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Gauge equivalence in QCD: The Weyl and Coulomb gauges
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The Weyl-gauge (A0
a50) QCD Hamiltonian is unitarily transformed to a representation in which it is

expressed entirely in terms of gauge-invariant quark and gluon fields. In a subspace of gauge-invariant states
we have constructed that implement the non-Abelian Gauss’s law, this unitarily transformed Weyl-gauge
Hamiltonian can be further transformed and, under appropriate circumstances, can be identified with the QCD
Hamiltonian in the Coulomb gauge. We demonstrate an isomorphism that materially facilitates the application
of this Hamiltonian to a variety of physical processes, including the evaluation ofS-matrix elements. This
isomorphism relates the gauge-invariant representation of the Hamiltonian and the required set of gauge-
invariant states to a Hamiltonian of the same functional form but dependent on ordinary unconstrained Weyl-
gauge fields operating within a space of ‘‘standard’’ perturbative states. The fact that the gauge-invariant
chromoelectric field is not Hermitian has important implications for the functional form of the Hamiltonian
finally obtained. When this non-Hermiticity is taken into account, the ‘‘extra’’ vertices in the Christ-Lee’
Coulomb-gauge Hamiltonian are natural outgrowths of the formalism. When this non-Hermiticity is neglected,
the Hamiltonian used in the earlier work of Gribov and others results.
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I. INTRODUCTION

In earlier work on QCD in the Weyl gauge (A0
a50), we

have constructed gauge-invariant operator-valued quark
gluon fields@1#; these include the gauge-invariant quark fie

cGI~r !5VC~r !c~r ! and cGI
† ~r !5c†~r !VC 21~r !, ~1!

where

VC~r !5expS 2 igY a~r !
la

2 DexpS 2 igX b~r !
lb

2 D , ~2!

VC 21~r !5expS igX b~r !
lb

2 DexpS igY a~r !
la

2 D , ~3!

and where thela designate the Gell-Mann matrices. In the
expressionsX a(r )5@(] j /]2)Aj

a(r )#, so that] iX a(r ) is the
i th component of the longitudinal gauge field@2# andY a(r )
is defined asY a(r )5@(] j /]2)A j

a(r )#. A j
a(r ), which we re-

fer to as the ‘‘resolvent field,’’ is an operator-valued fun
tional of the gauge field, and is represented in Refs.@1# and
@3# as the solution of an integral equation. Constructing
gauge-invariant quark field by attachingVC(r ) to the quark
field c represents an extension, into the non-Abelian dom
of a method of creating gauge-invariant charged fields or
nated by Dirac for QED@4#; and, like Dirac’s procedure, thi
non-Abelian construction is free of path-dependent integr
An explicit demonstration thatcGI(r ) is invariant to
non-Abelian gauge transformations has been given
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implementing gauge transformations with the genera
exp$2i*dyĜa(y)va(y)%, where Ĝa is the non-Abelian
‘‘Gauss’s law operator’’

Ĝa5] iP i
a1g fabcAi

bP i
c1gc†

la

2
c, ~4!

andva is a number-valued gauge function. With the use
this generator, under which

c~r !→c8~r !5expS 2 iva~r !
la

2 Dc~r ! ~5!

and

Ai
b~r !

lb

2
→expS 2 iva~r !

la

2 D S Ai
b~r !

lb

2
1

i

g
] i D

3expS iva~r !
la

2 D , ~6!

it has been shown thatVC(r ) also gauge transforms as

VC~r !→VC~r !expS iva~r !
la

2 D ,

VC
21~r !→expS 2 iva~r !

la

2 DVC 21~r ! ~7!

so thatcGI(r ) remains gauge invariant@1#. The resolvent
field A j

b also has an important role in the gauge-invaria
gauge field
©2003 The American Physical Society02-1
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AGIi~r !5FAGIi
b ~r !

lb

2 G
5VC~r !FAi

b~r !
lb

2 GVC 21~r !1
i

g
VC~r !] iVC 21~r !,

~8!

which can be shown to be the transverse field@1#

AGIi
b ~r !5Ai

bT~r !1Fd i j 2
] i] j

]2 GA j
b~r !

5Fd i j 2
] i] j

]2 G @Aj
b~r !1A j

b~r !#. ~9!

Equation~8!, as well as the fact thatAGIi
b (r ) andĜc(x) com-

mute, demonstrate thatAGIi
b (r ) is gauge invariant—more

precisely, invariant to ‘‘small’’ gauge transformations. W
can also define a gauge-invariant chromoelectric fieldEGIi

a

52PGIi
a @5#. A natural definition ofPGIi

a in this formulation
is

PGIi~r !5FPGIi
b ~r !

lb

2 G5VC~r !
lb

2
VC 21~r !P i

b~r ! ~10!

or, equivalently,

PGIi
a 5RabP i

b where Rab5
1

2
Tr@laVClbVC 21#, ~11!

whereP i
a is the momentum conjugate to the gauge fieldAi

a

in the Weyl gauge. With the use of the commutator

@ Ĝc~x!,Rab~y!#5 ig f cbqRaq~y!d~x2y!, ~12!

obtained in Ref.@5#, it is easy to verify thatPGIi
a (y) com-

mutes withĜc(x) and therefore also is gauge invariant.
In this work we will use a representation, which we d

cuss in Sec. II, in which the Weyl-gauge QCD Hamiltoni
is expressed entirely in terms of gauge-invariant fields. Si
the gauge-invariant gauge field is transverse, it is of inte
to relate this gauge-invariant formulation to the Coulom
gauge. We address this question in Sec. II B. In Sec. II
also show that the Weyl-gauge QCD Hamiltonian in th
representation—in which all operator-valued fields a
gauge-invariant—must be applied to a set of gauge-invar
states that are solutions of the non-Abelian Gauss’s law
Sec. III, we address the problem that these states, w
solve Gauss’s law in QCD, are complicated constructio
that are difficult to use. We demonstrate an isomorphism
this section between this Hamiltonian, which operates
gauge-invariant states, and a corresponding Hamiltonian
is a functional of gauge-dependent Weyl-gauge fields
that operates on a set of ‘‘standard’’ perturbative states. A
in Sec. III, we relate these Hamiltonians to those obtain
from Coulomb-gauge formulations of QCD. We discuss
implications of our work in Sec. IV.
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II. RELATION OF THE GAUGE-INVARIANT
REPRESENTATION OF THE WEYL GAUGE

TO THE COULOMB GAUGE

The QCD Hamiltonian in the Weyl gauge has been e
pressed in terms of gauge-invariant operator-valued fie
@5,6#. In this work, extensive use has been made of the u
tary equivalence ofĜa—the ‘‘Gauss’s law operator’’ given in
Eq. ~4!, which imposes the non-Abelian Gauss’s law—to t
‘‘pure glue’’ version of that operator

G a5] iP i
a1g fabcAi

bP i
c ~13!

as shown by

G a5U C
21Ĝ aUC , ~14!

where

UC5expF i E drX a~r ! j 0
a~r !GexpF i E dr 8Y c~r 8! j 0

c~r 8!G .
~15!

This unitary equivalence has been used to establish a
representation—theN representation in whichG a represents
the complete Gauss’s law operatorĜa, andc represents the
gauge-invariant quark field because it commutes withG a.
The N representation is unitarily equivalent to theC repre-
sentation in whichĜa and cGI designate the Gauss’s law
operator and the gauge-invariant spinor~quark! field, respec-
tively. In the N representation,j 0

a(r )5gc†(r )(la/2)c(r )
and j i

a(r )5gc†(r )a i(l
a/2)c(r ) are the gauge-invarian

quark color charge and quark color current densities, resp
tively.

The Weyl-gauge QCD Hamiltonian can be transform
from its familiar C representation form

H5E dr H 1

2
P i

a~r !P i
a~r !1

1

4
Fi j

a ~r !Fi j
a ~r !

1c†~r !Fbm2 ia i S ] i2 igAi
a~r !

la

2 D Gc~r !J ~16!

to theN representation, as shown by

ĤGI5U C
21HUC . ~17!

This similarity transformation leaves the gauge field untra
formed, but it transforms the quark field and the negat
chromoelectric field as shown by@7#

U C
21~x!c~x!UC~x!5VC 21~x!c~x! ~18!

and

U C
21~x!P i

a~x!UC~x!5P i
a~x!2Rba~x!] i

(x)

3E dyD bc~x,y! j 0
c~y!. ~19!
2-2
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The transformed,N-representation HamiltonianĤ can be
expressed entirely in terms of gauge-invariant variables
making use of the identities RaqRbq5dab ,
f duvRuaRvb5 f abqRdq , and ] iRba52 f uvbRuaPv i where
Pv i52 i Tr@lvVC] iVC 21#. The QCD Hamiltonian in theN
representation, expressed in terms of gauge-invariant fie
is

ĤGI5E dr F1

2
PGIi

a† ~r !PGIi
a ~r !1

1

4
FGIi j

a ~r !FGIi j
a ~r !2c†~r !

3~bm2 ia i] i !c~r !G1
1

2E dxdy@J0(GI)
a† ~x!

3D ab~x,y! j 0
b~y!1 j 0

b~y!D ba~y,x!J0(GI)
a ~x!#

2
1

2E drdxdyj 0
c~y!D ca~y,r !]~r !

2 D ab~r ,x! j 0
b~x!

2E dr j i
a~r !AGIi

a ~r !1HG . ~20!

where

FGIi j
a ~r !5] jAGIi

a ~r !2] iAGIj
a ~r !2g fabcAGIi

b ~r !AGIj
c ~r !,

~21!

from which it follows that

FGIi j
a ~r !5Raq~r !Fi j

q ~r !. ~22!

BecauseĤGI is in theN representation,c andc† denote the
gauge-invariant quark fields.D ab(x,y) is the inverse
Faddeev-Popov operator, which we will discuss in Sec. II
andJ0(GI)

a (r ) is the gauge-invariant gluon color charge de
sity, defined as

J0(GI)
a ~r !5g fabcAGIi

b ~r !PGIi
c ~r !. ~23!

Although ĤGI is Hermitian,PGIi
a is not, because, as can b

seen from Eq.~11!, PGIi
a† 5P i

bRab , and P i
b does not com-

mute with Rab . Similarly, J0(GI)
a is not Hermitian, and

J0(GI)
a† 5g fabcPGIi

c† AGIi
b . The last part of the QCD Hamil

tonian is

HG52
1

2E dxdy@G GI
a ~x!D ab~x,y! j 0

b~y!

1 j 0
b~y!D ba~y,x!G GI

a ~x!# ~24!

whereG GI
a is the gauge-invariant Gauss’s law operator@5#

G GI
a 5] iPGIi

a 1g fabcAGIi
b PGIi

c 5RabG b

which consists solely of gauge-invariant fields, every one
which commutes withG a, the Gauss’s law operator in theN
representation;G GI

a is Hermitian becauseRab and G b com-
mute @5#.

