ordinaryN52 SYM theory@9#, can be
written as a Becchi-Rouet-Stora-Tyutin~BRST! exact term
@10# and the functional integration over the antifields of t
topological theory gives the same field configurations of
constrained instantons of the ordinary theory without a
approximation. Therefore, the authors of Ref.@8# have noted

*Email address: kulker@gursey.gov.tr
1One instanton contribution is also calculated in@4,5#.
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that the twisting procedure can be thought of as varia
redefinitions in flat space-time.

However, up to now no explicit variable redefinition
have been given in order to obtain the topological theory.
instance, even if the twist can be considered as a lin
change of variables, after twisting, the physical interpretat
of some fields changes, i.e., some become ghosts or a
hosts. The dimensions of the topological fields are also
ferent from their untwisted counterparts.

Our main aim in this paper is to derive explicit field re
definitions in order to obtain the topological fields with co
rect dimensionality and ghost number. The strategy that
follow is to use the extension of the BRST formalism~also
called the BV or field-antifield formalism@14,15#! to include
global supersymmetry~SUSY! @16–18#.2 By using this for-
malism we show that theN52 SYM action can be written as
an exact term and both of the formulations of TYM theo
given by Witten @9# and Baulieu and Singer@10# can be
obtained as a change of variables without twisting.

The paper is organized as follows. In Sec. II, we revie
briefly how to include SUSY in an extended BRST operat
Since the actions of SYM theories can be represented
chiral ~or antichiral! multiple supervariations of lower di
mensional gauge invariant field polynomials@11,12#,3 in Sec.
III we construct a nilpotent extended BRST operators̄ on the
field space that only contains the chiral part of theN52
SUSY as a global symmetry in addition to gauge symm

2Such an extension of BRST transformations that includes r
symmetries is first introduced in@19#. The problem of how to ex-
tend the BRST formalism to include arbitrary global symmetr
can be found in Ref.@20#.

3For a similar approach of constructingN51 globally and locally
supersymmetric actions and also for the discussion of anoma
see@13#.
©2003 The American Physical Society05-1
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tries. It is then straightforward to find an expression a
gauge fermionof which the full off-shellN52 action is its
BRST (s̄) variation under some conditions in Minkows
space. In Sec. IV, we give a Euclidean formulation of t
result given in Sec. III in order to derive field redefinition
by comparing the EuclideanN52 SYM action written as an
exact term and the topological theory. We demonstrate
plicitly that Witten’s topological Yang-Mills theory can b
obtained from the ordinary EuclideanN52 SYM theory di-
rectly by using such field redefinitions. In Sec. V, by using
instanton- inspired truncation of the model given by Zumi
@25#, we also show how to obtain the approach of Baulie
Singer of TYM theory with the help of field redefinitions
Finally, Sec. VI is devoted to concluding remarks.

II. NÄ2 SYM THEORY AND EXTENDED
BRST TRANSFORMATIONS

N52 SYM theory is a rather old and well studied theo
In this work, we will study the off-shell formulation of the
theory given in@26,27# by using the conventions of@28#. The
action of the theory is given in Minkowski space as

SN525
1

g2
Tr E d4xS 2

1

4
FmnFmn2 il iD” l̄ i1fDmDmf†

2
iA2

2
~l i@l i ,f†#1l̄ i@ l̄ i ,f#!

2
1

2
@f,f†#21

1

2
DW .DW D , ~1!

where the gauge fieldAm and the scalar fieldsf, f† are
singlets, the Weyl spinorsl ia l̄ȧ

i are doublets, and the aux

iliary field DW is a triplet under theSU(2)R symmetry group.
These fields are members of N52 vector multiplet V

5(Am ,f,f†,l ia ,l̄ ȧ
i ,DW ) @26,27#. The SU(2)R indices of

the spinors are raised and lowered due to

l i5E i j l j , l i5l jEj i , ~2!

l̄ i5E i j l̄
j , l̄ i5l̄ jE j i , ~3!

where the antisymmetric tensorE i j is given as4

E125E 1252E2152E 2151.

