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Gauge equivalence in QCD: The Weyl and Coulomb gauges
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The Weyl-gauge A5=0) QCD Hamiltonian is unitarily transformed to a representation in which it is
expressed entirely in terms of gauge-invariant quark and gluon fields. In a subspace of gauge-invariant states
we have constructed that implement the non-Abelian Gauss’s law, this unitarily transformed Weyl-gauge
Hamiltonian can be further transformed and, under appropriate circumstances, can be identified with the QCD
Hamiltonian in the Coulomb gauge. We demonstrate an isomorphism that materially facilitates the application
of this Hamiltonian to a variety of physical processes, including the evaluatidghnadtrix elements. This
isomorphism relates the gauge-invariant representation of the Hamiltonian and the required set of gauge-
invariant states to a Hamiltonian of the same functional form but dependent on ordinary unconstrained Weyl-
gauge fields operating within a space of “standard” perturbative states. The fact that the gauge-invariant
chromoelectric field is not Hermitian has important implications for the functional form of the Hamiltonian
finally obtained. When this non-Hermiticity is taken into account, the “extra” vertices in the Christ-Lee’
Coulomb-gauge Hamiltonian are natural outgrowths of the formalism. When this non-Hermiticity is neglected,
the Hamiltonian used in the earlier work of Gribov and others results.
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I. INTRODUCTION implementing gauge transformations with the generator
exp{—ifdyG?(y)w?(y)}, where G* is the non-Abelian
In earlier work on QCD in the Weyl gaug§=0), we  “Gauss’s law operator”
have constructed gauge-invariant operator-valued quark and
gluon fields[1]; these include the gauge-invariant quark field . A\
G = oI} +g AT+ gy =, 4
Yai(r)=Ve(r)y(r) and g (N =4'(NVe M), (D)

and w? is a number-valued gauge function. With the use of

where this generator, under which

. — A a
Vc(r)zex%—lgy“(r)? A

. )\'B
exp(—ngﬁ(r)?>, (2 ¢(r)_>¢’(r)=exy{—iw“(r)7> W(r) )

B o o
vc1<r>=exp(igxﬁu)%)exp(igy“(r)%), 3 and

AP A AP
and where tha 2 designate the Gell-Mann matrices. In these AP(r) ?—@XD( —iw(r) 7) (Aib(r) -5 aﬁl)
expressionst“(r) =[(9; /aZ)Aj“(r)], so thatg; X“(r) is the
ith component of the longitudinal gauge fi¢el and ) *(r) ><exp( i w“(r))\—a>
is defined a9)“(r)=[(d;/9%).Af(r)]. A(r), which we re-
fer to as the “resolvent field,” is an operator-valued func-
tional of the gauge field, and is represented in Rgffand it has been shown that.(r) also gauge transforms as
[3] as the solution of an integral equation. Constructing a
gauge-invariant quark field by attachi(r) to the quark ) @
field ¢ represents an extension, into the non-Abelian domain, VC(V)HVC(V)GXF( [ wa(r)j) :
of a method of creating gauge-invariant charged fields origi-
nated by Dirac for QED)4]; and, like Dirac’s procedure, this X
non-Abelian construction is free of path-dependent integrals. Vg 1(r)Hex;{ — (1) —=
An explicit demonstration thatig(r) is invariant to 2
non-Abelian gauge transformations has been given by

so that g (r) remains gauge invariantl]. The resolvent
field ZF also has an important role in the gauge-invariant
*Email: Kurt.Haller@uconn.edu gauge field

(6)

Ve i) )
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AP ll. RELATION OF THE GAUGE-INVARIANT
Agi(r)=| Ag;(r) 7} REPRESENTATION OF THE WEYL GAUGE
TO THE COULOMB GAUGE
AP i G
=Vc(f)[Aib(f)?}Vc_l(r)+—Vc(r)ﬁch_l(r), The QCD Hamiltonian in the Weyl gauge has been ex-
9 pressed in terms of gauge-invariant operator-valued fields

(8) [5,6]. In this work, extensive use has been made of the uni-

_ tary equivalence of®—the “Gauss’s law operator” given in
which can be shown to be the transverse fldlH Eqg. (4), which imposes the non-Abelian Gauss’s law—to the
“pure glue” version of that operator

b bT 9i9i |5
AG|i(r):Ai (r)+ 5”_? A](r) gazfyiH?+gfabcAi!)Hi(: (13)
a0l — as shown by
=| 8= 5 [[AN(N+AP(D)]. ©) )
J GA=U'GU;, (14)
Equation(8), as well as the fact thak®,(r) andG°(x) com-  where
mute, demonstrate tha%g“(r) iS gauge invariant—more
precisely, invariant to “small” gauge transformations. We B . o ) =2, e
can also define a gauge-invariant chromoelectric figlg Uc=expi | drax®(r)jo(r)jexpi | drY=(r")je(r)|.

= —TI1%, [5]. A natural definition ofl13; in this formulation (15)
® This unitary equivalence has been used to establish a new
b AP AP . b representation—thd/ representation in whicf? represents
HG”(r)f} :VC(r)7V0 (DIIF(r) - (10 the complete Gauss’s law opera@h and ¢ represents the
gauge-invariant quark field because it commutes with
or, equivalently, The N representation is unitarily equivalent to tferepre-
1 sentation in whichG? and g designate the Gauss's law
a _ b _= ay/ y by -1 operator and the gauge-invariant spifguark field, respec-
Men=Rapll where Rap=5 TATVA Ve T, (1) ti\?ely. In the N rgeprgsentation,iS(F)(ngT(r)()\aIZ)wr()r)
) ) ) and j?(r)zgsz(r)ai()\""/Z)w(r) are the gauge-invariant
wherell? is the momentum conjugate to the gauge fi&fd  quark color charge and quark color current densities, respec-
in the Weyl gauge. With the use of the commutator tively.

. e The Weyl-gauge QCD Hamiltonian can be transformed
[G°(X), Rap(y)1=19FPMRa4(Y) S(X—y), (12)  from its familiar C representation form

[g(r)=

obtained in Ref[5], it is easy to verify thaflg;(y) com- A a 1, a
mutes withG°(x) and therefore also is gauge invariant. H :f dr{EHi (NI + 7 Fi(NF;(r)
In this work we will use a representation, which we dis-
cuss in Sec. Il, in which the Weyl-gauge QCD Hamiltonian
is expressed entirely in terms of gauge-invariant fields. Since
the gauge-invariant gauge field is transverse, it is of interest

to relate this gauge-invariant formulation to the Coulombto the A/ representation, as shown by

gauge. We address this question in Sec. Il B. In Sec. Il we

also show that the Weyl-gauge QCD Hamiltonian in this HG|:U61HUC- (17
representation—in which all operator-valued fields are

gauge-invariant—must be applied to a set of gauge-invarianthis similarity transformation leaves the gauge field untrans-
states that are solutions of the non-Abelian Gauss'’s law. |I1’0rmed, but it transforms the quark field and the negative

a

+y'(r) Bm—iai( &i—igA?(r)%”l//(r)] (16)

Sec. Ill, we address the problem that these states, whickhromoelectric field as shown By]
solve Gauss’s law in QCD, are complicated constructions
that are difficult to use. We demonstrate an isomorphism in U (X) () U(X) =V 1 (X) (%) (18)

this section between this Hamiltonian, which operates on

gauge-invariant states, and a corresponding Hamiltonian thafng

is a functional of gauge-dependent Weyl-gauge fields and

that operates on a set of “standard” perturbative states. Also, Ug 1(x)1‘[;”‘(x)uc(x) =TT%(X) — Rpa(X) ai(x)
in Sec. lll, we relate these Hamiltonians to those obtained
from Coulomb-gauge formulations of QCD. We discuss the be c
implications of our work in Sec. IV. x f dyD(xY)jo(y). (19
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The transformed/\/_representation Ham”toniaﬁ{ can be Only. The .Other interactions in which quarks PartiCipate are
expressed entirely in terms of gauge-invariant variables byonlocal, involve the quark color-charge dengigy and are

making use of the identities R,qRn,=3Jp,  Mediated by Green's functions that are the non-Abelian gen-
fI%R,aR,p=3"Ryy, and & Rp,=—f"PRy,P,; where eralizations of the Abeliaw 2. These interactions still in-
P,i=—1i TI[\"V.d;V;~1]. The QCD Hamiltonian in they"  Vvolve the longitudinal component of the gauge-invariant
representation, expressed in terms of gauge-invariant fieldshromoelectric field, but we will show how this can be elimi-
is nated in Sec. Il B.