Equation ~20! resembles the QCD Hamiltonian in th
Coulomb gauge. The only direct interaction between co
currentsj i

a and the gauge field involve the transverse curr
08500
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only. The other interactions in which quarks participate a
nonlocal, involve the quark color-charge densityj 0

a , and are
mediated by Green’s functions that are the non-Abelian g
eralizations of the Abelian]22. These interactions still in-
volve the longitudinal component of the gauge-invaria
chromoelectric field, but we will show how this can be elim
nated in Sec. II B.

A. The inverse Faddeev-Popov operator

The Faddeev-Popov operator in the gauge-invariant r
resentation of the Weyl gauge is

]•D (x)
ab5

]

]xi
S ]

]xi
dab1g faqbAGIi

q ~x! D
5S ]

]xi
dab1g faqbAGIi

q ~x! D ]

]xi
; ~25!

] i andDi commute becauseAGIi
q is transverse. The Faddeev

Popov operator has a formal inverse, which can be rep
sented as the series

D bh~y,x!5 (
n50

`

f (n)
dW bh~21!n11gn

1

]2
@T(n)

dW ~y!d~y2x!#,

~26!

where f (n)
aW bh represents the chain of SU~3! structure constants

f (n)
aW bh5 f a1bs1f s1a2s2f s2a3s3

••• f s(n22)a(n21)s(n21)f s(n21)anh,
~27!

and where repeated superscripted indices are summed

1→8; for n51, the chain reduces tof 1
aW bh5 f abh; and for

n50, f 0
aW bh52dbh . T(n)

aW (r ) j 0
h(r ) is a special case of a gen

eral formT (n)
aW (r )wh(r ) for an arbitrarywh(r ) given by

T (n)
aW ~r !wh~r !5AGIj (1)

a(1) ~r !
] j (1)

]2 H AGIj (2)
a(2) ~r !

] j (2)

]2

3F •••S AGIj (n)
a(n) ~r !

] j (n)

]2
„wh~r !…D G J ,

~28!

with

T (0)
aW ~r !wh~r !5wh~r ! and T (1)

aW ~r !wh~r !5AGIi
a ~r !

] i

]2
wh~r !.

~29!

By expandingD bh(y,x) and combining terms of the sam
order in g, it can be observed that, as will be proven
Appendix A,

]•D (y)
ahD hb~y,x!5dabd~y2x! ~30!

whereDi
ah5] idah1g faghAGIi

g and that
2-3
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D bh~y,x!]•Dha
⇐

(x)5dbad~y2x!, ~31!

where

D
⇐

i
hb5~] i

Qdhb2g fhqbAGIi
q ! ~32!

and

]•Dhb
⇐

5~]2Q dhb2g fhqb] i
QAGIi

q ! ~33!

and the← symbol indicates that]2 and] i differentiate to the
left. In demonstrating Eqs.~30! and~31!, it can be helpful to
use the expanded form of thenth order term of the inverse
Faddeev-Popov operator series

D(n)
ah ~y,x!5gnf d1as1f s1d2s2

••• f s(n21)dnh

3E dz~1!

4puy2z~1!u
AGIl 1

d1
„z~1!…

]

]z~1! l 1

3E dz~2!

4puz~1!2z~2!u
AGIl 2

d2
„z~2!…

]

]z~2! l 2

•••

3E dz~n!

4puz~n21!2z~n!u
AGIl n

dn
„z~n!…

]

]z~n! l n

3
1

4puz~n!2xu
~34!

with

D(0)
ah ~y,x!5

2dah

4puy2xu
~35!

and

D(1)
ah ~y,x!5g fd1ahE dz

4puy2zu
AGIk

d1 ~z!
]

]zk
S 1

4puz2xu D .

~36!

Integration by parts with respect to thez( i ) and the identity

f (n)
aW ah5(21)nf (n)

aW ha demonstrate that

D ah~y,x!5D ha~x,y!. ~37!

It is apparent from Eqs.~34!–~36! that D bh(y,x) obeys the
integral equation@8#

D bh~y,x!52S dbh

4puy2xu
1g fdbs

3E dz

4puy2zu
AGIk

d ~z!
]

]zk
D sh~z,x! D , ~38!

which has these equations as an iterative solution.
Equation~26! enables us to express the commutator of

gauge-invariant gauge field and the negative gauge-inva
chromoelectric field as
08500
e
nt

@PGIj
b ~y!,AGIi

a ~x!#52 i S dabd i j d„x2y…

1
]

]yj
D bh~y,x!Di

ha⇐
~x! D . ~39!

Equation~39! and the commutator, obtained in Ref.@5#,

@PGIi
a ~x!,PGIj

b ~y!#5 igH ]

]xi
D ah~x,y! f hcbPGIj

c ~y!

2
]

]yj
D bh~y,x! f hcaPGIi

c ~x!J ,

~40!

are in agreement with those given by Schwinger for the C
lomb gauge@9#, except for some differences in operator o
der. This fact suggests that the gauge-invariant Weyl-ga
field and the Coulomb-gauge field discussed by Schwin
are very similar. The differences in operator-order should
expected because, in Ref.@9#, ambiguities in operator orde
in the Coulomb gauge are resolved by symmetrizing n
commuting operator-valued quantities so that Coulom
gauge operators are kept Hermitian. In our work in t
gauge-invariant formulation of the Weyl gauge, ambiguit
in operator order do not arise. When, because of a n
symmetric ordering of gauge fields and chromoelec
fields, some gauge-invariant operator-valued quantities
out not to be Hermitian, we leave them that way in order
avoid ad hocchanges in operator order.

Equation~40! leads to the commutation rule for the tran
verse parts ofPGIj

b (y) @10#,

@PGIi
aT ~x!,PGIj

bT ~y!#50. ~41!

Equation~39! leads to the commutator of the transverse p
of PGIj

b (y) andAGIi
a (x) ~which is transverse!

@PGIj
bT ~y!,AGIi

a ~x!#52 idabS d i j 2
] i] j

]2 D d~x2y!. ~42!

Equation ~39! can be shown to be consistent wi
] iAGIi

a 50 because

]

]xi
@PGIj

b ~y!,AGIi
a ~x!#

52 i S dabd i j

]

]xj
d~x2y!1

]

]yj
D bh~y,x!]•D (x)

ha⇐ D
52 idabd i j S ]

]xj
d~x2y!1

]

]yj
d~x2y! D 50, ~43!

and withD jPGIj
b '0 because

D j
bc~y!@PGIj

c ~y!,AGIi
a ~x!#50 ~44!

trivially.
2-4
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The Faddeev-Popov operator has a well-documented
portance in non-Abelian gauge theories. Gribov has sho
that gauge fields that have been gauge fixed to have a
ishing divergence can differ from each other@11,12#, and that
the Faddeev-Popov operator does not have a unique inv
In that same work, Gribov makes the suggestion that
zeros of the Faddeev-Popov operator]2dac1g fabcAi

b] i

might so intensify the interaction between color charges
the effect could account for confinement. Subsequent aut
have reiterated this suggestion@13,14#, and connections be
tween the zeros of the Faddeev-Popov operator and c
confinement have been discussed by other authors as
@15–17#.

Equations~30! and ~31! are based on a series represen
tion of the operator-valuedD bh(y,x); they are obtained by
combining all terms of equal order ing and noting cancella-
tions within each order. They do not, however, establish t
D bh(y,x) is the unique inverse of the Faddeev-Popov ope
tor. Questions about uniqueness can readily be formula
about number-valued functions, but are very difficult to a
dress for operator-valued quantities. Equations~30! and~31!
establish thatD bh(y,x) is an operator-valued inverse o

]•D (y)
ah ~acting on the left! and of]•D (x)

ha⇐
~acting on the right!

without addressing the question of its uniqueness. Howe
althoughAGIi

a is an operator-valued quantity, the SU~2! ver-
sions of its constituents—the Weyl-gauge fieldAi

a and the
resolvent fieldA i

a—can be, and often have been, represen
by number-valued realizations as functions of spatial v
ables. Such realizations have been used extensively to s
the topology of gauge fields@11,12,18#. When the integral
equation for the resolvent field referred to in Sec. I is e
pressed in terms of a number-valued hedgehog repres
tion, it can be transformed into a nonlinear differential equ
tion that was shown to have multiple solutions@3#.
Moreover, this nonlinear differential equation was shown
be very nearly identical in form to the one used by Gribov
a specific illustration of the fact that the Faddeev-Popov
erator for the transverse SU~2! gauge field does not have
unique inverse. With this number-valued realization we w
able to establish that the gauge-invariant field, which
transverse, has a Gribov ambiguity@3#, even though there ar
no Gribov copies of the gauge-dependent Weyl-gauge fi
@19–21#.

In the context of the quantized theory—for example,
ĤGI—we will representD bh(y,x) as the operator-valued se
ries described in Eqs.~26! and ~34!. Since each term in this
series has unambiguous and self-consistent commutatio
lations with all other operator-valued quantities, the ser
representation ofD bh(y,x) is entirely satisfactory for deter
mining the commutators ofĤGI with other gauge-invarian
operators—and therefore determining their tim
dependence—even though number-valued realizations o
gauge-invariant gauge field lead to nonlinear integral eq
tions that do not have unique solutions.

It may seem surprising that, starting in the Weyl gau
and expressing the QCD Hamiltonian in that gauge in te
of gauge-invariant variables can lead to a form of the Ham
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tonian that, while never actually having been gaug
transformed, has the same dynamical effect as the Q
Hamiltonian in the Coulomb gauge. But a remarkably simi
state of affairs obtains in QED. When QED is formulated
the temporal gauge, and a unitary transformation is car
out that is the Abelian analog of the one that leads to
Hamiltonian described in Eqs.~20!–~24!, the following
result is obtained @22,23#: The QED Hamiltonian
in the temporal gauge, unitarily transformed b
exp@i*(1/]2)] iAi(r ) j 0(r )dr #—the Abelian analog of the
transformationUC described in Eq.~15!—takes the form

ĤQED5E dr F1

2
P i~r !P i~r !1

1

4
Fi j ~r !Fi j ~r !1c†~r !

3~bm2 ia i] i !c~r !G2E dr j i~r !Ai
T~r !

1E drdr 8
j 0~r ! j 0~r 8!

8pur2r 8u
1Hg . ~45!

Ai
T designates the transverse Abelian gauge field—which

Abelian theories, is also the gauge-invariant field—andHg
can be expressed as

Hg52
1

2E dr S ] iP i~r !
1

]2
j 0~r !1 j 0~r !

1

]2
] iP i~r !D .

~46!

