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Numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole
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We present a method for computing the evolution of a spacetime containing a massive particle and a black
hole. The essential idea is that the gravitational field is evolved using full numerical relativity, with the particle
generating a nonzero source term in the Einstein equations. The matter fields are not evolved by hydrodynamic
equations. Instead the particle is treated as a quasirigid body whose center follows a geodesic. The necessary
theoretical framework is developed and then implemented in a computer code that uses the null-cone, or
characteristic, formulation of numerical relativity. The performance of the code is illustrated in test runs,
including a complete orbifnearr =9M) of a Schwarzschild black hole.
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[. INTRODUCTION from the example runs presented in Sec. V, the method
should be applicable under appropriate restrictions, e.g.
This paper is concerned with the evolution of a spacetimavhenm=10"°M whereM is the mass of the black hole and
containing a small object in orbit near a black hole, the goamis the mass of the particle, and when the size of the particle
being to compute the motion of the object and the emitteds small enough that it not be tidally disrupted. Thus, we
gravitational radiation. In the techniques normally used forexpect the particle method to be applicable in astrophysical
this type of “radiation-reaction” problem, the small object is situations involving the inspiral and capture of a neutron star
treated as a point-particle evolving on a fixed backgroundr white dwarf by a galactic black holéwith M about
spacetime with its self-force taken into account. There are 40°M). On the other hand, it is difficult to see how the
number of approaches concerning the implementation of thenethod could be used for a stellar remnant black lwiéh
self-force—for exampl¢l—12]. An alternative approach that M about 10 )—any object with small enougm/M would
could be used is full numerical relativity including computa- have too large a diameter. Thus the method is expected to
tional relativistic hydrodynamic¢see for exampl¢13—18,  make predictions concerning gravitational radiation that will
and for a review[19]). To our knowledge, such simulations be relevant to observations by LIS&0], rather than to ob-
have not been performed for the extreme mass ratios consigervations by LIGO or other Earth based detectors.
ered in this paper. The results presented here use a characteristic gravity
The approach developed here uses full numerical relativeode[21,22. However, there is no reason to restrict the PP
ity but with the hydrodynamic aspect greatly simplified, andmethod to the characteristic approach. The method should
can be described as polytropic particle (PP method We  also be applicable within Cauchy formulations of numerical
use full numerical relativity for the evolution of the gravita- relativity.
tional field (including a nonzero stress energy tensor as We have also constructed a finite difference version of a
source. The matter fields are not evolved by relativistic hy- §-function model. We found that the PP model performs bet-
drodynamics but rather the object is treated as a quasirigiter, giving smoother results and, in particular, exhibiting con-
body whose center is evolved by the geodesic equation. Thigergence with grid refinemenias described in Sec. V)A
approach avoids the intricacies and computational expense &or these reasons, although we describe both models, we
relativistic hydrodynamics. give implementation details and results only for the PP
Of course, there are limitations to the PP approach: it camodel.
only be applied in situations in which the internal hydrody- The purpose of this paper is to introduce the PP method.
namics of the material object are unimportant, and in whichVe also give some example runs exhibiting inspiral and a
the rigidity approximation is reasonable. For example, onglunge to the black hole. These runs demonstrate the poten-
would certainly need full numerical relativity and relativistic tial of the method, and are not an accurate description of the
hydrodynamics in situations in which the object is expectedphysics—in particular, in the inspiral case, the inspiral rate is
to be tidally disrupted. On the other hand, if tidal effects aremuch larger than that predicted by other methods. Of course,
small (in a sense that will be made pregis¢hen the PP validated physical results are the goal of this project but, as
model should provide a good description of the physics. discussed in Sec. VI, more computational testing and devel-
The bounds of the domain of applicability of the PP opment is needed before the goal can be attained.
method have not been investigated systematically. However, We begin by summarizing previous results on the charac-
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teristic formulation of numerical relativity in Sec. Il. Issues 2(rJ) ,,—((1+r " *W)(rd) ),

concerning the theoretical framework of a massive particle 1 1 g .

are discussed in Sec. Ill. Section IV presents, in detail, the =—r ~(r°6U) +2r efd%ef—(r W) (J+N;

computational algorithms. Tests of the code and example 462B(p+ P)
+ e ——

runs are given in Sec. V. (WVang=KVang?+Va.0), (2.9

Il. SUMMARY OF PREVIOUS RESULTS, AND NOTATION whereV,ng=vaq” [32], andN, is defined in[21] and[22].

The remaining Einstein equations reduce to conservation
conditions which need only be satisfied on the inner bound-
ary, which are automatically satisfied here because the
boundary has a simple Schwarzschild geometry.

