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Geometrical optics analysis of the short-time stability properties of the Einstein evolution equations
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Many alternative formulations of Einstein’s evolution have lately been examined in an effort to discover one
that yields slow growth of constraint-violating errors. In this paper, rather than directly search for well-behaved
formulations, we instead develop analytic tools to discover which formulations are particularly ill behaved.
Specifically, we examine the growth of approximégeometric-opticssolutions, studied only in the future
domain of dependence of the initial data slieeg., we study transientsBy evaluating the amplification of
transients a given formulation will produce, we may therefore eliminate from consideration the most patho-
logical formulationge.g., those with numerically unacceptable amplificatidimis technique has the potential
to provide surprisingly tight constraints on the set of formulations one can safely apply. To illustrate the
application of these techniques to practical examples, we apply our technique to the 2-parameter family of
evolution equations proposed by Kidder, Scheel, and Teukolsky, focusing in particular on flatispgriceller
coordinatesand Schwarzschild backgrourtith PainleveGullstrand coordinatgs
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[. INTRODUCTION tion equations and background spacetime used, these

Recently developed numerical codes offer the possibilitytransients can potentially grow significantye., by a factor
of extremely accurate and computationally efficient evolu-of more than 1& in amplitude. Under these conditions,
tions of Einstein's evolution equations in vacuym]. To  even roundoff-level errors in initial data should produce tran-
take full advantage of these new techniques to perform afients that amplify to unit magnitude. Once errors reach unit
unconstrained evolution of initial data and boundary condi-magnitude, then guided by the KST results discussed above,
tions, we must address an unpleasant fact: many choices ff¢ expect nonlinear terms in the equations to generically
evolution equations and boundary conditions permit ill-cause these errors to grow even more rapidly, followed
behaved, unphysical solution&@.g., growing, constraint- shortly thereafter by complete failure of a numerical simula-
Vi0|ating So|ution$ near physica| solutions. tion. In other words, if the formulation and background

By way of example, when Kidder, Scheel, and Teukolskyspacetime permit transients to amplify by*40we expect
(KST) evolved a single static Schwarzschild hole as a tesfumerical simulations of these spacetimes to quickly fail.
case, they found evidence suggesting that their evolution In this paper we develop conditions which tell us when
equations and boundary conditions, when linearized about $ch dramatic amplification iassured Specifically, we de-
Schwarzschild background, admitted growing, constraintscribe how to compute the amplification of certain transients
violating eigenmode$1,2]. These eigenmodes were excited for a broad class of partial differential equatio(BDES
by generic initial datgi.e., roundoff erroy, grew to signifi-  (first-order symmetric hyperbolic PDEthat includes many
cant magnitude; and were directly correlated with the timgformulations of Einstein’s equations. If this amplification is
their code crashed. As this example demonstrates, the exigrger than 1¢, then we know we should not evolve this
tence and growth of ill-behaved solutions limit the length offormulation numerically.
time a given numerical simulation can be trusted—or even
run.

For this reason, some researchers have explored the ana-
lytic properties of various formulations of Einstein's equa- In this paper, we analyze the growth of transieriie-
tions[2—8] and boundary conditiof®—12] used in numeri- member, in this paper a transient is any solution defined in
cal relativity, searching for ways to understand and controthe future domain of dependence of the initial data slice.
these undesirable perturbations. Rather than study all possible formulations, we limit atten-

In this paper, we discuss one particular type of undesirtion to a class of partial differential equations we can analyze
able perturbation: short-wavelength, transient wave packetin a coherent, systematic fashion: first-order symmetric hy-
(For the purposes of this paper, a transient will be any soluperbolic systems. Furthermore, because we concern our-
tion defined in the future domain of dependence of the initialselves only with stability and the growth of small errors, we
data slice. Depending on the boundary conditions, the soluimit attention to linear perturbations upon some background.
tion may or may not extend farther in time, outside the futureFinally, to be able to produce concrete predictions, we re-
domain of dependence. Inside the future domain of deperstrict attention to those transients which satisfy the geometric
dence, however, “transient solutions” are manifestly inde-optics approximation.
pendent of boundary conditionsDepending on the evolu- In Sec. Il we introduce an explicit ray-optics-limit solu-

tion to first-order symmetric hyperbolic linear systems—a
class which includes, among its other elements, lineariza-
*Electronic address: oshaughn@caltech.edu tions of certain formulations of Einstein’s equations. We pro-

A. Outline of remainder of paper
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vide explicit ordinary differential equationdDES which  that our techniques indeed give correct results for growth
determine the patfi.e., ray and amplitude of a geometric- rates(cf. the introduction to Sec. V and the summary of that
optics solution, in terms of initial data at the starting point of section’s results in Sec. V)D Finally, to understand how
the ray. Then, in Sec. Ill, we introduce wave packets as sothese techniques can be used to discrover ill-behaved formu-
lutions which are confined to a small neighborhood of a parlations, the reader should examine Secs. VIl and VIII.

ticular ray. We further define two special classes of wave The more critical reader may wish to test and verify our
packet—coherent wave packets and prototypical coheref@mputations. This reader should then review Secs. I, Il
wave packets—which, because of their simple, special stru@nd IV again, then work through Secs. V and VI in detail
ture, are much easier to analyze. Finally, in Sec. IV, we in_(relturnmg to the earlier sec’qons for reference as necessary
troduce and discuss the technig(energy normswe will This reader will also benefit from the general approach to

use to characterize the amplitude of wave packets. In particu.]SST 2-parameter formulations discussed in Appendix E.

lar, we provide an explicit expressidiEq. (22)] for the Finally, the most skgptlpal readers V\."” want to examine
rowth rate of energy of a prototypical coherent wavethe conceptual_underplnnlngs of and jystlflcanons for our

9 ket every computation. This reader should simply follow the text

packet. as presented, but carefully read every footnote and appendix

To demonstrate explicitly how the techniques of the Pré-ag they are mentioned in the text. In particular, this reader

vious secthns can be applied to produce the grpvvth rate Qfji;| want to review our Appendixes Bfor a justification of
transients, in Secs. V and ks well as Appendix Ewe o ray-optics techniqugsnd A (for many useful identities
describe by way of example how our methods can broadly bgsed in the previous appendix and elsewhere in the pager
applied to the two-parameter formulations that Kidder,well as Appendix C(for a more detailed discussion of pro-

Scheel, and TeukolskyKST) have proposed1]. Specifi-  totypical coherent wave packets, a key element in our com-
cally, Secs. V and VI will respectively describe wave packetsputational method

on flat space(written in Rindler coordinatgsand radially
propagating transients on a Schwarzschild-black-hole back-
ground(expressed in Painlév@ullstrand coordinatgs

Finally, to demonstrate explicitly how expressions for the 1. Study of a short-time, rather than long-time, instability
growth rate of transients can be used to filter out particularly mechanism

pathological formulations, in Secs. VII and VIII we use the First and foremost, we should emphasize that our work

results for the growth rates of transients obtained in SAecs. Miffers substantially from all previous work on this subject:
and VI to determine what pairs of KST parameteysandz)  we very explicitly restrict attention to amplification over
guaranteesignificant amplificqtion of some transient propa- only a short time(i.e. a light-crossing time On the one
gating on a Rindler and Painles@ullstrand background, re- hand, unlike other work, because of this restriction, our
spectively. claims—being independent of boundary conditions—apply
_ to all boundary conditions. On the other, because we forbid
Guide to the reader ourselves to study our solutions outside the future domain of
While the fundamental ideas behind this paper—the studglependence of the initial data slice—even though, in prac-
of wave packets and the use of their growth rates to discovdice, we could draw some elementary conclusfens this
ill-behaved formulations—remain simple, when we at-paper we choose not to make any claims about how a for-
tempted to perform practical, accurate computations, wénulation of Einstein’s equations will behave at late times
quickly found the simplicity of this idea masked behind large(i.e., its late-time stability propertigs
amounts of novel(but necessajynotation. We therefore
found it difficult to simultaneously satisfy the casual 2. Study of an instability mechanism, not necessarily the
reader—who wants only a summary of the essential results, dominant one
and who is still evaluating whether the results and the meth- | other papers which attempt to address the stability

ods used to obtain them are worthy of further attention—andrgperties of various formulations of Einstein’s equations—
the critical reader—who needs comprehensive understandinyg, example, Lindblom and ScheflS) [2]—the authors try

of our methods in order to evaluate, duplicate, &pdten-  (somewhat naturallyto understand theominantinstability
tially) extend them. We have chosen to slant the paper tqmechanism. Unfortunately, we do not fully understand all the

ward the critical reader; thus this paper iz@mprehensive gominant instability mechanisms which can occur in generic
and pedagogicalintroduction to our techniques.

While this paper can be consumed in a single reading, fo——
the reader interested in a brief summary of the essential ideas, t5¢t pecause these solutions are high-frequency solutions, we
and results, or for anyone making a first reading of this pagan quite easily determine their interaction with most boundary
per, _the author recommends reading only the most essentigngitions. For example, maximally dissipative boundary condi-
details. First and foremost, the reader should understand thgnsi.e., the time derivatives of all ingoing characteristic fields are
scope and significance of this papée., read the abstract setto zerpimply, in the geometric-optics limit, that all solutions on
and Sec. ). Next, the reader should follow the general de-ingoing rays will be zero. In particular, that implies that, when wave
scription of the techniques in Secs. Il, Ill, and IV in detail. packets reach the boundary, they leave without reflecting. Other
Subsequently, the reader should examine our demonstratidoundary conditions may also be easily analyzed.

B. Connection with prior work
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combinations of evolution equations, boundary conditionsconstruct an analogous limit for arbitrary first-order symmet-
and background spacetimes. Indeed, while some theoreticat hyperbolic linear systems.
progress has been made toward estimating the dominant in-
stability mechanismé.e., LS, for generic “reasonable” for- A. Definitions
mulations(i.e., those which we have not excluded based on i . . . .
other known pathologies, such as being weakly hyperholic We stugy a specific region of four-dimensional coordinate
we currently can reliably determine how effective simula-space (,x), on which at each point we have an
tions will be only by running those simulations. And simu- N-dimensional(real) vector space/ of “fields” ueV.
lations are slow. Inner products On the space of fields, anner productis

In this paper, instead of studying tdeminantinstability, =~ @ map from two vectorsi,v to a real number with certain
we studyan instability (transient which we can easily un- properties(bilinear, symmetric, and positive definiteThe
derstand and rigorously describe. We use this instability tdnner product is assumed to be smooth relative to the under-
discover particularly troublesome formulations of Einstein'slying four-manifold. The canonical inner product & (i.e.,

equations: those which have trouble with transients. the N-dimensional dot product, relative to some basis of
fields which is defined everywhere throughout spasele-
3. Short-wavelength approximations noted(,), and does not vary with space. We can represent any

. . . . other inner product in terms of the canonical inner product
This paper makes extensive use of geometric optics, and a mags:V—V as (U,Sv), where (1,S0)=(Suv)

special class of short-wavelength approximation. Several au- An operatorQ is said to besymmetriaelative to the inner
thors have applied short wavelength techniques to study thﬁroduct generated b§if (u,SQuv) =(Qu,Sv) for all u,v. In

stability of various formulations of Einstein’s equations other words, an operatd® is symmetric if it is equal to its

[3.'4’6]' These techniques, how_eyer, have generally_ been Awn conjugate relative t& denotedQ' and defined by
plied to systems whose coefficients do not vary in spac

e - t . .

I ; o X (u,SQ)=(Q'u,Sv) for all u,v. Equivalently, the conju-
I|m|t|n_g their Val'd'ty either to very small nglghborhoods of ateQ' relative toSmay be defined in terms of the transpose
generic spacetimes, or to flat space. Previous analyses ha . . . .