Hg is the Abelian analog ofHG , described in Eq.~24!. The
Abelian Gauss’s law operator,Ĝ5] iP i1 j 0, transforms into
] iP i in the representation in whichc represents the gauge
invariant electron field; and the states that implem
Gauss’s law, which originally are selected byG(r )uC&50,
are given by] iP i(r )uF&50 in the transformed representa
tion @or, as is more appropriate for Abelian gauge theori
by G (1)(r )uC&50 and ] iP i

(1)(r )uF&50 respectively,
where the superscript ‘‘~1!’’ designates the positive-
frequency parts of operators# @22,24# As can be seen,ĤQED
also consists of two parts: the Hamiltonian for QED in t
Coulomb gauge, andHg , which has no effect on the time
evolution of states that implement Gauss’s law, but wh
‘‘remembers’’ the fact thatĤQED is the transformed Weyl-
gauge Hamiltonian by preserving the field equations for t
gauge. An identical transformation applies to covaria
gauge QED, the sole difference being in the form of theHg
produced by the transformation.

As we can see from Eqs.~20!, ~24!, ~45! and~46!, and as
will become even more evident in Eq.~60!, QCD and QED
are strikingly similar in the relation between their Hamilt
nians in different gauges when these are represented in t
of gauge-invariant fields. Nevertheless, there are impor
differences between QED and QCD in the significance
this relationship. One such difference is that, in QED,
may safely use the original untransformed Weyl gauge
covariant-gauge Hamiltonian in a space of perturbative st
when evaluatingS-matrix elements, even though thes
gauge-dependent perturbative states fail to implem
2-5
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Gauss’s law. This means that, for perturbative calculation
QED, we can safely use the Lagrangian

L52
1

4
FmnFmn2 j mAm1c̄~ igm]m2m!c1Lg ~47!

with Lg52A0G for the Weyl gauge andLg52G]mAm

1 1
2 (12g)G2 for the covariant gauge, without paying an

attention to Gauss’s law whatsoever. A corresponding p
tice in Weyl-gauge QCD is the use of the Weyl-gauge Ham
tonian H in a Fock space of perturbative states that are
annihilated byG a. There is, however, the following impor
tant difference between QED and QCD. The use of per
bative states in QED without implementing Gauss’s law
permissible because, in QED, a unitary equivalence can
established between] iP i and] iP i1 j 0, so that] iP i can be
interpreted as] iP i1 j 0 in a new representation@22,23#. In
this way, it can be shown that perturbative states that im
ment only ] iP i(r )'0 instead of] iP i1 j 0(r )'0 may be
used when evaluatingS-matrix elements in QED; the only
effect onS-matrix elements from this substitution consists
changes to the renormalization constants, which are un
servable@25#. But this dispensation to ignore Gauss’s law
perturbative calculations has not been shown to exten
QCD, becauseDiP i

a1 j 0(r ) is unitarily equivalent only to
DiP i

a , but not to ] iP i
a ; and states that implement th

Gauss’s lawDiP i
a'0 cannot be perturbative states. In pa

ticular, the use ofĤGI for perturbative calculations using
space of perturbative states does not enjoy the same pr
tion that the corresponding practice has in QED. In Sec.
we will establish an isomorphism between the gau
invariant states that implement the non-Abelian Gauss’s
and perturbative states. This isomorphism enables us to
stitute ‘‘standard’’ calculations with perturbative states f
prohibitively difficult ones with gauge-invariant states. B
this means, we provide for QCD a substitution rule, simi
to the one available in QED, that permits the use of per
bative Fock states in scattering calculations with the as
ance that the results of these calculations will agree w
what would have been obtained if gauge-invariant opera
and states had been used.

Another difference between QCD and QED is related
the fact that states that obey the condition

G a~r !uC&50 ~48!

are not normalizable. We can see this easily by construct
for example, the commutator ofG 8(r ) and an integral opera
tor I5*dr 8Aj

8(r 8)x j (r 8) where x j (r 8) is an arbitrary
c-number-valued function. Since

@I,G 8~r !#5 i ] ix i~r !

and

^Cu@I,G 8~r !#uC&5 i ] ix i~r !^CuC&,

and sinceG 8(r ) is Hermitian so that̂CuG 8(r )50 as well as
G 8(r )uC&50, this leads tô CuC&50, in contradiction to
the assumption thatuC& is normalizable. This argument is
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simple extension of one that was applied to the Fermi s
sidiary condition for QED@26#. In the case of QED, how-
ever, this difficulty can be remedied because the n
normalizability of the states that are annihilated by t
Abelian Gauss’s law operator is entirely caused by the un
servable longitudinal nonpropagating photon ‘‘ghos
modes, which coincide exactly with the pure gauge degr
of freedom, and which can be kept separate from the gau
invariant transversely polarized propagating photons in a
riety of ways. In QCD, however, transverse modes can
pure gauge, and we do not know of a similarly satisfacto
resolution of the non-normalizability of the state vectors th
satisfy Eq.~48! @27,28#. The previously mentioned isomor
phism, which will be demonstrated in Sec. III, mitigates th
difficulty by establishing an equivalence between matrix
ements evaluated with gauge-invariant states that are not
malizable, and corresponding ones evaluated with pertu
tive states.

B. Relation to QCD in the Coulomb gauge

Unlike the Weyl-gauge formulation of QCD, in which on
can simply setA0

a50 and impose canonical quantizatio
rules on the remaining fields@29,30#, the quantization of
Coulomb-gauge QCD requires that constraints be explic
taken into account. In constrained quantization—one pro
dure for implementing consistency with constraints—th
consistency is maintained by means of the so-called ‘‘Dir
brackets,’’ which replace the canonical equal-time commu
tion rules. When constrained quantization, such as the Di
Bergmann procedure@31#, is applied to the Coulomb gauge
the generator of infinitesimal gauge transformations beco
a constraint; it then must commute with all fields, whic
therefore are invariant to small gauge transformations. Un
these circumstances, the gauge field would automatically
invariant to small gauge transformations, although it mig
have discrete numbers of gauge copies.

However, carrying out the constrained quantization
QCD in the Coulomb gauge is problematical; one impe
ment stems from operator-ordering ambiguities of multil
ear operator products. For example, in constrained quan
tion, the matrix of constraint commutators must be invert
There are noncommuting operators in that matrix, and it is
best problematical to keep track of operator order in the p
cess of finding this inverse. As a result, the Dirac brackets
some operators are not unambiguously specified. Becaus
the difficulties associated with the quantization of QCD
the Coulomb gauge, a number of workers have avoided
direct quantization of Coulomb-gauge QCD, and have p
ceeded by treating theA0

a50 gauge fields as a set of Cart
sian coordinates and the Coulomb-gauge fields as a se
curvilinear coordinates, and have transformed from
former to the latter by using the familiar apparatus for su
coordinate transformations@32–35#.

In our work, we transform from the Weyl gauge to a re
resentation in terms of gauge-invariant operator-valu
fields. Our purpose is to implement gauge invariance, no
carry out a gauge transformation. We do not impose tra
versality on the gauge-invariantAGIi

b ; in our work, AGIi
b is
2-6
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transverse, but the transversality is not imposed a
condition—it emerges as a consequence of its gauge inv
ance. And the Gauss’s law operatorG a does not vanish iden
tically; in our work, Gauss’s law is a condition on a set
states~the implementation of Gauss’s law by imposing it o
a set of states is also discussed in Refs.@32,34,36,37#!.

Because our formulation of QCD in terms of gaug
invariant fields differs significantly from those whose pu
pose is to construct the QCD Hamiltonian in the Coulom
gauge, it is of interest to inquire how closely the resulti
Hamiltonians resemble each other. In order to examine
question further, we will make some additional transform
tions of ĤGI that assume that the Hamiltonian acts only
states that implement Gauss’s law. WhenĤGI appears in a
matrix element between two statesuCa& and^Cbu that obey
G c(x)uCa&50 and ^CbuG c(x)50, further transformations
that eliminate the longitudinal component ofPGIi

a are pos-
sible. For the case thatPGIi

cL appears adjacent to and direct
to the left of such a stateuC&, we can make the replaceme

PGIi
cL uC&52

] i

]2
J0(GI)

c uC& ~49!

and, therefore, also

J0(GI)
a uC&5g fabcAGIi

b ~PGIi
cT 1PGIi

cL !uC&

5H J0(GI)
aT 2g fabcAGIi

b ] i

]2
J0(GI)

c J uC&, ~50!

whereJ0(GI)
aT is defined asJ0(GI)

aT [g fabcAGIi
b PGIi

cT . Equation
~50! can be iterated, leading to

J0(GI)
b '2 (

n50

`

~21!ngnf aW bh~T (n)
aW J0(GI)

hT ! ~51!

where' indicates that the replacement is valid only wh
the operators act on statesuC& that implement Gauss’s law
WhenJ0(GI)

a† stands directly to the right of̂Cu states, we can
similarly make the replacement

J0(GI)
b† '2 (

n50

`

~21!ngnf aW bh~T (n)
aW J0(GI)

hT !† ~52!

where

$T (n)
aW ~r !J0(GI)

hT ~r !%†

5H F S ~J0(GI)
hT† ~r !!

] j (n)
←

]2 AGIj (n)
a(n) ~r !D •••] j (2)

←

]2 AGIj (2)
a(2) ~r !G

3
] j (1)
←

]2 AGIj (1)
a(1) ~r !J ~53!

and where the arrows indicate that differentiation is appl
to the left. Similarly,PGIi

a (r ) andPGIi
a† (r ) can be expresse

as
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PGIj
b 'PGIj

bT 1
] j

]2 S (
n50

`

~21!ngnf aW bh~T (n)
aW J0(GI)

hT !D ~54!

and

PGIj
b† 'PGIj

bT†1
] j

]2 S (
n50

`

~21!ngnf aW bh~T (n)
aW J0(GI)

hT !D †

,

~55!

respectively. We can combine Eqs.~26! with Eqs. ~51! and
~52! to obtain

J0(GI)
b ~y!']2E dxD ba~y,x!J0(GI)

aT ~x! ~56!

and

J0(GI)
b† ~y!']2E dxJ0(GI)

aT† ~x!D ab~x,y!. ~57!

Equations~54! and ~55! can be expressed as

PGIj
b ~y!'PGIj

bT ~y!2] jE dxD ba~y,x!J0(GI)
aT ~x! ~58!

and

PGIj
b† ~y!'PGIj

bT†~y!2] jE dxJ0(GI)
aT† ~x!D ab~x,y!, ~59!

respectively, whereJ0(GI)
aT† (x) represents the Hermitian ad

joint of J0(GI)
aT (x).

We can define an ‘‘effective’’ Hamiltonian (ĤGI)phys,
which is obtained by making the replacements described
Eqs.~56!–~59! in ĤGI and excludingHG , since the latter will
not contribute to any matrix elements in the physical spac
which Gauss’s law is implemented. With these replaceme
we obtain

~ĤGI!phys5E dr F1

2
PGIi

aT†~r !PGIi
aT ~r !1

1

4
FGIi j

a ~r !FGIi j
a ~r !

