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Classical and quantum Nambu mechanics
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The classical and quantum features of Nambu mechanics are analyzed and fundamental issues are resolved.
The classical theory is reviewed and developed utilizing varied examples. The quantum theory is discussed in
a parallel presentation and illustrated with detailed specific cases. Quantization is carried out with standard
Hilbert space methods. With the proper physical interpretation, obtained by allowing for different time scales
on different invariant sectors of a theory, the resulting non-Abelian approach to quantum Nambu mechanics is
shown to be fully consistent.
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I. INTRODUCTION

a. A brief historical overview.Nambu @1# introduced an
elegant generalization of the classical Hamiltonian form
ism by suggesting to supplant the Poisson brackets~PB! with
3- or n-linear, fully antisymmetric brackets, the classic
Nambu brackets~CNB!, a volume-element Jacobian determ
nant in a higher-dimensional space. These brackets, inv
ing a dynamical quantity and two or more ‘‘Hamiltonians
provide the time evolution of that quantity in a generalizati
of Hamilton’s equations of motion for selected physical s
tems. It was gradually realized@2–4# that Nambu brackets in
phase space describe the generic classical evolution o
systems with sufficiently many independent integrals of m
tion beyond those required for complete integrability of t
systems. That is to say, all such ‘‘superintegrable system
@5# are automatically described by Nambu’s mechan
@6–8#, whether or not one chooses to take cognizance of
alternate expression of their time development. This
proach to time evolution for superintegrable systems
supplementary to the standard Hamiltonian dynamics ev
tion and provides additional tools for analyzing such s
tems. The power of Nambu’s method is evident in manife
ing and simultaneous accounting for a maximal number
the symmetries of these systems and in an efficient app
tion of algebraic methods to yield results even without d
tailed knowledge of their specific dynamics.

As a bonus, the classical volume-preserving features
Nambu brackets suggest that they are useful for memb
theory @9#. There are in the literature several persuasive
inconclusive arguments that Nambu brackets are a na
language for describing extended objects, for example@10–
20#.

In his original paper@1#, Nambu also introduced operato
versions of his brackets as tools to implement the quant
tion of his approach to mechanics. He enumerated var
logical possibilities involving them, arguing that some stru
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tures were either inconsistent or uninteresting, but he did
advocate the position that the remaining possibilities w
untenable: Quantization was left as an open issue.

Unfortunately, subsequent unwarranted insistence on
gebraic structures ill suited to the solution of the releva
physics problems resulted in a widely held belief that qu
tization of Nambu mechanics was problematic,1 especially
when that quantization was formulated as a one-param
deformation of classical structures. In marked contrast to
prevailing pessimism, several illustrative superintegra
systems were quantized in@6# in a phase-space framework
both without andwith the construction of quantum Namb
brackets~QNBs!. However, the phase-space quantization u
lized there, while most appropriate for comparing quant
expressions with their classical limits, is still unfamiliar
many readers and will not be used in this paper. Here,
quantization of all systems will be carried out in a conve
tional Hilbert space operator formalism.

It turns out@6# that all perceived difficulties in quantizing
Nambu mechanics may be traced mathematically to the
gebraic inconsistencies inherent in selecting constraints
top-down approach, with little regard to the correct pha
space structure which already provides full and consis
answers, and with insufficient attention towards obtain
specific answers compatible with those produced in
quantized Hamiltonian description of these systems. Mo
over, the physics underlying these perceived difficulties
simple and involves only basic principles in quantum m
chanics.

1A few representative statements from the literature are the
lowing: ‘‘associated statistical mechanics and quantization are
likely’’ @21#; ‘‘a quantum generalization of these algebras is sho
to be impossible.’’ and ‘‘ . . . the quantum analog of Nambu m
chanics does not exist’’@22,23#; ‘‘usual approaches to quantizatio
have failed to give an appropriate solution . . . ’’ @24#; ‘‘ . . . direct
application of deformation quantization to Nambu-Poisson str
tures is not possible’’@14#; ‘‘the quantization of Nambu bracket
turns out to be a quite non trivial problem’’@25#; ‘‘this problem is
still outstanding’’@26#.
©2003 The American Physical Society01-1
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b. Evolution scales in quantum physics.Some physicists
might hold, without realizing it, the prejudice that continuo
time evolution in quantum mechanics must always be form
lated infinitesimally as a derivation. Accordingly, they im
plicitly assumethe instantaneous temporal change in all d
namical variables is always given by nothing but a sim
derivative, so that for all products of linear operators

d

dt
~AB!5S d

dt
ADB1AS d

dt
BD . ~1!

This assumption allows time development on physical H
bert spaces to be expressed algebraically in terms of com
tators with a Hamiltonian, since commutators are a
derivations,2

@H,AB#5@H,A#B1A@H,B#. ~2!

Evidently, this approach leads to the simplest possible
malism. But is it really necessary to make this assumpt
and follow this approach?

It is not. Time evolution can also be expressed algeb
ically using quantum Nambu brackets. These quantum bra
ets are defined as totally antisymmetrized multilinear pr
ucts of any number of linear operators acting on Hilb
space. When QNBs are used to implement time evolutio
quantum mechanics, the result is usuallynot a derivation, but
contains derivations entwined within more elaborate str
tures~although there are some interesting special except
that are described in the following!.

This more general point of view towards time develo
ment can be arrived at just by realizing a physical id
When a system has a number of conserved quantities,
possible to partition the system’s Hilbert space into invari
sectors. Time evolution on those various sectors may the
formulated using different time scales for the differe
sectors.3 The resulting expression of instantaneous chan
in time is then not a derivation, in general, when acting
the full Hilbert space and therefore is not given by a sim
commutator. Remarkably, however, it often turns out to
given compactly in terms of QNBs. Conversely, if QNBs a
used to describe time development, they usually impose
ferent time scales on different invariant sectors of a sys
@6#.

Nevertheless, so long as the different time scales
implemented in such a way as to produce evolving ph
differences between nondegenerate energy eigenstates,
is no loss of information in this more general approach
time evolution. In the classical limit, this method is not rea

2For simplicity we will assume, unless otherwise stated, that
operators have noexplicit time dependence, although it is an e
ementary exercise to relax this assumption.

3In fact, the choice of time variables in the different invaria
sectors of a quantum theory is very broad. They need not be
multiples of one another, but could have complicated functio
dependencies, as discussed in@27# and @18#. The closest classica
counterpart of this is found in the general method ofanalytictime,
recently exploited so effectively in@28,29#.
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different from the usual Hamiltonian approach. A given cla
sical trajectory has fixed values for all invariants and hen
would have a fixed time scale in Nambu mechanics. Ti
development of any dynamical quantity along a single cl
sical trajectory would therefore always be just a derivatio
with no possibility of mixing time scales. Quantum mecha
ics, on the other hand, is more subtle, since the prepara
of a state may yield a superposition of components fr
different invariant sectors. Such superpositions will, in ge
eral, involve multiple time scales in Nambu mechanics.

Technically, the various time scales arise in quant
Nambu mechanics as the entwined eigenvalues of gen
ized Jordan spectral problems, where selected invariant
the model in question appear as operators in the spe
equation. The resulting structure represents a new clas
eigenvalue problems for mathematical physics. Fortunat
solutions of this new class can be found using traditio
methods.~All this is explained explicitly in the context of the
first example of Sec. III B.!

c. Related studies in mathematics.Algebras which involve
multilinear products have also been considered at vari
times in the mathematical literature, partly as efforts to u
derstand or generalize Jordan algebras@30–33# ~cf. espe-
cially the ‘‘associator’’!, but more generally following Hig-
gins’ study in the mid 1950s@34–37#. This eventually
culminated in the investigations of certain cohomology qu
tions, by Schlesinger and Stasheff@38#, by Hanlon and
Wachs@39,40#, and by Azca´rraga, Izquierdo, Perelomov, an
Pérez Bueno@41,42,11#, that led to results most relevant t
Nambu’s work.

d. Summary of material to follow.After a few motiva-
tional remarks on the geometry of Hamiltonian flows
phase space, Sec. II A, we describe the most important
tures of classical Nambu brackets, Sec. II B, with empha
on practical, algebraic, evaluation methods. We delve i
several examples, Sec. II C, to gain physical insight for
classical theory.

We then give a parallel discussion of the quantum theo
Sec. III A, so far as algebraic features and methods of ev
ation are concerned. We define QNBs, as well as general
Jordan products that naturally arise in conjunction w
QNBs, when the latter are resolved into products of comm
tators. We define derivators as measures of the failure of
Leibniz rule for QNBs and discuss Jacobi and fundamen
identities in a quantum setting. Then, we again turn to va
ous examples, Sec. III B, to illustrate both the elegance
peculiarities of quantization. We deal with essentially t
same examples in both classical and quantum framework
a means of emphasizing the similarities and, more imp
tantly, delineating the differences between CNBs and QN
The examples chosen are all models based on Lie symm
algebras: so(3)5su(2), so(4)5su(2)3su(2), so(n), u(n),
u(n)3u(m), andg3g.

We conclude by summarizing our results and by sugg
ing some topics for further study. An Appendix discusses
formal solution of linear equations in Lie and Jordan alg
bras, with suggestions for techniques to bypass the effec
divisors of zero.
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CLASSICAL AND QUANTUM NAMBU MECHANICS PHYSICAL REVIEW D 68, 085001 ~2003!
A hurried reader may wish to consider only Secs. II A a
II B through Eq.~10!, Sec. II C through Eq.~35!, Sec. III A
through Eq.~102!, and Sec. III B through Eq.~153!. This
abridged material contains our main points.

II. CLASSICAL THEORY

We begin with a brief geometrical discussion of pha
space dynamics, to motivate the definition of classi
Nambu brackets. We then describe properties of CNBs, w
emphasis on practical evaluation methods, including vari
recursion relations among the brackets and simplificati
that result from classical Lie symmetries being imposed
the entries in the brackets. We summarize the theory of
fundamental identity and explain its subsidiary role. We th
go through several examples to gain physical insight for
classical formalism. All the examples are based on syst
with Lie symmetries: so(3)5su(2), u(n), so(4)5su(2)
3su(2), andg3g.

A. Phase-space geometry

A Hamiltonian system withN degrees of freedom isinte-
grable in the Liouville sense if it hasN invariants in involu-
tion ~globally defined and functionally independent! andsu-
perintegrable @5# if it has additional independen
conservation laws up to a maximum total number of 2N
21 invariants. For a maximally superintegrable system,
total multilinear cross product of the 2N21 local phase-
space gradients of the invariants~each such gradient bein
perpendicular to its corresponding invariant isocline! is al-
ways locally tangent to the classical trajectory.

The illustrated surfaces~Fig. 1! are isoclines for two dif-
ferent invariants, respectively,I 1 and I 2. A particular trajec-
tory lies along the intersection of these two surfaces. T
local phase-space tangentv to this trajectory at the poin
depicted is given by the cross product of the local pha
space gradients of the invariants.~Other possible trajectorie
along theI 1 surface are also shown as contours represen
other values forI 2, but the corresponding intersectingI 2
surfaces are not shown for other trajectories.!

Thus, in 2N-dimensional phase space, for any pha
space functionA(x,p) with no explicit time dependence, th
convective motion is fully specified by a phase-space Ja

FIG. 1. Some classical phase-space geometry.
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dA

dt
[v•“A}] i 1

Ae i 1i 2••• i 2N] i 2
I 1•••] i 2N

I 2N21

5
]~A,I 1 , . . . ,I 2N21!

]~x1 ,p1 ,x2 ,p2 , . . . ,xN ,pN!
, ~3!

wherev5( ẋ,ṗ) is the phase-space velocity, and the pha
space gradients are“5(]x ,]p). Evidently, the flow is sole-
noidal,“•v50 ~Liouville’s theorem@1#!. In short, a super-
integrable system in phase spacecan hardly avoidhaving its
classical evolution described by CNBs@6#.

B. Properties of the classical brackets

a. Definitions.For a system withN degrees of freedom
and hence a 2N-dimensional phase space, we define t
maximal classical Nambu brackets~CNB! of rank 2N to be
the determinant

$A1 ,A2 , . . . ,A2N%NB5
]~A1 ,A2 , . . . ,A2N!

]~x1 ,p1 ,x2 ,p2 , . . . ,xN ,pN!

5e i 1i 2••• i 2N] i 1
A1•••] i 2N

A2N . ~4!

These brackets are linear in their arguments, and comple
antisymmetric in them. It may be thought of as the Jacob
induced by transforming to new phase-space variablesAi ,
the ‘‘elements’’ in the brackets. As expected for such a Ja
bian, two functionally dependent elements cause the brac
to collapse to zero. So, in particular, adding to any elem
an arbitrary linear combination of the other elements will n
change the value of the brackets.

Odd-dimensional brackets are also defined identically@1#
in an odd-dimensional space.

b. Recursion relations.The simplest of these are immed
ate consequences of the properties of the totally antisymm
ric Levi-Civita symbols

]~A1 ,A2 , . . . ,Ak!

]~z1 ,z2 . . . ,zk!
5

e i 1••• i k

~k21!! S ]A1

]zi 1
D ]~A2 ,•••,Ak!

]~zi 2
,•••,zi k

!

5
e j 1••• j k

~k21!!
S ]Aj 1

]z1
D ]~Aj 2

,•••,Aj k
!

]~z2 ,•••,zk!
.

~5!

However, thesek511(k21) resolutions are not especiall
germane to a phase-space discussion, since they reduce
brackets into products of odd brackets.

More usefully, any maximal even rank CNB can also
resolved into products of Poisson brackets. For example,
systems with two degrees of freedom,$A,B%PB
5](A,B)/](x1 ,p1)1](A,B)/](x2 ,p2), and the 4-bracket
$A,B,C,D%NB[](A,B,C,D)](x1 ,p1 ,x2 ,p2) resolves as4

4These PB resolutions are somewhat simpler than their quan
counterparts, to be given below in Sec. III A, since ordering
products is not an issue here.
1-3
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T. CURTRIGHT AND C. ZACHOS PHYSICAL REVIEW D68, 085001 ~2003!
$A,B,C,D%NB5$A,B%PB$C,D%PB2$A,C%PB$B,D%PB

2$A,D%PB$C,B%PB ~6!

in comportance with full antisymmetry under permutatio
of A,B,C, andD. The general result for maximal rank 2N
brackets for systems with a 2N-dimensional phase-space i5

$A1 ,A2 ,•••,A2N21 ,A2N%NB

5 (
all (2N)! perms

$s1 ,s2 , . . . ,s2N%
of the indices
$1,2, . . . ,2N%

sgn~s!

2NN!
$As1

,As2
%PB$As3

,As4
%PB . . .

3$As2N21
,As2N

%PB, ~7!

where sgn(s)5(21)p(s) with p(s) the parity of the per-
mutation $s1 ,s2 , . . . ,s2N%. The sum only gives (2N
21)!! 5(2N)!/(2NN!) distinct products of PBs on the righ
hand side~RHS!, not (2N)!. Each such distinct product ap
pears with net coefficient61.

The proof of the relation~7! is elementary. Both right- and
left-hand sides~LHS! of the expression are sums of 2Nth
degree monomials linear in the 2N first-order partial deriva-
tives of each of theAs. Both sides are totally antisymmetr
under permutations of theAs. Hence, both sides are als
totally antisymmetric under interchanges of partial deriv
tives. Thus, the two sides must be proportional. The o
issue left is the constant of proportionality. This is eas
determined to be 1, by comparing the coefficients of a
given term appearing on both sides of the equation, e
]x1

A1]p1
A2•••]xN

A2N21]pN
A2N .

For similar relations to hold for submaximal even ra
Nambu brackets, these must first be defined. It is easie
just define submaximal even rank CNBs by their Poiss
brackets resolutions as in Eq.~7!:6

$A1 ,A2 , . . . ,A2n21 ,A2n%NB

5 (
(2n)! permss

sgn~s!

2nn!
$As1

,As2
%PB$As3

,As4
%PB•••

3$As2n21
,Asn%PB, ~8!

5This is essentially a special case of Laplace’s theorem on
general minor expansions of determinants~cf. Chap. 4 in@43#!,
although it must be said that we have never seen it written, let a
used, in exactly this form, either in treatises on determinants o
textbooks on classical mechanics.