The extension of the BRST transformations with the g
bal N52 SUSY and translation symmetry was first given
Ref. @17#,

4Note that in our convention theE i j is different than the one,eab ,
used for spinor indices.
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s5s02 i j iQi2 i j̄ i Q̄
i2 ihm]m , ~4!

where s0 is the ordinary BRST transformations,QiQ̄
i are

chiral and antichiral parts ofN52 SUSY transformations
andj ia,j̄ i ȧ , andhm are the constant commuting chiral- a
tichiral SUSY ghosts and constant imaginary anticommut
translation ghost, respectively. Note that the parameter
the global transformations are promoted to the status of c
stant ghosts, and their Grassmann parity is changed so
the extended transformations is a homogeneous transforma
tion.

The extended BRST transformations on the elements
the N52 vector multiplet read as5

sAm5Dmc1j isml̄ i1 j̄ i s̄ml i2 ihn]nAm , ~5!

sl i5 i $c,l i%2 ismnj iFmn1j i@f,f†#

2A2smj̄ iDmf1tW i
jj j•DW 2 ihm]ml i , ~6!

sl̄ i5 i $c,l̄ i%2 i s̄mnj̄ iFmn2 j̄ i@f,f†#

2A2s̄mj iDmf†2 j̄ jtW i
j
•DW 2 ihm]ml̄ i , ~7!

sf5 i @c,f#2 iA2j il
i2 ihm]mf, ~8!

sf†5 i @c,f†#2 iA2j̄ i l̄ i2 ihm]mf†, ~9!

sDW 5 i @c,DW #1 i tW i
j~j jD” l̄ i2 j̄ iD”̄ l j1A2j i@l j ,f†#

2A2j̄ j@ l̄ i ,f#!2 ihm]mDW . ~10!

On the other hand, in order to get a nilpotents,

s250. ~11!

The Fadeev-Popov ghost field and the global ghosts are
quired to transform as

sc5
i

2
$c,c%22i j is

mj̄ iAm2A2j ij
if†

2A2j̄ i j̄ if2 ihm]mc, ~12!

shm522j ismj̄ i , ~13!

sj i5sj̄ i50. ~14!

Note that with the help of extra terms insc, the charac-
teristic complication that SUSY algebra is modified by fiel
dependent gauge transformations is solved, whereas the
sure on translations disappears due to inclusion of transla

5Here,tW8s are Pauli spin matrices.
5-2
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ghosts. We summarize the dimension, ghost number, and
R charges of the fields and ghosts in Table I.

III. NÄ2 SYM ACTION AS AN EXACT TERM

It is known from cohomological arguments that the a
tions of SYM theories can be represented as chiral~or anti-
chiral! multiple supervariations of lower dimensional gau
invariant field polynomials@11,12#. For instance,N52 SYM
action can be written as a fourfold chiral SUSY transform
tion of Tr f2 in component formalism of SUSY.

On the other hand, from the definition ofs it is still pos-
sible to derive another nilpotent operator by using a suita
filtration of global ghosts. We choose this filtration to be

N5 j̄ i ȧ

d

dj̄ i ȧ

1hm

d

dhm
,

s5 ( s(n), @N,s(n)#5ns(n), ~15!

so that the zeroth order in the above expansion is an ope
that includes ordinary BRST and chiral SUSY on the sp
of the fields of theN52 vector multiplet,

s̄ªs(0)5s02 i j iQi , ~16!

which is also nilpotent,

s̄250. ~17!

The s̄ transformations of the fields are now given as

s̄Am5Dmc1j isml̄ i , ~18!

s̄l i5 i $c,l i%2 ismnj iFmn1j i@f,f†#1tW i
jj j•DW ,

~19!

s̄l̄ i5 i $c,l̄ i%2A2s̄mj iDmf†, ~20!

s̄f5 i @c,f#2 iA2j il
i , ~21!

s̄f†5 i @c,f†#, ~22!

s̄DW 5 i @c,DW #1 i tW i
j~j jD” l̄ i1A2j i@l j ,f

†# !, ~23!

s̄c5
i

2
$c,c%2A2j ij

if†, ~24!

TABLE I. DimensionsD, Grassmann parity GP, ghost numb
Gh, andR weights of the fields and ghosts.

Am f f† l i
l̄ i DW c j i

j̄ i
hm

D 1 1 1 3/2 3/2 2 0 21/2 21/2 21
Gh 0 0 0 0 0 0 1 1 1 1
R 0 22 2 21 1 0 0 21 1 0
GP 0 0 0 1 1 0 1 0 0 1
08500
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s̄hm5 s̄j i5 s̄j̄ i50. ~25!