. S (i.e., the conjugate relative 8=1):
thus obtained only a description of local plane wave propa-
gation: in other words, local dispersion relations. In this pa- Qf=s1Q's. (1)
per, with the geometric optics approximation, we describe
how to glue these local solutions together. Such gluing is  Field-valued functions of positioThe value of a vector-
essential if we are to obtain a good approximation to a globalalued functioru:R*—V, which takes a vector value at each

solution of the PDE and hence a concrete, reliable estimatﬁoint is denotedu(t )g). The inner product between two

of the amplification of a transient. In this sense, the preseniector-valued functions therefore depends in general on the
paper is the logical extension of work by Yoneda and Shinkai tim intt(x) at which th functions are evaluated
(see, e.g[4]), an attempt at converting their analysis to pre-SPacetime pointt(x) at which these functions are evaluate

cise, specific conditions one can impose which ensure thzﬂ'e" the right side 0,f Eq2)]. For brev:ty of notation, how-
transients do not amplify. ever, we usually omit the argumentsx) to all components
of an inner producfi.e., the left side of Eq(2)]:
4. Energy norms - - -
: . . (u,Sv)=(u(t,x),S(t,x)v(t,x)). 2
This paper also employs the energy-norm techniques in-
troduced by Lindblom and Scheel]. Energy norms provide First-order symmetric hyperbolic linear ~ systems

a completely generic approach to determining the growthFosHLS's) A first-order symmetric hyperbolic linear sys-
rate given a known solution and, moreover, can be used tgm has the form

boundthe growth of generic solutions. While LS choose to
apply these techniques to study a different class of [9,+ A%(x,t)d.— F(x,H)]u(X,t)=0 3)
solution—Ilarge-scale solutions whose growth presently lim- ! e ’ '

its their numerical simulations—these techniques remaig,, u(x,t) a smooth function from the underlying four-
generally applicable. We use them to characterize the growth 5 nifold into theN-dimensional space of fields, f& andF
of wave packets. some(generally space and time dependgtinear operators
on that space, and foh? a symmetric operator relative to
IIl. RAY OPTICS LIMIT OF FIRST-ORDER SYMMETRIC some inner product. _
HYPERBOLIC SYSTEMS If more than one inner product r_n_akeﬁs symmetric,
henceforth, when talking about a specific FOSHLS, we shall
In classical electromagnetism, certain short-wavelength
solutions to Maxwell's equations can be approximated by a——
set of ordinary differential equations for independently 2as a practical matter, we will limit attention in this paperAd
propagating rays: a set of equations for the path a ray foland F varying slowly (or not at al) in time; therefore, all time
lows, and a set of equations which determine how the soludependence in the operat@®, F, andSmay usually be neglected.
tion evolves along a given rgyi3]. This limit is known as  For completeness, however, we retain time dependence for readers
the ray opticgor geometric-opticslimit. In this section, we  who may wish to apply these techniques to more generic systems.
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fix one specific(arbitrary) inner product throughout the dis- In this section, we introduce only the results of our analy-

cussion, and therefore some spec8ic sis. In Appendix B, we provide a more comprehensive justi-
Characteristic fields and speedbor all 3-vectorsp,, fication of our ray-optics approach.

A%p, is symmetric relative to the inner product generated by

S Since any real symmetric matrix can be diagonalized into Ray-optics solution
a set of orthogonal eigenspaces, the eigenequation Rather than express our solution in terms of the original
a2 N-dimensional variablel, we introduceN+ 1 new variables
A (t,X)Pav = wu (4 d;, and¢ and parametrize the original state by
can be solved for each,&, 5) for eigenvaluesy and eigen- u=ye® @

vectorsv. We denote the eigenvalues, eigenspaces,(famd
each eigenspag®asis eigenvectors as follows:
(1) wj(t,x,p) are the eigenvalues ép,; ) A
(2) B(t,x,p), wherej runs from 1 to the number of dis- Of A°da¢h at each point{x):
tinct eigenvalues oA?p,, are the eigenspaces Afp,; and
(3) vj 4(t,X,p) are some orthonormal basis of eigenvec- U= d (tx.o t X 9. 8
tors for the spaceB;(t,x,p), wherea runs from 1 to the Z ; et X 0PIV, ot X, 0) ®
dimension ofB; .

_ BecauseA?p, is symmetric relative to the inner product (ror notational clarity, the arguments x, and dah t0 the
induced byS, the eigenspaces are orthogonal relative to thgnctions ¢, v, ,,, andd,, will in the following be usually
inner product, and the eigenspaces are complete. Finally, %%itted) ‘
each point ¢,p) and for each eigenspace, there is a uniqué | terms of these new variables, a ray-optics solution is a
projection operatoiP;(t,x,p) which satisfiesPjv=v if v soJution to the following equations, for some fixid
e Bj, Pju=0 if v € B with k#]j.

We requireA%p, and its eigenvalues, eigenspaces, and _ a

- . 0=[d;+Vi(X,d¢)d , 9
projection operators to vary smoothly over &fl andp, in [0+ Vi(X,04)dal¢ 3
the domain[We do not demand the eigenvectors themselves

where we further expanﬁin terms of the eigenvectots ,

to be smooth save in the neighborhood of each point 0=d;z for I#j, and (9b)
(x3,pp): topological constraints may prevent one from defin-
ing an eigenvector everywhetee., for all p, given x?).] 0=[d;+V$d,1d; ,

Group velocity and acceleratioWe define the group ve-

A N
locity Vi and group acceleratioay; , via 4 23: dj 4(V].a» S+ ART,—F)v; ). (90)

- - J - -
VA(t,x,p)= — w;i(t,X,p), 5 . . ,
j(tx.p) IPa @j(t.X,p) ®) When we substitute solutions to the ray-optics equatji&as

(9)] back into the original FOSHLEEQ. (3)], as described in
. J . detail in Appendix B, we find the geometric-optics solutions
aj a(t,x,p)=— —w;(t,x,p). (6)  are excellent approximate solutions to the original PDE, so
2 long as certain mild conditions continue to hdlel.g., the
oscillations in¢ remain rapid compared to any other length

We shall make frequent use of an alternative expression fo(gr time scalg

the group velocity, Eq(A2), which is discussed in Appendix
A. Among other things, EqA2) implies
C. Interpreting the geometric-optics equations

—\/a
@j(X,P)=V]Pa. We introduce the geometric-optics solution precisely be-
cause it simplifies the PDE—in particular, because it con-
B. Form of ray-optics solution verts the problem of solving a general P[PE. (3)] into the

We now construct a solution which approximately satis—prOblem of solving coupled ODEEEQ. (9)]. Specifically,

fies Eq.(3). Our method works by constructing a set of char—the_Se ODEs (_:0n3|st of the the phase eq‘_’aﬁm (E’@]—
acteristics(i.e., ray$, and then integrating some amplitude Which determines the path of the ray leaving a poirdon-
equations along each characterigtis an ODE to find the  sistent with initial data fokp with gradientd,¢(x)—and the
amplitudes farther along the ray. polarization equationfEgs. (9b) and (9c)|—which allow us
to propagate the, , along each ray.
But while these equations are now ODEs, their structure
3Eor example, in the first-order representation of the scalar wavéS not particularly transparent. In this section, we rewrite the
equation, two of the eigenvectors at each poinpj are essentially ~phase equatiofEq. (9a)] and the polarization equatidiEq.
vectors transverse to the surfdpé. These cannot be extended over (9¢)] to better emphasize their properties and physical inter-
the sphere. pretation.
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1. Path of the ray Using the no-rotation condition, we find that the polariza-
The physical significance of the phase equafig. (93] tion equation becomes the less arbitrary expresgimpen-

becomes much easier to appreciate when it is rewritten ifix A 3)
first-order form. When we differentiate that expression and

re-express the result as an equationkged, ¢, we find o:(at+v?*a i E& V3(x (9¢>))d'
j%a 2 aVvj ’ j,a

0= diKa+ V}Ipkat+[2VP(X,K) TKp
UJ,ﬁ) djg

(13

1 1
SF+ 5 0iS+ 5 02(SAY)

= 0ka+ VP Ipka— aj a(X,K). (10

[While k does depend owr, because dkcvf’)kb=0 the last

term in the first line does indeed simplify inte a; ,, as
stated] Solutions to this PDE may be constructed by gluing
together solutions to the following pair of coupled ODEs for

x(t) andk(t):

where in the above; , is a no-rotation basis. In Sec. Ill we
will use this expression to motivate the definition of proto-
typical coherent wave packets, which have an exceedingly
simple growth rate.

dx@ D. When do geometric-optics solutions exist?
—=V3(x,k) (119 . A _—
dt IR Given initial data(say, fork, andd; , on some initial
compact regiojy we can in practice always find a solution to
dk the geometric-optics equatiofgqg. (9)] valid for some small
d_a: aayj()Z,E)_ (11p  interval 6t (i.e., by using general PDE existence theorems,
t like that of Cauchy-Kowaleski However, for general initial

data we cannot solve the phase equafigg. (9a)] for an

By using the definitions oV/? anda,;, we find that these arbitrary timeT. By way of example, even if we find each
are precisely Hamilton’s equations, usiag(t,x,k) as the individual ray[i.e., each solution to Eq11) emanating from
Hamiltonian. each initial data poijtemanating from our initial data region

These two equations define the rdis., characteristigs  out to timeT, these rays may cross before tiMierendering
Given initial data for k, which has k,=d,¢ in a the geometric-optics solution fat; , both singular and in-
3-dimensional neighborhood of a point, we have a uniqueonsistent at the ray-crossing poit similar problem arises
ray emanating from each point in that neighborhood. Soluin classical geometric optigsFurthermore, depending on the
tions to Eq.(10) follow from joining the resulting rays ema- structure ofA?, certain rays may not even admit extension to
nating from each point in the neighborhood together; andime T (i.e., certain rays may be be future-inextendable, pre-
solutions for¢ [i.e., Eq.(9a)] follow by integrating the phase cisely like rays striking singularities in general relativity

out along each ray. A proper treatment of these technical complications is
considerably beyond the scope of this paper. In practice, we
2. Propagating polarization along ray will assume we have chosen initial data so that our

In practice, the polarization equatifiq. (90)] is difficult ~ 9eCmetric-optics solution can be evolved to any tiein-
less it involves transport into a manifest singularie., a

to interpret: since it involves spatial derivatives of basis vec-~ , X
tors, and since we have freedom to choose our basis vectopi!gularity of the spacetime used to generate the FOSHLS
before timeT. Furthermore, we will assume the solution is

vj,, arbitrarily within each subspad# , we cannot transpar- I behavee—that is. th has fini | f
ently disentangle meaningful terms from convention-induced"®!l Dehavee—that is, the congruence has finite values for
effects. Ka, Vi, aaj and their first derivatives. With a well-behaved

To constrain the basis and simplify the equation, weSelution to the phase equatifig. (93], we may always find
sometimes choose a basis in the neighborhood of the ray & finite, consistent solution to the polarization equafigg.
interest which satisfies theo-rotation condition[discussed (901 in terms of the initial datd.