6This definition is consistent with the classical limits of quantu
!-brackets presented and discussed in@6#, from which the same
Poisson bracket resolutions follow as a consequence of taking
classical limit of!-commutator resolutions of even! brackets. It is
also consistent with taking symplectic traces of maximal CN
again as presented in@6# @see Eq.~14! to follow#.
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only here we allown,N. So defined, these submaxim
CNBs enter in further recursive expressions. For exam
for systems with three or more degrees of freedo
$A,B%PB5 ](A,B)/](x1 ,p1) 1 ](A,B)/](x2 ,p2) 1 ](A,B)/
](x3 ,p3)1•••, and a general 6-bracket expression resol
as

$A1 ,A2 ,A3 ,A4 ,A5 ,A6%NB

5$A1 ,A2%PB$A3 ,A4 ,A5 ,A6%NB

2$A1 ,A3%PB$A2 ,A4 ,A5 ,A6%NB

1$A1 ,A4%PB$A2 ,A3 ,A5 ,A6%NB

2$A1 ,A5%PB$A2 ,A3 ,A4 ,A6%NB

1$A1 ,A6%PB$A2 ,A3 ,A4 ,A5%NB , ~9!

with the 4-brackets resolvable into PBs as in Eq.~6!. This
permits the building-up of higher even rank brackets p
ceeding from initial PBs involving all degrees of freedom
The general recursion relation with this 2n521(2n22)
form is

$A1 ,A2 , . . . ,A2n21 ,A2n%NB

5$A1 ,A2%PB$A3 , . . . ,A2n%NB1 (
j 53

2n21

~21! j

3$A1 ,Aj%PB$A2 , . . . ,Aj 21 ,Aj 11 , . . . ,A2n%NB

1$A1 ,A2n%PB$A2 , . . . ,A2n21%NB , ~10!

and features 2n21 terms on the RHS. This recursive resu
is equivalent to taking Eq.~8! as a definition for 2n,2N
elements, as can be seen by substituting the PB resolutio
the (2n22) brackets on the RHS of Eq.~10!. Similar rela-
tions obtain when the 2n elements in the CNB are parti
tioned into sets of (2n22k) and 2k elements, with suitable
antisymmetrization with respect to exchanges between
two sets.

These results may be extended beyond maximal CNB
supermaximal brackets, in a useful way. All such sup
maximal classical brackets vanish, for the simple reason
there are not enough independent partial derivatives to a
repeating columns of the implicit matrix whose determina
is under consideration. Another way to say this is as it
impossible to antisymmetrize more than 2N coordinate and
momentum indices in 2N-dimensional phase space, so f
any phase-space functionV, we havee [ j 1 j 2••• j 2N] i ]V[0,
with ] i5]/]xi ,]11 i5]/]pi ,1< i ~odd! <2N21. Conse-
quently, ] j 1A1•••] j 2NA2N e [ j 1 j 2••• j 2N] i ]V50, for any 2N
phase-space functionsAj , j 51, . . . ,2N, and anyV, a result
that may be thought of as the vanishing of the (2N11)-th
super-maximal CNB. As a further consequence, we have
2N-dimensional phase spaces other super-maximal ident

e

e
in

he
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of the form

$B1 , . . . ,Bk ,V%NB$A1 ,A2 , . . . ,A2N%NB

5$B1 , . . . ,Bk ,A1%NB$V,A2 , . . . ,A2N%NB

1$B1 , . . . ,Bk ,A2%NB$A1 ,V,A3 , . . . ,A2N%NB1•••

1$B1 , . . . ,Bk ,A2N%NB$A1 ,A2 , . . . ,A2N21 ,V%NB ,

~11!

for any choice ofV, k, As, andBs. We have distinguished
here a (2N11)th phase-space function asV in anticipation
of using the result later@cf. the discussion of the modifie
fundamental identity,~23! et seq.#. The expansions in Eqs
~8! and ~10! also apply to the supermaximal case as w
where they provide vanishing theorems for the sums on
RHSs of those relations.

c. Reductions for classical Lie symmetries.When the
phase-space functions involved in the classical brackets o
the Poisson brackets algebra~possibly even an infinite one!,
the NB reduces to become a sum of products, each pro
involving half as many phase-space functions~reductio ad
dimidium!. It follows as an elementary consequence of
PB resolution of even CNBs. For any PB Lie algebra giv
by

$Bi ,Bj%PB5(
m

ci j
mBm , ~12!

the PB resolution then gives~sum over all repeatedms is to
be understood!

$B1 , . . . ,B2k11 ,A%NB

5 (
(2k11)! perms s

sgn~s!

2kk!
$Bs1

,Bs2
%PB$Bs3

,Bs4
%PB•••

3$Bs2k21
,Bs2k

%PB$Bs2k11
,A%PB

5 (
(2k11)! perms s

sgn~s!

2kk!
cs1s2

m1 cs3s4

m2
•••cs2k21s2k

mk

3Bm1
Bm2

•••Bmk
$Bs2k11

,A%PB, ~13!

whereA is arbitrary. Of course, ifA is also an element of the
Lie algebra then the last PB also reduces.

d. Traces.Define thesymplectic traceof the classical
brackets as

(
i

$xi ,pi ,A1 , . . . ,A2k%NB5~N2k!$A1 , . . . ,A2k%NB .

~14!

A complete reduction of maximal CNBs to PBs follows b
inserting N21 conjugate pairs of phase-space coordina
and summing over them
08500
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$A,B%PB5
1

~N21!!
$A,B,xi 1

,pi 1
, . . . ,xi N21

,pi N21
%NB ,

~15!

where summation over all pairs of repeated indices is und
stood. Fewer traces lead to relations between CNBs of m
mal rank, 2N, and those of lesser rank, 2k,

$A1 , . . . ,A2k%NB

5
1

~N2k!!
$A1 , . . . ,A2k ,xi 1

,pi 1
, . . . ,xi N2k

,pi N2k
%NB .

~16!

This is consistent with the PB resolutions~8! used to define
the lower rank CNBs previously, and provides another pr
tical evaluation tool for these CNBs.

Through the use of such symplectic traces, Hamilto
equations for a general system—not necessa
superintegrable—admit an NB expression different fro
Nambu’s original one, namely,

dA

dt
5$A,H%PB5

1

~N21!!
$A,H,xi 1

,pi 1
, . . . ,xi N21

,pi N21
%NB ,

~17!

whereH is the system Hamiltonian.
e. Derivations and the classical ‘‘Fundamental Identity

CNBs are all derivations with respect to each of their arg
ments@1#. For even brackets, this follows from Eq.~4! for
maximal CNBs and from Eq.~8! @or Eq. ~16!# for sub-
maximal brackets,

dBA5$A,B1 ,B2 , . . . ,B2n21%NB , ~18!

whereB is a shorthand for the stringB1 ,B2 , . . . ,B2n21. By
derivation, we mean that Leibniz’s elementary rule is sa
fied,

dB~AA!5~dBA!A1A~dBA!5$A,B1 , . . . ,B2n21%NBA
1A$A,B1 , . . . ,B2n21%NB . ~19!

Moreover, when these derivations act on othermaximal
CNBs, they yield simple bracket identities@1,35,22#,

dB$C1 , . . . ,C2N%NB5$dBC1 , . . . ,C2N%NB1•••

1$C1 , . . . ,dBC2N%NB , ~20!

alternatively

$$C1 , . . . ,C2N%NB ,B1 , . . . ,B2n21%NB

5$$C1 ,B1 , . . . ,B2n21%NB , . . . ,C2N%NB1•••

1$C1 , . . . ,$C2N ,B1 , . . . ,B2n21%NB%NB . ~21!

In particular, any maximal CNB acting on any other maxim
CNB always obeys the (4N21) element, (2N11) term
identity @35,22#
1-5
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05$$A1 ,A2 , . . . ,A2N%NB ,B1 , . . . ,B2N21%NB

2(
j 51

2N

$A1 , . . . ,$Aj ,B1 , . . . ,B2N21%NB , . . . ,A2N%NB .

~22!

This has been designated ‘‘the fundamental identity’’~FI!
@26#, although its essentially subsidiary role should be app
ent in this classical context.

f. Invariant coefficients.The fact that all CNBs are deri
vations, and that all supermaximal classical brackets van
leads to a slightly modified form of 4N element,
(2N11)-term fundamental identities, for a system in
2N-dimensional phase space@6#

$B1 , . . . ,B2N21 ,V$A1 ,A2 , . . . ,A2N%NB%NB

5$V$B1 , . . . ,B2N21 ,A1%NB ,A2 , . . . ,A2N%NB

1$A1 ,V$B1 , . . . ,B2N21 ,A2%NB ,A3 , . . . ,A4N21%NB

1•••1$A1 , . . . ,A2N21 ,

3V$B1 , . . . ,B2N21 ,A2N%NB%NB , ~23!

for any choice ofV, As, andBs. This identity is just the sum
of the supermaximal identity~11!, for k52N21, plus V
times the FI ~22! for the derivation
$B1 , . . . ,B2N21 ,$A1 ,A2 , . . . ,A2N%NB%NB .

As a consequence of this modified FI, any proportiona
constantV appearing in Eq.~3!, i.e.,

dA

dt
5V$A,I 1 , . . . ,I 2N21%NB , ~24!

has to be time invariant if it has noexplicit time dependence
@8#. As proof @6#, since the time derivation satisfies the co
ditions for the aboved, we have

d

dt
~V$A1 , . . . ,A2N%NB!5V̇$A1 , . . . ,A2N%NB

1V$Ȧ1 , . . . ,A2N%NB1•••

1V$A1 , . . . ,Ȧ2N%NB . ~25!

Consistency with Eq.~24! requires this to be the same as

V$V$A1 , . . . ,A2N%NB ,I 1 , . . . ,I 2N21%NB

5V̇$A1 , . . . ,A2N%NB

1V$V$A1 ,I 1 , . . . ,I 2N21%NB , . . . ,A2N%NB1•••

1V$A1 , . . . ,V$A2N ,I 1 , . . . ,I 2N21%NB%NB . ~26!

By substitution of Eq.~23! with Bj[I j , V̇50 follows.

C. Illustrative classical examples

It is useful to consider explicit examples of classical d
namical systems described by Nambu brackets, to gain
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sight and develop intuition concerning CNBs. Previous cl
sical examples were given by Nambu@1#, and more recently,
by Chatterjee@3#, and by Gonera and Nutku@8,44#. We offer
an eclectic selection based on those in@6#.

a. SO(3) as a special caseFor example, consider a pa
ticle constrained to the surface of a unit radius 2-sphereS2,
but otherwise moving freely. Three independent invariants
this maximally superintegrable system are the angular m
menta about the center of the sphere:Lx ,Ly ,Lz . Actually, no
two of these are in involution, but this is quickly remedie
and moreover, it is not a hindrance since in the Nambu
proach to mechanics all invariants are on a more equal f
ing.

To be more explicit, we may coordinate the upper a
lower (6) hemispheres by projecting the particle’s locati
onto the equatorial disk,$(x,y)ux21y2<1%. The invariants
are then

Lz5xpy2ypx , Ly56A12x22y2px ,

Lx57A12x22y2py . ~27!

The last two are the de Sitter momenta, or nonlinearly re
ized axial charges corresponding to the ‘‘pions’’x,y of this
truncateds model.

The Poisson brackets of these expressions close into
expected so~3! algebra,

$Lx ,Ly%PB5Lz , $Ly ,Lz%PB5Lx , $Lz ,Lx%PB5Ly .
~28!

The usual Hamiltonian of the free particle system is the C
simir invariant@6#

H5 1
2 ~LxLx1LyLy1LzLz!

5 1
2 ~12x2!px

21 1
2 ~12y2!py

22xypxpy . ~29!

Thus, it immediately follows algebraically that PBs ofH
with the L vanish, and their time-invariance holds,

d

dt
L5$L ,H%PB50. ~30!

So any one of theL ’s and this Casimir invariant constitute
pair of invariants in involution.

The corresponding so~3! CNB dynamical evolution,
found in @6#, is untypically concise:

dA

dt
5$A,H%PB5$A,Lx ,Ly ,Lz%NB5

]~A,Lx ,Ly ,Lz!

]~x,px ,y,py!
.

~31!

The simplicity of this result actually extends to more gene
contexts, upon use of suitable linear combinations. Spe
sums of such 4-brackets can be used to express time ev
tion for any classical system with a continuous symme
algebra underlying the dynamics and whose Hamiltonian
just the quadratic Casimir invariant of that symmetry alg
bra. The system need not be superintegrable or even
grable in general.
1-6
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Any simple Lie algebra allows a PB with a quadratic C
simir invariant to be rewritten as asumof 4-brackets. Sup-
pose

$Qa ,Qb%PB5 f abcQc ~32!

in a basis wheref abc is totally antisymmetric. Then, for the
following linear combination of Nambu 4-brackets weight
by the structure constants, use the PB resolution of
4-brackets~6! to obtain~sum over repeated indices!

f abc$A,Qa ,Qb ,Qc%NB53 f abc$A,Qa%PB$Qb ,Qc%PB

53 f abcf bcd$A,Qa%PBQd . ~33!

Now, for simple Lie algebras~with appropriately normalized
charges! one has

f abcf bcd5cadjointdad , ~34!

where cadjoint is a number @for example, cadjoint5N for
su(N)]. Thus, the classical 4-brackets reduce to a PB w
the Casimir invariantQaQa ,

f abc$A,Qa ,Qb ,Qc%NB53cadjoint$A,Qa%PBQa

5
3

2
cadjoint$A,QaQa%PB, ~35!

For su(2)5so(3), cadjoint52, f abc$A,Qa ,Qb ,Qc%NB
56$A,Lx ,Ly ,Lz%NB , and we establish Eq.~31! above.

b. U(n) and isotropic oscillators.If we realize the u(n)
algebra in the oscillator basis, where the phase-sp
‘‘charges’’ Njk5(xj2 ip j )(xk1 ipk)/2 obey the PB relations

$Njk ,Nlm%PB52 i ~Njmdkl2Nlkd jm!, j ,k,l ,m51, . . . ,n,
~36!

then the isotropic Hamiltonian is

H5v(
i 51

n

Ni , Ni[Nii . ~37!

This gives then2 conservation laws

$H,Ni j %PB50. ~38!

However, only 2n21 of theNi j are functionally independen
for a classical system with a 2n-dimensional phase spac
This follows because all full phase-space Jacobians~i.e.,
maximal CNBs! involving 2n of theNi j vanish.@For details,
see the upcoming discussion surrounding Eq.~46!.#

Following the logic that led to the previousreductio ad
dimidium for general Lie symmetries, we obtain the ma
result for classical isotropic oscillator 2n-brackets.

c. Classical isotropic oscillator brackets.~The U(n) re-
ductio ad dimidium!: Let N5N11N21•••1Nn , and inter-
calate then21 nondiagonal chargesNii 11, for i 51, . . . ,n
08500
-

e

h

ce

21, into classical Nambu 2n-brackets with then mutually
involutive Nj , for j 51, . . . ,n, to find7

$A,N1 ,N12,N2 ,N23, . . . ,Nn21 ,Nn21n ,Nn%NB

5~2 i !n21$A,N%PBN12N23•••Nn21n

5~2 i !n21$AN12N23•••Nn21n ,N%PB. ~39!

This result follows from the u(n) PB algebra of the
charges~36!. When the algebra is realized specifically b
harmonic oscillators, the RHS factor may also be written
N12N23•••Nn21n5(N2N3•••Nn21)N1n .

Proof. Linearity in each argument and total antisymme
of the CNB allows us to replace any one of theNi by the sum
N. ReplaceNn→N, to obtain

$A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,Nn%NB

5$A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,N%NB . ~40!

Now since $N,Ni j %PB50, the PB resolution of the
2n-brackets implies thatN must appear ‘‘locked’’ in a PB
with A, and thereforeA cannot appear in any other PB. Bu
thenN1 is in involution with all the remaining freeNi j ex-
ceptN12. SoN1 must be locked in$N1 ,N12%PB. Continuing
in this way, N2 must be locked in$N2 ,N23%PB, etc., until,
finally, Nn21 is locked in $Nn21 ,Nn21n%PB. Thus, all 2n
entries have been paired and locked in the indicatedn PBs,
i.e., they are all zipped-up. Consequently,

$A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,Nn%NB

5$A,N%PB$N1 ,N12%PB•••$Nn21 ,Nn21n%PB. ~41!

All the paired Njk Poisson brackets evaluate a
$Nj 21 ,Nj 21 j%PB52 iN j 21 j , so

$A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,Nn%NB

5~2 i !n21$A,N%PBN12•••Nn21n . ~42!