The null cone problem is normally formulated in the re-

The formalism for the numerical evolution of Einstein’s
equations, in null cone coordinates, is well knop2d,23,24
(see alsd25-29). For the sake of completeness, we give
here a summary of the formalism, including some of the
necessary equations. The version of the gravity code being,
used here is fully described fi22]. gion of spacetime between a timelike or null world tube

We use coordinates based upon a family of outgomg nulfi”dz We represent ™ on a finite grid by using a com-
hypersurfaces. We leu label these hypersurfaces® pactified radial coordinatg=r/(1+r). The numerical grid

(A=2,3), label the null rays andbe a surface area coordi- 1S régularin &,q,p) and consists of two patchésorth and
nate. In the resulting=(u,r,x*) coordinates, the metric SOUth, each containing,nqn, grid points. Thex grid covers

takes the Bondi-Sachs forf28,30 thg rangg 0.5,1]. Each angular grid patch extends two grid
points beyond the domaing(p) €[ —0s,ds] X[ —0ds,0s],
with gs=1. Thus there is an overlap region at the equator

ds?= — ( e2h| 1+ w —r?h,gUAU B)du2_262ﬁdudr with larger overlap for largeqs.
r We denote the Bondi-Sachs met(@.1) by g,z and the
— 2r2h,gUBdUdX®+r2h ,gd X dxB 2.1) background metric d,z with J=U=p=0, W=—-2M/r)

by gimjaes- The massvl of the black hole is normally scaled

to M=1 in simulations.

whereh”Bhg = 62 and dethg) =det(qag), With gag @ unéjt
sphere metric. We work in stereographic coordinates
=(q,p) for which the unit sphere metric is lll. THEORETICAL FRAMEWORK
We have developed two different particle models with

4 rather different conceptual frameworks but implemented
qapdX*dx®=—(dg?+dp®), where F=1+q*+p* with very similar numerical codes. This section describes
F each of the two frameworks, as well as some other theoreti-

(22 calissues.

(In previous notation we use®=1+q?+p?. Here we
change notation td- becauseP now represents pressure, ] ] ] )
which we cannot denote hybecause that is a stereographic 1€ PP model treats the particle as an object of fixed size
coordinate. We also introduce a complex dyag” N itslocal proper rest frame, with its cen&f(u) describing
=(F/2)(1j) with i=\—1. For an arbitrary Bondi-Sachs a geodesic of the full spacetime. The particle is treated as

metric, h,g can then be represented by its dyad componen@duasirigid, and a simple formula is used to evaluate the
stress-energy tensor, which then appears as source in the Ein-

stein equations. The simplest model of a polytrope, which

A. The polytropic particle (PP) model

J=haea*q®2, (2.3 il be used here, is for the case with index 1. Then the
densityp and pressur® of an equilibrium configuration are
with the spherically symmetric case characterizedlby0.  given by[33]
We introduce thécomplex differential eth operator$ andd
(see[31] for full det_ails), as well as a number of auxiliary msin& ) 5
variablesK =hpgq”q®/2, U=U"qs, Qa=r2e 2Ph,sU%, p— Ry P 2R, p 3.0)
Q=0Qxq", B=06B, v=08J andk=03K. 4RR T

The Einstein equations decompose into hypersurface
equations, evolution equations and conservation laws. Thier R<R, , andp=P=0 for R>R, , whereR, is the ra-

hypersurface equations form a hierarchical setifor k |, dius of the polytrope an® is the distance from its center.
B B, (er),, U, andW,; and the evolution equatlon The density p(R) and pressureP(r) at a point x“
is an expression forr(])’ur The explicit form of the equa- =(u,x') in the Bondi-Sachs coordinate system are set by

tions is given in[22] in the vacuum case. The matter sourcedetermining the distancB, in the local proper rest frame,
terms, in the case of a perfect fluid of densitypressuré®  betweenx® and the geodesic described by the center of the
and velocityv *, are stated i32]; except the matter source polytrope. We first define the displacement veetdrelative
term in Eqg.(32) is incorrect and that equation should read to the polytrope’s center,
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e1=0, e=x— Zi(u). (3.2 B. The é-function model

At the analytic level, a point particle of massat position
The projection ofe” into the hypersurface orthogonal to the z¢=(u,z')=(u,r,z*) has density and 4-velocityv ¢ satis-

world line at timeu is fying
Ru=(Guptvavp)” @3 PN gui=malx =2, @7
with g,z evaluated az®, andv, evaluated at timei. Then where [ 8(x' —Z)drdqdp=1. We model thes function on
we define the proper distanéeas the magnitude dR,,, the grid by assigning weights to each grid point in a stencil
surrounding the particle. In terms of a test functi¢n this
R= /gaﬁRaRB: (3.9 requires
and set the density and pressure using Bdl). Thus, in its H(Z)=3,pW Ay (3.8

local proper rest frame, émal)) polytropic particle is a

spherically symmetric object with proper radi@, . The whereZ,, is a sum over a stendilof grid points surrounding

perfect ﬂwd condition is used to set the stress-energy tenso,[rl,]e particle positioz' andA,, is the coordinate 3-volume of
l.e. Taﬁ_ (p+ P)Uavlg+ Pgaﬁ .

