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Geometrical optics analysis of the short-time stability properties of the Einstein evolution equations

R. O’Shaughnessy*
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA

~Received 30 June 2003; published 31 October 2003!

Many alternative formulations of Einstein’s evolution have lately been examined in an effort to discover one
that yields slow growth of constraint-violating errors. In this paper, rather than directly search for well-behaved
formulations, we instead develop analytic tools to discover which formulations are particularly ill behaved.
Specifically, we examine the growth of approximate~geometric-optics! solutions, studied only in the future
domain of dependence of the initial data slice~e.g., we study transients!. By evaluating the amplification of
transients a given formulation will produce, we may therefore eliminate from consideration the most patho-
logical formulations~e.g., those with numerically unacceptable amplification!. This technique has the potential
to provide surprisingly tight constraints on the set of formulations one can safely apply. To illustrate the
application of these techniques to practical examples, we apply our technique to the 2-parameter family of
evolution equations proposed by Kidder, Scheel, and Teukolsky, focusing in particular on flat space~in Rindler
coordinates! and Schwarzschild background~in Painlevé-Gullstrand coordinates!.
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I. INTRODUCTION

Recently developed numerical codes offer the possib
of extremely accurate and computationally efficient evo
tions of Einstein’s evolution equations in vacuum@1#. To
take full advantage of these new techniques to perform
unconstrained evolution of initial data and boundary con
tions, we must address an unpleasant fact: many choice
evolution equations and boundary conditions permit
behaved, unphysical solutions~e.g., growing, constraint
violating solutions! near physical solutions.

By way of example, when Kidder, Scheel, and Teukols
~KST! evolved a single static Schwarzschild hole as a
case, they found evidence suggesting that their evolu
equations and boundary conditions, when linearized abo
Schwarzschild background, admitted growing, constra
violating eigenmodes@1,2#. These eigenmodes were excite
by generic initial data~i.e., roundoff error!; grew to signifi-
cant magnitude; and were directly correlated with the ti
their code crashed. As this example demonstrates, the
tence and growth of ill-behaved solutions limit the length
time a given numerical simulation can be trusted—or ev
run.

For this reason, some researchers have explored the
lytic properties of various formulations of Einstein’s equ
tions @2–8# and boundary conditions@9–12# used in numeri-
cal relativity, searching for ways to understand and con
these undesirable perturbations.

In this paper, we discuss one particular type of unde
able perturbation: short-wavelength, transient wave pack
~For the purposes of this paper, a transient will be any so
tion defined in the future domain of dependence of the ini
data slice. Depending on the boundary conditions, the s
tion may or may not extend farther in time, outside the futu
domain of dependence. Inside the future domain of dep
dence, however, ‘‘transient solutions’’ are manifestly ind
pendent of boundary conditions.! Depending on the evolu
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tion equations and background spacetime used, th
transients can potentially grow significantly~i.e., by a factor
of more than 1016 in amplitude!. Under these conditions
even roundoff-level errors in initial data should produce tra
sients that amplify to unit magnitude. Once errors reach u
magnitude, then guided by the KST results discussed ab
we expect nonlinear terms in the equations to generic
cause these errors to grow even more rapidly, follow
shortly thereafter by complete failure of a numerical simu
tion. In other words, if the formulation and backgroun
spacetime permit transients to amplify by 1016, we expect
numerical simulations of these spacetimes to quickly fail

In this paper we develop conditions which tell us wh
such dramatic amplification isassured. Specifically, we de-
scribe how to compute the amplification of certain transie
for a broad class of partial differential equations~PDEs!
~first-order symmetric hyperbolic PDEs! that includes many
formulations of Einstein’s equations. If this amplification
larger than 1016, then we know we should not evolve th
formulation numerically.

A. Outline of remainder of paper

In this paper, we analyze the growth of transients.~Re-
member, in this paper a transient is any solution defined
the future domain of dependence of the initial data slic!
Rather than study all possible formulations, we limit atte
tion to a class of partial differential equations we can anal
in a coherent, systematic fashion: first-order symmetric
perbolic systems. Furthermore, because we concern
selves only with stability and the growth of small errors, w
limit attention to linear perturbations upon some backgrou
Finally, to be able to produce concrete predictions, we
strict attention to those transients which satisfy the geome
optics approximation.

In Sec. II we introduce an explicit ray-optics-limit solu
tion to first-order symmetric hyperbolic linear systems—
class which includes, among its other elements, linear
tions of certain formulations of Einstein’s equations. We p
©2003 The American Physical Society24-1
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vide explicit ordinary differential equations~ODEs! which
determine the path~i.e., ray! and amplitude of a geometric
optics solution, in terms of initial data at the starting point
the ray. Then, in Sec. III, we introduce wave packets as
lutions which are confined to a small neighborhood of a p
ticular ray. We further define two special classes of wa
packet—coherent wave packets and prototypical cohe
wave packets—which, because of their simple, special st
ture, are much easier to analyze. Finally, in Sec. IV, we
troduce and discuss the technique~energy norms! we will
use to characterize the amplitude of wave packets. In part
lar, we provide an explicit expression@Eq. ~22!# for the
growth rate of energy of a prototypical coherent wa
packet.

To demonstrate explicitly how the techniques of the p
vious sections can be applied to produce the growth rat
transients, in Secs. V and VI~as well as Appendix E! we
describe by way of example how our methods can broadly
applied to the two-parameter formulations that Kidd
Scheel, and Teukolsky~KST! have proposed@1#. Specifi-
cally, Secs. V and VI will respectively describe wave pack
on flat space~written in Rindler coordinates! and radially
propagating transients on a Schwarzschild-black-hole ba
ground~expressed in Painleve´-Gullstrand coordinates!.

Finally, to demonstrate explicitly how expressions for t
growth rate of transients can be used to filter out particula
pathological formulations, in Secs. VII and VIII we use th
results for the growth rates of transients obtained in Sec
and VI to determine what pairs of KST parameters (g andẑ)
guaranteesignificant amplification of some transient prop
gating on a Rindler and Painleve´-Gullstrand background, re
spectively.

Guide to the reader

While the fundamental ideas behind this paper—the st
of wave packets and the use of their growth rates to disco
ill-behaved formulations—remain simple, when we a
tempted to perform practical, accurate computations,
quickly found the simplicity of this idea masked behind lar
amounts of novel~but necessary! notation. We therefore
found it difficult to simultaneously satisfy the casu
reader—who wants only a summary of the essential res
and who is still evaluating whether the results and the me
ods used to obtain them are worthy of further attention—a
the critical reader—who needs comprehensive understan
of our methods in order to evaluate, duplicate, and~poten-
tially! extend them. We have chosen to slant the paper
ward the critical reader; thus this paper is acomprehensive
andpedagogicalintroduction to our techniques.

While this paper can be consumed in a single reading,
the reader interested in a brief summary of the essential id
and results, or for anyone making a first reading of this
per, the author recommends reading only the most esse
details. First and foremost, the reader should understand
scope and significance of this paper~i.e., read the abstrac
and Sec. I!. Next, the reader should follow the general d
scription of the techniques in Secs. II, III, and IV in deta
Subsequently, the reader should examine our demonstra
08402
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that our techniques indeed give correct results for grow
rates~cf. the introduction to Sec. V and the summary of th
section’s results in Sec. V D!. Finally, to understand how
these techniques can be used to discrover ill-behaved for
lations, the reader should examine Secs. VII and VIII.

The more critical reader may wish to test and verify o
computations. This reader should then review Secs. II,
and IV again, then work through Secs. V and VI in det
~returning to the earlier sections for reference as necess!.
This reader will also benefit from the general approach
KST 2-parameter formulations discussed in Appendix E.

Finally, the most skeptical readers will want to exami
the conceptual underpinnings of and justifications for o
every computation. This reader should simply follow the te
as presented, but carefully read every footnote and appe
as they are mentioned in the text. In particular, this rea
will want to review our Appendixes B~for a justification of
our ray-optics techniques! and A ~for many useful identities
used in the previous appendix and elsewhere in the pape! as
well as Appendix C~for a more detailed discussion of pro
totypical coherent wave packets, a key element in our co
putational method!.

B. Connection with prior work

1. Study of a short-time, rather than long-time, instability
mechanism

First and foremost, we should emphasize that our w
differs substantially from all previous work on this subjec
we very explicitly restrict attention to amplification ove
only a short time~i.e. a light-crossing time!. On the one
hand, unlike other work, because of this restriction, o
claims—being independent of boundary conditions—ap
to all boundary conditions. On the other, because we for
ourselves to study our solutions outside the future domain
dependence of the initial data slice—even though, in pr
tice, we could draw some elementary conclusions1—in this
paper we choose not to make any claims about how a
mulation of Einstein’s equations will behave at late tim
~i.e., its late-time stability properties!.

2. Study of an instability mechanism, not necessarily the
dominant one

In other papers which attempt to address the stab
properties of various formulations of Einstein’s equations
for example, Lindblom and Scheel~LS! @2#—the authors try
~somewhat naturally! to understand thedominantinstability
mechanism. Unfortunately, we do not fully understand all
dominant instability mechanisms which can occur in gene

1In fact, because these solutions are high-frequency solutions
can quite easily determine their interaction with most bound
conditions. For example, maximally dissipative boundary con
tions~i.e., the time derivatives of all ingoing characteristic fields a
set to zero! imply, in the geometric-optics limit, that all solutions o
ingoing rays will be zero. In particular, that implies that, when wa
packets reach the boundary, they leave without reflecting. O
boundary conditions may also be easily analyzed.
4-2
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combinations of evolution equations, boundary conditio
and background spacetimes. Indeed, while some theore
progress has been made toward estimating the dominan
stability mechanisms~i.e., LS!, for generic ‘‘reasonable’’ for-
mulations~i.e., those which we have not excluded based
other known pathologies, such as being weakly hyperbo!,
we currently can reliably determine how effective simu
tions will be only by running those simulations. And sim
lations are slow.

In this paper, instead of studying thedominantinstability,
we studyan instability ~transients! which we can easily un-
derstand and rigorously describe. We use this instability
discover particularly troublesome formulations of Einstei
equations: those which have trouble with transients.

3. Short-wavelength approximations

This paper makes extensive use of geometric optic
special class of short-wavelength approximation. Several
thors have applied short wavelength techniques to study
stability of various formulations of Einstein’s equation
@3,4,6#. These techniques, however, have generally been
plied to systems whose coefficients do not vary in spa
limiting their validity either to very small neighborhoods o
generic spacetimes, or to flat space. Previous analyses
thus obtained only a description of local plane wave pro
gation: in other words, local dispersion relations. In this p
per, with the geometric optics approximation, we descr
how to glue these local solutions together. Such gluing
essential if we are to obtain a good approximation to a glo
solution of the PDE and hence a concrete, reliable estim
of the amplification of a transient. In this sense, the pres
paper is the logical extension of work by Yoneda and Shin
~see, e.g.,@4#!, an attempt at converting their analysis to pr
cise, specific conditions one can impose which ensure
transients do not amplify.

4. Energy norms

This paper also employs the energy-norm techniques
troduced by Lindblom and Scheel@2#. Energy norms provide
a completely generic approach to determining the gro
rate given a known solution and, moreover, can be use
boundthe growth of generic solutions. While LS choose
apply these techniques to study a different class
solution—large-scale solutions whose growth presently l
its their numerical simulations—these techniques rem
generally applicable. We use them to characterize the gro
of wave packets.

II. RAY OPTICS LIMIT OF FIRST-ORDER SYMMETRIC
HYPERBOLIC SYSTEMS

In classical electromagnetism, certain short-wavelen
solutions to Maxwell’s equations can be approximated b
set of ordinary differential equations for independen
propagating rays: a set of equations for the path a ray
lows, and a set of equations which determine how the s
tion evolves along a given ray@13#. This limit is known as
the ray optics~or geometric-optics! limit. In this section, we
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construct an analogous limit for arbitrary first-order symm
ric hyperbolic linear systems.

A. Definitions

We study a specific region of four-dimensional coordina
space (t,xW ), on which at each point we have a
N-dimensional~real! vector spaceV of ‘‘fields’’ uPV.