Finally, the PB withN may be performed either before o
after the product ofA with all the Nj 21 j , since again
$N,Ni j %PB50, and the PB is a derivation. Hence,

$A,N%PBN12•••Nn21n5$AN12•••Nn21n ,N%PB•QED.
~43!

Remarkably, in Eq.~39!, the invariants which are in invo
lution @i.e., the Cartan subalgebra ofu(n)] are separated ou
of the CNB into a single PB involving their sum~the Hamil-
tonian,H5vN), while the invariants which are not in invo
lution @n21 of them, corresponding in number to the rank

7The nondiagonal charges are not real, but neither does
present a real problem. The proof leading to Eq.~39! also goes
through if nondiagonal charges have their subscripts transpo
This allows replacingNii 11 with real or purely imaginary combi-
nationsNii 116Ni 11i in the LHS 2n-brackets, to obtain the alter
native linear combinationsNii 117Ni 11i in the product on the RHS
1-7
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SU(n)] are effectively swept into a simple product. Tim
evolution for the isotropic oscillator is then given by@6#

~2 i !n21N12•••Nn21n

dA

dt

5v$A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,Nn%NB .

~44!

This result reveals a possible degenerate situation for
Nambu approach.

When any two or more of the phase-space gradients
tering into the brackets are parallel or when one or more
them vanish, the corresponding brackets also vanish, ev
dA/dtÞ0. Under these conditions, the brackets do not g
any temporal change ofA: Such changes are ‘‘lost’’ by the
brackets. This can occur for theu(n) brackets under consid
eration whenever 05N12•••Nn21n , i.e., whenever any
Ni 21i50 for some i. Initial classical configurations fo
which this is the case are not evolved by these partic
brackets. This is not really a serious problem, since on
one hand, the configurations for which it happens are
easily cataloged and, on the other hand, there are o
choices for the bracket entries which can be used to rec
the lost temporal changes. It is just necessary to be awa
any such ‘‘kernel’’ when using any given brackets.

With that caveat in mind, there is another way to write E
~44! since the classical brackets are a derivation of each
their entries. Namely,

dA

dt
5 i n21v$A,N1 ,ln~N12!,N2 ,ln~N23!,

N3 , . . . ,Nn21 ,ln~Nn21n!,Nn%NB . ~45!

The logarithms intercalated between the diagonalNj ’s on the
RHS now have branch points corresponding to the class
bracket’s kernel.

The selection of 2n21 invariants to be used in the max
mal U(n) brackets is not unique, of course. In the list that
have selected, the indices, 1,2, . . . ,n, can be replaced by an
permutation,s1 ,s2 , . . . ,sn , so long as the correlation
between indices for elements in the list are maintain
That is, we may replace the elemen
N1 ,N12,N2 ,N23, . . . ,Nn21 ,Nn21n ,Nn by Ns1

,Ns1s2
,

Ns2
,Ns2s3

, . . . ,Nsn21
,Nsn21sn

,Nsn
, and thereductio ad di-

midiumstill holds:

$A,Ns1
,Ns1s2

,Ns2
,Ns2s3

, . . . ,Nsn21
,Nsn21sn

,Nsn
%NB

5~2 i !n21$A,N%PBNs1s2
Ns2s3

•••Nsn21sn
. ~46!

Whatever list is selected, any invariant in that list is ma
festly conserved by the 2n-brackets. All other U(n) charges
are also conserved by the brackets, even though they ar
among the selected list of invariants. This last statement
lows immediately from the$A,H%PB factor on the RHS of
Eq. ~46!.
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d. SO(n11) and free particles on n spheres.For a particle
moving freely on the surface of ann sphereSn, one now has
a choice of 2n21 of the n(n11)/2 invariant charges o
so(n11), whose PB Lie algebra is conveniently written
terms of the n(n21)/2 rotation generators,Lab5xapb
2xbpa for a,b51, . . . ,n and in terms of the de Sitter mo
menta, Pa5A12q2pa for a51, . . . ,n, where q2

5(a51
n (xa)2. That PB algebra is

$Pa ,Pb%PB5Lab , $Lab ,Pc%PB5dacPb2dbcPa ,

$Lab ,Lcd%PB5Lacdbd2Laddbc2Lbcdad1Lbddac . ~47!

By direct calculation, one of several possible expressions
time evolution as a 2n-brackets is@6#

~21!n21P2P3•••Pn21

dA

dt

5
]~A,P1 ,L12,P2 ,L23,P3 , . . . ,Pn21 ,Ln21n ,Pn!

]~x1 ,p1 ,x2 ,p2 , . . . ,xn ,pn!
,

~48!

wheredA/dt5$A,H%PB and

H5
1

2 (
a51

n

PaPa1
1

4 (
a,b51

n

LabLab . ~49!

The CNB expressing classical time-evolution may also
written, more compactly, as a derivation

dA

dt
5~21!n21$A,P1 ,L12,ln~P2!,L23,ln~P3!, . . . ,

ln~Pn21!,Ln21n ,Pn%NB . ~50!

Once again, the branch points in the intercalated logarith
are indicators of this particular bracket’s kernel.

e. SO(4)5SU(2)3SU(2) as another special case.The
treatment of the 3-sphereS3 also accords to the standar
chiral model technology using left- and right-invariant Vie
beine@6#. Specifically, the two choices for such Dreibeine f
the 3-sphere are@45#: q25x21y21z2,

(6)Va
i 5e iabxb6A12q2gai ,

(6)Vai5e iabxb6A12q2dai.

~51!

The corresponding right and left conserved charges~left and
right invariant, respectively! then are

R i5 (1)Va
i d

dt
xa5 (1)Vaipa ,

L i5 (2)Va
i d

dt
xa5 (2)Vaipa . ~52!

Perhaps more intuitive are the linear combinations into a
and isospin charges~again linear in the momenta!,
1-8
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1
2 ~R2L!5A12q2p[A, 1

2 ~R1L!5x3p[I . ~53!

It can easily be seen that theL’s and theR’s have PBs
closing into the standard su(2)3su(2) algebra, i.e.,

$Li ,Lj%NB522« i jkLk , $Li ,Rj%NB50,

$Ri ,Rj%NB522« i jkRk . ~54!

Thus, they are seen to be constant, since the Hamilto
~and also the Lagrangian! can, in fact, be written in terms o
either quadratic Casimir invariant,

H5 1
2 L•L5 1

2 R•R. ~55!

The classical dynamics of this algebraic system is, like
singleSU(2) invariant dynamics that composes it, elegan
expressed on the six-dimensional phase space with max
CNBs. We find various 6-bracket relations such as

]~A,H,R1 ,R2 ,L1 ,L2!

]~x1 ,p1 ,x2 ,p2 ,x3 ,p3!
[$A,H,R1 ,R2 ,L1 ,L2%NB

524L3R3

dA

dt
, ~56!

where 2H5R 1
21R 2

21R 3
25L 1

21L 2
21L 3

2 andA is an arbi-
trary function of the phase-space dynamical variables. A

$A,R1 ,R2 ,L3 ,L1 ,L2%NB524R3

dA

dt
, ~57!

and similarly (R↔L),

$A,R1 ,R2 ,R3 ,L1 ,L2%NB524L3

dA

dt
. ~58!

The kernels of these various brackets are evident from
factors multiplying dA/dt. None of these particula
6-bracket relations directly permits theL3 or R3 factors on
their RHSs to be absorbed into logarithms, through use of
Leibniz rule. But, by subtracting the last two to obtain

$A,R1 ,R2 ,L32R3 ,L1 ,L2%NB54~L32R3!
dA

dt
, ~59!

we can now introduce a logarithm to produce just a num
cal factor multiplying the time derivative,

$A,R1 ,R2 ,ln~L32R3!2,L1 ,L2%NB58
dA

dt
. ~60!

Similarly, by adding Eqs.~57! and ~58!, we find

$A,R1 ,R2 ,ln~L31R3!2,L1 ,L2%NB528
dA

dt
. ~61!

f. G3G chiral particles. In general, the preceding discu
sion also applies to all chiral models, with the algebrag for a
chiral groupG replacing su(2). The Vielbein-momenta com-
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binations Va jpa represent algebra generator invarian
whose quadratic Casimir group invariants yield the resp
tive Hamiltonians.

That is to say, for@46# group matricesU generated by
exponentiated constant group algebra matricesT, weighted
by functions of the particle coordinatesx, with U215U†, we
have

iU 21
d

dt
U5 (1)Va

j Tj

d

dt
xa5 (1)Va jpaTj ,

iU
d

dt
U215 (2)Va jpaTj . ~62!

It follows that PBs of left- and right-invariant charges~des-
ignated byR’s and L’s, respectively!, as defined by the
traces,

Rj[
i

2
trS TjU

21
d

dt
U D5 (1)Va jpa ,

Lj[
i

2
trS TjU

d

dt
U21D5 (2)Va jpa , ~63!

close to the identical PB Lie algebras,

$Ri ,Rj%PB522 f i jkRk , $Li ,Lj%PB522 f i jkLk ,
~64!

and PB commute with each other,

$Ri ,Lj%PB50. ~65!

These two statements are implicit in@46# and throughout the
literature, and are explicitly proven in@6#.

The Hamiltonian for a particle moving freely on theG
3G group manifold is the simple form

H5 1
2 ~paVai!~Vbipb!, ~66!

with either choice,Va j5 (6)Va j. That is,

H5 1
2 LjLj5

1
2 RjRj , ~67!

just as in the previous SO(4)5SU(2)3SU(2) case. There
are now several ways to present time evolution as CNBs
these models.

One way is as sums of 6-brackets. Making use of Eq.~34!
and summing repeated indices:

f i jk f imn$A,H,Rj ,Rk ,Lm ,Ln%NB

5 f i jk f imn$Rj ,Rk%PB$Lm ,Ln%PB$A,H%PB

54 f i jk f imnf jkl f mnoRlLo$A,H%PB

54cadjoint
2 RlLl$A,H%PB. ~68!

Thus, we have
1-9
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dA

dt
5

1

4cadjoint
2 RlLl

f i jk f imn$A,H,Rj ,Rk ,Lm ,Ln%NB .

~69!

The bracket kernel here is given by zeros of (Rl6Ll)
2

24H562RlLl .
Another way to specify the time development for the

chiral models is to use a maximal set of invariants in
CNB, selected from both left and right charges. Taken to be
the dimension of the groupG, then all charge indices rang
from 1 to n. For a point particle moving on the group man
fold G3G, the maximal brackets involve 2n elements. So,
for example, we have~note the ranges of all the sums he
are truncated ton21, as are the indices on the Levi-Civit
symbols!

$A,H,L1 , . . . ,Ln21 ,R1 , . . . ,Rn21%NB

5
1

@~n21!! #2 (
all i , j 51

n21

« i 1••• i n21
« j 1••• j n21

3$A,H,Li 1
, . . . ,Li n21

,Rj 1
, . . . ,Rj n21

%NB . ~70!

The RHS here vanishes for evenn, so we take oddn, say
n5112s. ~To obtain a nontrivial result for evenn, we may
replaceH by eitherLn or Rn . We leave this as an exercise
the classical case. The relevant combinatorics are discu
later, in the context of the quantized model.! So, since
$H,Li%PB505$H,Ri%PB, by the PB resolution we can writ

$A,H,L1 , . . . ,Ln21 ,R1 , . . . ,Rn21%NB

5Kn (
all i , j 51

n21

« i 1••• i n21
« j 1••• j n21

$A,H%PB$Li 1
,Li 2

%PB•••

3$Li n22
,Li n21

%PB$Rj 1
,Rj 2

%PB•••$Rj n22
,Rj n21

%PB,

~71!

where8

Kn5112s5
1

4s~s! !2
~72!

is a numerical combinatoric factor incorporating the num
of equivalent ways to obtain the list of PBs in the product
written in Eq.~71!.

Introducing a completely symmetric tensors$k1•••ks%
de-

fined by

s$k1•••ks%
5 (

all i 51

n21

« i 1••• i n21
f i 1i 2k1

••• f i n22i n21ks
, ~73!

8The number of ways of picking then PBs in the formula~71!,
taking into account both« ’s, is (n22)(n24)•••(1)3(n22)(n
24)•••(1), soKn5(@(n22)(n24)•••(1)#/(n21)!)2.
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and using Eq.~64!, we may rewrite Eq.~71! as ~note the
sums overks andms here are not truncated!

$A,H,L1 , . . . ,Ln21 ,R1 , . . . ,Rn21%NB

5~22!n21Kn (
all k,m51

n

s$k1•••ks%
s$m1•••ms%

3$A,H%PBLk1
•••Lks

Rm1
•••Rms

. ~74!

Thus, we arrive at a maximal CNB expression of time ev
lution, for odd-dimensionalG:

dA

dt
5V$A,H,L1 , . . . ,Ln21 ,R1 , . . . ,Rn21%NB , ~75!

where the invariant factorV on the RHS is given by

1

V
5

1

~s! !2 (
all k51

n

s$k1•••ks%
Lk1

•••Lks (
all m51

n

s$m1•••ms%

3Rm1
•••Rms

,

s[
n21

2
. ~76!

This factor determines the kernel of the brackets in quest
All this extends in a straightforward wa

to even-dimensional groupsG and to the algebras
of symmetry groups involving arbitrary numbers
factors,G13G23•••.

III. QUANTUM THEORY

We now consider the quantization of Nambu mechan
Despite contrary claims in the literature, it turns out that t
quantization is straightforward using the Hilbert space ope
tor methods as originally proposed by Nambu. All that
needed is a properly consistent physical interpretation of
results, by allowing for dynamical time scales, as summ
rized in the Introduction. We provide a very detailed descr
tion of that interpretation in the following, but first we de
velop the techniques and machinery that are used to re
and implement it. Our presentation parallels the previo
classical discussion as much as possible.

A. Properties of the quantum brackets

a. Definition of QNBs.Define the quantum Nambu brack
ets, or QNBs@1#, as fully antisymmetrized multilinear sum
of operator products in an associative enveloping algebr

@A1 ,A2 , . . . ,Ak#

[ (
all k! perms

$s1 ,s2 , . . . ,sk%
of the indices
$1,2, . . . ,k%

sgn~s!As1
As2

•••Ask
, ~77!
1-10
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where sgn(s)5(21)p(s) with p(s) the parity of the per-
mutation$s1 ,s2 , . . . ,sk%. The brackets are unchanged b
adding to any one element a linear combination of the oth
in analogy with the usual row or column manipulations
determinants.

b. Recursion relations. There are various ways to obta
QNBs recursively, from products involving fewer operato
For example, a QNB involvingk operators has both left- an
right-sided resolutions of single operators multiplying QN
of k21 operators.

@A1 ,A2 , . . . ,Ak#5 (
k! permss

sgn~s!

~k21!!
As1

@As2
, . . . ,Ask

#

5 (
k! permss

sgn~s!

~k21!!
@As1

, . . . ,Ask21
#Ask

.

~78!

On the RHS there are actually onlyk distinct products of
single elements with (k21)-brackets, each such produ
having a net coefficient61. The denominator compensat
for replication of these products in the sum over permu
tions.~We leave it as an elementary exercise for the reade
prove this result.!

For example, the 2-brackets are obviously just the co
mutator@A,B#5AB2BA, while the 3-brackets may be writ
ten in either of two@1# or three convenient ways

@A,B,C#5A@B,C#1B@C,A#1C@A,B#

5@A,B#C1@B,C#A1@C,A#B

5 3
2 $@A,B#,C%1 1

2 @$A,B%,C#2@A,$B,C%#.

~79!

Summing the first two lines gives anticommutators conta
ing commutators on the RHS

2@A,B,C#5$A,@B,C#%1$B,@C,A#%1$C,@A,B#%.
~80!

The last expression is to be contrasted to the Jacobi ide
obtained by taking the difference of the first two RHS lin
in Eq. ~79!:

05@A,@B,C##1@B,@C,A##1@C,@A,B##. ~81!

Similarly, for the 4-brackets,

@A,B,C,D#5A@B,C,D#2B@C,D,A#1C@D,A,B#

2D@A,B,C#

52@B,C,D#A1@C,D,A#B2@D,A,B#C

1@A,B,C#D. ~82!

Summing these two lines gives

2@A,B,C,D#5@A,@B,C,D##2@B,@C,D,A##

1@C,@D,A,B##2@D,@A,B,C##, ~83!
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while taking the difference gives

05$A,@B,C,D#%2$B,@C,D,A#%1$C,@D,A,B#%

2$D,@A,B,C#%. ~84!

