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The classical and quantum features of Nambu mechanics are analyzed and fundamental issues are resolved.
The classical theory is reviewed and developed utilizing varied examples. The quantum theory is discussed in
a parallel presentation and illustrated with detailed specific cases. Quantization is carried out with standard
Hilbert space methods. With the proper physical interpretation, obtained by allowing for different time scales
on different invariant sectors of a theory, the resulting non-Abelian approach to quantum Nambu mechanics is
shown to be fully consistent.
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[. INTRODUCTION tures were either inconsistent or uninteresting, but he did not
advocate the position that the remaining possibilities were
a. A brief historical overviewNambu[1] introduced an untenable: Quantization was left as an open issue.

elegant generalization of the classical Hamiltonian formal- Unfortunately, subsequent unwarranted insistence on al-
ism by suggesting to supplant the Poisson braciess with gebraic structures ill suited to the solution of the relevant
3- or n-linear, fully antisymmetric brackets, the classical physics problems resulted in a widely held belief that quan-
Nambu bracketsCNB), a volume-element Jacobian determi- tization of Nambu mechanics was problematiespecially
nant in a higher-dimensional space. These brackets, involwwhen that quantization was formulated as a one-parameter
ing a dynamical quantity and two or more “Hamiltonians,” deformation of classical structures. In marked contrast to this
provide the time evolution of that quantity in a generalizationprevailing pessimism, several illustrative superintegrable
of Hamilton’s equations of motion for selected physical SYS-systems were quantized [6] in a phase-space framework,
tems. It was gradually realiz¢@—4] that Nambu brackets in  hoth without andwith the construction of quantum Nambu
phase space describe the generic classical evolution of aé'rackets(QNBs). However, the phase-space quantization uti-
systems with sufficiently many independent integrals of M0y, here, while most appropriate for comparing quantum
tion beyond thqse required for complete_ integrability of the;expressions with their classical limits, is still unfamiliar to
systems. That IS to say, all S.UCh “superlntegrgble SyStemsmany readers and will not be used in this paper. Here, the
[5] are automatically described by Nambu S mechamc. uantization of all systems will be carried out in a conven-
[6—8], whether or not one chpos_es to take cognlzance'of thi onal Hilbert space operator formalism.
alternate expression of their time development. This ap- It turns out[6] that all perceived difficulties in quantizing

proach to time evolution for supe_rinte_grable systems i%\Iambu mechanics may be traced mathematically to the al-
supplementary to the standard Hamiltonian dynamics evolu-

. ) " . gebraic inconsistencies inherent in selecting constraints in a
tion and provides additional tools for analyzing such Sys+
tems. Lhe. p0\|/tver of Nambu’s Tetthd IS ewdgnt :n mart1)|fest— pace structure which already provides full and consistent
INg and simultanéous accounting for a maximal NUMbEr Ob,q\yers  and with insufficient attention towards obtaining
the symmetries of these systems and in an efficient appllcas-

i f aloebrai thods to vield it thout d pecific answers compatible with those produced in the
lon ot algepraic methods to yield results even withou e'quantized Hamiltonian description of these systems. More-
tailed knowledge of their specific dynamics.

. . ver, the physics underlying these perceived difficulties is
As a bonus, the classical volume-preserving features o Py ying P

Nambu brackets suggest that they are useful for membra Igﬁliisand involves only basic principles in quantum me
theory[9]. There are in the literature several persuasive but '
inconclusive arguments that Nambu brackets are a natural
language for describing extended objects, for exarfiple-

op-down approach, with little regard to the correct phase-

20 1A few representative statements from the literature are the fol-
. . _ . lowing: “associated statistical mechanics and quantization are un-
In_ his orlglpal papef1], Nambu aIsp introduced operatqr likely” [21]; “a quantum generalization of these algebras is shown
versions of his brackets as tools to implement the quantizgy, o impossible.” and * ... the quantum analog of Nambu me-
tion of his approach to mechanics. He enumerated varioUghanics does not exis{22,23; “usual approaches to quantization
logical possibilities involving them, arguing that some struc-paye failed to give an appropriate solutio. . ” [24]; “ . . . direct
application of deformation quantization to Nambu-Poisson struc-
tures is not possiblel14]; “the quantization of Nambu brackets
*Electronic address: curtright@physics.miami.edu turns out to be a quite non trivial probleni25]; “this problem is
TElectronic address: zachos@hep.anl.gov still outstanding”[26].
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b. Evolution scales in quantum physi&ome physicists different from the usual Hamiltonian approach. A given clas-
might hold, without realizing it, the prejudice that continuoussical trajectory has fixed values for all invariants and hence
time evolution in quantum mechanics must always be formuwould have a fixed time scale in Nambu mechanics. Time
lated infinitesimally as a derivation. Accordingly, they im- development of any dynamical quantity along a single clas-
plicitly assumethe instantaneous temporal change in all dy-sjcal trajectory would therefore always be just a derivation,
namical variables is always given by nothing but a simplewith no possibility of mixing time scales. Quantum mechan-
derivative, so that for all products of linear operators ics, on the other hand, is more subtle, since the preparation

of a state may vyield a superposition of components from
. (1) different invariant sectors. Such superpositions will, in gen-
eral, involve multiple time scales in Nambu mechanics.

Technically, the various time scales arise in quantum

This assumption allows time development on physical H”'Namb mechanics as the entwined eigenvalues of aeneral-
bert spaces to be expressed algebraically in terms of commu- u ! : 'genvalu 9

tators with a Hamiltonian, since commutators are alsd2€d Jordan spectral problems, where selected invariants of
derivations? the model in question appear as operators in the spectral
equation. The resulting structure represents a new class of
[H,AB]=[H,A]B+A[H,B]. (2)  eigenvalue problems for mathematical physics. Fortunately,
_ _ _ _ solutions of this new class can be found using traditional
Evidently, this approach leads to the simplest possible formethods(All this is explained explicitly in the context of the
malism. But is it really necessary to make this assumptiofirst example of Sec. Il B.
and follow this approach? c. Related studies in mathematiddgebras which involve
_Itis not. Time evolution can also be expressed algebramyitilinear products have also been considered at various
ically using quantum Nambu brackets. These quantum brackjmes in the mathematical literature, partly as efforts to un-
ets are defined as totally antisymmetrized multilinear prodyerstand or generalize Jordan algebfa8—33 (cf. espe-
ucts of any number of linear operators acting on H|_Iber.tcia”y the “associator’, but more generally following Hig-
space. When QNBs are used to implement time evolution Nins' study in the mid 1950434—37. This eventually

quantum me(_:ha_nlcs, the r_esult |s_us_ualld3ta derivation, but culminated in the investigations of certain cohomology ques-
contains derivations entwined within more elaborate struc-

tures(although there are some interesting special exception&(l)ns’ by Schlesinger and Stash¢88], by Hanlon and
that are described in the following achs[39,40], and by Azcaraga, Izquierdo, Perelomov, and

This more general point of view towards time develop- Peez Bueno[41,42,1], that led to results most relevant to

ment can be arrived at just by realizing a physical ideaNambu's work.

When a system has a number of conserved quantities, it js d- Summary of material to follovAfter a few motiva-
possible to partition the system’s Hilbert space into invariantional remarks on the geometry of Hamiltonian flows in
sectors. Time evolution on those various sectors may then H1@se space, Sec. IIA, we describe the most important fea-
formulated using different time scales for the different tures of classical Nambu brackets, Sec. 1l B, with emphasis

sector$ The resulting expression of instantaneous change€" Practical, algebraic, evaluation methods. We delve into
in time is then not a derivation, in general, when acting on€Veral examples, Sec. I1C, to gain physical insight for the

the full Hilbert space and therefore is not given by a simpleclassical theory. _ ,

commutator. Remarkably, however, it often turns out to be e then give a parallel discussion of the quantum theory,

given compactly in terms of QNBs. Conversely, if QNBs areSec. lllA, so far as algebraic features and methods of evalu-
used to describe time development, they usually impose gifdtion are concerned. We define QNBs, as well as generalized

ferent time scales on different invariant sectors of a systenjordan products that naturally arise in conjunction with
[6]. QNBs, when the latter are resolved into products of commu-

Nevertheless, so long as the different time scales artators. We define derivators as measures of the failure of the

implemented in such a way as to produce evolving phasé.eibniz rule for QNBs and discuss Jacobi and fundamental

differences between nondegenerate energy eigenstates, théfgntities in a quantum setting. Then, we again turn to vari-
is no loss of information in this more general approach ta®YS examples, Sec. Il B, to illustrate both the elegance and

time evolution. In the classical limit, this method is not really Peculiarities of quantization. We deal with essentially the
same examples in both classical and quantum frameworks, as

a means of emphasizing the similarities and, more impor-
antly, delineating the differences between CNBs and QNBs.
operators have nexplicit time dependence, although it is an el- | € €xamples chosen are all models based on Lie symmetry
ementary exercise to relax this assumption. algebras: so(33su(2), so(4j su(2)xsu(2), sof), u(n),

3In fact, the choice of time variables in the different invariant U(N) < u(m), andgxg. o
sectors of a quantum theory is very broad. They need not be just We conclude by summarizing our results and by suggest-
multiples of one another, but could have complicated functionaling some topics for further study. An Appendix discusses the
dependencies, as discussed 27] and[18]. The closest classical formal solution of linear equations in Lie and Jordan alge-
counterpart of this is found in the general methochoglytictime  bras, with suggestions for techniques to bypass the effects of
recently exploited so effectively i28,29. divisors of zero.

BiAl LB
dt

d

°For simplicity we will assume, unless otherwise stated, that th
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\va| & bian which amounts to the classical Nambu bracket,
2 %

4
/ VI,

EEV'VAOC{?ilAEiliZH'iZNaiZIl' e {9i2N|2N,1

_ a(Alllv --'l|2N—1)
I(X1,P1,X2,P2, - Xn,PN)

()

wherev=(x,p) is the phase-space velocity, and the phase-
space gradients afé=(dy,d,). Evidently, the flow is sole-
noidal, V-v=0 (Liouville’s theorem[1]). In short, a super-
integrable system in phase spa@a hardly avoichaving its
classical evolution described by CNB3|.

FIG. 1. Some classical phase-space geometry. B. Properties of the classical brackets

A hurried reader may wish to consider only Secs. Il A and a. Definitions.For a system wittN degrees of freedom,

d hence a I¥-dimensional phase space, we define the
[IB through Eq.(10), Sec. Il C through Eq(35), Sec. IIlA and. .
through Eq.(102, and Sec. IIIB through Eq(153. This maximal classical Nambu brackeSNB) of rank 2N to be

abridged material contains our main points. the determinant

Il. CLASSICAL THEORY {ALA Aontng = Ponfe A
. 1,732y - - - /R2NSNB 19(X1ap1aX21p2"“’XN’pN)

= Eiliz"'izNgilAl. . 'aiZNAZN- (4)

We begin with a brief geometrical discussion of phase-
space dynamics, to motivate the definition of classical

Nambu brackets. We then describe properties of CNBs, Witr‘\'hese brackets are linear in their arguments, and completely

empha_lsis on p_ractical evaluation methods, inclgding .Var?ouﬁntisymmetric in them. It may be thought of as the Jacobian
recursion relations among the brackets and simplificationg y ,caq by transforming to new phase-space variaBles
that result from classical Lie symmetries being imposed ony, . «alements” in the brackets. As expected for such a Jaco-

the entries n the _brackets. We_ summarize the theory of thBian, two functionally dependent elements cause the brackets
fundamental identity and explain its subsidiary role. We ther}0 collapse to zero. So, in particular, adding to any element

go through several examples to gain physical insight for the,, 4 pitrary linear combination of the other elements will not
classical formalism. All the examples are based on system

. ; . (?hange the value of the brackets.
with Lie symmetries: so(3ysu(2), uf), so(4)=su(2) Odd-dimensional brackets are also defined identidally
Xsu(2), andgxg.

in an odd-dimensional space.
b. Recursion relationsThe simplest of these are immedi-
A. Phase-space geometry ate consequences of the properties of the totally antisymmet-

A Hamiltonian system witlN degrees of freedom iste- ¢ Levi-Civita symbols
grablein the Liouville sense if it ha® invariants in involu- IALA, - A i1 ik (f?Al) I(Ag,- - A

tion (globally defined and functionally independeand su-

perintegrable [5] if it has additional independent N21,22- .z (k=L)1\ 0z | Az, -7
conservation laws up to a maximum total number &f 2 S

—1 invariants. For a maximally superintegrable system, the vk (ﬁAjl) IAj, A
total multilinear cross product of theN2-1 local phase- (k=)' 9z, ) Wz, z)

space gradients of the invarian(®ach such gradient being )
perpendicular to its corresponding invariant isodliie al-
ways locally tangent to the classical trajectory. However, thes&= 1+ (k— 1) resolutions are not especially
The illustrated surfacedig. 1) are isoclines for two dif- germane to a phase-space discussion, since they reduce even
ferent invariants, respectivell; andl,. A particular trajec-  brackets into products of odd brackets.
tory lies along the intersection of these two surfaces. The More usefully, any maximal even rank CNB can also be
local phase-space tangewtto this trajectory at the point resolved into products of Poisson brackets. For example, for
depicted is given by the cross product of the local phasesystems with two degrees of freedom{A,B}pg
space gradients of the invarian(®ther possible trajectories = g(A,B)/d(x,,p;) + d(A,B)/d(x,,p,), and the 4-bracket
along thel ; surface are also shown as contours representingA,B,C,D}g=3(A,B,C,D)d(X1,p1,X2,P,) resolves &b
other values forl,, but the corresponding intersectirg
surfaces are not shown for other trajectopies.
Thus, in N-dimensional phase space, for any phase- “These PB resolutions are somewhat simpler than their quantum
space functiorA(x,p) with no explicit time dependence, the counterparts, to be given below in Sec. Ill A, since ordering of
convective motion is fully specified by a phase-space Jacgsroducts is not an issue here.
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{A.B,C,D}ng={A,B}ps{C.D}pg—{A,C}ps{B.D}ps

—{A,D}pg{C,B}pg (6)

in comportance with full antisymmetry under permutations

of A,B,C, andD. The general result for maximal rank\2
brackets for systems with a\2dimensional phase-spacé is

{ALA - Aon—1,AdNe

- SON9) AL deelAs A, )
- all (2857 perms ZNN' oo PBU Y o Moy SPB - - -
{01,009, ..., N
of the indices
{1,2,..., N}

()

X {A02N7 1!A0'2N}PB ’

where sgng¢)=(—1)"? with 7(o) the parity of the per-
mutation {oy,05, ...,00y}. The sum only gives (&
—1)!1'=(2N)!/(2NN!) distinct products of PBs on the right
hand sidg RHS), not (2N)!. Each such distinct product ap-
pears with net coefficient 1.