Inner products. On the space of fields, aninner productis
a map from two vectorsu,v to a real number with certain
properties~bilinear, symmetric, and positive definite!. The
inner product is assumed to be smooth relative to the un
lying four-manifold. The canonical inner product onRN ~i.e.,
the N-dimensional dot product, relative to some basis
fields which is defined everywhere throughout space! is de-
noted~,!, and does not vary with space. We can represent
other inner product in terms of the canonical inner prod
and a mapS:V→V as (u,Sv), where (u,Sv)5(Su,v).

An operatorQ is said to besymmetricrelative to the inner
product generated byS if ( u,SQv)5(Qu,Sv) for all u,v. In
other words, an operatorQ is symmetric if it is equal to its
own conjugate relative toS, denotedQ† and defined by
(u,SQv)5(Q†u,Sv) for all u,v. Equivalently, the conju-
gateQ† relative toSmay be defined in terms of the transpo
QT ~i.e., the conjugate relative toS51):

Q†[S21QTS. ~1!

Field-valued functions of position. The value of a vector-
valued functionu:R4→V, which takes a vector value at eac
point, is denotedu(t,xW ). The inner product between tw
vector-valued functions therefore depends in general on
spacetime point (t,xW ) at which these functions are evaluate
@i.e., the right side of Eq.~2!#. For brevity of notation, how-
ever, we usually omit the arguments (t,xW ) to all components
of an inner product@i.e., the left side of Eq.~2!#:

~u,Sv ![~u~ t,xW !,S~ t,xW !v~ t,xW !!. ~2!

First-order symmetric hyperbolic linear system
(FOSHLS’s). A first-order symmetric hyperbolic linear sys
tem has the form

@] t1Aa
„x,t !]a2F~x,t !]u~xW ,t…50 ~3!

for u(x,t) a smooth function from the underlying four
manifold into theN-dimensional space of fields, forAa andF
some~generally space and time dependent2! linear operators
on that space, and forAa a symmetric operator relative t
some inner product.

If more than one inner product makesA symmetric,
henceforth, when talking about a specific FOSHLS, we sh

2As a practical matter, we will limit attention in this paper toAa

and F varying slowly ~or not at all! in time; therefore, all time
dependence in the operatorsAa, F, andSmay usually be neglected
For completeness, however, we retain time dependence for rea
who may wish to apply these techniques to more generic syste
4-3
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R. O’SHAUGHNESSY PHYSICAL REVIEW D68, 084024 ~2003!
fix one specific~arbitrary! inner product throughout the dis
cussion, and therefore some specificS.

Characteristic fields and speeds. For all 3-vectorspa ,
Aapa is symmetric relative to the inner product generated
S. Since any real symmetric matrix can be diagonalized i
a set of orthogonal eigenspaces, the eigenequation

Aa~ t,xW !pav5vv ~4!

can be solved for each (t,xW ,pW ) for eigenvaluesv and eigen-
vectorsv. We denote the eigenvalues, eigenspaces, and~for
each eigenspace! basis eigenvectors as follows:

~1! v j (t,xW ,pW ) are the eigenvalues ofAapa ;
~2! Bj (t,x,p), wherej runs from 1 to the number of dis

tinct eigenvalues ofAapa , are the eigenspaces ofAapa ; and
~3! v j ,a(t,xW ,pW ) are some orthonormal basis of eigenve

tors for the spaceBj (t,x,p), wherea runs from 1 to the
dimension ofBj .

BecauseAapa is symmetric relative to the inner produ
induced byS, the eigenspaces are orthogonal relative to
inner product, and the eigenspaces are complete. Finall
each point (x,p) and for each eigenspace, there is a uniq
projection operatorPj (t,x,p) which satisfiesPjv5v if v
PBj , Pjv50 if vPBk with kÞ j .

We requireAapa and its eigenvalues, eigenspaces, a
projection operators to vary smoothly over allxa and pb in
the domain.@We do not demand the eigenvectors themsel
to be smooth save in the neighborhood of each po
(xa,pb): topological constraints may prevent one from defi
ing an eigenvector everywhere~i.e., for all pa given xa).3#

Group velocity and acceleration. We define the group ve
locity Vj

a and group accelerationaj ,a via

Vj
a~ t,xW ,pW ![

]

]pa
v j~ t,xW ,pW !, ~5!

aj ,a~ t,xW ,pW ![2
]

]xa
v j~ t,xW ,pW !. ~6!

We shall make frequent use of an alternative expression
the group velocity, Eq.~A2!, which is discussed in Appendi
A. Among other things, Eq.~A2! implies

v j~x,p!5Vj
apa .

B. Form of ray-optics solution

We now construct a solution which approximately sat
fies Eq.~3!. Our method works by constructing a set of ch
acteristics~i.e., rays!, and then integrating some amplitud
equations along each characteristic~as an ODE! to find the
amplitudes farther along the ray.

3For example, in the first-order representation of the scalar w
equation, two of the eigenvectors at each point (x,p) are essentially
vectors transverse to the surfaceupu. These cannot be extended ov
the sphere.
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In this section, we introduce only the results of our ana
sis. In Appendix B, we provide a more comprehensive ju
fication of our ray-optics approach.

Ray-optics solution

Rather than express our solution in terms of the origi
N-dimensional variableu, we introduceN11 new variables
dj ,a andf and parametrize the original state by

u5ūeif ~7!

where we further expandū in terms of the eigenvectorsv l ,a

of Aa]af at each point (t,xW ):

ū5 (
l

(
a

dl ,a~ t,x,]f!v l ,a~ t,x,]f!. ~8!

~For notational clarity, the argumentst, xW , and ]af to the
functionsf, v l ,a , anddla will in the following be usually
omitted.!

In terms of these new variables, a ray-optics solution i
solution to the following equations, for some fixedj:

05@] t1Vj
a~x,]f!]a#f, ~9a!

05dl ,b for lÞ j , and ~9b!

05@] t1Vj
a]a#dj ,a

1 (
b

dj ,b~v j ,a ,S~] t1Aa]a2F !v j ,b!. ~9c!

When we substitute solutions to the ray-optics equations@Eq.
~9!# back into the original FOSHLS@Eq. ~3!#, as described in
detail in Appendix B, we find the geometric-optics solutio
are excellent approximate solutions to the original PDE,
long as certain mild conditions continue to hold~e.g., the
oscillations inf remain rapid compared to any other leng
or time scale!.

C. Interpreting the geometric-optics equations

We introduce the geometric-optics solution precisely b
cause it simplifies the PDE—in particular, because it co
verts the problem of solving a general PDE@Eq. ~3!# into the
problem of solving coupled ODEs@Eq. ~9!#. Specifically,
these ODEs consist of the the phase equation@Eq. ~9a!#—
which determines the path of the ray leaving a pointxW con-
sistent with initial data forf with gradient]af(xW )—and the
polarization equations@Eqs.~9b! and ~9c!#—which allow us
to propagate thedl ,a along each ray.

But while these equations are now ODEs, their struct
is not particularly transparent. In this section, we rewrite
phase equation@Eq. ~9a!# and the polarization equation@Eq.
~9c!# to better emphasize their properties and physical in
pretation.

e

4-4
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1. Path of the ray

The physical significance of the phase equation@Eq. ~9a!#
becomes much easier to appreciate when it is rewritten
first-order form. When we differentiate that expression a
re-express the result as an equation forka[]af, we find

05] tka1Vj
b]bka1@]aVj

b~x,k!#kb

5] tka1Vj
b]bka2aj ,a~x,k!. ~10!

@While k does depend onx, because (]kc
Vj

b)kb50 the last

term in the first line does indeed simplify into2aj ,a , as
stated.# Solutions to this PDE may be constructed by glui
together solutions to the following pair of coupled ODEs f
xW (t) andkW (t):

dxa

dt
5Vj

a~xW ,kW !, ~11a!

dka

dt
5aa, j~xW ,kW !. ~11b!

By using the definitions ofVj
a and aa, j , we find that these

are precisely Hamilton’s equations, usingv j (t,x,k) as the
Hamiltonian.

These two equations define the rays~i.e., characteristics!.
Given initial data for ka which has ka5]af in a
3-dimensional neighborhood of a point, we have a uniq
ray emanating from each point in that neighborhood. So
tions to Eq.~10! follow from joining the resulting rays ema
nating from each point in the neighborhood together; a
solutions forf @i.e., Eq.~9a!# follow by integrating the phase
out along each ray.

2. Propagating polarization along ray

In practice, the polarization equation@Eq. ~9c!# is difficult
to interpret: since it involves spatial derivatives of basis v
tors, and since we have freedom to choose our basis ve
v j ,a arbitrarily within each subspaceBj , we cannot transpar
ently disentangle meaningful terms from convention-induc
effects.

To constrain the basis and simplify the equation,
sometimes choose a basis in the neighborhood of the ra
interest which satisfies theno-rotation condition@discussed
at greater length in Appendix A 2#:

~v j ,[a ,S~] t1Aa]a!v j ,b] !50, ~12!

where the square brackets denote antisymmetrization ova
and b @i.e., X[ab]5(Xab2Xba)/2]. The no-rotation condi-
tion completely constrains the antisymmetric part of an
erator@i.e., the left side of Eq.~12!#; the condition that the
basis vectorsv j ,a remain orthogonal constrains that oper
tor’s symmetric part; and therefore the basisv j ,a is necessar-
ily completely specified at any point along a ray in terms
initial data for the basis.
08402
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Using the no-rotation condition, we find that the polariz
tion equation becomes the less arbitrary expression~Appen-
dix A 3!

05S ] t1Vj
a]a1

1

2
]aVj

a~x,]f! Ddj ,a

2 (
b

S v j ,a ,FSF1
1

2
] tS1

1

2
]a~SAa!Gv j ,bDdj ,b

~13!

where in the abovev j ,a is a no-rotation basis. In Sec. III w
will use this expression to motivate the definition of prot
typical coherent wave packets, which have an exceedin
simple growth rate.

D. When do geometric-optics solutions exist?

Given initial data~say, for ka and dj ,a on some initial
compact region!, we can in practice always find a solution
the geometric-optics equations@Eq. ~9!# valid for some small
interval dt ~i.e., by using general PDE existence theorem
like that of Cauchy-Kowaleski!. However, for general initial
data we cannot solve the phase equation@Eq. ~9a!# for an
arbitrary timeT. By way of example, even if we find eac
individual ray@i.e., each solution to Eq.~11! emanating from
each initial data point# emanating from our initial data regio
out to timeT, these rays may cross before timeT, rendering
the geometric-optics solution fordj ,a both singular and in-
consistent at the ray-crossing point.~A similar problem arises
in classical geometric optics.! Furthermore, depending on th
structure ofAa, certain rays may not even admit extension
time T ~i.e., certain rays may be be future-inextendable, p
cisely like rays striking singularities in general relativity!.

A proper treatment of these technical complications
considerably beyond the scope of this paper. In practice,
will assume we have chosen initial data so that o
geometric-optics solution can be evolved to any timeT, un-
less it involves transport into a manifest singularity~i.e., a
singularity of the spacetime used to generate the FOSH!
before timeT. Furthermore, we will assume the solution
well behaved—that is, the congruence has finite values f
ka , Vj

a , aa, j and their first derivatives. With a well-behave
solution to the phase equation@Eq. ~9a!#, we may always find
a finite, consistent solution to the polarization equation@Eq.
~9c!# in terms of the initial data.4

III. DEFINING WAVE PACKETS

In Sec. II, we have constructed approximate solutions
linearized first-order symmetric hyperbolic PDEs in the ge
metric optics limit. These solutions are constructed by in

4Since the polarization equation@expressed as Eq.~9c! or as Eq.
~13!# is linear in the polarization fieldsdj a , it therefore admits
well-behaved solutions for the evolution ofdj ,a along a well-
behaved ray so long as the linear operators present in that equ
are well behaved.
4-5
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grating ODEs for~and along! rays @Eq. ~9!#. Since each ray
evolves independently, we are naturally led to considerwave
packets—that is, ray-optics solutions which are nonzero on
in a ~four-dimensional! neighborhood of some~four-space!
ray.

In this section, we outline how wave packets may be g
erally constructed. We also describe the two special cla
of wave packets, coherent wave packets and prototypica
herent wave packets, which will be the focus of discuss
henceforth.