There may be some temptation to think of the last of these
something like a generalization of the Jacobi identity, and
principle, it is, but in a crucially limited way, so that temp
tation should be checked. The more appropriate and c
plete generalization of the Jacobi identity is given system
cally below @cf. Eq. ~119!#.

c. Jordan products. Define a fully symmetrized, genera
ized Jordan operator product~GJP!:

$A1 ,A2 , . . . ,Ak%

[ (
all k! perms

$s1 ,s2 , . . . ,sk%
of the indices
$1,2, . . . ,k%

As1
As2

•••Ask
~85!

as introduced, in the bilinear form at least, by Jordan@31# to
render non-Abelian algebras into Abelian algebras at the
pense of nonassociativity. The generalization to multiline
was suggested by Kurosh@37#, but the idea was not used i
any previous physical application, as far as we know. A G
also has left- and right-sided recursions,

$A1 ,A2 , . . . ,Ak%

5 (
k! permss

1

~k21!!
As1

$As2
,As3

, . . . ,Ask
%

5 (
k! permss

1

~k21!!
$As2

,As3
, . . . ,Ask21

%Ask
.

~86!

On the RHS there are again onlyk distinct products of single
elements with (k21) GJPs, each such product having a n
coefficient11. The denominator again compensates for r
lication of these products in the sum over permutations.~We
leave it as another elementary exercise for the reade
prove this result.!

For example, a Jordan 2-product is obviously just an
ticommutator$A,B%5AB1BA, while a 3-product is given
by

$A,B,C%5$A,B%C1$A,C%B1$B,C%A

5A$B,C%1B$A,C%1C$A,B%

5 3
2 $$A,B%,C%1 1

2 @@A,B#,C#2@A,@B,C##.

~87!

Equivalently, taking sums and differences, we obtain

2 $A,B,C%5$A,$B,C%%1$B,$A,C%%1$C,$A,B%%,
~88!

as well as the companion of the Jacobi identity often enco
tered in superalgebras,

05@A,$B,C%#1@B,$A,C%#1@C,$A,B%#. ~89!
1-11
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Similarly for the 4-product,

$A,B,C,D%5A$B,C,D%1B$C,D,A%1C$D,A,B%

1D$A,B,C%

5$A,B,C%D1$B,C,D%A1$C,D,A%B

1$D,A,B%C. ~90!

Summing gives

2$A,B,C,D%5$A,$B,C,D%%1$B,$C,D,A%%

1$C,$D,A,B%%1$D,$A,B,C%%, ~91!

while subtracting gives

05@A,$B,C,D%#1@B,$C,D,A%#1@C,$D,A,B%#

1@D,$A,B,C%#. ~92!

Again the reader is warned off the temptation to think of t
last of these as a bona fide generalization of the super-Ja
identity. While it is a valid identity, of course, following from
nothing but associativity, there is a superior and complete
of identities to be given later@cf. Eq. ~119! to follow#.

d. (Anti)Commutator resolutions. As in the classical case
Sec. II B, it is always possible to resolve even rank brack
into sums of commutator products, very usefully. For e
ample,

@A,B,C,D#5@A,B#@C,D#2@A,C#@B,D#2@A,D#@C,B#

1@C,D#@A,B#2@B,D#@A,C#2@C,B#@A,D#.

~93!

An arbitrary even bracket of rank 2n breaks up into
(2n)!/(2n)5n!(2n21)!! such products. Another way t
say this is that even QNBs can be written in terms of GJP
commutators. The general result is

@A1 ,A2 , . . . ,A2n21 ,A2n#

5 (
(2n)! permss

sgn~s!

2nn!
$@As1

,As2
#,@As3

,As4
#, . . . ,

@As2n21
,As2n

#%. ~94!

An even GJP also resolves into symmetrized products
anticommutators:

$A1 ,A2 , . . . ,A2n21 ,A2n%

5 (
(2n)! perms s

1

2nn!
$$As1

,As2
%,$As3

,As4
%, . . . ,

$As2n21
,As2n

%%. ~95!

The resolution~94! makes it transparent that all such ev
QNBs will vanish if one or more of theAi are central~i.e.,
commute with all the other elements in the brackets!. For
instance, if any oneAi is a multiple of the unit operator, th
08500
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2n-brackets will vanish.~This same statement does not app
to odd brackets, as Nambu realized originally for 3-brack
@1#, and consequently, there are additional hurdles to be o
come when using odd QNBs.!

As in the classical bracket formalism, the proofs of t
~anti!commutator resolution relations are elementary. B
left- and right-hand sides of the expressions are sums of 2nth
degree monomials linear in each of theAs. Both sides are
either totally antisymmetric, in the case of Eq.~94!, or totally
symmetric, in the case of Eq.~95!, under permutations of the
As. Thus, the two sides must be proportional. The only op
issue is the constant of proportionality. This is easily det
mined to be 1, just by comparing the coefficients of a
given term appearing on both sides of the equation, e
A1A2•••A2N21A2N .

It is clear from the commutator resolution of even QNB
that totally symmetrized GJPs and totally antisymmetriz
QNBs are not unrelated. In fact, the relationship is most p
nounced in quantum mechanical applications where the
erators form a Lie algebra.

e. Reductions for Lie algebras. In full analogy to the clas-
sical case above, when the operators involved in a Q
close into a Lie algebra, even if an infinite one, the Nam
brackets reduce in rank to become a sum of GJPs involv
about half as many operators~quantum reductio ad dim-
idium!. It follows as an elementary consequence of the co
mutator resolution of the Nambu brackets. First, consi
even brackets, since the commutator reduction applies
rectly to that case. From the commutator resolution, it f
lows that for any Lie algebra given by

@Bi ,Bj #5 i\(
m

ci j
mBm , ~96!

we have for arbitraryA ~sum over repeatedms!9

@B1 , . . . ,B2k11 ,A#

5 (
(2k11)! permss

sgn~s!

2kk!
$@Bs1

,Bs2
#,@Bs3

,Bs4
#, . . . ,

@Bs2k21
,Bs2k

#,@Bs2k11
,A#%

5 (
(2k11)! permss

sgn~s!

2kk!
~ i\!k cs1s2

m1 cs3s4

m2

•••cs2k21s2k

mk $Bm1
,Bm2

, . . . ,Bmk
,

@Bs2k11
,A#%. ~97!

For odd brackets, it is first necessary to resolve the QNB i
products of single operators with even brackets, and t
resolve the various even brackets into commutators. T
gives a larger sum of terms for odd brackets, but again e
term involves about half as many Jordan products compa

9After obtaining this result, and using it in@6#, we learned that
similar statements appeared previously in@42,11#.
1-12
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to the number of commutators resolving the original Nam
brackets. The mixture of algebraic structures in Eq.~97! sug-
gests referring to this as a Nambu-Jordan-Lie~NJL! algebra.

f. The classical limit. Since Poisson brackets are straig
forward classical limits of commutators

lim
\→0

S 1

i\ D @A,B#5$A,B%PB,

it follows that the commutator resolution of all even QNB
directly specifies their classical limit.~For a detailed ap-
proach to the classical limit, including subdominant terms
higher order in\, see, e.g., the Moyal bracket discussion
@6#.!

For example, from

@A,B,C,D#5$@A,B#,@C,D#%2$@A,C#,@B,D#%

2$@A,D#,@C,B#%, ~98!

with due attention to a critical factor of 2~i.e., the anticom-
mutators on the RHS become just twice the ordinary pr
ucts of their entries!, the classical limit emerges as

1

2
lim

\→0
S 1

i\ D 2

@A,B,C,D#

5$A,B%PB$C,D%PB2$A,C%PB$B,D%PB

2$A,D%PB$C,B%PB5$A,B,C,D%NB . ~99!

And so it goes with all other even rank Nambu brackets.
the 2n-brackets, one sees that

1

n!
lim
\→0

S 1

i\ D n

@A1 ,A2 , . . . ,A2n#

5 (
(2n)! perms s

sgn~s!

2nn!
$As1

,As2
%PB$As3

,As4
%PB•••

3$As2n21
,As2n

%PB

5$A1 ,A2 , . . . ,A2n%NB . ~100!

This is another way to establish that there are indeedn
21)!! independent products ofn Poisson brackets summin
up to give the PB resolution of the classical Nam
2n-bracket. Once again due attention must be given t
critical additional factor ofn! @as in the denominator on th
LHS of Eq. ~100!# since the GJPs on the RHS of Eq.~94!
will, in the classical limit, always replicate the same classi
productn! times.

g. The Leibniz rule failure and derivators. Define thede-
rivator to measure the failure of the simplest Leibniz rule f
QNBs,

k11DB~A,A![~A,A u B1 , . . . ,Bk!

[@ AA ,B1 , . . . ,Bk#2A@A,B1 , . . . ,Bk#

2@A,B1 , . . . ,Bk#A. ~101!
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The first term on the RHS involves (k11)-brackets acting
on the product ofA andA, the order of the brackets bein
evident in the presuperscript of theDB notation. This reads in
an obvious way. For instance,4DB is a ‘‘4-delta ofBs.’’ That
notation also emphasizes that theBs acton the pair ofAs.
The second notation in Eq.~101! makes explicit all theBs
and is useful for computer code.

Any DB acts on all pairs of elements in the envelopi
algebraA to produce another element inA,

DB :A3A°A. ~102!

WhenDB does not vanish the corresponding bracket with
Bs does not define a derivation onA. The derivator
DB(A,A) is linear in bothA andA, as well as linear in each
of the Bs.

Less trivially, from explicit calculations, we find inhomo
geneous recursion relations for these derivators:

~A,A u B1 , . . . ,Bk!

5
1

2 (
k! perms s

sgn~s!

~k21!!
@~A,A u Bs1

, . . . ,Bsk21
!Bsk

1~21!kBsk
~A,A u Bs1

, . . . ,Bsk21
!#

1
1

2 (
k! perms s

sgn~s!

~k21!!
~@A,Bsk

#@Bs1
, . . . ,Bsk21

,A#

2@A,Bs1
, . . . ,Bsk21

#@Bsk
,A# !

1
~21!k1121

2
A@B1 , . . . ,Bk#A. ~103!

Alternatively, we may write this so as to emphasize the nu
ber of distinct terms on the RHS and distinguish between
even and odd bracket cases. The first two terms under
sum on the RHS give a commutator/anticommutator fok
odd/even, and the last term is absent fork odd.

For even~2n12!-brackets, this becomes

2~A,AuB1 , . . . ,B2n11!

5@~A,AuB1 , . . . ,B2n!,B2n11#1@A,B2n11#

3@B1 , . . . ,B2n ,A#2@A,B1 , . . . ,B2n#@B2n11 ,A#

1~2n signed permutations of theBs!, ~104!

where the first RHS line involves derivators of reduced ra
within commutators. For odd~2n11!-brackets, it becomes

2~A,AuB1 , . . . ,B2n!

5$~A,AuB1 , . . . ,B2n21!,B2n%1@A,B2n#

3@B1 , . . . ,B2n21 ,A#2@A,B1 , . . . ,B2n21#@B2n ,A#

1~2n21 signed permutations of theBs!

22A@B1 , . . . ,B2n#A, ~105!
1-13
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where the first RHS line involves derivators of reduced ra
within anticommutators. Note the additional inhomogene
in the last RHS line of these results. It may be viewed a
type of quantum obstruction in the recursion relation for
odd ~2n11!-brackets.

The obstruction is clarified when we specialize ton51,
i.e., the 3-bracket case. Since commutators are always
vations, one has2DB(A,A)50, and the first RHS line van
ishes in Eq.~105! for the 3DB(A,A) case. So we have just

~A,AuB1 ,B2!5@A,B2#@B1 ,A#2@A,B1#@B2 ,A#

2A@B1 ,B2#A. ~106!

The first two terms on the RHS areO(\2) while the last is
O(\). It is precisely this last term which was responsible
some of Nambu’s misgivings concerning his quantu
3-brackets. In particular, even in the extreme case when
A andA commute with theBs, 3DB(A,A) does not vanish:

~A,AuB1 ,B2!u [A,Bi ] 505[A,Bi ]
52AA@B1 ,B2#. ~107!

By contrast, for the even~2n12!-brackets, all terms on the
RHS of Eq. ~104! are generically of the same orde
O(\n11), and all terms vanish ifA andA commute with all
the Bs. In terms of combinatorics, this seems to be the o
feature for the simple, possibly failed, Leibniz rule that d
tinguishes between even and odd brackets. An even-
QNB dichotomy has been previously noted@39# and stressed
@11#, for other reasons.

The size of the brackets involved in the derivators can
reduced when the operators obey a Lie algebra as in Eq.~96!.
The simplest situation occurs when the brackets are e
For this situation, we have

~A,AuB1 , . . . ,B2k11!

5 (
(2k11)! perms s

sgn~s!

2kk!
~ i\!k cs1s2

m1 cs3s4

m2
•••cs2k21s2k

mk

3~$Bm1
, . . . ,Bmk

,@Bs2k11
,AA#%

2A$Bm1
, . . . ,Bmk

,@Bs2k11
,A#%

2$Bm1
, . . . ,Bmk

,@Bs2k11
,A#%A!. ~108!

h. Generalized Jacobi identities and quantum fundam
tal identities. We previously pointed out some elementa
identities involving QNBs, e.g., Eqs.~84! and ~92!, which
are suggestive of generalizations of the Jacobi identity
commutators. Those particular identities, while true, w
not designated as ‘‘generalized Jacobi identities’’~GJIs!, for
the simple fact that they donot involve the case where QNB
of a given rank act on QNBs of the same rank. Here,
explore QNB identities of the latter type. There are inde
acceptable generalizations of the usual commutators-ac
on-commutators Jacobi identity~i.e., quantum 2-bracket
acting on quantum 2-brackets!, and these generalizations a
indeed valid for all higher rank QNBs ~i.e., quantum
n-brackets acting on quantumn-brackets!. However, there is
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an essential distinction to be drawn between the even
odd quantum bracket cases@11,39#.

It is important to note that, historically, there have be
some incorrect guesses and false starts in this direction
originated from the so-called fundamental identity obeyed
classical Nambu brackets~22!. This simple identity appar-
ently misled several investigators@22#, most recently@26#
and@24,14#, to think of it as a ‘‘fundamental’’ generalization
of the Jacobi identity, without taking care to preserve t
Jacobi identity’s traditional role of encoding nothing but a
sociativity. These same investigators then insisted tha
‘‘correct quantization’’ of the classical Nambu bracketsmust
satisfy an identity of the same form as Eq.~22!.

Unfortunately for them, QNBs donot satisfy this particu-
lar identity, in general, and thereby pose a formidable pr
lem to proponents of that identity’s fundamental significan
This difficulty led @26,24,14#, to seek alternative ways to
quantize CNBs, ultimately culminating in the so-called Ab
lian deformation method@24,14#. This amounted to demand
ing that the quantized brackets satisfy the mathematical p
tulates of an ‘‘n-Lie algebra’’ as defined by Filippov@35#
many years earlier. However, not only are those postula
not satisfied by generic QNBs, but more importantly, tho
postulates arenot warranted by the physics of QNBs, as w
be clear in the examples to follow.

The correct generalizations of the Jacobi identities wh
do encode associativity were found independently by gro
of mathematicians@39# and physicists@41,11#. Interestingly,
both groups were studying cohomology questions, so p
haps it is not surprising that they arrived at the same res
~Fortunately, for us the result is sufficiently simple in i
combinatorics that we do not need to go through the co
mology issues.! The acceptable generalization of the Jaco
identity that was found is satisfied by all QNBs, although f
odd QNBs there is a significant difference in the form of t
final result: It contains an ‘‘inhomogeneity.’’ The correct ge
eralization is obtained just by totally antisymmetrizing t
action of n-brackets on othern-brackets. Effectively, this
amounts to antisymmetrizing the form of the RHS of E
~22! over all permutations of theAs andBs including all
exchanges ofAs with Bs.