. 1 at a 1 a a t A. The inverse Faddeev-Popov operator

Hg= | dr EHGIi(r)HGIi(r)+ ZFan(l’)Fan(r)—lﬁ (r)

The Faddeev-Popov operator in the gauge-invariant rep-
resentation of the Weyl gauge is

X(BM—iaid;)y(r)

1 at

a | a
a.Dab:—(—a +gfaaAlL, x)
XD(x,Y)jo(y) +ig(Y) D 3(y,X) I c(X)] 097 | 3, Poo 9T AGI)
1 ) . _[ 9 b J .
_if drdxdyj§(y)D(y,r)a%, D3(r,x)jg(x) = (9_Xi5ab+gfaq Aan(X))&—Xi, (25

drid(r)Al H 20 d; andD; commute becausid, is transverse. The Faddeev-
- rjr(rAg;(r)+Hg. (20) Popov operator has a formal inverse, which can be repre-

sented as the series
where

a a a abc c - 5 1 iy
F&ij (1) =9jA%(r) = 3iAg, (1) —gf*® A%n<r>Aeu<r>£21) DOy = 2 A (- D" g ST () ay =),

(26)
from which it follows that

G1ij (1) =Raqg(NF{ (r). (22

whereff‘n%h represents the chain of $8) structure constants

n . abh_ fa1bs; £512250§52@353. . . $5(n-2)%(n—1)5(n-1)f S(n—1)&h
BecauseH g, is in the N representationy and " denote the f f f f f f ’

gauge-invariant quark fieldsD3°(x,y) is the inverse (27)
Fsgggev-ljopim\{hoperator, I"r‘]’C'C: ‘r’]‘{[e VIV'":'SC:JSrS 'rr: ?ec.dll r’?"and where repeated superscripted indices are summed from
zity (;)((a(?i?w(e()j :s © gauge-invariant gidon color charge den-, g for n=1, the chain reduces tb""=f**"; and for
i n=0, f§°"= = 8yn. T3 (1)ip(r) is a special case of a gen-
a _ C -
Jocen (1) =g f*Ag(N)Igy(r). 23 eral form 7 {;;(r) ¢"(r) for an arbitrarye"(r) given by

Although Hg, is Hermitian,I12, is not, because, as can be ) 9
seen from Eq(11), 11} =II°R,,, andII° does not com- T(ﬁ)(r)cph(r)=Ag(|j1()l)(r)L21)
mute with R,,. Similarly, J5,, is not Hermitian, and J

(9'
2 i(2)
Ag(lj ()2)( r )_&2

JSIQ):.gfabCHgliAbG"' The last part of the QCD Hamil- dim)
tonian is - Aéﬂ’()n)(f)?(@h(r)) ,
1 .
Ho= - 5 | axayG& 0D ouiy 9
. with
+i8(Y) Dy, ) G&(0)] (24)
a i : ) : : N 9
whereGg, is the gauge-invariant Gauss’s law operd®lr T(O)(r)(ph(r):(Ph(r) and T(l)(r)goh(r)zAG”(r)&—'Z(ph(r).
G3= 1%+ g2 AL TG, = RapG” (29

which consists solely of gauge-invariant fields, every one °i3y expandingD°"(y,x) and combining terms of the same
which commutes with®, the Gauss’s law operator in thé  order in g, it can be observed that, as will be proven in
representationg &, is Hermitian becaus®,, and G° com- Appendix A,
mute[5].

Equation (20) resembles the QCD Hamiltonian in the 9-DEID"(y,X) = Sapd(y—X) (30
Coulomb gauge. The only direct interaction between color
currentsj? and the gauge field involve the transverse currenwhereD"= g, 8,,+gf2""A%, and that
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bh <<
DP(y,x)d- D" = Spad(y—X), (31
where
= -
D= (8 8np— g f"PAL;) (32
and
<= -
J-D"P=(5258,,— gf"PHAL)) (33

and the— symbol indicates that? andg; differentiate to the
left. In demonstrating Eq$30) and(31), it can be helpful to
use the expanded form of theh order term of the inverse
Faddeev-Popov operator series

(n)(y X) gnf51a51f5152$2 fs(n—l)‘snh

dz(1)
Xf4 y—2(1)]

dz(2)
8 J e ARG e

G|| ( (1))(92(1)|1

(2)|

dz(n) g
xfzwlz(n D=2 AW g,

1
><47-r|z(n)—x| (34)
with
- 5ah
Do) (Y.X) = Zaly—x| (39
and

ah dz 1
DI (Y, 0 =gf fm o ) 2\ Zalz=x])
(36)

Integration by parts with respect to tzéi) and the identity
fGah=(—1)"f{® demonstrate that

(37

It is apparent from Eqe34)—(36) that D°"(y,x) obeys the
integral equation8]

DNy, x)=D"(x,y).

Obh

+ f(‘ibs
daly—x 9

DP(y,x)=— (

dz <h
XfmAle(z) —D*Nz,x)|, (39

which has these equations as an iterative solution.

Equation(26) enables us to express the commutator of the

PHYSICAL REVIEW D68, 085002 (2003

[112);(y), A% ..(X)]=—i(5ab6ij6(x—y)
9 bn Sha )
+ 5y PPO0BIX) | (@9
Equation(39) and the commutator, obtained in REF],
Jd
[HaGn(X),H%lj(y)Fig[ a—)(iDah(X,y)f“CbH&”(y)

Jd
- a_wpbh(y,x)fhcanén(x)] )
(40)

are in agreement with those given by Schwinger for the Cou-
lomb gaugd 9], except for some differences in operator or-
der. This fact suggests that the gauge-invariant Weyl-gauge
field and the Coulomb-gauge field discussed by Schwinger
are very similar. The differences in operator-order should be
expected because, in R¢€], ambiguities in operator order
in the Coulomb gauge are resolved by symmetrizing non-
commuting operator-valued quantities so that Coulomb-
gauge operators are kept Hermitian. In our work in the
gauge-invariant formulation of the Weyl gauge, ambiguities
in operator order do not arise. When, because of a non-
symmetric ordering of gauge fields and chromoelectric
fields, some gauge-invariant operator-valued quantities turn
out not to be Hermitian, we leave them that way in order to
avoid ad hocchanges in operator order.

Equation(40) leads to the commutation rule for the trans-
verse parts poGlj(y) [10],

[HGn(X) HG|J(y)] 0.

Equat|on(39) leads to the commutator of the transverse part
of HG,J(y) andA%,(x) (which is transverse

(41

. alaj
[TI&} (), A (0 ]= ~i 8ap 5”—? o(x—y). (42)

Equation (39) can be shown to be consistent with
3;A%; =0 because

[H |J(Y) AGi(X)]

(5ab5u& S(x— y)+7pbh(y x)(9 D(x))

|5ab6,1( - 3(X— y)+75(x y)) 0, (43

and withD; HG,J~O because

DY) [11&;i(y), AZ;i(x)]=0 (44)

gauge-invariant gauge field and the negative gauge-invariant

chromoelectric field as

trivially.
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The Faddeev-Popov operator has a well-documented imonian that, while never actually having been gauge-
portance in non-Abelian gauge theories. Gribov has showtransformed, has the same dynamical effect as the QCD
that gauge fields that have been gauge fixed to have a vahlamiltonian in the Coulomb gauge. But a remarkably similar
ishing divergence can differ from each oth&t,12, and that  State of affairs obtains in QED. When QED is formulated in
the Faddeev-Popov operator does not have a unique inverdg€ temporal gauge, and a unitary transformation is carried
In that same work, Gribov makes the suggestion that th@ut that is the Abelian analog of the one that leads to the
zeros of the Faddeev-Popov operat@ﬁ”éachgfabCA?ai Hamiltonian described in Eqs(20)—(24), the following

might so intensify the interaction between color charges tha&esulth is Obtain?d [22,23; Th? .lQED H?miltogianb
the effect could account for confinement. Subsequentautho}e the temporal ‘gauge, unitarily —transforme y

: : : . exfif(1/6%) a;Ai(r)jo(r)dr]—the Abelian analog of the
have reiterated this suggestipt3,14], and connections be- S . .
tween the zeros of the Faddeev-Popov operator and Colégansformatloruc described in Eq(15—takes the form

confinement have been discussed by other authors as well f
dr

[15—1ﬂ HQED=

1 1
EHi(r)Hi(r)+ ZFij(r)Fij(r)+'r//T(r)
Equations(30) and(31) are based on a series representa-

tion of the operator-value®""(y,x); they are obtained by . ) T
combining all terms of equal order mand noting cancella- X(BMm—ia;id;)(r) —J drji(r)Ai(r)
tions within each order. They do not, however, establish that
DP(y,x) is the unique inverse of the Faddeev-Popov opera- io(Nio(r")
- : ) , JolMN]o
tor. Questions about uniqueness can readily be formulated + | drdr m*‘%- (45

about number-valued functions, but are very difficult to ad-
dress for operator-valued quantities. Equati8® and(31)

establish thatDP(y,x) is an operator-valued inverse of A, designates the transverse Abelian gauge field—which, in

Abelian theories, is also the gauge-invariant field—ahyl
d-DY) (acting on the leftand ofd- D{J (acting on the right ~ can be expressed as
without addressing the question of its uniqueness. However,

althoughA%; is an operator-valued quantity, the @V ver- o1 f d 1. ; 1

=— 5| dr| ILi(r)—=jo(r)+jo(r)—a1L;(r) |.
sions of its constituents—the Weyl-gauge fiedd and the ¢ 2 B )aZJO( )* Jol )52 (T
resolvent field4 ?—can be, and often have been, represented (46)

by number-valued realizations as functions of spatial vari- . . i

ables. Such realizations have been used extensively to stulij 1S the Abelian analog ofg, described in Eq(24). The
the topology of gauge fieldgl1,12,18. When the integral Abelian Gauss’s law operata=d;I1;+ jo, transforms into
equation for the resolvent field referred to in Sec. | is ex-d;ll; in the representation in whicl represents the gauge-
pressed in terms of a number-valued hedgehog represent&variant electron field; and the states that implement
tion, it can be transformed into a nonlinear differential equa-Gauss’s law, which originally are selected &{r)|¥)=0,

tion that was shown to have multiple solutior$]. are given byg;I1;(r)|®)=0 in the transformed representa-
Moreover, this nonlinear differential equation was shown totion [or, as is more appropriate for Abelian gauge theories,
be very nearly identical in form to the one used by Gribov asby G(*)(r)|¥)=0 and aiHi(+)(r)|<I>>=O respectively,

a specific illustration of the fact that the Faddeev-Popov opwhere the superscript (*+)” designates the positive-
erator for the transverse $2J) gauge field does not have a frequency parts of operatdri22,24 As can be Seeff?'QED
unique inverse. With this number-valued realization we werey|so consists of two parts: the Hamiltonian for QED in the
able to establish that the gauge-invariant field, which iscoulomb gauge, an#ll;, which has no effect on the time
transverse, has a Gribov ambigui8}, even though there are eyolution of states that implement Gauss's law, but which
no Gribov copies of the gauge-dependent Weyl-gauge f'eldremembers” the fact thaﬂQED is the transformed Weyl-