A. Constructing wave packets

A wave packet that persists for a timeT is some solution
to the geometric-optics equations@Eq. ~9!# which is nonzero
only in some small neighborhood of a ray~i.e., nonzero only
within some coordinate lengthd from the central ray!.

From a constructive standpoint, while we can easily c
struct solutions from initial data forka anddj a , we have no
transparent way, besides solving the equations themselve
determine whether a particular set of initial data forka even
generates a congruence which exists and remains well
haved~e.g.,]aVb and]akb both finite! for time T, let alone
whether the specific combination of initial data forka and
dj a yields a geometric-optics solution with support on
within a given distanced from a ray.

Still, physically weexpectwe can avoid these technica
complications. For example, weexpectthat, for all rays of
physical interest, we can extend the central ray of interes
time T ~i.e., characteristics of physical interest can be
tended as long as physically necessary!. We expectthat sin-
gular congruenceska can be avoided by proper choice
initial ka data~e.g., the ray equations do not require all co
gruences near the ray of interest to diverge or come t
focus!. And given a well-behaved congruence, we expect
can always choose initial data fordj a in a sufficiently small
neighborhood so the solution fordj ,a is nonzero only within
some fixed distanced from the central ray.

Thus, as a proper treatment of these technical compl
tions is considerably beyond the scope of this paper, we s
henceforth simply assume that a wave packet solution
always be constructed about any ray of physical interest

B. Specialized wave packets I: Coherent wave packets

Since rays propagate independently, one can choose
trary initial data, and in particular arbitrary polarization d
rectionsw, and still obtain a wave-packet solution. Here,w is
defined by

w[ū/uūu, uūu[@~ ū,Sū!#1/2. ~14!

We prefer to further restrict attention to those wave pa
ets which have a single, dominant polarization directionw
present initially~and therefore for all time!. In other words,
we requirew to vary slowly across the wave packet’s spat
extent. Wave packets with this property we denotecoherent
wave packets.
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C. Specialized wave packets II: Prototypical coherent
wave packets

While coherent wave packets have a simple polarizat
structure, characterized by some polarization directionw,
this polarization structure need not necessarily have a tr
parent relationship to the terms present in the polariza
equation@Eq. ~9c!; or equivalently Eq.~13! if we use a no-
rotation basis#. Therefore, we defineprototypical coherent
wave packets~PCWPs! as wave packets which have at ea
time their polarization directionw equal to one of the eigen
vectorsf j

(m) of the operatorOj :

Oj[Pj H F1
1

2
S21@] tS1]a~SAa!#J Pj , ~15!

Oj f j
(m)[oj m f j

(m) ~16!

wherem, running from 1 to the dimension ofBj , indexes
the eigenvectors ofOj . For simplicity, we assumeOj has a
complete set of eigenvectors.5

If PCWPs exist, we expect—because of their relations
to the terms of the polarization equation@Eq. ~13!#—that the
propagation of their polarization will be much easier to u
derstand. Most notably, as we will show in the next sect
~Sec. IV!, prototypical coherent wave packets have partic
larly simple expressions for their growth rates@i.e., Eq.~22!#.

PCWPs will exist as exact solutions to the polarizati
equation@Eq. ~13!# only in certain special circumstances; fo
example, most of the polarizations to be discussed in Sec
and VI admit exact PCWP solutions. However, as dem
strated in more detail in Appendix C, we do not expect t
polarization equation to generically admit PCWP solution

Nonetheless, as discussed in greater detail in Appendi
a PCWP withw5 f j

(n) is a good approximate solution to th
polarization equation when the eigenvalueoj n of Oj is suf-
ficiently large. Indeed, by rewriting the polarization equati
in the basisf j

(m) , we can show thatgenericcoherent wave
packets will rapidly converge to a PCWP withw5 f s

(no) for
no indexing the eigenvalue ofOj with largest real part. In
other words, based on Eq.~22!, when coherent wave packe
grow quickly, they can always be well described by a PCW

IV. DESCRIBING AND BOUNDING THE GROWTH RATE
OF WAVE PACKETS

Since a wave packet is narrow and we care little abou
precise spatial extent, we commonly characterize the w
packet by a single number~e.g., a peak amplitude! rather
than a generic distribution of polarization over space. Unf

5The behavior of the polarization equation whenOj has Jordan
blocks is straightforward~i.e., we converge to some specific eige
vector in the Jordan block; we obtain no change to the final pre
tions for exponential growth rates; we only add at most a poly
mial in t to the amplitude functions! but tedious to describe in
detail. Moreover, in all physically interesting cases we have exa
ined, Jordan blocks have not appeared inOj ; we have been able to
choose a complete set of basis eigenvectors.
4-6
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tunately, the maximum value of the amplitudesdj ,a depends
on the spatial extent of the wave packet—in other words
depends on our choice of congruence, rather than the ce
ray itself.

Because the amplitude function is subject to focusing
fects ~through the term]aVa), we choose to describe th
magnitude of the wave packet by the magnitude of its ene
norm. Introduced by Lindblom and Scheel, the energy no
is an integral quantity analogous to energy@2#; and, like the
energy of a wave packet solution to Maxwell’s equations,
energy norm will not be susceptible to focusing effects.

In this section, we describe how energy norms can
used to characterize the magnitude of wave packets. We
obtain special expressions for the growth rates of cohe
wave packets@Eq. ~21!# generally and prototypical coheren
wave packets@Eq. ~22!# in particular.

Also, for completeness, in Appendix D we provide
explicit, rigorous bound for the growth rate of energy whi
will not be otherwise used in the paper.

A. Energy norms and the magnitude
of geometric-optics solutions

Lindblom and Scheel define the energy norm by way
two quadratic functionals of a solutionu @LS Eqs.~2.3! and
~2.8!#. When expressed in terms of our notation, these fu
tionals are

e[~u* ,Su!, E[ E md3xe. ~17!

Unlike LS, we do not generically have a preferred spa
metric; we therefore replace the factorAg present in LS Eq.
~2.8! by the more genericm.6

We may substitute in the expressions appropriate to a
optics solution to obtain excellent approximations to the
ergy. By way of example, the energyEj of a geometric-
optics solution propagating in thej th polarization may be
expressed as

Ej' E md3x (
a,b

dj ,a* dj ,b~v j ,a* ,Sv j ,b!

5 E md3x (
a

udj ,au2 ~18!

where the terms neglected are small in the geometric op
limit and where the second line holds because by const
tion the basisv j ,a is orthonormal.

B. Energy norms and the growth rate of wave packets

Following the techniques of Lindblom and Scheel, we c
use energy norms and conservation-law techniques to ob
a general expression for the growth rate of a wave pack

6Unlike LS, we are not necessarily working with a metric spa
therefore, we have no preferred measure on the coordinate s
and therefore allow for an arbitrary, as-yet-undetermined mea
factor m.
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To follow their program, we must generate a conservat
law. Define, therefore, an energy currentj a @i.e., LS Eq.
~2.4!#

j a[~u* ,SAau!.

The quantitiese and j a obey the conservation-law-form
equation

] te1m21]a~m j a!5~u* ,SFu!1~Fu* ,Su!

1$u,@] tS1m21]a~mSAa!#u%

@i.e., the analogue of LS Eqs.~2.5! and ~2.6!#.
For a wave-packet solution, which is concentrated at e

time in a small spatial region, the currentj a drops to zero
rapidly, and is in particular zero at the manifold boundary.
a result, when we integrate the conservation law, we find
the energy obeys the equation

dE

dt
5 E md3x~u* ,SQu!, ~19a!

Q[F1S21@FTS1] tS1m21]a~mSAa!#, ~19b!

whereFT is defined so that (u,Fv)5(FTu,v) for all u, v
~i.e.,FT is the transpose!. @In LS, the analogous equations a
~2.7! and ~2.9!; in our case, however, we have no surfa
term involving j a because the solution falls off rapidly awa
from the wave packet.#

We can show thatQ is symmetric relative toS.7 We can
also show thatQ is closely related to the symmetric part o
the operatorOj @Eq. ~15!#:

PjQPj5Oj1Oj
†1

]am

m
PjVj

a . ~20!

C. Energy norms and the growth rate of coherent
wave packets

Since coherent wave packets are both localized and
sess a well-defined polarization directionw, we find that Eq.
~19! becomes, for coherent wave packets,

1

E

dE

dt
'~w* ,SQw! ~21!

where the right side is evaluated at the location of the w
packet at the current instant.

Because we still need the appropriate polarization dir
tion w to make use of the above expression—a direction

;
ace
re

7BecauseSandSAa are symmetric relative to the canonical inn
product, so are their derivatives. And ifT is symmetric relative to
the canonical inner product, thenS21T is symmetric relative to the
inner product generated byS.
4-7
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can only obtain from the polarization equation@Eq. ~13!#—
Eq. ~21! provides only an alternate perspective on the grow
of wave packets, not an entirely independent approach to
evolution of the amplitude.

D. Energy norms and the growth rate of PCWPs

In the special case of a PCWP, however, we do know
polarization directionw: it is one of the normalized eigen
vectorsf j

(m) of the operatorOj @see Sec. III C#. In this case,
we find the energy growth rate for a PCWP withw5 f j

(m) to
be

1

Ej m

dEj m

dt
5oj m1oj m* 1

]am

m
Vj

a . ~22!

@Here, we used Eq.~20! in Eq. ~21!.#

V. GEOMETRIC OPTICS LIMIT OF KST: RINDLER

In the previous sections~Secs. II, III, and IV!, we have
developed a procedure for computing the evolution and
plification of ray-optics solutions in general and prototypic
coherent wave packet solutions in particular. To provide
specific demonstration of these methods, we demons
how to construct the geometric optics limit~as described in
Sec. II! and compute the growth rate of wave packets~as
described in Secs. III and IV! when the first-order hyperbolic
system is the 2-parameter first-order symmetric hyperb
system Kidder, Scheel, and Teukolsky introduced~see their
Sec. II J!, linearized about a flat-space background in Rind
coordinates.

Our computations in this section proceed as follows. Fi
we review Rindler coordinates and the effects of using R
dler coordinates as the background in the linearized K
equations. We then describe the limited set of rays we
study ~i.e., rays that propagate only in thex direction!. Sub-
sequently, we construct the explicit form of the polarizati
equation@Eq. ~9c!# for packets that propagate only inx. @The
analysis simplifies substantially because the basis vec
used do not vary withx; therefore, the derivatives present
Eq. ~9c! disappear.# The analysis of the polarization equatio
leads us directly to an explicit expression for the growth
energy of a coherent wave packet@Eq. ~19!# in general and a
prototypical coherent wave packet in particular@Eq. ~22!#.

Finally, to verify that our expressions give an accura
description of the growth of PCWPs, we compare th
against the results of numerical simulations.

A. Generating the FOSHLS using the background
Rindler space

Flat space in Rindler coordinates is characterized by
metric

ds252x2dt21~dx21dy21dz2! ~23!

for x.0. Using this spacetime as a background, we
linearize the KST 2-parameter formulation to generate
FOSHLS of the form of Eq.~3!—and in particular find ex-
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plicit forms for the operatorsAa andF. For example, we find
that the principal part has the form@KST Eq. ~2.59!, along
with the definition of]̂o in KST Eq. ~2.10!#:

] tdgi j .0, ~24a!

] tdPi j 1xgab]adMbi j.0, ~24b!

] tdMki j1x]kdPi j .0. ~24c!

As the right-hand sides of these equations are very long,
shall not provide them, or an explicit form forF, in this
paper. The right hand side depends on the two continu
KST parameters,ẑ andg @1#.

Using the FOSHLS obtained by linearizing, we can pr
ceed generally with any linear analysis, including a constr
tion of the geometric-optics limit.

B. Describing local plane waves by diagonalizingAax̂a

The geometric-optics limit is a short-wavelength lim
Naturally, then, the first step toward the geometric-opt
limit is understanding the plane-wave solutions in the nei
borhood of a point. We find these solutions by substitut
into Eq. ~3! the formu}uoexpi(k•x2vt); assumingk andv
are large, so we may disregard the right side; assuming b
uo andAa are locally constant; and then solving foruo and
the relationship betweenka andv. In other words, we find
those local-plane-wave solutions by diagonalizingAaka , as
discussed in Sec. II, to find eigenvaluesv j and eigenvectors
v j ,a , where j indexes the resulting eigenvalues anda in-
dexes the degenerate eigenvectors for eachj.