The proof of the relatioi7) is elementary. Both right- and
left-hand sidegLHS) of the expression are sums ofNth
degree monomials linear in theN2first-order partial deriva-
tives of each of thé\s. Both sides are totally antisymmetric
under permutations of théds. Hence, both sides are also

totally antisymmetric under interchanges of partial deriva-
tives. Thus, the two sides must be proportional. The only

issue left is the constant of proportionality. This is easily

determined to be 1, by comparing the coefficients of any

given term appearing on both sides of the equation, e.g
For similar relations to hold for submaximal even rank

Nambu brackets, these must first be defined. It is easiest to

just define submaximal even rank CNBs by their Poisson
brackets resolutions as in E):®

{A1.A2, - Asn—1.Aonine
sgr(o)
 (2n)ifemse 2™l {A‘Tl’A‘TZ}PB{A‘Ts'A%}PB' a

X{AUZH,llAu’n}PB! (8)

SThis is essentially a special case of Laplace’s theorem on th
general minor expansions of determinafté. Chap. 4 in[43]),

although it must be said that we have never seen it written, let alon

"

used, in exactly this form, either in treatises on determinants or i
textbooks on classical mechanics.

5This definition is consistent with the classical limits of quantum
*-brackets presented and discussed@h from which the same

PHYSICAL REVIEW D68, 085001 (2003

only here we allown<N. So defined, these submaximal
CNBs enter in further recursive expressions. For example,
for systems with three or more degrees of freedom,
{A,B}pg= d(A,B)/d(X1,p1) + I(A,B)I(Xz,p,) + I(A,B)/
d(X3,p3) + - -+, and a general 6-bracket expression resolves

{A1,A2,A3,A4,A5,Actne
={A1,Axtpe{As, A1, A5, Actns
—{A1,Azbpe{A2,As. A5, Astns
+{A1.Astpe{A2. A3, As, Agtns
—{A1.Astpe{A2, Az, Az, Astns
+{A1,Astpe{A2, Az, Az, Astns C)

with the 4-brackets resolvable into PBs as in E&). This
permits the building-up of higher even rank brackets pro-
ceeding from initial PBs involving all degrees of freedom.
The general recursion relation with thim22+(2n—2)
form is

{AliAZ! s !A2n—1!A2n}NB

2n—-1
={A1.A2}pelAs, .. AonineT ;3 (—1)!
X {ALA el Az, - AL A
AL AntpelAz, -

- Aantne
(10

' ’A2nfl}NB ’

and features 2—1 terms on the RHS. This recursive result
is equivalent to taking Eq(8) as a definition for B<2N
elements, as can be seen by substituting the PB resolutions of
the (2n—2) brackets on the RHS of E@L0). Similar rela-
tions obtain when the 12 elements in the CNB are parti-
tioned into sets of (28— 2k) and X elements, with suitable
antisymmetrization with respect to exchanges between the
two sets.

These results may be extended beyond maximal CNBs to
supermaximal brackets, in a useful way. All such super-
maximal classical brackets vanish, for the simple reason that
there are not enough independent partial derivatives to avoid
repeating columns of the implicit matrix whose determinant

fs under consideration. Another way to say this is as it is

meossible to antisymmetrize more thail Zoordinate and
omentum indices in [4-dimensional phase space, so for
any phase-space functiovi, we have elltl2"lang'lv=0,
with ¢ =aglox',0* '=alap',1<i (odd <2N—1. Conse-
quently, 31A; - - - JI2NA,y el ang'l V=0, for any N

Poisson bracket resolutions follow as a consequence of taking thehase-space functiods, j=1,... N, and anyV, a result

classical limit ofx-commutator resolutions of evenbrackets. It is

also consistent with taking symplectic traces of maximal CNBs,

again as presented [B] [see Eq.(14) to follow].

that may be thought of as the vanishing of théN(21)-th
super-maximal CNB. As a further consequence, we have on
2N-dimensional phase spaces other super-maximal identities

085001-4
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of the form 1
{A1B}PBZW{A1BaXi1-pi11 P STITY - N YI-0
{B1, ... Bi,VinelA1 Az, .. Aonine (15
={B1, ... Bi.Atne{V.Az, ... Aontne where summation over all pairs of repeated indices is under-
+{B1, ... B AnelAL VL Ag, . Agdnet - stood. Fewer traces lead to relations between CNBs of maxi-

mal rank, 2N, and those of lesser rankk2

{Ar, . AxdNe

+{811 Tt 1Bk1A2N}NB{A11A2! ot !AZNfl!V}NBi
(11

for any choice ofV, k, As, andBs. We have distinguished ~(N—K)! 1AL A X Py e Xy P e
here a (N+ 1)th phase-space function &sin anticipation
of using the result latefcf. the discussion of the modified (16)
fundamental identity(23) et seq]. The expansions in Egs.
(8) and (10) also apply to the supermaximal case as well,
where they provide vanishing theorems for the sums on th
RHSs of those relations.

c. Reductions for classical Lie symmetriadhen the
phase-space functions involved in the classical brackets ob
the Poisson brackets algel@ossibly even an infinite one
the NB reduces to become a sum of products, each produ
involving half as many phase-space functidnsductio ad

This is consistent with the PB resolutiof® used to define
the lower rank CNBs previously, and provides another prac-
fical evaluation tool for these CNBs.

Through the use of such symplectic traces, Hamilton’s
equations for a general system—not necessarily
eéﬁperintegrable—admit an NB expression different from
glambu’s original one, namely,

o 1
dimidium. It follows as an elementary consequence of theaZ{A,H}PBZW{A,H,XWDW P STITY < N V-9
PB resolution of even CNBs. For any PB Lie algebra given 1n
by

whereH is the system Hamiltonian.
B m e. Derivations and the classical “Fundamental Identity.”
{Bi ’BJ'}PB_E,“: CijBm. (12) CNBs are all derivations with respect to each of their argu-
ments[1]. For even brackets, this follows from E@t) for
maximal CNBs and from Eq(8) [or Eq. (16)] for sub-

the PB resolution then givgsum over all repeatenhs is to :
maximal brackets,

be understood

B B Al sA={A,B1,B;, ... Bon_1}ne: (18)
1y =+« P2k+1> NB
whereB is a shorthand for the string,,B,, ... By, 1. By
_ SQTTU){B B, pe(B,.B, Jpg - derivation, we mean that Leibniz’s elementary rule is satis-
(2k+1)! perms o 2kk1 7120 PBLR 0y Po,JPB fied,
X{By,, ,:Bo, tPe{Bs,,, Alre 3a(AA) = (0A) A+A(3A)={A,By, ... Ban-1}nsA
SgNo) . m, e +A{ABy, ... Ban-1}ng- (19
(2k+1)Tperms ¢ 2MkI 7172 7874 02172 Moreover, when these derivations act on ottmeaximal

CNBs, they yield simple bracket identiti¢$,35,23,

3{C1, ... Confne=1{08C1, - .. Confn T -
whereA is arbitrary. Of course, iA is also an element of the
Lie algebra then the last PB also reduces. +{Ca, -, 38Conine, (20)
d. Traces.Define thesymplectic traceof the classical
brackets as

X Bmlez' o Bmk{802k+laA}PB- (13

alternatively
HCy, .. Confne B1y - - - Ban-1fne
Zi Diopi AL - Aadne=(NT{AL - - Aadne. ={{C1.B1, ... .Bon-1}ng: - - Confnpt - -
(14 +{C1, - . {Con:B1, -+ . Bon-afneine: (2D

A complete reduction of maximal CNBs to PBs follows by In particular, any maximal CNB acting on any other maximal
inserting N—1 conjugate pairs of phase-space coordinate€NB always obeys the (4—1) element, (XN+1) term
and summing over them identity 35,22
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0:{{A1'A2, e 1A2N}NBrBla s iBzN—l}NB

2N
_121 {Al! PP ,{AJ !Blv e YBZN—l}NB! c e lAZN}NB'

(22)

This has been designated “the fundamental identitfFT)
[26], although its essentially subsidiary role should be appa
ent in this classical context.

f. Invariant coefficientsThe fact that all CNBs are deri-
vations, and that all supermaximal classical brackets vanis
leads to a slightly modified form of M element,

(2N+1)-term fundamental identities, for a system in a

2N-dimensional phase spaf@]

{B1, ... Ban-1,V{AL, Az, ... Aontnsineg
={V{Bi1, ... .Ban-1.A1}ng A2, - - - Aonine
+{A1,V{By, ... Bon-1,A2tne Az - - Agn-abne
+ AL Al
XV{By, ... Bon-1,An}nINB: (23)

for any choice ofv, As, andBs. This identity is just the sum
of the supermaximal identity11), for k=2N—1, plusV
times the FI. (22 for the derivation

{B1, ... Ban-1.{A1.A2, .. . Aonfneing -

constantV appearing in Eq(3), i.e.,

A
=V{Al,, ..

at (24)

. v|2N—1}NB!

has to be time invariant if it has rexplicit time dependence
[8]. As proof[6], since the time derivation satisfies the con-
ditions for the aboves, we have

d .

a(V{Ala cAaine) = VAL L Aondng
+V{AL, .. Aptngt -
+V{A1, ... Aptns. (25

Consistency with Eq(24) requires this to be the same as

V{V{Ali e 1A2N}NB!'11 s v|2N—1}NB

=V{AL, ... Axlne
FVIVIAL L, ..

+V{A, ..

CAoningt

(26)

lon-1bngs -

VAN - lon- 1 Ned e -

By substitution of Eq(23) with B;=1;, V=0 follows.
C. lllustrative classical examples

It is useful to consider explicit examples of classical dy-

r_

As a consequence of this modified FI, any proportionality {Lobyee=Lz, {Ly.Ladee=Lx, {LzLudes= '—y-(

PHYSICAL REVIEW D68, 085001 (2003

sight and develop intuition concerning CNBs. Previous clas-
sical examples were given by Namfli, and more recently,
by Chatterjed 3], and by Gonera and NutK@&,44]. We offer

an eclectic selection based on thosgah

a. SO(3) as a special cadeor example, consider a par-
ticle constrained to the surface of a unit radius 2-spl8re
but otherwise moving freely. Three independent invariants of
this maximally superintegrable system are the angular mo-
menta about the center of the spherg;L,,L,. Actually, no
two of these are in involution, but this is quickly remedied,
r<]amd moreover, it is not a hindrance since in the Nambu ap-
proach to mechanics all invariants are on a more equal foot-
ing.

To be more explicit, we may coordinate the upper and
lower (+) hemispheres by projecting the particle’s location
onto the equatorial disk,(x,y)|x?+y?<1}. The invariants
are then

Lz:Xpy_ypxr I-y: * Vl—xz—ysz,
Ly=F V1-x*—y°p,. (27)

The last two are the de Sitter momenta, or nonlinearly real-
ized axial charges corresponding to the “pionsy of this
truncateds model.

The Poisson brackets of these expressions close into the
expected s@®) algebra,

28

The usual Hamiltonian of the free particle system is the Ca-
simir invariant[6]

H=3(LyLy+LyLy+L,L,)

=3(1-X*)pi+3(1-y*)pj—xyppy. (29
Thus, it immediately follows algebraically that PBs bff
with the L vanish, and their time-invariance holds,

d
aL:{L,H}Pszo. (30)
So any one of th&’s and this Casimir invariant constitute a
pair of invariants in involution.

The corresponding $8) CNB dynamical evolution,
found in[6], is untypically concise:

dA

J(A,Ly,L,,L,)
a:{AiH}PB:{A!LxvLy!LZ}NB:#

67(Xv Px.Y, py) .
(31)

The simplicity of this result actually extends to more general
contexts, upon use of suitable linear combinations. Special
sums of such 4-brackets can be used to express time evolu-
tion for any classical system with a continuous symmetry
algebra underlying the dynamics and whose Hamiltonian is
just the quadratic Casimir invariant of that symmetry alge-
bra. The system need not be superintegrable or even inte-

namical systems described by Nambu brackets, to gain irgrable in general.
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Any simple Lie algebra allows a PB with a quadratic Ca-—1, into classical Nambu rzbrackets with then mutually

simir invariant to be rewritten as sumof 4-brackets. Sup- jnvolutive N;, forj=1,...n, to find’
pose
(04,00} pa= a5 Qs (32) {A,Nl,le,Nz.st, -+ Nn-1,Nn-10,Nn}ne
=(=)"" HAN}pgN1Nog - Ny 1q
in a basis wherd . is totally antisymmetric. Then, for the N
following linear combination of Nambu 4-brackets weighted =(=1)" AN N3 - -Np_10,N}pg. (39)

by the structure constants, use the PB resolution of th

A-brackets(6) to obtain(sum over repeated indices q’h|s result follows from the u{) PB algebra of the

charges(36). When the algebra is realized specifically by
harmonic oscillators, the RHS factor may also be written as
fabc{AaQa aQb vQc}NB= 3fabc{AaQa}PB{Qb vQc}PB N12N23' B anln: (N2N3' o anl)Nln .
_ Proof. Linearity in each argument and total antisymmetry
Sfavclocdl A QaleeQa- 33 o oNB allows us to replace any one of theby the sum

Now, for simple Lie algebraéwith appropriately normalized N. ReplaceN,—N, to obtain
charge$ one has
{A1N11N121N2! Tt an—laNn—lnaNn}NB

fabcf bea™ Cadjointdad » (34 ={A,N;,N15,No, ... Ny_1,Ny_1n,Ning.  (40)

where Cagjoing 1S @ number [for example, Cagoin=N for — Now  since {N,Nj;}pg=0, the PB resolution of the

su(N)]. Thus, the classical 4-brackets reduce to a PB withy,_prackets implies thaN must appear “locked” in a PB

the Casimir invarianQaQa with A, and thereforeA cannot appear in any other PB. But
thenN, is in involution with all the remaining fredl;; ex-
fabd A, Qa Qb Qcne=3Cadjoint A QalpeQa ceptN,,. SoN; must be locked ifN;,N5}pg. Continuing

3 in this way, N, must be locked if{N,,Njg}pg, €tc., until,
e finally, N,_ is locked in{N,_1,N,_1.}pg. Thus, all
=5C A, , (35 : n—1 : n—1:Nn-1nspg- 1 NUS

5 Cadint A QaQalpa. (39 entries have been paired and locked in the indicat&Bs,

i.e., they are all zipped-up. Consequently,
For su(2)=so(3), Cadjoint:2v fabc{AaQain :QC}NB

=6{A,Ly,Ly,L,}ng, and we establish Eq31) above. {A,N1,N45,No, ... Np—1,Ny— 10 Nptne
b. U(n) and isotropic oscillatorslf we realize the uq)
algebra in the oscillator basis, where the phase-space ={A,N}pa{N1,Nigtpg: - - {Nn-1,Nn-1nfpe.  (41)

“charges” Nj= (x; =1p;) (X *ipi)/2 obey the PB relations - e paired Nj Poisson brackets evaluate as

_ _ {Nj—1,N;_1j}ps= —iNj_y;, sO
{Nji;Nimtpe= —i(NjmS— N Sjm), 1.k, I,m=1,...n,

(36) {AN1,N12,Nz, ... Np—1,Np-10,Nnfne
then the isotropic Hamiltonian is =(—1)""Y{AN}peN1 - -Np_gq. (42)
N Finally, the PB withN may be performed either before or
H= w; Ni,  Ni=N;. (37 ?E?I(Ii jt?Pizpé?d;ncé tﬁ?PVI;itiz : l:jet?i\(ja![\iltj);l.ljl-’ieiigg,e a0
This gives then? conservation laws {AN}peN12 - *Np—1n={ANz - -Np_14,N}pg: QED(-43)
{H,N;jj}pg=0. (38 Remarkably, in Eq(39), the invariants which are in invo-

) ) lution [i.e., the Cartan subalgebra wfn)] are separated out
However, only 21— 1 of theN;; are functionally independent  of the CNB into a single PB involving their sutthe Hamil-
for a classical system with an2dimensional phase space. tonjan,H=wN), while the invariants which are not in invo-

This follows because all full phase-space Jacobiéres, |ution[n—1 of them, corresponding in number to the rank of
maximal CNB$ involving 2n of the N;; vanish.[For details,

see the upcoming discussion surrounding @).] _

_ Following the logic that led to the previousductio ad  7rhe pondiagonal charges are not real, but neither does this
dimidium for general Lie symmetries, we obtain the main present a real problem. The proof leading to E20) also goes
result for classical isotropic oscillatomzbrackets. through if nondiagonal charges have their subscripts transposed.

c. Classical isotropic oscillator bracket$The U(n) re- This allows replacing\;; , ; with real or purely imaginary combi-
ductio ad dimidiunt Let N=N;+N,+---+N,, and inter-  nationsN;,,;+N;.; in the LHS 2h-brackets, to obtain the alter-
calate then—1 nondiagonal charge¥;; 1, fori=1,...n native linear combinationd;; . ; ¥ N; , ;; in the product on the RHS.
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SuU(n)] are effectively swept into a simple product. Time d. SO(n+1) and free particles on n spherdsor a particle
evolution for the isotropic oscillator is then given (] moving freely on the surface of ansphereS", one now has
a choice of 2i—1 of then(n+1)/2 invariant charges of
dA so(h+1), whose PB Lie algebra is conveniently written in
n—1in"g¢ terms of then(n—1)/2 rotation generatorsl ,,=X%py
—xPp, for a,b=1, ... n and in terms of the de Sitter mo-
=o{AN1,N12,Np, ... Npo1,Np_10,Npbns- menta, P,=\1-qg°p, for a=1,...n, where @
(44  =325_1(x*? That PB algebra is

(=)™ *Npp - -N

This result reveals a possible degenerate situation for the”a:Pblpe=Lab: {Lab.Pctpe= dacPb— SbcPa,
Nambu approach.

