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Numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole
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We present a method for computing the evolution of a spacetime containing a massive particle and a black
hole. The essential idea is that the gravitational field is evolved using full numerical relativity, with the particle
generating a nonzero source term in the Einstein equations. The matter fields are not evolved by hydrodynamic
equations. Instead the particle is treated as a quasirigid body whose center follows a geodesic. The necessary
theoretical framework is developed and then implemented in a computer code that uses the null-cone, or
characteristic, formulation of numerical relativity. The performance of the code is illustrated in test runs,
including a complete orbit~nearr 59M ) of a Schwarzschild black hole.
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I. INTRODUCTION

This paper is concerned with the evolution of a spacet
containing a small object in orbit near a black hole, the g
being to compute the motion of the object and the emit
gravitational radiation. In the techniques normally used
this type of ‘‘radiation-reaction’’ problem, the small object
treated as a point-particle evolving on a fixed backgrou
spacetime with its self-force taken into account. There ar
number of approaches concerning the implementation of
self-force—for example@1–12#. An alternative approach tha
could be used is full numerical relativity including comput
tional relativistic hydrodynamics~see for example@13–18#,
and for a review@19#!. To our knowledge, such simulation
have not been performed for the extreme mass ratios con
ered in this paper.

The approach developed here uses full numerical rela
ity but with the hydrodynamic aspect greatly simplified, a
can be described as apolytropic particle ~PP! method. We
use full numerical relativity for the evolution of the gravita
tional field ~including a nonzero stress energy tensor
source!. The matter fields are not evolved by relativistic h
drodynamics but rather the object is treated as a quasir
body whose center is evolved by the geodesic equation.
approach avoids the intricacies and computational expens
relativistic hydrodynamics.

Of course, there are limitations to the PP approach: it
only be applied in situations in which the internal hydrod
namics of the material object are unimportant, and in wh
the rigidity approximation is reasonable. For example, o
would certainly need full numerical relativity and relativist
hydrodynamics in situations in which the object is expec
to be tidally disrupted. On the other hand, if tidal effects a
small ~in a sense that will be made precise!, then the PP
model should provide a good description of the physics.

The bounds of the domain of applicability of the P
method have not been investigated systematically. Howe
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from the example runs presented in Sec. V, the met
should be applicable under appropriate restrictions,
whenm<1025M whereM is the mass of the black hole an
m is the mass of the particle, and when the size of the part
is small enough that it not be tidally disrupted. Thus, w
expect the particle method to be applicable in astrophys
situations involving the inspiral and capture of a neutron s
or white dwarf by a galactic black hole~with M about
106M (). On the other hand, it is difficult to see how th
method could be used for a stellar remnant black hole~with
M about 10M ()—any object with small enoughm/M would
have too large a diameter. Thus the method is expecte
make predictions concerning gravitational radiation that w
be relevant to observations by LISA@20#, rather than to ob-
servations by LIGO or other Earth based detectors.

The results presented here use a characteristic gra
code@21,22#. However, there is no reason to restrict the
method to the characteristic approach. The method sho
also be applicable within Cauchy formulations of numeric
relativity.

We have also constructed a finite difference version o
d-function model. We found that the PP model performs b
ter, giving smoother results and, in particular, exhibiting co
vergence with grid refinement~as described in Sec. V A!.
For these reasons, although we describe both models
give implementation details and results only for the
model.

The purpose of this paper is to introduce the PP meth
We also give some example runs exhibiting inspiral and
plunge to the black hole. These runs demonstrate the po
tial of the method, and are not an accurate description of
physics—in particular, in the inspiral case, the inspiral rate
much larger than that predicted by other methods. Of cou
validated physical results are the goal of this project but,
discussed in Sec. VI, more computational testing and de
opment is needed before the goal can be attained.

We begin by summarizing previous results on the char
©2003 The American Physical Society15-1
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teristic formulation of numerical relativity in Sec. II. Issue
concerning the theoretical framework of a massive part
are discussed in Sec. III. Section IV presents, in detail,
computational algorithms. Tests of the code and exam
runs are given in Sec. V.

II. SUMMARY OF PREVIOUS RESULTS, AND NOTATION

The formalism for the numerical evolution of Einstein
equations, in null cone coordinates, is well known@21,23,24#
~see also@25–29#!. For the sake of completeness, we gi
here a summary of the formalism, including some of t
necessary equations. The version of the gravity code b
used here is fully described in@22#.