1c†~r !~bm2 ia i] i !c~r !G2E dr j i
a~r !AGIi

a ~r !

2
1

2E drdxdy@ j 0
b~x!1J0(GI)

bT† ~x!#

3D ba~x,r !]~r !
2 D ac~r ,y!@ j 0

c~y!1J0(GI)
cT ~y!#.

~60!

(ĤGI)phys is not identical toĤGI . But (ĤGI)physcan substitute
for ĤGI as the generator of time evolution when we emb
the theory within a space of statesuCn& that satisfy the non-
Abelian Gauss’s law,G a(x)uCn&50. BecauseG a(x) is Her-
mitian, the same stateuCn& that obeys Eq.~48! also obeys

^CnuG a(x)50. Equation~20! demonstrates that whenĤGI
appears in any ‘‘allowed’’ matrix element,PGIi

a and J0(GI)
a

always are situated where they abut a ‘‘ket’’ state vec
uCa& to their right; andPGIi

a† andJ0(GI)
a† always are situated
2-7
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where they abut a ‘‘bra’’ state vector^Cbu to their left. Since
ĤGI will always be bracketed between two states^Cbu and
uCa& that implement Gauss’s law,PGIi

a andPGIi
a† can be re-

placed by their ‘‘soft’’ equivalents shown in Eqs.~58! and
~59!, respectively, andJ0(GI)

b and J0(GI)
b† can similarly be re-

placed as shown in Eqs.~56! and~57!, respectively. (ĤGI)phys

can therefore always be substituted forĤGI in matrix ele-
ments, as long as attention is paid to the need to restrict
space of state vectors to those that implement Gauss’s
For example, exp(2iĤGIt)uCa& can be replaced by
exp(2i(ĤGI)physt)uCa&, since both will be required to projec
onto states that implement Gauss’s law, as shown by

exp@2 i ~ĤGI!t#uCa&5uCn&^Cnuexp@2 i ~ĤGI!t#uCa&,
~61!

and

^Cnuexp@2 i ~ĤGI!t#uCa&

5dna2 i t ^CnuĤGI!uCa&1•••1
~2 i t !n

n!

3^CnuĤGI!uCm1
&^Cm1

uĤGI!uCm2
&

3^Cm2
uĤGI!uCm3

&•••^Cmn21
uĤGI!uCa&1•••.

~62!

Each matrix element̂Cm i
uĤGI)uCm j

& in Eq. ~62! can be

replaced by ^Cm i
u(ĤGI)physuCm j

&, so that

exp@2i(ĤGI)t#uCa& can safely be replaced b
exp(2i(ĤGI)physt)uCa&. The time evolution imposed byĤGI
on a state vectoruCa& for which G c(x)uCa&50 takes place
entirely within the space of states that implement Gau
law. In the case of a state vectorux& for which G c(x)ux&
5ux8& whereux8& is nonvanishing,

^xu@G c~x!,exp~2 iĤ GIt !#uCa&5^x8uexp~2 iĤ GIt !uCa&50
~63!

becauseG c(x) andĤGI commute. This requires the part ofx
that fails to implement Gauss’s law to be orthogonal
exp(2iĤGIt)uCa&. The only limitation on the validity of this
argument is the non-normalizability of the states that imp
ment Gauss’s law, which complicates the algebraic proper
of the $uCa&% vector space. Nevertheless, Eqs.~61!–~63!
show that we can restrict the space in which time evolut
takes place to state vectors that implement Gauss’s law w
out compromising the unitarity of the time-evolveduCa(t)&
or of theS matrix evaluated with such states. These cons
erations are also instrumental in allowing us to repla
exp(2iĤGIt) with exp(2i(ĤGI)physt). ĤGI and (ĤGI)phys both
commute withG a(x) for all values ofa, so that

G a~x!exp@2 i ~ĤGI!physt#uCa&

5exp@2 i ~ĤGI!physt#G a~x!uCa&50 ~64!
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as well as

G a~x!exp@2 i ~ĤGI!t#uCa&5exp@2 i ~ĤGI!t#G a~x!uCa&50.
~65!

The state vectors exp@2i(ĤGI)t#uCa& and
exp@2i(ĤGI)physt#uCa& therefore are gauge-invariant an
implement Gauss’s law just asuCa& does.

In comparing (ĤGI)phys with expressions for the
Coulomb-gauge Hamiltonian in the literature, we note th
the only significant difference between (ĤGI)phys and the
Coulomb-gauge Hamiltonian reported in Ref.@32# is that
PGIj

bT† , the Hermitian adjoint of the transverse gaug
invariant chromoelectric field, appears in Eq.~60! where the
expression J 21PGIj

bT J appears in Ref.@32#, where J
5det@] i•Di #. We will prove in Appendix B that

PGIj
bT†5J 21PGIj

bT J, ~66!

by using Eq.~11! and the identity

d

dAi
q~x!

ln J5TrF ~]•D !21
d

dAi
q~x!

]•DG ~67!

where the trace in Eq.~67! extends to the coordinates and th
color indices. With this demonstration, we see that Eq.~60!
and the Coulomb-gauge Hamiltonian described in Eq.~4.65!
in Ref. @32# are identical. It is also of interest to compare E
~60! with the Coulomb-gauge Hamiltonian in Ref.@11# as
well as in the work of a number of other authors who us
the same form of the Hamiltonian. The Hamiltonian in R
@11# differs from the Hamiltonian described by Eq.~4.65! in
Ref. @32# in the fact thatPGIj

bT rather thanPGIj
bT† appears in

Ref. @11# in place ofJ 21PGIj
bT J in Ref. @32#; there is also the

trivial difference that Ref.@11# deals with ‘‘pure glue’’ QCD
so that the quark field is not included.

This discrepancy raises the question of the Hermiticity
the operator-valued transverse gauge-invariant chromoe
tric field PGIj

bT , which is of considerable importance for de

termining the dynamical effects of (ĤGI)phys. One way of
addressing this question is to use Eq.~11! and Eq.~65! in
Ref. @5# to obtain

PGIj
b† ~y!2PGIj

b ~y!5@P j
q~y!,Rbq~y!#5 ig f hcb

]

]yj
D ch~y,y!

~68!

where the partial derivative acts on only thefirst y argument
in D ch(y,y). We might have expected that the transve
parts ofPGIj

b† (y) and PGIj
b (y) would be identical since any

functionals of the form@d i , j2(] i] j /]2)#] jj(y) would nec-
essarily vanish. Such a conclusion would not, however,
correct in this case, because in (]/]yj )D qh(y,y), the partial
derivative differentiates only thefirst y in D qh(y,y). We can
make use of Eq.~38! and the fact thatf hcbdhc50 to express
Eq. ~68! as
2-8
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PGIj
b† ~y!2PGIj

b ~y!5 ig2f hcbf dcsE dz
]

]yj
S 1

4puy2zu D
3AGIk

d ~z!
]

]zk
D sh~z,y! ~69!

and we can extract the transverse parts to obtain

PGIj
bT†~y!2PGIj

bT ~y!5 ig2f hcbf dcsS d j ,,2
] j

(y)],
(y)

]2 D
3E dz

]

]y,
S 1

4puy2zu D
3AGIk

d ~z!
]

]zk
D sh~z,y!. ~70!

Equation~70! makes it clear thatPGIj
bT†(y)2PGIj

bT (y) is not
the transverse projection of a gradient and therefore ca
be presumed to vanish.

Equally compelling evidence thatPGIj
bT is not identical to

its Hermitian adjoint is provided by the observation that t
commutators@PGIi

aT (x),PGIj
bT†(y)# and@PGIi

aT (x),PGIj
bT (y)# dif-

fer. The latter vanishes, as is shown by Eqs.~40!, ~41!. How-
ever, use of Eq.~11! and the commutation rules for the un
derlying Weyl-gauge fields lead to

@PGIi
aT ~x!,PGIj

bT†~y!#5g2f hcaf pdbS d ik2
] i

(x)]k
(x)

]2 D
3S d j l 2

] j
(y)] l

(y)

]2 D ]

]yl
D dh~y,x!

3
]

]xk
D cp~x,y!, ~71!

and an alternate derivation based on Eqs.~42! and~68! con-
firms that result. Similarly to what we observed in conne
tion with Eq. ~68!, the derivatives]/]yj and]/]xi each dif-
ferentiate part, but not all of they and x dependence
respectively, of the productD dh(y,x)D cp(x,y) in Eq. ~71!.
The transverse projections of

~]/]yl !D dh~y,x!~]/]xk!D cp~x,y!

therefore will not vanish, and@PGIi
aT (x),PGIj

bT†(y)#Þ0. Since

@PGIi
aT (x),PGIj

bT (y)# and @PGIi
aT (x),PGIj

bT†(y)# differ PGIj
bT (y)

andPGIj
bT†(y) cannot be identical.

III. ISOMORPHISM AND ITS IMPLICATION
FOR THE SCATTERING AMPLITUDE

In the preceding sections we have obtained a descrip
of QCD that took the Weyl-gauge formulation as its point
departure, and arrived at a Hamiltonian in which all opera
valued fields—the gauge field, the chromoelectric field,
well as the quark field—are gauge invariant, and only
transverse components of the chromoelectric fields appe
08500
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the Hamiltonian (ĤGI)phys. It was necessary, however, to re
strict use of this Hamiltonian to a space in which all sta
vectors implement the non-Abelian Gauss’s law; and th
state vectors are complicated constructions that are not
to use. In this section we will show how isomorphisms c
be established that enable us to identify (ĤGI)phys with a
Hamiltonian that can be used in a space of ordinary, conv
tional perturbative states.

To review the relation between gauge-invariant and p
turbative states: In Ref.@1#, a set of states was constructed
the form

uC i&5Cuf i& ~72!

where the operator-valuedC was given as

C5 (
n50

`
i n

n!
Cn ~73!

with

Cn5E dr1•••drnA k(1)
q(1)~r1!•••A k(n)

q(n)~rn!

3Pk(1)
q(1)~r1!•••Pk(n)

q(n)~rn!. ~74!

uf i& designates one of a set of states that is annihilated
] jP j

b . Theseuf i& states—the so-called ‘‘Fermi’’ states—ar
related to ‘‘standard’’ perturbative statesupi& by

uf i&5Jupi&. ~75!

J was given in Ref.@38#, where it was also shown tha
] jP j

b(r )Jupi&50, where upi& designates one of a set o
‘‘standard’’ perturbative states annihilated by all annihilati
operators for fermion and transverse gauge field excitatio
This set of perturbative states will be described more fu
later in this section, and will turn out to be identical to pe
turbative states in QED, except for the fact that the glu
operators carry a Lie group index, while the photons do n
Since ] jP j

b annihilates anyuf i& state, we can see that, i
uC i& states, the negative chromoelectric fieldPk(,)

q(,)(r ,) in C
can be replaced by its transverse partPk(,)

q(,)T(r ,), because the
longitudinal parts vanish when acting on auf i& state. Fur-
thermore, in Eq.~74!, every transversePk(,)

q(,)T(r ,) is inte-

grated with anA k(,)
q(,)(r ,) in each variable,r , , and only the

transverse componentsA k(,)
q(,)T(r ,) will survive this integra-

tion in the uC i& states, which become

uC i&5 (
n51

i n

n! E dr1•••drnA k(1)
q(1)T~r1!•••A k(n)

q(n)T~rn!