When any two or more of the phase-space gradients erlab,Lcdtps=LacSba—Laddbec— LbcSadt Lbddac- (47)
tering into the brackets are parallel or when one or more of ) ) )
them vanish, the corresponding brackets also vanish, even iy direct calculation, one of several possible expressions for
dA/dt#0. Under these conditions, the brackets do not givdime evolution as a @-brackets if6]
any temporal change d&: Such changes are “lost” by the
brackets. This can occur for thgn) brackets under consid- ,_ . \n-1 d_A

- - (=1)" "PyP3---Pyg

eration whenever €Nq,---N,_{,, i.e., whenever any dt
N;_4j=0 for somei. Initial classical configurations for
which this is the case are not evolved by these particular _ d(AP1,L12,P2.L23,P3, . .. Pn-1,bn-1n.Pn)
brackets. This is not really a serious problem, since on the d(X1,P1,X2,P2, - - - Xn,Pn)
one hand, the configurations for which it happens are so (48)
easily cataloged and, on the other hand, there are other
choices for the bracket entries which can be used to recovgghered A/dt={A,H}pg and
the lost temporal changes. It is just necessary to be aware of
any such “kernel” when using any given brackets. 1 1 0

With that caveat in mind, there is another way to write Eq. H=3 > PP+ 7 > Laplas- (49)
(44) since the classical brackets are a derivation of each of a=1 ab=1
their entries. Namely,

The CNB expressing classical time-evolution may also be
dA written, more compactly, as a derivation

g =" e ANLIN(NL) N2, In(N2),

dA
—=(—1)""YA,P;,L,,In(P,),Los,IN(Ps), ...,
Na, - Np_1,00(Ny10),Nobwe.  (45) gi _(UTHAPLLL NP Lo, INPy)

In(P,,_1),Lr_1n,P . 50
The logarithms intercalated between the diagdis on the N(Pn-1):bn-1n,Polns (50

RHS now have branch points corresponding to the classicghnce again, the branch points in the intercalated logarithms
bracket's kernel. o _ _are indicators of this particular bracket's kernel.

The selection of A— 1 invariants to be used in the maxi- e. SO(4FSU(2)XSU(2) as another special cas@he
mal U(n) brackets is not unique, of course. In the list that Weyaatment of the 3-spher8® also accords to the standard
have selected, the indices, 1,2.,n, can be replaced by any chjral model technology using left- and right-invariant Viel-

permutation, oy, 0, . .. .0, SO long as the correlations peing[6]. Specifically, the two choices for such Dreibeine for
between indices for elements in the list are maintainedy,q 3-sphere arpt5]: q2=x2+y2+ 22

That is, we may replace the elements

N1,N45,No,Noz, ... Ny_1,Ny_14,N, by Ny Nojoy (t)V;: £labyb /—1_ngai' (£)\jai = gabyb i /—1_q2in
NoyNoyog -+ N N N, . and thereductio ad di- (51)

Y 0n-1"" "0n-19n’
midiumstill holds: o
The corresponding right and left conserved chaigsfs and

{AN, N, s N, N right invariant, respective)ythen are

Tp0gr t 'NUn—l'NUn—lon’N‘Tn}NB

(46)

7102

=(_|)n l{A’N}PBN(flUZNUzUS' o NUnflUn' 'R/iz(Jr)VL1 %Xa=(+)vaipa,
Whatever list is selected, any invariant in that list is mani-
festly conserved by therbrackets. All other U) charges

are also conserved by the brackets, even though they are not
among the selected list of invariants. This last statement fol-
lows immediately from thgA,H}pg factor on the RHS of Perhaps more intuitive are the linear combinations into axial

Eq. (46). and isospin charge®gain linear in the momenta

_ i Lyal (e 2
L Vadtx V&p,. (52
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LR-L)= \/ﬁszA, LR+ L)=xxp=]. (53 binations Vaqu represent algepra generator invariants,
whose quadratic Casimir group invariants yield the respec-

It can easily be seen that th&'s and theR’s have PBs tive Hamiltonians.

closing into the standard su()su(2) algebra, i.e., That is to say, fof46] group matricesJ generated by
exponentiated constant group algebra matritesveighted
1L, Litng= — 28k Ly, 1Li Riing=0, by functions of the particle coordinatgswith U~ *=UT, we
have
{Ri ‘Ri}ns= —28&ij R - (54) .
Thus, they are seen to be constant, since the Hamiltonian iU*laU=(+)V£TJ’axa=(+)VajpaTj,

(and also the Lagrangiaican, in fact, be written in terms of
either quadratic Casimir invariant,

d |
i —uyU 1= (—)\ai .
H=1L L=1R-R. (55) VY VPa 62

The classical dynamics of this algebraic system is, like thet follows that PBs of left- and right-invariant chargéges-

singleSU(2) invariant dynamics that composes it, elegantlyignated byR’s and £’s, respectively, as defined by the
expressed on the six-dimensional phase space with maximghces,

CNBs. We find various 6-bracket relations such as

i d '
AAR Ry Re Fr o) R-E—tf(T'Ul—U>=(+)Valp :
={A\HR{,R,»,L1,L i j at a
d(X1,P1,X2,P2,X3,P3) { 1:R2. L1, Lofne
dA i
- 4£3R3a’ (56) Ej = Etl’

d 1) Coyai
TjUG U =Ovaip,, (63)

where H=R2+R2+R2=L£2+,£2+£2andAis an arbi-  close to the identical PB Lie algebras,

trary function of the phase-space dynamical variables. Also,
{Ri \Ritpe= —2fijk R, {Li,Litpe= — 2fij Li,

dA (64)
{ARL Ry, L3, L1, Lofng= _4Rsay (57)
and PB commute with each other,
and similarl — L),
Y s [Ry £} pe=0. (69
dA
{AR1,R2,R3, L1, Lotnp= —ALy gt (58)  These two statements are implicit[i46] and throughout the

literature, and are explicitly proven {16].

The kernels of these various brackets are evident from the The Hamiltonian for a particle moving freely on ti@
factors multiplying dA/dt. None of these particular <G group manifold is the simple form

6-bracket relations directly permits th& or R; factors on . Al b

their RHSs to be absorbed into logarithms, through use of the H=2(paV*)(V'py), (66)

Leibniz rule. But, by subtracting the last two to obtain o ) N .
with either choicey® = (*)va_ That is,

dA
{AIRl1R21L3_R31£11£2}NB:4(‘C3_R3)Ev (59) H:%EJEJ:%R]RJ , (67)
we can now introduce a logarithm to produce just a numerijust as in the previous SO(4)SU(2)x SU(2) case. There
cal factor multiplying the time derivative, are now several ways to present time evolution as CNBs for
these models.
dA One way is as sums of 6-brackets. Making use of(84)

{A,Rl,R2,In(£3—R3)2,£1,£2}NB=8a. (60 and summing repeated indices:

Similarly, by adding Eqs(57) and (58), we find fijFiml AH Ry Ric, L s Lofne
{A,Rl,Rz,ln(£3+R3)2,£l,£2}NB=—8d—A. 61 =fifimn R} Ritpel Lm» Lnfpel A Hpg
dt =4f ik Fimnf i fmnoRi Lol A H pg
f. GX G chiral particles In general, the preceding discus- =4C§dj0im7€|£|{A,H}pB. (68

sion also applies to all chiral models, with the algetpfar a
chiral groupG replacing s@2). The Mielbein-momenta com- Thus, we have
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dA 1 and using Eq(64), we may rewrite Eq(71) as (note the
rTE ——— fijkfimnl A H R R, L s Lafns - sums ovelks andms here are not truncated
4C3djoind¥1 L1
(69 {AH, Ly, .o Ly 1Ry, - - - Ro_1)ne
The bracket kernel here is given by zeros @@t L))? - i
—4H=*2R\L; . =(=2)"Kn 2 Ol g Omg - mg
Another way to specify the time development for these ’
chiral models is to use a maximal set of invariants in the X{AH}pply, Lk R, " R, (74)

CNB, selected from both left and right charges. Take be
the dimension of the grouf®, then all charge indices range
from 1 ton. For a point particle moving on the group mani-
fold GX G, the maximal brackets involven2elements. So,
for example, we havénote the ranges of all the sums here

Thus, we arrive at a maximal CNB expression of time evo-
lution, for odd-dimensionaG:

are tbrulr;)cated tm—1, as are the indices on the Levi-Civita EZV{A'H,EL cooLn-1,Rey o Ra_iing. (75
symbo
{AH.L1, .. L1 Ras - Ro-1tng where the invariant factov on the RHS is given by
1 n—1 1 1 n n
[(n—1)177 anfi-1 Fiaina i g vV (S!)zalgil Tl gy .EksaII%:=1 Timy--mg}
X{A,H,Eil, P ’Ein—l’le’ e ’Rjn—l}NB' (70) Xle. . .RmS’
The RHS here vanishes for even so we take odd, say n—1
n=1+2s. (To obtain a nontrivial result for evem we may s= — (76)

replaceH by either,, or R, . We leave this as an exercise in
the classical case. The relevant combinatorics are discuss
later, in the context of the quantized modeSo, since
{H,Li}pg=0={H,R;}pg, by the PB resolution we can write

EI'“(Ijﬂs factor determines the kernel of the brackets in question.
All  this extends in a straightforward way
to even-dimensional groupsG and to the algebras
of symmetry groups involving arbitrary numbers of
{ArHyﬁlv e 1Ln*11R11 e anfl}NB faCtOI’S,Glx G2>< .
n—1

B Knallizj:=1 By iy i A Hpel L Litee IIl. QUANTUM THEORY

_ _ o o _ We now consider the quantization of Nambu mechanics.
MALi o Liiteet Ry Ryghes ARy, o R, lees Despite contrary claims in the literature, it turns out that the
(71 quantization is straightforward using the Hilbert space opera-
tor methods as originally proposed by Nambu. All that is
wheré needed is a properly consistent physical interpretation of the
results, by allowing for dynamical time scales, as summa-
1 rized in the Introduction. We provide a very detailed descrip-
— (72 tion of that interpretation in the following, but first we de-
43(s!) velop the techniques and machinery that are used to reach

_ _ _ _ _ _ and implement it. Our presentation parallels the previous
is a numerical combinatoric factor incorporating the numberclassical discussion as much as possible.

of equivalent ways to obtain the list of PBs in the product as
written in Eq.(71).
Introducing a completely symmetric tensefy ...y de-

Kn=14+2s=

A. Properties of the quantum brackets

fined by a. Definition of QNBsDefine the quantum Nambu brack-

ets, or QNB4 1], as fully antisymmetrized multilinear sums

n—1 of operator products in an associative enveloping algebra
0'{k1~--ks}:a"i2:1 Sil"'in—lfili2kl‘ ' 'fin—zin—lks’ 73 [A1,As, A

= 2 Sgr{U)A(rlA(rz' : 'Arrkr (77)
8The number of ways of picking the PBs in the formula71), : all k! perms
taking into account botle’s, is (n—2)(n—4)---(1)xX(n—2)(n NG

—4)-.-(1), soK,=([(n—2)(n—4)---(1)]/(n—1)1)2. {1,2,... Kk
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where sgn¢)=(—1)"(?) with 7(o) the parity of the per- while taking the difference gives

mutation{o 4,05, . ..,0}. The brackets are unchanged by _ _
adding to any one element a linear combination of the others, 0={A[B.C.D]}—{B,[C.D.A]}+{C,[D.A.B]}
in analogy with the usual row or column manipulations on —{D,[A,B,C]}. (84)

determinants.

b. Recursion relationsThere are various ways to obtain 1here may be some temptation to think of the last of these as
QNBs recursively, from products involving fewer operators.S0mething like a generalization of the Jacobi identity, and, in
For example, a QNB involving operators has both left- and principle, it is, but in a crucially limited way, so that temp-

right-sided resolutions of single operators multiplying QNBs@tion should be checked. The more appropriate and com-
of k—1 operators. plete generalization of the Jacobi identity is given systemati-

cally below|[cf. Eq. (119].

sgn o) c. Jordan productsDefine a fully symmetrized, general-
[A1,Az, ... ,Ak]ZkI 2 kD) AslAsy - Al ized Jordan operator produ@sJP:
sqr(o) {ALA, ALY
= (k——l)l ottt ,Aak*l]AUk'
K perms ' = 2 AALA, (89
all k! perms
(78) {(rlf,(;"lz,‘.a-. oKt
of the indices
On the RHS there are actually onkydistinct products of {12,... Kk

single elements with K—1)-brackets, each such product . inyroduced, in the bilinear form at least, by Jorfiad to
having a net coefficient- 1. The denominator compensates render non-Abelian algebras into Abelian algebras at the ex-

for replicaltion of these plroducts in the S_U”‘f OV?{ permutayqnse of nonassociativity. The generalization to multilinears
tions. (We leave it as an elementary exercise for the reader tq suggested by Kuro$B7], but the idea was not used in

prove this resulj. _ _ any previous physical application, as far as we know. A GJP
For example, the 2-brackets are obviously just the comz, o5 has left- and right-sided recursions

mutator] A,B]=AB—BA, while the 3-brackets may be writ-
ten in either of twd 1] or three convenient ways {AL Ay, O AS

[A,B,C]=A[B,C]+B[C,A]+C[A,B]
—[A,B]C+[B,C]A+[C,A]B
=3{[A.B].C}+3[{A,B},C]-[A,{B,C}].