[19-21. auge Hamiltonian by preserving the field equations for that
. In the context of the quantized theory—for example, 'ngauge. An identicalytfansforme?tion applieg to covariant-
Hgr—we will representD"(y,x) as the operator-valued se- gauge QED, the sole difference being in the form of the
ries described in Eq$26) and(34). Since each term in this produced by the transformation.
series has unambiguous and self-consistent commutation re- o we can see from Eq620), (24), (45) and(46), and as
lations with all other operator-valued quantities, the seriesyill hecome even more evident in E660), QCD and QED
representation oD °"(y,x) is entirely satisfactory for deter-  are strikingly similar in the relation between their Hamilto-
mining the commutators dfl g, with other gauge-invariant nians in different gauges when these are represented in terms
operators—and  therefore  determining their  timeof gauge-invariant fields. Nevertheless, there are important
dependence—even though number-valued realizations of thdifferences between QED and QCD in the significance of
gauge-invariant gauge field lead to nonlinear integral equathis relationship. One such difference is that, in QED, we
tions that do not have unique solutions. may safely use the original untransformed Weyl gauge or
It may seem surprising that, starting in the Weyl gaugecovariant-gauge Hamiltonian in a space of perturbative states
and expressing the QCD Hamiltonian in that gauge in termsvhen evaluatingSmatrix elements, even though these
of gauge-invariant variables can lead to a form of the Hamil-gauge-dependent perturbative states fail to implement
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Gauss's law. This means that, for perturbative calculations isimple extension of one that was applied to the Fermi sub-
QED, we can safely use the Lagrangian sidiary condition for QED[26]. In the case of QED, how-
1 ever, this difficulty can be remedied because the non-
__* v —. _ normalizability of the states that are annihilated by the
£= 4 FuF =1 At iyt o, —mygt Ly (47) Abelian Gauss’s law operator is entirely caused by the unob-
. servable longitudinal nonpropagating photon “ghost”
with Lg=—AeG for the Weyl gauge and’y=—Gd,A*  modes, which coincide exactly with the pure gauge degrees
+3(1—y)G? for the covariant gauge, without paying any of freedom, and which can be kept separate from the gauge-
attention to Gauss’s law whatsoever. A corresponding pragnvariant transversely polarized propagating photons in a va-
tice in Weyl-gauge QCD is the use of the Weyl-gauge Hamil-riety of ways. In QCD, however, transverse modes can be
tonianH in a Fock space of perturbative states that are nObure gauge, and we do not know of a Simi|ar|y Satisfactory
annihilated byG®. There is, however, the following impor- resolution of the non-normalizability of the state vectors that
tant difference between QED and QCD. The use of pertursatisfy Eq.(48) [27,28. The previously mentioned isomor-
bative states in QED without implementing Gauss'’s law iSsphism, which will be demonstrated in Sec. Ill, mitigates this
permissible because, in QED, a unitary equivalence can bifficulty by establishing an equivalence between matrix el-
established betweef)Il; andd;I1;+jo, so thatdIl; can be  ements evaluated with gauge-invariant states that are not nor-

interpreted asI1;+ ], in a new representatiof22,23. In  malizable, and corresponding ones evaluated with perturba-
this way, it can be shown that perturbative states that impletive states.

ment only ¢;11;(r)~0 instead ofg;I1;+jo(r)~0 may be

used when evaluatin§matrix elements in QED; the only

effect onSmatrix elements from this substitution consists of B. Relation to QCD in the Coulomb gauge

changes to the renormalization constants, which are unob- ynlike the Weyl-gauge formulation of QCD, in which one
servable[_25]. But this_ dispensation to ignore Gauss's law in ~gp, simply setA2=0 and impose canonical quantization
perturbative calculathns h?.S nqt b.een shown to extend tQ es on the remaining fieldi29,30, the quantization of
QCD, becaus;I17+jo(r) is unitarily equivalent only to  coulomb-gauge QCD requires that constraints be explicitly
DiIIf, but not to ¢II?; and states that implement the taken into account. In constrained quantization—one proce-
Gauss's lawD;I1#~0 cannot be perturbative states. In par-dure for implementing consistency with constraints—this
ticular, the use ofdg, for perturbative calculations using a consistency is maintained by means of the so-called “Dirac-
space of perturbative states does not enjoy the same protderackets,” which replace the canonical equal-time commuta-
tion that the corresponding practice has in QED. In Sec. lition rules. When constrained quantization, such as the Dirac-
we will establish an isomorphism between the gaugeBergmann procedurl], is applied to the Coulomb gauge,
invariant states that implement the non-Abelian Gauss’s laihe generator of infinitesimal gauge transformations becomes
and perturbative states. This isomorphism enables us to suB- constraint; it then must commute with all fields, which
stitute “standard” calculations with perturbative states for therefore are invariant to small gauge transformations. Under
prohibitively difficult ones with gauge-invariant states. By these circumstances, the gauge field would automatically be
this means, we provide for QCD a substitution rule, similarinvariant to small gauge transformations, although it might
to the one available in QED, that permits the use of perturhave discrete numbers of gauge copies.

bative Fock states in scattering calculations with the assur- However, carrying out the constrained quantization of
ance that the results of these calculations will agree witf2CD in the Coulomb gauge is problematical; one impedi-
what would have been obtained if gauge-invariant operatorg1ent stems from operator-ordering ambiguities of multilin-

and states had been used. ear operator products. For example, in constrained quantiza-
Another difference between QCD and QED is related totion, the matrix of constraint commutators must be inverted.
the fact that states that obey the condition There are noncommuting operators in that matrix, and it is at
best problematical to keep track of operator order in the pro-
Ga(r)|w)=0 (48)  cess of finding this inverse. As a result, the Dirac brackets of

. . ) _ some operators are not unambiguously specified. Because of
are not normalizable. We can see this easily by constructinghe difficulties associated with the quantization of QCD in
for example, the commutator 6°(r) and an integral opera- the Coulomb gauge, a number of workers have avoided the
tor Z=[dr'A%(r')x;(r') where x;(r’') is an arbitrary direct quantization of Coulomb-gauge QCD, and have pro-
c-number-valued function. Since ceeded by treating tha3=0 gauge fields as a set of Carte-

8 N sian coordinates and the Coulomb-gauge fields as a set of
[Z.6°(N]=1dixi(r) curvilinear coordinates, and have transformed from the
former to the latter by using the familiar apparatus for such
coordinate transformatiorf82-33.
(W[[Z,G8(N)]|W)=iaxi(r)(P|P), In our wor_k, we transform from fche Weyl gauge to a rep-
resentation in terms of gauge-invariant operator-valued
and sinceg 8(r) is Hermitian so thatW|G8(r)=0 as well as fields. Our purpose is to implement gauge invariance, not to
G8(r)|Ww)=0, this leads to{¥|¥)=0, in contradiction to carry out a gauge transformation. We do not impose trans-
the assumption th4®) is normalizable. This argument is a versality on the gauge-invariakt; ; in our work, A%, is

and
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o

—]2 nEO -1" gnfabh(T(n)‘]O(Gl) ) (54)

transverse, but the transversality is not imposed as a

condition—it emerges as a consequence of its gauge invari- Hg,jwﬂgﬁ
ance. And the Gauss's law operatit does not vanish iden-
tically; in our work, Gauss’s law is a condition on a set of
states(the implementation of Gauss’s law by imposing it on

and

a set of states is also discussed in RE38,34,36,37). T
Because our formulation of QCD in terms of gauge- HGIJ gT”TJr E (=" ”f“bh(T(n)Jo(Gl))) ,

invariant fields differs significantly from those whose pur-

pose is to construct the QCD Hamiltonian in the Coulomb (55

gauge, it. is of interest to inquire how closely the re?”m”grespectively. We can combine Eq@6) with Egs. (51) and
Hamiltonians resemble each other. In order to examine th|&-)2) to obtain

question further, we will make some additional transforma-
tions of H, that assume that the Hamiltonian acts only on
states that implement Gauss’s law. WH@!@ appears in a
matrix element between two statek,) and(W | that obey
GY(X)|¥,)=0 and(¥ 4 G°(x)=0, further transformations
that eliminate the longitudinal component Hf},; are pos- bt ) ATt (b

sible. For the case th&l; appears adjacent to and directly Joen(y)=d f dxJo ) (X)DAXY). (57)

to the left of such a statel’), we can make the replacement )
Equations(54) and (55) can be expressed as

N 52f dxDP2(y,x) 5 (g (X) (56)

8
Mg W)=~ —3 36| V) 49 11, (y) =12 (y) — 4, f dxDP(y,x)J3ley(x)  (58)

and, therefore, also and

I W) =g AL (1T 4
Sl V) =g PEAGIIE FTEDIY) Mg =~TTe (v) =9, J A3 (DY), (59

{9.
=1 J8(en—9FAg; a_lz oen(I¥), (50 respectively, whered3fl,(x) represents the Hermitian ad-
joint of J§ (g (x).
whereJo(Gl) is defined asJo(Gl)—gfabcAG“HG,, Equation We can define an “effective” Hamiltonian F(G|)phys,
(50) can be iterated, leading to which is obtained by making the replacements described by
Egs.(56)—(59) in Hg, and excludingHg, since the latter will
P oS (—1 nfabh( ) (51) not contribute to any r_natrix elements i_n the physical space in
0Gn & 9 O(G') which Gauss'’s law is implemented. With these replacements,
we obtain
where ~ indicates that the replacement is valid only when
the operators act on statg®) that implement Gauss'’s law. (Fla)on :f dr
WhenJ§[g, stands directly to the right ¢f| states, we can prve
similarly make the replacement

©

aTt 1
_HGI|(r)HGI|(r)+ FG|IJ(r)FG|IJ(r)

+ o' (N (BM=iad) g(r)

- [ iz Az,
Iy~ E (1) gnfabh(T(n) o) (52 1
~ 5 araxaytigoo-+ 357,001
where
X DP3(x,1) 92, DA(r,y)[[§(y) +I5(ay(Y)].