Sinces̄ contains gauge transformations and chiral SU
and the action is gauge invariant, it is straightforward

assume that the action can be written also as ans̄ exact term
of a gauge invariant field polynomial which is independe
of Fadeev-Popov ghost fields,6

I 5 s̄C. ~26!

It is clear thatC, the so-called gauge fermion in the B
formalism, has a negative ghost number, Gh(C)521.
However, since no fields with negative ghost number ha
been introduced and since we have chosen the gauge fer
to be free of Fadeev-Popov ghosts, the only way to assig
negative ghost number toC is to chooseC to depend on the
negative powers of the global SUSY ghosts. In other wor

the action can be written as an exacts̄ term only if the

extended BRST operators̄ is defined on the space of fiel
polynomials that are not necessarily analytic in const
ghosts.

Therefore, a further assumption to assign a negative g
number toC is to choose a gauge fermion that has the f
lowing form:

C5
1

jkj
k
j i E d4xc i , ~27!

wherec i
a is a dimension 7/2 fermion that is made from th

fields of theN52 vector multiplet. The most general suc
gauge fermion that is covariant in its Lorentz, spinor, a
SU(2)R indices is easy to find,

C5
1

jkj
k
TrE d4x$~k1j il i@f,f†#1k2j itW i

jl j•DW

1k3j ismnl iFmn1k4fj iD” l̄ i !%. ~28!

Herek8s are constants. In order that thes̄ variation ofC to
be free of chiral ghosts, after some algebra it is seen
constantsk should be fixed and as a result

6In other words, we assume that the action can be chosen to

trivial element of equivariant cohomology ofs̄. See, for instance,
Refs.@21–23# and references therein.
5-3
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s̄C5 s̄
1

jkj
k
Tr E d4xH S 1

2
j il i@f,f†#2

1

2
j itW i

jl j•DW 2
i

2
j ismnl iFmn1

A2

2
fj iD” l̄ i D J , ~29!

5Tr E d4xS 2
1

4
FmnFmn2

i

8
emnlrFmnFlr2 il iD” l̄ i1fDmDmf†2

iA2

2
~l i@l i ,f†#1l̄ i@ l̄ i ,f#!

2
1

2
@f,f†#21

1

2
DW •DW D ~30!
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is found. This expression is exactly the action~1! of N52
SYM theory with a topological termemnlrFmnFlr ,

I N525
1

4p
Im@Y~ s̄C!#

5SN522
u

16p
Tr E d4xemnlrFmnFlr , ~31!

where Y is the complex coupling constant,Y5( i4p/g2)
1(u/2p).

One can argue that the action written in this form is o
vious since the action can be obtained by applying all f
supersymmetry transformations to the prepotential Trf2.
However, it has important consequences.

First of all, the operators̄ is strictly nilpotent. It is a well
known fact that the cohomology of the complete operatos,
given in Eq.~4!, is isomorphic to a subspace of the cohom
ogy of s̄, sinces̄ is obtained after using a suitable filtration
s ~see, for instance,@24,21#!. If the functional space is de
fined to be the polynomials of the fields that are not nec
sarily analytic in the constant ghostsj i , as is shown above
the action belongs to the trivial cohomology ofs̄ and there-
fore to that of the complete operators.

Second, the above nonanalyticity argument plays an
portant role in obtaining the topological Yang-Mills theo
from EuclideanN52 SYM theory by identifying the topo-
logical fields with certain functions of fields and SUS
ghosts ofN52 SYM theory~which are also partly nonana
lytic j i8s). These points will be clarified in the next section

IV. EUCLIDEAN NÄ2 SYM AND TYM THEORY
AS A VARIABLE REDEFINITION

As is well known, TYM theory can be obtained by twis
ing N52 SYM theory in Euclidean space@9#. In summary,
the twisting procedure is simply identifying theSU(2)R in-
dex i with the spinor index of one chirality, i.e.,a7 and R
charges of the fields with ghost number. It is then possible

7In R4, the symmetry group ofN52 SYM theory is SU(2)L

^ SU(2)R^ SU(2)R^ U(1)R . The twist (i[a) consists of replac-
ing the rotation groupSU(2)L ^ SU(2)R with SU(2)L8 ^ SU(2)R ,
where SU(2)L8 is the diagonal sum ofSU(2)L ^ SU(2)R . For a
detailed analysis of topological theories, see, for instance,@29#.
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show that TYM action can be written as a BRST-exact te
up to some field redefinitions@10#. Therefore, TYM theory is
called a topological theory of cohomological type and it
natural to look for an analogy between the results of
previous section and TYM theory by rewriting the results
the previous section in Euclidean space.