3Pk(1)
q(1)T~r1!•••Pk(n)

q(n)T~rn!uf i&. ~76!

In Ref. @1#, it was shown that

AGIj
a ~r !Cuf i&5CAj

aT~r !uf i&. ~77!

In Appendix D, we will use Eq.~76! to show that

PGIj
cT ~r !Cuf i&5CP j

cT~r !uf i&. ~78!

Since the Hamiltonian (ĤGI)phys consists of transverse field
only, Eqs. ~77! and ~78! afford us an opportunity to shif
2-9
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(ĤGI)phys from the left-hand side ofC to the right, with a
concomitant substitution of transverse Weyl-gauge fields
the corresponding gauge-invariant fields. The one impe
ment to this process is thatPGIj

bT† , the Hermitian adjoint of

PGIj
bT , also appears in (ĤGI)phys, and Eq.~78! only applies to

PGIj
bT and not toPGIj

bT† . To remove that impediment, we us
Eq. ~66! to substituteJ 21PGIj

bT J for PGIj
bT† , and express

(ĤGI)phys as

~ĤGI!phys5E dr H 1

2
J 21PGIj

bT ~r !JPGIi
aT ~r !

1
1

4
FGIi j

a ~r !FGIi j
a ~r !1c†~r !~bm2 ia i] i !c~r !

2 j i
a~r !AGIi

a ~r !J 2
1

2E drdxdy

3@ j 0
b~x!1J0(GI)

bT† ~x!#D ba~x,r !]~r !
2 D ac~r ,y!

3@ j 0
c~y!1J0(GI)

cT ~y!# ~79!

with

J0(GI)
aT† 5g fabcJ 21PGIi

cT JAGIi
b .

We can define a ‘‘Hermitized’’ transverse gauge-invaria
negative chromoelectric fieldP j

bT

P j
bT~r !5J 21/2PGIj

bT ~r !J 1/2. ~80!

As can be seen from Eq.~66!, P j
bT is Hermitian, since

P j
bT†~r !5J 1/2PGIj

bT†~r !J 21/2

5J 21/2@J PGIj
bT†~r !J 21#J 1/25P j

bT~r !. ~81!

An important consideration for this argument is the fact t
J 1/2 is Hermitian, which is proven in Appendix C. In th
same appendix, we also prove that the canonical comm
tion relations betweenP j

bT’s and AGIj
a ’s and that among

P j
bT’s remain unmodified withP j

bT’s replaced byP GIj
bT ’s. We

then find that

PGIj
bT ~r !5J 1/2P j

bT~r !J 21/2

and

PGIj
bT†~r !5J 21/2P j

bT~r !J 1/2. ~82!

Equation~82! transforms from the non-HermitianPGIj
bT and

PGIj
bT† to the HermitianP j

bT ~not, however, unitarily, since
J 1/2 is Hermitian and not the Hermitian adjoint ofJ 21/2).
Transformations of this kind have previously been used
other workers@32,39#. It would be possible to make a com
08500
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t
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ta-
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pensating transformation on the states, but we prefer to le
the states untransformed and to extract

@H#05E dr F1

2
P j

bT~r !P j
bT~r !1

1

4
F̂GIi j

a ~r !F̂GIi j
a ~r !1c†~r !

3~bm2 ia i] i !c~r !G ~83!

from Eq. ~79! in order to obtain a non-interacting part o
(ĤGI)phys that consists of Hermitian gauge-invariant fiel
and that can define interaction picture operators. As we
show in Appendix E, this process leads to the expression

~ĤGI!phys5@H#01@H#11@H#2 ~84!

where

@H#15E dr H g fabc] iAGIj
a ~r !AGIi

b ~r !AGIj
c ~r !

1
1

4
g2f abcf ab8c8AGIi

b ~r !AGIj
c ~r !AGIi

b8 ~r !AGIj
c8 ~r !

2 j i
a~r !AGIi

a ~r !J 2
1

2E drdxdy

3@ j 0
b~x!1 J̄0(GI)

bT ~x!#D ba~x,r !]~r !
2 D ac~r ,y!

3@ j 0
c~y!1 J̄0(GI)

cT ~y!# ~85!

and

@H#25U1V1
1

2E drdxdy$ ik0
b~x!D ba~x,r !]~r !

2 D ac~r ,y!

3@ j 0
c~y!1 J̄0(GI)

cT ~y!#2@ j 0
b~x!1 J̄0(GI)

bT ~x!#

3D ba~x,r !]~r !
2 D ac~r ,y!ik0

c~y!

1k0
b~x!D ba~x,r !]~r !

2 D ac~r ,y!k0
c~y!%, ~86!

where U and V as well ask0
b(x) and J̄0(GI)

bT are defined in
Appendix E in Eqs.~E7!, ~E11!, ~E16!, and ~E15!, respec-
tively. @H#0 , @H#1, and @H#2 are Hermitian, and all consis
entirely of gauge-invariant, Hermitian, transverse gau
fields and gauge-invariant quark fields, which all obey ‘‘sta
dard’’ commutation rules. SinceP j

bT(y) and PGIj
bT†(y) have

the same commutator withAGIi
a (x), Eq. ~42! also determines

the commutation rule

@AGIj
b ~y!,AGIi

a ~x!#5@P j
bT~y!,P i

aT~x!#50,
2-10
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@P j
bT~y!,AGIi

a ~x!#52 idabS d i j 2
] i] j

]2 D d~x2y!. ~87!

The sum@H#01@H#1 is identical in form to the Coulomb
gauge QCD Hamiltonian used by Gribov@11,12#, as well as
by numerous other authors who have followed him in us
this Hamiltonian.@H#2 consists of additional terms that a
required because the transverse gauge-invariant neg
chromoelectric fieldPGIj

bT is not Hermitian. The elimination
of PGIj

bT andPGIj
bT† in favor of the HermitianP j

bT is essential

for the establishment of the isomorphism between (ĤGI)phys
and a Hamiltonian that can be used in a Fock space of
turbative states. We now proceed to the demonstration of
isomorphism.

Since bothAGIi
a (r ) and P j

bT(r ) are Hermitian and obey
the commutation rule displayed in Eq.~87!, we can represen
them as

AGIi
c ~r !5(

k,n

e i
n~k!

A2k
@an

c~k!eik"r1an
c†~k!e2 ik"r# ~88!

and

P i
cT~r !52 i(

k,n
e i

n~k!Ak

2
@an

c~k!eik"r2an
c†~k!e2 ik"r#

~89!

wheren is summed over two transverse helicity modes a

@an
a~k!,a,

b†~q!#5dn,,da,bdk,q

and

@an
a~k!,a,

b~q!#5@an
a†~k!,a,

b†~q!#50. ~90!

Equations~88! and ~89! can be inverted, leading to

an
c~k!5Ak

2
e i

n~k!E dr S AGIi
c ~r !1

i

k
P i

cT~r ! De2 ik"r

~91!

and

an
c†~k!5Ak

2
e i

n~k!E dr S AGIi
c ~r !2

i

k
P i

cT~r ! Deik"r.

~92!

Equations~91! and ~92! show thatan
c(k) and an

c†(k) are
gauge invariant and commute with the Gauss’s law oper
G a(r ). Equations~77!, ~78! and ~80! demonstrate that an
functional F(AGIi

a ,P j
bT) will have the transformation

property
08500
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F~AGIi
a ,P j

bT!J 21/2Cuf,&5J 21/2CF~Ai
aT ,P j

bT!uf,&
~93!

leading to

an
c~k!J 21/2Cuf,&5J 21/2CHAk

2
e i

n~k!E dr

3S Ai
cT~r !1

i

k
P i

cT~r ! De2 ik"rJ uf,&,

~94!

and

an
c†~k!J 21/2Cuf,&5J 21/2CHAk

2
e i

n~k!E dr

3S Ai
cT~r !2

i

k
P i

cT~r ! Deik"rJ uf,&,

~95!

so that the isomorphism established in Eq.~93! between the
gauge-invariant fieldsAGIi

a , P j
bT and the gauge-depende

Weyl-gauge fieldsAi
aT , P j

bT , respectively, is transferred to
similar relation between the gauge-invariant creation and
nihilation operators for transverse gluons,an

c†(k) andan
c(k),

and corresponding ‘‘standard’’ perturbative creation and
nihilation operatorsan

c†(k) and an
c(k). We can proceed by

using the standard representation for the transverse pa
the Weyl-gauge fields,

Ai
cT~r !5(

k,n

e i
n~k!

A2k
@an

c~k!eik"r1an
c†~k!e2 ik"r# ~96!

and

P i
cT~r !52 i(

k,n
e i

n~k!Ak

2
@an

c~k!eik"r2an
c†~k!e2 ik"r#,

~97!

which demonstrate that

an
c†~k!J 21/2Cuf i&5J 21/2Can

c†~k!uf i&,

an
c~k!J 21/2Cuf i&5J 21/2Can

c~k!uf i&. ~98!

Any an
c(k) will annihilate the gauge-invariant vacuum sta

J 21/2CJu0&, because the transverse excitation operat
an

c(k) andan
c†(k) trivially commute withJ.

At this point, we can establish an isomorphism betwe
two Fock spaces: The ‘‘standard’’ Weyl-gauge Fock spa
consists of

uk&5an
c†~k!u0& ~99!

•••

uk1•••k i•••kN&5K@an1

c1†
~k1!•••ani

ci†~k i !•••anN

cN†
~kN!#u0&,

~100!
2-11
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with K the normalization constant and the gauge-invari
states that implement the non-Abelian Gauss’s law can
represented as

uk̄&5
1

C
an

c†~k!J 21/2CJu0& ~101!

•••

uk̄1••• k̄ i••• k̄N&5
K

C
@an1

c1†
~k1!•••ani

ci†~k i !•••anN

cN†
~kN!#

3J 21/2CJu0& ~102!

whereu0& designates the perturbative vacuum annihilated
an

c(k) as well as by the annihilation operators for quarks a

antiquarks,qp,s andq̄p,s respectively. The additional norma
ization constantC21 must be introduced to compensate f
the fact thatuCu25uJ 21/2CJu0&u25^0uJ!C!J 21CJu0&,
which formally is a universal positive constant, is not finit
and the stateJ 21/2CJu0& is not normalizable. However
onceC is introduced, theuk̄1••• k̄ i••• k̄N& states form a sat
isfactory Fock space that is gauge invariant as well as
morphic to the space ofuk1•••k i•••kN& states. We can now
use Eqs.~88!, and~89! to express@H#0 as

@H#05(
k,c

kan
c†~k!an

c~k!1(
p,s

Ep~qp,s
† qp,s1q̄p,s

† q̄p,s!