We use coordinates based upon a family of outgoing n
hypersurfaces. We letu label these hypersurfaces,xA

(A52,3), label the null rays andr be a surface area coord
nate. In the resultingxa5(u,r ,xA) coordinates, the metric
takes the Bondi-Sachs form@28,30#

ds252S e2bS 11
W

r D2r 2hABUAUBDdu222e2bdudr

22r 2hABUBdudxA1r 2hABdxAdxB, ~2.1!

wherehABhBC5dC
A and det(hAB)5det(qAB), with qAB a unit

sphere metric. We work in stereographic coordinatesxA

5(q,p) for which the unit sphere metric is

qABdxAdxB5
4

F2
~dq21dp2!, where F511q21p2.

~2.2!

~In previous notation we usedP511q21p2. Here we
change notation toF becauseP now represents pressur
which we cannot denote byp because that is a stereograph
coordinate.! We also introduce a complex dyadqA

5(F/2)(1,i ) with i 5A21. For an arbitrary Bondi-Sach
metric,hAB can then be represented by its dyad compon

J5hABqAqB/2, ~2.3!

with the spherically symmetric case characterized byJ50.
We introduce the~complex differential! eth operatorsZ andZp

~see@31# for full details!, as well as a number of auxiliar
variablesK5hABqAq̄B/2, U5UAqA , QA5r 2e22bhABU ,r

B ,

Q5QAqA, B5Zpb, n5ZJ andk5ZK.
The Einstein equations decompose into hypersurf

equations, evolution equations and conservation laws.
hypersurface equations form a hierarchical set forn ,r , k,r ,
b ,r , B,r , (r 2Q) ,r , U ,r andW,r ; and the evolution equation
is an expression for (rJ) ,ur . The explicit form of the equa-
tions is given in@22# in the vacuum case. The matter sour
terms, in the case of a perfect fluid of densityr, pressureP
and velocityva, are stated in@32#; except the matter sourc
term in Eq.~31! is incorrect and that equation should read
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2~rJ ! ,ur2„~11r 21W!~rJ ! ,r…,r

52r 21~r 2ZU ! ,r12r 21ebZ2eb2~r 21W! ,rJ1NJ

1
4e2bp~r1P!

r
„~JV̄ang2KVang!

21Vang
2

…, ~2.4!

whereVang5vAqA @32#, andNJ is defined in@21# and @22#.
The remaining Einstein equations reduce to conserva
conditions which need only be satisfied on the inner bou
ary, which are automatically satisfied here because
boundary has a simple Schwarzschild geometry.

The null cone problem is normally formulated in the r
gion of spacetime between a timelike or null world tubeG
andI 1. We representI 1 on a finite grid by using a com
pactified radial coordinatex5r /(11r ). The numerical grid
is regular in (x,q,p) and consists of two patches~north and
south!, each containingnxnqnp grid points. Thex grid covers
the range@0.5,1#. Each angular grid patch extends two gr
points beyond the domain (q,p)P@2qs ,qs#3@2qs ,qs#,
with qs>1. Thus there is an overlap region at the equa
with larger overlap for largerqs .

We denote the Bondi-Sachs metric~2.1! by gab and the
background metric (gab with J5U5b50, W522M /r )
by g[ M ]ab . The massM of the black hole is normally scale
to M51 in simulations.

III. THEORETICAL FRAMEWORK

We have developed two different particle models w
rather different conceptual frameworks but implemen
with very similar numerical codes. This section describ
each of the two frameworks, as well as some other theor
cal issues.

A. The polytropic particle „PP… model

The PP model treats the particle as an object of fixed s
in its local proper rest frame, with its centerza(u) describing
a geodesic of the full spacetime. The particle is treated
quasirigid, and a simple formula is used to evaluate
stress-energy tensor, which then appears as source in the
stein equations. The simplest model of a polytrope, wh
will be used here, is for the case with indexn51. Then the
densityr and pressureP of an equilibrium configuration are
given by @33#

r5

m sin
Rp

R*
4RR

*
2

, P5
2R

*
2 r2

p
, ~3.1!

for R<R* , andr5P50 for R.R* , whereR* is the ra-
dius of the polytrope andR is the distance from its center.

The density r(R) and pressureP(r ) at a point xa

5(u,xi) in the Bondi-Sachs coordinate system are set
determining the distanceR, in the local proper rest frame
betweenxa and the geodesic described by the center of
polytrope. We first define the displacement vectorea relative
to the polytrope’s center,
5-2
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eu50, e i5xi2zi~u!. ~3.2!