However, before formulating the results of Sec. III in E
clidean space, we find it useful to clarify our approach
EuclideanN52 SYM theory. First of all, obviously in Eu-
clidean space the chiral and antichiral spinors are not rela
with each other. Nevertheless, it is still possible to find co
sistent reality conditions for the spinors of extended sup
symmetry@30#. We will take these reality conditions in ou
conventions as

~l i
a!†5 i eabE i j l j

b , ~ l̄ i ȧ!†5 i eȧḃE i j l̄
j ḃ. ~32!

On the other hand, since the spinors of different chirality
independent of each other and since supersymmetry is m
fest, it is clear that one should also consider the comp
scalar fieldf and its Hermitean conjugatef† defined in
Minkowski space as independent fields from each othe
Euclidean space. Indeed, this somehow unusual treatm
appears naturally if one defines a continuous Wick rotati
to Euclidean space@31#: pseudoscalar fieldB wheref5A
1 iB goes over intoiBE in Euclidean space, i.e., Euclidea
scalar fields becomefE5AE1BE andfE

†5AE2BE . By ap-
plying the above-mentioned continuous Wick rotation toN
52 SYM theory in Minkowski space, one gets@31# the N
52 supersymmetric Euclidean theory that is constructed
Zumino @25#. Note that corresponding action in Euclidea
space is Hermitean.

Following the above remarks, we perform a~continuous!
Wick rotation to formulate the results of the previous sect
in Euclidean space, i.e., Minkowskian vector quantitiesvm

5(v0,vW ), m50,1,2,3 become Euclidean onesvm

5(vW ,iv0), m51,2,3,4 and Euclidean sigma matrices a

taken asemaȧ5( i tW ,1) andēm
ȧ,a5(2 i tW ,1). We will also take

the gauge field anti-Hermitean rather than Hermitean in
der to follow the instanton literature,8 and to avoid confusion
we will denote Euclidean scalar fields asMªfE , NªfE

† .

The Euclideans̄ transformations of the fields now read

8We use the Euclidean conventions of Ref.@6#.
5-4
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s̄Am5Dmc2j ieml̄ i , ~33!

s̄l i52$c,l i%2emnj iFmn1j i@M ,N#1tW i
jj j•DW , ~34!

s̄l̄ i52$c,l̄ i%1 iA2ēmj iDmN, ~35!

s̄M52@c,M #1 iA2j il i , ~36!

s̄N52@c,N#, ~37!
x
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08500
s̄DW 52@c,DW #1tW i
j~j jemDml̄ i1 iA2j i@l j ,N# !, ~38!

s̄c52
1

2
$c,c%1 iA2j ij

iN ~39!

and consequently the gauge fermion~28! in Euclidean space
is given as
CE5
1

jkj
k
Tr E d4xS 1

2
j il i@M ,N#2

1

2
j itW i

jl j•DW 2
1

2
j iemnl iFmn2

iA2

2
Mj iemDml̄ i D . ~40!

The N52 supersymmetric Euclidean action, that is constructed by Zumino@25#, can now be written as thes̄ variation of
CE ,

I E5 s̄CE5Tr E d4xS 1

4
FmnFmn1

1

8
emnlrFmnFlr2l iD” l̄ i1MDmDmN2

iA2

2
~l i@l i ,N#1l̄ i@ l̄ i ,M # !

2
1

2
@M ,N#21

1

2
DW •DW D ~41!
na-
und

t
the

ble
ion

ex-

gi-
up to the topological termemnlrFmnFlr and the auxiliary
term 1

2 DW •DW , since in our approach the inclusion of the au
iliary fields, i.e., off-shell formulation is mandatory.

As noted before, the only way to write the action as
s̄-exact term is to allow the gauge fermion to depend on
negative powers of SUSY ghostj i . In other wordss̄ has to
be defined on the space of field polynomials that are
necessarily analytic in these constant ghosts.