at greater length in Appendix A2
I1l. DEFINING WAVE PACKETS

(V) [a» S0+ A%a)v ) =0, (12) In Sec. Il, we have constructed approximate solutions to
linearized first-order symmetric hyperbolic PDEs in the geo-

where the square brackets denote antisymmetrization®@ver metric optics limit. These solutions are constructed by inte-
and B [i.e., X[ 5 =(Xap—Xg,)/2]. The no-rotation condi-
tion completely constrains the antisymmetric part of an op-
erator[i.e., the left side of Eq(12)]; the condition that the  4gjnce the polarization equatidexpressed as E49c) or as Eq.
basis vectors); , remain orthogonal constrains that opera-(13)] is linear in the polarization fields;,,, it therefore admits
tor's symmetric part; and therefore the basjs, is necessar-  well-behaved solutions for the evolution of , along a well-
ily completely specified at any point along a ray in terms ofbehaved ray so long as the linear operators present in that equation
initial data for the basis. are well behaved.
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grating ODEs for(and along rays[Eq. (9)]. Since each ray C. Specialized wave packets Il: Prototypical coherent
evolves independently, we are naturally led to consideve wave packets

packets—that is, ray-optics solutions which are nonzero only  \while coherent wave packets have a simple polarization
in a (four-dimensional neighborhood of soméfour-spacé  structure, characterized by some polarization directign
ray. this polarization structure need not necessarily have a trans-
In this section, we outline how wave packets may be genparent relationship to the terms present in the polarization
erally constructed. We also describe the two special classegjuation[Eq. (9¢); or equivalently Eq(13) if we use a no-
of wave packets, coherent wave packets and prototypical cqotation basig Therefore, we defingrototypical coherent
herent wave packets, which will be the focus of discussiorwave packet$PCWP$ as wave packets which have at each
henceforth. time their polarization directiow equal to one of the eigen-
vectorsf(*) of the operato; :

A. Constructing wave packets

1
0;=P, F+§s—1[ats+aa(SAa)] P (15

A wave packet that persists for a timiels some solution I
to the geometric-optics equatiofgqg. (9)] which is nonzero
only in some small neighborhood of a réye., nonzero only Ojff“)EOjMff“) (16)
within some coordinate length from the central ray ] . . ]

From a constructive standpoint, while we can easily con¥here ., running from 1 to the dimension d@;, indexes
struct solutions from initial data fdk, andd;,,, we have no  the eigenvectors oD; . For simplicity, we assum®; has a
transparent way, besides solving the equations themselves, §@mplete set of eigenvectots. . S
determine whether a particular set of initial data fgreven If PCWPs exist, we expect—because of their relationship
generates a congruence which exists and remains well b& the terms of the polarization equatiffq. (13)}—that the
haved(e.g., 32V, and d,k, both finite for time T, let alone propagation of their polarization WI|| be much easier to un-
whether the specific combination of initial data foy and derstand. Most no_tably, as we will show in the next section
d;, yields a geometric-optics solution with support only (Sec. IV), prototypical coherent wave packets have particu-
within a given distance from a ray. larly simple expressions for their groyvth rafes., Eq.(22_)]. _

still, physically weexpectwe can avoid these technical ~PCWPs will exist as exact solutions to the polarization
complications. For example, wexpectthat, for all rays of equationEq. (13)] only in certain special circumstances; for
physical interest, we can extend the central ray of interest t§*@Mple, most of the polarizations to be discussed in Secs. V
time T (i.e., characteristics of physical interest can be ex-2nd VI admit exact PCWP solutions. However, as demon-

tended as long as physically necessavye expectthat sin- stratgd ir_1 more dgtail in Appendix C, we do not expect the
gular congruencek, can be avoided by proper choice of polarization equation to genen_cally admit PCWP solutlons.
initial k, data(e.g., the ray equations do not require all con- _Nonetheless, a? gjl_scussed in greater detail in Appendix C,
gruences near the ray of interest to diverge or come to & PCWP withw=f;""is a good approximate solution to the
focus. And given a well-behaved congruence, we expect weolarization equation when the eigenvalig of O; is suf--
can always choose initial data fdr, in a sufficiently small ~ ficiently Iar_ge(. ;ndeed, by rewriting the polarization equation
neighborhood so the solution fdk ,, is nonzero only within  In the basisf{*’, we can show thagenericcoherent wave
some fixed distancé from the central ray. packets will rapidly converge to a PCWP with—= fi”") for

Thus, as a proper treatment of these technical complicar, indexing the eigenvalue dd; with largest real part. In
tions is considerably beyond the scope of this paper, we shalither words, based on E@2), when coherent wave packets
henceforth simply assume that a wave packet solution cagrow quickly, they can always be well described by a PCWP.
always be constructed about any ray of physical interest.

IV. DESCRIBING AND BOUNDING THE GROWTH RATE
B. Specialized wave packets |: Coherent wave packets OF WAVE PACKETS

Since rays propagate independently, one can choose arbi- gince a wave packet is narrow and we care little about its
trary initial data,.and in particular arbitrary pplanzauoh di- precise spatial extent, we commonly characterize the wave
rectionsw, and still obtain a wave-packet solution. Herels ~ packet by a single numbee.g., a peak amplituglerather
defined by than a generic distribution of polarization over space. Unfor-

w=u/[u], [u[=[(u,Su]*2 (14)

5The behavior of the polarization equation whén has Jordan

. . blocks is straightforwardi.e., we converge to some specific eigen-
We prefer to further restrict attention to those wave packyector in the Jordan block; we obtain no change to the final predic-

ets which have a single, dominant polarization direction tions for exponential growth rates; we only add at most a polyno-
present initially(and therefore for all time In other words,  mial in t to the amplitude functionsbut tedious to describe in
we requirew to vary slowly across the wave packet's spatial detail. Moreover, in all physically interesting cases we have exam-
extent. Wave packets with this property we denciéerent  ined, Jordan blocks have not appeare®jn we have been able to
wave packets choose a complete set of basis eigenvectors.
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tunately, the maximum value of the amplitudiys, depends To follow their program, we must generate a conservation
on the spatial extent of the wave packet—in other words, itaw. Define, therefore, an energy curredt [i.e., LS Eq.
depends on our choice of congruence, rather than the centrd.4)]
ray itself. _
Because the amplitude function is subject to focusing ef- je=(u*,SAu).
fects (through the termy,V?), we choose to describe the
magnitude of the wave packet by the magnitude of its energffhe quantitiese and j obey the conservation-law-form
norm. Introduced by Lindblom and Scheel, the energy normequation
is an integral quantity analogous to enef@y; and, like the
energy of a wave packet solution to Maxwell's equations, the 5 e+ 4 19,(1j?) = (u* ,SFU) + (Fu*,Su)
energy norm will not be susceptible to focusing effects.
In this section, we describe how energy norms can be H{U, [0S+ ™19 uSA) Ju}
used to characterize the magnitude of wave packets. We also
obtain special expressions for the growth rates of coherefi.e., the analogue of LS Eq.5 and(2.6)].
wave packet$Eq. (21)] generally and prototypical coherent  For a wave-packet solution, which is concentrated at each
wave packet$Eq. (22)] in particular. time in a small spatial region, the currefit drops to zero
Also, for completeness, in Appendix D we provide anrapidly, and is in particular zero at the manifold boundary. As
explicit, rigorous bound for the growth rate of energy which a result, when we integrate the conservation law, we find that

will not be otherwise used in the paper. the energy obeys the equation
A. Energy norms and the magnitude dE
of geometric-optics solutions a0 f ud®x(u*,SQu), (199

Lindblom and Scheel define the energy norm by way of
two quadratic functionals of a solutian[LS Egs.(2.3) and
(2.8)]. When expressed in terms of our notation, these func-
tionals are

Q=F+S [F'S+aS+u 19,(uSAY], (19b)

whereFT is defined so thaty,Fv)=(F'u,v) for all u, v
(i.e.,FTis the transpoge[In LS, the analogous equations are
(2.7 and (2.9); in our case, however, we have no surface

. ) . term involvingj, because the solution falls off rapidly away
Unlike LS, we do not generically have a preferred spatialom the wave packet.

metric; we therefore replace the factgg present in LS Eq. We can show tha@ is symmetric relative t&’ We can

(2.8 by the more generig.° _ _ also show thaQ is closely related to the symmetric part of
We may substitute in the expressions appropriate {0 a rajhe operato; [Eq. (15)];

optics solution to obtain excellent approximations to the en-
ergy. By way of example, the enerdy; of a geometric-

e=(u*,Su), Ezf,ud3Xe. (17

optics solution propagating in thigh polarization may be P.QP,=0.+0/+ Jatt P.Va. (20)
expressed as L AR
Ej~ J ud3x > df ,dj s(v] 4 Svj ) C. Energy norms and the growth rate of coherent
a,B ' ' ' '

wave packets

_ J S Id: |2 (19 Since cohert_ant wave packets are poth qualized and pos-
M ~ 1"l sess a well-defined polarization directianwe find that Eq.
(19) becomes, for coherent wave packets,
where the terms neglected are small in the geometric optics
limit and where the second line holds because by construc- 1dE

—_ = *
tion the basiwj , is orthonormal. E dt (W",SQw 21)

B. Energy norms and the growth rate of wave packets where the right side is evaluated at the location of the wave

Following the techniques of Lindblom and Scheel, we canpacket at the current instant.
use energy norms and conservation-law techniques to obtain Because we still need the appropriate polarization direc-
a general expression for the growth rate of a wave packet.tion w to make use of the above expression—a direction we

SUnlike LS, we are not necessarily working with a metric space; ‘BecauseSandSA® are symmetric relative to the canonical inner
therefore, we have no preferred measure on the coordinate spapeoduct, so are their derivatives. AndTifis symmetric relative to
and therefore allow for an arbitrary, as-yet-undetermined measurthe canonical inner product, th&11T is symmetric relative to the
factor u. inner product generated &

084024-7



R. O'SHAUGHNESSY PHYSICAL REVIEW D68, 084024 (2003

can only obtain from the polarization equatifaq. (13)]—  plicit forms for the operator&?® andF. For example, we find
Eq.(21) provides only an alternate perspective on the growthhat the principal part has the forfikST Eq. (2.59), along
of wave packets, not an entirely independent approach to ﬂ\ﬁith the definition ofJ, in KST Eq. (2.10]:
evolution of the amplitude. ° T
at5gij20, (243)
D. Energy norms and the growth rate of PCWPs

In the special case of a PCWP, however, we do know the 910Pij +Xg™020Mpi; =0, (240

polarization directionw: it is one of the normalized eigen- M i + XL OP: =0 240
vectorsf(*) of the operato; [see Sec. Il G In this case, kT AGET (249

we find the energy growth rate for a PCWP wim:fj(“) to  As the right-hand sides of these equations are very long, we

be shall not provide them, or an explicit form fd¥, in this
1 dE 5 paper. The right hand side depends on the two continuous
— JZOJM+0fM+ ak ve. (22 KST parametersz and y [1]. S
Ej, dt 2 Using the FOSHLS obtained by linearizing, we can pro-
) ceed generally with any linear analysis, including a construc-
[Here, we used Eq20) in Eq. (21).] tion of the geometric-optics limit.
V. GEOMETRIC OPTICS LIMIT OF KST: RINDLER B. Describing local plane waves by diagonalizing\®x,
In the previous sectionéSecs. I, 1, and 1V}, we have The geometric-optics limit is a short-wavelength limit.

developed a procedure for computing the evolution and amNaturally, then, the first step toward the geometric-optics
plification of ray-optics solutions in general and prototypicallimit is understanding the plane-wave solutions in the neigh-
coherent wave packet solutions in particular. To provide éorhood of a point. We find these solutions by substituting
specific demonstration of these methods, we demonstraiato Eq. (3) the formucugyexp(k-x—wt); assumingk and w
how to construct the geometric optics lintéis described in are large, so we may disregard the right side; assuming both
Sec. I) and compute the growth rate of wave pack&ts u, andA? are locally constant; and then solving fog and
described in Secs. lll and MMvhen the first-order hyperbolic the relationship betweek, and w. In other words, we find
system is the 2-parameter first-order symmetric hyperboli¢hose local-plane-wave solutions by diagonaliziktk,, as
system Kidder, Scheel, and Teukolsky introdu¢see their  discussed in Sec. I, to find eigenvaluesand eigenvectors
Sec. I J, linearized about a flat-space background in Rindlervj,a, wherej indexes the resulting eigenvalues andin-
coordinates. dexes the degenerate eigenvectors for gach