The projection ofea into the hypersurface orthogonal to th
world line at timeu is

Ra5~gab1vavb!eb, ~3.3!

with gab evaluated atza, andva evaluated at timeu. Then
we define the proper distanceR as the magnitude ofRa ,

R5AgabRaRb, ~3.4!

and set the density and pressure using Eq.~3.1!. Thus, in its
local proper rest frame, a~small! polytropic particle is a
spherically symmetric object with proper radiusR* . The
perfect fluid condition is used to set the stress-energy ten
i.e. Tab5(r1P)vavb1Pgab .

The PP model is approximate in the following sen
Equation~3.1! is exact only for an isolated sphere in equ
librium in Newtonian theory. In general relativity it is a goo
approximation ifm!R* ~and the example runs present
later satisfy this condition!. Further, in the field of a black
hole, a polytrope would not preserve its spherical shape
would become tidally distorted. Both these approximatio
introduce the same type of error—the PP’s motion is trea
as quasirigid but, for the purpose of determining its grav
tional field, its stress-energy tensorTab is modeled as a per
fect fluid. Thus there are contributions toTab that are being
ignored, and the magnitude of these contributions is n
estimated.

First, since the simulations in Sec. V satisfy the condit
m!R* , the error in ignoring the tidal stress will domina
that of using Eq.~3.1! to estimate the pressure. We use Ne
tonian theory to make an order of magnitude estimate of
tidal stress. The tidal acceleration in the radial direction
2Mx/r 3 wherex is the distance from the center of the pol
trope. The tidal stress is maximum at the center of the po
trope, and a simple dimensional argument~which can be
confirmed by integration! shows that

smax5OS Mm

r 3R*
D . ~3.5!

In order to estimate the significance ofsmax in the stress-
energy tensor, we compare it to the maximum density

smax

rmax
[S5OS 4R

*
2 M

pr 3 D . ~3.6!

In a physical situation in which the polytrope is stab
against tidal disruption, (MR

*
3 )/(mr3),O(1), and theratio

S is smaller thanO(m/R* ), which, as previously noted, i
small here. However, in the example to be considered in S
V B, the polytrope is not stable against tidal disruption, a
thus the internal stresses may be large. In fact, the ratioS is
approximately 4/(81p)'0.016.
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B. The d-function model

At the analytic level, a point particle of massm at position
za5(u,zi)5(u,r ,zA) has densityr and 4-velocityva satis-
fying

rA2gvu5md~xi2zi !, ~3.7!

where*d(xi2zi)drdqdp51. We model thed function on
the grid by assigning weightsw to each grid point in a stenci
surrounding the particle. In terms of a test functionf, this
requires

f~zi !5S If IwIDV ~3.8!

whereS I is a sum over a stencilI of grid points surrounding
the particle positionzi andDV is the coordinate 3-volume o
the stencilI. We determine the weightswI representing thed
function by choosing a set of test functions, e.g. for the st
cil of eight points determined by the cell surrounding t
particle we choose

f5a1ai~xi2zi !1ai j ~xi2zi !~xj2zj !

1ai jk~xi2zi !~xj2zj !~xk2zk!, ~3.9!

whereiÞ j Þk so that thea’s constitute eight arbitrary coef
ficients. This then gives 8 simultaneous equations to so
for the wI , which are given explicitly in Eq.~4.6! below.

It is necessary to renormalize the metric so as to av
infinities in the equations of motion. The metric occu
through the normalization of the 4-velocityva and the rais-
ing of indices. We take the components (v r ,vA) to be basic
since they represent the pullback of the 4-velocity to the n
hypersurface. We renormalize the other components by u
the background metricg[ M ]ab to raise indices and to norma
ize the 4-velocity. This avoids the problem of an infini
self-potential energy of the particle and is in keeping with t
principle that the energy of the particle only depends on
velocity and position in the Schwarzschild field. It should
emphasized that this renormalization, or use ofg[ M ]ab rather
thangab , applies only to theundifferentiatedmetric. Metric
derivatives that occur in the particle equations of motion
computed using the full metricgab—otherwise radiation re-
action could not be included and we would simply be co
puting the motion of a test particle in the Schwarzsch
geometry. Of course, it is the full metric which is evolved b
the characteristic algorithm.