TN PE model 2 appximate in the folowing sensei® S0, e etermine e wegh epresentog e
Equation(3.1) is exact only for an isolated sphere in equi- y g  €.9.

librium in Newtonian theory. In general relativity it is a good cil O.f eight points determined by the cell surrounding the

approximation ifm<R, (and the example runs presented particle we choose

later satisfy this condition Further, in the field of a black o S

hole, a polytrope would not preserve its spherical shape but p=a+a(x'—z)+a;(x'—2)(xX'—-2))

would become tidally distorted. Both these approximations Co

introduce the same t))//pe of error—the PP’s mgt?on is treated Faj(X = 2) (X =2 (x*~29), (3.9

as quasirigid but, for the purpose of determining its gravita-

tional field, its stress-energy tensby; is modeled as a per- wherei # j #k so that thea’s constitute eight arbitrary coef-

fect fluid. Thus there are contributions 794 that are being ficients. This then gives 8 simultaneous equations to solve

ignored, and the magnitude of these contributions is nowor thew,, which are given explicitly in Eq(4.6) below.

estimated. It is necessary to renormalize the metric so as to avoid
First, since the simulations in Sec. V satisfy the conditioninfinities in the equations of motion. The metric occurs

m<R, , the error in ignoring the tidal stress will dominate through the normalization of the 4-velocity, and the rais-

that of using Eq(3.1) to estimate the pressure. We use New-ing of indices. We take the components (v,) to be basic

tonian theory to make an order of magnitude estimate of thgince they represent the pullback of the 4-velocity to the null

tidal stress. The tidal acceleration in the radial direction ishypersurface. We renormalize the other components by using

2Mx/r3 wherex is the distance from the center of the poly- the background metrig;yy .z to raise indices and to normal-

trope. The tidal stress is maximum at the center of the polyize the 4-velocity. This avoids the problem of an infinite

trope, and a simple dimensional arguméwhich can be self-potential energy of the particle and is in keeping with the

confirmed by integrationshows that principle that the energy of the particle only depends on its

velocity and position in the Schwarzschild field. It should be

Mm emphasized that this renormalization, or usg@gfj .z rather
Tmax= O 5— | (3.5 thang,z, applies only to thaindifferentiatednetric. Metric
MRy derivatives that occur in the particle equations of motion are

_ o _ computed using the full metrig,;—otherwise radiation re-
In order to estimate the significance of,a in the stress-  action could not be included and we would simply be com-
energy tensor, we compare it to the maximum density puting the motion of a test particle in the Schwarzschild
geometry. Of course, it is the full metric which is evolved by

T max 4Ri M the characteristic algorithm.
=5= 3 (3.6 Although we were able to use th&function model to
Pmax mr compute qualitatively reasonable orbits for the problems

considered in Secs. V B and V C, they were significantly less
In a physical situation in which the polytrope is stable smooth than with the PP model, and the growth in the devia-
against tidal disruption,Nl Ri)/(m r¥)<O(1), and theratio  tion from a Schwarzschild orbit was much faster. Further, we
Sis smaller thanO(m/R, ), which, as previously noted, is did not find any quantity that exhibited convergence, making
small here. However, in the example to be considered in Sedt problematic to use thé-function model to obtain physical
V B, the polytrope is not stable against tidal disruption, andpredictions. Perhaps a more sophisticated numerical ap-
thus the internal stresses may be large. In fact, the &iso  proach might lead to convergence of global quantities, but
approximately 4/(84)~0.016. this would be a difficult project that we do not pursue here.
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C. Modeling the particle orbit The setting of initial data is described in Sec. IV C below.

A goal of this work is to study radiation reaction. This is 1€ worldtubeI" at r=2M is the (pas} horizon of a
a small effect, and, numerically, it could be hidden if termsSchwarzschild black hole of mab& Thus the boundary data
of order unity (representing the background Schwarzschild®n I' has the simple analytic forii82]
geometry are added and subtracted in the equations of mo- I _
tion. The motion of a test particle in a background Schwarz- J=r=k=p=B=U=Q=0, W=-2M. (43
schild geometry satisfies certain conservation laws; the mo-
tion of a particle with mass @m<M does not satisfy these B. Computational algorithms
laws, but they are nevertheless useful because these laws The jterative evolution algorithm proceeds as follows:
indicate quantities that change very slowly. Our strategy is to
use the Schwarzschild conservation laws to find quantities (1) Start at timeu=u(™. The gravitational fieldy/; V) is
that, in the general case, evolve slowly. In the process, aknown over the whole grid and the boundary data supplies
background Schwarzschild terms cancel out and we are |eg(;}; in a neighborhood of =2M. The particle’s position
with expressions involving only small quantities. 7™M and velocityv" are also known.