Our computations in this section proceed as follows. First, Because the principal part is both simple and independent

we review Rindler coordinates and the effects of using Rinyf the two KST parameteré(and y), we can diagonalize it
dler coordinates as the background in the linearized KST,y inspection. For every propagation direction, the eigenval-
equations. We then describe the limited set of rays we will,ag gre precisely(x,k) =s|k| for s=*1,0. For our pur-
study i.e., rays that propagate only in thedirection. Sub-  hnqes we study only propagation in thdirection. Thus, we
sequently, we construct the explicit form of the polarizationneed only the eigenfields &2, , which are[see KST Eq

as .

equation Eq. (9¢)] for packets that propagate onlyxn[The :
analysis simplifies substantially because the basis vectog'GD and also Appendix V A 8

used do not vary witlx; therefore, the derivatives present in U= 0ap (259

Eq. (9¢) disappeat.The analysis of the polarization equation é a

leads us directly to an explicit expression for the growth of

energy of a coherent wave packgg. (19)] in general and a

prototypical coherent wave packet in particulkq. (22)]. U . =M (250
Finally, to verify that our expressions give an accurate zab™ zab:

description of the growth of PCWPs, we compare them 1

against the results of numerical simulations. Ui= E(Pabi M ap). (250)

These expressions may be interpreted as equivalent to the

o . ) ) basis vectors; ,, as discussed in Appendix [Bee Appen-
Flat space in Rindler coordinates is characterized by thejix \/ A 3, and in particular Eq(E6)].

metric

US,ab: Myab, (25D

A. Generating the FOSHLS using the background
Rindler space

d2= —X2dt2+(dX2+dy2+d22) (23) C. Deriving .the .polarizati(.)n aﬁd energy gquations
for propagation in the x direction on the light cone

for x>0. Using this spacetime as a background, we can In this section, we describe how to construct and analyze
linearize the KST 2-parameter formulation to generate dhe polarization equatiofEq. (9c)] and energy equatiortq.
FOSHLS of the form of Eq(3)—and in particular find ex- (19)] for wave packets propagating in thedirection. For
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technical convenience, we limit attention to rays which 1422
propagate on the light cone—in other words, which travel on {s2= —STJFZY- (260
one of the two null curves of the metric:

dx/dt=sX These eigenvector§ are linearly independent. Indeed,

) symmetry guarantees that—with the exception of the two
for s==1. [In terms of the above representation of the;_ gca|ar eigenvectors—most of the eigenvectors are mutually
eigenspaces oA?x, discussed above, only the fields"™, orthogonal.
given in Eq.(25d), propagate on the light corje.

. . . 2. Polarization equation for general geometric-optics solutions
1. Essential tool: Diagonalizing BFP

We can apply these eigenvectors to rewrite the polariza-
tion equatiorfEq. (9¢)] using the basisﬁ(s“) . Specifically, we
defineD;, by the expansionl ,= X, Dsﬂfgf‘cf. Noting that
our basis vector§{*) are independent of space and time, we

find a set of independent equations for g, of the form

We have the polarization equati¢gqg. (9c)] and a basis
[Eq. (25), or equivalently Eq.(E6)]; the application is
straightforward. We can, however, substantially simplify our
expression by changing the basis used to expafidmv; ,
to the basis of eigenvectof§”) of P;FP;, defined by the
normalized solutions to

(at+sxax)Ds,u:§s,uDs,u- 27
Fi =g, f.

[Equivalently, we may define these eigenvectors in Compo]’his equation, along with the explicit forms for the basis
nent fashion. For each the matrix s, ,Fus ) admits a vectors f#) | tells us how to evolve arbitrary polarization
complete set of normalized eigenvectégs) : initial data along our congruence.

() () 3. Energy equation for general geometric-optics solutions
2 (Us,a!Fvsﬁ)fs,’[?:gs,,ufs,a' . . .
B Similarly, we may rewrite expressions for the eneigy

[Eq. (17) or Eq.(18)] and growth ratee ~*dE/dt [Eq. (19)]

Using these eigenvectors, we regenefdte= =, v, ., using the basig{*). For example, we define energy of the
which are eigenvalues &sFPs.] wave packet by Eq(18), using a measurg.=/g=1 con-

These eigenvectors may be classified according to theligant \with the flat spatial metric of the background. We
symmetry properties under rotations about the propagat|0ﬂnd, using symmetry properties of the eigenvectors to sim-

axis x: lify the sum
Symmetric-traceless-transverse 2-tenddmasis vectors plify ’

correspond to the fields$, and (U5, —U3,)/\2]. One sub-

space corresponds to the 2-dimensional space of symmetric- E= J' d3x 2 D2

traceless 2-dimensional tensors transverse to the propagation oy M

direction. The operatdP F P is degenerate in this subspace;

the single eigenvalue associated with this subspace is given n f 3 * (s1)* s2)

by .. defined by dx 2RED3 D5 (S, SEE)]. (28

=— 26
st S (263 The growth rate of energl ~*dE/dt can be obtained in two

Transverse 2-vectdbasis vectors correspond to the fields Ways: o _ _ _
us, and Uiy)' Another subspace corresponds to the (1) First, we can explicitly differentiate Eq28), using
2-dimensional space of 2-dimensional vectors transverse o0 (27) to simplify as necessary. ,
the propagation direction. Again, the operator is degenerate (2) Alternatively, we can employ the general expression

on this space. The eigenvalue Bfin this subspace is given [OF the growth rate of geometric-optics solutiofsy. (21)].
by ¢, for [To do so, we expres® in terms ofOg via Eq.(20). Then we

find the following explicit expression foO; by using Eqg.
1+y (E9) from Appendix E, which in this case tells us

gs,v__ST_’_z,y' (26b)

_ _ PsS™ [ 9,S+ da(SAY) Ps=sPg (29)

2-scalars[spanned by vectors corresponding to the fields
Ugx and Uy, +U3,)]. Finally, the 2-dimensional space of _ o
rotational 2-scalars has its degeneracy brokeﬁ'tﬁor each when we rewrite the results of that expression in an Operator,
s, we find two eigenvalues, denoteq s and s, with rather than component, notation. Finally, we employ the ba-
values sisf") . Because of Eq29), we know the eigenvector§”)
of P,FPg are equivalently eigenvectors @f;.]

{ss1=—S, (260 In either case, one concludes that
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these predicted growth rates with the results of numerical
simulations of wave packets propagating on a Rindler back-
ground.

1. Specific simulations we ran

To test the validity of our expressions, we used a 1D
variant of the KST pseudospectral code kindly provided by
Mark Scheel. He developed this code to study the linearized

The above equations remain completely generic and apply tRgT equations on a Rindler backgrouedg., to produce the
all ray-optics solutions that propagate along the congruencgssyits shown if2] Sec. IV A).

dx/dt=sx

4. Energy equation in a special case: PCWPs

We ran this code at a fixed, high resoluti@i12 colloca-
tion points in thex direction on a computational domaix
€[0.01,1] with various wave-packet initial data. Specifi-

As Eq.(27) demonstrates, the polarizations do not changeally, we used a wave packet profile proportional to

direction as they propagate. In other words, if a wave packet

initially has only Dg,#0 for some specific pair ofs(u),
then the wave packet will always haizg,# 0 only for that

s and u. Moreover, as noted in the discussion surroundinqnitia| data us

Eq. (29, the basis vector§{") used to define th®, are

W(x)=A cos(2mx/\)exd — (x—xc)%/0?] (33

with A=10"°, x,=0.55,0=0.1, and\=0.01. The precise
ed depended on the polarization we wanted:

Tensor.When we wanted a tensor polarization, we used

eigenvectors oD;. Following the discussion of Sec. Ill C, jnjtial data for a single left-propagating 2-tensor component:
we call such a solution a prototypical coherent wave paCketU;y:W, with all other characteristic fields zero. In other

For a wave packet solution which is confined to tg )

polarization, we need only one term in each sum to find th

energyEs, and growth rateEg 'dE, /dt:

Es.= f d3x|Dg,|%, (313

dE
dt"“zZRe(gSM)+s.

Esu

(31b

[The above expression was obtained directly from @6).
Equivalently, we can obtain the same result using(E8). by
way of Eq.(29).]

To be very explicit, we find using Eq26) the growth
rates of the tensort) and one of the scalarsl) polariza-
tions to be constant, independent ¢fbut depending on
which direction the packet propagates=(*+1):

1 dE, 1 dEgq
E,, dt Egq dt

—s. (32a

We also find the vector) and remaining scalaisR) polar-
izations have a growth rate which varies withaccording to

1 dE, ) 1+y . -
Es, dt  \“=1+2y ) (320
1 dE 1+292

552 ( Y ). (320
Eeer dt —1+2y

D. Comparing growth rate expressions to simulations
of prototypical coherent wave pulses

words, we used initial datd#®,,=M,,,=W(x)/2 with all

Sther fields zero.

Vector. When we wanted a vector polarization, we used
initial data for a single left-propagating 2-vector component:
U,,=W, with all other characteristic fields zero. In other
words, we used initial dat®,,=M,,,=W/2 with all other
components zero.

Scalar 1 (sl1l). When we wanted to excite the left-
propagating s1 polarization, we used initial datd,,
=M = W/2.

Scalar 2(s2). After some algebra, one can demonstrate
that to excite thes2 polarization, we should use initial data
Pyy=M,yy=W/4 andPy,=M,,,= — W/4. _

To avoid the influences of boundaries, we studied the re-
sults of the simulations only out to a tinte-0.1.

2. Results

For each polarizationt( v, s1, ands2), we found that
wave packets remained in the initial polarization, with little
contamination from other fields. For example, when exciting
the tensor polarization, we found that all fields other than
U,y remained small.

The wave packets’ energy grew exponentially, with
growth rates that agreed excellently with E§2). For ex-
ample, the polarizationsl andt both had growth rates con-
sistent with unity to a part in a thousand. Our expressions for
the growth rates fois2 andv also agreed well with the
results of numerical simulations, as shown in Fig. 1 for left-
propagating pulsessE —1).

VI. GEOMETRIC OPTICS LIMIT OF KST:
PAINLEVE -GULLSTRAND BACKGROUND

In this section, we study another example of the geometric

In Eqg. (32) we tabulated the expected growth rates ofoptics formalism: the propagation of radially propagating

energy for each possible coherent wave packet. To demonvave packets evolving according to the KST 2-parameter
strate that these expressions are indeed correct, we compdoemulation of evolution equations, linearized about a
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FIG. 1. The two solid curves show the theoretically predicted FIG. 2. Examples of the three types of radially propagating rays
growth rates for the “vector[v, Eq.(32b)] and one of the scalar of the KST 2-parameter systt_am_ linearized about a Pal_nle\_/e
[s2, Eq.(320] polarizations, when those polarizations propagate toGullstrand backgrount_i The solid lines shpw rays propagating in-
the left (s= —1). The circles show the results for numerical simu- Ward at the speed of lighM ). The dotted lines show rays propa-
lations of the vector wave packet; the crosses show the results f&fating “outward” at the speed of light\("). Finally, the dashed

wave packets in the2 polarization. Both predictions agree very CUrve shows the rays that propagate inside the light ¢ahepeed
well with simulations. V). The quantities/$ are defined in Eq(37).

s i izi aA
PainleveGulistrand(PG) background. B. Local plane waves and diagonalizinA®r ,

Our analysis follows the same course as the Rindler case As discussed generally in Sec. Il and by way of a Rindler
addressed in Sec. V. We first review Painl&ellstrand co- example in Sec. V B, to understand how wave packets propa-
ordinates and the effects of using these coordinates as tlgate radially we must first understand how local plane waves
background in the linearized KST equations. Subsequentlypropagate radially, which in turn requires we diagonalize

we construct the explicit form of the polarization and energyaar, . The basis vectors and eigenvalues are addressed in
equations[Egs. (13) and (19)] for packets that propagate detail and in a more general setting in Appendix E 1c. In
radially on the light cone. Finally, in a departure from the prief, the eigenvalues areng(x,k)=s|k|—B%, with s
Rindler pattern, we also add an analysis of the “zero-speed + 1 g and the eigenvectors correspond directly to the Rin-

modes that propagate against the shift vector. dler results[i.e., Eq.(25), with x—r; the similarity exists
because we can use symmetry without loss of generality to
A. Generating the FOSHLS using a background demand the ray propagate radially in thelirection, along
PainleveGullstrand space F=§(].