Although we were able to use thed-function model to
compute qualitatively reasonable orbits for the proble
considered in Secs. V B and V C, they were significantly le
smooth than with the PP model, and the growth in the dev
tion from a Schwarzschild orbit was much faster. Further,
did not find any quantity that exhibited convergence, mak
it problematic to use thed-function model to obtain physica
predictions. Perhaps a more sophisticated numerical
proach might lead to convergence of global quantities,
this would be a difficult project that we do not pursue he
5-3
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C. Modeling the particle orbit

A goal of this work is to study radiation reaction. This
a small effect, and, numerically, it could be hidden if term
of order unity ~representing the background Schwarzsch
geometry! are added and subtracted in the equations of m
tion. The motion of a test particle in a background Schwa
schild geometry satisfies certain conservation laws; the
tion of a particle with mass 0,m!M does not satisfy thes
laws, but they are nevertheless useful because these
indicate quantities that change very slowly. Our strategy i
use the Schwarzschild conservation laws to find quanti
that, in the general case, evolve slowly. In the process,
background Schwarzschild terms cancel out and we are
with expressions involving only small quantities.

For the case of a test particle in the Schwarzschild ge
etry there is a reflection symmetry plane, the plane of
orbit. Thus the normalized 4-velocity is completely det
mined by its componentsTava5vu andFava5vf , where
Ta and Fa are the Killing vectors of the Schwarzschi
background andvf is a velocity component with respect t
(u,r ,u,f) null-spherical coordinates. In the general case,vu
and vf are approximately conserved. Partly because of
stereographic coordinates being used, the implementatio
quite technical~see Sec. IV D for details!.

D. Caustics

The characteristic evolution code breaks down if caus
develop, which render the null coordinate system emplo
singular. A rough estimate can be readily obtained by e
ploying the well-known condition for the deflection of ligh
by a massive body such as the Sun. We find as an app
mate condition for caustics not to form that

R
*
2

4m
.r . ~3.10!

IV. COMPUTATIONAL METHOD

A. Overview

The PP method evolves both the matter and gravity fie
At each grid-point at which the density is nonzero, the p
ticle’s density, pressure and 3-velocity are found and use
construct the right hand side of the Einstein equations,
the gravitational field is then evolved as described in Sec
The gravitational field affects the motion of the particle: t
3-velocityv i is evolved by using the geodesic equation in t
form

dv i

du
5

Ga igvdveg
adgge

vu
, ~4.1!

and the particle’s position is evolved by

dzi

du
5

v i

vu
. ~4.2!
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The setting of initial data is described in Sec. IV C belo
The worldtube G at r 52M is the ~past! horizon of a
Schwarzschild black hole of massM. Thus the boundary data
on G has the simple analytic form@32#

J5n5k5b5B5U5Q50, W522M . ~4.3!

B. Computational algorithms

The iterative evolution algorithm proceeds as follows:

~1! Start at timeu5u(n). The gravitational fieldgab
(n21) is

known over the whole grid and the boundary data supp
gab

(n) in a neighborhood ofr 52M . The particle’s position
zi (n) and velocityv i

(n) are also known.
~2! Determine the grid-cellGP

(n) containing the pointzi (n);
i.e., determineai such that

r (a1),z1(n),r (a111),

q(a2),z2(n),q(a211),

p(a3),z3(n),p(a311). ~4.4!

This is done on both north and south patches, although if
particle is not in the equatorial overlap region there will be
solution for only one of the patches. We define

D i (n)5xai112xai, d0
i (n)5xai112zi (n),

d1
i (n)5zi (n)2xai ~4.5!

and we define weights at the eight grid-points at the corn
of GP

(n) by

w~xai1ei !5
de1

1(n)de2

2(n)de3

3(n)

D1(n)D2(n)D3(n)
, ~4.6!

whereei5$0,1%.
~3! Next, we set the density and pressure. In general,

needs to be done on both north and south patches. The
sity at the grid-pointxi is set by means of Eqs.~3.1!–~3.4!;
then the pressureP is set.

~4! The Einstein equations are now integrated to find
metric gab

(n) . The source terms are given in@32# @where, as
already noted, Eq.~31! should be replaced by Eq.~2.4!#.

~5! The formulagabvavb521 is used to findvu
(n) ; the

metricgab is known at the required grid-points and its valu
at the particle positionzi (n) is found by taking a weighted
average using the weights found in Eq.~4.6! above.