For the case of a test particle in the Schwarzschild geom-  (2) Determine the grid-celG{" containing the poinz (";
etry there is a reflection symmetry plane, the plane of thg e  determines; such that
orbit. Thus the normalized 4-velocity is completely deter-

mined by its component§“v ,=v, and®“v,=v,, Where r(@) < z1(m <p(a+l)
T¢ and ®¢ are the Killing vectors of the Schwarzschild
background and , is a velocity component with respect to qed<z2M<q@*t1)
(u,r,8,¢) null-spherical coordinates. In the general casg,
andv 4 are approximately conserved. Partly because of the pas) < 23(M < pas*1), (4.4
stereographic coordinates being used, the implementation is
quite technicalsee Sec. IV D for details This is done on both north and south patches, although if the
particle is not in the equatorial overlap region there will be a
D. Caustics solution for only one of the patches. We define
The characteristic evolution code breaks down if caustics AlM=xaitl_xai  sM=yaitl_Zim
develop, which render the null coordinate system employed
singular. A rough estimate can be readily obtained by em- 5il(n):Zi(n)_Xai (4.5
ploying the well-known condition for the deflection of light
by a massive body such as the Sun. We find as an approximd we define weights at the eight grid-points at the corners
mate condition for caustics not to form that of GV by
P
RS 1(n) 52(n) 53(n)
*
4—>r. (3.10) ates 5e1 5e2 823
m WX )= —————————— (4.6)
ALMAZM)A3M)
IV. COMPUTATIONAL METHOD wheree;={0,1}.

(3) Next, we set the density and pressure. In general, this
needs to be done on both north and south patches. The den-
The PP method evolves both the matter and gravity fieldssity at the grid-point' is set by means of Eq$3.1)—(3.4);
At each grid-point at which the density is nonzero, the parthen the pressure is set.
ticle’s density, pressure and 3-velocity are found and used to (4) The Einstein equations are now integrated to find the
construct the right hand side of the Einstein equations, anthetric gg‘g. The source terms are given [B82] [where, as
the gravitational field is then evolved as described in Sec. llalready noted, Eq.31) should be replaced by EQR.4)].
The gravitational field affects the motion of the particle: the (5) The formulag“ﬁvavﬁ= —1 is used to findsz‘); the
3-velocityw; is evolved by using the geodesic equation in themetricg®# is known at the required grid-points and its value
form at the particle positiorr'™ is found by taking a weighted
average using the weights found in E4.6) above.
do; T iy 099" (6) The formulav®=g*v 4 is used to findv*(", again
F TTRRr— 4. ; ; ad?
u oY using the weighted average to figd”.
(7) Equation(4.2) is now used to find("* 1), On the first
time step, this is done by the Euler method and, on subse-

A. Overview

and the particle’s position is evolved by quent time steps, by the 3-point Adams-Bashforth method,
ie.
dz o Au( dzm dzi-1)
- = 4.2 (n+1) )4 —~ (g = _ =
du = (4.2 z W+ =355 — 45 ) (4.7

084015-4



NUMERICAL RELATIVISTIC MODEL OF A MASSIVE . .. PHYSICAL REVIEW D 68, 084015 (2003

(8) We now findvi(””). The right hand side of Ed4.1) setting a nonzeraig is retained in the code in case circum-
is evaluated a'("™ by, as usual, finding the value at the stances are found in which a smoother evolution is obtained.
grid-points and taking a weighted average using the weights
found in Eq.(4.6) above. The terms in Ed4.1) are quite D. Implementation of the approximate conservation laws
complicated and were found using a Maple script, which was
also used to generate Fortran code. Details are given in an
Appendix. The numerical evolution method is the same a
used in stef7).

The theoretical basis for using approximate angular mo-
entum and energy conservation to improve the accuracy of
he orbit computation, was discussed in Sec. Il C. We now
present details of how this is implemented &) the angular
. o momentum in an equatorial orb{®) the angular momentum
C. Setting the initial data in a polar orbit, and3) the energy. The code is written so

We have experimented with various ways of setting thethat all of these approximate conservation laws may be used,
initial data, and found that, apart from some early transien®r not, simply by changing input parameter switches.
effects, the options tried make little difference to both the

particle orbit and the gravitational field. The initial gravita- 1. Angular velocity in an equatorial orbit

tional content is prescribed by settidg=0 atu=0. (It is The angular momentum per unit mass

also possible to set the initial dafaby a Newtonian limit

condition [23,34,39, the computational implementation of h=qv,—pvq (4.12)

which will be discussed elsewheredf course, this means

that we are introducing spurious gravitational radiation intojs approximately conserved. In terms of proper timalong
the initial data, which might have the effect of initializing the the particle’s trajectory,

particle into a different orbit to that intended. We tried evolv-

ing the code for a predetermined timig (and ug could be dh dvp dv

possibly set to zeno during which time the particle’s veloc- dr :qup+QF —vPug— pF' (4.12
ity and position are not updated. The idea is that the gravi-

tational field should relax to the correct form, with the SPU-Now, Eq.(4.1) takes the form

rious initial gravitation content radiating away, by the time

us when the particle is allowed to move. d A
The code requires the initial velocity as a 1-foombut a —vp=——((v,)?+(vgH)+E A=(q,p)
. L . B dT 2 P q A ’ 3
physical description normally specifies the tangent vegtor r
For example, a particle in a circular orbit would have (4.13
, , 2M where theE, contain only small quantities. We also intro-
v'=0, (vP)*+(v9) :m. (4.8 duce the small quantity.'=(g'*—gj;)v,, which repre-

sents the difference between raising an index of the covariant

i elocity by the full or background metric. Thus,
Suppose that we are given rather tharv; . Initially, when velocly by u grou : u

only the background metric is known; is constructed from v
i H A
v' using vA= i+ r_2 (4.14
g[M]aﬁvavB= -1 (49) o .