ArfPopPoy - Agt

0'2’

T pzm (k—1)!

=k! permso (k_1)| {AUZ!AU3! e ’Akal}A"'k'

(79
(86)
Summing the first two lines gives anticommutators contain- i o )
ing commutators on the RHS On the RHS there are again orkylistinct products of single
elements with K—1) GJPs, each such product having a net
2[A,B,C]={A,[B,C]}+{B,[C,A]}+{C,[A,B]}. coefficient+ 1. The denominator again compensates for rep-
(80) lication of these products in the sum over permutatigie

o N leave it as another elementary exercise for the reader to
The last expression is to be contrasted to the Jacobi identityrove this resul.

obtained by taking the difference of the first two RHS lines  For example, a Jordan 2-product is obviously just an an-
in Eq. (79): ticommutator{A,B}=AB+ BA, while a 3-product is given

0=[A[B.CI]+[B.[CA]]+[C.[AB]. ()
{A,B,C}={A,BIC+{A,CIB+{B,C}A

=A{B,C}+B{A,C} +C{A,B}
=3{{A,B},C} +3[[A,B],C]-[A[B,C]].

Similarly, for the 4-brackets,

[A,B,C,D]=A[B,C,D]-B[C,D,A]+C[D,A,B]

—D[A,B,C] (87)
=-[B,C,D]JA+[C,D,A]B—[D,AB]C Equivalently, taking sums and differences, we obtain
+[AB,C]D. (82) 2{A,B,C}={A{B,C}}+{B,{A,C}}+{C{AB}},

Summing these two lines gives
as well as the companion of the Jacobi identity often encoun-
2[A,B,C,D]=[A,B,C,D]]—-[B,[C,D,A]] tered in superalgebras,

+[C,[D,A,B]]-[D,[A,B,C]], (83 0=[A,{B,C}]+[B,{A,C}]+[C,{A,B}]. (89
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Similarly for the 4-product, 2n-brackets will vanish(This same statement does not apply
to odd brackets, as Nambu realized originally for 3-brackets
{A.B,C,D}=A{B,C,D}+B{C,D,A}+C{D,A,B} [1], and consequently, there are additional hurdles to be over-
come when using odd QNBs.
TD{AB.C} As in the classical bracket formalism, the proofs of the
={A,B,C}D+{B,C,D}A+{C,D,A}B (anthcommutator resolution relations are elementary. Both
left- and right-hand sides of the expressions are sum&tf 2
+{D,AB}C. (90) degree monomials linear in each of tAs. Both sides are

either totally antisymmetric, in the case of E§4), or totally
symmetric, in the case of E¢P5), under permutations of the
2{A,B,C,D}={A{B,C,D}}+{B,{C,D A}} As. Thus, the two sides must be proportional. The only open
issue is the constant of proportionality. This is easily deter-
+{C,{D,AB}}+{D,{A,B,C}}, (9D  mined to be 1, just by comparing the coefficients of any
given term appearing on both sides of the equation, e.g.,

Summing gives

while subtracting gives AAy- Aoy 1Ay -
_ It is clear from the commutator resolution of even QNBs
0=[A.{B.C.D}]+[BAC,D.AH+[C.{D.AB}] that totally symmetrized GJPs and totally antisymmetrized
+[D,{A,B,C}]. (920  QNBs are not unrelated. In fact, the relationship is most pro-

nounced in quantum mechanical applications where the op-
Again the reader is warned off the temptation to think of theerators form a Lie algebra.
last of these as a bona fide generalization of the super-Jacobi e. Reductions for Lie algebram full analogy to the clas-
identity. While it is a valid identity, of course, following from sical case above, when the operators involved in a QNB
nothing but associativity, there is a superior and complete seflose into a Lie algebra, even if an infinite one, the Nambu
of identities to be given latdicf. Eq. (119 to follow]. brackets reduce in rank to become a sum of GJPs involving
d. (Anti)Commutator resolutiongs in the classical case, about half as many operatofguantum reductio ad dim-
Sec. IIB, it is always possible to resolve even rank bracketsdium). It follows as an elementary consequence of the com-
into sums of commutator products, very usefully. For ex-mutator resolution of the Nambu brackets. First, consider

ample, even brackets, since the commutator reduction applies di-
rectly to that case. From the commutator resolution, it fol-
[A,B,C,D]=[AB][C,D]-[A,C][B,D]-[AD][C,B] lows that for any Lie algebra given by
+[C,D][A,B]-[B,D][A,C]-[C,B][A,D].
93) [B; ,Bj]=m§ "B, (96)

An arbitrary even bracket of rank n2 breaks up into
(2n)/(2M=n!(2n—1)!! such products. Another way to
say this is that even QNBs can be written in terms of GJPs of g, . B, ;,A]
commutators. The general result is

we have for arbitraryA (sum over repeatenhs)®

sgr(o)
ALLA, L AL A = B,..Bs. 1,[By.iBs 1, - -+,
[A1.A, 2n-1A2n] (M)!Epem Sk {[BoyBo,[Boy By, ]
sgr(o)
:(Zn)!%ermw 2Mn1 {[Aal’Aaz]’[A‘Ts’A%]' T [B”2k71’B"zk]’[B”2k+1’A]}
sgr(o)
[A(T _ ’AO' ]} (94) = |ﬁ kal sz
-t 2n (2k+1)T permsoe 2KkI (i) 7192 9374

An even GJP also resolves into symmetrized products of

m
anticommutators: C ¥ {Bm,:Bm, - - - Bm

O2k—192k k
{ALAS, A1 A [502k+1'A]}' (97)
_ A, A, VA, LA, ) For odd brackets, it is first necessary to resolve the QNB into
(2n)t perms ¢ 27! o7 ooyt o products of single operators with even brackets, and then
resolve the various even brackets into commutators. This
{Ac, 1 As, I (95  gives a larger sum of terms for odd brackets, but again each

term involves about half as many Jordan products compared
The resolution(94) makes it transparent that all such even
QNBs will vanish if one or more of thé, are centrali.e.,
commute with all the other elements in the brackekor SAfter obtaining this result, and using it if6], we learned that
instance, if any oné\; is a multiple of the unit operator, the similar statements appeared previoushy4@,11].
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to the number of commutators resolving the original NambuThe first term on the RHS involvek { 1)-brackets acting

brackets. The mixture of algebraic structures in €7) sug-  on the product ofA and A, the order of the brackets being

gests referring to this as a Nambu-Jordan<NJL) algebra.  evident in the presuperscript of tidg notation. This reads in
f. The classical limit Since Poisson brackets are straight-an obvious way. For instancéAg is a “4-delta ofBs.” That

forward classical limits of commutators notation also emphasizes that tBe acton the pair ofAs.
1 The second notation in Eq101) makes explicit all theBs
lim AB]={A.Blog, and is useful for compute.r code. _ _

hw( )[ 1={ABles Any Ag acts on all pairs of elements in the enveloping

algebra?( to produce another element 2%
it follows that the commutator resolution of all even QNBs
directly specifies their classical limi{For a detailed ap- A AXA—2A, (102
proach to the classical limit, including subdominant terms of

higher order i, see, e.g., the Moyal bracket discussion inwhenAg does not vanish the corresponding bracket with the

(6].) Bs does not define a derivation off. The derivator
For example, from Ag(A, A) is linear in bothA and A4, as well as linear in each
of the Bs.
[A.B,C,D]={[ABL[C.D]}—{[A.C][B.D]} Less trivially, from explicit calculations, we find inhomo-
—{[A,D],[C,B]}, (98)  geneous recursion relations for these derivators:
with due attention to a critical factor of @.e., the anticom- (A, A|By, ... ,By)
mutators on the RHS become just twice the ordinary prod-
ucts of their entries the classical limit emerges as 1 sgno)
- [(A Al Bu’ !B(r )Ba'
5 2 k! perms o (k=1)! v k=1 K
1 1
“liml =— k
2;[‘1( |h) [A’B'C'D] +(_1) B(rk(AaAl B(rl! e ’B”kfl)]
= [A,Blps{C,D}ps—{A,Cps(B,D} 1 sgno)
Brpa L, Dyps CrpmBsDspe + 3 pg:,ns k1! ([A,B; I[Bsys - - - By, Al
—{A,D}pp{C,B}psg={A,B,C,D}ng. (99 .
. _ —[AB,, ....Bs 1[Bs.AD
And so it goes with all other even rank Nambu brackets. For
the 2n-brackets, one sees that (—1)kri-
+ TA[BL ... ,BelA. (103
1 n
—'”m —) [Al,Az, e !A2n] . . . .
Nt olife Alternatively, we may write this so as to emphasize the num-
ber of distinct terms on the RHS and distinguish between the
_ sgn(o) A A A even and odd bracket cases. The first two terms under the
e Sems o 2™l Aoy Astrel Aoy Ag tre sum on the RHS give a commutator/anticommutator Kor
odd/even, and the last term is absent Kardd.
X{A,, A, tre For even(2n+2)-brackets, this becomes
2n—1 2n
={A1.A2, ... Agnine- (100 2(AABy, ... Boni1)
This is another way to establish that there are indead (2 =[(A,A|By, ... Bon),Bonr1]+[A,Bonii]
—1)!"! independent products of Poisson brackets summing
up to give the PB resolution of the classical Nambu X[By, ... .Bon  A]=[ABy, ... Banl[Ban+1, Al
2n-bracket. Once again due attention must be given to a +(2n signed permutations of thBs), (104)

critical additional factor ofh! [as in the denominator on the
LHS of Eq. (100] since the GJPs on the RHS of E94)  \yhere the first RHS line involves derivators of reduced rank,

will, in the classical limit, always replicate the same cIassmakNlthm commutators. For od@n+1)-brackets, it becomes
productn! times.

g. The Leibniz rule failure and derivatar®efine thede-

rivator to measure the failure of the simplest Leibniz rule forz(A’A|Bl’ -+ Ban)

QNBs, ={(AA[By, . .. Bzn_1).B2n} +[A,By]
KH1AG(A, A)=(A,A| B, ... By X[B1, ... Bon-1,A1-[A,B1, ... ,Bon_11[Bon..A]l
=[AA,B;, ... B ]-A[AB4, ... Bl +(2n—1 signed permutations of tHgs)
—[A,B, ... B A. (101) —2A[By, ... BylA, (105
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where the first RHS line involves derivators of reduced rankan essential distinction to be drawn between the even and
within anticommutators. Note the additional inhomogeneityodd quantum bracket casgkl,39.
in the last RHS line of these results. It may be viewed as a It is important to note that, historically, there have been
type of quantum obstruction in the recursion relation for thesome incorrect guesses and false starts in this direction that
odd (2n+1)-brackets. originated from the so-called fundamental identity obeyed by
The obstruction is clarified when we specializente 1,  classical Nambu brackei{®2). This simple identity appar-
i.e., the 3-bracket case. Since commutators are always deently misled several investigatof2], most recently[26]
vations, one hagAg(A,.A)=0, and the first RHS line van- and[24,14), to think of it as a “fundamental” generalization
ishes in Eq(105) for the *Ag(A,.A) case. So we have just of the Jacobi identity, without taking care to preserve the
Jacobi identity’s traditional role of encoding nothing but as-
(A, A|B1,B,)=[A,B,][B;1,A]—[A,B1][ B, A] sociativity. These same investigators then insisted that a
“correct quantization” of the classical Nambu bracketsist
~AlB1,B,]A. (106 satisfy an identity of the same form as Eg2).
Unfortunately for them, QNBs doot satisfy this particu-
lar identity, in general, and thereby pose a formidable prob-
lem to proponents of that identity’s fundamental significance.
his difficulty led [26,24,14, to seek alternative ways to
uantize CNBs, ultimately culminating in the so-called Abe-
lian deformation methofl24,14]. This amounted to demand-
_ ing that the quantized brackets satisfy the mathematical pos-
(A AIBL,B2)lia g -0-ra8) = ~AABLB,]. (107 tulates of an “n-Lie algebra” as defined by Filippdi5]
many years earlier. However, not only are those postulates
EyHgor:)tfrasétd.fc();(;%e z\r/:%gé)rig;ﬁ;kitfs' tﬁg tzgﬁseogrgh;, not satisfied by generic QNBs, but more importantly, thqse
O(2"*1), and all terms vanish iA and.A commute with all Egsé:Jelgtreii atlrr](;o(te)v(v;r;rglr;tse (tjobz)ltlrcljvphysms of QNBs, as will
e o e s . The Coectgenerlzaons of e Jcob denits whih
tinguishes between even and odd brackets. An even-od%? encode associativity were fogr_]d independently b_y groups
QNB dichotomy has been previously nofe&9] and stressed mathematician39) anq physicistg41,11. Inter estingly,
both groups were studying cohomology questions, so per-

[111]_,hfor ptherf rtcra]asgns.k ts involved in the derivat b haps it is not surprising that they arrived at the same result.
€ siz€ 0l the brackets involved In the cerivators can GfFortunater, for us the result is sufficiently simple in its

reduced when the operators obey a Lie algebra as (g8, combinatorics that we do not need to go through the coho-

lhetﬁ!mp]fstt_3|tuatlor;] occurs when the brackets are eVerf‘nology issues.The acceptable generalization of the Jacobi
or this situation, we have identity that was found is satisfied by all QNBs, although for

The first two terms on the RHS a@(%2) while the last is

O(#). Itis precisely this last term which was responsible for
some of Nambu’s misgivings concerning his quantum
3-brackets. In particular, even in the extreme case when bot]
A and A commute with theBs, *Ag(A,.A) does not vanish:

(A AlB B ) odd QNBs there is a significant difference in the form of the
HPL P2k final result: It contains an “inhomogeneity.” The correct gen-
sgno) eralization is obtained just by totally antisymmetrizing the
= > v (if)kclt ¢z ...cl action of n-brackets on othen-brackets. Effectively, this
(2k+ 1)t perms o 2°k! ve e ek amounts to antisymmetrizing the form of the RHS of Eq.
22) over all permutations of thés andBs including all
X({Bms - - - Bms[Bu.. AA ( .
({Bm, mo[Boy. o AALL exchanges oAs with Bs.
~A{B, B [B,. Al We illustrate the correct quantum identity for the case of
! KTk three-brackets acting on 3-brackets, where the classical result
—{Bml' . ’Bmk’[B(’2k+l'A]}A)' (108 Is

h. Generalized Jacobi identities and quantum fundamen-
tal identities. We previously pointed out some elementary ~ 0={{A.B,C}ng.D.E}ng—{{A.D.E}ng.B.Cing
identities involving QNBs, e.g., Eqs$84) and (92), which _ _
are suggestive of generalizations of the Jacobi identity for {A{B.D.Eine Cine—{A.B,{C.D.E}nslne,
commutators. Those particular identities, while true, were (109
not designated as “generalized Jacobi identitigSJlg, for
the simple fact that they doot involve the case where QNBs
of a given rank act on QNBs of the same rank. Here, wé.e., EQ.(22) for n=3. For ease in writing, we led;=A,
explore QNB identities of the latter type. There are indeed®,=B, A3;=C, B;=D, and B,=E. Consider
acceptable generalizations of the usual commutators-actingfA,B,C],D,E]. This QNB corresponds to the first term on
on-commutators Jacobi identitfi.e., quantum 2-brackets the RHS of Eq(109. If we antisymmetriz¢[A,B,C],D,E]
acting on quantum 2-bracketsnd these generalizations are over all 5! permutations oA, B,C,D, andE, we obtain, with
indeed valid for all higher rank QNBs(i.e., quantum a common overall coefficient of ¥2!3!, a total of 10
n-brackets acting on quantumbrackets. However, there is =5!/(2!3!) distinct terms as follows:
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[[A,B,C],D,E]+[[A,D,E],B,C]+[[D,B,E],A,C] which, when totally antisymmetrized, gives an overall com-
mon coefficient of2!3! multiplying
+[[D,E,C],A,B]—-[[D,B,C],A,E]-[[E,B,C],D,A]
—[[A,D,C],B,E]—[[A,E,C],D,B]—[[A,B,D],C,E]
_[[A,B,E],D,C]. (110)