~6! The formulava5gabvb is used to findva(n), again
using the weighted average to findgab.

~7! Equation~4.2! is now used to findzi (n11). On the first
time step, this is done by the Euler method and, on sub
quent time steps, by the 3-point Adams-Bashforth meth
i.e.

z(n11)5z(n)1
Du

2 S 3
dz

du

~n!

2
dz

du

(n21)D . ~4.7!
5-4
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~8! We now findv i
(n11) . The right hand side of Eq.~4.1!

is evaluated atzi (n) by, as usual, finding the value at th
grid-points and taking a weighted average using the weig
found in Eq. ~4.6! above. The terms in Eq.~4.1! are quite
complicated and were found using a Maple script, which w
also used to generate Fortran code. Details are given in
Appendix. The numerical evolution method is the same
used in step~7!.

C. Setting the initial data

We have experimented with various ways of setting
initial data, and found that, apart from some early transi
effects, the options tried make little difference to both t
particle orbit and the gravitational field. The initial gravit
tional content is prescribed by settingJ50 at u50. ~It is
also possible to set the initial dataJ by a Newtonian limit
condition @23,34,35#, the computational implementation o
which will be discussed elsewhere.! Of course, this means
that we are introducing spurious gravitational radiation in
the initial data, which might have the effect of initializing th
particle into a different orbit to that intended. We tried evo
ing the code for a predetermined timeuS ~and uS could be
possibly set to zero!, during which time the particle’s veloc
ity and position are not updated. The idea is that the gra
tational field should relax to the correct form, with the sp
rious initial gravitation content radiating away, by the tim
uS when the particle is allowed to move.

The code requires the initial velocity as a 1-formv i but a
physical description normally specifies the tangent vectorv i .
For example, a particle in a circular orbit would have

v r50, ~vp!21~vq!25
F2M

4r 2~r 23M !
. ~4.8!

Suppose that we are givenv i rather thanv i . Initially, when
only the background metric is known,v i is constructed from
v i using

g[ M ]abvavb521 ~4.9!

to first determinevu; then v i5g[ M ] iava. Then, while u
<uS , the code uses the fact thatva is found at each time
step to determine a value ofv r such thatv r50 by an itera-
tive algorithm. Explicitly, we use the secant algorithm

v r (a11)5v r (a)2v (a)
r f S

v r (a)2v r (a21)

v (a)
r 2v (a21)

r
, ~4.10!

wherea is the iteration number andf S is a factor~which is 1
in the standard algorithm! that may need to be set to 0.2 o
smaller for stable convergence—the difficulty here is that
are solvingv r(v r)50 not as a simple algebraic equation b
as an equation whose coefficients change as the metri
laxes.

We found that the value ofuS has little effect on com-
puted orbits, at least for the cases computed in Sec.
below. Thus, we will setuS50. Nevertheless, the option o
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setting a nonzerouS is retained in the code in case circum
stances are found in which a smoother evolution is obtain

D. Implementation of the approximate conservation laws

The theoretical basis for using approximate angular m
mentum and energy conservation to improve the accurac
the orbit computation, was discussed in Sec. III C. We n
present details of how this is implemented for~1! the angular
momentum in an equatorial orbit,~2! the angular momentum
in a polar orbit, and~3! the energy. The code is written s
that all of these approximate conservation laws may be u
or not, simply by changing input parameter switches.

1. Angular velocity in an equatorial orbit

The angular momentum per unit mass

h5qvp2pvq ~4.11!

is approximately conserved. In terms of proper timet along
the particle’s trajectory,

dh

dt
5vqvp1q

dvp

dt
2vpvq2p

dvq

dt
. ~4.12!

Now, Eq. ~4.1! takes the form

d

dt
vA52

zA

r 2
„~vp!21~vq!2

…1EA , A5~q,p!,

~4.13!

where theEA contain only small quantities. We also intro
duce the small quantitym i5(gia2g[ M ]

ia )va , which repre-
sents the difference between raising an index of the covar
velocity by the full or background metric. Thus,

vA5mA1
vA

r 2
. ~4.14!

Combining Eqs.~4.12!, ~4.13! and ~4.14!, we obtain

dh

dt
5mqvp2mpvq1qEp2pEq , ~4.15!

which is implemented in the code. We extractvA from the
evolved value ofh. This is done by using the constraint th
the particle is on the equator,q21p251. Thusqvq1pvp

50 so that

qS mq1
vq

r 2 D 1pS mp1
vp

r 2 D 50. ~4.16!