T (NI ()
{ m(NJoe( )} (60)
(— <— ~ ~ ~
_ hTt j(n) 1(2) A2(2) (Ha1)physis notidentical taH ;. But (Hg)) pnys Can substitute
= (J O(GI)(r)) Glj(n)(r) Acii(2)(1) ~ . \
for Hg, as the generator of time evolution when we embed
- the theory within a space of statgk,) that satisfy the non-
(9](1) " Abelian Gauss's lawg 2(x)| ¥ ,)=0. Becaus& ?(x) is Her-
AGij(1(r) (53)  mitian, the same statgl',) that obeys Eq(48) also obeys
(¥,|G3(x)=0. Equation(20) demonstrates that whefg,
and where the arrows indicate that differentiation is appliecappears in any “allowed” matrix element]g; and JO(GD
to the left. Similarly,IT%,(r) and HG,I(r) can be expressed always are situated where they abut a “ket” state vector
as | W) to their right; and12]; and JO(GD always are situated
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where they abut a “bra” state vect¢® | to their left. Since  as well as

Hg will always be bracketed between two stafds,| and R .

|W,) that implement Gauss's laW]&,; andI12] can be re-  Ga(x)exd —i(Hg)t]| ¥,y =exd —i(Hg)t]G3(x)|¥ ) =0.
placed by their “soft” equivalents shown in Eqé8) and (65
(59), respectively, andp g, andJgg, can similarly be re- i

placed as shown in Eq¢s6) and(57), respectively. Fig) s  The  State  vectors  ekpi(Hg)t][¥,) and
can therefore always be substituted fdg, in matrix ele- X —i(Ha)pnyd1|W,) therefore are gauge-invariant and
ments, as long as attention is paid to the need to restrict th@plement Gauss’s law just a9 ,) does.

space of state vectors to those that implement Gauss’s law. In comparing (:|G|)phyS with expressions for the
For example, expfiHgt)|¥,) can be replaced by Coulomb-gauge Hamiltonian in the literature, we note that

exp(i(Hg) pnyd) |V ), since both will be required to project the only significant difference betweer ) pn,s and the
onto states that implement Gauss’s law, as shown by Coulomb-gauge Hamiltonian reported in R¢82] is that
I, the Hermitian adjoint of the transverse gauge-
exd —i(Ag)t]| W)=V ¥ |exd —i(Ag)t]|¥,), invariant chromoelectric field, appears in E§0) where the
(61)  expression jflﬂgﬂj appears in Ref.[32], where J
=de{d;-D;]. We will prove in Appendix B that

and
- bTt_ 7—177bT
(W, exd —i(He)t][¥,) Mgy =J g7, (66)
) N (—it)" by using Eq.(11) and the identit
:5va_|t<q,V|HGl)|q,a>+"'+ n! y g Hq y
o ° _ -1
X(U [ He) [V, XV, He) [V ,,,) AT In7=Tt| (3-D) 5Aiq(x)a D] (67)
X(W L HG) W) (W, [Ha)| W)+

where the trace in Eq67) extends to the coordinates and the
(62 color indices. With this demonstration, we see that &)
. and the Coulomb-gauge Hamiltonian described in @5
Each matrix elemen{¥, [Hg)|¥, ) in Eq. (62 can be in Ref.[32] are identical. It is also of interest to compare Eq.
replaced by <\I,;L-|(HG|)phy4\I,,u->' so that (60 With the Coulomb-gauge Hamiltonian in Rdfl1] as
A ! ] well as in the work of a number of other authors who used
exf~i(He)tl|¥,) can safely be replaced by the same form of the Hamiltonian. The Hamiltonian in Ref.
exp(—i(Hap) phyd) | ¥ ). The time evolution imposed b,  [11] differs from the Hamiltonian described by E@.65 in
on a state vecto¥,) for which G¢(x)|¥,,)=0 takes place  Ref. [32] in the fact thatlIZ]; rather thanlIZ]" appears in
entirely within the space of states that implement Gauss'Ref. [11] in place ofj—lngll-jjin Ref.[32]; there is also the
law. In the case of a state vectpy) for which G°(X)|x)  trivial difference that Ref[11] deals with “pure glue” QCD
=|x") where|x") is nonvanishing, so that the quark field is not included.
A - This discrepancy raises the question of the Hermiticity of
(XG0, exp —iHe) ]| W) =(x'|exp —iHe)| W) =0 the operator-valued transverse gauge-invariant chromoelec-
63 tric field I'IbGT,J , which is of considerable importance for de-

because ¢(x) andF g commute. This requires the part pf ~ t€rmining the dynamical effects o) pnys. One way of
that fails to implement Gauss's law to be orthogonal to2ddressing this question is to use Efl) and Eq.(65) in

exp(—iHG,t)|\Ifa>. The only limitation on the validity of this Ref. [5] to obtain

argument is the non-normalizability of the states that imple- p

ment Gauss’s law, which complicates the algebraic propertiesrybt /110 () =170 _i~fheb_? ch

of the {|¥,)} vector space. Nevertheless, E{§1)—(63) Ty (v) = e (V) =), RogV) =19 250 DEY,Y)
show that we can restrict the space in which time evolution (68)
takes place to state vectors that implement Gauss’s law with-

out compromising the unitarity of the time-evolvg#t ,(t)) ~ where the partial derivative acts on only thist y argument

or of the S matrix evaluated with such states. These considin D°(y,y). We might have expected that the transverse
erations are also instrumental in allowing us to replaceparts of I12](y) andIIg;(y) would be identical since any

exp(—iHgt) with exp(_i(F'Gl)physt)- Hg and (|:|e|)phys both  functionals of the forn{ 6 ;—(d;9;/5%)19;£(y) would nec-

commute withG2(x) for all values ofa, so that essarily vanish. Such a conclusion would not, however, be
correct in this case, because W.Qyj)th(y,y), the partial
ga(X)eXF[—i(Herhyst]N’a) derivative differentiates only thirsty in D9(y,y). We can

i make use of Eq(38) and the fact that"®5,.=0 to express
=exd —i(Ha)pnyd19%(X)|W,)=0 (64  Eq.(68) as
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1 the Hamiltonian GG,) phys |t was necessary, however, to re-
Y Arly—7 strict use of this Hamiltonian to a space in which all state

1 ()= 1) =171 [ a2
vectors implement the non-Abelian Gauss'’s law; and these

d state vectors are complicated constructions that are not easy
S5 sh
X Aci(2) (9_ZkD (2y) 69 {5 use. In this section we will show how isomorphisms can
_ be established that enable us to identiﬁlG()phys with a
and we can extract the transverse parts to obtain Hamiltonian that can be used in a space of ordinary, conven-
) ) tional perturbative states.
bTt . 2ehche dcs ﬁjy ¢ To review the relation between gauge-invariant and per-
Il (y) — g (y) =igf"ef T2 turbative states: In Ref1], a set of states was constructed in
the form
fdz a( 1 ) i) =W|i) (72)
Y\ 4mly-2 where the operator—valueﬂ was given as
J in
XAg(2) - DM(zy). (70 v-3 Dy, (73
k i=o n!
Equation(70) makes it clear thatlg(y)—T1gj(y) is not ~ with
the transverse projection of a gradient and therefore cannot
be presumed to vanish. V.= f dry---dr Ak(l)(rl) Ak( J(ro)
Equally compelling evidence thi{G,J is not identical to
its Hermitian adjomt is provided by the observation that the XTIE(ry) - - - TR (r o). (74)

commutators$ I8}, (x), 1 (y) ] and[TT1;(x), TT&} ()] dif-
fer. The latter vanishes, as is shown by Ed9), (41). How-
ever, use of Eq(11) and the commutation rules for the un-
derlying Weyl-gauge fields lead to

|¢> designates one of a set of states that is annihilated by
9, H These|¢>) states—the so-called “Fermi” states—are
related to “standard” perturbative statgg) by

|0 =E|p)- (75)
(X) 5(%)
[ (). 118 ()= nghcafpdb(ak &' jk ) E was given in Ref[38], where it was also shown that
d aij’(r)E|pi>=O, where |p;) designates one of a set of
) () “standard” perturbative states annihilated by all annihilation
> ( 85— ﬂ)i operators for fermion and transverse gauge field excitations.
0—,2

dh
ay|D (%) This set of perturbative states will be described more fully

later in this section, and will turn out to be identical to per-
d cp turbative states in QED, except for the fact that the gluon
Xa_xk D*A(xy), (71) operators carry a Lie group index, while the photons do not.