Because the principal part is both simple and independ
of the two KST parameters (ẑ andg), we can diagonalize it
by inspection. For every propagation direction, the eigenv
ues are preciselyvs(x,k)5suku for s561,0. For our pur-
poses, we study only propagation in thex direction. Thus, we
need only the eigenfields ofAax̂a , which are@see KST Eq.
~2.61! and also Appendix V A 3#

Uab
g 5gab , ~25a!

Uy,ab
0 5M yab , ~25b!

Uz,ab
0 5Mzab, ~25c!

Uab
6 5

1

A2
~Pab6Mxab!. ~25d!

These expressions may be interpreted as equivalent to
basis vectorsv j ,a , as discussed in Appendix E@see Appen-
dix V A 3, and in particular Eq.~E6!#.

C. Deriving the polarization and energy equations
for propagation in the x direction on the light cone

In this section, we describe how to construct and anal
the polarization equation@Eq. ~9c!# and energy equation@Eq.
~19!# for wave packets propagating in thex direction. For
4-8
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technical convenience, we limit attention to rays whi
propagate on the light cone—in other words, which travel
one of the two null curves of the metric:

dx/dt5sx

for s561. @In terms of the above representation of t
eigenspaces ofAax̂a discussed above, only the fieldsU6,
given in Eq.~25d!, propagate on the light cone.#

1. Essential tool: Diagonalizing PsFPs

We have the polarization equation@Eq. ~9c!# and a basis
@Eq. ~25!, or equivalently Eq.~E6!#; the application is
straightforward. We can, however, substantially simplify o
expression by changing the basis used to expandū from v j ,a

to the basis of eigenvectorsf s
(m) of PsFPs , defined by the

normalized solutions to

F f s
(m)5zs,m f s

(m) .

@Equivalently, we may define these eigenvectors in com
nent fashion. For eachs, the matrix (vs,a ,Fvs,b) admits a
complete set of normalized eigenvectorsf s,a

(m) :

(
b

~vs,a ,Fvs,b! f s,b
(m)5zs,m f s,a

(m) .

Using these eigenvectors, we regeneratef s
(m)5 (a f s,a

(m)vs,a ,
which are eigenvalues ofPsFPs .]

These eigenvectors may be classified according to t
symmetry properties under rotations about the propaga
axis x:

Symmetric-traceless-transverse 2-tensor@basis vectors
correspond to the fieldsUyz

s and (Uyy
s 2Uzz

s )/A2]. One sub-
space corresponds to the 2-dimensional space of symme
traceless 2-dimensional tensors transverse to the propag
direction. The operatorPsFPs is degenerate in this subspac
the single eigenvalue associated with this subspace is g
by zs,t , defined by

zs,t52s ~26a!

Transverse 2-vector~basis vectors correspond to the fiel
Uxz

s and Uxy
s ). Another subspace corresponds to t

2-dimensional space of 2-dimensional vectors transvers
the propagation direction. Again, the operator is degene
on this space. The eigenvalue ofF in this subspace is given
by zs,v for

zs,v52s
11g

2112g
. ~26b!

2-scalars@spanned by vectors corresponding to the fie
Uxx

s and (Uyy
s 1Uzz

s )]. Finally, the 2-dimensional space o
rotational 2-scalars has its degeneracy broken byF. For each
s, we find two eigenvalues, denotedzs,s1 and zs,s2, with
values

zs,s152s, ~26c!
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zs,s252s
112g2

2112g
. ~26d!

These eigenvectorsf are linearly independent. Indeed
symmetry guarantees that—with the exception of the t
2-scalar eigenvectors—most of the eigenvectors are mutu
orthogonal.

2. Polarization equation for general geometric-optics solutions

We can apply these eigenvectors to rewrite the polar
tion equation@Eq. ~9c!# using the basisf s

(m) . Specifically, we
defineD j m by the expansionds,a5 (m Dsm f s,a

(m) . Noting that
our basis vectorsf s

(m) are independent of space and time, w
find a set of independent equations for theDsm of the form

~] t1sx]x!Dsm5zsmDsm . ~27!

This equation, along with the explicit forms for the bas
vectors f s

(m) , tells us how to evolve arbitrary polarizatio
initial data along our congruence.

3. Energy equation for general geometric-optics solutions

Similarly, we may rewrite expressions for the energyE
@Eq. ~17! or Eq. ~18!# and growth rateE21dE/dt @Eq. ~19!#
using the basisf s

(m) . For example, we define energy of th
wave packet by Eq.~18!, using a measurem5Ag51 con-
sistent with the flat spatial metric of the background. W
find, using symmetry properties of the eigenvectors to s
plify the sum,

E5 E d3x (
mP$t,v%

uDsmu2

1 E d3x 2Re@Ds,s1* Ds,s2~ f s
(s1)* ,S fs

(s2)!#. ~28!

The growth rate of energyE21dE/dt can be obtained in two
ways:

~1! First, we can explicitly differentiate Eq.~28!, using
Eq. ~27! to simplify as necessary.

~2! Alternatively, we can employ the general expressi
for the growth rate of geometric-optics solutions@Eq. ~21!#.
@To do so, we expressQ in terms ofOs via Eq.~20!. Then we
find the following explicit expression forOj by using Eq.
~E9! from Appendix E, which in this case tells us

PsS
21@] tS1]a~SAa!#Ps5sPs ~29!

when we rewrite the results of that expression in an opera
rather than component, notation. Finally, we employ the
sis f s

(m) . Because of Eq.~29!, we know the eigenvectorsf s
(m)

of PsFPs are equivalently eigenvectors ofOs .]
In either case, one concludes that
4-9
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dE

dt
5 E d3x (

m
uDsmu2@2Re~zsm!1s#

1 E d3x 2Re@Ds,s1* Ds,s2~ f s
(s1)* ,S fs

(s2)!

3~zs,s1* 1zs,s21s!#. ~30!

The above equations remain completely generic and app
all ray-optics solutions that propagate along the congrue
dx/dt5sx.

4. Energy equation in a special case: PCWPs

As Eq.~27! demonstrates, the polarizations do not chan
direction as they propagate. In other words, if a wave pac
initially has only DsmÞ0 for some specific pair of (s,m),
then the wave packet will always haveDsmÞ0 only for that
s and m. Moreover, as noted in the discussion surround
Eq. ~29!, the basis vectorsf s

(m) used to define theDsm are
eigenvectors ofOs . Following the discussion of Sec. III C
we call such a solution a prototypical coherent wave pac

For a wave packet solution which is confined to the (sm)
polarization, we need only one term in each sum to find
energyEsm and growth rateEsm

21dEsm /dt:

Esm5 E d3xuDsmu2, ~31a!

1

Esm

dEsm

dt
52Re~zsm!1s. ~31b!

@The above expression was obtained directly from Eq.~30!.
Equivalently, we can obtain the same result using Eq.~22! by
way of Eq.~29!.#

To be very explicit, we find using Eq.~26! the growth
rates of the tensor (t) and one of the scalar (s1) polariza-
tions to be constant, independent ofg but depending on
which direction the packet propagates (s561):

1

Es,t

dEs,t

dt
5

1

Es,s1

dEs,s1

dt
52s. ~32a!

We also find the vector (v) and remaining scalar (s2) polar-
izations have a growth rate which varies withg, according to

1

Es,v

dEs,v

dt
52sS 2

11g

2112g
21D , ~32b!

1

Es,s2

dEs,s2

dt
52sS 2

112g2

2112g
21D . ~32c!

D. Comparing growth rate expressions to simulations
of prototypical coherent wave pulses

In Eq. ~32! we tabulated the expected growth rates
energy for each possible coherent wave packet. To dem
strate that these expressions are indeed correct, we com
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these predicted growth rates with the results of numer
simulations of wave packets propagating on a Rindler ba
ground.

1. Specific simulations we ran

To test the validity of our expressions, we used a
variant of the KST pseudospectral code kindly provided
Mark Scheel. He developed this code to study the lineari
KST equations on a Rindler background~e.g., to produce the
results shown in@2# Sec. IV A!.

We ran this code at a fixed, high resolution~512 colloca-
tion points in thex direction! on a computational domainx
P@0.01,1# with various wave-packet initial data. Specifi
cally, we used a wave packet profile proportional to

W~x!5A cos~2px/l!exp@2~x2xc!
2/s2# ~33!

with A51025, xc50.55,s50.1, andl50.01. The precise
initial data used depended on the polarization we wanted

Tensor.When we wanted a tensor polarization, we us
initial data for a single left-propagating 2-tensor compone
Uxy

2 5W, with all other characteristic fields zero. In oth
words, we used initial dataPyz5Mxyz5W(x)/2 with all
other fields zero.

Vector. When we wanted a vector polarization, we us
initial data for a single left-propagating 2-vector compone
Uxz

2 5W, with all other characteristic fields zero. In oth
words, we used initial dataPxz5Mxxz5W/2 with all other
components zero.

Scalar 1 (s1). When we wanted to excite the lef
propagating s1 polarization, we used initial dataPxx
5Mxxx5W/2.

Scalar 2(s2). After some algebra, one can demonstr
that to excite thes2 polarization, we should use initial dat
Pyy5Mxyy5W/4 andPyy5Mxyy52W/4.

To avoid the influences of boundaries, we studied the
sults of the simulations only out to a timet;0.1.

2. Results

For each polarization (t, v, s1, ands2), we found that
wave packets remained in the initial polarization, with litt
contamination from other fields. For example, when excit
the tensor polarization, we found that all fields other th
Uxy remained small.

The wave packets’ energy grew exponentially, w
growth rates that agreed excellently with Eq.~32!. For ex-
ample, the polarizationss1 andt both had growth rates con
sistent with unity to a part in a thousand. Our expressions
the growth rates fors2 and v also agreed well with the
results of numerical simulations, as shown in Fig. 1 for le
propagating pulses (s521).

VI. GEOMETRIC OPTICS LIMIT OF KST:
PAINLEVÉ -GULLSTRAND BACKGROUND

In this section, we study another example of the geome
optics formalism: the propagation of radially propagati
wave packets evolving according to the KST 2-parame
formulation of evolution equations, linearized about
4-10
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Painlevé-Gullstrand~PG! background.
Our analysis follows the same course as the Rindler c

addressed in Sec. V. We first review Painleve´-Gullstrand co-
ordinates and the effects of using these coordinates as
background in the linearized KST equations. Subseque
we construct the explicit form of the polarization and ener
equations@Eqs. ~13! and ~19!# for packets that propagat
radially on the light cone. Finally, in a departure from t
Rindler pattern, we also add an analysis of the ‘‘zero-spe
modes that propagate against the shift vector.

A. Generating the FOSHLS using a background
Painlevé-Gullstrand space

A Schwarzschild hole in Painleve´-Gullstrand coordinates
is characterized by the metric

ds252dt21S dr1A2

r
dtD 2

1r 2dV2. ~34!

We shall use this metric in Cartesian spatial coordinates~i.e.,
z5r cosu, x5r sinu cosf, y5r sinu sinf) as the back-
ground spacetime in the KST equations. Linearizing ab
this background, we obtain the explicit FOSHLS we study
the remainder of this section.

As before, we shall not provide the very complicat
derivative-free terms~i.e., F) explicitly in this paper. The
principal part, however, remains simple by design; in t
case, we have@KST Eq. ~2.59!, along with the definition of
]̂o in KST Eq. ~2.10!#:

~] t2ba]a!gi j .0, ~35a!

~] t2ba]a!Pi j 1gab]aMbi j.0, ~35b!