Combining Eqs.~4.11! and ~4.16!, we find

vq52ph2r 2q~qmq1pmp!

vp5qh2r 2p~qmq1pmp!, ~4.17!
5-5
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which is implemented in the code. Furthermore, the part
is constrained to follow the equator exactly, and so the p
ticle’s position is corrected according tozA→zAf e with

f e5A 1

q21p2
. ~4.18!

2. Angular velocity in a polar orbit

In the case of polar motion, simplified here to the ca
p50, the equations analogous to Eqs.~4.11!, ~4.15! and
~4.17! are

h5
Fvq

2
,

dh

dt
5

FAq

2
1qvqmq, vq5

2h

F
. ~4.19!

3. The energy

The energy per unit massvu is conserved along a geode
sic in the Schwarzschild background. In this case

vuS5
h21r 21v r

2~r 222Mr !

2v r r
2

. ~4.20!

We takevuS, as defined above, to be an approximately c
served quantity. From Eq.~4.1!,

d

dt
v r52

h2

r 3
2

v r
2M

r 2
1E1 . ~4.21!

Using

dr

dt
5v r52vuS1S 12

2M

r D v r1m r , ~4.22!

differentiation of Eq.~4.20! leads to

d

dt
vuS5S 2h

dh

dt
rv r12v r

3Mrm r22h2v rm
r

1E1~r 3v r
22r 322Mr 2v r

22h2r ! D 1

2r 3v r
2

.

~4.23!

There is an option in the code to evolvevuS by Eq.~4.23!. In
this case, we extractv r from the value ofvuS. This is done
by rewriting Eq.~4.20! as a quadratic inv r . We find

v r5

vuS6AvuS
2 2S 12

2M

r D S 11
h2

r 2 D
S 12

2M

r D . ~4.24!

When the code is evolvingvuS by Eq. ~4.23!, at each time
step it also evolvesv r in the usual way. The6 in Eq. ~4.24!
is chosen so that the result forv r is closest to the directly
evolved value; further, if the square root in Eq.~4.24! is less
than some threshold, or imaginary, the directly evolved va
08401
e
r-

e

-

e

of v r is not corrected. For a circular orbit of the Schwar
schild background, the square root is exactly zero, and th
fore it is difficult to use this option when evolving a circula
orbit.

E. The metric variable W

The only Bondi-Sachs metric variable that is nonzero
the background metric isW, and in order to improve numeri
cal accuracy, the code treatsW as the sum of the backgroun
analytic part (Wan) plus a correction (Wnum). The values of
Wan and its derivatives are found exactly, and finite diffe
encing is applied only to the partWnum. In effect, this also
applies to the other metric variables, because their ba
ground analytic parts are zero.

V. COMPUTATIONAL TESTS AND RESULTS

A. Convergence

1. Initial accelerations

First, we investigated the convergence of various acc
erations on the initial null cone, and in so doing tested
gravitational hypersurface equations, the gravitational evo
tion equation and the particle evolution equations. The te
were made with the particle initialized atr 59 at the north
pole with v r5vp50 andvq set to the value for a circula
orbit. The particle mass wasm51024. The particle velocity
was updated directly, without incorporating approxima
conservation laws. The overlap between north and so
patches was minimal (qs51.0). The size of the polytrope
wasR* 55.0. The following quantities, all of which are rate
of change, were determined on the initial null cone:uuJ,uuu` ,
h,u vu,u , v r ,t and vq,t . The quantities involvingu deriva-
tives were found by evolving the code for one time step a
then applying the formulaQ,u5(Q12Q0)/Du; the quanti-
ties involving t derivatives are found directly by the cod
using data only on the initial null cone.

The following grids were used:~a! coarse,nx541, nq
5np525; ~b! medium nx581, nq5np545; and ~c! fine,
nx5161, nq5np585. In the different grids,Dx and Dq
5Dp scale as 4:2:1. The~single! time step wasDu51025,
which, for all grids, is much smaller than the spatial discre
zation, so that second order spatial accuracy is expected
suming that a quantityQ behaves asQ5a1bDn, it is
straightforward to show that

n5 log2

Qc2Qm

Qm2Qf
~5.1!

where Qc , Qm and Qf refer to the computed values ofQ
using the coarse, medium and fine grids, respectively.