Since 9 H annihilates anyl¢;) state, we can see that, in
and an alternate derivation based on Hg&) and(68) con-  |¥;) states the negative chromoelectnc flﬂﬁ )(r () inw¥
firms that result. Similarly to what we observed in connec-can be replaced by its transverse ﬂiﬁf T(ro), because the
tion with Eq. (68), the derivativesi/dy; andd/dx; each dif-  longitudinal parts vanish when acting on| @;) state. Fur-
ferentiate part, but not all of thg and x dependence, thermore, in Eq (74), every transversdﬂﬂ((ﬁ;T(r() is inte-

ively, of the produd®"(y,x)D°P(x,y) in Eq. (71).
respectively P grated with anA4 (e)(u) in each variabler,, and only the

The transverse projections of o
transverse componenl&ﬂ(((f (r,) will survive this integra-

(9l ay)) DIy, x) (9] 9%, ) D EP(X,y) tion in the | ¥, ) states, which become
therefore will not vanish, anﬂHG,,(g;)THgT”T(y)]aéo Since W)= 21 F dry- - drp AET(ry) - AT T(ry)
[HG||(XT) HGu(Y)] and [HGH(X) g (y)] differ HGu(Y) '
andl'[GIJ (y) cannot be identical. XHE&;T(H)' Eéﬂ;T(rn)W) (76)
lIl. ISOMORPHISM AND ITS IMPLICATION In Ref. [1], it was shown that
FOR THE SCATTERING AMPLITUDE g,j(r)\lf|¢->=\IfA?T(r)|¢i>. (77)

In the preceding sections we have obtained a descriptio
of QCD that took the Weyl-gauge formulation as its point of
departure, and arrived at a Hamiltonian in which all operator- G“(r)qf|¢ Y= quCT(r)| o). (79
valued fields—the gauge field, the chromoelectric field, as
well as the quark field—are gauge invariant, and only theSince the Hamiltonianl-ﬂ(;l)p,1ys consists of transverse fields
transverse components of the chromoelectric fields appear wnly, Egs.(77) and (78) afford us an opportunity to shift

th Appendix D, we will use Eq(76) to show that
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(|:|G|) s from the left-hand side of to the right, with a pensating transformation on the states, but we prefer to leave
phys '

concomitant substitution of transverse Weyl-gauge fields fof1€ States untransformed and to extract
the corresponding gauge-invariant fields. The one impedi-

ment to this process is thitgf, the Hermitian adjoint of

.~ . 1 1. .
l'IG,J , also appears inHg)) pnys, and Eq.(78) only applies to [H]o:J dr[ipij(r)PJpT(r)Jr ZFé”j(r)Fé“j(r)—{— yh(r)
I} and not tol1%}. To remove that impediment, we use
Eq. (66) to substitute7 *11¢;,7 for 1", and express

(He)pnys as X(Bm_iai&i)‘ﬁ(r)} (83)

R from Eq. (79) in order to obtain a non-interacting part of
(HGI)phys:J dr[ Mg (r) JTIE, (r) (Fle) pnys that consists of Hermitian gauge-invariant fields

and that can define interaction picture operators. As we will

1, a + ) show in Appendix E, this process leads to the expression
+ ZFan(r)Fan(r)+ JH(r)(Bm—ia;d;)(r)

—j?(r)Aé”(r)]—;f drdxdy (e pnys=[Hlo+[H]1+[H], (84)
X[]8(X)+ I8y (01D P(x,1) 92 D3t y) where
X[Jo(y)+‘]0(Gl)(y)] (79
with [H]lzj dr{gfabcaiAglj(r)Ag”(r)A%,j(r)
l 1Al
8{é|)—9fabcj I TAL; - "’Zngabcfab ¢ Agn(r)A&”(r)A .(r)Ae“( )
We can define a “Hermitized” transverse gauge-invariant 1
negative chromoelectric ﬁelﬁl’}’T —j?(r)Ag”(r)) —Ef drdxdy
bT 1 112 X [2(x) + I8 (X)]DP3(x,r) 9%, Da%(r,y)
P(r)=J" 2l'[G”(r)J 3 (80) Jo 0(Gl) 1)) 8%
As can be seen from E@66), P" is Hermitian, since x[i§(y) +I5{en(¥)] (85

d
P?TT(r):leZHgTJT(r)jfl/Z an

=7 Y g0 (g g*=P(r). 81 L
_ - ) ba 2 ac,
An important consideration for this argument is the fact that [Hl=t+ v+ ZJ draxdy{iko(x) D™061) ) DY)
JY? is Hermitian, which is proven in Appendix C. In the . o
same appendix, we also prove that the canonical commuta- X[i§y) + ey (N T=T1§(¥) + Iy ()]
tion relations betweerﬂbT’s and A%,’s and that among
j ba ac

I1°"'s remain unmodified Wltﬂ'IbT’s replaced byPZ|;’s. We XD 3 DHTY)IKS(Y)

then find that +KQ(X)D3(x,1) 5 D31, y)K§(Y)}, (86)

gy (r) = J42pPT(r) 7~ 12 where{ and V as well ask5(x) and Eg{el) are defined in
Appendix E in Egs(E7), (E11), (E16), and(E15), respec-
and tively. [H]o, [H];, and[H], are Hermitian, and all consist
entirely of gauge-invariant, Hermitian, transverse gauge
et (r)y=g- 1/273bT(r)j1/2 82 fields and gauge-invariant quark fields, which all obey “stan-

Hai dard” commutation rules. Sinc®?'(y) andI1g|/(y) have

Equation(82) transforms from the non-Hermitial %], and ~ the same commutator Withg, (), Eq.(42) also determines
HbT; to the Hermitian?? (not, however, unitarily, since the commutation rule
JY? is Hermitian and not the Hermitian adjoint gf~1?).

Transformations of this kind have previously been used by bT aT
other workerg32,39. It would be possible to make a com- [AZ;(Y).A%i(x)]=[PT(y),P{T(x)]=0,
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FIAY PINT Y20 )= T V20 FATT TIPT) | b)
S(x—y). (87 (

[PV (y), ARy (0]=~ g 8y~ )
i 1MAGli ab ij (92 93)

leading to

The sum[H]y+[H]; is identical in form to the Coulomb-

auge QCD Hamiltonian used by Gribfi1,12, as well as B 3 k
gy ngquerous other authors Whoyhave ?ollovvaed him in using an(K) T 2| o) =T 1/2‘1'( \[Efin(k)f dr
this Hamiltonian.[H], consists of additional terms that are
required because the transverse gauge-invariant negative
chromoelectric field'[gTIj is not Hermitian. The elimination
of T1g}; andIT&]" in favor of the HermitiarP}™ is essential

X

AfT<r>+iEHFT<r>)e-‘k"}|¢(>,

R 94
for the establishment of the isomorphism betweely{ ynys (04
and a Hamiltonian that can be used in a Fock space of pegnd
turbative states. We now proceed to the demonstration of this
isomorphism. ot —12 i \ﬁ n
Since bothA,(r) and P?T(r) are Hermitian and obey an (KT~ [$)=T 72 2€ (k) | dr
the commutation rule displayed in E@7), we can represent )
them as ' ik-
X(Ame—EHfT(r) e'“]lqw,
peun=3 T8 aegetrratiie ] (@9 (95)
Gli kn 2k " n so that the isomorphism established in E2B) between the

gauge-invariant fieldAg; PJ-bT and the gauge-dependent

and Weyl-gauge fieldsAiaT, H}’T, respectively, is transferred to a
similar relation between the gauge-invariant creation and an-
% nihilation operators for transverse gluong, (k) andaS(k),
CT/y— n c iker_ _ct —iker and corresponding “standard” perturbative creation and an-
C(r)y=—i i"(k \/: k)e''"— k)e Lo
P % &"(k) 2[a”( ) an (k) ] nihilation operatorsa®'(k) andaS(k). We can proceed by
(89)  using the standard representation for the transverse part of

. o the Weyl-gauge fields,
wheren is summed over two transverse helicity modes and

€"(k) . .
ATT(N=2 ——[aj(ke* +agl(ke 7] (96)
[a5(k),a?"(Q)]= 8, ¢Sab0icq L Y2k T "
and and
T =—i> &"(k) \/E[aC(k)e‘k'f—aCWk)eik'f]
[ad(k),ab(@]=[a} (k),af(@)]=0.  (90) | & 25 " ’
97)
Equations(88) and (89) can be inverted, leading to which demonstrate that
K i | ay ()T V20 ) =T Wail (k)| ),
af(k)= Eei%k)fdr(Aé.i<r>+EPFT<r>)e'k'f
(91) ar(k) T ) =T Paikld). (99
Any a7 (k) will annihilate the gauge-invariant vacuum state
and J Y2p=|0), because the transverse excitation operators
aS(k) anda®'(k) trivially commute with=.
K i At this point, we can establish an isomorphism between
aCl(k)= \ﬁei”(k)f dr(ACG”(r)— EPfT(r))eik‘f. two Fock spaces: The “standard” Weyl-gauge Fock space
2 consists of

(92)
[ky=a5'(k)|0) (99
Equations(91) and (92) show thata®(k) and aS'(k) are
gauge invariant and commute with the Gauss’s law operator
Ga(r). Equations(77), (78) and (80) demonstrate that any ot ot ot
functional F(A%;,PPT) will have the transformation [Ki---ki---kn)=Kla (k) --a (ki) -2t (ky)]|0),
property (100
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with K the normalization constant and the gauge-invariant ot . . — —
states that implement the non-Abelian Gauss'’s law can be HOZKEC kay, (k)an(k>+ES Ep(Up sdp,st Upsp,s)-
represented as ’ P

(109

_ 1 We can then use E@993) to establish that

k)= gan ()T WE|0) (101)
[HloJ Y2¥E|n)=7 Y2UEH,|n) (106)
as well as
Ky K-+ Kp) = g[aﬁf(kl)' ) 'a,i:T(ki)' . aﬁ':‘T(kN)] [H1,T YW E|n)=7 YW EH,|n) (107
X J~V2p=|0) (102 and