Combining Egs(4.12), (4.13 and(4.14), we obtain

to first determinev"; then vi=gpvji,v®. Then, whileu

<us, the code uses the fact that is found at each time dh U — 4Py +gE.—DE 41

step to determine a value of such thatw'=0 by an itera- dr MU MUqTAEpT P, (4.15

tive algorithm. Explicitly, we use the secant algorithm
which is implemented in the code. We extragt from the

Ura) " Vr(a-1) evolved value oh. This is done by using the constraint that

Ura+1)= Vi) V(@fs——— (410  the particle is on the equatog?+p?=1. Thusqv9+ pvP
V(@™ V(-1 =0 so that
wherea is the iteration number anfid; is a factor(which is 1 v v
in the standard algorithjrthat may need to be set to 0.2 or ql w9+ 29 4 p( wP+ _p) =0. (4.16
smaller for stable convergence—the difficulty here is that we r2 r2

are solvingv"(v,)=0 not as a simple algebraic equation but
as an equation whose coefficients change as the metric r€ombining Eqs(4.11) and(4.16, we find
laxes.

We found that the value dfis has little effect on com- vq=—ph—r?q(qui+puP)
puted orbits, at least for the cases computed in Sec. VB
below. Thus, we will setis=0. Nevertheless, the option of vp=ah—r?p(qui+puP), (4.17
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which is implemented in the code. Furthermore, the particleof v, is not corrected. For a circular orbit of the Schwarz-
is constrained to follow the equator exactly, and so the parschild background, the square root is exactly zero, and there-

ticle's position is corrected according #— z*f, with

- 1
© Ng2+p?

2. Angular velocity in a polar orbit

(4.18

In the case of polar motion, simplified here to the cas

p=0, the equations analogous to Ed4.11), (4.15 and
(4.17) are

dh FA,

2h
= — —_— T — q = —
h T 5 +qugut, vq = (4.19

3. The energy

The energy per unit mass, is conserved along a geode-

sic in the Schwarzschild background. In this case

h?+r2+v2(r?—2Mr) 4.20
Uys— . .
us 2v,r?

We takev g, as defined above, to be an approximately con

served quantity. From Ed4.1),

d h?  vZM
d—Tvr=—r—3— i +E;. (4.21
Using
dr | 2M )
E_:U =—vyst 1—T vtu, (4.22
differentiation of Eq.(4.20 leads to
d dh 3 r 2 r
grlus™ ZhErvﬁ—Zver,u —2h%v,
32 .3_ 2242
+E(riv;—r°=2Mr“v;—h r))2r3v,2'
(4.23

There is an option in the code to evolvgs by Eq.(4.23. In
this case, we extraet, from the value ofv,5. This is done
by rewriting Eq.(4.20 as a quadratic im, . We find

When the code is evolving,s by Eqg. (4.23, at each time
step it also evolves, in the usual way. The: in Eq.(4.29

is chosen so that the result for is closest to the directly

evolved value; further, if the square root in £4.24) is less

e

fore it is difficult to use this option when evolving a circular
orbit.

E. The metric variable W

The only Bondi-Sachs metric variable that is nonzero in
the background metric ¥/, and in order to improve numeri-
cal accuracy, the code treatéas the sum of the background
analytic part W, plus a correction\(V,,,). The values of
W,, and its derivatives are found exactly, and finite differ-
encing is applied only to the paw,,,. In effect, this also
applies to the other metric variables, because their back-
ground analytic parts are zero.

V. COMPUTATIONAL TESTS AND RESULTS
A. Convergence
1. Initial accelerations

First, we investigated the convergence of various accel-
erations on the initial null cone, and in so doing tested the
gravitational hypersurface equations, the gravitational evolu-
tion equation and the particle evolution equations. The tests

were made with the particle initialized at=9 at the north
pole withv"=vP=0 andv set to the value for a circular
orbit. The particle mass was= 10 *. The particle velocity
was updated directly, without incorporating approximate
conservation laws. The overlap between north and south
patches was minimalgg=1.0). The size of the polytrope
wasR, =5.0. The following quantities, all of which are rates
of change, were determined on the initial null cojj@;,||-.,

hy vyu, vr,, andvg .. The quantities involvings deriva-
tives were found by evolving the code for one time step and
then applying the formul® ,=(Q;—Qp)/Au; the quanti-
ties involving = derivatives are found directly by the code
using data only on the initial null cone.