On the other hand, the above-mentioned nonanalyti
argument can be used to derive a relation between the a
expressions and topological theory. Note that after twisti
the physical nature of some fields are interpreted differen
i.e., some fields become ghosts while some others bec
antighosts@9,29#. We summarize the dimensions and gho
numbers of the topological fields (Am ,F,F̄,cm ,h,Xmn ,
Bmn) in Table II.

In order to get the topological fields that are given
Table II that have the correct dimensions and ghost num
we note that the SUSY ghostsj i have ghost number 1 an
dimension 1/2. Therefore, it is natural to think that the top
logical fields can be written as certain functions of ordina

TABLE II. Dimensions D, Grassmann parity GP, and gho
numbers Gh of the topological fields.

Am F F̄ cm h Xmn Bmn c

D 1 0 2 1 2 2 2 0
Gh 0 2 22 1 21 21 0 1
GP 0 0 0 1 1 1 0 1
-

n
e

t

ty
ve
,

y,
e

t

rs

-

N52 fields and SUSY ghosts which are also partly nona
lytic in these constant ghosts. These relations can be fo
by using the nonanalytic structure of the gauge fermionCE
given in Eq.~40!. The only consistent field redefinitions tha
assign the correct dimensionality and ghost number to
topological fields are found to be9

Am5Am , ~42!

cm52j ieml̄ i , ~43!

F5 iA2j ij
iN, F̄5

i

A2j ij
i
M , ~44!

h5
1

jkj
k
j il

i , Xmn5
22

jkj
k
j iemnl i , ~45!

Bmn5
22

jkj
k
j iemntW i

jj j•DW . ~46!

It is straightforward to show that when the above varia
redefinitions are inserted in the ordinary Euclidean act
~41! and in the transformations~33!–~39!, the action and
corresponding BRST transformations that are found are
actly the TYM action of Witten@9# with an auxiliary term
and the~extended! BRST transformations defined in TYM

9We have chosen the coefficients in the definitions of the topolo
cal fields in order to get the conventions of@29#.
5-5
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theory which contain Witten’s scalar SUSY. In other word
as mentioned by several authors~but not shown explicitly to
the best of our knowledge!, TYM theory in flat Euclidean
space can be obtained directly as variable redefinitions f
the ordinary N52 SYM theory. As is obvious from the
above definitions of the topological fields, the ghost numb
and the dimensions that are assigned to the fields in the tw
ing procedure by hand appear here naturally due to the c
posite structure of the topological fields in terms of glob
ghostsj i and the original fields, i.e., with respect to th
power ofj i8s in the definitions.

To be clear~and hoping not to be too tedious!, we dem-
onstrate the above points explicitly. By using the field rede
nitions ~33!–~39!, s̄ transformations can be rewritten as10

s̄Am5Dmc1Cm , ~47!

s̄cm52$c,Cm%2DmF, ~48!

s̄F52@c,F#, ~49!

s̄c52
1

2
$c,c%1F, ~50!

and

s̄F̄52@c,F̄#1h, ~51!

s̄h52$c,h%1@F,F̄#, ~52!
l

is

th

n

er
m

08500
,

m

rs
st-
m-
l

-

s̄Xmn52@c,Xmn#1Fmn
1 1Bmn , ~53!

s̄Bmn52@c,Bmn#1@F,Xmn#2~Dmcn2Dncm!1,
~54!

where Fmn
1 5Fmn1 1

2 emnlrFmn is the self-dual part of the

field strength Fmn . If one decomposess̄ on the fields
(Am ,F,F̄,cm ,h,Xmn) as

s̄5so1d, ~55!

wheres0 is the ordinary BRST transformation, one can s
that d transformations are exactly the same with the sca
supersymmetry transformations introduced by Witten@9#.
Note that this scalar SUSY generator can also be written
composite generator,

d52 i j iQi ,

whereQi are the chiral SUSY generators.
In terms of topological fields given in Eqs.~42!–~46!, the

gauge fermion~40! now reads

C top5Tr E d4xS 2
1

2
h@F,F̄#1

1

8
XmnFmn

1

2
1

8
XmnBmn1F̄DmcmD ~56!

and the corresponding action is found as
I top5 s̄C top ~57!