[Hl,T YA E|n)= T Y20 EH,|n). (108)

where|0) designates the perturbative vacuum annihilated by

c N
an(.k) as well as by_the annlhll.atlon operator.s.for quarks and]_he state vectofn) represents one of thé,- - -k;- - - ky),
antiquarksg, s andq,, s respectively. The additional normal- ne “standard” perturbative eigenstateshf,
ization constanC~! must be introduced to compensate for We can use the relations between the Weyl-gauge and the

2__ =12\ = 2_ =B Ty = K R . ? .

the fact thaC|?=|J~ YW E|0)[*=(0|E*¥*J *WE|0),  gauge-invariant states that we established in the preceding
which formally s a universal positive constant, is not finite; giscussion to extend the isomorphism we have demonstrated
and the state7 “*¥=|0) is not normalizable. However, g include scattering transition amplitudes. For this purpose,
onceC is introduced, thek,- - -k;- - -ky) states form a sat- we define
isfactory Fock space that is gauge invariant as well as iso-
morphic to the space dk,- - -k;- - -ky) states. We can now He =M+ M and[H] . =[H].+[H 109
use Eqs(88), and(89) to expresgH], as n=HatHp and[Hlin=[H]1 +[H]o. (109
The transition amplitude between gauge-invariant states is
_ given by
[Hlo=2 kaz'(K)an(k)+ 2, &x(QpsGps Gpsins)

(103 _ 1

fi =§<f|5*q’*~7ﬂ2{ [Hlinet [H]ine

with the subscrips labeling the color, flavor and helicity of

the quarks. In this form[H], can be seen to describe the 1

energy of non-interacting gauge-invariant transverse gluons X = : [H]im} J V2P =iy, (110

of energyk and quarks and anti-quarks, respectively of en- Ei—(Ha)pnysti€

ergy sz\/m2+|p|2. We can also define another Hamil-

tonian, H="Hy+ H;+ H,, in which each component part is where|i) and|f) each designate one of the) states;|i)

identical in form to[H]y+[H],+[H],, respectively, but represents an incident andl) a final state in a scattering

with the substitutions process. With the results of the preceding discussion, we can
express this as

PYT—IIT and AL, — AT

everywhere—including the replacementAf§,; by A?" in the Tsi= iz(fIE*\If*j‘ W E|ny(n|
inverse Faddeev-Popov operatb?®(x,y)—so that is C

characteristic of the Coulomb gauge, but nevertheless is a

functional of transverse Weyl-gauge unconstrained fields. X
For exampleH, is

Hint+Hint E. _HO_H t+ i eHint] |I>
I n

1 1. 1
Ho=f dr[EH?T(r)H?T(r)Jr ZHi(DFG) = a(ola*w*j—quamxﬂ

+ Yl (BmM—ia;d) 1) (104 | Hipgt H

int Ei _ HO_ Hin’(+ | eHint] | I > (111)

where Iif}=§jA?—aiAf‘. Using EQgs.(96) and (97), we can  where we sum over the complete set of perturbative states
expressH,, in the form [n)(n|. The third line of Eq.(111) follows from
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1 = daTpk 77— LaTp— 1 = daTpk 77— IaTp— AT
E(H: v W:|n)=§<0|af(kf)z v* 7 *WEa,(k,)|0)
1 =owappx 712 T 12\ =
= §<O|E w7 af(kf)an(kn)j \P:|O>

1 = xafp* 7 Iapp = 1 =xappx 7—1/2 T — 12—~
:5f,n6(kf_kn)§<o|»: v 7 ‘l’d|0>—§<o|ﬂ VT Yeag(kn) ai(k) I~V E|0)

(112

and the observation that the last term on the last line of Eqwhere the superscriptV designates Weyl-ordering with re-
(112 vanishes trivially. With the isomorphism of the states spect tol'[tgIj andA%, . The additional term3); andV, are
[kq---ki---ky) and |kq---ki---ky) that we have estab- given by

lished,

— % zing'bcf'adf dro; D2°(r,r)a, Dr,r) (117
Tii=Ts, (113 178 J ey ’

where and

1
Toi=(fl{ HimtH Hine( 1) (114 szgnglnafkbmj dxdydz 6,6 oy —X)

MEi~Ho— Hintie€
is a transition amplitude that can be evaluated with Feynman ‘n o ae 2 b
graphs and rules, because it is based on “standard” pertur- T DDy, X) 3{1D**(X,2) 9 D*(Z,Y)[ bim 6ij 6(X—Y)
bative states that are not required to implement Gauss’s law
and need not be gauge invariant.

In the remainder of this section, we will discuss the rela-
tion of our formulation of the scattering transition amplitude ;o e the partial derivative; to the left of D3(r r) acts

to approaches to this problem in Coulomb-gauge formulag,, on jts first argument. When a partial derivative with a

tions of QCD.AAS was pointed out in Sec. Il B, the effective left arrow on top appears to the right B with two iden-
Hamiltonian Hg)) pnys described in Eq(60) is identical to  tical arguments, it acts only on its second argument. The case

one obtained by Christ and L@2], who treated gauge of two identical arguments ofD is understood as
fields as coordinates and applied the apparatus of transformgfpab(xyx)z”my_))((a/ﬁxj)pab(x’y) and  D3(x,x) (31

tions from Cartesian to curvilinear coordinates to the prob-_

. YV=lim,_,(d/9x;)D3®(y,x), where the limit is takemfter the
- Y= XA 1 . . i
lem of formulating Coulomb-gauge QCD. Here, we will partial derivative has been evaluated. This convention will be

show thatH g—the precursor of i) phys, described in Eq.  followed consistently in the following discussions. Since the

(20—is identical in form to the Hamiltonian given in Eq. commutator OprbT andA%, is identical to that oﬂgT,j and
(6.15 in Ref. [32], which leads to the Coulomb-gauge per- pa

., an equation parallel to E¢116),
turbative rules formulated by Christ and Lee. For this pur- °" . P 4116

pose,Hg will be expressed in terms @7 and A, , and Ao =A% +v,+V, (119

then Weyl ordered. The equivalence of Christ and Lee’s re-

sults with Schwinger'd36] was already confirmed in Ref. will be proven below. The superscripW designates Weyl

[32]. ordering, but in this case with respect®y™ andAg; . The
Equation (82) demonstrates that the functional depen-parallel structure refers to the fact that, as was pointed out

dence ofHg on PPT and A%, is the same as the functional above,H has the same functional dependencerd and

dependence of A%, asH has onllg]; andA%; . Since the fermion variables
commute with??™ and A%, we may drop them for the
proof of Eq.(119); we will also dropH, since it makes no
contributions in the space of gauge-invariant states. It fol-
lows from Eq.(58) that for a physical statgl),

+DiD'm(x,y);j] (118

ﬁz jl/ZHGlj— 1/2 (115)

on H;’T andA%; . H was used by Christ and Lee to generate
the path integral representation of the Coulomb gd3gé

and they showed that Hg“(r)|\y>: _gi)(r)|\l,> (120)
H=AY+V+), 116 with
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Ef’(r)=]1’2[ PP+ f dxd,D°%(r x)

XD;i(x)PIT(x) | T2 (121)
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so that

In terms of the Weyl-ordered chromoelectric field operator of

Schwinger{9],

Ej(n)=—P}T(n+ %f dx(9; D %(r,x)D; () PT(x)

+D;(x)PIT(x);D%(r,x)], (122
we have
EP(N)=EX(r)+AD(r)
EXNT=EP(r) —AP(r). (123

The HamiltonianHg,, in the absence of the fermion field
and withoutHg can be written as

. 1

where the kinetic energy

1 1
KZEJ dreR(n)ed(r) = Ef dr[EP(NE(r)+u(r)]

(129
with
v(r)=—AP(NAP(N)+[ENX(r),AN(N)]. (126)
To evaluateA(r), we observe that
1
7 ==PJ1 N+ 5[P{(n).In(7)]
+J’ dxd; D°(r,x)D;(x) P (x)
1j bq qT
5 dxd; D (r,x)Di[ P (x),In(7) ]
(127
and
1
E7(n'==P{I(N=5[PI(N).In(7)]
+f dxD;(x)PT(x) 9, D°(r,x)
1 T
+§J dxd; D1, x)D;[ P (x),In(7)]
(128

1
E[5}’(r)+g§’(r)f]= EP(r) (129
and, therefore, that
1 b byt b
S[ENN - €Y T=A7(r). (130
With Egs. (120 and(68), this leads to
AP(r)=— i—gbehiDCh(r r (131
J 2 ar | e
In Appendix F, we shall prove that
1
EJ dro(r)=V;. (132

In the form given in Eq(124) with K as described in Eq.
(125), the effective HamiltonianHg)) is identified with that
of Schwinger[36]. The next step towards the proof of Eq.
(119 follows from the operator identity given in Rgi32]

1 1
Ef drE}’(r)Ejb(r)=§f dr[EP(nEP(n)Y

. 1 dxdvd aT D, Db¢ 5
g | dxdydZP{(x), DD (x,2)9;]

X[PRY(y),DiD2%(y,2)d;]. (133

Using the commutation relatiof10), we can show that the
second term on the right-hand side of E§33) is the same
asV, (the same proof is also given in RdB2]) and Eq.
(119 is established.