The following grids were used@) coarse,n,=41, ng
=n,=25; (b) mediumn,=81, ny=n,=45; and(c) fine,
ny=161, ny=n,=85. In the different gridsA, and A,
=A, scale as 4:2:1. Thésingle time step was\u=10"",
which, for all grids, is much smaller than the spatial discreti-
zation, so that second order spatial accuracy is expected. As-
suming that a quantityQ behaves aQ=a+bA", it is
straightforward to show that

Qc_Qm
Qm_Qf

whereQ., Q,, and Q; refer to the computed values 6J
using the coarse, medium and fine grids, respectively.

Our results are stated in Table I: it is clear that, on the
initial null cone, the polytropic model is convergent with the
ordern in the range 1.59 to 2.28.

n=log, (5.1

2. Circular orbit

Secondly, we performed a convergence test for a particle
in a circular orbit around a black hole. For the coarse and

than some threshold, or imaginary, the directly evolved valueanedium grids, the particle completed a whole orbit, but for
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TABLE |. Convergence of the polytropic model.

Coarse Medium Fine n
[19.ull 0.4346<10 2 0.4441x 10?2 0.4460< 10 2 2.28
hy —-0.7377x10 2 —0.3436x<10 2 —0.2129<10 2 1.59
Uy 0.2732<x10 * 0.1273x 104 0.0789%< 104 1.59
vy, —0.5050<10 3 —0.5455¢ 103 —0.5564< 102 1.9
Vg, r -1.8069<10° —0.8416<10°° —0.5215¢10" 2 1.59

the fine grid this was not possible. The particle was initial-fact of the numerical scheme used in the evolution equation,
ized atr=9, q=0 andp=1 with v"=vP=0 andv? set to  which for a fixed value of the dissipation parameter is only
the value required for a circular equatorial orbit. The mass ofirst order in time[21].
the particle wasn=10"° and the size wa®, =3 (the re-
quirement that the polytrope should be resolvable by all grids
places a lower limit orR, ). We used the technique in Sec. ) ] ) ]
IV D to model approximate conservation of angular momen- e various input parameters were described in Sec.
tum, but not of energy. The angular grid-patch overlap was/ A 2 (circular orbit), medium grid. The computation was
gs=1.2. The test results are for the time intervat0<20  "un for 25000 time steps until=208 and represents more
representing just under 1/8 of a whole orbit. The grids usedhan one orbitwhich is achieved at about=170); the com-
were () coarse,n,=61, ny=n,=20 with du=1.6666 putat'lon took gbout 24 hours of wall-clock co_mputer time.
X1072; (b) medium, n, =121, ng=n,=35, du=8.3333 As dlscussed_ in S?(;HVA 2, the Iresu!['[hs gre_r;/]wthm the con-
- 3. : _ - — ; vergence regime of the numerical method. The run was per-
2411916('56?28“2’?) fine, n,=241, ng=n,=65, with du formed for illustrative purposes and is not physical because a
The convergence rate of,, betweeru=0 andu=20 as p_ontrope with the parameters used here would be tidally
estimated from Eq(5.1), is shown in Fig. 1; the average rate diSrupted. , o
is n=1.064, so that the effective convergence rate of the 1€ results of the computation are shown in Figs. 2 to 5,

particle’s energy is approximately first order. This is an arti-In which the particle inspir_aIéFig. 2_)’ losing energy(Fig. 4)
and angular momentur(Fig. 3). Figure 5 shows the time

development of thé; norm ofJ ,, which provides a mea-

B. Whole orbit with m#0

2 * * * sure of the dynamic activity of the gravitational field. We
9
15 b 8.995 1
£
i
©
e
8
. 2
> 2 L 4
g §_ 8.99
O | S S
l |- -
8.985 1
05 1 1 1
0 5 10 15 20 8.08 I I I I
u 0 50 100 150 200 250
u
FIG. 1. Convergence rate &/m as a function of time for O
<u<20. FIG. 2. r coordinate for a complete orbit.
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3.672 T T T T 4X10_7 T T T T
36725 | -
3x10°7}f .
3673 | -
= = 7t .
£ 36735 | i = 2x10
3674 | -
1x107 b .
36745 | .
0 1 1 1 1
3675 . . L . 0 50 100 150 200 250
0 50 100 150 200 250

u
u

_ . FIG. 5. L, norm of the radiation indicatof,] ,||;, for a complete
FIG. 3. Angular momentum per unit particle mass for a com- yp;t.

plete orbit.

also performed whole orbit computations with input param- In our numerical method, the measured inspiral was
eters as above, but varying the particle mass by powers of 18 —0.016 after one complete orbit. The inspiral after one
in the range 10* to 10" °. We found that the energy loss rate orbit is Ar = —2.98x 10~ ¢ according to the quadrupole for-
scales, as expected, ag. mula[36], andAr=—4.75<10 ® according to a perturba-
tive method[11,37. The rate of energy loss, i.e. the rate of