A Schwarzschild hole in Painlév@ullstrand coordinates

2

is characterized by the metric C. Deriving the polarization and energy equations for radial
+r2d02 (34) Almost half (12 of the 30) of the characteristic field natu-
' rally are associated with wave packets that propagate at the

propagation on the light cone
2
dr+ th
speed of light of the background spacetithe.,s==*1). In
We shall use this metric in Cartesian spatial coordindtes ~ Other words, they propagate on characteristics that corre-
Z=r COSH, X=r sinfcos¢, y=rsindsing) as the back- spond to null curves of the Painle@ulistrand metridEq.

ground spacetime in the KST equations. Linearizing about34)]. For radially propagating characteristics, that means
this background, we obtain the explicit FOSHLS we study in

ds?=—dt’+

— r
the remainder of this section. dr/dt=Vy, (36)
As before, we shall not provide the very complicated P
derivative-free termdi.e., F) explicitly in this paper. The Ve=s—2Ir (37)

principal part, however, remains simple by design; in this

case, we havfKST Eq. (2,59, along with the definition of with s==*1. The resulting null curve structure is shown in
’ q-(.99, 9 Fig. 2.

do In KST Eq.(2.10]: Because both this case and the Rindler case discussed in
Sec. V C possess rotational symmetry about the propagation
(di— B%d,)0i;=0, (353 axis, the equations governing these two cases prove exceed-
ingly similar. The analysis follows the same course.
.1} . ab .
(01— B70a) Pij +97°0aMpij =0, (35b) 1. Essential tool: Diagonalizing BFP ¢ with s=+1
As in the Rindler case, we will rewrite the polarization
and energy equations by using eigenvectds of P;FP;.
. Because we again have rotational symmetry about the propa-
with g2=\/2/rr2. gation direction, we can again decompose the eigenvectors

(9= B2Ia) My + 9y Pij=0, (350
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into a set of two scalarss{ ands2), a 2-vectorv, and a  pression fodE/dt, and use Eq(41). On the other hand, we
symmetric-traceless 2-tensbrThe eigenvalues may be ex- can finddE/dt using the general expression of Ed9), an
pressed using expression we simplify by using) the relation betwee®
_ andO; given in Eq.(20), (ii) the basis'{* of eigenvectors of
s pu={spl\2r% (38  PFP,, and(iii) the expressiofiobtained from Eq(E9) and
_ converted from a component to an operator expression
where the(,, are defined by

_ 3

{ss1=—3, (39a PL0;S+ da(SA)]Ps=— \/E—I’:S/ZPS. (42

— 7 (33+91z+247%) In either case, we conclude that

{ss2= §+3y— = , (39b

4(1+32)(1-2v) _
T xS pa e

_ 3-37-5y o dt w M J2rd

gs,v_ 1_2,)/ ’ ( C)

- + f dssze{ D¥Ds e f&V* ,SIEY)

gs,t: 1. (390
The eigenspaces are, by symmetry, spanned by precisely the ?g,sl+zs,52_ 3 43
same fields as in the Rindler case. In particular, as in the X J2r32 (43)
Rindler case the eigenvectors do not change as we move
along a ray. In particular, for prototypical coherent wave packets—

that is, wave packets whesandu are the same everywhere

in the packet—we can express the growth rate of the energy
For polarizations which propagate radially on the light Es, of the wave packet as

cone(i.e., s==*1), the polarization equatiofEqg. (9¢c)] can

be written as

2. Polarization equation for ss*+1

1 dE;, 2Rely)-3
Es, dt — /pr3?

wherer is the current location of the packet.

(44)

S,a

d
0=[d+ Vg, ]ds o+ ;

- Eﬁ: dS,B(US,a vSFUs,ﬁ)r

(40)
D. Deriving the polarization and energy equations for radial

where we make use of Eq&E7) and (E8) to simplify the propagation against the shift vector

right side, and where we obsen?g?a= 2Ir.
As in the Rindler case, we may expand the amplitude
=2,D ) in terms of the basi$*, and thereby arrive

su's
at a polarization propagation equation precisely analogous

The remaining 18 fields propagate inward against the shift
vector, at spee,=— 2.
tB We shall not follow the same pattern we used to address
) ) ropagation on the light con®n a Rindler background in
the Rindler resul{compare with Eq(27)]: Sec. V C and on a Painlev@ullstrand background in Sec.
VI C]. In those sections, we provided extensive discussion
2 S . S
S— \[F = ( {ou— F) D, - (41) a_md. background—the explicit form of the polarization equa-
tion; a modified form of the polarization equation in an al-
. ) . ternative basis; explicit expressions for the growth rate of
These equations may be integrated to describe the evolutiqthergy general geometric-optics solutions; explicit demon-
of polarization along any individual radial ray. stration that PCWP solutions existed—before finally recov-
ering the growth rate of PCWPs. Instead, for pedagogical
and other reasonsee Sec. VI D § we shall take a briefer,
Because symmetry guarantees a close similarity betweemore practical approach better suited to extracting precisely
this PainleveGullstrand case and the Rindler case, we findthe information needed to decide when some coherent wave
the energ)E of a geometric-optics-limit solution propagating packet can amplify a significant amount within the future
on the light cone radially inwards& —1) or outward 6  domain of dependence.
=+1) can be expressed with precisely the same expression Specifically, following the arguments at the end of Sec.
we used in the Rindler case: E&8). [In this case, we again Il C, we expect that—whether or not PCWPs exist as exact
use a measurge=1 compatible with the background flat solutions to the polarization equation — when the largest

D

Ot a,

3. Energy equation for ss+1

spatial Cartesian-coordinate mettic. eigenvaluen,, of O, is particularly large, a generic coherent
The rate of change of this energif/dt, can be obtained wave packet will rapidly converge to a PCWP with
in two ways. On the one hand, we can directly foencon- = fﬁ,”) . In other words, we expect that when the growth rates

vert to spherical coordinates, differentiate the resulting exare large, the growth rate of generic coherent wave packets
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can be obtained by finding the largest value ®E(dt)/E for Here, we usey=—2/(y—1/2) andY, given according to an

PCWP4li.e., the maximum of Eq(22) over u]. expression listed belofEqg. (49)].

In short, we continue to evaluate EQ2) to get growth Helicity 1, an 8-dimensional space of rotational 2-vectors
rates, although now we trust the results only when the&“helicity-1" states), with doubly degenerate eigenvalues
growth rates are large. given by

1. Growth rate of PCWPs L,1=—2, (480

To evaluate the growth rate of PCWPs, we must diagonal- 1

1ze O, Lyo=5(1+62), (489

1
Oo=Pyo| F+ 55 [0S+ da(SAY] Py

3 . 7(13+83z+847%)
LU3,U4: §(5+ 8Z)+ 321 3,\
However, from Eq.(42) we know that the term in square (1+32)
brackets is diagonal. Therefore, diagonalizidg to obtain W,
eigenvalue®,, and eigenvectorfs(") is equivalent to diago- S (48f)
ou ) — ~_ -
nalizing P,F P, for eigenvalues,, and eigenvector§" . 32(1+32)

The eigenvalues of the two operators are related by Again, we usen=—2/(y—1/2). The expression foY, is

3 given below[Eq. (50)].
o =00 ——— 4 Helicity 2, a four-dimensional space of symmetric-
ou é‘O/J, 3/2 ( 5) .. .
2\/2r traceless 2-tensoi$helicity-2” states), with doubly degen-

) . erate eigenvalues given by
We shall express the eigenvalugs, of P,FP, in terms of

the dimensionless rescaled quantitigs, defined implicitly 3 .
by Lt1: E(l"‘ 22), (489)

Lop=L,X\2/r%2 (46)

Substituting Eq.(45) into the general expression for the o i ) ) o
growth rate of PCWPEEq. (22)], we find that a PCWP in the Helicity 3, and finally, a 2-dimensional space of helicity-3

L,=2+3Z. (48h)

polarizationu will have energy grow at the rate states, with eigenvalue
1 dE 312 Lz=3(1+2). (48i)
oK = 2R€(LM)——£ (47)
E,, dt AL

In the above discussiorY,; , are defined by
wherer is the instantaneous location of the packet. Y,=(1+32)(—5+5z+ 2472+ 367°), (49
2. Essential tool: Diagonalizing BFP,

— N2 2 - 5232
To obtain explicit growth rate expressions using E), Y2=12961+32)"+ n°(13+832+842°)
we need the eigenvalues BfFPo, expressed according to —2477(1+32)(89+ 199+ 13%?) (50)
Eq. (46). ’
As in the previous two cases, the eigenspaceB&#P,  5nd we use the shorthange — 2/(y— 1/2).
may be decomposed into distinct classes, depending on their

_sr);]mmetry properties (;f IrIOtation about the propagation axis. 3. Aside: Why can't we follow the previous pattern?
ese spaces are as follows: _ . .

Helicity 0, a four-dimensional space of rotational scalars . Uniike all cases previously discussed, a handful of the
(“helicity-0” states), with eigenvalues given by Eq46) eigenvectors depend weakly on position. As a result, the use

with of a basis which diagonalize3, does not offer as dramatic
a simplification as it did in our earlier analyses of the polar-
—1+32+182+3\Y; ization equatiorfSecs. V C and VI € To be explicit, if we
sls2= = , (483 rewrite the polarization equation in the ba‘sgé) in the fash-
4(1+32) ion of those earlier analyses, we obtésee Eq.(C1)]
1 P 1
LS3:Z(_3O+ 197+ 12z—6792), (480 Ey Do,M = di+V5dat Eaavg—ooﬂ Do, (51

(480 for M, somenonzerg position-dependent matrix coupling

3 -
= (1+22). :
Laa=5(1+22) the variousD,,, .
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Toma= In 10, (52)

at which point the two bounding curves curves intersect.

Geometric-optics solutions are defined on rfys. solu-
tions to Eq.(10)]. While three classes of rays exist in this
region—those ingoing at the speed of lightx(dt= —x);
those outgoing at the speed of liglib{dt= +x); and those
which have fixed coordinate position—we for simplicity
chose to study only the amplification of transients that propa-
gate on the light cone.