IV. DISCUSSION

In this work we have used earlier resyliss, 6] to express
the Weyl-gauge Hamiltonian entirely in terms of operator-
valued fields that are gauge invariant as well as path inde-
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pendent. These gauge-invariant fields have many features gented in terms of gauge-invariant fields, some relation is
common with Coulomb-gauge fields: Their commutationrequired that allows us to circumvent the absence of the uni-
rules agree with those given by Schwinger in his Coulomb+ary equivalence between gauge-invariant and perturbative
gauge formulation of QCI)9,36], except for differences in states that afflicts non-Abelian gauge theories. In Sec. Il we
operator order; these differences can be ascribed to the fagstablish such a relation in the form of an isomorphism that
that Schwinger imposed Weyl order in his work while we doenables us to consistently carry out calculations in QCD with
not make anyad hocchanges in operator order. The gauge-an equivalent Hamiltonian that is a functional of the original
invariant gauge field is transverse and Hermitian, but thjauge-dependent Weyl-gauge fields and that is used with
gauge-invariant chromoelectric field is neither transverse notandard perturbative states. In the case of QCD, this isomor-
Hermitian. Even the transverse part of the gauge-invarianihism has been demonstrated for the Weyl gauge only. An
chromoglectric field i_s no_t Hermitian._That _fact is imp_ortant extension to a somewhat larger class of algebraic gauges
for relating the Hamiltonian we obtained in E@4) with  yefineq byAq+ yAs=0 with y=0 should not be difficult
those given by Griboy11], Schwinger36], and Christ and [40] but, in contrast to QED, there is no indication that fur-

Lee[32]. . )

The relation between the Coulomb-gauge Hamiltonian fort hlflr e>|<:t_e nTllon_s—Sto C(IJI\II ariant ﬁau%is’tf%r ex;mg_le—:re PIOS'
QCD and the Weyl-gauge Hamiltonian expressed in terms of' _e. inally, ih sec. 1ll, we show that the effective Hamil-
gauge-invariant fields closely parallels the relation betweefonian Hg)pnys—and therefore alsé{="H+H; + H,—can
the two corresponding QED Hamiltonians. The Weyl-gauged€ expressed in appropriately Weyl-ordered forms and shown
Hamiltonian for QCD is represented entirely in terms ofto be equivalent to results obtained by Schwing8] and
gauge-invariant fields in Eq€20) and (24). When formu- by Christ and Le¢32]. The Hamiltonian used by Gribov in
lated in terms of gauge-invariant fields, QCD must be em®Ref. [11] is equivalent to onlyH="Hy+H,. H, does not
bedded in a space of gauge-invariant states that obey trappear in that work, because the non-Hermiticity of the
non-Abelian Gauss’'s law. Within such a space of gaugetransverse chromoelectric field was not taken into account.
invariant states, further transformation of the QCD Hamil-
tonian we have constructed can be effected. Thus trans-

formed, the Hamiltonian consists of two parts. One patrt, ACKNOWLEDGMENTS

(I:|G|)phys—displayed in Eq. (60—is identical to the

Coulomb-gauge Hamiltonian. It is a functional of transverse  one of us(K.H.) thanks Professor Daniel Zwanziger for a
gauge-invariant chromoelectric fields, gauge-invariant gauge|pful conversation and a written communication, Dr.
fields (which are inherently transverseas well as gauge- \ichael Creutz for a helpful written communication, and
invariant quark fields. The other palg—displayed in EQ.  protessor Carl Bender and Professor Gerald Dunne for help-
(24—makes only vanishing contributions to matrix ele- ¢, c,nyersations. The research of K.H. was supported by the
ments within the space of gauge-invariant states that are r‘b’epartment of Energy under Grant No. DE-FG02-

g\tjgleu?i 0fgr ;hgr;gmltog&ns tgﬁig (;r?gsflis;%niy 5;“;??5 t;:::;'QZEFMOHG.OO and that of H.C.R. was supported by the De-
P g d partment of Energy under Grant No. DE-FGO02-

“remembers” that the formulation is for the Weyl, and not
the Coulomb gauge. This situation is precisely the same as i%lER40651'TASK B.
QED, in which the Weyl-gauge Hamiltonian, expressed in
terms of the gauge-invariant fielgh that case, simply the
transverse part of the gauge figlis the sum of two terms, APPENDIX A
given in Egs(45) and(46); the former is the Coulomb-gauge
Hamiltonian, and the latter makes only vanishing contribu- In this section we will prove Eqg¢31) and(30). We use
tions to matrix elements within the space of gauge-invariantgs. (34)—(36) and expand the produﬂah(y,x)ﬁﬁb(x) in
statef_, bUtf is \'/WVGC‘IESSWY ffglzfermdUCing the Euler-Lagrangeq, (31) as a series in powers @ and observe thaD(n)
equations for Weyl-gauge . - ah 2

In spite of the similarity between QCD and QED in the tegr:s Or'g'natehqzrf”; D () (Y:X) (8npd™(x)) ar_1d from
relation between the Weyl and Coulomb gauges summarize® (n—1)(¥,X)(—gf"diAg;). For example, the first part of
in the preceding paragraph, there is an important differencthﬂ=0 term of Eq.(31) originates from thes,,,d> part of
between the gauge-invariant states for the two theories). D"°(x) and is
gauge-invariant and perturbative states in QED are unitarily
equivalent, and in a Hamiltonian formulation, this unitary
equivalence permits us to use perturbative states in evaluat- — 8an - — Sap
ing scattering amplitudes in QED in algebraic and covariant m(&,bﬁz(x)):&z(x)m: Sapd(X—Y)
gauges without compromising the implementation of Gauss’s (A1)
law [22,23. But there can be no unitary equivalence between
gauge-invariant states and perturbative states in QCD. And
the gauge-invariant states in QCD are complicated, not NOr: 4 the second part of the=0 term of Eq.(31), which
malizable, and very cumbersome to use. In order to make - U
effective use of the Weyl-gauge QCD Hamiltonian repre-stems from the- gf"9%°9,A%, in 9-D™(x), is

085002-15



K. HALLER AND H.-C. REN PHYSICAL REVIEW D68, 085002 (2003

A (g hav, AL (x) gfqa“fd— 12| 5
47|y—x] Gli A7ly—27| Aci dgz; | Amlz—x|/ | """ )

1 1
= —gfaqbai(y)mAqG“(x). (A2) =gfaqb¢9i(y)—477|y_ o Adi(x) (A3)

exactly cancels the second part of the 0 term, and this

pattern of cancellation can easily be seen to hold in

general—the first part of the+ 1 term cancelling the second
The first part of then=1 term of Eq.(31) part of thenth term. For the general term,

dz(1)

D (Y.X) 8 P = — f18s1fS192%. . . fSn-19nNg f (z2(1)) ——
(W35 hb™ (0 4xly—2(1)] Acil, az(l)

dz(2) J
><J477|z(1)—z(2)|' Acil 2= D15 =T, 32n=1)y amzin—1)—x "ek®) (A4)

a”d{D(n Hy.)H -9 thbé_iAgn ()} is

D(" 1(y. g (AL (x) = faadsifsianss. . .fSn—zﬂn—lhthbg“f ﬁ GII [z(1 )]az(l)
dz(2) ;
8 f m GII 2)](9 (2 ~AgZ(n— 1)]n—1)
Jd

X(?Z(n_l)i 47T|Z(n—1)_X|Agli(X) (AS)

so that, relabeling dummy indicés—s,_; andg— «,, we obtain

DENY.X) 20— Do 1)(y,X)gf"IF AL (x) =

and a consistent pattern of cancellations is established Wif¥(y—x) remaining as the only surviving term in

Dy, x)9-D b(x). A similar argument can be used to demonstrate (BQ).

APPENDIX B

In this section we shall prove the identity given in E6). By definition—Eq.(11)—we have

T IR () T=T1(x) +19(x) (B1)

with

1P(x)= T H{I&;(X),J]=Rue(x) T TI(x),J] (B2)
so that
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H sing nm
1P(X) = —iRpo(X) A0 d-D""(2)8(z~y)

H mn 5
o~ Rt | ay [ dzpmiy.2 T
5AIG|i(Z) J

SAZ(X) a7, 2=y

~igf"Ry(x) [ dy [ dzp™(y.2

J
=g Ry [ dy [ dzD™y 20 AL DTS-y (B9

where we have used E(G7). Substituting Eq(39) and using  where the last step follows from the transversality/Aq; .
Therefore the Faddeev-Popov operator is Hermitian with

II£(X) = Ry () I18;(X), (B4)  space coordinates and group indices for any field configura-
) tion. Its determinant.7, must be real. The Hermiticity aff
we obtain that in the Hilbert space of states is established according to our
p p criterion, and the Hermiticity of7*2 is an obvious corollary.
|Jb(x):igfbcaﬁpaC(X,x)+ Kd,b(x) (B5) To derive the commutation relations amoﬁé(x) 's and

A (X)’s, we notice that

where the gradient acts only on the first argumeriD8f and

the longitudinal term comes from the second term of Eq. P! j(X)= HG,J(x)+ [HGlj(x),Inﬂ (C9
(39),

P - with the second term a functional GfG,j(x) only. Then we

#0=igf* [ dy De(yy D™Dy have
j
(B6) [PEO0,A%(VI=[T1E00,AZ;(y)].  (CH)

with d/dy; acting on the first argument @2¢(y,y). Com-
paring the transverse part of E@®5) with that of Eq.(68), Furthermore,
Ea. (66) is proved. [PE), PO(y)]= [T, 11} (y)]

APPENDIX C + E[HG“(x) [TI2}(y),In 7]

To prove the Hermiticity of the Faddeev-Popov determi-
nant.7 as an operator in the Hilbert space of states, we recall

the criterion that an operator is Hermitian if its expectation +5 [[HGII(X) In 71,11} (y)]
values with respect to all states are real. In the coordinate
representation of states for whidkg, is diagonalized and —[Hg,(x) HG,J(y)] 0, (Co)

corresponds to a-number field configuration, the expecta-

tion value of an operator which is a functional of the operatorwhere the Jacobian identity