0.95252 ; ; ; ; change ofE=mu,, is a better measure of the inspiral rate,
becausé\r after one orbit includes a contribution due to the
orbit becoming slightly elliptical. Averaged over a complete
orbit, the measured rate for the numerical methodEédu
=2.669<10 3 whereas the quadrupole formula predicts
dE/du=1.10x10"'6 and the perturbative method gives
dE/du=1.75x10 '8 There is thus a discrepancy between
the energy loss rates found here and by other methods. The
cause of the discrepancy is not known, and may comprise a
number of factors(a) in order to resolve the particle prop-
erly, we are forced to make its size too large for it to be
physical, and thus the model ignores internal tidal stresses
that in this case are largesee Sec. Il A; (b) lack of resolu-
tion; and(c) other. The issue is discussed further in the Con-
clusion, Sec. VI.

0.95254

0.95256 1
C. Capture of particle by the black hole

The purpose of the test was to see how the code behaves
as the particle approaches the event horizarn=a2, and the
particle was initialized at=6, i.e. at the ISCO. The size of
the particle waR, =2, and so, as with the complete orbit

computation, the model ignores significant tidal stresses and
0.95258 0 5'0 1(',0 1'50 2(')0 250 is not physical. In order to shorten the inspiral time the par-
u ticle was given a small inward radial velocityv'=
—0.01), and the angular velocity was set to that for a circu-
FIG. 4. Energy per unit particle mass for a complete orbit.  lar orbit in the test particle limit%=0.0962,0°=0). The
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10

L/m

5 k" l"de\-9 S - -
— 1y=Q (medium) Seooee?

o ry=6"(coarser) ,
—- r=2M e

—~10 \ . .
-10 -5 0 5 10

FIG. 6. The orbit, in the X,y)=(r cos¢,r sin¢) plane, traced
by a particle, initially atr=6, as it is captured by a black hole.
Overlaid in the figure is the orbit traced by a particle initiallyrat
=9 (dotted ling. The central circle indicates the location of the
horizon =2).

test was performed with two different grids, enabling us to
see at which stage numerical errors become significant. T
grids used weren,=121, ny=n,=35, du=8.3333 1073
(medium grid; and n,=81, ny=n,=25, du=1.25x10 2
(coarser grigl

In the coordinates being used,as 2 the evolution vari-
ablev,—o. Thus, because of this coordinate effect, we ex-
pect the code to crash at some value @ist greater than 2.
The results of the computation are shown in Figs. 6 to 9. In
the medium grid computation, the particle inspirals until the
code crashes at=182.5 with the particle at=2.00077 and
|v,|~=5000. The particle completed just over two complete
revolutions, i.e. its angular position changed by just over 4
radians during the evolution. The particle crossee?.1 at
u=162.5,r=2.01 atu=172.5 andr=2.001 atu=181.7;
thus demonstrating a freezing of radial position, as expected
due to the redshift inherent in thecoordinate. Throughout
the computation, the position of the particle varies smoothly%
(Fig. 6). The particle loses energy¥ig. 8 and angular mo-
mentum (Fig. 7) at a fairly constant rate, until about
=150, r=3.2. Further, the activity of the gravitational field
(as measured bjJd [, Fig. 9 starts to grow rapidly at this
time. We have not analyzed the cause of this effect. The
results of the coarser grid match those of the medium grid
reasonably well until aboutu=170, at which stager
~2.02.

D. Other experiments and computational issues

A run was performed using the same input parameters as
in Sec. V B, except thamn=0. The orbit was found to be
exactly circular, with no loss of energy or angular momen-
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50 100 150 200
u

FIG. 7. Angular momentum per unit particle mass for the cap-
ture of a particle by a black hole.

hﬁﬁate conservation of angular momentum, which in this case
is exact, the angular momentum behaved as expected. How-
ever, conservation of energy was not enforced. The only

nor) error was in the time for an orbit: the numerical method

— medium
-- coarser

50 100 150 200
u

FIG. 8. Energy per unit particle mass for the capture of a par-
tum. Because the numerical method implements the approxiicle by a black hole.
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10

10

10

(9,11,

100
u

50 150 200

FIG. 9. L, norm of the radiation indicato}{J ||;, shown using

a logarithmic scale in the vertical axis, for the capture of a particle’

by a black hole.

yielded Au=169.638(for the grid used in this specific riyn
whereas the analytic value isn2%?=169.646. In order to
check that the exact conservation of energy was not just

PHYSICAL REVIEW D 68, 084015 (2003

tions. Improvements in the news computation have recently
been investigatefB8,39, but it is not yet known whether the
radiation from a particle source can be reliably computed.
Results will be reported elsewhere after the necessary devel-
opment and testing.