—[[A,D,E],B,C]—[[A,B,C],D,E]-[[B,D,C],AE]
-[[B,C,E],A,D]+[[B,D,E],A,C]

+[[C,D,E],B,A]+[[A,B,E],D,C]
Now we determine the coefficient of any given monomial
produced by this surtf Since the expression is totally anti- +[[A.C,E],B,D]+[[A,D,B].E,C]
symmetrized in all the five elements, the result must be pro- +[[A,D,C],B,E]=—3[A,B,C,D,E]. (113
portional, to[A,B,C,D,E]. To determine the constant of
proportionality it suffices to consider the monomial The third RHS term of Eq(109 would have as correspon-
ABCDE This particular monomial can be found in only dent—[A,[B,D,E],C]=[[B,D,E],A,C], which, when to-
three terms out of the ten in E¢L10), namely, in tally antisymmetrized, gives an overall common coefficient

of 213! multiplying

[[A,B,C],D,E],
(A[B.C.DLEI=[[D.B.CLAE] and [[B,D,E],A,C]+[[B,A,C],D,E]+[[A,D,C],B,E]
[A,B,[C,D,E]]=[[D,E,C],A,B]. (112) *+LIA.C.E]B.DI-[AD.E]B.C]

-[[C,D,E],A,B]—[[B,A,E],D,C]
The various terms are obtained just by “shifting” the interior
brackets from left to right Withinjthe ezterior br?’;lckets, while —[[B.C.E].,A.D]-[[B,D.A].E,C]
keeping e_lll the bracket entries in a fixed Ieft-to-right _order, ~[[B,D,C],A,E]=—3[A,B,C,D,E]. (114)
and keeping track of the sgm] factors.(Call this the “shift-
ing bracket argument)"The monomialABCDE appears in  The fourth and final RHS term of E¢109 would have as
each of these terms with coefficientl, for a total of+3 correspondent-[A,B,[C,D,E]]=[[C,D,E],B,A], which,
XABCDE Thus, we conclude with a five-element, 11-termwhen totally antisymmetrized, gives an overall common co-

identity efficient of 213! multiplying
[[A,B,C],D,E]+[[A,D,E],B,C]+[[D,B,E],A,C] [[C,D,E],B,A]+[[C,B,A],D,E]+[[B,D,A],C,E]
+[[D,E,C],A,B]-[[D,B,C],A,E] +[[B,A,E],C,D]-[[B,D,E],C,A]
-[[E,B,C],D,A]—[[A,D,C],B,E] —[[A,D,E],B,C]—[[C,B,E],D,A]
~[[A,E,C],D,B]-[[A,B,D],C,E] —~[[C,A,E],B,D]-[[C,D,B],E,A]
—[[A,B,E],D,C]=3[A,B,C,D,E]. (112 -[[C,D,A],B,E]=—3[A,B,C,D,E]. (115

This is the prototypical generalization of the Jacobi identityAdding Egs.(112), (113), (114), and (119 leads to the sum
for odd QNBs, and like the Jacobi identity, it is antisymmet-0of QNB combinations that corresponds to the antisymme-
ric in all of its elements. The RHS here is the previouslytrized form of the RHS of Eq(109); namely,
designated inhomogeneity.

The totally antisymmetrized action of odd n QNBs on ([[A.,B,C].D.E]-[[A,D,E],B,C]-[A,[B,D,E],C]
other odd n QNBs results if2n— 1)-brackets _

We recognize in the first four terms of E(L12) those [AB,[C.D.E]]

QNB combinations which correspond to the individual terms *(nine distinct permutations of all four terms
on the RHS of Eq(109. However,the signs are changeidr
three of the four QNB terms relative to those in E#j09). =—6[A,B,C,D,E]. (116

One might hope that changing these signs in the QNB com-

binations will lead to some simplification, and indeed it does,This result shows that the simple combination of QNB terms

but it does not cause the resulting expression to vanish, astiat corresponds to Eq109 (without full antisymmetriza-

did in Eqg. (109. To see this, consider in the same way thetion) cannot possibly vanish unless the 5-brackets

effects of antisymmetrizing the QNBs corresponding to eachA,B,C,D,E] vanish.

of the other three terms on the RHS of E§09). The second A similar consideration of the action of a 4-bracket on a

RHS term would have as correspondetit A,D,E],B,C], 4-bracket illustrates the general form of the GJI for even

brackets and shows the essential differences between the

even and odd bracket cases. We proceed as above by starting
OThis line of argument is an adaptation of thaf89]. Equivalent ~ with the combinatiori[A,B,C,D],E,F,G], and then totally

methods are used 41,11 antisymmetrizing with respect #, B, C, D, E, FandG. We
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find 35=71/(3!4!) distinct terms in the resulting sum. Now HALA,, ... Abng B1s - - - Bidns
we determine the coefficient of any given monomial that

would appear in this sum. Since the expression is again to- é

tally antisymmetrized in all the seven elements, the result _J.:1 {Ar, ... {A;.B1, ... Bidngs - - - Antus
must be proportional t¢A,B,C,D,E,F,G]. To determine

the constant of proportionality, it suffices to consider the mo- ={B1,{Bs, ... Bing A1, - - - Antne—

nomial ABCDEFG and use the shifting bracket argument,

which shows that this particular monomial can be found in H{Bi,{B1, - Bioafne Ar, o Antne. (120

only four terms out of the 35 in the sum, namely, in . ) o ] . o
While this classical identity holds without requiring full an-

tisymmetrization over all exchangesA$ andBs, in contrast
[[A.B,C,D].E,F,G], the quantum identitynustbe totally antisymmetrized if it is
—-[A[B,C,D,E],F,G], [A,B,[C,D,E,F],G], and to be a consequence of only the associativity of the underly-
ing algebra of Hilbert space operators. Note thatrthid on
—-[A,B,C,[D,E,F,G]]. (117)  the RHS of Eq.(119 may be replaced by just 1 if we sum
only over permutations in which tha,-, are interchanged

The monomiaABCDEFGappears in these four terms with with the Ai>n in [[Avl’ T ’A"n]’A‘rn+1’

coefficients +1,-1,+1, and —1, for a total of 0 ...,A, 1 and ignore all permutations of the
XABCDEFG Thus, we conclude tha{39,41, and also A, ,A,,... A, among themselves and of the
[11], especially Eq(32)) Ani1, .- - Anp @among themselves.
There is an important specialization of the QJI result
[[A,B,C,D],E,F,G]* (34 distinct permutations= 0. [39,41: For any evem and any odd
(118

SO [Asy - As LA, oo Ay ]

This is the prototypical generalization of the Jacobi identity (n+k)! perms o

for even QNBs and constitutes the full antisymmetrization of ~0 (121)

all arguments of the analogous FI. There is no RHS inhomo- '

geneity in this case. ) o
The totally antisymmetrized action of even n QNBs orl" Particular, wherk=n—1, for n even, the vanishing RHS

other even n QNBs results in zero obtains. All othern-not-even.and/ok—not-(_)dd cases of the
The generalized Jacobi identity for arbitranyorackets ~QJ! have thgA,, ... A, ] inhomogeneity on the RHS.

follows from the same simple analysis of coefficients of any 1he QJI also permits us to give the correct form of the

given monomial, as in Eqg111) and (117). The shifting so—cglled fundamental identities valid for a_lll QI\_II_35. We ac-

bracket argument actually leads to a larger set of result£ordingly call thesequantum fundamental identitigQFIs)

whenever the actions of any brackets are totally antisymme2nd present them in their general form.

trized. We present that larger generalization here, calling it 1+ QFIS for QNBs These are given as

the quantum Jacobi identitpr QJI. The GJl is the QJI for

k=n-1.

i. QJIs for QNBs These are given as - sgno)| [[Ags - - Ag LA oA
n
S IA, . TALA, A T A,
(n+K)! permso Sgr(o.)[[A(rl' Y ’A(r“]'A(r“”' Y ’AU““‘] jzl [ 71 [ j n+1 n+k] n]
=[Aq, ... Ap]Xnlk! =[Aq, ... Ap]Xnlk!
(k+1) if n is odd 0 if k isodd
1+(—1)% if niseven (119 x{ (1—n)(k+1) if k isevenandn isodd
! .
[1-n(k+1)] if k isevenandn iseven.
This result is proven just by computing the coefficient of the (122

A:--- A, monomial using the shifting bracket argument as
given previously to establish Eq¢$111) and (117). Other  Aside from the trivial case ofi=1, the only way the RHS
arguments leading to the same result may be found iwvanishes without conditions on the fulh¢ k)-brackets is

[41,11]. whenkis odd. Alln>1, evenk resultin thegfAq, ... Akl

This is the quantum identity that most closely correspond$nhomogeneity on the RHS.
to the general classical resfitee the second talk undi], Partial antisymmetrizations of the individual terms in the
Eg. (28)] for any evenn and any oddk (only n=2N, k  general QFI may also be entertained. The result is to find
=2N-1 is the F), more complicated inhomogeneities, and does not seem to be

085001-16



CLASSICAL AND QUANTUM NAMBU MECHANICS PHYSICAL REVIEW D 68, 085001 (2003

very informative. At best these partial antisymmetrizationsit is crucial to examine detailed cases to appreciate how
show in a supplemental way how the fully antisymmetrizedquandaries that have been hinted at in the past are actually
results are obtained. resolved, especially since the exact classical phase-space ge-

In certain isolated, special cades$. the sui2) example of
the next section, for whick= 3], the bracket effects of se-
lect Bs can act as a derivatiofessentially because the
brackets are equivalent, in their effects, to commutatdfs

ometry in Sec. Il A is no longer applicable. Similar studies
have been attempted before, but have reached conclusions
sharply opposed to ouf$.Here, we demonstrate how the
simplest Nambu mechanical systems are quantized consis-

that is the case, then the quantum version of the simple idertently and elegantly by conventional operator methods.

tity in Eq. (22) holds trivially. It is also possible, in principle,

a. SU(2) as a special cas€he commutator algebra of the

for that simple identity to hold, again in very special situa-charges (o,=L,,L.=L,*iL,) is
tions, if the quantum brackets are not a derivation, through
various cancellations among terms. As an aid to finding suchbk+ L -1=27%Lo,
peculiar situations, it is useful to resolve the quantum corre-
spondents of the terms in the classical Fl into the derivator

[LOvL—]:_ﬁL—! [L01L+]:h|-+!

(125

introduced previously (101). From the definition of
[A, ..
lations, we find

[[A;, ...,An],B]—JZl [Ar, ... [AB], ... Al

1
— (A

= > sgro) =D

n! perms o

[Asy .- A lIB)

()’l

1
* (n——Z)!Aol(A‘TZ’[Ao's’ e ’Aon]|B)

[A(fl'AU'Z](A v[Ao'41 e !A(rn]|B)+ e

(7'3

T 2in_3)

1
+———[A, A

(n=2)1' "o A

U

1A, LA, [B),

Th-2
(123

with the abbreviatio=B, ... ,Bi. The terms on the RHS
are asumover=1,... n—1 of derivators between solitary
As (i.e. 1-bracketsand various K — j)-brackets, left multi-
plied by complementary rankj ¢ 1)-brackets.(There is a
similar identity that involves right multiplication by the
complementary brackejs.

For example, suppose=2. Then we have, for any num-
ber of Bs

[[Al !AZ:lvB] - [[Al vB]!A2] - [Al ,[Az,B]]

=(A1,A2[B)—(Az,A[B). (124
In principle, this can vanish, even when the action of Bse
is not a derivation, if th derivator is symmetric in the first
two arguments. That is, if A;,AzBq,....By)
=3(A1,AyBy, ... .BY)+3(A,ABq, ... BY). However,
we have not found a compellingnontrivial) physical ex-
ample where this is the case.

B. lllustrative quantum examples

As in the classical situation, it is useful to consider ex-

.JA,L] in Eq. (77) and some straightforward manipu-

iving rise to [L_ L31={[L_,Lol,Lo}=RA{L_ Lo}, etc.
The invariant quadratic Casimir is
I=L,L_+Lo(Lo—%)=L_L,+(Lgt+A)Ly. (126

We use the algebra and the commutator resolution of the
4-brackets

[A,B,C,D]:{[A,B],[C,D]}_{[A,C],[B,D]}

—{[AD],[C,B]} (127
to obtain[6] the quantization of Eq(31):
[ALo.L, L ]=2A[AI], (128

and the more elaborate
[Al,L, ,L_1=2A{[A1],Lo}=2A[{A Lo}, 1]. (129

Since | and L, commute, the nested commutator-
anticommutator can also be written using the 3-brackets:
[{AiLO}vl]:[Avl 1L0]_[LOI 1A]

So for SU2) invariant systems wittH=1/2, Eq. (128
gives rise to the complete analog of classical time develop-
ment as a derivatio31), namely,

'hzd—AzﬁAH =£AL L. ,L
| [!]4[!O!+!—]!

i (130

where the QNB in question happens to be a derivation too
[6], and thus satisfies an effective Fee Eq.(152]. By
contrast, Eq(129 gives rise to

dt’ 0 ’ =0 Y ’ '

Since the latter of these is manifestly not a derivation, one
should not expect, as we have stressed, Leibniz rule and
classical-like fundamental identities to hold. Of course, since
a derivation is entwined in the structure, substitutiAn
—AA and application of Leibniz’s rule to just the time deri-
vation alone will necessarily yield correct but complicated

plicit examples of quantized dynamical systems described by ——
quantum Nambu brackets, to gain insight and develop intu- *The quantization of Nambu structures turns out to be a non-
ition. However, for quantum systems, it is more than usefulrivial problem even(or especially in the simplest caseq24].
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expressiongbut not particularly informative results, given dA dA, 1
the consistency of the structure already establishiddw- iﬁz[ayl-o] =in2Y, (>\+P)P>\Tppp=z[A,|,|—+ L-]
ever, in more general contexts and in fanciful situations o (137)
where the operators playing the role lof were invertible,

one might envision trying to solve for the time derivative Thig highlights the differences between Eg31) and con-

through formal resolvent methodsee the Appendixe.g9.,  yentional time evolution for operators in the Heisenberg pic-
dA Z ture, as in Eq(130), since the time scales in E(L37) de-
A 1 oan -1 pend on the angular momentum eigenvalues.
At dt 20 (=Lo) AL, L-](Lo) ’ This example illustrates our introductory remarks about