Ag is equal to the same functional of tleenumber field

configurationAg,. For eachc-number field configuration, [T (X), [TIE] (y), In 11+ [[TTE (%), In 71,11 (y)]
the Faddeev-Popov operatafD with D; denoting the co- _

variant derivative D?°= 52°g;— gfabCAG“, becomes an op- =~ [In Z[T18j, (0. T1gj;(v) 11=0 €7

erator with respect to space coordinates and group indicefq been employed Therefore the commutation relations

We have amongP|(x)’s andAg;(X)’s remain canonical.
a=—0 (C1)
APPENDIX D
and In this section we shall prove E¢Z8). Using Eq.(76), we
t define
with the dagger referring to space coordinates and group in- = J dry...drpA 1T(rl) AP T(rn)H lT(rl)
dices. Therefore
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from which it follows that and make use of the formula
[1T7(),%]]=n f dy[TTE00, AT (y) JW 4TI (). [PYT(), 7 12)= - 279 pT(r), 7]
(D2)
. 1
This leads to — Ej‘l/z[PJbT(r),ln(j)], (E2

_ ; 4 BT, b
H?(X)‘PT_\I’TH?(XHJ dy[TTF(x), A7 () JWTII(Y). We also observe that the commutator Bf'(r) and any
(D3)  functional ofA%;(r’') commutes with any other functional of

r’), and that, in fact,
The commutator involved can be calculated from the relation G"( ),

5T = AL, ()~ AVT(x), (D4) [P7T(y), A& (0 ]=[T1g;(¥), A%i(X)]
which implies that =—i5ab( 5”_%) Sx—y). (E3
%) AP (v)]= 5Aglj(Y)
[IIF(x), A7 (Y) ] =~ SAR(x) 1 8ap0j (X—Y). With these observations, we obtain

(D5) T Y2PPT(r) 7P (r) 7 V2

The functional derivative was calculated in Rg2] and the 1
commutator in Ref[5], and the result can also be deduced =Py PET(r) = Z[PPT(r), [ POT(r),In(7)]]
from Eq. (39) with the aid of Eq.(11), which gives rise to ' ! 2= )

a b ; 1 oot bT
(%), Ag(Y)]= — 1| Roa(X) 6ij 6(X—Y) — 2P (O In(DIP (1), In()]. (E4)

Equations(66) and (68) show that

Jd D
+Ria(x) D" (xy)DJ(Y) |.
' [PPT(y). In()1=[T1&];(y), (D]

(D6)

Substituting this into Eq(D3) and using Eq(11), we find =igfhebs k(y)“mmDCh(y x). (E9H

that -y

H2, ()W) =V (x)| With Eq. (39) this can be rewritten in the form
Gli i
—if dyD?(x,y)DIP(y) W TT?T(y)| ). [T12],(y),In(7) ] =ig?fPanfodssT )f !
OX; VI i clily g kY (3yk 4nly—2

(D7)

J
_ . . X Agi(2)5-D"(zy) (E6)
Taking the transverse part of both sides, we end up with 9z,
N0 W[ ¢)=WIT(X)|¢). (D8)  where 8] (y)=[ &~ (ama(y)/a?)]@(y) In this form, it is

The identity Eq.(789) is proved. clear that to leading orde[rHGu(y) In(7)] is ag? term and

Egs. (E4) and (E6) to obtain an expression fot/=
APPENDIX E —27dr[PPT(r),In(DIPPT(r),In(7)], which becomes an
In this appendix we will show how to obtain E¢B4) interaction term in K:IG,)phys, given by
from Eq. (79). In order to obtain the bilinear product
PbT(r)PbT(r) for inclusion in a non-interacting part of uzlg4fbdhf5dsfbd’h’f5’d's’f dydzdz’
(HG|)phyS that can define interaction picture operators, we
now express7~ Y2PPT(r) 7PPT(r) 72 as

(9 sh
AGII( ) (z,y)

T T J 1
X 5j,k(y) 5j’k/(y) (9_yk 47T|y_ Z|

J~ 1/2/PJbT( r ) j;P:)T( r ) Ve 1/2

= PP+ P AP, A B S PV Py
X—— —— A , Z, _DS Z’, ) E
_[P?T(r)'j*l/ziljl/ZijT(r)_[P})T r),j*l/zil (9yk/(477|y—2'|) Gll ( )&ZI,, ( Y)} ( 7)
XJ[PJbT(r)’jim] (ED Similarly, from Eq.(E5), we see that
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[PYT(y) [PYT(y),In(N]]

=igf"® PPT(y), s, k(y)llmTD‘“‘(y X)

x—y
(E8)
in which we represer®}"(y) as lim_,P?7(r) so that

[PYT(y).[PYT(y).In(N]]

=igfM9lim
r—y

8 y) anwyaiyk[P?T<r>,Dd“<y,x>].
(E9)

Using Eq.(34), we obtain

[PPT(r), Dy, x)]

—— g [ 42Dy 2P0, A (210D (20

=—igf® fdzD %y,2)| 8¢~ 7

X 8(z—r)dPD™M(z,x).

(E10

After integration over all of space,

f dy[PPT(y).[PPT(y), In()]]

becomes another interaction term Iﬁ({,)phys, given by

1
v= 20700 aylin{ o], (y) o] (1)

r—y

X[aPDU(y,r) ) DM(r,y)]}. (E1D)

PHYSICAL REVIEW D68, 085002 (2003
I5iEn(y) =g feIPAL () TTE[ (y)

1
=gfe A, (y)| PIT(y) + S[PFTY).IND]

(E13

and

§ten(Y)=J5(en(Y) +ik§(y)
and
JS{éu)(y)
= J5Ten(y) —iK&(Y) (E14
where

J5len =91 WPAL, PP (E15

and, using Eq(38), ik§ can be identified as an additional,
auxiliary gluon color-charge density in which

3fc‘”’f"“"f“‘SAq (V) 5(Y)
fd a( 1

Z —_—

ay;\ 4mly—2|

This representation enables us to exprdgs—the nonlocal
interaction involving quark and gluon color-charge densities
in Eqg. (79—in the manifestly Hermitian form

Kg(y)=—

A&i(2) 7 D "(zy).

(E16

1 .
Ho=— Ef drdxdy[ j5(x) + Jg{ey(X)
—ik§(x)1D30(x,1) 5 D3(r,y)

X[i§(y) +I5ien (V) +ik§(Y)] (E17)

V is singular since the leading terms iR9(y,r) and
DM (ry) [— Sqs(Amly—r))~t and — 8y, (4x|y—r|) L, re- in which all operator-valued fields are Hermitian as well as

spectivelyl, are not eliminated by the structure Constants ingauge invariant. When we have eliminated all ffi§}; and
V. Christ and Lee called attention to such singularities mHPT’r from (HGI)phys and replaced them wnrppT and the

their work[32], and conjectured that they might be useful in other expressions obtained in this process, we obtain Eq.
cancelling unresolved divergences in Coulomb-gauge QCD84).
The same remark applies ¥ We continue by ehmmatmg

the non-Hermitian chromoelectric fields frodﬁ(el) and

O(GI)* obtaining

APPENDIX F

To establish Eq(132), we quote an identity in32],
‘]O(Gl)(y) gfcquGu(WHgJ(Y)
1 fabCJ dr[D2"™X™(r)YP(r)ZC(r) +X3(r)DP™Y™(r) Z%(r)
=gfeIPAL;(y) PFT(y)—E[PFT(y),In(J)]]

+X3(r)Y2(r)Df™Zz™(r)]=0. (FD
(E12

The proof follows from the observation that the ordinary
and derivative terms of the covariant derivative8);’s, in
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Eq. (F1) add up to a total derivative and the structure con-the second term on the right-hand side. Upon relabeling the
stant terms oD;’s add up to zero on account of the Jacobiandummy color indices, we convert the second term of the
identity right-hand side of Eq(F4) to

flabflmc_|_fIbCfIma+fIcafImb: 0. (FZ) 92 ) )
—f'abfcm”f dxDFDK(x,1)d;D™A(x,1) ;3D "°(x,T)

Notice that the function¥, Y andZ may carry other color or 4

vector indices and the dependence on other coordinates. 92 ~
According to Eq.(E10), + Zf'abem”f dxD(x,r)3;D"
[Hf(r),Dab(x,y)]z—f dzdz' Da™(x,z) kaa(x,r)éjaiD”b(x,r)
2
X[1I}(x),(9-D)""é(z—2') =—%f'abfcmbajD'C(r,r)ajpam(r,r), (F5)
XD"O(Z'y) (F3)

) where the last step follows from the identities E(fsl) and
and, with Eq.(D6), we have (30). We have then
[EP(r), AP(r)]=—[11g,;(r),AP(r)] b1 Ab( 11— L2 glbmelan_ clamelb
[EP(r).AD(r)]= g g?(2f Pmfien—flamgion)
= —Rpa(N[II3(r),AP(r)] . . 4

1 X9, D®(r,r)o;D™(r,r).  (F6)

=Englabflmn(?jpam(l’,I’)é’j'Dnb(l’,I’)

Combining it with

92 lab cmnj ckykl o 1

+?f f dXDi D (X,r)ﬁj _Alp(r)AJb(r):ZQZflabflmnaerab(r'r)aj»Dmn(r’r)
(F7)

according to EQ.(126) and using the Jacobian identity
where the symmetry property E(7) is employed to obtain Eq. (F2), we end up with Eq(132).

xDma(x,r);jaiD“b(x,r), (F4)
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