L ) B. Amplification expected
FIG. 3. The shaded region is the future domain of dependence

of the regionx e[0.01,1] for the KST 2-parameter formulation of For each ray that propagates on the light code/@t
evolution equations linearized about a Rindler background. Tran= *=X) within the future domain of dependence, and for each
sients are any solutions which are defined in this region. We studpolarization on that ray, we can compute the amplification in
all the prototypical coherent wave packets which propagate on thenergy. |fRs,uEEs_ﬂld Esﬂldt [see Eq(32)], we can express

light cone(i.e., according talx/dt= *+x). the ratio of energy of the wave packet when it exits the future
domain of dependence at tinig, to the initial energy at time
VIl. TRANSIENTS AND LIMITATIONS ON NUMERICAL t=0 as

SIMULATIONS: RINDLER

=Eg, (touw/Es, (0)= t .
In earlier sections, we developed—in genefgécs. Il Asu(Xo) = Esu(touEsu(0) = xRtouRs,)

[ll, and 1V) and for specific example®.g., Sec. V analyzes o .

propagation of transients according to the KST 2-parametefVe€ have explicit expressions fdRs,; we can compute

formulation of Einstein’s equations, linearized about a Rin-tou{Xo.S) for each initial pointx, and for each propagation

dler background— tools to analyze the growth of special orientation(i.e., for eachs); and we therefore can maximize

(i.e., prototypical coherent wave packefeometric-optics- Asu(Xo) over all possible choices of initial location),

limit transient solutions. In this section, we demonstrate howPropagation directions), and polarization &) to find the

these tools can be used to discover when a particular formuargest possible ratiol of initial to final prototypical coher-

lation of Einstein’s equationdere, some specific member of €nt wave packet energy.

the KST 2-parameter syst@mwhich is linearized about a  In fact, because for each polarization of prototypical co-

specific backgrounchere, flat space in Rindler coordinates herent wave packet, the growth rates of energy is indepen-

admits some massively amplified transient solution. dent of time and space, the largest amplifications possible
Specifically, in this section we apply the general toolsalways occur along the longest-lived rays—in other words,

developed in an earlier sectioiBec. ) to determine the along the two bounding rays, andx_, which both extend

largest possible amplification of a prototypical coherentlO tou=Tmax- Therefore, we conclude that, while within the

wave packet while it remains within the future domain of future domain of dependence of the slice [0.01,1], the

dependence of some initial data slice. In Sec. VII A we deJargest amount the energy of any prototypical coherent wave

scribe the initial data slice we chose and the subset of trarPacket can amplify is given by the factor

sient solutions we studied. In Sec. VII B, we apply the tools

developed in an earlier sectidi$ec. V) to determine the A=exp T naRrind (53)

amplification of each transient. We also find an expression

for the largest possible amount a transient can amplify. Fi- o

nally, in Sec. VII B 1, we invert our expression to determine WheréRging is given by

which pairs of KST parameters,(y) admit transients that

amplify in energy by more than #9(i.e., in amplitude by RRing=MaxRs, = max{ 2Re {s,,) +s] (54
more than 1¢). s s
: : +vy 1+ 272
A. Transients studied =max 1,2 -1, —
—1+2vy —1+2vy

We limit attention to the future domain of dependence of
the initial data slicexe[0.01,1] at t=0. Since the KST
2-parameter formulation has fields which propagatébat
no faster thanthe speed of light, the future domain of de- ] _ ] o
pendence of this slice is precisely what we would obtain Finally, we can invert Eq(53) to find those combinations
using Einstein’s equations: a region bounded by the twamf KST parametersZ, y) which permit some transier{in
curvesx_=0.01lexp andx, =exp(—t). This region is shown particular, some prototypical coherent wave packetin-
in Fig. 3. The future domain of dependence extends to timerease in energy by more than a factorf?(.e., 10° in

KST formulations which definitely possess some ill-behaved
transient solution when linearized about the Rindler background
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50 more varied—at late times, the wave packet could potentially
grow, could decay to zero, or could enter a repetitive cycle
40 where on average its amplitude is consfant.

2 30 Therefore, without some more specific proposal for
& boundary conditions, we cannot make useful statements re-
20 garding the late-time development of this instability process

—or, in other words, we cannot study the growth of coherent
10 wave packets for more than a light crossing time.
20 -10 0 10 20
y

VIII. TRANSIENTS AND LIMITATIONS ON NUMERICAL
FIG. 4. The solid curve is the theoretical prediction for the larg- SIMULATIONS: PG
est growth rate of wave packets that propagate on the light cone

[Eq. (54)]. The horizontal line is the value 32. According to argu- d | d lier for th vsis of ical coh
ments made in Sec. VII B 1, those which haveRg,¢>32 have eveloped earlier for the analysis of prototypical coherent

some prototypical coherent wave packet which, in the future do-Wave_ ,paCketS — in gener&Becs. I, lll, and 1V _and for
main of dependence, amplifies in energy by more tha. 10 spemflc exampleée.g., Sec. VI analyses propagation of .tran-
sients according to the the KST 2-parameter formulation of

Einstein’s equations, linearized about a Pain@ulIstrand
backgroung—can be applied to discover which formulations
of Einstein’s equations permit ill-behaved transients.
Specifically, in this section we study the propagation of
coherent wave packets in the 2-parameter KST form of Ein-
stein’s evolution equations, linearized about a Schwarzschild
background written in Painlev8ullstrand coordinates. The
theory needed to understand the propagation and growth of
C. Relevance of our computation to numerical simulations radially propagating coherent wave packets has been devel-

We have demonstrated that the KST 2-parameter formu@P€d in an earlier sectioiec. V). We apply our techniques
lation of Einstein’s equations always admits, at any instant!o @ handful of coherent wave packet tran5|§nt solutions, to
prototypical coherent wave packet solutions which grow exdiscover conditions on the two KST parametets {) which
ponentially in time. Generically, we expect that at each in-permit amplification of those transients’ energy by a factor
stant(including in the initial datathese solutions are excited 1/e§ for e,=10"16,
by errors in the numerical simulatiofe.g., truncation and To provide concrete examples of estimates, we assume
roundoff errorg. They then propagate and grow; eventually,that the initial data slice contains the regioa[2,10]. So
they reach the computational boundary. that any influence from boundary conditions cannot muddle

Our calculations above describes the largest amount angur computations, we limit attention to coherent wave pack-
such wave packet solution could possibly grow by the time itets which are defined in the future domain of dependence of
reaches the computational boundary. If that amplificatiorthat slice.
factor is sufficiently large that the wave packets reach “unit”
amplitude(i.e., whatever magnitude is needed to couple to
nonlinear terms stronglyhere conservatively assumed to be A. Transients studied
10'¢, then we expect that any simulation using that particular
combination of KST parameters will quickly crash.

In this section, we provide another example of how tools

amplitude. The condition may be expressed as eithéer
>10%2 or, equivalently, aRgin>32. The functionRyq is
shown in Fig. 4, along with the linBg;,q= 32.

Therefore, we know that some transient can amplify in
energy by more than $9if (i) y>(33+/949)/4, (i) y<
—(31+/1077)/4, or(iii) y>29/64 andy< (33— \/949)/4.

We limit attention to the future domain of dependence of

the regionr €[2,10] at t=0. Since the KST 2-parameter

formulation has fields which propagate(hut no faster than

the speed of light, the future domain of dependence of this
Eventually, the wave packets excited by numerical errorslice is precisely what we would obtain using Einstein’s

will reach the computational boundary. What happens afterequations: the region shown in Fig. 5. In particular, the future

ward depends strongly on the precise details of the boundarjomain of dependence is bounded on the left by the genera-

conditions. tors of the horizoritrapped at =2) and on the right by rays
For example, maximally dissipative boundary conditionstraveling inward at the speed of light. This ingoing ray

(i.e., the time derivatives of all ingoing characteristic fieldsreaches =2 at the end point of the future domain of depen-

are set to zerowill allow the wave packet to leave the com- dence, at timé=t,,, defined by

putational domain entirelywith some small amount of re-

flection that goes to zero in the geometric-optics ljmih

this case, at late times no transient will ever amplify by more 8 fact, in this particular case, we expect that if a wave packet

than the amount described abowe Sec. VII B). with growth rate 1# reflects, then symmetry and the structure of the
On the other hand, other choices for boundary condition®Rindler growth rategi.e., Eq.(32)] ensures that the reflected ray

could cause wave packets to reflect back in to the computaras growth rate- 1/7. Therefore, on average, the wave packet has

tional domain. In these circumstances, the outcomes are farzero growth rate.

Aside: What happens to PCWPs at late times?
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horizon—with both the longest duration and the smaltesit
all outgoing rays—will provide the largest possible amplifi-

4
cation.
3 Since the ray of interest has fixed radial locatien2, we
- find that{, , is constant for all polarizations. Thus, the en-
2 ergy of a prototypical coherent wave packet in polarizajion
1 increases by a factdk, ,, for A, ,=exptmad+ ). In other
words,
6 10 _ L
r InA,=[2R&{, ,)—3][3—5+csch 1(2)]

FIG. 5. The shaded region is the future domain of dependence -
of the regionr €[2,10] for the KST 2-parameter formulation of %1'245[2ng+~#)_3]' (57)
evolution equations. Transients are any solutions which are defined .
in this region. For reasons emphasized in the text, the rays that laThe values for eacld, , are given in Eq(39).]
for the longest coordinate time prove particularly helpful. These Ingoing at light speedThe longest ray—namely, the right
rays are the left and right boundari¢®., the horizon and aray that boundary of the future domain of dependence—permits the
propagates inward at the speed of light from 10) and one ray  greatest possible amplifications. Thus, among all possible in-
propagating against the shift vector which emanates from their ingoing rays, the largest amplification factor for the polariza-

tersection. tion u is given by A_
t 10 dr A~ [2R4T. 3] In5—2csch (2)
= - nA_, = — - :
M o 142 g o 2
=4[3—\/5+cschi1(2)]~4.98. (55) ~0.3232Re{_ ,)—3]. (58)

In our future domain of dependence, we have thre
classes of solutions to the ray-propagation equafigg.
(10)]: those ingoing at the speed of lightv(=-1
—\/2Ir); those ingoing with the shift\{,=—2/); and

%The values for eaclj_, are given in Eq(39).]

Note that since{ ,={,,, the outgoing transients
trapped on the horizon gromorethan the ingoing ones over
the same time interval.

those outgoing ¥ =1 y2Ir) [Eq. (37)]. Ingoing with lapseThe amplification of energy increases
both with ray length and with proximity ta =0 (since
B. Amplification conditions growth rates go as 139). Thus, the longest ray propagating

For each of the three classes of rags-(~ 1,0) propagat- &t this speed contained in the future domain of dependence
ing radially in the future domain of depender@y. 5 and ~ 9ives the best chances_. That ray starts_wntlan, with r
for each polarization on that ray, we can compute the amplidefined so the ray terminates at the horizom=aty:
fication in energy usindRg,= Es’#ld E,./dt [see Egs.(44)
and(47)]. Specifically, for a wave packet startingratr , at
time t=0, propagating in the-type congruence and in the
polarizationu, the energy at the timig(r,,S) when the ray
exits the future domain of dependence is larger than the ini- Thus, we find the largest possible amplification among

(4+3tpa) |

2

r. (59

tial energy by a factor those polarizations that hage=0 to be given byA,,:
AS/.L(rO)EES,u(tOUT)/ESM(O)i (563 o JRaL ) 3} y f, dr \/E
n = —_—— —_—
tout rourdr o a 2 2 \/Z_/r r3/2
InAg,(ro)= J'O dtR, = fro V—?RSM. (56b)
3
=[2RgL,)— =]l 2).
We then search over al},, over all propagation directiors { &by 2 n(ru2) (69

and over all polarizationg to find the largest amplification
factor A. [The values for each , are given in Eq(48).]
In fact, as in the Rindler case, we immediately know
which rays produce the largest possible amplification, so we———
can perform the maximization by inspection. This should be expected: the ingoing and outgoing wave packets
Outgoing at light speedSince the amplification of energy have similar growth rates at any given radius; we limit attention to
increases as gets smallef (dE/dt)/Ex1/r®?2] and with the  rays which persist for a fixed time; and the outgoing modes we
duration of the ray in time, manifestly the generator of thestudy remain closer to the horizon, where the growth rate is larger.
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long:1° even the slowly infalling rays last substantially longer
than the domain of dependence. Therefore, by considering
the amplification of transients over a longer interval, we will
discover significantly greater amplification and thus exclude
a significantly broader class of formulations of Einstein’s
equations.

(4) Combine with boundary conditionEinally, if we de-
termine how geometric-optics solutions interact with bound-
ary conditions, we can generalize our approach and address
thelate-time stabilityproperties of the evolution equations—
or, in other words, address the stability properties of the full
initial-plus-boundary value problem.