(132  different time scales for the different invariant sectors of a
system. It also shows why the action of the 4-brackets in
where the new brackets implicitly defined by the RHS wouldquestion is not a derivation. The simple Leibniz rule for ge-
now be a derivatiorthere, just the commutator with). Itis  neric A and A, that would equatd AA,I,L.,L_] with
clear from our discussion, however, that the QNBs and the\[ A,I,L, ,L_]+[A,l,L,,L_]A, will fail for (nonvanish-
entwinings they imply, are still the preferred presentation ofing) products A\ Aup, unlessh+u=u+pr=N;+py,

the quantized Nambu mechanics. i.e., unless\;=u=p,. If restricted and applied to a single

It might be useful to view solving fod A/dt as a problem  5ngyular momentum sector, the 4-brackets under consider-
of implementing scale transformations in the generalized Jorstjon does indeed give just the time derivative of all diagonal
dgn algebra context. Evidently, thgre is IiFtIe if any discus—(i_e_, those with\ = p) angular momentum eigenoperators on
sion of that mathematical problem in the literat{#&]. that sector. When projected onto any such sector, the action
_ The physics described by the first QNEB30), is standard  of these 4-brackets is therefore a derivation, since the time
time evolution, just encoded in an unusual way as quantundcaje will be fixed. But without such a projection, when act-
4-brackets. However, the other QNB, in E31), illustrates  jng on the full Hilbert space of the system, where more than
the idea discussed in the Introduction. Physically, thesg e value of) is encountered, these 4-brackets aat
Nambu brackets are an gntvymed form of tlme' evolut|on,simp|e derivations, not even if they act on only diagobal
where the Jordan algebraic eigenvalvesf Lo, defined by gjgenoperators, if two or mork, Jordan eigenvalues are
{ALo}=0A, set the time scales for the various sectors ofinyolved. At best, we may think of it as some sort of dynami-
the theory: i.e., the formalism gives dynamical time scalesScq)ly scaled derivation, since it gives time derivatives scaled
To see this, resolve the identity=>, P, , in terms ofL by angular momentum eigenvalues.

projections,P’; =P, , and use this in turn to resolve any op- ~ The quantum brackets in EGL31) have a kernel, just as

eratorA as a sum of left and right eigenoperatorsLgf their classical limits do, but the quantum case evinces the
linear superpositions inherent in quantum mechanics. This is
_ ) ) D OAD evident in Eq.(137), where a given eigenoperator is left un-
A_% R (133 changed by the brackets ¥=—p, rather than simplyx
=0=p. This quantum effect is linked to the fact that Jordan
These eigenoperators obey algebras are not division rings, as discussed in the Appendix.
For this and other reasons, having to do with the fact that the
LoAv,=NAL, . Ay Lo=pAy, - (134 4-brackets in Eq(131) are not a derivation, it is not possible

to simply divide the LHS of Eq(131) by L, and then absorb
Following such a decomposition, sincgl’, ,H]=0  the 1L, on the RHS directly into the brackets, as we did in
=[Py ,Lol], Eq. (131 can be written as a sum of terms previous classical cases, such as @§). While the result in
Eqg. (130 does indeed have the expected form produced by
such naive manipulationésuch manipulations being valid
for the classical limits of the expressignthis result cannot
be derived in this way. It is legitimately obtained only

ih2{ ddAtxp ,Lo] =1{[A\, H],Lo}

=h[{Ax,:Lo}H] through the commutator resolution, as above.
dA Other choices for the invariants in the 4-brackets lead to
=ih?(N+p) i (135  some even more surprising results and offer additional in-
dt sight into the quantum tricks that the QNBs are capable of
laying. For example,
That is to say, the sum of the left and right eigenvalues of thg ying P
operatorA, , gives a Jordan eigenvalue=X\ +p, [A,LZ,L+ ,L,]=2h{[A,L§],LO}+h{[A,L+],{L, Lokt
{Av Lat=(N+p)A,,, (136 +A{[AL_1{L. Lo}}
and this Jordan eigenvalue sets the time scale for the instan- =2{[A11,Lo}+ 2% Lo, A]
taneous evolution of the eigenoperator. Since a general op- FAIL Ly A LT
erator is a sum of eigenoperators, this construction will, in Tk Elihmo
general, give a mixture of time scales. Stated precisely +Aa[L,,[L_,[A Lol (138
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This shows an interesting effect in addition to the dynamical-brackets involved actually derivations, but they are not.
time scales evident in the first term of the last equality,There are some special situations, such as whénin the
namely; quantum rotation termsas given by the last three enveloping algebra and is invariant under rotations about the
O(%#*) terms in Eq.(138). If A is not invariant under rota- polar axis, i.e.A=A(Ly,(L,L_)), for which the derivators
tions about the polar axis, so thdty,A]#0, the last three do vanish. However, for generd including most of those
terms in Eq(138 may generate changesApeven thougA  in the enveloping algebra which are not polar invariants,
is time invariant. The effect is a purely quantum one; it dis-these derivators do not vanish, and so, in general, the QNBs
appears completely in the classical limit. The QNB in ques-in Egs.(138 and (139 are not derivations.

tion is algebraically covariant, but not algebraically invariant  Another simple example of a nontrivial QNB, with a
(as opposed tdime invariand. Therefore, it may and does trivial classical limit, is

lead to nontrivial tensor products when it acts on other alge- ) 3

braically covariantAs. (As a general rule of thumb, if the [LoL+ Lo,Ly L ]J=—4a"(2Lo—R)L . (143

QNB is allowed to do something, then it will This would again vanish were the generic 4-brackets deriva-

Mathematically, it is sometimes useful to think of nested..
: . . tions, but as already stressed, they are not. The correspond-
multicommutators, such as those in E§38), as higher par- ing %A here gives

tial derivatives. This manifestation provides another reason

why general QNBs are not _derivatio_(isa_., first derivatives 2(|_O,|_+||_g,|_+ ,L,)=[{L0,L+},L§,L+ L]
only) and do not obey the simple Leibniz rule.
Combining Eq.(138) with Eq. (129 also yields =—8h3Ly,L.}, (144
[A(L, L)L, ,L_]=242[A1]1-24%Lg,A] a purely quantum effect for 4-brackets. Its classical limit is
—ha[L_,[L,[AL 1
[L-[L+ [A Lol lim —[{Lo,Li},L2,L. L ]=—8lim#{Lg,L.}=0.
—f[Ly [L- [ALo]ll ho f h—0
14
(139 (149

] o ] The RHS has one too many powersfoto contribute clas-
Since every commutator is inherenty(7), the firstterm on  gjcally.

the RHS of this last result |®(h3), while the last three are A class of such resultS, evocative of those found in de-

O(#%. All vanish in the classical limit formed Lie algebras, is given by
ah Lo),Ly|Lg,Ly Lo
IIm(E) [A’(L+L—)1L+ rL—]:O- (140) (g( O) +| + )
h—0

=2hL,(1+:Lo—LA[g(Lo+2h)—2g(Lo+1)

This illustrates how nontrivial QNBs can collapse to nothing ~ +g(Lo)]—4%42L . (A+2Lo)[g(Lo+27) —g(Lo+%)].
as CNBs. TheD(%*) terms are quantum rotations, as in Eq. 146
(138), but with changed signs. (146

The two result138) and(139) are simple illustrations of  The choiceg(L,) =L, reduces to the particular case in Eq.
the failure of QNBs to obey the elementary Leibniz rule. As(144).

derivators b. 4-brackets sums for any Lie algebrelow does the
3 guantum 4-bracket method extend to other examples, per-
(LosLolL s AL)=2A7 Lo, Al+A[L_[L ,[ALo]]] haps even to models that are not integrable? In complete
+A[L, L AL (141) parallel with the classical example, any Lie algebra will al-
Fobmo oL low a commutator with a quadratic Casimir invariant to be
whose RHS i©(%4) and thus, vanishes in the classical limit Fewritten as a sum of 4-brackets. Suppose
2 .
asO(#%). and [Qa,Qul=i%fancQe (147)
(Ly,Lo|Ly A L)=2h7A1]-21%Lo,A] in a basis wheré .. is totally antisymmetric. Then, through

the use of the commutator resoluti¢®3), for a structure-
constant-weighted sum of quantum 4-brackets, we find

fabd A, Qa,Qp,Qcl= 3fabc{[AaQa]a[Qb 1Qc]}

whose RHS is inherentl@(#°%), due to thd A,1] term, and —3ihff A _
also vanishes in the classical lim#tThe LHS of either of avcfbeal [ A Qal. Qaf
these expressions would vanish identically were the (148

_ﬁ[L— ![L+ ,[A,Lo]]]
_h[L+ ![L— ,[A,Lo]]], (142)

Again, for simple Lie algebras, use E&4) to obtain a com-

2 5 I _ mutator with the Casimir invariar®,Q,,
If fis a function in thesu(2) enveloping algebra, thefrf,l]

=0, and @, ,J_|J, ,f,J_) is again inherentyO(%%). 3i% Cagjoint [ A, Qal, Qa} = 3i7iCagjoinl A, QaQal. (149
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Thus, we obtain the quantization of the classical result in n
Eq. (35), H=02 (Ni+3f), Ni=Nj, (156
=1

fabo[AaQaaQb1Qc]:3iﬁcadjoin{AanQa]- (150

This becomes Eq35) in the classical limit, with an appro-

priate factor of 2 included, as in E(9). A slightly different

route to this result is to use the left- and right-sided resolugonsideration of the isotropic oscillator dynamics using

tions of the 4-brackets into 3-bracke(®2), and then note  oNBs yields the main result for oscillatomzbrackets.

that the trilinear invariant reduces to the quadratic Casimir 4 Isotropic oscillator quantum bracke{@he U(n) quan-

invariant: tum reductio ad dimidium] Let N=N;+N,+ ... +N, and

o intercalate then—1 nondiagonal operator®;;. ., for i

Fabd Qa» Qb Qel =317 CagioinQaQa- (151 =1,...,0nh—1, into 2n-brackets along with th@ mutually

Thus, as in Eq(130), this particular linear combination of Zotrgr;;#éllggN,— forj=1,....n, and along with an arbitrary

guantum 4-brackets acts as a derivation. As a corollary, we

which gives then? conservation laws

have the 4—_bracket effective fundamental identEFI) [6], ' [AN,Nip Ny, Ny, N 1Ny 105N, ]
i.e., one with three of the entries being related by a Lie
algebra: =A""H[AN],N12,Nog, ... Ny}
fapd Qa,Qp,Qc,[AB, ... D] =i""[{AN2,Nog, ... Np_1n,N]. (158
=f,0d[Qa,Qp.Qc.AlB, ... D] This result shows that the QNB on the LHS will indeed
vanish, not just whem is one of the 2—1 charges listed
+fapd AlQa:Qp.Qc B], ... D]+ - along with A in the brackets, but also i is one of the
+f,,JAB [Q.,Qp,Q.,D]] (152) remaining Uf) charges, by virture of the explicit commuta-
a [t BRI | a? ] c .

tor with N=H/w appearing on the RHS of Eg&l58 and
By using Eq. (150, all models with dynamics based on (157). The classical limit of Eq(158) is Eq.(39), of course.

simple Lie algebras withH=1Q,Q, can be quantized  1he nondiagonal operator; ., do not all commute
through the use of summed quantum 4-brackets to descrigd"ond themselves nor with all tihg , but their non-Abelian

their time evolution as a derivation: properties are encountered in the above Jordan and Nambu
products in a minimal way. Only adjacent entries in the list
dA N12,No3,N34, ... ,N,_1, fail to commute. Also in the list of
iﬁ2a=ﬁ[A,H]= Wtfabo[A,Qa,Qb,Qc]. 2n—1 generators within the original QNB, eadh fails to
adjoin

(153 commute only with the adjaceN;_;; andN;; , ;. Such a list
of invariants constitutes a “Hamiltonian path” through the

4
This special combination of sums of 4-brackets leads to aRlgebra. , o _
exception to the generic QNB feature of dynamically scaled Proof. Linearity in each argument and total antisymmetry
time derivatives. It shows that QNBs can be used to describ@f the Nambu brackets allow us to replace any one of\he
conventional time evolution for many systems, not onlyPYy the sumN. ReplaceN,—N, hence obtain
those that are superintegrable or integrable.

c¢. U(n) and isotropic quantum oscillatar3he previous [AN1,N12, N2, - .Np—3,Nn—1n,Nn]
resu!ts on !\lambu—Jordan—L_ie alge'bras can be applied to har- =[AN;,N5, Ny, ... No_1,Ny_10,N]. (159
monic oscillators. For the isotropic oscillator, the NJL ap-
proach quickly leads to a compact result. A set of operators———

can be chosen that produces only one term in the sum ofi3pn510g0usly to the classical case, the nondiagonal charges are
Jordan-Kurosh products. not hermitian. But the proof leading to E(.58) also goes through
Consider then-dimensional oscillator using the standard if nondiagonal charges have their subscripts transposed. This allows
raising/lowering_operator basis, but normalized in a wayreplacing N;;.; with Hermitian or anti-Hermitian combinations
(V2a=x+ip, V2b=x—ip) that makes the classical limit Nj,+N,,,; in the LHS 2n-brackets, to obtain the alternative lin-
more transparent: ear combination$l;; , ; + N;, 1; in the GJP on the RHS of E¢L58).
There are other Hamiltonian paths through the algebra. As pre-
[a,bj]=%4;, [a,a;]=0=[b;,b;]. (154  viously mentioned in the case of CNBs, a different set nf-2L
invariants which leads to an equivaleatuctio ad dimidiuntan be
Construct the usual bilinear charges that realize ufe) obtained just by taking an arbitrarily ordered list of the mutually
algebra: commuting N; and then intercalating nondiagonal generators to
match adjacent indices on tiNy . That is, for any permutation of

Nij=bia;, [Njj,Nl=%(N;—Ny;&). (155 the indices{oy, ..., onp, we have:[A N, N, ;N Ny o,
NU’37 e 1N(rn_1l NUn—lgn’N‘rn] :ﬁnil{[A!N]vNalU‘Z! Nu'20'31 ot
Then, the isotropic Hamiltonian is No o3 =" {f.Ns o, Noyoo - N o NI,
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Now, since[N,N;;]=0, the commutator resolution of the  The specific oscillator realization of U(3) explicates this
2n-brackets implies thall must appear locked in a commu- last point. The RHS of Eq163) becomes
tator with A and thereforé\ cannot appear in any other com-

mutator. But therN; commutes with all the remaining free dA B N dA| dA
N;; exceptNy,. SoN; must be locked ifNy,N;,]. Con- (E’le’NB]_:)' (Not27)Nus, g + 27 Nas,
tinuing in this way,N, must be locked i N,,N,s], etc.,

until finally N4 is locked in[N,_1,N,_1,]. Thus, all X N d_A N (164)
entries have been paired and locked in the indicatedm- 2 de| 12

mutators, i.e., they are all zipped-up. Moreover, thesem-

mutators can and will appear as products ordered imtall We have rearranged terms so as to produce just a simple
possible ways with coefficients-1 since interchanging a Jordan productanticommutatoy; not a generalized one, and
pair of commutators requires interchanging two pairs of théotations of the time derivative. This leads to a Jordan spec-

original entries in the brackets. We conclude that tral problem involving only a commutative produdioN,3
=N13N,, to set the dynamical time scales for the various
[A,N{,Ny5, Ny, o0 Npo 1, N 10, NG ] invariant sectors of the theory. The additional rotation terms

in Eq. (164 are similar to those encountered previously in
={[ANL[N1,Ngz, ], ... [Nn-1,Np_gp]}. (160 the SU(2) exampleg138 and (139, with a notable differ-
ence: The rotation is performed a®/dt, not or A. As in
those previous SU(2) cases, however, the rotations are
higher order ini than the anticommutator term, and so they
[AN; Ny N N N N, ] drop out of the classical limit. Decompositions similar to Eq.
L2 N2y i 1 = dn TN (164 apply to all the othetU(n) cases described by Eq.
=ﬁ“_l{[A,N],N12. o Np_1nk. (161 (163), as can be seen from the list of operators in the GJP of
that equation, by noting that only adjacé . ;elements in
Finally the commutator wittN may be performed either be- the list fail to commute.