5Tr E d4xS 1

8
Fmn

1 Fmn
1 1hDmcm2

1

4
Xmn~Dmcn2Dncm!12F̄D2F2

1

2
F$h,h%2

1

8
F$Xmn ,Xmn%1F̄$cm ,cm%

2
1

2
@F,F̄#22

1

8
BmnBmnD . ~58!
n
po-

lso

s

of
t is

t

The above given actionI top is exactly the topologica
Yang-Mills action @9,29# with an auxiliary field term. We
remark once more that the inclusion of the auxiliary field
crucial in order to write the action as an exact term.11

We should stress here that above results do not mean

10Here we note that the derivation of the above results depe
crucially on the commuting nature of the global ghostj i . For ex-

ample, it is easy to verify thats̄ transformation ofl i @Eq. ~34!#

decomposes into Eq.~52!,~53! by using j iemnj i50 and j itW i
jj j

50.
11The reason why the action could not be written as an exact t

in the original paper@9# is that the twisted theory was obtained fro
the on-shell SYM theory. Note that, sinceC top given in Eq.~56! is

gauge invariant, we haveI top5 s̄C top5dC top .
at

N52 SYM theory is just a topological theory. It has its ow
physical degrees of freedom. However, it becomes a to
logical theory~of cohomological type! if the analyticity re-
quirement of the SUSY ghosts is relaxed. This fact has a
been pointed out in Refs.@21–23#, for twisted N52 SYM
theory that the twist of theN52 theory can be interpreted a
a topological theory only if the analyticity is lost in~scalar!
SUSY ghosts. Note that, in many cases the cohomologys
can be understood by studying a simpler operator tha
found by using a suitable filtration ofs @24#. In our case we

takes̄ as the filtered operator. The cohomology ofs̄ is empty

only if when s̄ is allowed to act on the field polynomials tha
are not necessarily analytic in the parametersj i . Since the
cohomology of complete operators is isomorphic to a sub-
space of the filtrated operators̄ @24#, the cohomology ofs is

ds

m
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also empty when the analyticity requirement is relaxed a
the theory can be interpreted as a topological theory.

V. INSTANTONS AND BAULIEU-SINGER APPROACH
TO TYM THEORY

As is well known, instantons are finite action solutions
the Euclidean field theories. Aiming to incorporate the
stantons into supersymmetric theories, Zumino construct
supersymmetric field theory directly in the Euclidean spa
@25#. This theory hasN52 supersymmetry with a Hermitea
action.~Recently, this theory has been derived by definin
continuous Wick rotation@31# and also by using dimensiona
reduction via time direction from six dimensionalN51
SYM theory @30#.! It is observed by Zumino that when on
imposes for instance an anti-self-dual field strength,

Fmn
1 5Fmn1

1

2
emnlrFmn50 ~59!

with the following restrictions:

M5l i50 ~60!

the equations of motion from Eq.~41! reduce to a simple
form @25#,

Fmn
1 5Fmn1

1

2
emnlrFmn50, ~61!

D2N5
iA2

2
$l̄ i ,l̄ i%, ~62!

emDml̄ i50. ~63!

These restrictions~59!,~60! and Eq.~61!–~63! are covariant
under the supersymmetry transformations found by apply
the above restrictions@25#.

Equations~61!–~63! are also the ones whose solutions a
used as approximate solutions of the saddle point equat
in the context of constraint instanton method@3,6#. On the
other hand, similar equations are obtained in TYM theo
without any approximation@8# from an action functional tha
can be written as a BRST transformation of a gauge ferm
given by Baulieu-Singer@10#. Both of the approaches to th
instanton calculations give the same result@8#.

Therefore, since EuclideanN52 SYM action can be writ-
ten as a BRST exact term~41! and Wittens TYM theory@9#
can be obtained by using simple field redefinitions~42!–~46!,
we look for another analogy between the above instan
inspired truncation of EuclideanN52 SYM theory and the
Baulieu-Singer approach to TYM theory.