40

20

IX. CONCLUSIONS

-40 -20 0 20 40

g In this paper, we have demonstrated that certain transients
(prototypical coherent wave packgtsan be used to veto a
ignificant range of proposed formulations of Einstein’s
eequations. We have described in considerable pedagogical
detail precisely how to construct expressions for esti-
mates of the growth rate of prototypical coherent wave
packets[i.e., Eq.(22)], verify those estimates, and employ
them to veto proposed formulations of Einstein’s equations.
These expressions employ no free parameters or knowledge
of the solution, aside from a choice of plausible rays to ex-
r}:imine. Moreover, despite the sometimes exhaustive details
- rovided in Secs. V and VI, the key tool—the growth rate of
shaded in Fig. 6, one of.the three types of ray-(-1,0) prototypical coherent wave packdi&q. (22)]—is easy to
may admit some prototypical coherent wave packet of polargqy “ \yith little conceptual, notational, or computational
ization u whose energy amplifies by 10 (ie., As, overhead(see, for example, the brief Sec. VID 1 and its
=10%). The clear region in Fig. 6 indicates KST parametersapplication in Sec. VIll. Whether they are used conserva-
for which we have not yet found a transient which ampliﬁeStive|y, as in this paper, or genera"zed a|0ng the lines sug-
by 10°% gested in Sec. VIl O(.e., using more rays and larger frag-
ments of spacetime we believe these techniques will
provide a useful way to bound the number of proposed for-
mulations before further tests are condudtied example, by
the more ambitious Lindblom-Scheel energy-norm method

. . . ... todecide whether a given formulation can produce effective
With our extremelyconservative approach—eliminating ;. /iations

th_ose forn;LzJI_atlons with Wave-packet solutions which am-  \yile our the specific examples of analyses in this paper
plify by 10°in the future domain of dependence—we havepaye employed linearizations of the field equations them-
already eliminated a broad region of parameter space. B¥glves, we could just as well linearize a FOSH system rep-
relaxing some of our very restrictive assumptions, we expecfesenting evolution equations for the constraint figlsise,
we could discard still more KST parameters: for example, KST Eqs(2.40—(2.43]. The evolution equa-

(1) Use a lower amplification cutofCurrently, we require  tions for the constraints have been emphasized by many
an enormousamplification before we eliminate a formula- other authors as a probe of unphysical behavior. Since the
tion; relaxing the requirement on amplification excludesgeneral arguments of Secs. Il, 1, and IV do not depend on
more systems. the precise FOSHLS used, we can perform a calculation fol-

(2) Consider more transientCurrently, we compute the
amplification of only a handful of transients; a consideration
of other transientsfor example, in the neighborhood of cir- 1%ne must take care to use the rays near the horizon in a sensible
cular photon orbits in PG coordinajesiay allow us to ex- fashion. While analytically the rays remain within the computa-
clude additional parameters. tional domai_n for arbitrarily long times, one_cannot expect wave

(3) Consider a larger regionCurrently, we limit attention packet.soltljtlons t(? be resolved and prgsent in a numerical solution
only to the future domain of dependence of the initial data{or arblt_rarlly long: the code has a finite smallest resp_lveql scale.

n practice, one must remember that whatever amplification one

slice. Certain rays, however, remain within the COrnputa'computes must be realistically attainable by some numerical simu-

tional domain for far Ionger._ F(_)r example, i_n the PG_ Caseiation of fixed (though perhaps higlresolution in the coordinates
rays near the horizon remain in the domain for arbitrarily of interest.

FIG. 6. The shaded region indicates those KST parameters th
produce some radially propagating prototypical coherent wav
packets which amplify their energy by greater thad?Mithin the
future domain of dependence of the slice[2,10]. Note that a
large proportion of parameter space has been excluded.

C. Results: Some KST parameters that have transients
which amplify by 10%2

Under the proper choice of KST parameters, show

D. Generalizations of our method that could generate stronger
constraints on KST parameters
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lowing the same patterns &®r examplg Sec. VIII to dis- 2. The no-rotation condition

cover ill-behaved formulation’. In Sec. Il C 2, we claim we can always find a basisBgr

In this paper, we have also discovered curious propertieg; each point in the neighborhood of a given ray which sat-
of modes trapped on the horizon of a Schwarzschild hole igfias theno-rotation condition Eq. (12)]:

PG coordinategSec. VIII). Analytically, we would expect

that, if any growth rate for modes trapped on the horizon (U} [a.S(,+ A2 )0, 1) =0 (A4)
were positive, then these modes should grow without bound R

and be present in the evolution at late times. Numericallysy. 4 «, B. In this section, we demonstrate explicitly how
however, we know that niesolvedwave packets can appear 1, construct a basis which both satisfies the no-rotation con-
at late times: such solutions would have to initiate arbitrarily §ition and remains orthonormal.

close to the horizon, inconsistent with resolved, finite- the right-hand side term in EqA4) is not zero in the
resolution initial data. Still, marginally resolved solutions of basisv; ,, we attempt to choose a hew basis

similar character could potentially behave in an b
implementation-dependent fashion, seeding outgoing modes v =R-v.
which then propagate and amplify into the domain for all b eatha

time. We shall explore this possibility in a future paper.  gych that Eq(12) is satisfied by the new basis and moreover
such that the new basis is orthonormal. In particular, if the
ACKNOWLEDGMENTS no-rotation condition is satisfied in the new basis, tkiee-

_ __ causeP;A*P;=V?) we know that
| thank Mark Scheel and Lee Lindblom for valuable dis-

cussions, suggestions, and assistance during the prolonged
development of this paper. This research has been supported 0=E RzaRap(V] [0, (0 + A%da) v g1)
in part by NSF Grant PHY-0099568. apB

+Rza D) (4+v20,)Raja- (A5)
APPENDIX A: USEFUL IDENTITIES USED IN THE TEXT @
1. An alternative approach to the group velocity (In the second term above, the antisymmetrization is over
The eigenequation which defines the natural polarizatioronly the barred indicies and 8.) On the other hand, if the
spacesB; and their associated eigenvalues[Eq. (4)] basis is orthonormal, the¥ , R, ,Rz,= 6,5, implying

Aapavj'a=wjvj'a B a .
; R(aal 9+ V23,)R5,=0.
for eachv; ,eBj (cf. Sec. Il A may be alternatively ex-

pressed as (In the above, the operator is symmetrized over the indicies
a a andB.) Therefore, combining the two, we conclude that if
A*(X)PaPj(X,p) = wi(x,p)Pj(x,p) (A1) the new basis is both orthonormal and satisfies the no-
rotation condition, the matriR must satisfy the ordinary
for P; the projection operator to theh eigenspace oA%p,, . differential equation
Differentiate this expression relative fm,, apply P; from
the left, and cancel terms proportionald®;/dp® using Eq. (0t+Vi92)Ran=— (V] [0, S(9+ A%d2)v} g)Rap

(A1) and PjA%p,=A%p,P; to find
subject to initial dateR,,= 6,, . Solutions forR and thus
Jw: vj o exist in the neighborhood of a ray.
PjAanza—;Pi:v?Pj. (A2)
P 3. Reorganizing inner products for the polarization equation

Equivalently, ifv; , are a collection of basis vectors for the  In this section, we describe how to rearrange matters so
jth eigenspace which are orthonormal relative to the innefhe last term in Eq(9c)—namely,

product generated b$, (0.0 SO+ A0, ) (A6)

a — a
(vj,5:SAVj0) = SapVj - (A3 _hasa simpler form. If we choose a basis that satisfies the

no-rotation conditionEq. (12)], the antisymmetric part of
this matrix is zero. Further, we may express the symmetric
!*The author expects that no new information can be obtained byart of this expression by using the relations
such an analysis. Moreover, because the constraint equations, when

written in first-order form, involve many more variables than the (U 4 SU B):(U' 0 SO B)+(U' P SO o)
field equations themselves, such an analysis should prove substan- b b I I I a
tially more challenging. +(},0,(3:S)vj p), (A7)
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Ia(Vj,a SAV) )= (V] o, SAIv; g) + (0] g, SA V] ) 0=i(v) &,SU[d+ V] b+ (v) o, (3 + A3y — F)U)
+(V),0,(3SA)V; p) (A8)
=id) [ d+Vidalp+ad o
(where we have observed tha&#® and A? are symmetric
relative to the canonical inner produeind the expressions +> > (V1,0:SAV M ) Ialm g
m B

O SUL )=, A9
(V5.0 50;,5)= O (A9) +%%dm’lg(ULa,S((?t-l-Aaﬁa—F)vmvﬁ). (B1)

(vj'a,SAavj,B)=5aﬁVf‘ (A10)
In the above, we have observed tiétis symmetric relative
[i.e., orthogonality and EqA3)]. These relations tell us that, to the inner product generated Byand thaw; , is an eigen-
if the no-rotation condition is satisfied, vector of A%3,¢ with eigenvaluewj=vf(9a¢. We can fur-
ther reorganize this equation by pulling out all terms that
1 o involve d, explicitly, and also by using EGA2) to simplify
(vj,a ’S(at+Aaaa)vj,5): Z 5a,ﬁaava(xﬂk(x)) (Ul,a 1SAaU|,,B) =Vlaéaﬁ .

L 0=id, [0+ V2] p+[d+VPd,]d
—E(vj,a,(&ts—i-aaSAa)vj’B) id| o[ 01+ Vi dalp+ [0+ V' da]d| o

(A11) + % Ay 5V, S(dy+ A%, = F)u) )
Our notation for the first term on the right sidee., the a
. . ! + , SA d,d
divergence of the group velocijtis chosen to emphasize that n%| % 1a Um,p)7a0m
the derivatived, acts onall the dependence on— in par-
ticular, on any variation ok,= d,¢ with X. + n§| % A p(V1.0s S(+ A9, F)uy, p).

APPENDIX B: DEMONSTRATING (B2)

THAT THE RAY-OPTICS APPROACH PROVIDES
HIGH-QUALITY APPROXIMATE SOLUTIONS 2. Natural scales used in order-of-magnitude estimates

TO THE FOSHLS To make order-of-magnitude arguments regarding the so-

For any fixed initial data, the ray-optics solution obtainedlution, we need to understand how the natural length scales
in Sec. Il will break down at some point along each ray. Inof the problem enter into it.
this section, we estimate how long a solution obtained by Rather than complicate the order-of-magnitude calcula-
solving Eq.(9) can be trusted. tion unnecessarily, we shall for simplicity proceed as if there
Specifically, in Sec. B 1 we express the FOSHES. (3)]  existed only one characteristic speed. In other words, we
using alternative variables better suited to describing thehall freely convert between space and time units by using
geometric-optics solution. Next, in Sec. B2 we survey thethe norm ofA?; for example, we can interpret: ,|A| as a
various orders of magnitude that arise in the problem. Usingpatural length scale. Finally, for brevity, we shall assume
those orders of magnitude, in Sec. B3 we estimate the err@pace and time units are chosen|Ap~1.
in Eg. (3) that occurs when a geometric optics solution is Even with the above simplification, many natural scales
substituted fou (e.g., we estimate how close the norm of thearise in the problem, including the magnitudeFofthe natu-
left side is to zerp Finally, knowing how much error we ral length and time scales on whi¢hand A vary; and the
make when using a geometric-optics solution, in Sec. B 4 wéength scale on which the initial data varies. Again, for sim-
estimate how errors involved in a geometric-optics approxifplicity we shall summarize all these scales by only two num-
mation grow; we therefore discover how long we can trust &ers:
purely geometric-optics-based evolution. “Length” scale (L). We define the natural “length” scale
to be the natural time scale that enters on the right side of Eq.
1. Review: Writing equations in terms of ¢ and d, , (19;|cé.|.To be explicit,L is the smaller of|d|/|A||d,d| and
In Egs.(7) and (8) we describe how to parameterize the  “Variation” scale (7,,,). The remaining scales do not
N-dimensional state vectar by usingN functionsd, , and  arise directly in the equation. They affect the propagation of
one additional functionp. If we insert this substitution into the wave packet only because they determine the rate at
the original FOSHLYEq. (3)], then dot the results against which terms in the equation are modulated as the wave
each of the orthonormal basis vectarg,, we obtain the packet propagates in space and time. We therefore call the
equations smallest of the remaining scales thariation scale(7,y);
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its value is the smallest of the length and time scales onvhere we neglect smaller terms, whelfel s= at+vjaoa rep-

which A andF vary.