Now all the paired N;; commutators evaluate as
[Ni-1,Ni-1;]=%AN;_4;, so we have

fore or after the Jordan product Afwith all theN;_4;, since It should also be apparent from the form of Efj64) that
again[N,N;;]=0. Hence, one cannot simply divide the LHS hyi;,N,; and then na-
ively sweep the Kl;,N,g) ! factor on the RHS into a loga-

{LAN], N2, ... Npoqn} rithm. This is permitted in the classical limit, as in H¢5),

but operators are not as easily manipulated on Hilbert space.
Perhaps it is useful to think of this as a problem of imple-
menting scale transformations in the generalized Jordan-
Kurosh algebra context, but here the rotation terms compli-
Ig:ate the problem. These terms also complicate the issue of
the quantum bracket's kernel, although that issue for just the
first RHS term in Eq.(164) is the familiar one for Jordan

=[{A,N15, ... ,N,_1,},N]. QED (162

In analogy with the classical situation, the quantum invari-
ants which are in involutiori.e., the Cartan subalgebra of
u(n)] are separated out of the QNB into a single commutato
involving their sum, the oscillator Hamiltonian, while the
invariants which do not commuten—1 of them, corre-

sponding in number to the rank of Stj( are swept into a algTertu);arSésun(les) helps to clarify why the Leibniz rules fail
generalized Jordan product. Thus, we have been led to a b y

more complicated Jordan-Kurosh eigenvalue problem fo}/\/_hen time evolution is expressed using QNBs for the isotro-

u(n) invariant dynamics, as the entwined effect of severa!O'C oscillator, for here this failure has been linked to the
y ' intervention of a Jordan product involving noncommuting

mutually_noncqmmutmg\I”s. The !nd|V|duaNiJ- may not be invariants. The Leibniz failure can be summarized in deriva-
diagonalized simultaneously, so it may not be obvious Whak
ors. For the Uf) case,

the general formalism of projection operators will lead to in

this case, as compared to E433) et seq, but in fact it can (A, AIN;,Ni2,Ny, Ny, No_1,No_ 103N,

be carried through by rearranging the terms in the Jordan

product, as we shall explain. =" {AAN,Nos, ... Ny_1,},N]
Our QNB description of time evolution for isotropic no1

guantum oscillators therefore becomes A" AL{ANIR, Nag, - - No-10},N]

— 7" U{A N, Nos, ... Ny h,NJA. (165
O[AN1.Ni2. Ny, .. No_1.Np-10.N,] [{AN2:Nzg. - - No- 0} N

For U(2), this reduces to

dA
=it — N, ... N, _ , 163
dt "t i (163 (A AIN; N1p,N) =A[N,AI[Nyp, A]— [Ny, ATLN, Al

whose classical limit is precisely E¢44). This result en- (166
codes both dynamical time scales and, in higher ordefs of In the classical limit, the derivator vanishes, as expected.
group rotation terms, as a consequence of the generalized e. SQn+1) and quantum particles on n-spherd<or a
Jordan eigenvalue problem involving noncommuting ele-quantum particle moving freely on the surface of an
ments,N,, ... Ny_1n- n-sphere, it is a delicate matter to express the quantum
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so(n+1) charges in terms of the canonical coordinates an@nd the group invariant Hamiltonian i$=3(P;P;+L;L;).
momenta, but it can be doref. the discussion 6], and By direct calculation, we then obtafef. third RHS line in
references cited therginThe quantum version of the classi- Ed. (87), and also recall for a particle on the 3-spherg?;
cal PB algebra is then obtained without any modifications. =0]

[Pa,Pp]l=ifilyy, ~[dA
a é [AL;,L,,P;,P,,Ps]=3i%° a,P3 —342{[A,L;P],L3}
[Lab ) Pc] = iﬁ( 5ach_ 5bcpa)a

122
[Lab,Lcal=i17(Lacdba—Laddbe— Lbcdadt LodSac)- (167) *ah Z (A L=PLLi=Pil.LatPs]
—[[[ALi+Pi],.Li+ Pi],Ls—P3]). (179
Hence, the symmetric Hamiltonian has the same quadratic
form as the classical expressi¢if). So a natural choice for Once again, the quantum rotation terms represent higher-
the QNB involves the same set oh2 1 invariants as se- order corrections, in powers df, corresponding to group
lected in the classical case:[A,P;,Li5,Py,L5s, rotations ofA. For example, ifA is the 3-sphere bilinear
P31 s vpnfl!Lnflnvpn]'
The QNB results in an entwined time derivative, with Aap=(Lat+ P (L,—Py), 172
attendant dynamical time scales and quantum rotation terms,
thendA,,/dt=0 for a particle moving freely on the surface
of the sphere, but the corresponding quantum group rotation

o [A.P1,L12,P2,L23,P3, ... Pro1,Ln—1n.Pnl induced by the 3-sphere 6-bracketsiit zero. The 6 brack-
(i%)"n ets reduce entirely to those quantum rotation terms. Explic-
dA itly, we find

=(-1)" 1 P,,Ps, Prongp

[Aab,Pl,Lg,Pz,Ll,P3]=4iﬁ5§ (£b2cAac— EazcPcb)-
173

+ quantum rotation terms, (168

where iAdA/dt=[A,H]. As in the previous SU(2) and

U(n) quantum examples, the operator entwinement on thés in all previous cases, the quantum rotations disappear in
RHS is not trivially eliminated through simple logarithms, asthe classical limit

it is in the classical situation in going from Ed438) to (50),

but leads to Jordan-Kurosh spectral problems on the Hilbert lim[Aap,P1,L3,Ps,Lq,P3]/A%=0. (174
space of the system. The kernel of the quantum bracket is ii—0
similarly impacted.

If one of theP’s or L’s in the 2n-brackets of Eq(168) f. SQ(4)=SU(2)xSU(2) as another special casaVe

were replaced byH, the occurrence of an entwined time consider this particular example in more detail, as a bridge to
derivative would be manifedisee Eq.(177) below for the general chiral models, choosing bracket elements that exhibit
3-sphere cadeOtherwise, with the invariants as chosen, it is dynamical time scales both with and without group rotations.
laborious to obtaif A,H] by direct calculation. Likewise, UseL; andR; for the mutually commuting su(2) charges:
the explicit form of the quantum rotation terms in E468),

for generaln, are laboriously obtained by direct calculation [Li,Lj]l=ifieile, [Ri,Rj]=ifiejRe, [L;,Rj]=0.

and will be given elsewhere. They may be constructed (175
through an embedding of the orthogonal group into the uni- ]

tary group treated previously. Suffice it here to say that theyAdain, compare to Eqs53) and(54) and note the normal-
are higher order ik, as expected, and to consider the casdZation here differs from that used earligt;=—2L;, R;=

of the 3-sphere, for comparison to the chiral charge methods 2R; .] Define the usual quadratic Casimir invariants for the

given below. left and right algebras,
For the 3-sphere, it is convenient to define the usual duals
(sum repeated indicgs |L=Z |—i2, lez Riz. 176
Li=3eijxLk- (169 | |

Then, for a Hamiltonian of the forril=F(I,lIg), whereF
Then, the algebra becomes the well kndwampare to Egs. s any function of the left and right Casimir invariants, we
(53) and (54)] find

[Li,Lj]:iﬁSijkLk, [Li’Pj]:ihSijkPk, [A1H1R11R21L11L2]:(ih)z{[AaH]1L31R3}

[PIIPj]:IhsljkLki (170) :(|h)2[{A,L3,R3},H] (177}
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This is the quantum analog of the classical result in (B6). 3

Aside from trivial normalization factors, the difference lies [AR1,Ry,R3,Ly,Lo]= E(ih)z[{A!LS}vIR]

in the particular ordering of operators in the quantum expres-

sion. Physically, Eq(177) is simply time evolution gener- 1.,

ated by the Hamiltonian, with the Jordan-Kurosh, simulta- +5(ih) > [[[ARTRIL;]. (184

neous eigenvalues df; and R; setting the time scales for '

the various sectors of the theory. In particular, this is true for

Hel orHxlg, asis relevant for a quantum particle moving The first terms(single commutatojson the RHSs of Egs.

freely on the 3-sphere. (183 and(184) are inherentlyO(%2), and give scaled time
The dynamical time scale structure produced by theselerivatives, while the second terrfisiple commutatorsare

quantum 6-brackets are a simple extension of the structur®(%°), and give additional group rotations. Perhaps these

found previously for the SU(2) example. The Jordan-Kurostresults may be interpreted as groopvariant Hamiltonian

eigenvaluesr are now defined by flows, with “guantum connections” given as the triple com-
mutator, higher-order effects ifi. Note the LHS of Eq.
{A,,L3,R3}=0A,. (1789 (183 manifestly vanishes whefiis one ofL, Ly, L3, Ry,

or R,, while the RHS manifestly vanishes for the remaining
A complete set of operators consists of all doubly projectectchoiceA=R3, as well asR; andR,. Similarly, the RHS of

eigenoperatorﬂxlplv)\zpz, where Eqg. (184 manifestly vanishes foh=L;, j=1, 2, 3, includ-
ing the one case excepted by the LHS of that equation.
D Y NS SR SR (P Y. S We may add or subtract Eq$183 and (184) to gain

L+~ R symmetry between left- and right-hand sides, but the

resulting quantum expressions do not permit easy conver-

sions into logarithms, as in the classical césk Eq. (59)].

(179  Nonetheless, for the free particle on the 3-sphere, With
=2l =2lg, we may write the sum and difference as

RaAN 101 0a0s =PI 1 Agpr A1y Mapy R8T P2 1 0y

Hence {A,L3,R3}=01A, with

012=2N1p1tNypot pilat2Nap;, (180 [AL;Ly,Re*La.RyRy]
since —3ik3(dA
:T E'Lsi R3
{A,L3, Ry} ={L3,R3}A+L3AR;+ R;AL;+ A{L3,R3).
(181 1.
_ _ +5(i1)°2 ([[[AR].R].Ls]
So the time scales for the various sectors of the theory are set :
jointly by the eigenvalues df ; and Rs. +[[[AL],L],Rs]). (185

The simple Leibniz rule for generié and.4, that would
equate[AA,H,R;,R,,L,L,] with A[A,H,R;,R,,L4,L5]
+[AH,R;,Ry,L1,L,]A,  will fail for products This is the by-now-familiar form, consisting of an entwined
Ay, unless time derivative and group rotations.
22 As a simple example to isolate and accentuate the group
(182 rotation effects, také to be any bilineaA,,=L R, of spe-
cific left and right charges. Since commutators are indeed

There are no higher-order quantum group rotation terms if€rivations, all functions of the six possible, and R,
this particular case, due to our choice for the invariants in th&h@rges commute with the Casimir invariants, so the first
bracketd A,H,R;,R,,L,,L,]. The more general situation is (€'MS on the RHSs of Eqs183 and (184 vanish for A
revealed by a different choice, as follows. =Agp (i.e., Ayp for a particle moving freely on the surface of
g. 3-sphere chiral 6-bracketsVe take all five of the fixed a 3-sphere has no time derivatiyethe s_econd terms on the
elements in the 6-brackets to be charges in the su(2RHSS of Eqs(183 and(184) do notvanish forA=A,;, but

X su(2) algebra, and not Casimir invariants, to find are just rotations of the, and R, charges, respectively,
about thez axis:

Anip1 M0z Agpg?

012=023=013-

3
[A1L11L21L3!R11R2]: E(Iﬁ)z[{A=R3}1IL]

Z [[[Aab,Li],Li],ngzi#; Ep3cAac,

N

+ <iﬁ>22i [[[A,Li],LiIRs],

(183
. 2 [[[Aap,RIR1,La1I=2iA% X eagcAcp. (186
or, equivalently, i c=12.3
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So, for this particular example,

[Aab:L 1Lz La Ry Rel =~ 142 enzchac,

[Aab,Rl,Rz,Rs,Ll,sz—iﬁsg azcAch. (187

Let us establish this result in detail by proceeding from the

SU(2)XSU(2) chiral form of thereductio ad dimidium
namely,

[A,Ll,Lz,Lg,Rl,Rz]=<ih>2$ {[AL;1.L;,Rs}.
(188

PHYSICAL REVIEW D68, 085001 (2003

Then for oddn=1+2s, with sums over repeated indices
understood to run from 1 to,

[ALy ... LoRy .o Ryl
1
SR N= D)1 Sl
X[ALi, oL R Ry
=Knei, . igj g, ellALLIL LT -

X[Li oL LR LR - [R Ry Th
(193

This enables us to compute how the bilinear is transformetvhere K,=[4%(s!)?]"* [the same numerical combinatoric

by the 6-brackets. First

[LaRb,Ll,Lz,Lg,Rl,Rz]=<ih>2$ {[LaRy,L;1,L;,Rs}

=(iﬁ>3§ eaji{LkRo L, Ra}.

(189
But then
{LkRo L, Ra}=LiRy{Lj,Ra}t+L{LkRp,Rs}
+R{LRp, L}
= 2L, RyRs+ L L {Ry R}
+{Ly,L;}RsRy, (190

S0, summing repeated indices,
_ 1
ajid LR, L}, Ra} =i%i&4jk&jmbm| RoR3— E{RerS}

= E(ih)zgajkskijmsbSCRc

=%2L,Reepac -

(191

This confirms by direct calculation that the chosen brackets
do not just produce entwined time derivatives, but more

elaborately, the brackets combine entwirck®/dt with in-

factor introduced earlier in the classical exam@2)] incor-
porates the number of equivalent ways to obtain the list of
commutators in the generalized Jordan products as wiitten.
So

[ALg, ... LRy .. Ry 4]
=Kn(i7)" e ieg g n(Fiigg - fi k)
X(fjljzml T 'fjn—zin—lms)
SAIAL Lk - LRy« Rode (194

This leads to some mixed symmetry tensors that are familiar
from classical invariant theory for Lie groups,

Tn{ml"'ms}Eejl"'jn—lnfjljZml e 'fjn—zjn—lms' (199

Need has not dictated obtaining elegant expressions for these
tensors, except in special cases, but undoubtedly they*8xist.
In terms of these, the reduction becomes

[ALs, ... LoRys .. Ry 4]
=Kn(i7)" ™ 7 i kg Togm, ... mg)

X{ALi 1L, - LioRmy - - R} (199

finitesimal group rotations of. Since group rotations are Results for evem are similar, only in that case the arbitrary
symmetries of the system’s dynamics, this is not an inconA must be locked in a commutator with &

sistent combinatioricf. covariant derivatives in Yang-Mills

theory).