~103!

with the subscripts labeling the color, flavor and helicity o
the quarks. In this form,@H#0 can be seen to describe th
energy of non-interacting gauge-invariant transverse glu
of energyk and quarks and anti-quarks, respectively of e
ergy Ep5Am21upu2. We can also define another Ham
tonian,H5H01H11H2, in which each component part i
identical in form to @H#01@H#11@H#2, respectively, but
with the substitutions

P j
bT→P j

bT andAGIi
a →Ai

aT

everywhere—including the replacement ofAGIi
a by Ai

aT in the
inverse Faddeev-Popov operatorD ab(x,y)—so that H is
characteristic of the Coulomb gauge, but nevertheless
functional of transverse Weyl-gauge unconstrained fie
For example,H0 is

H05E dr F1

2
P i

aT~r !P i
aT~r !1

1

4
F̂ i j

a ~r !F̂ i j
a ~r !

1c†~r !~bm2 ia i] i !c~r !G ~104!

where F̂ i j
a 5] jAi

a2] iAj
a . Using Eqs.~96! and ~97!, we can

expressH0 in the form
08500
t
e

y
d

;
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s
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a
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H05(
k,c

kan
c†~k!an

c~k!1(
p,s

Ep~qp,s
† qp,s1q̄p,s

† q̄p,s!.

~105!

We can then use Eq.~93! to establish that

@H#0J 21/2CJun&5J 21/2CJH0un& ~106!

as well as

@H#1J 21/2CJun&5J 21/2CJH1un& ~107!

and

@H#2J 21/2CJun&5J 21/2CJH2un&. ~108!

The state vectorun& represents one of theuk1•••k i•••kN&,
the ‘‘standard’’ perturbative eigenstates ofH0.

We can use the relations between the Weyl-gauge and
gauge-invariant states that we established in the prece
discussion to extend the isomorphism we have demonstr
to include scattering transition amplitudes. For this purpo
we define

Hint5H11H2 and @H# int5@H#11@H#2 . ~109!

The transition amplitude between gauge-invariant state
given by

T̄f ,i5
1

C2
^ f uJ!C!J 21/2H @H# int1@H# int

3
1

Ei2~ĤGI!phys1 i e
@H# intJ J 21/2CJu i &, ~110!

where u i & and u f & each designate one of theun& states;u i &
represents an incident andu f & a final state in a scattering
process. With the results of the preceding discussion, we
express this as

T̄f ,i5
1

C2
^ f uJ!C!J 21CJun&^nu

3HHint1Hint

1

Ei2H02Hint1 i e
HintJ u i &

5
1

C2
^0uJ!C!J 21CJu0&^ f u

3HHint1Hint

1

Ei2H02Hint1 i e
HintJ u i & ~111!

where we sum over the complete set of perturbative st
un&^nu. The third line of Eq.~111! follows from
2-12
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1

C2
^ f uJ!C!J 21CJun&5

1

C2
^0uaf~k f !J

!C!J 21CJan
†~kn!u0&

5
1

C2
^0uJ!C!J 21/2a f~k f !an

†~kn!J 21/2CJu0&

5d f ,nd~k f2kn!
1

C2
^0uJ!C!J 21CJu0&2

1

C2
^0uJ!C!J 21/2an

†~kn!a f~k f !J 21/2CJu0&

~112!
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and the observation that the last term on the last line of
~112! vanishes trivially. With the isomorphism of the stat
uk1•••k i•••kN& and uk̄1••• k̄i••• k̄N& that we have estab
lished,

T̄f ,i5Tf ,i ~113!

where

Tf ,i5^ f u HHint1Hint

1

Ei2H02Hint1 i e
HintJ u i & ~114!

is a transition amplitude that can be evaluated with Feynm
graphs and rules, because it is based on ‘‘standard’’ pe
bative states that are not required to implement Gauss’s
and need not be gauge invariant.

In the remainder of this section, we will discuss the re
tion of our formulation of the scattering transition amplitu
to approaches to this problem in Coulomb-gauge formu
tions of QCD. As was pointed out in Sec. II B, the effecti
Hamiltonian (ĤGI)phys described in Eq.~60! is identical to
one obtained by Christ and Lee@32#, who treated gauge
fields as coordinates and applied the apparatus of transfo
tions from Cartesian to curvilinear coordinates to the pr
lem of formulating Coulomb-gauge QCD. Here, we w
show thatĤGI—the precursor of (ĤGI)phys, described in Eq.
~20!—is identical in form to the Hamiltonian given in Eq
~6.15! in Ref. @32#, which leads to the Coulomb-gauge pe
turbative rules formulated by Christ and Lee. For this p
pose,ĤGI will be expressed in terms ofP j

bT andAGIi
a , and

then Weyl ordered. The equivalence of Christ and Lee’s
sults with Schwinger’s@36# was already confirmed in Ref
@32#.

Equation ~82! demonstrates that the functional depe
dence ofĤGI on P j

bT andAGIi
a is the same as the functiona

dependence of

H̄[J 1/2ĤGIJ 21/2 ~115!

on P j
bT andAGIi

a . H̄ was used by Christ and Lee to genera
the path integral representation of the Coulomb gauge@32#,
and they showed that

H̄5ĤGI
W1V11V2 ~116!
08500
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where the superscriptW designates Weyl-ordering with re
spect toPGIj

bT andAGIi
a . The additional termsV1 andV2 are

given by

V15
1

8
g2f lbcf ladE dr] jD ab~r ,r !] jD cd~r ,r ! ~117!

and

V25
1

8
g2f lnaf kbmE dxdydz@dknd j i d~y2x!

1D jD kn~y,x! ]
←

i #D ac~x,z!]~z!
2 D cb~z,y!@d lmd i j d~x2y!

1DiD lm~x,y! ]
←

j # ~118!

where the partial derivative] j to the left of D ab(r ,r ) acts
only on its first argument. When a partial derivative with
left arrow on top appears to the right ofD ab with two iden-
tical arguments, it acts only on its second argument. The c
of two identical arguments ofD is understood as
] jD ab(x,x)[ limy→x(]/]xj )D ab(x,y) and D ab(x,x)]Q j
[ limy→x(]/]xj )D ab(y,x), where the limit is takenafter the
partial derivative has been evaluated. This convention will
followed consistently in the following discussions. Since t
commutator ofP j

bT andAGIi
a is identical to that ofPGIj

bT and
AGIi

a , an equation parallel to Eq.~116!,

ĤGI5ĤGI
W1V11V2 ~119!

will be proven below. The superscriptW designates Weyl
ordering, but in this case with respect toP j

bT andAGIi
a . The

parallel structure refers to the fact that, as was pointed
above,ĤGI has the same functional dependence onP j

bT and

AGIi
a asH̄ has onPGIj

bT andAGIi
a . Since the fermion variables

commute withP j
bT and AGIi

a , we may drop them for the
proof of Eq.~119!; we will also dropHG , since it makes no
contributions in the space of gauge-invariant states. It
lows from Eq.~58! that for a physical stateuC&,

PGIj
b ~r !uC&52E j

b~r !uC& ~120!

with
2-13
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E j
b~r !5J 1/2F2P j

bT~r !1E dx] jD bq~r ,x!

3Di~x!P i
qT~x!GJ 21/2. ~121!

In terms of the Weyl-ordered chromoelectric field operator
Schwinger@9#,

Ej
b~r !52P j

bT~r !1
1

2E dx@] jD bq~r ,x!Di~x!P i
qT~x!

1Di~x!P i
qT~x!] jD bq~r ,x!#, ~122!

we have

E j
b~r !5Ej

b~r !1D j
b~r !

E j
b~r !†5Ej

b~r !2D j
b~r !. ~123!

The HamiltonianĤGI , in the absence of the fermion fiel
and withoutHG can be written as

ĤGI5K1
1

4E drFGIi j
a ~r !FGIi j

a ~r ! ~124!

where the kinetic energy

K5
1

2E drE j
b~r !†E j

b~r !5
1

2E dr @Ej
b~r !Ej

b~r !1v~r !#

~125!

with

v~r !52D j
b~r !D j

b~r !1@Ej
b~r !,D j

b~r !#. ~126!

To evaluateD j
b(r ), we observe that

E j
b~r !52P j

bT~r !1
1

2
@P j

bT~r !, ln~J!#

1E dx] jD bq~r ,x!Di~x!P i
qT~x!

2
1

2E dx] jD bq~r ,x!Di@P i
qT~x!, ln~J!#

~127!

and

E j
b~r !†52P j

bT~r !2
1

2
@P j

bT~r !, ln~J!#

1E dxDi~x!P i
qT~x!] jD bq~r ,x!

1
1

2E dx] jD bq~r ,x!Di@P i
qT~x!, ln~J!#

~128!
08500
f

so that

1

2
@E j

b~r !1E j
b~r !†#5Ej

b~r ! ~129!

and, therefore, that

1

2
@E j

b~r !2E j
b~r !†#5D j

b~r !. ~130!

With Eqs.~120! and ~68!, this leads to

D j
b~r !52

i

2
g fbch

]

]r j
D ch~r ,r !. ~131!

In Appendix F, we shall prove that

1

2E drv~r !5V1 . ~132!

In the form given in Eq.~124! with K as described in Eq
~125!, the effective Hamiltonian (ĤGI) is identified with that
of Schwinger@36#. The next step towards the proof of E
~119! follows from the operator identity given in Ref.@32#

1

2E drEj
b~r !Ej

b~r !5
1

2E dr @Ej
b~r !Ej

b~r !#W

2
1

8E dxdydz@P i
aT~x!,DkD bc~x,z!]Q j #

3@P k
bT~y!,DiD ac~y,z!]Q j #. ~133!

Using the commutation relation~E10!, we can show that the
second term on the right-hand side of Eq.~133! is the same
as V2 ~the same proof is also given in Ref.@32#! and Eq.
~119! is established.

IV. DISCUSSION

In this work we have used earlier results@1,5,6# to express
the Weyl-gauge Hamiltonian entirely in terms of operato
valued fields that are gauge invariant as well as path in
2-14
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pendent. These gauge-invariant fields have many feature
common with Coulomb-gauge fields: Their commutati
rules agree with those given by Schwinger in his Coulom
gauge formulation of QCD@9,36#, except for differences in
operator order; these differences can be ascribed to the
that Schwinger imposed Weyl order in his work while we
not make anyad hocchanges in operator order. The gaug
invariant gauge field is transverse and Hermitian, but
gauge-invariant chromoelectric field is neither transverse
Hermitian. Even the transverse part of the gauge-invar
chromoelectric field is not Hermitian. That fact is importa
for relating the Hamiltonian we obtained in Eq.~84! with
those given by Gribov@11#, Schwinger@36#, and Christ and
Lee @32#.