We illustrate the correct quantum identity for the case
three-brackets acting on 3-brackets, where the classical re
is

05$$A,B,C%NB ,D,E%NB2$$A,D,E%NB ,B,C%NB

2$A,$B,D,E%NB ,C%NB2$A,B,$C,D,E%NB%NB ,

~109!

i.e., Eq. ~22! for n53. For ease in writing, we letA1[A,
A2[B, A3[C, B1[D, and B2[E. Consider
@@A,B,C#,D,E#. This QNB corresponds to the first term o
the RHS of Eq.~109!. If we antisymmetrize@@A,B,C#,D,E#
over all 5! permutations ofA,B,C,D, andE, we obtain, with
a common overall coefficient of 1252!3!, a total of 10
55!/(2!3!) distinct terms as follows:
1-14
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@@A,B,C#,D,E#1@@A,D,E#,B,C#1@@D,B,E#,A,C#

1@@D,E,C#,A,B#2@@D,B,C#,A,E#2@@E,B,C#,D,A#

2@@A,D,C#,B,E#2@@A,E,C#,D,B#2@@A,B,D#,C,E#

2@@A,B,E#,D,C#. ~110!

Now we determine the coefficient of any given monom
produced by this sum.10 Since the expression is totally ant
symmetrized in all the five elements, the result must be p
portional, to @A,B,C,D,E#. To determine the constant o
proportionality it suffices to consider the monomi
ABCDE. This particular monomial can be found in on
three terms out of the ten in Eq.~110!, namely, in

@@A,B,C#,D,E#,

@A,@B,C,D#,E#52@@D,B,C#,A,E#, and

@A,B,@C,D,E##5@@D,E,C#,A,B#. ~111!

The various terms are obtained just by ‘‘shifting’’ the interi
brackets from left to right within the exterior brackets, wh
keeping all the bracket entries in a fixed left-to-right ord
and keeping track of the sgn(s) factors.~Call this the ‘‘shift-
ing bracket argument.’’! The monomialABCDE appears in
each of these terms with coefficient11, for a total of13
3ABCDE. Thus, we conclude with a five-element, 11-ter
identity

@@A,B,C#,D,E#1@@A,D,E#,B,C#1@@D,B,E#,A,C#

1@@D,E,C#,A,B#2@@D,B,C#,A,E#

2@@E,B,C#,D,A#2@@A,D,C#,B,E#

2@@A,E,C#,D,B#2@@A,B,D#,C,E#

2@@A,B,E#,D,C#53@A,B,C,D,E#. ~112!

This is the prototypical generalization of the Jacobi iden
for odd QNBs, and like the Jacobi identity, it is antisymm
ric in all of its elements. The RHS here is the previous
designated inhomogeneity.

The totally antisymmetrized action of odd n QNBs
other odd n QNBs results in(2n21)-brackets.

We recognize in the first four terms of Eq.~112! those
QNB combinations which correspond to the individual ter
on the RHS of Eq.~109!. However,the signs are changedfor
three of the four QNB terms relative to those in Eq.~109!.
One might hope that changing these signs in the QNB c
binations will lead to some simplification, and indeed it do
but it does not cause the resulting expression to vanish,
did in Eq. ~109!. To see this, consider in the same way t
effects of antisymmetrizing the QNBs corresponding to e
of the other three terms on the RHS of Eq.~109!. The second
RHS term would have as correspondent2@@A,D,E#,B,C#,

10This line of argument is an adaptation of that in@39#. Equivalent
methods are used in@41,11#.
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which, when totally antisymmetrized, gives an overall co
mon coefficient of2!3! multiplying

2@@A,D,E#,B,C#2@@A,B,C#,D,E#2@@B,D,C#,A,E#

2@@B,C,E#,A,D#1@@B,D,E#,A,C#

1@@C,D,E#,B,A#1@@A,B,E#,D,C#

1@@A,C,E#,B,D#1@@A,D,B#,E,C#

1@@A,D,C#,B,E#523@A,B,C,D,E#. ~113!

The third RHS term of Eq.~109! would have as correspon
dent 2@A,@B,D,E#,C#5@@B,D,E#,A,C#, which, when to-
tally antisymmetrized, gives an overall common coefficie
of 2!3! multiplying

@@B,D,E#,A,C#1@@B,A,C#,D,E#1@@A,D,C#,B,E#

1@@A,C,E#,B,D#2@@A,D,E#,B,C#

2@@C,D,E#,A,B#2@@B,A,E#,D,C#

2@@B,C,E#,A,D#2@@B,D,A#,E,C#

2@@B,D,C#,A,E#523@A,B,C,D,E#. ~114!

The fourth and final RHS term of Eq.~109! would have as
correspondent2@A,B,@C,D,E##5@@C,D,E#,B,A#, which,
when totally antisymmetrized, gives an overall common c
efficient of 2!3! multiplying

@@C,D,E#,B,A#1@@C,B,A#,D,E#1@@B,D,A#,C,E#

1@@B,A,E#,C,D#2@@B,D,E#,C,A#

2@@A,D,E#,B,C#2@@C,B,E#,D,A#

2@@C,A,E#,B,D#2@@C,D,B#,E,A#

2@@C,D,A#,B,E#523@A,B,C,D,E#. ~115!

Adding Eqs.~112!, ~113!, ~114!, and~115! leads to the sum
of QNB combinations that corresponds to the antisymm
trized form of the RHS of Eq.~109!; namely,

~@@A,B,C#,D,E#2@@A,D,E#,B,C#2@A,@B,D,E#,C#

2@A,B,@C,D,E## !

6~nine distinct permutations of all four terms!

526@A,B,C,D,E#. ~116!

This result shows that the simple combination of QNB ter
that corresponds to Eq.~109! ~without full antisymmetriza-
tion! cannot possibly vanish unless the 5-brack
@A,B,C,D,E# vanish.

A similar consideration of the action of a 4-bracket on
4-bracket illustrates the general form of the GJI for ev
brackets and shows the essential differences between
even and odd bracket cases. We proceed as above by sta
with the combination@@A,B,C,D#,E,F,G#, and then totally
antisymmetrizing with respect toA, B, C, D, E, F,andG. We
1-15
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find 3557!/(3!4!) distinct terms in the resulting sum. Now
we determine the coefficient of any given monomial th
would appear in this sum. Since the expression is again
tally antisymmetrized in all the seven elements, the re
must be proportional to@A,B,C,D,E,F,G#. To determine
the constant of proportionality, it suffices to consider the m
nomial ABCDEFG and use the shifting bracket argumen
which shows that this particular monomial can be found
only four terms out of the 35 in the sum, namely, in

@@A,B,C,D#,E,F,G#,

2@A,@B,C,D,E#,F,G#, @A,B,@C,D,E,F#,G#, and

2@A,B,C,@D,E,F,G##. ~117!

The monomialABCDEFGappears in these four terms wit
coefficients 11,21,11, and 21, for a total of 0
3ABCDEFG. Thus, we conclude that~@39,41#, and also
@11#, especially Eq.~32!!

@@A,B,C,D#,E,F,G#6~34 distinct permutations!50.
~118!

This is the prototypical generalization of the Jacobi iden
for even QNBs and constitutes the full antisymmetrization
all arguments of the analogous FI. There is no RHS inhom
geneity in this case.

The totally antisymmetrized action of even n QNBs
other even n QNBs results in zero.

The generalized Jacobi identity for arbitraryn-brackets
follows from the same simple analysis of coefficients of a
given monomial, as in Eqs.~111! and ~117!. The shifting
bracket argument actually leads to a larger set of resu
whenever the actions of any brackets are totally antisym
trized. We present that larger generalization here, callin
the quantum Jacobi identityor QJI. The GJI is the QJI for
k5n21.

i. QJIs for QNBs. These are given as

(
(n1k)! permss

sgn~s!@@As1
, . . . ,Asn

#,Asn11
, . . . ,Asn1k

#

5@A1 , . . . ,An1k#3n!k!

3H ~k11! if n is odd

1
2 @11~21!k# if n is even.

~119!

This result is proven just by computing the coefficient of t
A1•••An1k monomial using the shifting bracket argument
given previously to establish Eqs.~111! and ~117!. Other
arguments leading to the same result may be found
@41,11#.

This is the quantum identity that most closely correspo
to the general classical result@see the second talk under@6#,
Eq. ~28!# for any evenn and any oddk ~only n52N, k
52N21 is the FI!,
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$$A1 ,A2 , . . . ,An%NB ,B1 , . . . ,Bk%NB

2(
j 51

n

$A1 , . . . ,$Aj ,B1 , . . . ,Bk%NB , . . . ,An%NB

5$B1 ,$B2 , . . . ,Bk%NB ,A1 , . . . ,An%NB2•••

1$Bk ,$B1 , . . . ,Bk21%NB ,A1 , . . . ,An%NB . ~120!

While this classical identity holds without requiring full an
tisymmetrization over all exchanges ofAs andBs, in contrast
the quantum identitymustbe totally antisymmetrized if it is
to be a consequence of only the associativity of the unde
ing algebra of Hilbert space operators. Note that then!k! on
the RHS of Eq.~119! may be replaced by just 1 if we sum
only over permutations in which theAi<n are interchanged
with the Ai .n in @@As1

, . . . ,Asn
#,Asn11

,

. . . ,Asn1k
# and ignore all permutations of th

A1 ,A2 , . . . ,An among themselves and of th
An11 , . . . ,An1k among themselves.

There is an important specialization of the QJI res
@39,41#: For any evenn and any oddk

(
(n1k)! perms s

sgn~s!@@As1
, . . . ,Asn

#,Asn11
, . . . ,Asn1k

#

50. ~121!

In particular, whenk5n21, for n even, the vanishing RHS
obtains. All othern-not-even and/ork-not-odd cases of the
QJI have the@A1 , . . . ,An1k# inhomogeneity on the RHS.

The QJI also permits us to give the correct form of t
so-called fundamental identities valid for all QNBs. We a
cordingly call thesequantum fundamental identities~QFIs!
and present them in their general form.

j. QFIs for QNBs. These are given as

(
(n1k)! perms s

sgn~s!S @@As1
, . . . ,Asn

#,Asn11
, . . . ,Asn1k

#

2(
j 51

n

@As1
, . . . ,@As j

,Asn11
, . . . ,Asn1k

#, . . . ,Asn
# D

5@A1 , . . . ,An1k#3n!k!

3H 0 if k is odd

~12n!~k11! if k is even andn is odd

@12n~k11!# if k is even andn is even.

~122!

Aside from the trivial case ofn51, the only way the RHS
vanishes without conditions on the full (n1k)-brackets is
whenk is odd. All n.1, evenk result in the@A1 , . . . ,An1k#
inhomogeneity on the RHS.

Partial antisymmetrizations of the individual terms in t
general QFI may also be entertained. The result is to fi
more complicated inhomogeneities, and does not seem t
1-16
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very informative. At best these partial antisymmetrizatio
show in a supplemental way how the fully antisymmetriz
results are obtained.

In certain isolated, special cases@cf. the su~2! example of
the next section, for whichk53], the bracket effects of se
lect Bs can act as a derivation~essentially because thek
brackets are equivalent, in their effects, to commutators!. If
that is the case, then the quantum version of the simple id
tity in Eq. ~22! holds trivially. It is also possible, in principle
for that simple identity to hold, again in very special situ
tions, if the quantum brackets are not a derivation, throu
various cancellations among terms. As an aid to finding s
peculiar situations, it is useful to resolve the quantum co
spondents of the terms in the classical FI into the deriva
introduced previously ~101!. From the definition of
@A1 , . . . ,An# in Eq. ~77! and some straightforward manipu
lations, we find

@@A1 , . . . ,An#,B#2(
j 51

n

@A1 , . . . ,@Aj ,B#, . . . ,An#

5 (
n! perms s

sgn~s!F 1

~n21!!
~As1

,@As2
, . . . ,Asn

#uB!

1
1

~n22!!
As1

~As2
,@As3

, . . . ,Asn
#uB!

1
1

2!~n23!!
@As1

,As2
#~As3

,@As4
, . . . ,Asn

#uB!1•••

1
1

~n22!!
@As1

,As2
, . . . ,Asn22

#~Asn21
,Asn

uB!G ,
~123!

with the abbreviationBÄB1 , . . . ,Bk . The terms on the RHS
are a sum overj 51, . . . ,n21 of derivators between solitar
As ~i.e. 1-brackets! and various (n2 j )-brackets, left multi-
plied by complementary rank (j 21)-brackets.~There is a
similar identity that involves right multiplication by th
complementary brackets.!

For example, supposen52. Then we have, for any num
ber of Bs

@@A1 ,A2#,B#2@@A1 ,B#,A2#2@A1 ,@A2 ,B##

5~A1 ,A2uB!2~A2 ,A1uB!. ~124!

In principle, this can vanish, even when the action of theBs
is not a derivation, if thek derivator is symmetric in the firs
two arguments. That is, if (A1 ,A2uB1 , . . . ,Bk)
5 1

2 (A1 ,A2uB1 , . . . ,Bk)1 1
2 (A2 ,A1uB1 , . . . ,Bk). However,

we have not found a compelling~nontrivial! physical ex-
ample where this is the case.

B. Illustrative quantum examples

As in the classical situation, it is useful to consider e
plicit examples of quantized dynamical systems described
quantum Nambu brackets, to gain insight and develop in
ition. However, for quantum systems, it is more than use
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it is crucial to examine detailed cases to appreciate h
quandaries that have been hinted at in the past are act
resolved, especially since the exact classical phase-spac
ometry in Sec. II A is no longer applicable. Similar studi
have been attempted before, but have reached conclus
sharply opposed to ours.11 Here, we demonstrate how th
simplest Nambu mechanical systems are quantized con
tently and elegantly by conventional operator methods.

a. SU(2) as a special case. The commutator algebra of th
charges (L0[Lz ,L6[Lx6 iL y) is

@L1 ,L2#52\L0 , @L0 ,L2#52\L2 , @L0 ,L1#5\L1 ,

~125!

giving rise to @L2 ,L0
2#5$@L2 ,L0#,L0%5\$L2 ,L0%, etc.

The invariant quadratic Casimir is

I 5L1L21L0~L02\!5L2L11~L01\!L0 . ~126!

We use the algebra and the commutator resolution of
4-brackets

@A,B,C,D#5$@A,B#,@C,D#%2$@A,C#,@B,D#%

2$@A,D#,@C,B#% ~127!

to obtain@6# the quantization of Eq.~31!:

@A,L0 ,L1 ,L2#52\@A,I #, ~128!

and the more elaborate

@A,I ,L1 ,L2#52\$@A,I #,L0%52\@$A,L0%,I #. ~129!

Since I and L0 commute, the nested commutato
anticommutator can also be written using the 3-brack
@$A,L0%,I #5@A,I ,L0#2@L0I ,A#.

So for SU~2! invariant systems withH5I /2, Eq. ~128!
gives rise to the complete analog of classical time devel
ment as a derivation~31!, namely,

i\2
dA

dt
5\@A,H#5

1

4
@A,L0 ,L1 ,L2#, ~130!

where the QNB in question happens to be a derivation
@6#, and thus satisfies an effective FI@see Eq.~152!#. By
contrast, Eq.~129! gives rise to

i\2H dA

dt
,L0J 5\$@A,H#,L0%5

1

4
@A,I ,L1 ,L2#.

~131!

Since the latter of these is manifestly not a derivation, o
should not expect, as we have stressed, Leibniz rule
classical-like fundamental identities to hold. Of course, sin
a derivation is entwined in the structure, substitutionA
→AA and application of Leibniz’s rule to just the time der
vation alone will necessarily yield correct but complicat

11‘‘The quantization of Nambu structures turns out to be a no
trivial problem even~or especially! in the simplest cases’’@24#.
1-17
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expressions~but not particularly informative results, give
the consistency of the structure already established!. How-
ever, in more general contexts and in fanciful situatio
where the operators playing the role ofL0 were invertible,
one might envision trying to solve for the time derivativ
through formal resolvent methods~see the Appendix!, e.g.,

4i\2
dA

dt
5 (

n50

`

~2L0!n@A,I ,L1 ,L2#~L0!2n21,

~132!

where the new brackets implicitly defined by the RHS wou
now be a derivation~here, just the commutator withI ). It is
clear from our discussion, however, that the QNBs and
entwinings they imply, are still the preferred presentation
the quantized Nambu mechanics.

It might be useful to view solving fordA/dt as a problem
of implementing scale transformations in the generalized
dan algebra context. Evidently, there is little if any discu
sion of that mathematical problem in the literature@47#.