As in the classical casg0), a somewhat simpler choice
for the invariants in the maximal brackets requires us to

h. Quantum & G chiral particles Consider next models compute(note the range of the sums

whose dynamics are invariant under chiral groupss G.

For example, a particle moving freely on the group manifold

is of this type. Letn be the dimension of the group, and
write the charge algebra underlying the graBpx G as
[Li,Lj]=iAfi Ly, [Ri,Rj]=infRe, [Li,Rj]=0.

T 192

15The number of ways of choosing theeommutators in E¢(193
is n(n—=2)(n—4)...(1)X(n=2)(n—4)...(1), soK,=[n(n
-2)(n—=4) ... (L)X(n=2)(n—=4) ... (1))/n!(n=21)".

165, Meshkov has suggested that similar tensors and invariants
constructed from them appear in nuclear shell theory.
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[AF(I, R)Le, - Ln1.Ryy - . Rys]
1 n-1
T (n=DHN=D)! grfyeg et oo
X[AF(LIR L - L R Ry

(197

whereF (I ,I1g) is any function of the left and right Casimir
invariants. The RHS here vanishes for everso again we
take oddn, sayn=1+2s. Then by the commutator resolu-
tion, since[F(I_,IR),L;]=0=[F(l_,lR),Ri], we can write

[AF(IR),Ly, ... JRn_1]
n-1

Lo_1,Ry, ...

IKna"i’j:l &y ip 180 LAFU LR,

XILipLilo oo IL L LIRGRL -

(198

n—

x[R R 1}

In-2’

where again K,=45(s!)2. So, for a Hamiltonian of the
form H=F(l_,lg), we have

[AHLy, o Lo 1Ry Ry q]
n
— _ 2\s
(s!)z( 41%) a“%:l Olk, .. kyO(m, .. .m}
<{IAHTLi + - LioRmg, -+ - R}y (199

PHYSICAL REVIEW D 68, 085001 (2003

[AHL,, ... Ry 1]
=Kn(i7)" Yoy kgoim, . mgHiALk, - L

XRuy, - - - R H]:

Lo 1Ry, ...

(201

The GJP spectral equation,

NA, + higher-order quantum rotation terms
=Kn(i7)" o, g Omy ...y

X{Ax Ly -+ LiRmy - R}, (202
must now be solved to find the time scaleshat govern the

QNB generated time evolution,

d
F/AN an +higher-order quantum rotation term&[ A, ,H]

=[Ay,H,Ly, ... Lh-1,Ry, ... Ry_1]. (203

All this extends in a straightforward way to the algebras
of symmetry groups involving arbitrary numbers of factors.
Rather than pursue that generalization, however, we focus
instead on unitary factors, where theand o tensors sim-
plify. For a touch of variety, we take the left and right group
factors to be different unitary groups.

i. U(n)xU(m) models For systems with Uf) X U(m)
group invariant dynamics, with the proper choice of charge
basis, the structure-constant-weighted sums of the previous

formulas can be made to reduce to single terms as in the case

with 2s=n—1 and the completely symmetric tensor of the previous Uf) example. We take the oscillator basis

o, .. .k defined as in the classical situation E@3). Note
the range of the sum in E73) is truncated from that in Eq.

(199, although the sum may be trivially extended just by

adding a fixed extra index to the Levi-Civita symbol:

Oy kg™
(200

The commutator oA with the function of Casimir invari-

ants can be computed after the generalized Jordan produetN;

(GJB, again sincdH,L;]=0=[H,R;]. So, with the sums
over repeatedts andms understood,

[A,N1,N5, Ny,

=i" " H[AN] N, - .. Npo10, Mg, ..

ianl!anlniNnle!MlZ!MZ! ot
M1} =A" " {AN,, ..

for each of the algebras, so that the charges obey the com-
mutators

[Nij ,Nild =7 (Nj) 8j— Ny 63)
[Map, Mgl =% (Mag6pc—Mcpbad), [Nij Map]=0,
(204
fori,j,k,/=1,...n,anda,b,c,d=1, ... m. As before, we

denote the mutually commuting diagonal chargesNgs
and M ,=M,, with (central charge sums N
=3{_;Nj;, M=X2Z,M,,. Then, as for the single W)
results, we have either

,MmflaMm*lm]
. .Nn—1n1M121 L me—lm}!N]’

(205

or similarly with M« N, as well as other such relations that follow from choosing different Hamiltonian paths through the

algebras.

Replacement of one of the diagonal charges with an arbitrary function of the left and right Casimir invariants, as well as the
two central sums, leads to similar results. These may now be used to discuss time development for systems whose Hamilto-

nians are of the form
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H=F(N,M,Iy,lm), (206)
for which
[AH,N;,N3o, Ny, o Nps 1N 10, M1, M5, My, oo Mz, M- 1]
=AM 2{A Ny, ... Noo1n,Maig, o oo M gmbb, H1=2" ™ 20AH], N, « . Ny 10 Mg, oo M1t

:ithrmfl

A
E,le,...,Nn,ln,Mlz,...,Mm,lm . (207)

The effect of the remaining, noncommuting charges in theEFI). In the generic case, ¥ is a function of the invariants,
generalized Jordan product is once again to set time scal@sanipulation of the classical expression may be useful, to
for the various invariant sectors of the theory. So, if result in a simpleV and in new CNB entries which would
still combine into the Hamiltonian in the PB resolution. The
{As N1z, - Noo1n, Mg, oo Mg} corresponding QNB would then be expected to yield the en-
= oA, + higher-order quantum rotation terms, twined structures to be studied as above, with the Hamil-
tonian appearing as an entwined commutdtone deriva-

(208 tive), and with the respective time scale eigenvalue problems
then to be solved.
iﬁn+m_1a% IV. CONCLUSIONS
=[A,,H,N;,N15, Ny, ... Ny, Ny, M1, Mg, In this paper, we have demonstrated and illustrated

through simple, explicit examples, how Nambu brackets pro-
XMz, ... Mp-1, My 1] vide a consistent, elegant description, both classically and

+ higher-order quantum rotation terms, (209 qu_antum mechamcally, espeqal_ly of supermtegrable systems

using even QNBs. This description can be equivalent to clas-

with quite elaborate sums of such terms describing the timéical and quantum Hamiltonian mechanics, but it is broader

evolution of general operators. in its conceptualizations and may have more possible uses.
All this extends to the algebras of symmetry groups in-In particular, we have explained in detail how QNBs are
volving arbitrary numbers of unitary group factors. consistent, after all, given due consideration to multiple time
scales set by invariants entwining the time derivatives, and

C. Summary table how reputed inconsistencies have instead involved unsuit-

. . able and untenable conditions. We have also emphasized ad-
For convenience, we summarize the results of all the pre

. . ditional complications that distinguish odd QNBs.
vious sections as a table of the key formulase Table We believe the physical interpretations of entwined time
An empirical methodology. suggested' by. the abq\{e EXYerivatives, with their dynamical time scales, and group ro-
amples argues for the following check I'St. In quantizing Atations, in the general situation, explain the perceived failure
general classical system of the ty@@). If Vis trivial (i.€., ¢ e classical Leibniz rules and the classical Fl in a trans-
nqmenca], t_he QNB correspondlr_lg to the CNB involved Isa parent way, and are the only ingredients required for a suc-
prime candidate for an “exceptional” derivation quantiza-

i ided the derivati v ch d thus th cessful non-Abelian quantum implementation of the most
ion, provided the derivation property chectend thus the  genera) Nambu brackets as descriptions of dynamics. Per-

haps this approach is equivalent to the Abelian deformation
TABLE 1. Key formuilas. approach(14], but that has not been shown. However, ulti-
Model Classical Quantum mately it_ should not pe necessary to argue, physically, that if
symmetry dynamics dynamics the Abelian deformation approach to quantization of Nambu
brackets is indeed logically complete and consistent, then it
SO(3) (31 (130 (131))  must give specific results equivalent to the more traditional
Any Lie (4-brackets sum (35 (150 noncommutative operator approach given here. There is, af-
U(N) (oscillators (44) (163 ter all, not very much freedom in the quantization of free
SO(N+1) (48) (169 particles and simple harmonic oscillators.
SO(4)=SU(2)®SU(2) (56) (57) (177 (183 Moreover, Hanlon and WacH89] announced the result
(58) (59) (184) (185  that even QNB algebraglesignated by them as “Lik alge-
GeG (70 (75) (201) (207) bras”) are “Koszul” (also se¢41]), and therefore have duals

which are commutative and totally associative. Is it possible
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that the Abelian deformation quantization of Nambu brack- *
etss is precisely this dual, and is in that sense equivalent a=cb™'—bcb 2+b2ab 2=| >, (—1)"b"cb™"|b~?
mathematically to the non-Abelian structures we have dis- n=0

cussed? —cobol (A2)
Other such mathematical issues and areas for further R

study are raised by our analysis, such as the following: AS

complete mathematical classification of Jordan-Kurosh ei-

genvalue problems; a corresponding treatment of quantum w

rotation terms; a study of both classical and quantum topo- __, -1. . -2 221 ANl —NARn

logical effects in terms of Nambu brackets; and the behavior a=b c—b eb+b ab =b (,Z‘o (=1)%"cb )

of the brackets in the large N lim{as one way to obtain a .

field theory. =b_"ec. (A3)
There are also several open avenues for physical applica-

tions, the most promising involving membranes and otheRequiring formally that these two inverses give the same

extended objects. In that regard, given the quantum dileads to an expression that involves only Jordan products of

chotomy of even and odd brackets, it would appear that exelements from the enveloping algebra,

tended objects with alternate-dimensional world volumes are

more amenable to QNBs. While volume preserving diffeo-

morphisms are based on classical geometrical concepts, per- a=3 > (—=1)"(b"cb " 14+b ""ich")

haps relying too strongly on associativity, their ultimate gen- n=0

eralization to noncommutative geometries, and their uses in 17

field, string, and membrane theories, should be possible. We == > (—1)"(b"ch")ob 2L, (A4)

hope the developments in this paper contribute towards 2 =0

completion of such enterprises.

imilarly, for the left inversea=b~1c—b~'ab, so

oo

However, it involves an infinite number of such products.

This raises convergence issues, even whieh exists in the
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is a problem.
For the Lie case, the same formal approach may be con-
APPENDIX: FORMAL DIVISION sidered. Let

We are often interested in solving nonlinear algebraic
equations in both Lie and special Jordan algebras. This is a®b=-boa=ab—ba=c. (A5)
hampered by the fact that these are not division rings.

Nevertheless, there isfarmal series solution to construct Supposeb andc are given and solve fa. That is, construct
inverses in both special Jordan and Lie algebras as containgither rightbz* or left b, * inverses under Lie multiplication
in an associative embedding alge®a For the former, < so thata=c ¢ bg'=—b*¢ c. Again, these are given
considet’ by formal series solutions obtained by writing=cb™?!

+bab™! and iterating. Thus,

acb=bheca=ab+ba=c. (A1) .
, _ a=cbh l+bcb 2+ bzab‘2=< > b“cb‘”)b‘l

Supposeb and ¢ are given. We wish to solve foa. We n=0
assume the inverde ! exists in the enveloping algebra. So
we seek to construct either righi;® or left b, inverses
under Jordan multiplication, so thata=cebg*=b ec. A
formal series solution fobs* is obtained from the inverse
b~ ! in the enveloping algebra by writing=cb™*—bab™?!
and iterating. Thus,

=cObgt. (A6)

Similarly, for the left inversea=—b~c+b~'ab, so

a=—-b lc—b 2%ch+b 2ab’?=-b"1

> b "c b“)
n=0

-1
73ordan would include a factor of 1/2 in the definitioneof =-b “¢c. (A7)
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Requiring that these two inverses give the sanheads to an a=«o,+ \o, for any parameters and\. So, as stressed
expression that involves only Lie products of elements fromalready, special Jordan algebras are not division rings—not
the enveloping algebra, even when they involve only anticommutators of invertible
elements fronil.

Perhaps one way to avoid these difficulties and place the
formal series constructions on a firmer footing would be
through regularizingdeformations of the algebras. This
1 < _— Cone1 works for the specific Jordan or Lie examples above, as il-
> nzo (b"cb™) &b : (A8) |ustrations of the method. Rather than considering the Jordan

or Lie products, we takeb+\ba=c. (This deformation
But, once more, it involves an infinite number of such prod-was actually analyzed in Jordan’s original paf4], before
ucts. Again this raises convergence issues, even whén he settled on tha =1 case). This yields a convergent series
exists in the enveloping algebra. for the right inversebs* when|\|<1 and a convergent se-

As an illustration of convergence issues in this case, folsies for the left inversd_ * when|\|>1. For the right in-

low Wigner's counsel and take>22 matrices,t2)=¢lry=b*l verse, writta=cb~*—\bab ! and iterate. Thus
andc=2ic,. Then, for evem, (b"ch") O b~ <" *=[c,b] _ - _
—40,; while for odd n, (b"cb™ b~ 2"~1=[bch,b]= a=cb '-\bcb *+\*b%ab"?
—[c,b]=—40,. Again, the series gives an ill-defined re- o
sult, a=340,2,_o(—1)". This shows clearly that conver- z( > (—)\)”b”cb”) b1 (A9)
gence is again a problem. As before, the proper way to in- n=0

terpret the sum in this particular example 35_o(—1)"  For the simplest situation wheke=chb, this gives
=3, to produce the obvious solution to the original equation,

1 o)
a=5 >, (b"cb " 1-p ""lch)
n=0

a=oy. _ B

The failed convergence for these series is accompanied by a=b lC( go (—R)n) =b lcm- (A10)
a basic problem: divisors of zero. Even whieis invertible
in the enveloping algebra, so that the only solutionat¥  Now the correct result emerges in the limit> 1, but strictly
=0 isa=0, this doesnot hold for the Jordan or Lie prod- speaking this isiot within the radius of convergence of the
ucts. The Lie case is most familiar and easily seef.b  series. The series must first be summed to obtain a meromor-
=0 always has an infinite number of nonvanishing solutiongphic function, by analytic continuation, and the limit applied
a#0. Namely,a=«b for any parametek#0. Moreover, to that function.
there can and will be other independent solutions for higher- The same method works for the simple Lie example given
dimensional enveloping algebras. That is to say, Lie algebragbove. Again, supposb=<ry=b‘1 and letc=2io,. The
are not division rings, even when they only involve commu-series for the right inverse now gives=340,3,_,\"
tators of invertible elements froft. The same is true for the =[2/(1—\)]oy. The limit A— —1 converts both this solu-
Jordan case, in general. For instance, using th& 2natri-  tion and the original equatiomb-+Aba=c into the Lie
ces as an example, again witk= o, we haveacb=0 for  problem of interesa ¢ b=c.
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