~] t2ba]a!Mki j1]kPi j .0, ~35c!

with ba5A2/r r̂ a.
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FIG. 1. The two solid curves show the theoretically predic
growth rates for the ‘‘vector’’@v, Eq. ~32b!# and one of the scala
@s2, Eq.~32c!# polarizations, when those polarizations propagate
the left (s521). The circles show the results for numerical sim
lations of the vector wave packet; the crosses show the result
wave packets in thes2 polarization. Both predictions agree ve
well with simulations.
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B. Local plane waves and diagonalizingAar̂ a

As discussed generally in Sec. II and by way of a Rind
example in Sec. V B, to understand how wave packets pro
gate radially we must first understand how local plane wa
propagate radially, which in turn requires we diagonal
Aar̂ a . The basis vectors and eigenvalues are addresse
detail and in a more general setting in Appendix E 1c.
brief, the eigenvalues arevs(x,k)5suku2baka with s
561,0 and the eigenvectors correspond directly to the R
dler results@i.e., Eq. ~25!, with x→r ; the similarity exists
because we can use symmetry without loss of generalit
demand the ray propagate radially in thex direction, along
r̂ 5 x̂].

C. Deriving the polarization and energy equations for radial
propagation on the light cone

Almost half (12 of the 30) of the characteristic field nat
rally are associated with wave packets that propagate a
speed of light of the background spacetime~i.e., s561). In
other words, they propagate on characteristics that co
spond to null curves of the Painleve´-Gullstrand metric@Eq.
~34!#. For radially propagating characteristics, that means

dr/dt5Vs
r , ~36!

Vs
r[s2A2/r ~37!

with s561. The resulting null curve structure is shown
Fig. 2.

Because both this case and the Rindler case discuss
Sec. V C possess rotational symmetry about the propaga
axis, the equations governing these two cases prove exc
ingly similar. The analysis follows the same course.

1. Essential tool: Diagonalizing PsFPs with sÄÁ1

As in the Rindler case, we will rewrite the polarizatio
and energy equations by using eigenvectorsf s

(m) of PsFPs .
Because we again have rotational symmetry about the pr
gation direction, we can again decompose the eigenvec

o

for

2 4 6 8 10
r

-4

-2

0

2

4

t

FIG. 2. Examples of the three types of radially propagating r
of the KST 2-parameter system linearized about a Painle´-
Gullstrand background. The solid lines show rays propagating
ward at the speed of light (Vr

2). The dotted lines show rays propa
gating ‘‘outward’’ at the speed of light (Vr

1). Finally, the dashed
curve shows the rays that propagate inside the light cone~at speed
Vr

0). The quantitiesVr
s are defined in Eq.~37!.
4-11
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into a set of two scalars (s1 ands2), a 2-vectorv, and a
symmetric-traceless 2-tensort. The eigenvalues may be ex
pressed using

zs,m[z̄s,m /A2r 3/2, ~38!

where thez̄sm are defined by

z̄s,s1523, ~39a!

z̄s,s25F7

2
13g2

~33191ẑ124ẑ2!

4~113ẑ!~122g!
G , ~39b!

z̄s,v5
323ẑ25g

122g
, ~39c!

z̄s,t51. ~39d!

The eigenspaces are, by symmetry, spanned by precisel
same fields as in the Rindler case. In particular, as in
Rindler case the eigenvectors do not change as we m
along a ray.

2. Polarization equation for sÄÁ1

For polarizations which propagate radially on the lig
cone~i.e., s561), the polarization equation@Eq. ~9c!# can
be written as

05@] t1Vs
r] r #ds,a1s

ds,a

r
2 (

b
ds,b~vs,a ,SFvs,b!,

~40!

where we make use of Eqs.~E7! and ~E8! to simplify the
right side, and where we observe]ar̂ a52/r .

As in the Rindler case, we may expand the amplitudeū
5 (m Dsm f s

(m) in terms of the basisf s
(m) , and thereby arrive

at a polarization propagation equation precisely analogou
the Rindler result@compare with Eq.~27!#:

F] t1S s2A2

r D ] r GDsm5S zsm2
s

r DDsm . ~41!

These equations may be integrated to describe the evolu
of polarization along any individual radial ray.

3. Energy equation for sÄÁ1

Because symmetry guarantees a close similarity betw
this Painleve´-Gullstrand case and the Rindler case, we fi
the energyE of a geometric-optics-limit solution propagatin
on the light cone radially inward (s521) or outward (s
511) can be expressed with precisely the same expres
we used in the Rindler case: Eq.~28!. @In this case, we again
use a measurem51 compatible with the background fla
spatial Cartesian-coordinate metric.#

The rate of change of this energy,dE/dt, can be obtained
in two ways. On the one hand, we can directly formE, con-
vert to spherical coordinates, differentiate the resulting
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pression fordE/dt, and use Eq.~41!. On the other hand, we
can finddE/dt using the general expression of Eq.~19!, an
expression we simplify by using~i! the relation betweenQ
andOj given in Eq.~20!, ~ii ! the basisf s

(m) of eigenvectors of
PsFPs , and~iii ! the expression@obtained from Eq.~E9! and
converted from a component to an operator expression#

Ps@] tS1]a~SAa!#Ps52
3

A2r 3/2
Ps . ~42!

In either case, we conclude that

dE

dt
5 E d3x (

m
uDsmu2

2Re~ z̄sm!23

A2r 3/2

1 E d3x2ReFDs,s1* Ds,s2~ f s
(s1)* ,S fs

(s2)!

3
z̄s,s1* 1 z̄s,s223

A2r 3/2 G . ~43!

In particular, for prototypical coherent wave packets
that is, wave packets wheres andm are the same everywher
in the packet—we can express the growth rate of the ene
Esm of the wave packet as

1

Esm

dEsm

dt
5

2Re~ z̄sm!23

A2r 3/2
~44!

wherer is the current location of the packet.

D. Deriving the polarization and energy equations for radial
propagation against the shift vector

The remaining 18 fields propagate inward against the s
vector, at speedVo52A2/r .

We shall not follow the same pattern we used to addr
propagation on the light cone@on a Rindler background in
Sec. V C and on a Painleve´-Gullstrand background in Sec
VI C#. In those sections, we provided extensive discuss
and background—the explicit form of the polarization equ
tion; a modified form of the polarization equation in an a
ternative basis; explicit expressions for the growth rate
energy general geometric-optics solutions; explicit dem
stration that PCWP solutions existed—before finally reco
ering the growth rate of PCWPs. Instead, for pedagog
and other reasons~see Sec. VI D 3!, we shall take a briefer
more practical approach better suited to extracting precis
the information needed to decide when some coherent w
packet can amplify a significant amount within the futu
domain of dependence.

Specifically, following the arguments at the end of Se
III C, we expect that—whether or not PCWPs exist as ex
solutions to the polarization equation — when the larg
eigenvalueoon of Oo is particularly large, a generic cohere
wave packet will rapidly converge to a PCWP withw
5 f o

(n) . In other words, we expect that when the growth ra
are large, the growth rate of generic coherent wave pac
4-12
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can be obtained by finding the largest value of (dE/dt)/E for
PCWPs@i.e., the maximum of Eq.~22! over m].

In short, we continue to evaluate Eq.~22! to get growth
rates, although now we trust the results only when
growth rates are large.

1. Growth rate of PCWPs

To evaluate the growth rate of PCWPs, we must diagon
ize Oo :

Oo5PoH F1
1

2
S21@] tS1]a~SAa!#J Po .

However, from Eq.~42! we know that the term in squar
brackets is diagonal. Therefore, diagonalizingOo to obtain
eigenvaluesoom and eigenvectorsf j

(m) is equivalent to diago-
nalizing PoFPo for eigenvalueszom and eigenvectorsf o

(m) .
The eigenvalues of the two operators are related by

oom5zom2
3

2A2r 3/2
. ~45!

We shall express the eigenvalueszom of PoFPo in terms of
the dimensionless rescaled quantitiesLm , defined implicitly
by

z0m5Lm3A2/r 3/2. ~46!

Substituting Eq.~45! into the general expression for th
growth rate of PCWPs@Eq. ~22!#, we find that a PCWP in the
polarizationm will have energy grow at the rate

1

Eom

dEom

dt
5F2Re~Lm!2

3

2GA2

r 3/2
~47!

wherer is the instantaneous location of the packet.

2. Essential tool: Diagonalizing PoFPo

To obtain explicit growth rate expressions using Eq.~47!,
we need the eigenvalues ofPoFPo, expressed according t
Eq. ~46!.

As in the previous two cases, the eigenspaces ofPoFPo
may be decomposed into distinct classes, depending on
symmetry properties of rotation about the propagation a
These spaces are as follows:

Helicity 0, a four-dimensional space of rotational scala
~‘‘helicity-0’’ states!, with eigenvalues given by Eq.~46!
with

Ls1,s25
2113ẑ118ẑ26A3AY1

4~113ẑ!
, ~48a!

Ls35
1

4
~230119h112ẑ26h ẑ!, ~48b!

Ls45
3

2
~112ẑ!. ~48c!
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Here, we useh[22/(g21/2) andY1 given according to an
expression listed below@Eq. ~49!#.

Helicity 1, an 8-dimensional space of rotational 2-vecto
~‘‘helicity-1’’ states!, with doubly degenerate eigenvalue
given by

Lv1522, ~48d!

Lv25
1

2
~116ẑ!, ~48e!

Lv3,v45
3

8
~518ẑ!1

h~13183ẑ184ẑ2!

32~113ẑ!

6
AY2

32~113ẑ!
. ~48f!

Again, we useh[22/(g21/2). The expression forY2 is
given below@Eq. ~50!#.

Helicity 2, a four-dimensional space of symmetri
traceless 2-tensors~‘‘helicity-2’’ states!, with doubly degen-
erate eigenvalues given by

Lt15
3

2
~112ẑ!, ~48g!

Lt25213ẑ. ~48h!

Helicity 3, and finally, a 2-dimensional space of helicity
states, with eigenvalue

L353~11 ẑ!. ~48i!

In the above discussion,Y1,2 are defined by

Y15~113ẑ!~2515ẑ124ẑ2136ẑ3!, ~49!

Y251296~113ẑ!21h2~13183ẑ184ẑ2!2

224h~113ẑ!~891199ẑ1132ẑ2!, ~50!

and we use the shorthandh[22/(g21/2).

3. Aside: Why can’t we follow the previous pattern?

Unlike all cases previously discussed, a handful of
eigenvectors depend weakly on position. As a result, the
of a basis which diagonalizesOo does not offer as dramati
a simplification as it did in our earlier analyses of the pol
ization equation@Secs. V C and VI C#. To be explicit, if we
rewrite the polarization equation in the basisf o

(m) in the fash-
ion of those earlier analyses, we obtain@see Eq.~C1!#

(
n

DonMmn5S ] t1Vo
a]a1

1

2
]aVo

a2oomDDom ~51!

for Mmn somenonzero, position-dependent matrix couplin
the variousDom .
4-13
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VII. TRANSIENTS AND LIMITATIONS ON NUMERICAL
SIMULATIONS: RINDLER

In earlier sections, we developed—in general~Secs. II,
III, and IV! and for specific examples~e.g., Sec. V analyze
propagation of transients according to the KST 2-param
formulation of Einstein’s equations, linearized about a R
dler background! — tools to analyze the growth of speci
~i.e., prototypical coherent wave packet! geometric-optics-
limit transient solutions. In this section, we demonstrate h
these tools can be used to discover when a particular for
lation of Einstein’s equations~here, some specific member o
the KST 2-parameter system! which is linearized about a
specific background~here, flat space in Rindler coordinate!
admits some massively amplified transient solution.

Specifically, in this section we apply the general too
developed in an earlier section~Sec. V! to determine the
largest possible amplification of a prototypical cohere
wave packet while it remains within the future domain
dependence of some initial data slice. In Sec. VII A we d
scribe the initial data slice we chose and the subset of t
sient solutions we studied. In Sec. VII B, we apply the to
developed in an earlier section~Sec. V! to determine the
amplification of each transient. We also find an express
for the largest possible amount a transient can amplify.
nally, in Sec. VII B 1, we invert our expression to determi
which pairs of KST parameters (ẑ, g) admit transients tha
amplify in energy by more than 1032 ~i.e., in amplitude by
more than 1016).