The relation between the Coulomb-gauge Hamiltonian
QCD and the Weyl-gauge Hamiltonian expressed in term
gauge-invariant fields closely parallels the relation betw
the two corresponding QED Hamiltonians. The Weyl-gau
Hamiltonian for QCD is represented entirely in terms
gauge-invariant fields in Eqs.~20! and ~24!. When formu-
lated in terms of gauge-invariant fields, QCD must be e
bedded in a space of gauge-invariant states that obey
non-Abelian Gauss’s law. Within such a space of gau
invariant states, further transformation of the QCD Ham
tonian we have constructed can be effected. Thus tra
formed, the Hamiltonian consists of two parts. One pa
(ĤGI)phys—displayed in Eq. ~60!—is identical to the
Coulomb-gauge Hamiltonian. It is a functional of transve
gauge-invariant chromoelectric fields, gauge-invariant ga
fields ~which are inherently transverse!, as well as gauge
invariant quark fields. The other part,HG—displayed in Eq.
~24!—makes only vanishing contributions to matrix el
ments within the space of gauge-invariant states that are
quired for the Hamiltonian to act consistently as the tim
evolution operator.HG does affect the field equations an
‘‘remembers’’ that the formulation is for the Weyl, and n
the Coulomb gauge. This situation is precisely the same a
QED, in which the Weyl-gauge Hamiltonian, expressed
terms of the gauge-invariant field~in that case, simply the
transverse part of the gauge field!, is the sum of two terms
given in Eqs.~45! and~46!; the former is the Coulomb-gaug
Hamiltonian, and the latter makes only vanishing contrib
tions to matrix elements within the space of gauge-invari
states, but is necessary for reproducing the Euler-Lagra
equations for Weyl-gauge QED.

In spite of the similarity between QCD and QED in th
relation between the Weyl and Coulomb gauges summar
in the preceding paragraph, there is an important differe
between the gauge-invariant states for the two theor
gauge-invariant and perturbative states in QED are unita
equivalent, and in a Hamiltonian formulation, this unita
equivalence permits us to use perturbative states in eva
ing scattering amplitudes in QED in algebraic and covari
gauges without compromising the implementation of Gau
law @22,23#. But there can be no unitary equivalence betwe
gauge-invariant states and perturbative states in QCD.
the gauge-invariant states in QCD are complicated, not
malizable, and very cumbersome to use. In order to m
effective use of the Weyl-gauge QCD Hamiltonian rep
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sented in terms of gauge-invariant fields, some relation
required that allows us to circumvent the absence of the
tary equivalence between gauge-invariant and perturba
states that afflicts non-Abelian gauge theories. In Sec. III
establish such a relation in the form of an isomorphism t
enables us to consistently carry out calculations in QCD w
an equivalent Hamiltonian that is a functional of the origin
gauge-dependent Weyl-gauge fields and that is used
standard perturbative states. In the case of QCD, this isom
phism has been demonstrated for the Weyl gauge only.
extension to a somewhat larger class of algebraic gau
defined byA01gA350 with g>0 should not be difficult
@40# but, in contrast to QED, there is no indication that fu
ther extensions—to covariant gauges, for example—are p
sible. Finally, in Sec. III, we show that the effective Ham

tonian (ĤGI)phys—and therefore alsoH5H01H11H2—can
be expressed in appropriately Weyl-ordered forms and sh
to be equivalent to results obtained by Schwinger@36# and
by Christ and Lee@32#. The Hamiltonian used by Gribov in
Ref. @11# is equivalent to onlyH5H01H1 . H2 does not
appear in that work, because the non-Hermiticity of t
transverse chromoelectric field was not taken into accou
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APPENDIX A

In this section we will prove Eqs.~31! and ~30!. We use

Eqs.~34!–~36! and expand the productD ah(y,x)]•Dhb⇐
(x) in

Eq. ~31! as a series in powers ofg, and observe thatO(n)
terms originate from D (n)

ah (y,x)(dhb]
2

←
(x)) and from

D (n21)
ah (y,x)(2g fhqb] i

QAGIi
q ). For example, the first part o

the n50 term of Eq.~31! originates from thedhb]
2

←
part of

]•Dhb
←

(x) and is

2dah

4puy2xu ~dhb]
2←

(x)!5]2
(x)

2dab

4pux2yu
5dabd~x2y!

~A1!

and the second part of then50 term of Eq.~31!, which

stems from the2g fhqb] i

←
AGIi

q in ]•Dhb⇐
(x), is
2-15
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2dah

4puy2xu ~2g fhqb] i
←

AGIi
q ~x!!

52g faqb] i (y)

1

4puy2xu
AGIi

q ~x!. ~A2!

The first part of then51 term of Eq.~31!
08500
H g fqahE dz

4puy2zu
AGIj

q ~z!
]

]zj
S 1

4puz2xu D J dhb]
2←

(x)

5g faqb] i (y)

1

4puy2xu
AGIi

q ~x! ~A3!

exactly cancels the second part of then50 term, and this
pattern of cancellation can easily be seen to hold
general—the first part of then11 term cancelling the secon
part of thenth term. For the general term,
n

D (n)
ah ~y,x!dhb]

2←
(x)52 f a1as1f s1a2s2

••• f sn21anhgnE dz~1!

4puy2z~1!u
AGIl 1

a1 ~z~1!!
]

]z~1! l 1

3E dz~2!

4puz~1!2z~2!u
•••AGIl

a(n21)@z~n21!#
]

]z~n21! l

]

]z~n21!k

1

4puz~n21!2xu
AGIk

an ~x! ~A4!

and$D (n21)
ah (y,x)%$2g fhqb] i

QAGIi
b (x)% is

2D (n21)
ah ~y,x!g fhqb ]← iAGIi

b ~x!5 f a1as1f s1a2s2
••• f sn22an21hf hqbgnE dz~1!

4puy2z~1!u
AGIl 1

a1 @z~1!#
]

]z~1! l 1

3E dz~2!

4puz~1!2z~2!u
AGIl 2

a2 @z~2!#
]

]z~2! l 2

•••AGIi
an @z~n21!#

]

]z~n21! l

3
]

]z~n21! i

1

4puz~n21!2xu
AGIi

q ~x! ~A5!

so that, relabeling dummy indicesh→sn21 andq→an , we obtain

D (n)
ah ~y,x!]2

(x)

←
2D (n21)

ah ~y,x!g fhqb ]← iAGIi
b ~x!50

and a consistent pattern of cancellations is established withdabd(y2x) remaining as the only surviving term i

D ah(y,x)]•Dhb⇐
(x). A similar argument can be used to demonstrate Eq.~30!.

APPENDIX B

In this section we shall prove the identity given in Eq.~66!. By definition—Eq.~11!—we have

J 21PGIj
b ~x!J5PGIj

b ~x!1I j
b~x! ~B1!

with

I j
b~x!5J 21@PGIj

b ~x!,J#5Rbc~x!J 21@P j
c~x!,J# ~B2!

so that
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I j
b~x!52 iRbc~x!

d ln J
dAj

c~x!
52 iRbc~x!E dyE dzD mn~y,z!

d

dAj
c~x!

]•Dnm~z!d~z2y!

5 ig f lnmRbc~x!E dyE dzD mn~y,z!
dAGIi

l ~z!

dAj
c~x!

]

]zi
d~z2y!

52g flnmRbc~x!E dyE dzD mn~y,z!@P j
c~x!,AGIi

l ~z!#
]

]zi
d~z2y! ~B3!
q

i
ca
on
a

a-
to

,

-
ce

i

ith
ra-

our

ons
where we have used Eq.~67!. Substituting Eq.~39! and using

P j
c~x!5Rbc~x!PGIj

b ~x!, ~B4!

we obtain that

I j
b~x!5 ig f bca

]

]xj
D ac~x,x!1

]

]xj
fb~x! ~B5!

where the gradient acts only on the first argument ofD ac and
the longitudinal term comes from the second term of E
~39!,

fb~x!5 ig f bcaE dy
]

]yj
D ac~y,y!D mn~x,y!D j

nm⇐
~y!

~B6!

with ]/]yi acting on the first argument ofD ac(y,y). Com-
paring the transverse part of Eq.~B5! with that of Eq.~68!,
Eq. ~66! is proved.

APPENDIX C

To prove the Hermiticity of the Faddeev-Popov determ
nantJ as an operator in the Hilbert space of states, we re
the criterion that an operator is Hermitian if its expectati
values with respect to all states are real. In the coordin
representation of states for whichAGI is diagonalized and
corresponds to ac-number field configuration, the expect
tion value of an operator which is a functional of the opera
AGI is equal to the same functional of thec-number field
configurationAGI . For eachc-number field configuration
the Faddeev-Popov operator,] jD j , with D j denoting the co-
variant derivative,D j

ab5dab] j2g fabcAGIj
c , becomes an op

erator with respect to space coordinates and group indi
We have

] j
†52] j ~C1!

and

D j
†52D j , ~C2!

with the dagger referring to space coordinates and group
dices. Therefore

~] jD j !
†5D j] j5] jD j , ~C3!
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where the last step follows from the transversality ofAGI .
Therefore the Faddeev-Popov operator is Hermitian w
space coordinates and group indices for any field configu
tion. Its determinant,J, must be real. The Hermiticity ofJ
in the Hilbert space of states is established according to
criterion, and the Hermiticity ofJ 1/2 is an obvious corollary.

To derive the commutation relations amongP j
l (x)’s and

AGIj
l (x)’s, we notice that

P j
l ~x!5PGIj

lT ~x!1
1

2
@PGIj

lT ~x!, lnJ# ~C4!

with the second term a functional ofAGIj
l (x) only. Then we

have

@P i
a~x!,AGIj

b ~y!#5@PGIi
aT ~x!,AGIj

b ~y!#. ~C5!

Furthermore,

@P i
a~x!,P j

b~y!#5@PGIi
aT ~x!,PGIj

bT ~y!#

1
1

2
@PGIi

aT ~x!,@PGIj
bT ~y!, lnJ##

1
1

2
@@PGIi

aT ~x!, lnJ#,PGIj
bT ~y!#

5@PGIi
aT ~x!,PGIj

bT ~y!#50, ~C6!

where the Jacobian identity

@PGIi
aT ~x!,@PGIj

bT ~y!, lnJ##1@@PGIi
aT ~x!, lnJ#,PGIj

bT ~y!#

52@ ln J,@PGIi
aT ~x!,PGIj

bT ~y!##50 ~C7!

has been employed. Therefore the commutation relati
amongP j

l (x)’s andAGIj
l (x)’s remain canonical.