The physics described by the first QNB~130!, is standard
time evolution, just encoded in an unusual way as quan
4-brackets. However, the other QNB, in Eq.~131!, illustrates
the idea discussed in the Introduction. Physically, th
Nambu brackets are an entwined form of time evolutio
where the Jordan algebraic eigenvaluess of L0, defined by
$A,L0%5sA, set the time scales for the various sectors
the theory: i.e., the formalism gives dynamical time sca
To see this, resolve the identity, 15(lPl , in terms ofL0

projections,Pl
25Pl , and use this in turn to resolve any o

eratorA as a sum of left and right eigenoperators ofL0,

A5(
l,r

PlAlrPr , Alr5PlAPr . ~133!

These eigenoperators obey

L0Alr5lAlr , AlrL05rAlr . ~134!

Following such a decomposition, since@Pl ,H#50
5@Pl ,L0#, Eq. ~131! can be written as a sum of terms

i\2H dAlr

dt
,L0J 5\$@Alr ,H#,L0%

5\@$Alr ,L0%,H#

5 i\2~l1r!
dAlr

dt
. ~135!

That is to say, the sum of the left and right eigenvalues of
operatorAlr gives a Jordan eigenvalues5l1r,

$Alr ,L0%5~l1r!Alr , ~136!

and this Jordan eigenvalue sets the time scale for the ins
taneous evolution of the eigenoperator. Since a general
erator is a sum of eigenoperators, this construction will,
general, give a mixture of time scales. Stated precisely
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i\2H dA

dt
,L0J 5 i\2(

l,r
~l1r!Pl

dAlr

dt
Pr5

1

4
@A,I ,L1 ,L2#.

~137!

This highlights the differences between Eq.~131! and con-
ventional time evolution for operators in the Heisenberg p
ture, as in Eq.~130!, since the time scales in Eq.~137! de-
pend on the angular momentum eigenvalues.

This example illustrates our introductory remarks abo
different time scales for the different invariant sectors o
system. It also shows why the action of the 4-brackets
question is not a derivation. The simple Leibniz rule for g
neric A and A, that would equate@AA,I ,L1 ,L2# with
A@A,I ,L1 ,L2#1@A,I ,L1 ,L2#A, will fail for ~nonvanish-
ing! products Al1mAmr2

, unlessl11m5m1r25l11r2,

i.e., unlessl15m5r2. If restricted and applied to a singl
angular momentum sector, the 4-brackets under consi
ation does indeed give just the time derivative of all diago
~i.e., those withl5r) angular momentum eigenoperators
that sector. When projected onto any such sector, the ac
of these 4-brackets is therefore a derivation, since the t
scale will be fixed. But without such a projection, when a
ing on the full Hilbert space of the system, where more th
one value ofl is encountered, these 4-brackets arenot
simple derivations, not even if they act on only diagonaL
eigenoperators, if two or moreL0 Jordan eigenvalues ar
involved. At best, we may think of it as some sort of dynam
cally scaled derivation, since it gives time derivatives sca
by angular momentum eigenvalues.

The quantum brackets in Eq.~131! have a kernel, just as
their classical limits do, but the quantum case evinces
linear superpositions inherent in quantum mechanics. Th
evident in Eq.~137!, where a given eigenoperator is left un
changed by the brackets ifl52r, rather than simplyl
505r. This quantum effect is linked to the fact that Jord
algebras are not division rings, as discussed in the Appen
For this and other reasons, having to do with the fact that
4-brackets in Eq.~131! are not a derivation, it is not possibl
to simply divide the LHS of Eq.~131! by L0 and then absorb
the 1/L0 on the RHS directly into the brackets, as we did
previous classical cases, such as Eq.~45!. While the result in
Eq. ~130! does indeed have the expected form produced
such naive manipulations~such manipulations being valid
for the classical limits of the expressions!, this result cannot
be derived in this way. It is legitimately obtained on
through the commutator resolution, as above.

Other choices for the invariants in the 4-brackets lead
some even more surprising results and offer additional
sight into the quantum tricks that the QNBs are capable
playing. For example,

@A,L0
2 ,L1 ,L2#52\$@A,L0

2#,L0%1\$@A,L1#,$L2 ,L0%%

1\$@A,L2#,$L1 ,L0%%

52\$@A,I #,L0%12\3@L0 ,A#

1\@L2 ,@L1 ,@A,L0###

1\@L1 ,@L2 ,@A,L0###. ~138!
1-18
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This shows an interesting effect in addition to the dynami
time scales evident in the first term of the last equal
namely;quantum rotation terms, as given by the last thre
O(\4) terms in Eq.~138!. If A is not invariant under rota
tions about the polar axis, so that@L0 ,A#Þ0, the last three
terms in Eq.~138! may generate changes inA, even thoughA
is time invariant. The effect is a purely quantum one; it d
appears completely in the classical limit. The QNB in qu
tion is algebraically covariant, but not algebraically invaria
~as opposed totime invariant!. Therefore, it may and doe
lead to nontrivial tensor products when it acts on other al
braically covariantAs. ~As a general rule of thumb, if the
QNB is allowed to do something, then it will.!

Mathematically, it is sometimes useful to think of nest
multicommutators, such as those in Eq.~138!, as higher par-
tial derivatives. This manifestation provides another rea
why general QNBs are not derivations~i.e., first derivatives
only! and do not obey the simple Leibniz rule.

Combining Eq.~138! with Eq. ~129! also yields

@A,~L1L2!,L1 ,L2#52\2@A,I #22\3@L0 ,A#

2\@L2 ,@L1 ,@A,L0###

2\@L1 ,@L2 ,@A,L0###.

~139!

Since every commutator is inherentlyO(\), the first term on
the RHS of this last result isO(\3), while the last three are
O(\4). All vanish in the classical limit

lim
\→0

S 1

i\ D 2

@A,~L1L2!,L1 ,L2#50. ~140!

This illustrates how nontrivial QNBs can collapse to nothi
as CNBs. TheO(\4) terms are quantum rotations, as in E
~138!, but with changed signs.

The two results~138! and~139! are simple illustrations of
the failure of QNBs to obey the elementary Leibniz rule.
derivators

~L0 ,L0uL1 ,A,L2!52\3@L0 ,A#1\@L2 ,@L1 ,@A,L0###

1\@L1 ,@L2 ,@A,L0###, ~141!

whose RHS isO(\4) and thus, vanishes in the classical lim
asO(\2), and

~L1 ,L2uL1 ,A,L2!52\2@A,I #22\3@L0 ,A#

2\@L2 ,@L1 ,@A,L0###

2\@L1 ,@L2 ,@A,L0###, ~142!

whose RHS is inherentlyO(\3), due to the@A,I # term, and
also vanishes in the classical limit.12 The LHS of either of
these expressions would vanish identically were

12If f is a function in thesu(2) enveloping algebra, then@ f ,I #
50, and (J1 ,J2uJ1 , f ,J2) is again inherentlyO(\4).
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4-brackets involved actually derivations, but they are n
There are some special situations, such as whenA is in the
enveloping algebra and is invariant under rotations about
polar axis, i.e.,A5A„L0 ,(L1L2)…, for which the derivators
do vanish. However, for generalA, including most of those
in the enveloping algebra which are not polar invarian
these derivators do not vanish, and so, in general, the Q
in Eqs.~138! and ~139! are not derivations.

Another simple example of a nontrivial QNB, with
trivial classical limit, is

@L0L1 ,L0
2 ,L1 ,L2#524\3~2L02\!L1 . ~143!

This would again vanish were the generic 4-brackets der
tions, but as already stressed, they are not. The corresp
ing 4D here gives

2~L0 ,L1uL0
2 ,L1 ,L2!5@$L0 ,L1%,L0

2 ,L1 ,L2#

528\3$L0 ,L1%, ~144!

a purely quantum effect for 4-brackets. Its classical limit

lim
\→0

1

\2
@$L0 ,L1%,L0

2 ,L1 ,L2#528 lim
\→0

\$L0 ,L1%50.

~145!

The RHS has one too many powers of\ to contribute clas-
sically.

A class of such results, evocative of those found in d
formed Lie algebras, is given by

~g~L0!,L1uL0
2 ,L1 ,L2!

52\L1~ I 1\L02L0
2!@g~L012\!22g~L01\!

1g~L0!#24\2L1 ~\12L0!@g~L012\!2g~L01\!#.

~146!

The choiceg(L0)5L0 reduces to the particular case in E
~144!.

b. 4-brackets sums for any Lie algebra. How does the
quantum 4-bracket method extend to other examples,
haps even to models that are not integrable? In comp
parallel with the classical example, any Lie algebra will a
low a commutator with a quadratic Casimir invariant to
rewritten as a sum of 4-brackets. Suppose

@Qa ,Qb#5 i\ f abcQc ~147!

in a basis wheref abc is totally antisymmetric. Then, throug
the use of the commutator resolution~93!, for a structure-
constant-weighted sum of quantum 4-brackets, we find

f abc@A,Qa ,Qb ,Qc#53 f abc$@A,Qa#,@Qb ,Qc#%

53i\ f abcf bcd$@A,Qa#,Qd%.

~148!

Again, for simple Lie algebras, use Eq.~34! to obtain a com-
mutator with the Casimir invariantQaQa ,

3i\ cadjoint$@A,Qa#,Qa%53i\cadjoint@A,QaQa#. ~149!
1-19
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Thus, we obtain the quantization of the classical result
Eq. ~35!,

f abc@A,Qa ,Qb ,Qc#53i\cadjoint@A,QaQa#. ~150!

This becomes Eq.~35! in the classical limit, with an appro
priate factor of 2 included, as in Eq.~99!. A slightly different
route to this result is to use the left- and right-sided reso
tions of the 4-brackets into 3-brackets~82!, and then note
that the trilinear invariant reduces to the quadratic Casi
invariant:

f abc@Qa ,Qb ,Qc#53i\cadjointQaQa . ~151!

Thus, as in Eq.~130!, this particular linear combination o
quantum 4-brackets acts as a derivation. As a corollary,
have the 4-bracket effective fundamental identity~EFI! @6#,
i.e., one with three of the entries being related by a
algebra:

f abc@Qa ,Qb ,Qc ,@A,B, . . . ,D##

5 f abc@@Qa ,Qb ,Qc ,A#,B, . . . ,D#

1 f abc@A,@Qa ,Qb ,Qc ,B#, . . . ,D#1•••

1 f abc@A,B, . . . ,@Qa ,Qb ,Qc ,D##. ~152!

By using Eq. ~150!, all models with dynamics based o
simple Lie algebras withH5 1

2 QaQa can be quantized
through the use of summed quantum 4-brackets to desc
their time evolution as a derivation:

i\2
dA

dt
5\@A,H#5

1

6icadjoint
f abc@A,Qa ,Qb ,Qc#.

~153!

This special combination of sums of 4-brackets leads to
exception to the generic QNB feature of dynamically sca
time derivatives. It shows that QNBs can be used to desc
conventional time evolution for many systems, not on
those that are superintegrable or integrable.

c. U(n) and isotropic quantum oscillators. The previous
results on Nambu-Jordan-Lie algebras can be applied to
monic oscillators. For the isotropic oscillator, the NJL a
proach quickly leads to a compact result. A set of opera
can be chosen that produces only one term in the sum
Jordan-Kurosh products.

Consider then-dimensional oscillator using the standa
raising/lowering operator basis, but normalized in a w
(A2a[x1 ip, A2b[x2 ip) that makes the classical lim
more transparent:

@ai ,bj #5\d i j , @ai ,aj #505@bi ,bj #. ~154!

Construct the usual bilinear charges that realize theu(n)
algebra:

Ni j [biaj , @Ni j ,Nkl#5\~Nil d jk2Nk jd i l !. ~155!

Then, the isotropic Hamiltonian is
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~Ni1
1
2 \!, Ni[Nii , ~156!

which gives then2 conservation laws

@H,Ni j #50. ~157!

Consideration of the isotropic oscillator dynamics usi
QNBs yields the main result for oscillator 2n-brackets.

d. Isotropic oscillator quantum brackets. @The U(n) quan-
tum reductio ad dimidium.# Let N5N11N21 . . . 1Nn and
intercalate then21 nondiagonal operatorsNii 11, for i
51, . . . ,n21, into 2n-brackets along with then mutually
commutingNj , for j 51, . . . ,n, and along with an arbitrary
A to find13

@A,N1 ,N12,N2 ,N23, . . . ,Nn21 ,Nn21n ,Nn#

5\n21$@A,N#,N12,N23, . . . ,Nn21n%

5\n21@$A,N12,N23, . . . ,Nn21n%,N#. ~158!

This result shows that the QNB on the LHS will indee
vanish, not just whenA is one of the 2n21 charges listed
along with A in the brackets, but also ifA is one of the
remaining U(n) charges, by virture of the explicit commuta
tor with N5H/v appearing on the RHS of Eqs.~158! and
~157!. The classical limit of Eq.~158! is Eq. ~39!, of course.

The nondiagonal operatorsNii 11 do not all commute
among themselves nor with all theNj , but their non-Abelian
properties are encountered in the above Jordan and Na
products in a minimal way. Only adjacent entries in the l
N12,N23,N34, . . . ,Nn21n fail to commute. Also in the list of
2n21 generators within the original QNB, eachNj fails to
commute only with the adjacentNj 21 j andNj j 11. Such a list
of invariants constitutes a ‘‘Hamiltonian path’’ through th
algebra.14

Proof. Linearity in each argument and total antisymme
of the Nambu brackets allow us to replace any one of theNi
by the sumN. ReplaceNn→N, hence obtain

@A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,Nn#

5@A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,N#. ~159!

13Analogously to the classical case, the nondiagonal charges
not hermitian. But the proof leading to Eq.~158! also goes through
if nondiagonal charges have their subscripts transposed. This al
replacing Nii 11 with Hermitian or anti-Hermitian combination
Nii 116Ni 11i in the LHS 2n-brackets, to obtain the alternative lin
ear combinationsNii 117Ni 11i in the GJP on the RHS of Eq.~158!.

14There are other Hamiltonian paths through the algebra. As
viously mentioned in the case of CNBs, a different set of 2n21
invariants which leads to an equivalentreductio ad dimidiumcan be
obtained just by taking an arbitrarily ordered list of the mutua
commuting Ni and then intercalating nondiagonal generators
match adjacent indices on theNi . That is, for any permutation o
the indices $s1 , . . . ,sn%, we have: @A,Ns1

,Ns1s2
,Ns2

,Ns2s3
,

Ns3
, . . . ,Nsn21

, Nsn21sn
,Nsn

] 5\n21$@A,N#,Ns1s2
, Ns2s3

, . . . ,
Nsn21sn

%5\n21@$ f ,Ns1s2
,Ns2s3

, . . . ,Nsn21sn
%,N#.
1-20
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Now, since @N,Ni j #50, the commutator resolution of th
2n-brackets implies thatN must appear locked in a commu
tator withA and thereforeA cannot appear in any other com
mutator. But thenN1 commutes with all the remaining fre
Ni j exceptN12. So N1 must be locked in@N1 ,N12#. Con-
tinuing in this way,N2 must be locked in@N2 ,N23#, etc.,
until finally Nn21 is locked in@Nn21 ,Nn21n#. Thus, all 2n
entries have been paired and locked in the indicatedn com-
mutators, i.e., they are all zipped-up. Moreover, thesen com-
mutators can and will appear as products ordered in aln!
possible ways with coefficients11 since interchanging a
pair of commutators requires interchanging two pairs of
original entries in the brackets. We conclude that

@A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,Nn#

5$@A,N#,@N1 ,N12,#, . . . ,@Nn21 ,Nn21n#%. ~160!

Now all the paired Ni j commutators evaluate a
@Ni 21 ,Ni 21i #5\Ni 21i , so we have

@A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,Nn#

5\n21$@A,N#,N12, . . . ,Nn21n%. ~161!

Finally the commutator withN may be performed either be
fore or after the Jordan product ofA with all theNi 21i , since
again@N,Ni j #50. Hence,

$@A,N#,N12, . . . ,Nn21n%

5@$A,N12, . . . ,Nn21n%,N#. QED ~162!

In analogy with the classical situation, the quantum inva
ants which are in involution@i.e., the Cartan subalgebra o
u(n)] are separated out of the QNB into a single commuta
involving their sum, the oscillator Hamiltonian, while th
invariants which do not commute@n21 of them, corre-
sponding in number to the rank of SU(n)] are swept into a
generalized Jordan product. Thus, we have been led
more complicated Jordan-Kurosh eigenvalue problem
u(n) invariant dynamics, as the entwined effect of seve
mutually noncommutingNi j s. The individualNi j may not be
diagonalized simultaneously, so it may not be obvious w
the general formalism of projection operators will lead to
this case, as compared to Eq.~133! et seq., but in fact it can
be carried through by rearranging the terms in the Jor
product, as we shall explain.