A. Transients studied

We limit attention to the future domain of dependence
the initial data slicexP@0.01,1# at t50. Since the KST
2-parameter formulation has fields which propagate at~but
no faster than! the speed of light, the future domain of d
pendence of this slice is precisely what we would obt
using Einstein’s equations: a region bounded by the
curvesx2[0.01expt andx1[exp(2t). This region is shown
in Fig. 3. The future domain of dependence extends to t

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2

t

FIG. 3. The shaded region is the future domain of depende
of the regionxP@0.01,1# for the KST 2-parameter formulation o
evolution equations linearized about a Rindler background. Tr
sients are any solutions which are defined in this region. We st
all the prototypical coherent wave packets which propagate on
light cone~i.e., according todx/dt56x).
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Tmax[ ln 10, ~52!

at which point the two bounding curves curves intersect.
Geometric-optics solutions are defined on rays@i.e. solu-

tions to Eq.~10!#. While three classes of rays exist in th
region—those ingoing at the speed of light (dx/dt52x);
those outgoing at the speed of light (dx/dt51x); and those
which have fixed coordinate position—we for simplici
chose to study only the amplification of transients that pro
gate on the light cone.

B. Amplification expected

For each ray that propagates on the light cone (dx/dt
56x) within the future domain of dependence, and for ea
polarization on that ray, we can compute the amplification
energy. IfRs,m[Esm

21dEsm /dt @see Eq.~32!#, we can express
the ratio of energy of the wave packet when it exits the fut
domain of dependence at timetout to the initial energy at time
t50 as

Asm~xo!5Esm~ tout!/Esm~0!5exp~ toutRsm!.

We have explicit expressions forRsm ; we can compute
tout(xo ,s) for each initial pointxo and for each propagation
orientation~i.e., for eachs); and we therefore can maximiz
Asm(xo) over all possible choices of initial location (xo),
propagation direction (s), and polarization (m) to find the
largest possible ratioA of initial to final prototypical coher-
ent wave packet energy.

In fact, because for each polarization of prototypical c
herent wave packet, the growth rates of energy is indep
dent of time and space, the largest amplifications poss
always occur along the longest-lived rays—in other wor
along the two bounding raysx1 andx2 , which both extend
to tout5Tmax. Therefore, we conclude that, while within th
future domain of dependence of the slicexP@0.01,1#, the
largest amount the energy of any prototypical coherent w
packet can amplify is given by the factor

A5exp~TmaxRRind! ~53!

whereRRind is given by

RRind[max
m,s

Rsm5max
m,s

@2Re~zsm!1s# ~54!

5maxS 1,U2 11g

2112g
21U,U2 112g2

2112g
21U D .

KST formulations which definitely possess some ill-behaved
transient solution when linearized about the Rindler backgroun

Finally, we can invert Eq.~53! to find those combinations
of KST parameters (ẑ, g) which permit some transient~in
particular, some prototypical coherent wave packet! to in-
crease in energy by more than a factor 1032 ~i.e., 1016 in
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-
y
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amplitude!. The condition may be expressed as eitherA
.1032 or, equivalently, asRRind.32. The functionRRind is
shown in Fig. 4, along with the lineRRind532.

Therefore, we know that some transient can amplify
energy by more than 1032 if ~i! g.(331A949)/4, ~ii ! g,
2(311A1077)/4, or~iii ! g.29/64 andg,(332A949)/4.

C. Relevance of our computation to numerical simulations

We have demonstrated that the KST 2-parameter for
lation of Einstein’s equations always admits, at any insta
prototypical coherent wave packet solutions which grow
ponentially in time. Generically, we expect that at each
stant~including in the initial data! these solutions are excite
by errors in the numerical simulation~e.g., truncation and
roundoff errors!. They then propagate and grow; eventua
they reach the computational boundary.

Our calculations above describes the largest amount
such wave packet solution could possibly grow by the tim
reaches the computational boundary. If that amplificat
factor is sufficiently large that the wave packets reach ‘‘un
amplitude~i.e., whatever magnitude is needed to couple
nonlinear terms strongly!, here conservatively assumed to
1016, then we expect that any simulation using that particu
combination of KST parameters will quickly crash.

Aside: What happens to PCWPs at late times?

Eventually, the wave packets excited by numerical err
will reach the computational boundary. What happens af
ward depends strongly on the precise details of the boun
conditions.

For example, maximally dissipative boundary conditio
~i.e., the time derivatives of all ingoing characteristic fiel
are set to zero! will allow the wave packet to leave the com
putational domain entirely~with some small amount of re
flection that goes to zero in the geometric-optics limit!. In
this case, at late times no transient will ever amplify by mo
than the amount described above~in Sec. VII B!.

On the other hand, other choices for boundary conditi
could cause wave packets to reflect back in to the comp
tional domain. In these circumstances, the outcomes are

-20 -10 0 10 20

10

20

30

40

50

R
R

in
d

γ

FIG. 4. The solid curve is the theoretical prediction for the la
est growth rate of wave packets that propagate on the light c
@Eq. ~54!#. The horizontal line is the value 32. According to arg
ments made in Sec. VII B 1, thoseg which haveRRind.32 have
some prototypical coherent wave packet which, in the future
main of dependence, amplifies in energy by more than 1032.
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more varied—at late times, the wave packet could potenti
grow, could decay to zero, or could enter a repetitive cy
where on average its amplitude is constant.8

Therefore, without some more specific proposal
boundary conditions, we cannot make useful statements
garding the late-time development of this instability proce
—or, in other words, we cannot study the growth of coher
wave packets for more than a light crossing time.

VIII. TRANSIENTS AND LIMITATIONS ON NUMERICAL
SIMULATIONS: PG

In this section, we provide another example of how to
developed earlier for the analysis of prototypical coher
wave packets — in general~Secs. II, III, and IV! and for
specific examples~e.g., Sec. VI analyses propagation of tra
sients according to the the KST 2-parameter formulation
Einstein’s equations, linearized about a Painleve´-Gullstrand
background!—can be applied to discover which formulation
of Einstein’s equations permit ill-behaved transients.

Specifically, in this section we study the propagation
coherent wave packets in the 2-parameter KST form of E
stein’s evolution equations, linearized about a Schwarzsc
background written in Painleve´-Gullstrand coordinates. The
theory needed to understand the propagation and growt
radially propagating coherent wave packets has been de
oped in an earlier section~Sec. VI!. We apply our techniques
to a handful of coherent wave packet transient solutions
discover conditions on the two KST parameters (ẑ, g) which
permit amplification of those transients’ energy by a fac
1/ee

2 for ee510216.
To provide concrete examples of estimates, we assu

that the initial data slice contains the regionr P@2,10#. So
that any influence from boundary conditions cannot mud
our computations, we limit attention to coherent wave pa
ets which are defined in the future domain of dependenc
that slice.

A. Transients studied

We limit attention to the future domain of dependence
the regionr P@2,10# at t50. Since the KST 2-paramete
formulation has fields which propagate at~but no faster than!
the speed of light, the future domain of dependence of
slice is precisely what we would obtain using Einstein
equations: the region shown in Fig. 5. In particular, the futu
domain of dependence is bounded on the left by the gen
tors of the horizon~trapped atr 52) and on the right by rays
traveling inward at the speed of light. This ingoing ra
reachesr 52 at the end point of the future domain of depe
dence, at timet5tmax defined by

8In fact, in this particular case, we expect that if a wave pac
with growth rate 1/t reflects, then symmetry and the structure of t
Rindler growth rates@i.e., Eq. ~32!# ensures that the reflected ra
has growth rate21/t. Therefore, on average, the wave packet h
a zero growth rate.

-
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tmax[ E
2

10 dr

11A2/r

54@32A51csch21~2!#'4.98. ~55!

In our future domain of dependence, we have th
classes of solutions to the ray-propagation equation@Eq.
~10!#: those ingoing at the speed of light (V2521
2A2/r ); those ingoing with the shift (Vo52A2/r ); and
those outgoing (V1512A2/r ) @Eq. ~37!#.

B. Amplification conditions

For each of the three classes of rays (s561,0) propagat-
ing radially in the future domain of dependence~Fig. 5! and
for each polarization on that ray, we can compute the am
fication in energy usingRsm[Esm

21dEsm /dt @see Eqs.~44!
and~47!#. Specifically, for a wave packet starting atr 5r o at
time t50, propagating in thes-type congruence and in th
polarizationm, the energy at the timetout(r o ,s) when the ray
exits the future domain of dependence is larger than the
tial energy by a factor

Asm~r o![Esm~ tout!/Esm~0!, ~56a!

ln Asm~r o!5 E
0

tout
dtRsm5 E

r o

r out dr

Vr
s

Rsm . ~56b!

We then search over allr o , over all propagation directionss,
and over all polarizationsm to find the largest amplification
factor A.

In fact, as in the Rindler case, we immediately kno
which rays produce the largest possible amplification, so
can perform the maximization by inspection.

Outgoing at light speed. Since the amplification of energ
increases asr gets smaller@(dE/dt)/E}1/r 3/2# and with the
duration of the ray in time, manifestly the generator of t

2 4 6 8 10
r

1

2

3

4
t

2 4 6 8 10
r

1

2

3

4
t

FIG. 5. The shaded region is the future domain of depende
of the regionr P@2,10# for the KST 2-parameter formulation o
evolution equations. Transients are any solutions which are defi
in this region. For reasons emphasized in the text, the rays tha
for the longest coordinate time prove particularly helpful. The
rays are the left and right boundaries~i.e., the horizon and a ray tha
propagates inward at the speed of light fromr 510) and one ray
propagating against the shift vector which emanates from their
tersection.
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horizon—with both the longest duration and the smallestr of
all outgoing rays—will provide the largest possible ampli
cation.

Since the ray of interest has fixed radial locationr 52, we
find thatz1,m is constant for all polarizations. Thus, the e
ergy of a prototypical coherent wave packet in polarizationm
increases by a factorA1m , for A1m5exp(tmaxz1m). In other
words,

ln Am5@2Re~ z̄1,m!23#@32A51csch21~2!#

'1.245@2Re~ z̄1,m!23#. ~57!

@The values for eachz̄1m are given in Eq.~39!.#
Ingoing at light speed.The longest ray—namely, the righ

boundary of the future domain of dependence—permits
greatest possible amplifications. Thus, among all possible
going rays, the largest amplification factor for the polariz
tion m is given byA2m :

ln A2m5@2Re~ z̄2,m!23#•
ln 522csch21~2!

2

'0.323@2Re~ z̄2,m!23#. ~58!

@The values for eachz̄2m are given in Eq.~39!.#
Note that since z2m5z1m , the outgoing transients

trapped on the horizon growmorethan the ingoing ones ove
the same time interval.9

Ingoing with lapse.The amplification of energy increase
both with ray length and with proximity tor 50 ~since
growth rates go as 1/r 3/2). Thus, the longest ray propagatin
at this speed contained in the future domain of depende
gives the best chances. That ray starts withr 5r L , with r L
defined so the ray terminates at the horizon att5tmax:

r L[F ~413tmax!
2

2 G1/3

. ~59!

Thus, we find the largest possible amplification amo
those polarizations that haves50 to be given byA0m :

ln Aom5F2Re~Lm!2
3

2G3 E
2

r L dr

A2/r

A2

r 3/2

5F2Re~Lm!2
3

2G ln ~r L/2!. ~60!

@The values for eachLm are given in Eq.~48!.#

9This should be expected: the ingoing and outgoing wave pac
have similar growth rates at any given radius; we limit attention
rays which persist for a fixed time; and the outgoing modes
study remain closer to the horizon, where the growth rate is lar
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C. Results: Some KST parameters that have transients
which amplify by 1032

Under the proper choice of KST parameters, sho
shaded in Fig. 6, one of the three types of ray (s561,0)
may admit some prototypical coherent wave packet of po
ization m whose energy amplifies by 1032 ~i.e., A sm

>1032). The clear region in Fig. 6 indicates KST paramet
for which we have not yet found a transient which amplifi
by 1032.

D. Generalizations of our method that could generate stronger
constraints on KST parameters

With our extremelyconservative approach—eliminatin
those formulations with wave-packet solutions which a
plify by 1032 in the future domain of dependence—we ha
already eliminated a broad region of parameter space.
relaxing some of our very restrictive assumptions, we exp
we could discard still more KST parameters:

~1! Use a lower amplification cutoff.Currently, we require
an enormousamplification before we eliminate a formula
tion; relaxing the requirement on amplification exclud
more systems.