The first step towards this purpose is to define a trunca
s̃,

s̃5 s̄uF
mn
1 5D” l̄ i5M5l i50 , ~64!

such that,
08500
d

f
-
a

e

a

g

ns

y

n

n-

d

s̃Am5Dmc2j ieml̄ i , ~65!

s̃l̄ i52$c,l̄ i%1 iA2ēmj iDmN, ~66!

s̃N52@c,N#, ~67!

s̃c52
1

2
$c,c%1 iA2j ij

iN, ~68!

and

s̃M5 iA2j il i , ~69!

s̃l i5tW i
jj j•DW , ~70!

s̃DW 50. ~71!

The reason why we do not setl i5DW 50 in Eq. ~69!,~70! is
that the pairs (M ,j il i) and (j itW i

jl j ,DW ) behave like trivial

pairs ~sometimes called BRST doublets!, i.e., like (c̄,b),
such thatsc̄5b, sb50, wheres is a nilpotent operator. It is
known that the cohomology of an operator does not dep
on inclusion of such trivial pairs~see, for instance,@15,24#!.

It is straightforward to derive thats̃ is also nilpotent,

s̃250,

and after performing the field redefinition given in Eq
~42!–~46!, s̃ transformations are found to be exactly that
Baulieu-Singer@10,29#.

On the other hand, the gauge fermion that is compat
with the restrictions of Zumino@25# has to be chosen slightly
different from the one given for the Euclidean case~40!,

C inst5
1

jkj
k
Tr E d4xS 2

a

2
j itW i

jl j•DW 2
1

2
j iemnl iFmn

1

1
iA2

2
j ieml̄ iDmM D . ~72!

The reason for this modification becomes apparent when
corresponding action is driven,
5-7
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I inst
(a) 5 s̃C inst5Tr E d4xF2

a

8
BmnBmn1

1

4
BmnFmn

1 2l iemDml̄ i1M S DmDmN2
iA2

2
$l̄ i ,l̄ i% D 1

1

jkj
k S 2

1

2
j iemnl i@c,Fmn

1 #

1
iA2

2
M $c,j iemDml̄ i% D G1

1

jkj
k
Tr E d4x]mS s̃

iA2

2
Mj ieml̄ i D , ~73!

where we have used the definition ofBmn in order to have notational simplification.
First of all, the gauge fermionC inst ~72! and the above actionI inst are exactly the ones given in Baulieu-Singer approa

@10# up to ordinary gauge fixing.12 It is straightforward to rewrite the above given gauge fermionC inst and the actionI inst by
using the field redefinitions given in Eqs.~42!–~46! in order to get the results of@10#. However, if the above relations ar
considered on their own, to be able to derive the instanton equations~61!–~63! from the action functional without having an
dependence on the constant ghosts, the EuclideanCE has to be modified. For instance when the restrictions of@25# are used
thej i dependence that comes from thes̃ variation of Trj il i@M ,N# cannot be eliminated. Therefore, the coefficient of this te
has to be chosen to vanish. The coefficient of Trs̃j itW i

jl j•DW can be left arbitrary since after performing the Gaussian integra
over the auxiliary fieldBmn the action is

I inst
(a) 5 s̃C inst

5Tr E d4xF 1

8a
Fmn

1 Fmn
1 2l iemDml̄ i1M S DmDmN2

iA2

2
$l̄ i ,l̄ i% D

1
1

jkj
k S 2

1

2
j iemnl i@c,Fmn

1 #1
iA2

2
M $c,j iemDml̄ i% D G

5Tr E d4xF 1

8a
Fmn

1 Fmn
1 2l iemDml̄ i1M S DmDmN2

iA2

2
$l̄ i ,l̄ i% D

1
1

jkj
k S 2

1

2
j iemnl i@c,Fmn

1 #1
iA2

2
M $c,j iemDml̄ i% D G1

1

jkj
k
Tr E d4x]mS s̃

iA2

2
Mj ieml̄ i D ~74!

and the Fadeev-Popov ghost field,c, independent part of the action is also SUSY ghostj i free. The form of the last term in
C inst is inspired from Ref.@8# in order to get a surface contribution, since

Tr s̃j ieml̄ iDmM5Tr ]ms̃j ieml̄ iM2Tr s̃Mj iemDml̄ i

if the scalar field has nontrivial boundary conditions. Therefore, the gauge fermionC inst is the only consistent choice up t
total derivatives that gives the right action to derive the exact instanton equations, when the truncated transfo
~65!–~71! are used.