Our QNB description of time evolution for isotropi
quantum oscillators therefore becomes

v@A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,Nn#

5 i\nH dA

dt
,N12, . . . ,Nn21nJ , ~163!

whose classical limit is precisely Eq.~44!. This result en-
codes both dynamical time scales and, in higher orders o\,
group rotation terms, as a consequence of the genera
Jordan eigenvalue problem involving noncommuting e
ments,N12, . . . ,Nn21n .
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The specific oscillator realization of U(3) explicates th
last point. The RHS of Eq.~163! becomes

H dA

dt
,N12,N23J 53H ~N21 1

2 \!N13,
dA

dt J 1 1
2 \FN13,

dA

dt G
1F FN23,

dA

dt G ,N12G . ~164!

We have rearranged terms so as to produce just a sim
Jordan product~anticommutator!, not a generalized one, an
rotations of the time derivative. This leads to a Jordan sp
tral problem involving only a commutative product,N2N13
5N13N2, to set the dynamical time scales for the vario
invariant sectors of the theory. The additional rotation ter
in Eq. ~164! are similar to those encountered previously
the SU(2) examples,~138! and ~139!, with a notable differ-
ence: The rotation is performed ondA/dt, not or A. As in
those previous SU(2) cases, however, the rotations
higher order in\ than the anticommutator term, and so th
drop out of the classical limit. Decompositions similar to E
~164! apply to all the otherU(n) cases described by Eq
~163!, as can be seen from the list of operators in the GJP
that equation, by noting that only adjacentNii 11elements in
the list fail to commute.

It should also be apparent from the form of Eq.~164! that
one cannot simply divide the LHS byN12N23 and then na-
ively sweep the (N12N23)

21 factor on the RHS into a loga
rithm. This is permitted in the classical limit, as in Eq.~45!,
but operators are not as easily manipulated on Hilbert sp
Perhaps it is useful to think of this as a problem of imp
menting scale transformations in the generalized Jord
Kurosh algebra context, but here the rotation terms com
cate the problem. These terms also complicate the issu
the quantum bracket’s kernel, although that issue for just
first RHS term in Eq.~164! is the familiar one for Jordan
algebras.

The result~163! helps to clarify why the Leibniz rules fai
when time evolution is expressed using QNBs for the isot
pic oscillator, for here this failure has been linked to t
intervention of a Jordan product involving noncommuti
invariants. The Leibniz failure can be summarized in deriv
tors. For the U(n) case,

~A,AuN1 ,N12,N2 ,N23, . . . ,Nn21 ,Nn21n ,Nn!

5\n21@$AA,N12,N23, . . . ,Nn21n%,N#

2\n21A@$A,N12,N23, . . . ,Nn21n%,N#

2\n21@$A,N12,N23, . . . ,Nn21n%,N#A. ~165!

For U(2), this reduces to

~A,AuN1 ,N12,N2!5\@N,A#@N12,A#2\@N12,A#@N,A#.

~166!

In the classical limit, the derivator vanishes, as expected
e. SO(n11) and quantum particles on n-spheres. For a

quantum particle moving freely on the surface of
n-sphere, it is a delicate matter to express the quan
1-21
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so(n11) charges in terms of the canonical coordinates
momenta, but it can be done~cf. the discussion in@6#, and
references cited therein!. The quantum version of the class
cal PB algebra is then obtained without any modification

@Pa ,Pb#5 i\Lab ,

@Lab ,Pc#5 i\~dacPb2dbcPa!,

@Lab ,Lcd#5 i\~Lacdbd2Laddbc2Lbcdad1Lbddac!.
~167!

Hence, the symmetric Hamiltonian has the same quadr
form as the classical expression~49!. So a natural choice fo
the QNB involves the same set of 2n21 invariants as se
lected in the classical case:@A,P1 ,L12,P2 ,L23,
P3 , . . . ,Pn21 ,Ln21n ,Pn#.

The QNB results in an entwined time derivative, wi
attendant dynamical time scales and quantum rotation te

1

~ i\!nn
@A,P1 ,L12,P2 ,L23,P3 , . . . ,Pn21 ,Ln21n ,Pn#

5~21!n21H P2 ,P3 , . . . ,Pn21 ,
dA

dt J
1quantum rotation terms, ~168!

where i\dA/dt5@A,H#. As in the previous SU(2) and
U(n) quantum examples, the operator entwinement on
RHS is not trivially eliminated through simple logarithms,
it is in the classical situation in going from Eqs.~48! to ~50!,
but leads to Jordan-Kurosh spectral problems on the Hil
space of the system. The kernel of the quantum bracke
similarly impacted.

If one of theP’s or L ’s in the 2n-brackets of Eq.~168!
were replaced byH, the occurrence of an entwined tim
derivative would be manifest@see Eq.~177! below for the
3-sphere case#. Otherwise, with the invariants as chosen, it
laborious to obtain@A,H# by direct calculation. Likewise
the explicit form of the quantum rotation terms in Eq.~168!,
for generaln, are laboriously obtained by direct calculatio
and will be given elsewhere. They may be construc
through an embedding of the orthogonal group into the u
tary group treated previously. Suffice it here to say that th
are higher order in\, as expected, and to consider the ca
of the 3-sphere, for comparison to the chiral charge meth
given below.

For the 3-sphere, it is convenient to define the usual du
~sum repeated indices!,

Li5
1
2 « i jkL jk . ~169!

Then, the algebra becomes the well known@compare to Eqs.
~53! and ~54!#

@Li ,L j #5 i\« i jkLk , @Li ,Pj #5 i\« i jk Pk ,

@Pi ,Pj #5 i\« i jkLk , ~170!
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and the group invariant Hamiltonian isH5 1
2 (Pi Pi1LiLi).

By direct calculation, we then obtain@cf. third RHS line in
Eq. ~87!, and also recall for a particle on the 3-sphere,Li Pi
50]

@A,L1 ,L2 ,P1 ,P2 ,P3#53i\3H dA

dt
,P3J 23\2$@A,Li Pi #,L3%

1 1
4 \2(

i
~@@@A,Li2Pi #,Li2Pi #,L31P3#

2@@@A,Li1Pi #,Li1Pi #,L32P3# !. ~171!

Once again, the quantum rotation terms represent hig
order corrections, in powers of\, corresponding to group
rotations ofA. For example, ifA is the 3-sphere bilinear

Aab[~La1Pa!~Lb2Pb!, ~172!

thendAab /dt50 for a particle moving freely on the surfac
of the sphere, but the corresponding quantum group rota
induced by the 3-sphere 6-brackets isnot zero. The 6 brack-
ets reduce entirely to those quantum rotation terms. Exp
itly, we find

@Aab ,P1 ,L3 ,P2 ,L1 ,P3#54i\5(
c

~«b2cAac2«a2cAcb!.

~173!

As in all previous cases, the quantum rotations disappea
the classical limit

lim
\→0

@Aab ,P1 ,L3 ,P2 ,L1 ,P3#/\350. ~174!

f. SO(4)5SU(2)3SU(2) as another special case. We
consider this particular example in more detail, as a bridg
general chiral models, choosing bracket elements that exh
dynamical time scales both with and without group rotatio
UseLi andRi for the mutually commuting su(2) charges:

@Li ,L j #5 i\« i jkLk , @Ri ,Rj #5 i\« i jkRk , @Li ,Rj #50.

~175!

@Again, compare to Eqs.~53! and ~54! and note the normal-
ization here differs from that used earlier:Li522Li , Ri5
22Ri .] Define the usual quadratic Casimir invariants for t
left and right algebras,

I L5(
i

L i
2 , I R5(

i
Ri

2 . ~176!

Then, for a Hamiltonian of the formH[F(I L ,I R), whereF
is any function of the left and right Casimir invariants, w
find

@A,H,R1 ,R2 ,L1 ,L2#5~ i\!2$@A,H#,L3 ,R3%

5~ i\!2@$A,L3 ,R3%,H#. ~177!
1-22
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This is the quantum analog of the classical result in Eq.~56!.
Aside from trivial normalization factors, the difference lie
in the particular ordering of operators in the quantum expr
sion. Physically, Eq.~177! is simply time evolution gener
ated by the Hamiltonian, with the Jordan-Kurosh, simul
neous eigenvalues ofL3 and R3 setting the time scales fo
the various sectors of the theory. In particular, this is true
H}I L or H}I R , as is relevant for a quantum particle movin
freely on the 3-sphere.

The dynamical time scale structure produced by th
quantum 6-brackets are a simple extension of the struc
found previously for the SU(2) example. The Jordan-Kuro
eigenvaluess are now defined by

$As ,L3 ,R3%5sAs . ~178!

A complete set of operators consists of all doubly projec
eigenoperatorsAl1r1 ,l2r2

, where

L3Al1r1 ,l2r2
5l1Al1r1 ,l2r2

, Al1r1 ,l2r2
L35l2Al1r1 ,l2r2

,

R3Al1r1 ,l2r2
5r1Al1r1 ,l2r2

, Al1r1 ,l2r2
R35r2Al1r1 ,l2r2

.

~179!

Hence,$A,L3 ,R3%5s12A, with

s1252l1r11l1r21r1l212l2r2 , ~180!

since

$A,L3 ,R3%5$L3 ,R3%A1L3AR31R3AL31A$L3 ,R3%.

~181!

So the time scales for the various sectors of the theory are
jointly by the eigenvalues ofL3 andR3.

The simple Leibniz rule for genericA andA, that would
equate@AA,H,R1 ,R2 ,L1 ,L2# with A@A,H,R1 ,R2 ,L1 ,L2#
1@A,H,R1 ,R2 ,L1 ,L2#A, will fail for products
Al1r1 ,l2r2

Al2r2 ,l3r3
, unless

s125s235s13. ~182!

There are no higher-order quantum group rotation term
this particular case, due to our choice for the invariants in
brackets@A,H,R1 ,R2 ,L1 ,L2#. The more general situation i
revealed by a different choice, as follows.

g. 3-sphere chiral 6-brackets. We take all five of the fixed
elements in the 6-brackets to be charges in the su
3su(2) algebra, and not Casimir invariants, to find

@A,L1 ,L2 ,L3 ,R1 ,R2#5
3

2
~ i\!2@$A,R3%,I L#

1
1

2
~ i\!2(

i
@@@A,Li #,Li #R3#,

~183!

or, equivalently,
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@A,R1 ,R2 ,R3 ,L1 ,L2#5
3

2
~ i\!2@$A,L3%,I R#

1
1

2
~ i\!2(

i
@@@A,Ri #,Ri #L3#. ~184!

The first terms~single commutators! on the RHSs of Eqs.
~183! and ~184! are inherentlyO(\3), and give scaled time
derivatives, while the second terms~triple commutators! are
O(\5), and give additional group rotations. Perhaps th
results may be interpreted as groupcovariant Hamiltonian
flows, with ‘‘quantum connections’’ given as the triple com
mutator, higher-order effects in\. Note the LHS of Eq.
~183! manifestly vanishes whenA is one ofL1 , L2 , L3 , R1,
or R2, while the RHS manifestly vanishes for the remaini
choiceA5R3, as well asR1 andR2. Similarly, the RHS of
Eq. ~184! manifestly vanishes forA5L j , j 51, 2, 3, includ-
ing the one case excepted by the LHS of that equation.

We may add or subtract Eqs.~183! and ~184! to gain
L↔R symmetry between left- and right-hand sides, but
resulting quantum expressions do not permit easy con
sions into logarithms, as in the classical case@cf. Eq. ~59!#.
Nonetheless, for the free particle on the 3-sphere, withH
52I L52I R , we may write the sum and difference as

@A,L1 ,L2 ,R36L3 ,R1 ,R2#

5
23i\3

4 H dA

dt
,L36R3J

1
1

2
~ i\!2(

i
~@@@A,Ri #,Ri #,L3#

6@@@A,Li #,Li #,R3# !. ~185!

This is the by-now-familiar form, consisting of an entwine
time derivative and group rotations.

As a simple example to isolate and accentuate the gr
rotation effects, takeA to be any bilinearAab[LaRb of spe-
cific left and right charges. Since commutators are inde
derivations, all functions of the six possibleLa and Rb
charges commute with the Casimir invariants, so the fi
terms on the RHSs of Eqs.~183! and ~184! vanish for A
5Aab ~i.e.,Aab for a particle moving freely on the surface o
a 3-sphere has no time derivatives!. The second terms on th
RHSs of Eqs.~183! and~184! do not vanish forA5Aab but
are just rotations of theLa and Rb charges, respectively
about thez axis:

(
i

@@@Aab ,Li #,Li #,R3#52i\3(
c

«b3cAac ,

(
i

@@@Aab ,Ri #,Ri #,L3#52i\3 (
c51,2,3

«a3cAcb . ~186!
1-23
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So, for this particular example,

@Aab ,L1 ,L2 ,L3 ,R1 ,R2#52 i\5(
c

«b3cAac ,

@Aab ,R1 ,R2 ,R3 ,L1 ,L2#52 i\5(
c

«a3cAcb . ~187!

Let us establish this result in detail by proceeding from
SU(2)3SU(2) chiral form of thereductio ad dimidium,
namely,

@A,L1 ,L2 ,L3 ,R1 ,R2#5~ i\!2(
j

$@A,L j #,L j ,R3%.

~188!

This enables us to compute how the bilinear is transform
by the 6-brackets. First

@LaRb ,L1 ,L2 ,L3 ,R1 ,R2#5~ i\!2(
j

$@LaRb ,L j #,L j ,R3%

5~ i\!3(
j ,k

«a jk$LkRb ,L j ,R3%.

~189!

But then

$LkRb ,L j ,R3%5LkRb$L j ,R3%1L j$LkRb ,R3%

1R3$LkRb ,L j%

52LkL jRbR31L jLk$Rb ,R3%

1$Lk ,L j%R3Rb , ~190!

so, summing repeated indices,

«a jk$LkRb ,L j ,R3%5 i\«a jk«k jmLmS RbR32
1

2
$Rb ,R3% D

5
1

2
~ i\!2«a jk«k jmLm«b3cRc

5\2LaRc«b3c . ~191!

This confirms by direct calculation that the chosen brack
do not just produce entwined time derivatives, but mo
elaborately, the brackets combine entwineddA/dt with in-
finitesimal group rotations ofA. Since group rotations ar
symmetries of the system’s dynamics, this is not an inc
sistent combination~cf. covariant derivatives in Yang-Mills
theory!.

h. Quantum G3G chiral particles. Consider next models
whose dynamics are invariant under chiral groups,G3G.
For example, a particle moving freely on the group manifo
is of this type. Letn be the dimension of the groupG, and
write the charge algebra underlying the groupG3G as

@Li ,L j #5 i\ f i jkLk , @Ri ,Rj #5 i\ f i jkRk , @Li ,Rj #50.
~192!
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Then for oddn[112s, with sums over repeated indice
understood to run from 1 ton,

@A,L1 , . . . ,Ln ,R1 , . . . ,Rn21#

5
1

n! ~n21!!
« i 1 . . . i n

« j i . . . j n21n

3@A,Li 1
, . . . ,Li n

,Rj 1
, . . . ,Rj n21

#

5Kn« i 1 . . . i n
« j i . . . j n21n$@A,Li 1

#,@Li 2
,Li 3

#, . . . ,

3@Li n21
,Li n

#,@Rj 1
,Rj 2

#, . . . ,@Rj n22
,Rj n21

#%,

~193!

where Kn5@4s(s!) 2#21 @the same numerical combinator
factor introduced earlier in the classical example~72!# incor-
porates the number of equivalent ways to obtain the list
commutators in the generalized Jordan products as writte15

So

@A,L1 , . . . ,Ln ,R1 , . . . ,Rn21#

5Kn~ i\!n21« i 1 . . . i n
« j i . . . j n21n~ f i 2i 3k1

. . . f i n21i nks
!

3~ f j 1 j 2m1
. . . f j n22 j n21ms

!

3$@A,Li 1
#,Lk1

, . . . ,Lks
,Rm1

, . . . ,Rms
%. ~194!

This leads to some mixed symmetry tensors that are fam
from classical invariant theory for Lie groups,

tn$m1 . . . ms%
[« j 1 . . . j n21nf j 1 j 2m1

. . . f j n22 j n21ms
. ~195!