The tests were performed on a Linux machine with a
single processor running at 1.8 GHz. The complete orbit run
reported in Sec. V B used a grid of 12B5” points(on each
angular patchand 25 000 time steps. The run time was about
24 hours. Of course, the run time scales with grid discretiza-
tion asA 4.

VI. CONCLUSION

In this paper we have described and implemented the PP
method for evolving the full Einstein equations using a char-
acteristic evolution code. The method could be adapted and
used within other numerical relativity frameworks. The PP
method can be a useful tool in modeling astrophysical situ-
ations involving a black hole and another much smaller ob-
ject, in a regime in which a full hydrodynamic model is not
necessary. We have demonstrated that the method works in
the sense that it computes orbits that are convergent, and
deviations from a Schwarzschild orbit scale as expected with
particle masam. However, the computed inspiral rate was
much larger than that predicted by other methods. A feature
of the code is that it avoids the computational expense of
modeling the material object by means of relativistic hydro-
dynamics.

The PP method has the potential to supply accurate orbits,
including inspirals towards the ISCO and plunges to the
black hole, as well as the associated gravitational radiation
gutput. Such results would be useful both directly, and also

consequence of the orbit being exactly circular, we also did &directly in providing error bars against which other meth-

run for a noncircular orbit, starting a&=9, q=0, p=1 and
with initial velocity v"'=0, v9=0.047,vP=0. The particle
was found to move in an orbit betweer9 andr=11.79,
and there was a very small changeuvip: energy was con-
served, in the sense db,/du=0, to the order of one part
in 10,

A simple test of the code is to determine if it produces

results concerning caustic formation that are consistent with

the estimate given in Ed3.10. We performed a number of
short runs(up to 100 iterations each with a different value
of particle massn, and made a binary chop search to find the

critical value ofm above which the code crashes due to the

onset of caustic formatiofindicated by the metric variable
B—> atZ"'). The test was performed with initial velocity
v'=0, initial positionr =9 at the north pole, and polytropic
radiusR, =2. The grid discretization was, =121, n,=n,
=35, with time stepdt=28.3333<10 3. We found that the
code behaved properly witm=0.03 but crashed whem
=0.04, consistent with the critical value ai=0.111 indi-
cated by Eq(3.10.

Unfortunately, it is not possible, at this time, to present

results on gravitational radiation output. The module used if4)

the code for calculating the ne21] was originally devel-
oped and tested under conditions in which the fields are we
resolved atZ*, which is not the case for particle applica-

ods could be tested. In the tests described here, the need to
resolve the particle has prevented us from making the par-
ticle radius small enough so that its local rigidity is justified.

In order to achieve a proper physical basis for the model, we
envisage the following future work.

(1) Itis necessary to investigate the effect of the polytrope
radius R,) on particle motion. On physical grounds,
one would expect that in some regime the particle mo-
tion should be independent Bf, . (Of course, taking the
limit R, —0 is equivalent to changing from the poly-
tropic to ad-function model, and this link provided mo-
tivation for the investigation of that modgl.

Once parameters for the model that are physically real-
istic can be attained, it will be necessary to investigate
whether the PP method computes reliable energy loss
rates.

3) The gravitational radiation outpgBondi news function

is required, both to supply a waveform and to check the
energy balancéthe rate of loss of orbital energyw,
should be of the same magnitude as the radiation power
Once the above issues have been resolved, it will be
necessary to validate the PP method by obtaining results
that agree, in some regime, with results obtained by an-
other method.

)
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APPENDIX: THE GEODESIC EQUATION

do, _ Zvangvang_ Urz(rW,r —W)
dr B 2r3

r — _ _
+ (+4VangVang(1— K) = 2(e72 = 1)02(TW , = W)rK — 23V, K+ 4V 40V angdd

~1VangVangd 1J = VangVangd 3, — 48,6 2P, 13UV, K — 48 .6~ 2P 13UV, K —23V3 | K

+4e 2Pp2B (r+W)r?K -84 e~ P r3v K+1J Vi, K+2e 2Py 13U V,, K

+2e7 2Py, 13U VoK +1J V2 g (A1)

K DY
)4Kr3

dv. (q+ip)VaneV - _ -
= r;”g 24 (— 4(q+1P)VangVang K = 1) +4(8K)JIVangVang— 2(33)KIVangVang

—2(83)KIVangVang— 4€™ 2P (3B)r2UV g~ 4e™ 2P (8B)r2UV g 26 2P0 2(SW)r
+4e2Pp2(r + W) (3B)r —8e 2Py (3B)r%,+ (83)I2V2, 4+ (8) IV, -~ 2(8K) IK VA .~ 2(8K)IKVZ

+2(8K)VangVangt (83)Vangdd+ (83)V2d3+ 4ipIVE, o+ (83)Vang+ (8I) Vi, +44Va g

_ _ _ _ 1
+2r2e 2Py (8U)Vangt 2r2e Py (8U)Vangt 4re 2Pu,qUV,n gt 4ir2e_2BverVang)F. (A2)
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