~2! Consider more transients.Currently, we compute the
amplification of only a handful of transients; a considerat
of other transients~for example, in the neighborhood of ci
cular photon orbits in PG coordinates! may allow us to ex-
clude additional parameters.

~3! Consider a larger region.Currently, we limit attention
only to the future domain of dependence of the initial d
slice. Certain rays, however, remain within the compu
tional domain for far longer. For example, in the PG ca
rays near the horizon remain in the domain for arbitrar

-40 -20 0 20 40

g

-40

-20

0

20

40

ẑ

FIG. 6. The shaded region indicates those KST parameters
produce some radially propagating prototypical coherent w
packets which amplify their energy by greater than 1032 within the
future domain of dependence of the slicer P@2,10#. Note that a
large proportion of parameter space has been excluded.
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long;10 even the slowly infalling rays last substantially long
than the domain of dependence. Therefore, by conside
the amplification of transients over a longer interval, we w
discover significantly greater amplification and thus exclu
a significantly broader class of formulations of Einstein
equations.

~4! Combine with boundary conditions.Finally, if we de-
termine how geometric-optics solutions interact with boun
ary conditions, we can generalize our approach and add
the late-time stabilityproperties of the evolution equations—
or, in other words, address the stability properties of the
initial-plus-boundary value problem.

IX. CONCLUSIONS

In this paper, we have demonstrated that certain transi
~prototypical coherent wave packets! can be used to veto a
significant range of proposed formulations of Einstein
equations. We have described in considerable pedagog
detail precisely how to construct expressions for~or esti-
mates of! the growth rate of prototypical coherent wav
packets@i.e., Eq. ~22!#, verify those estimates, and emplo
them to veto proposed formulations of Einstein’s equatio
These expressions employ no free parameters or knowle
of the solution, aside from a choice of plausible rays to e
amine. Moreover, despite the sometimes exhaustive de
provided in Secs. V and VI, the key tool—the growth rate
prototypical coherent wave packets@Eq. ~22!#—is easy to
apply, with little conceptual, notational, or computation
overhead~see, for example, the brief Sec. VI D 1 and i
application in Sec. VIII!. Whether they are used conserv
tively, as in this paper, or generalized along the lines s
gested in Sec. VIII D~i.e., using more rays and larger frag
ments of spacetime!, we believe these techniques wi
provide a useful way to bound the number of proposed f
mulations before further tests are conducted~for example, by
the more ambitious Lindblom-Scheel energy-norm meth!
to decide whether a given formulation can produce effect
simulations.

While our the specific examples of analyses in this pa
have employed linearizations of the field equations the
selves, we could just as well linearize a FOSH system r
resenting evolution equations for the constraint fields@see,
for example, KST Eqs.~2.40!–~2.43!#. The evolution equa-
tions for the constraints have been emphasized by m
other authors as a probe of unphysical behavior. Since
general arguments of Secs. II, III, and IV do not depend
the precise FOSHLS used, we can perform a calculation

10One must take care to use the rays near the horizon in a sen
fashion. While analytically the rays remain within the compu
tional domain for arbitrarily long times, one cannot expect wa
packet solutions to be resolved and present in a numerical solu
for arbitrarily long: the code has a finite smallest resolved sc
In practice, one must remember that whatever amplification
computes must be realistically attainable by some numerical si
lation of fixed ~though perhaps high! resolution in the coordinates
of interest.
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lowing the same patterns as~for example! Sec. VIII to dis-
cover ill-behaved formulations.11

In this paper, we have also discovered curious proper
of modes trapped on the horizon of a Schwarzschild hole
PG coordinates~Sec. VIII!. Analytically, we would expect
that, if any growth rate for modes trapped on the horiz
were positive, then these modes should grow without bo
and be present in the evolution at late times. Numerica
however, we know that noresolvedwave packets can appea
at late times: such solutions would have to initiate arbitra
close to the horizon, inconsistent with resolved, fini
resolution initial data. Still, marginally resolved solutions
similar character could potentially behave in
implementation-dependent fashion, seeding outgoing mo
which then propagate and amplify into the domain for
time. We shall explore this possibility in a future paper.
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APPENDIX A: USEFUL IDENTITIES USED IN THE TEXT

1. An alternative approach to the group velocity

The eigenequation which defines the natural polariza
spacesBj and their associated eigenvaluesv j @Eq. ~4!#

Aapav j ,a5v jv j ,a

for eachv j ,aPBj ~cf. Sec. II A! may be alternatively ex-
pressed as

Aa~x!paPj~x,p!5v j~x,p!Pj~x,p! ~A1!

for Pj the projection operator to thej th eigenspace ofAapa .
Differentiate this expression relative topb , apply Pj from
the left, and cancel terms proportional to]Pj /]pa using Eq.
~A1! andPjA

apa5AapaPj to find

PjA
aPj5

]v j

]pa
Pj5Vj

aPj . ~A2!

Equivalently, if v j ,a are a collection of basis vectors for th
j th eigenspace which are orthonormal relative to the in
product generated byS,

~v j ,b ,SAav j ,a!5dabVj
a . ~A3!

11The author expects that no new information can be obtained
such an analysis. Moreover, because the constraint equations,
written in first-order form, involve many more variables than t
field equations themselves, such an analysis should prove sub
tially more challenging.
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2. The no-rotation condition

In Sec. II C 2, we claim we can always find a basis forBj
at each point in the neighborhood of a given ray which s
isfies theno-rotation condition@Eq. ~12!#:

~v j ,[a,S(] t1Aa]a)v j ,b] !50 ~A4!

for all a, b. In this section, we demonstrate explicitly ho
to construct a basis which both satisfies the no-rotation c
dition and remains orthonormal.

If the right-hand side term in Eq.~A4! is not zero in the
basisv j ,a , we attempt to choose a new basis

v j ,ā[Rāav j ,a

such that Eq.~12! is satisfied by the new basis and moreov
such that the new basis is orthonormal. In particular, if
no-rotation condition is satisfied in the new basis, then~be-
causePjA

aPj5Vj
a) we know that

05(
ab

RāaRb̄b~v j ,[a,S~] t1Aa]a!v j ,b] !

1R[ āa (
a

(] t1V
j
a]a

)Rb̄]a . ~A5!

~In the second term above, the antisymmetrization is o
only the barred indiciesā and b̄.! On the other hand, if the
basis is orthonormal, then(a RāaRb̄a5dāb̄ , implying

(
a

R(āa~] t1Vj
a]a!Rb̄)a50.

~In the above, the operator is symmetrized over the indic
ā andb̄.! Therefore, combining the two, we conclude that
the new basis is both orthonormal and satisfies the
rotation condition, the matrixR must satisfy the ordinary
differential equation

~] t1Vj
a]a!Rāa52~v j ,[a ,S~] t1Aa]a!v j ,b] !Rāb

subject to initial dataRāa5dāa . Solutions forR and thus
v j ,ā exist in the neighborhood of a ray.

3. Reorganizing inner products for the polarization equation

In this section, we describe how to rearrange matters
the last term in Eq.~9c!—namely,

~v j ,a ,S~] t1Aa]a!v j ,b! ~A6!

— has a simpler form. If we choose a basis that satisfies
no-rotation condition@Eq. ~12!#, the antisymmetric part of
this matrix is zero. Further, we may express the symme
part of this expression by using the relations

] t~v j ,a ,Sv j ,b!5~v j ,a ,S] tv j ,b!1~v j ,b ,S] tv j ,a!

1„v j ,a ,~] tS!v j ,b…, ~A7!

y
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]a~v j ,a ,SAav j ,b!5~v j ,a ,SAa]av j ,b!1~v j ,b ,SAa] tv j ,a!

1„v j ,a ,~]aSAa!v j ,b… ~A8!

~where we have observed thatSAa and Aa are symmetric
relative to the canonical inner product! and the expressions

~v j ,a ,Sv j ,b!5dab , ~A9!

~v j ,a ,SAav j ,b!5dabVj
a ~A10!

@i.e., orthogonality and Eq.~A3!#. These relations tell us tha
if the no-rotation condition is satisfied,

„v j ,a ,S~] t1Aa]a!v j ,b…5
1

2
da,b]aVa

„xW ,kW~x!…

2
1

2
„v j ,a ,~] tS1]aSAa!v j ,b…

~A11!

Our notation for the first term on the right side~i.e., the
divergence of the group velocity! is chosen to emphasize th
the derivative]a acts onall the dependence onxW — in par-
ticular, on any variation ofka5]af with xW .

APPENDIX B: DEMONSTRATING
THAT THE RAY-OPTICS APPROACH PROVIDES

HIGH-QUALITY APPROXIMATE SOLUTIONS
TO THE FOSHLS

For any fixed initial data, the ray-optics solution obtain
in Sec. II will break down at some point along each ray.
this section, we estimate how long a solution obtained
solving Eq.~9! can be trusted.

Specifically, in Sec. B 1 we express the FOSHLS@Eq. ~3!#
using alternative variables better suited to describing
geometric-optics solution. Next, in Sec. B 2 we survey
various orders of magnitude that arise in the problem. Us
those orders of magnitude, in Sec. B 3 we estimate the e
in Eq. ~3! that occurs when a geometric optics solution
substituted foru ~e.g., we estimate how close the norm of t
left side is to zero!. Finally, knowing how much error we
make when using a geometric-optics solution, in Sec. B 4
estimate how errors involved in a geometric-optics appro
mation grow; we therefore discover how long we can trus
purely geometric-optics-based evolution.

1. Review: Writing equations in terms of f and dl ,a

In Eqs. ~7! and ~8! we describe how to parameterize th
N-dimensional state vectoru by usingN functionsdl ,a and
one additional functionf. If we insert this substitution into
the original FOSHLS@Eq. ~3!#, then dot the results agains
each of the orthonormal basis vectorsv l ,a , we obtain the
equations
08402
y

e
e
g
or

e
i-
a

05 i ~v l ,a ,Sū!@] t1Vl
a]a#f1~v l ,a ,S~] t1Aa]a2F !ū!

5 idl ,a@] t1Vl
a]a#f1] tdl ,a

1(
m

(
b

~v l ,a ,SAavm,b!]adm,b

1(
m

(
b

dm,b~v l ,a ,S~] t1Aa]a2F !vm,b!. ~B1!

In the above, we have observed thatAa is symmetric relative
to the inner product generated bySand thatv j ,a is an eigen-
vector of Aa]af with eigenvaluev j5Vj

a]af. We can fur-
ther reorganize this equation by pulling out all terms th
involve dl explicitly, and also by using Eq.~A2! to simplify
(v l ,a ,SAav l ,b)5Vl

adab :

05 idl ,a@] t1Vl
a]a#f1@] t1Vl

a]a#dl ,a

1 (
b

dl ,b~v l ,a ,S~] t1Aa]a2F !v l ,b!

1 (
mÞ l

(
b

~v l ,a , SAavm,b!]adm,b

1 (
mÞ l

(
b

dm,b~v l ,a , S~] t1Aa]a2F !vm,b!.

~B2!

2. Natural scales used in order-of-magnitude estimates

To make order-of-magnitude arguments regarding the
lution, we need to understand how the natural length sc
of the problem enter into it.

Rather than complicate the order-of-magnitude calcu
tion unnecessarily, we shall for simplicity proceed as if the
existed only one characteristic speed. In other words,
shall freely convert between space and time units by us
the norm ofAa; for example, we can interprettF,nuAu as a
natural length scale. Finally, for brevity, we shall assum
space and time units are chosen souAu;1.

Even with the above simplification, many natural sca
arise in the problem, including the magnitude ofF; the natu-
ral length and time scales on whichF and A vary; and the
length scale on which the initial data varies. Again, for si
plicity we shall summarize all these scales by only two nu
bers:

‘‘Length’’ scale (L). We define the natural ‘‘length’’ scale
to be the natural time scale that enters on the right side of
~9c!. To be explicit, L is the smaller ofudu/uAuu]adu and
1/uFu.

‘‘Variation’’ scale (tvary). The remaining scales do no
arise directly in the equation. They affect the propagation
the wave packet only because they determine the rat
which terms in the equation are modulated as the w
packet propagates in space and time. We therefore call
smallest of the remaining scales thevariation scale(tvary);
4-19
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its value is the smallest of the length and time scales
which A andF vary.