On the other hand, the free parametera can be thought of as a gauge parameter, since it is so in the Baulieu-S
approach@10#. By choosing directlya50, the action~71! takes the form

I inst5 s̃C inst5Tr E d4xF1

4
BmnFmn

1 2l iemDml̄ i1M S DmDmN2
iA2

2
$l̄ i ,l̄ i% D

1
1

jkj
k S 2

1

2
j iemnl i@c,Fmn

1 #1
iA2

2
M $c,j iemDml̄ i% D G1

1

jkj
k
Tr E d4x]mS s̃

iA2

2
Mj ieml̄ i D ~75!

and by performing a functional integration over the fieldsl i ,M , and Bmn , the configurations of the constraint instanto
method~61!–~63! are obtained without using any approximation procedure. In other words, as is demonstrated abo
Baulieu-Singer approach can also be obtained by using field redefinitions given in Eqs.~42!–~46! when an instanton-inspired
truncation~59!,~60! of the Euclidean model is used.

12For instance, addings̃ * d4x c̄]mAm to C inst such thats̃c̄5b, s̃b50.
085005-8
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VI. CONCLUSION AND DISCUSSION

In this paper, we have shown how to write the off-sh
N52 SYM action as an exact term by using a nilpote

extended BRST operators̄ that includes supersymmetr
transformations of one chirality. The corresponding gau
fixing fermion is found to be nonanalytic in global SUS
ghosts. In other words, it is shown that the action belong

trivial cohomology of the extended BRST operators̄, if this
operator is allowed to act on the field polynomials that
not necessarily analytic in these global ghosts.

Due to this nonanalytical structure, we have found fie
redefinitions such that Witten’s TYM theory@9# can be ob-
tained from the EuclideanN52 SYM theory by identifying
the fields of TYM theory with composite fields of anN52
vector multiplet and the chiral SUSY ghostsj i in Euclidean
space. These field redefinitions are also partly nonanalyti
global SUSY ghosts. The ghost numbers and the dimens
of the topological fields, which are assigned by hand whe
is formulated by twisting, appear in our approach natura
according to this composite structure. In other words,
have shown explicitly that TYM theory can be found fro
N52 SYM theory exactly as a change of variables~i.e.,
without twisting!.

The above mentioned analyticity requirement also play
decisive role in understanding whenN52 SYM theory can
be interpreted as a topological theory. Note that the topolo
cal theory is obtained via a change of variables only wh
the requirement of analyticity of the constant ghostsj i is
relaxed. Therefore, physical and topological interpretati
of N52 SYM theory are intertwined together. However,
order to have a better understanding of implications of
results presented above, it would be interesting to investig
the perturbative regime of the theory by using the stand
O.

,

th
et
u

2n

cz
nd

tt.
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techniques of algebraic renormalization framework@24#.
On the other hand, when the restrictions on the fields

used in order to get supersymmetric instanton configurati
@25#, we show that with the help of a truncated BRST ope
tor s̃, an action can be written as ans̃-exact term. After using
the given variable redefinitions, it is seen that this formu
tion is exactly TYM theory in the approach of Baulieu
Singer@10#. The instanton equations, which are used in
traditional instanton computations@3,6#, can be derived from
this action~73! without using any approximation. Moreove
it is known that Witten’s action@9# can be obtained from the
one given in the Baulieu-Singer approach by a continu
deformation of gauge fixing@10#. As a consequence, a sim
lar relation also occurs between the EuclideanN52 SYM
action ~41! and the truncated~instanton! action ~73! since
both of the formulations of TYM theory can be obtained
using the variable redefinitions.

Finally, it is worthwhile to mention that the instanton ca
culations performed in the Baulieu-Singer approach of TY
theory@8# give exactly the same result as the one perform
in N52 SYM theory@3,6#. Since bothN52 SYM and TYM
theories are shown to be equivalent by simple variable
definitions, it would also be interesting to reinvestigate t
equivalence of the instanton calculations ofN52 SYM and
TYM theory and to find out whether the instantons locali
in the topological sector of the theory where the function
space of field polynomials is not necessarily analytic in g
bal SUSY ghosts.
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