APPENDIX D

In this section we shall prove Eq.~78!. Using Eq.~76!, we
define

Cn
T5E dr 1 . . . dr nAj 1

b1T
~r1! . . . Aj n

bnT
~rn!P j 1

b1T
~r1! . . .

3P j n

bnT
~rn!, ~D1!
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from which it follows that

@P i
a~x!,Cn

T#5nE dy@P i
a~x!,A j

bT~y!#Cn21
T P j

b~y!.

~D2!

This leads to

P i
a~x!CT5CTP i

a~x!1 i E dy@P i
a~x!,A j

bT~y!#CTP j
b~y!.

~D3!

The commutator involved can be calculated from the relat

A j
bT~x!5AGIj

b ~x!2Aj
bT~x!, ~D4!

which implies that

@P i
a~x!,A j

bT~y!#52 i
dAGIj

b ~y!

dAi
a~x!

1 idabd i j
T ~x2y!.

~D5!

The functional derivative was calculated in Ref.@32# and the
commutator in Ref.@5#, and the result can also be deduc
from Eq. ~39! with the aid of Eq.~11!, which gives rise to

@P i
a~x!,AGIj

b ~y!#52 i S Rba~x!d i j d~x2y!

1Rla~x!
]

]xi
D lk~x,y!D j

kb←
~y! D .

~D6!

Substituting this into Eq.~D3! and using Eq.~11!, we find
that

PGIi
a ~x!Cuf&5CP i

aT~x!uf&

2
]

]xi
E dyD al~x,y!D j

lb←
~y!CP j

bT~y!uf&.

~D7!

Taking the transverse part of both sides, we end up with

PGIi
aT ~x!Cuf&5CP i

aT~x!uf&. ~D8!

The identity Eq.~78! is proved.

APPENDIX E

In this appendix we will show how to obtain Eq.~84!
from Eq. ~79!. In order to obtain the bilinear produc
P j

bT(r )P j
bT(r ) for inclusion in a non-interacting part o

(ĤGI)phys that can define interaction picture operators,
now expressJ 21/2P j

bT(r )JP j
bT(r )J 21/2 as

J 21/2P j
bT~r !JP j

bT~r !J 21/2

5P j
bT~r !P j

bT~r !1P j
bT~r !J 1/2@P j

bT~r !,J 21/2#

2@P j
bT~r !,J 21/2#J 1/2P j

bT~r !2@P j
bT~r !,J 21/2#

3J@P j
bT~r !,J 21/2# ~E1!
08500
n

e

and make use of the formula

@P j
bT~r !,J 21/2#52

1

2
J 23/2@P j

bT~r !,J#

52
1

2
J 21/2@P j

bT~r !, ln~J!#. ~E2!

We also observe that the commutator ofP j
bT(r ) and any

functional ofAGIi
a (r 8) commutes with any other functional o

AGIi
a (r 8), and that, in fact,

@P j
bT~y!,AGIi

a ~x!#5@PGIj
bT ~y!,AGIi

a ~x!#

52 idabS d i j 2
] i] j

]2 D d~x2y!. ~E3!

With these observations, we obtain

J 21/2P j
bT~r !JP j

bT~r !J 21/2

5P j
bT~r !P j

bT~r !2
1

2
@P j

bT~r !,@P j
bT~r !, ln~J!##

2
1

4
@P j

bT~r !, ln~J!#@P j
bT~r !, ln~J!#. ~E4!

Equations~66! and ~68! show that

@P j
bT~y!, ln~J!#5@PGIj

bT ~y!, ln~J!#

5 ig f hcbd j ,k
T ~y! lim

x→y

]

]yk
D ch~y,x!. ~E5!

With Eq. ~38! this can be rewritten in the form

@PGIj
bT ~y!, ln~J!#5 ig2f bdhf ddsd j ,k

T ~y!E dz
]

]yk
S 1

4puy2zu D
3AGIl

d ~z!
]

]zl
D sh~z,y! ~E6!

whered j ,k
T (y)5@d jk2(] j

(y)]k
(y)/]2)#d(y). In this form, it is

clear that, to leading order,@PGIj
bT (y), ln(J)# is ag2 term and

that the limitx→y has already been carried out. We can u
Eqs. ~E4! and ~E6! to obtain an expression forU[
2 1

4 *dr @P j
bT(r ), ln(J)#@P j

bT(r ), ln(J)#, which becomes an

interaction term in (ĤGI)phys, given by

U5
1

8
g4f bdhf ddsf bd8h8 f d8d8s8E dydzdz8

3H d j ,k
T ~y!d j ,k8

T
~y!

]

]yk
S 1

4puy2zu D AGIl
d ~z!

]

]zl
D sh~z,y!

3
]

]yk8
S 1

4puy2z8u D AGIl 8
d8 ~z8!

]

]zl 8
8
D s8h8~z8,y!J . ~E7!

Similarly, from Eq.~E5!, we see that
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@P j
bT~y!,@P j

bT~y!, ln~J!##

5 ig f hdbFP j
bT~y!,d j ,k

T ~y! lim
x→y

]

]yk
D dh~y,x!G

~E8!

in which we representP j
bT(y) as limr→yP j

bT(r ) so that

@P j
bT~y!,@P j

bT~y!, ln~J!##

5 ig f hdblim
r→y

d j ,k
T ~y! lim

x→y

]

]yk
@P j

bT~r !,D dh~y,x!#.

~E9!

Using Eq.~34!, we obtain

@P j
bT~r !,D dh~y,x!#

52g fsatE dzD ds~y,z!@P j
bT~r !,AGI,

a ~z!#],
(z)D th~z,x!

52 ig f sbtE dzD ds~y,z!S d j ,,2
] j

(z)],
(z)

]2 D
3d(z2r )],

(z)D th(z,x). ~E10!

After integration over all of space,

E dy@P j
bT~y!,@P j

bT~y!, ln~J!##

becomes another interaction term in (ĤGI)phys, given by

V5
1

4
g2f hdbf sbtE dylim

r→y
$d j ,k

T ~y!d j ,,
T ~r !

3@]k
(y)D ds~y,r !],

(r )D th~r ,y!#%. ~E11!

V is singular since the leading terms inD ds(y,r ) and
D th(r ,y) @2dds(4puy2r u)21 and 2d th(4puy2r u)21, re-
spectively#, are not eliminated by the structure constants
V. Christ and Lee called attention to such singularities
their work @32#, and conjectured that they might be useful
cancelling unresolved divergences in Coulomb-gauge Q
The same remark applies toV. We continue by eliminating
the non-Hermitian chromoelectric fields fromJ0(GI)

aT and
J0(GI)

aT† , obtaining

J0(GI)
cT ~y!5g fcqpAGIj

q ~y!PGIj
pT ~y!

5g fcqpAGIj
q ~y!HP j

pT~y!2
1

2
@P j

pT~y!, ln~J!#J
~E12!

and
08500
n
n

.

J0(GI)
cT† ~y!5g fcqpAGIj

q ~y!PGIj
pT†~y!

5g fcqpAGIj
q ~y!HP j

pT~y!1
1

2
@P j

pT~y!, ln~J!#J ,

~E13!

and

J0(GI)
cT ~y!5 J̄0(GI)

cT ~y!1 ik0
c~y!

and

J0(GI)
cT† ~y!

5 J̄0(GI)
cT ~y!2 ik0

c~y! ~E14!

where

J̄0(GI)
cT 5g fcqpAGIj

q P j
pT ~E15!

and, using Eq.~38!, ik0
c can be identified as an additiona

auxiliary gluon color-charge density in which

k0
c~y!52

1

2
g3f cqpf hdpf gdsAGIi

q ~y!d i , j
T ~y!

3E dz
]

]yj
S 1

4puy2zu DAGIk
g ~z!

]

]zk
D sh~z,y!.

~E16!

This representation enables us to expressHC—the nonlocal
interaction involving quark and gluon color-charge densit
in Eq. ~79!—in the manifestly Hermitian form

HC52
1

2E drdxdy@ j 0
b~x!1 J̄0(GI)

bT ~x!

2 ik0
b~x!#D ab~x,r !]~r !

2 D ac~r ,y!

3@ j 0
c~y!1 J̄0(GI)

cT ~y!1 ik0
c~y!# ~E17!

in which all operator-valued fields are Hermitian as well
gauge invariant. When we have eliminated all thePGIj

pT and

PGIj
pT† from (ĤGI)phys and replaced them withP j

pT and the
other expressions obtained in this process, we obtain
~84!.

APPENDIX F

To establish Eq.~132!, we quote an identity in@32#,

f abcE dr @D j
amXm~r !Yb~r !Zc~r !1Xa~r !D j

bmYm~r !Zc~r !

1Xa~r !Yb~r !D j
cmZm~r !#50. ~F1!

The proof follows from the observation that the ordina
derivative terms of the covariant derivatives,D j ’s, in
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Eq. ~F1! add up to a total derivative and the structure co
stant terms ofD j ’s add up to zero on account of the Jacobi
identity

f labf lmc1 f lbcf lma1 f lcaf lmb50. ~F2!

Notice that the functionsX, Y andZ may carry other color or
vector indices and the dependence on other coordinates

According to Eq.~E10!,

@P j
c~r !,D ab~x,y!#52E dzdz8D am~x,z!

3@P j
c~x!,~]•D !mn#d~z2z8!

3D nb~z8,y! ~F3!

and, with Eq.~D6!, we have

@Ej
b~r !,D j

b~r !#52@PGI, j
b ~r !,D j

b~r !#

52Rba~r !@P j
a~r !,D j

b~r !#

5
1

2
g2f labf lmn] jD am~r ,r !] jD nb~r ,r !

1
g2

2
f labf cmnE dxDi

ckD kl~x,r ! ]
←

j

3D ma~x,r ! ]
←

j] iD nb~x,r !, ~F4!

where the symmetry property Eq.~37! is employed to obtain
ll
ri

t

se

e

sit

A.
y

08500
-the second term on the right-hand side. Upon relabeling
dummy color indices, we convert the second term of
right-hand side of Eq.~F4! to

g2

4
f labf cmnE dxDi

ckD kl~x,r !]Q jD ma~x,r !]Q j] iD nb~x,r !

1
g2

4
f labf cmnE dxD cl~x,r !]Q jDi

mk

3D ka~x,r !]Q j] iD nb~x,r !

52
g2

4
f labf cmb] jD lc~r ,r !] jD am~r ,r !, ~F5!

where the last step follows from the identities Eqs.~F1! and
~30!. We have then

@Ej
b~r !,D j

b~r !#5
1

4
g2~2 f lbmf lan2 f lamf lbn!

3] jD ab~r ,r !] jD mn~r ,r !. ~F6!

Combining it with

2D j
b~r !D j

b~r !5
1

4
g2f labf lmn] jD ab~r ,r !] jD mn~r ,r !

~F7!

according to Eq.~126! and using the Jacobian identit
Eq. ~F2!, we end up with Eq.~132!.
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