3. Degree to which ray-optics solution satisfies the FOSHLS

Using the above rough estimates (L andtvary) to charac-
terize the magnitude of terms both used and neglected
find that geometric-optics solutions@Eq. ~9!# very nearly sat-
isfy the full FOSHLS@Eq. ~3!, alternatively expressed as E
~B2!#. To be explicit, when we insert a geometric-optics s
lution which propagates in thej th polarization@i.e., a solu-
tion to Eq.~9!# into Eq. ~B2!, we find the following:

05 idl ,a~v l2v j !1@] t1Vl
a]a#dl ,a

1 (
b

dl ,b~v l ,a ,S~] t1Aa]a2F !v l ,b!

1 (
mÞ l

(
b

~v l ,a ,SAavm,b!]adm,b

1 (
mÞ l

(
b

dm,b~v l ,a , S~] t1Aa]a2F !vm,b!.

~B3!

@Here, we have used Eq.~9a! and the definition ofv j to
simplify the first term.#

We have two circumstances:
~1! When l 5 j , the first three terms precisely cancel@see

Eqs. ~9a! and ~9c!#. The only terms remaining are of orde
dm,b mÞ j .

~2! On the other hand, whenlÞ j , the first term does no
cancel. Rather, it is large, because]af is large~i.e., we are in
the short-wavelength limit!, and thev l are proportional to
]af.

For brevity, assume the eigenvalues ofAa are of compa-
rable magnitude, so to an order of magnitudev j;v l;v
;v j2v l . We may then express the equation whenlÞ j as

05O~vdlb!1O~dj ,a /L !.

The second terms will force the first terms, generally, to
nonzero.

From the second case, we know that whenlÞ j , udl u
;O(udj u/Lv). Combining this result with the first equation
we conclude that when we use our trial solution we are
noring terms of orderudj u/L2v whenl 5 j and terms of order
and udj u/L when lÞ j .

4. Length of time ray-optics solution can be trusted

To estimate the integrated effects the neglected te
have on the diagonal and off-diagonal polarization am
tudesdj ,a and dl ,a , respectively, we integrate the previou
equations.

When lÞ j , we have a differential equation~DE! of form

d

ds
dl ,b1 idl ,bDv1O~ udj u/L !50,
08402
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where we neglect smaller terms, whered/ds5] t1Vj
a]a rep-

resents the derivative along a characteristic, and whereDv
5v l2v j;v. Since we limit attention tov very large~i.e.,
vtvary@1), we may ignore the weak effects of any tim
variation ofL and treat it as constant. Sinceudj u varies along
the characteristic much more slowly than does exp(2ivs),
we find that after an affine lengthT, udl u will be of order

udl u;Tu]sdj u/vL;udj uT/L2v. ~B4!

~Here, I assumeL2v is suitably averaged, asL will vary as
the path evolves.! Similarly, whenl 5 j , we ignore terms of
order udj u/L2v. We have a DE of the form

d

ds
dj ,a1~known, real!1O~ udj u/L2v!50.

Therefore, integrating along an affine lengthT of the ray, we
expect errors in thedj a’s of relative magnitude

eamp5T/L2v ~B5!

wheneamp is small. In both cases, we see the neglected te
will be smaller thanudj u by magnitudeeamp.

If we are simulating agiven system, with fixed initial
data, we can only trust a solution out to timeT;L2v. How-
ever, for any compact region of any characteristic~i.e., for
any fixedT), we can always choosev sufficiently large so
the relative errorseamp is arbitrarily small.

APPENDIX C: WHEN DO PCWPS EXIST?

Rather than evolve general wave packets using the
geometric-optics equations, for simplicity in this paper w
often restrict attention to prototypical coherent wave pack
which — if they exist — vastly simplify the problem o
evolution ~cf. Sec. III C!. In this appendix, we try to clarify
the conditions under which prototypical coherent wa
packet solutions exist as exact or approximate solutions
the geometric-optics equations.

We can better understand under what conditions pro
typical coherent wave packets exist if we rewrite the pol
ization equation@Eq. ~13!# using the basisf j

(m) @Eq. ~16!#.
When we do so, we find that PCWPs are exact solutions o
for special circumstances. However, when some eigenv
of Oj is large, we find that PCWPs arise naturally as limits
arbitrary coherent wave packets.

1. Rewriting polarization equation in the basis
of eigenvectors ofOj

Basis vectors and their components.The basis vectors
f j

(m) are defined above. Since we express the polariza
equation in component form relative to some no-rotation
sis, we also need notation for the componentsf j a

(m) of these
basis vectors relative to the no-rotation basis:

f j
(m)5 (

a
f j a

(m)v j ,a .
4-20
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Dual vectors and their components.The basis vectorsf j
(m)

are not necessarily orthogonal. To facilitate computations,
define a dual basisf̃ j

(m) such that

dmn5~ f̃ j
(n) ,S fj

(m)!.

The dual basis vectors can be expressed in terms of com
nents, denotedf̃ j ,a

(m) , relative to the no-rotation basis.
Explicitly rewriting polarization equation.Substituting

the expansion

ū5 (
m

D j m f j
(m) ↔ dj a5 (

m
D j m f j a

(m)

into the polarization equation@Eq. ~13!#, then using the dua
vector basis to select specific components, we find

05S ] t1Vj
a]a1

1

2
]aVj

a2oj mDD j m

2 (
n

D j nF (
a

~ f̃ j a
(m) ,S~] t1Vj

a]a! f j a
(n)!G . ~C1!

2. Sufficient conditions for PCWP to be exact solution

By definition, a prototypical coherent wave packet so
tion associated with the polarization directionf j

(m) exists
only if there is a solution—exact or approximate—to E
~C1! with all D j n50 except forn5m ~i.e., D j ,mÞ0). In
other words, for a complete collection of PCWP solutions
exist, one for eachm, the third term in Eq.~C1! must be
diagonal, or zero.

@In fact, for the examples addressed in this paper~i.e., in
Secs. V and VI, for propagation on the light cone!, the third
term is in fact exactly zero.#

3. PCWP as limit of arbitrary rapidly growing coherent
wave packet

If the largest eigenvalueoj n of Oj is particularly large
compared to the third term, then generic solutions to
polarization equation@Eq. ~C1!# will converge to a state with
D j n@D j m for mÞn ~i.e., w5 f j

(n)). In other words, if the
largest eigenvalue ofOj is large, then generic wave packe
will converge to the PCWP withw5 f j

(n) .

APPENDIX D: BOUNDING THE ENERGY
GROWTH RATE

In Secs. II and III we introduced wave-packet solutions
solutions which are localized in the neighborhood of a giv
ray. However, while we obtained expressions for the grow
rate of certain specialized wave packet solutions~Sec. IV!, in
the main text of this paper we never provided a strict bou
on the growth rate of a wave packet.

In fact, we can bound the instantaneous growth rate o
coherent wave packet@Eq. ~21!# by a quantity independent o
the precise polarization statew of that packet:
08402
e
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d

a

1

E

dE

dt
< max

wPBj

~w,SQw!

~w,Sw!
. ~D1!

As Q is symmetric relative toS, it has a spectrum of rea
eigenvalues, each associated with eigenspaces that ar
thogonal relative toS. It follows that if ks is the largest
eigenvalue ofQ,

1

E

dE

dt
<k. ~D2!

This procedure follows precisely the same outline as
energy-norm upper bound discussed in LS Eqs.~2.17! and
~2.18!.

This upper bound on the growth rate for all polarizatio
propagating along a given ray can be used as a line-by-
replacement for the maximum growth rate of PCWPs@Eq.
~22!# in practical calculations to determine the largest amp
fication possible by a wave packet propagating in the fut
domain of dependence~e.g., Secs. VII and VIII!.

APPENDIX E: RAY OPTICS AND KST
2-PARAMETER FORMULATION

While KST introduce a very large family of symmetri
hyperbolic systems, they emphasize~and limit their calcula-
tions to! a simple 2-parameter subset. This two parame
system has both physical characteristic speeds and a si
principal part ~i.e., simple form forAa). As a result, the
algebra required for its ray-optics limit~i.e., computations of
v j , etc.! proves particularly simple.

1. Generally

The KST system has as variables the tens
gab , Pab , Mkab defined over 3-space, for a total of 616
118530 fields.

a. Principal part and symmetrizer

The principal part has the form@KST Eq. ~2.59!, along
with the definition of]̂o in KST Eq. ~2.10!#

~] t2ba]a!gi j .0, ~E1a!

~] t2ba]a!Pi j 1Ngab]aMbi j.0, ~E1b!

~] t2ba]a!Mki j1N]kPi j .0. ~E1c!

After linearizing about a background solution, this princip
part and a choice of representation for the fields~i.e.,u) give
us the explicit form forAa. We may represent the result a

Aa52ba11NAo
a ~E2!

for 1 the identity operator andAo
a a construction which de-

pends only on the background metricg and the choice of
field ordering used in going to a matrix representation~i.e.,
the order of the fields inu).

This principal part is symmetric hyperbolic, using as sy
metrizer~for example! LS Eq. ~3.67!:
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R. O’SHAUGHNESSY PHYSICAL REVIEW D68, 084024 ~2003!
~u,Su!5gaāgbb̄dgabdgāb̄1gaāgbb̄dPabdPāb̄

1gaāgbb̄gkk̄dMkabdMk̄āb̄ . ~E3!

This symmetrizer~represented here in LS notation! amounts
to nothing more than the naturally constructed sum
squares of components ofg, P, andM.

b. Eigenvalues and group velocity

From the principal part, we can deduce the three poss
eigenvalues:

vs~x,p!52bapa1sNAgabpapb ~E4!

wheres50,61. From this expression we obtain the gro
velocities

vs
a~x,p!52ba1sNp̂a ~E5!

wherep̂a[gabpb /Agrsprps.

c. Eigenfields and projection operators

KST tabulate the eigenfields of the principal-part opera
@Eq. ~E1!# in KST Eq.~2.61! and the surrounding text. Thes
expressions yield the following orthonormal basis vectors
the three eigenspaces ofAap̂a :

vo,g,ab5gab , ~E6a!

vo,x,ab5
@Mqabx̂

q2 p̂ux̂up̂qMqab#

A12~pax̂a!2
, ~E6b!

vo,y,ab5
@Mqabŷ

q2 p̂uŷup̂qMqab#

A12~paŷa!2
~E6c!

v6,ab5
1

A2
@Pab6 p̂qMqab#, ~E6d!

where we treat the symbols for the fields as basis vector
the space of fields, and wherex̂ andŷ are two 3-vector fields
not parallel top̂ and which are orthonormal relative to th
metric gab at each point.
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2. Special case: Flat spatial metric

When the KST system is applied to a time-independ
solution with a flat spatial metric, the algebra simplifies su
stantially. For example, the symmetrizerS @Eq. ~E3!# is the
identity operator on the set of fields. The inner product g
erated byS is therefore constant in space and time.

a. Simplifying the general polarization equation

Since we fix the basis vector convention by Eq.~E6!, we
must use the polarization equation in the form of Eq.~9c!
~i.e., we do not generically expect the no-rotation conditi
to hold!. We therefore must evaluate the term

„v j ,b ,S~] t1Aa]a!v j ,b…5„v j ,b ,S~] t2ba]a!v j ,b…

1N~v j ,b ,SAo
a]av j ,b!.

Since we know how the basis vectors change as a functio
the congruence directionk̂5 p̂ @Eqs. ~E6a!– ~E6d!#, we can
rewrite this expression in terms of our knowledge of t
congruence andba.

For example, for the fields propagating forward along t
congruence at unit speed (j 5s561), we have

~vs,ab ,SAo
a]avs,cd!5S 1

2
s]qp̂qD dacdbd , ~E7!

„vs,ab ,S~] t2ba]a!vs,cd…50. ~E8!

b. Simplifying the energy equations

The only new quantity needed to evaluate the ene
equation is]aSAa. To evaluate]aSAa, we note thatS is the
identity, so we just differentiate the result we obtain from E
~E2!:

]aSAa52]aba11~]aN!Ao
a .

Now, if we take the inner product over the fields, we arrive
the expression

„v j ,a ,~]aSAa!v j ,b…5dabF2]aba1~]aN!sj

pa

upuG . ~E9!
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