3. Degree to which ray-optics solution satisfies the FOSHLS

Using the above rough estimatds &nd 7,,) to charac-
terize the magnitude of terms both used and neglected,
find that geometric-optics solutiofgqg. (9)] very nearly sat-
isfy the full FOSHLS[Eq. (3), alternatively expressed as Eq.
(B2)]. To be explicit, when we insert a geometric-optics so-
lution which propagates in thgh polarization[i.e., a solu-
tion to Eq.(9)] into Eq. (B2), we find the following:

0=id| ,(w— ;) +[3+Vio,d, ,

+ ; di g(v1,0. SO+ A2, —F)u) p)
+ E E (Ul,aaSAaUm,ﬁ)aadm,ﬁ
m#l B

+ X

> dup(var S(O+A2,—F)om ).
m#l B

(B3)

[Here, we have used E@99 and the definition ofw; to
simplify the first term]

We have two circumstances:

(1) Whenl=j, the first three terms precisely can¢sée
Egs. (9@ and (9¢)]. The only terms remaining are of order
dmpg M#j.

(2) On the other hand, when# |, the first term does not
cancel. Rather, it is large, becausgp is large(i.e., we are in
the short-wavelength limit and thew, are proportional to
Fah.

For brevity, assume the eigenvaluesAdf are of compa-
rable magnitude, so to an order of magnitude~ w;~w
~wj—o;. We may then express the equation when as

0=0(wd,5) +O(d; ,/L).

resents the derivative along a characteristic, and whese
=w— wj~w. Since we limit attention ta very large(i.e.,
oT,ay>1), we may ignore the weak effects of any time
variation ofL and treat it as constant. Sinm| varies along

m}@e characteristic much more slowly than does expfs),

we find that after an affine lengffy |d,;| will be of order

|di|~T]d5d;|/ wL~|d;| T/L? . (B4)
(Here, | assumé 2w is suitably averaged, dswill vary as
the path evolves.Similarly, whenl=j, we ignore terms of
order|d;|/L?». We have a DE of the form

d
d—sdj,uﬂr(known, real+ O(|d;|/L?w)=0.

Therefore, integrating along an affine lengtlof the ray, we
expect errors in the;,'s of relative magnitude

€ami= T/L0 (B5)
whene,,,is small. In both cases, we see the neglected terms
will be smaller tharid;| by magnitudeemy.

If we are simulating agiven system, with fixed initial
data, we can only trust a solution out to tiffie- L?w. How-
ever, for any compact region of any characterigtie., for
any fixedT), we can always choose sufficiently large so
the relative errors ., is arbitrarily small.

APPENDIX C: WHEN DO PCWPS EXIST?

Rather than evolve general wave packets using the full
geometric-optics equations, for simplicity in this paper we
often restrict attention to prototypical coherent wave packets,
which — if they exist — vastly simplify the problem of
evolution(cf. Sec. Il Q. In this appendix, we try to clarify
the conditions under which prototypical coherent wave
packet solutions exist as exact or approximate solutions to
the geometric-optics equations.

We can better understand under what conditions proto-

The second terms will force the first terms, generally, to bdypical coherent wave packets exist if we rewrite the polar-

nonzero.
From the second case, we know that whesj, |d,|
~O(|d;|/Lw). Combining this result with the first equation,

ization equatiofEqg. (13)] using the basisfj(”) [Eqg. (16)].
When we do so, we find that PCWPs are exact solutions only
for special circumstances. However, when some eigenvalue

we conclude that when we use our trial solution we are ig-of O; is large, we find that PCWPs arise naturally as limits of

noring terms of ordekdj|/L2w whenl=j and terms of order
and|d;|/L whenl#].

4. Length of time ray-optics solution can be trusted

To estimate the integrated effects the neglected term
have on the diagonal and off-diagonal polarization ampli-
tudesd; , andd, ,, respectively, we integrate the previous
equations.

Whenl #j, we have a differential equatiqibE) of form

d

ot ptidi gha+O(|dj|/L) =0,

arbitrary coherent wave packets.

1. Rewriting polarization equation in the basis
of eigenvectors ofO;

s Basis vectors and their componeni&he basis vectors
f}“) are defined above. Since we express the polarization
equation in component form relative to some no-rotation ba-
sis, we also need notation for the compondlﬁgg of these
basis vectors relative to the no-rotation basis:

-3

)
aUJ'vCY'

084024-20



GEOMETRICAL OPTICS ANALYSIS OF THE SHORT. .. PHYSICAL REVIEW D 68, 084024 (2003

Dual vectors and their componeni&he basis vectorfsj(“)
are not necessarily orthogonal. To facilitate computations, we

define a dual basif*) such that

dE (W,SQwW)

— < Mmax (W,SW) .

(D1)

m| —

As Q is symmetric relative td5 it has a spectrum of real
5#V=(~fj(v),sfj(#)), eigenvalues, gach associated with e_igens'paces that are or-
thogonal relative toS It follows that if «g is the largest
The dual basis vectors can be expressed in terms of comp8igenvalue ofQ,
nents, denoted{*) , relative to the no-rotation basis. 1 dE

Ja?
Explicitly rewriting polarization equation.Substituting Eas

the expansion

K. (D2)

This procedure follows precisely the same outline as the
U= 2 Dmf,(“) o dj,= 2 D,-Mf,(ﬁ) ?;elzg;y-norm upper bound discussed in LS H@sl?7) and
" M -19.

This upper bound on the growth rate for all polarizations
into the polarization equatiofEq. (13)], then using the dual Propagating along a given ray can be used as a line-by-line
vector basis to select specific components, we find replacement for the maximum growth rate of PCWEs.

(22)] in practical calculations to determine the largest ampli-

1 fication possible by a wave packet propagating in the future
0=| g+ Vdat Eaavf‘—om) D, domain of dependende.g., Secs. VIl and VIl
() a (v APPENDIX E: RAY OPTICS AND KST
- 2;‘ Dj, 2.1 (fia’ S(a+Vida) )| (CD 2-PARAMETER FORMULATION

While KST introduce a very large family of symmetric
2. Sufficient conditions for PCWP to be exact solution hyperbolic systems, they emphasized limit their calcula-

o ) tions to a simple 2-parameter subset. This two parameter
~ By definition, a prototypical coherent wave packet solu-gystem has both physical characteristic speeds and a simple
tion associated with the polarization dlrectldJﬁ“) exists  principal part(i.e., simple form forA?). As a result, the
only if there is a solution—exact or approximate—to Eq. a|gebra required for its ray-optics limite., computations of
(C1) with all D;,=0 except forv=p (i.e., Dj ,#0). In wj, etc) proves particularly simple.
other words, for a complete collection of PCWP solutions to
exist, one for each, the third term in Eq(C1) must be

: 1. Generally
diagonal, or zero. _
[In fact, for the examples addressed in this pafper, in The KST system has as variables the tensors
Secs. V and VI, for propagation on the light contae third ~ Jab. Pab, Mkan defined over 3-space, for a total oft6

term is in fact exactly zerg. +18=30 fields.

3. PCWP as limit of arbitrary rapidly growing coherent a. Principal part and symmetrizer

wave packet The principal part has the forfKST Eqg. (2.59, along

If the largest eigenvalue;, of O; is particularly large ~With the definition ofd, in KST Eq.(2.10]
compared to the third term, then generic solutions to the

—pa ]
polarization equatiofEg. (C1)] will converge to a state with (9= B"72)9ij =0, (E13
D;,>D;, for u#v (ie, w=f{"). In other words, if the (01— B9,)Py; + Ng2Pa,M =0, (E1b
largest eigenvalue dD; is large, then generic wave packets
will converge to the PCWP witlv= fj(”) . (8= B23a) Myjj+ NPy =0. (Elo
APPENDIX D: BOUNDING THE ENERGY After linearizing about a background solution, this principal
GROWTH RATE part and a choice of representation for the fidids, u) give

) ) us the explicit form forA®. We may represent the result as
In Secs. Il and Il we introduced wave-packet solutions as

solutions which are localized in the neighborhood of a given A?=—Ba1+NAS (E2
ray. However, while we obtained expressions for the growth
rate of certain specialized wave packet solutit®sc. IV), in ~ for 1 the identity operator and3 a construction which de-
the main text of this paper we never provided a strict boungends only on the background metgcand the choice of
on the growth rate of a wave packet. field ordering used in going to a matrix representatioa.,

In fact, we can bound the instantaneous growth rate of #he order of the fields imw).
coherent wave packgEqg. (21)] by a quantity independent of This principal part is symmetric hyperbolic, using as sym-
the precise polarization state of that packet: metrizer(for example LS Eg. (3.67):
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(u,Su)=gaagbbd 9ardOapt gaagbbd P..dPE 2. Special case: Flat spatial metric
P When the KST system is applied to a time-independent
+09%9°° g “dMyapd My - (E3)  solution with a flat spatial metric, the algebra simplifies sub-

stantially. For example, the symmetriz8{Eq. (E3)] is the
jdentity operator on the set of fields. The inner product gen-
erated byS s therefore constant in space and time.

This symmetrizefrepresented here in LS notatjoamounts

to nothing more than the naturally constructed sum o

squares of components gf P, andM.

. . a. Simplifying the general polarization equation

b. Eigenvalues and group velocity ) . ] ]
Since we fix the basis vector convention by Eg6), we

From the principal part, we can deduce the three possiblgnust use the polarization equation in the form of Eep)

eigenvalues: (i.e., we do not generically expect the no-rotation condition

to hold). We therefore must evaluate the term
ws(X,P) =~ B*Pa+ SN\G™P.Py (E4) 9
wheres=0,=1. From this expression we obtain the group (,5:S(+ A% )v; p) =} 3,50 — B2a)v} )
velocities a
+ N(Uj,,B ,Sl%aal)j“g).
v3(x,p)=— B2+ sN? EH _ _
A Since we know how the basis vectors change as a function of

wherep?=g2°p, /\/g"™p, ps. the congruence directiok=p [Eqs.(E6a— (E6d)], we can

rewrite this expression in terms of our knowledge of the
c. Eigenfields and projection operators congruence ang?.

KST tabulate the eigenfields of the principal-part operator For example, for the fields propagating forward along the
[Eq.(E1)]in KST Eq.(2.61) and the surrounding text. These congruence at unit speegl{s=*+1), we have
expressions yield the following orthonormal basis vectors for

the three eigenspaces Afp,: 1 .
g P Pa (Us,ab :SAe;&aUs,cd) = (ESaqpq) Oaclhd (E7)
Vo,g,ab™ Yab> (E6a
~ A A A _ na —
[M qabxq_ puXUpQM qab] E6b (U s,ab S — B &a)vs,cd)_ 0. (ES)
Uo,x,ab™ = ' S )
‘/1—(PaXa)2 b. Simplifying the energy equations
. The only new quantity needed to evaluate the energy
~ [Mgapy® = puy"p'Mgap] equation is?,SA%. To evaluate?),SA%, we note thaSis the
Voy,ab™ m (E6Q identity, so we just differentiate the result we obtain from Eqg.
1-(p%a) (E2):
1 ~ a_ _ a a
U+ ab™ E[pabi quqab]v (E6D IaSA'= =971+ (0aN) A, -

. . .Now, if we take the inner product over the fields, we arrive at
where we treat the symbols for the fields as basis vectors ihe expression P

the space of fields, and whexeandy are two 3-vector fields

not parallel tof) and which are orthonormal relative to the
metric g,;, at each point.

a

p
(V)0 (9aSAYV| )= b,p —aaﬂa+(aaN)sjm . (E9)
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