Need has not dictated obtaining elegant expressions for t
tensors, except in special cases, but undoubtedly they ex16

In terms of these, the reduction becomes

@A,L1 , . . . ,Ln ,R1 , . . . ,Rn21#

5Kn~ i\!n21t i 1$k1 . . . ks%
tn$m1 . . . ms%

3$@A,Li 1
#,Lk1

, . . . ,Lks
,Rm1

, . . . ,Rms
%. ~196!

Results for evenn are similar, only in that case the arbitrar
A must be locked in a commutator with anR.

As in the classical case~70!, a somewhat simpler choic
for the invariants in the maximal brackets requires us
compute~note the range of the sums!

15The number of ways of choosing then commutators in Eq.~193!
is n(n22)(n24) . . . (1)3(n22)(n24) . . . (1), so Kn5@n(n
22)(n24) . . . (1)3(n22)(n24) . . . (1)#/n!(n21)!.

16S. Meshkov has suggested that similar tensors and invari
constructed from them appear in nuclear shell theory.
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@A,F~ I L ,I R!,L1 , . . . ,Ln21 ,R1 , . . . ,Rn21#

5
1

~n21!! ~n21!! (
all i , j 51

n21

« i 1 . . . i n21
« j i . . . j n21n

3@A,F~ I L ,I R!,Li 1
, . . . ,Li n21

,Rj 1
, . . . ,Rj n21

#,

~197!

whereF(I L ,I R) is any function of the left and right Casim
invariants. The RHS here vanishes for evenn, so again we
take oddn, sayn5112s. Then by the commutator resolu
tion, since@F(I L ,I R),Li #505@F(I L ,I R),Ri #, we can write

@A,F~ I L ,I R!,L1 , . . . ,Ln21 ,R1 , . . . ,Rn21#

5Kn (
all i , j 51

n21

« i 1 . . . i n21
« j i . . . j n21n$@A,F~ I L ,I R!#,

3@Li 1
,Li 2

#, . . . ,@Li n22
,Li n21

#,@Rj 1
,Rj 2

#, . . . ,

3@Rj n22
,Rj n21

#%, ~198!

where again 1/Kn54s(s!) 2. So, for a Hamiltonian of the
form H5F(I L ,I R), we have

@A,H,L1 , . . . ,Ln21 ,R1 , . . . ,Rn21#

5
1

~s! !2
~24\2!s (

all k,m51

n

s$k1 . . . ks%
s$m1 . . . ms%

3$@A,H#,Lk1
, . . . ,Lks

,Rm1
, . . . ,Rms

%, ~199!

with 2s[n21 and the completely symmetric tens
s$k1 . . . ks%

defined as in the classical situation Eq.~73!. Note
the range of the sum in Eq.~73! is truncated from that in Eq
~199!, although the sum may be trivially extended just
adding a fixed extra index to the Levi-Civita symbol:

s$k1 . . . ks%
5 (

all i 51

n

«ni1 . . . i n21
f i 2i 3k1

. . . f i n22i n21ks
.

~200!

The commutator ofA with the function of Casimir invari-
ants can be computed after the generalized Jordan pro
~GJP!, again since@H,Li #505@H,Ri #. So, with the sums
over repeatedks andms understood,
08500
uct

@A,H,L1 , . . . ,Ln21 ,R1 , . . . ,Rn21#

5Kn~ i\!n21s$k1 . . . ks%
s$m1 . . . ms%

@$A,Lk1
, . . . ,Lks

,

3Rm1
, . . . ,Rms

%,H#. ~201!

The GJP spectral equation,

lAl1higher-order quantum rotation terms

5Kn~ i\!n21s$k1 . . . ks%
s$m1 . . . ms%

3$Al ,Lk1
, . . . ,Lks

,Rm1
, . . . ,Rms

%, ~202!

must now be solved to find the time scalesl that govern the
QNB generated time evolution,

i\l
d

dt
Al1higher-order quantum rotation terms5l@Al ,H#

5@Al ,H,L1 , . . . ,Ln21 ,R1 , . . . ,Rn21#. ~203!

All this extends in a straightforward way to the algebr
of symmetry groups involving arbitrary numbers of facto
Rather than pursue that generalization, however, we fo
instead on unitary factors, where thet and s tensors sim-
plify. For a touch of variety, we take the left and right grou
factors to be different unitary groups.

i. U (n)3U(m) models. For systems with U(n)3U(m)
group invariant dynamics, with the proper choice of cha
basis, the structure-constant-weighted sums of the prev
formulas can be made to reduce to single terms as in the
of the previous U(n) example. We take the oscillator bas
for each of the algebras, so that the charges obey the c
mutators

@Ni j ,Nkl#5\~Nil d jk2Nk jd i l !,

@Mab ,Mcd#5\~Maddbc2Mcbdad!, @Ni j ,Mab#50,
~204!

for i , j ,k,l 51, . . . ,n, anda,b,c,d51, . . . ,m. As before, we
denote the mutually commuting diagonal charges asNj j
5Nj and Maa5Ma , with ~central charge! sums N
5( j 51

n Nj j , M5(a51
m Maa . Then, as for the single U(n)

results, we have either
h the

ll as the
Hamilto-
@A,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,Nn ,M1 ,M12,M2 , . . . ,Mm21 ,Mm21m#

5\n1m22$@A,N#,N12, . . . ,Nn21n ,M12, . . . ,Mm21m%5\n1m22@$A,N12, . . . ,Nn21n ,M12, . . . ,Mm21m%,N#,

~205!

or similarly with M↔N, as well as other such relations that follow from choosing different Hamiltonian paths throug
algebras.

Replacement of one of the diagonal charges with an arbitrary function of the left and right Casimir invariants, as we
two central sums, leads to similar results. These may now be used to discuss time development for systems whose
nians are of the form
1-25
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H5F~N,M ,I N ,I M !, ~206!

for which

@A,H,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,M1 ,M12,M2 , . . . ,Mm21 ,Mm21m#

5\n1m22@$A,N12, . . . ,Nn21n ,M12, . . . ,Mm21m%,H#5\n1m22$@A,H#,N12, . . . ,Nn21n ,M12, . . . ,Mm21m%

5 i\n1m21H dA

dt
,N12, . . . ,Nn21n ,M12, . . . ,Mm21mJ . ~207!
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The effect of the remaining, noncommuting charges in
generalized Jordan product is once again to set time sc
for the various invariant sectors of the theory. So, if

$As ,N12, . . . ,Nn21n ,M12, . . . ,Mm21m%

5sAs1higher-order quantum rotation terms,

~208!

then

i\n1m21s
dAs

dt

5@As ,H,N1 ,N12,N2 , . . . ,Nn21 ,Nn21n ,M1 ,M12,

3M2 , . . . ,Mm21 ,Mm21m#

1higher-order quantum rotation terms, ~209!

with quite elaborate sums of such terms describing the t
evolution of general operators.

All this extends to the algebras of symmetry groups
volving arbitrary numbers of unitary group factors.

C. Summary table

For convenience, we summarize the results of all the p
vious sections as a table of the key formulas~see Table I!.

An empirical methodology suggested by the above
amples argues for the following check list in quantizing
general classical system of the type~24!. If V is trivial ~i.e.,
numerical!, the QNB corresponding to the CNB involved is
prime candidate for an ‘‘exceptional’’ derivation quantiz
tion, provided the derivation property checks~and thus the

TABLE I. Key formulas.

Model
symmetry

Classical
dynamics

Quantum
dynamics

SO(3) ~31! ~130! ~131!
Any Lie ~4-brackets sum! ~35! ~150!
U(N) ~oscillators! ~44! ~163!
SO(N11) ~48! ~168!
SO(4)5SU(2)^ SU(2) ~56! ~57!

~58! ~59!
~177! ~183!
~184! ~185!

G^ G ~71! ~75! ~201! ~207!
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EFI!. In the generic case, ifV is a function of the invariants
manipulation of the classical expression may be useful
result in a simplerV and in new CNB entries which would
still combine into the Hamiltonian in the PB resolution. Th
corresponding QNB would then be expected to yield the
twined structures to be studied as above, with the Ham
tonian appearing as an entwined commutator~time deriva-
tive!, and with the respective time scale eigenvalue proble
to be solved.

IV. CONCLUSIONS

In this paper, we have demonstrated and illustra
through simple, explicit examples, how Nambu brackets p
vide a consistent, elegant description, both classically
quantum mechanically, especially of superintegrable syst
using even QNBs. This description can be equivalent to c
sical and quantum Hamiltonian mechanics, but it is broa
in its conceptualizations and may have more possible u
In particular, we have explained in detail how QNBs a
consistent, after all, given due consideration to multiple ti
scales set by invariants entwining the time derivatives, a
how reputed inconsistencies have instead involved uns
able and untenable conditions. We have also emphasized
ditional complications that distinguish odd QNBs.

We believe the physical interpretations of entwined tim
derivatives, with their dynamical time scales, and group
tations, in the general situation, explain the perceived fail
of the classical Leibniz rules and the classical FI in a tra
parent way, and are the only ingredients required for a s
cessful non-Abelian quantum implementation of the m
general Nambu brackets as descriptions of dynamics.
haps this approach is equivalent to the Abelian deforma
approach@14#, but that has not been shown. However, ul
mately it should not be necessary to argue, physically, tha
the Abelian deformation approach to quantization of Nam
brackets is indeed logically complete and consistent, the
must give specific results equivalent to the more traditio
noncommutative operator approach given here. There is
ter all, not very much freedom in the quantization of fr
particles and simple harmonic oscillators.

Moreover, Hanlon and Wachs@39# announced the resul
that even QNB algebras~designated by them as ‘‘Liek alge-
bras’’! are ‘‘Koszul’’ ~also see@41#!, and therefore have dual
which are commutative and totally associative. Is it possi
1-26
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that the Abelian deformation quantization of Nambu bra
etss is precisely this dual, and is in that sense equiva
mathematically to the non-Abelian structures we have d
cussed?

Other such mathematical issues and areas for fur
study are raised by our analysis, such as the following
complete mathematical classification of Jordan-Kurosh
genvalue problems; a corresponding treatment of quan
rotation terms; a study of both classical and quantum to
logical effects in terms of Nambu brackets; and the beha
of the brackets in the large N limit~as one way to obtain a
field theory!.

There are also several open avenues for physical app
tions, the most promising involving membranes and ot
extended objects. In that regard, given the quantum
chotomy of even and odd brackets, it would appear that
tended objects with alternate-dimensional world volumes
more amenable to QNBs. While volume preserving diffe
morphisms are based on classical geometrical concepts,
haps relying too strongly on associativity, their ultimate ge
eralization to noncommutative geometries, and their use
field, string, and membrane theories, should be possible.
hope the developments in this paper contribute towa
completion of such enterprises.
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APPENDIX: FORMAL DIVISION

We are often interested in solving nonlinear algebr
equations in both Lie and special Jordan algebras. Thi
hampered by the fact that these are not division rings.

Nevertheless, there is aformal series solution to construc
inverses in both special Jordan and Lie algebras as conta
in an associative embedding algebraA. For the former,
consider17

a+b5b+a[ab1ba5c. ~A1!

Supposeb and c are given. We wish to solve fora. We
assume the inverseb21 exists in the enveloping algebra. S
we seek to construct either rightbR

21 or left bL
21 inverses

under Jordan multiplication+, so thata5c+bR
215bL

21+c. A
formal series solution forbR

21 is obtained from the inverse
b21 in the enveloping algebra by writinga5cb212bab21

and iterating. Thus,

17Jordan would include a factor of 1/2 in the definition of+.
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a5cb212bcb221b2ab225S (
n50

`

~21!nbncb2nD b21

[c+bR
21 . ~A2!

Similarly, for the left inversea5b21c2b21ab, so

a5b21c2b22cb1b22ab25b21S (
n50

`

~21!nb2ncbnD
[bL

21+c. ~A3!

Requiring formally that these two inverses give the sama
leads to an expression that involves only Jordan product
elements from the enveloping algebra,

a5
1

2 (
n50

`

~21!n~bncb2n211b2n21cbn!

5
1

2 (
n50

`

~21!n~bncbn!+b22n21. ~A4!

However, it involves an infinite number of such produc
This raises convergence issues, even whenb21 exists in the
enveloping algebra.

As the simplest possible illustration of the convergen
issues, supposeb and c commute,bc5cb. Then, either of
the above series for left or right inverses gives an ill-defin
result, a5b21c(n50

` (21)n. Evidently, the proper way
to interpret the~Borel summable! series in this case is
(n50

` (21)n51/@12(21)#5 1
2 , to produce the solution to

the original equation whenab5ba as well asbc5cb.
Namely, 2ab5c anda5 1

2 b21c. Nevertheless, convergenc
is a problem.

For the Lie case, the same formal approach may be c
sidered. Let

aLb52bLa[ab2ba5c. ~A5!

Supposeb andc are given and solve fora. That is, construct
either rightbR

21 or left bL
21 inverses under Lie multiplication

L so thata5cLbR
2152bL

21Lc. Again, these are given
by formal series solutions obtained by writinga5cb21

1bab21 and iterating. Thus,

a5cb211bcb221b2ab225S (
n50

`

bncb2nD b21

[cLbR
21 . ~A6!

Similarly, for the left inversea52b21c1b21ab, so

a52b21c2b22cb1b22ab252b21S (
n50

`

b2ncbnD
[2bL

21Lc. ~A7!
1-27
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Requiring that these two inverses give the samea leads to an
expression that involves only Lie products of elements fr
the enveloping algebra,

a5
1

2 (
n50

`

~bncb2n212b2n21cbn!

[
1

2 (
n50

`

~bncbn!Lb22n21. ~A8!

But, once more, it involves an infinite number of such pro
ucts. Again this raises convergence issues, even whenb21

exists in the enveloping algebra.
As an illustration of convergence issues in this case,

low Wigner’s counsel and take 232 matrices,b5sy5b21

and c52isz . Then, for evenn, (bncbn)Lb22n215@c,b#
54sx ; while for odd n, (bncbn)Lb22n215@bcb,b#5
2@c,b#524sx . Again, the series gives an ill-defined r
sult, a5 1

2 4sx(n50
` (21)n. This shows clearly that conver

gence is again a problem. As before, the proper way to
terpret the sum in this particular example is(n50

` (21)n

5 1
2 , to produce the obvious solution to the original equati

a5sx .
The failed convergence for these series is accompanie

a basic problem: divisors of zero. Even whenb is invertible
in the enveloping algebra, so that the only solution ofab
50 is a50, this doesnot hold for the Jordan or Lie prod
ucts. The Lie case is most familiar and easily seen.aLb
50 always has an infinite number of nonvanishing solutio
aÞ0. Namely,a5kb for any parameterkÞ0. Moreover,
there can and will be other independent solutions for high
dimensional enveloping algebras. That is to say, Lie algeb
are not division rings, even when they only involve comm
tators of invertible elements fromA. The same is true for the
Jordan case, in general. For instance, using the 232 matri-
ces as an example, again withb5sy , we havea+b50 for
ys

in
a

z,

-
n-
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a5ksz1lsx for any parametersk and l. So, as stressed
already, special Jordan algebras are not division rings—
even when they involve only anticommutators of invertib
elements fromA.

Perhaps one way to avoid these difficulties and place
formal series constructions on a firmer footing would
through regularizingdeformations of the algebras. This
works for the specific Jordan or Lie examples above, as
lustrations of the method. Rather than considering the Jor
or Lie products, we takeab1lba5c. ~This deformation
was actually analyzed in Jordan’s original paper@31#, before
he settled on thel51 case.! This yields a convergent serie
for the right inversebR

21 when ulu,1 and a convergent se
ries for the left inversebL

21 when ulu.1. For the right in-
verse, writea5cb212lbab21 and iterate. Thus

a5cb212lbcb221l2b2ab22

5S (
n50

`

~2l!nbncb2nD b21. ~A9!

For the simplest situation wherebc5cb, this gives

a5b21cS (
n50

`

~2l!nD 5b21c
1

11l
. ~A10!

Now the correct result emerges in the limitl→1, but strictly
speaking this isnot within the radius of convergence of th
series. The series must first be summed to obtain a mero
phic function, by analytic continuation, and the limit applie
to that function.

The same method works for the simple Lie example giv
above. Again, supposeb5sy5b21 and let c52isz . The
series for the right inverse now givesa5 1

2 4sx(n50
` ln

5@2/(12l)#sx . The limit l→21 converts both this solu
tion and the original equationab1lba5c into the Lie
problem of interestaLb5c.
’
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