Our results are stated in Table I: it is clear that, on t
initial null cone, the polytropic model is convergent with th
ordern in the range 1.59 to 2.28.

2. Circular orbit

Secondly, we performed a convergence test for a part
in a circular orbit around a black hole. For the coarse a
medium grids, the particle completed a whole orbit, but
5-6
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TABLE I. Convergence of the polytropic model.

Coarse Medium Fine n

uuJ,uuu` 0.434631022 0.444131022 0.446031022 2.28
h,u 20.737731022 20.343631022 20.212931022 1.59
vu,u 0.273231024 0.127331024 0.078931024 1.59
v r ,t 20.505031023 20.545531023 20.556431023 1.9
vq,t 21.806931023 20.841631023 20.521531023 1.59
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the fine grid this was not possible. The particle was initi
ized atr 59, q50 andp51 with v r5vp50 andvq set to
the value required for a circular equatorial orbit. The mass
the particle wasm51026 and the size wasR* 53 ~the re-
quirement that the polytrope should be resolvable by all g
places a lower limit onR* ). We used the technique in Se
IV D to model approximate conservation of angular mome
tum, but not of energy. The angular grid-patch overlap w
qs51.2. The test results are for the time interval 0<u<20
representing just under 1/8 of a whole orbit. The grids u
were ~a! coarse, nx561, nq5np520 with du51.6666
31022; ~b! medium, nx5121, nq5np535, du58.3333
31023; and ~c! fine, nx5241, nq5np565, with du
54.166631023.

The convergence rate ofvu , betweenu50 andu520 as
estimated from Eq.~5.1!, is shown in Fig. 1; the average ra
is n51.064, so that the effective convergence rate of
particle’s energy is approximately first order. This is an a

0 5 10 15 20
u

0.5

1

1.5

2

co
nv

. r
at

e 
of

 E
/m

FIG. 1. Convergence rate ofE/m as a function of time for 0
,u,20.
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e
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fact of the numerical scheme used in the evolution equat
which for a fixed value of the dissipation parameter is on
first order in time@21#.

B. Whole orbit with mÅ0

The various input parameters were described in S
V A 2 ~circular orbit!, medium grid. The computation wa
run for 25 000 time steps untilu5208 and represents mor
than one orbit~which is achieved at aboutu5170); the com-
putation took about 24 hours of wall-clock computer tim
As discussed in Sec. V A 2, the results are within the c
vergence regime of the numerical method. The run was
formed for illustrative purposes and is not physical becaus
polytrope with the parameters used here would be tida
disrupted.

The results of the computation are shown in Figs. 2 to
in which the particle inspirals~Fig. 2!, losing energy~Fig. 4!
and angular momentum~Fig. 3!. Figure 5 shows the time
development of theL1 norm of J,u , which provides a mea-
sure of the dynamic activity of the gravitational field. W

0 50 100 150 200 250
u

8.98

8.985

8.99

8.995

9

r p
ar

tic
le

FIG. 2. r coordinate for a complete orbit.
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also performed whole orbit computations with input para
eters as above, but varying the particle mass by powers o
in the range 1024 to 1029. We found that the energy loss ra
scales, as expected, asm2.

0 50 100 150 200 250
u

3.675

3.6745

3.674

3.6735

3.673

3.6725

3.672
L

/m

FIG. 3. Angular momentum per unit particle mass for a co
plete orbit.

0 50 100 150 200 250
u

0.95258

0.95256

0.95254

0.95252

FIG. 4. Energy per unit particle mass for a complete orbit.
08401
-
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In our numerical method, the measured inspiral wasDr
520.016 after one complete orbit. The inspiral after o
orbit is Dr 522.9831026 according to the quadrupole for
mula @36#, andDr 524.7531026 according to a perturba
tive method@11,37#. The rate of energy loss, i.e. the rate
change ofE5mvu , is a better measure of the inspiral rat
becauseDr after one orbit includes a contribution due to th
orbit becoming slightly elliptical. Averaged over a comple
orbit, the measured rate for the numerical method isdE/du
52.669310213, whereas the quadrupole formula predic
dE/du51.10310216, and the perturbative method give
dE/du51.75310216. There is thus a discrepancy betwe
the energy loss rates found here and by other methods.
cause of the discrepancy is not known, and may compris
number of factors:~a! in order to resolve the particle prop
erly, we are forced to make its size too large for it to
physical, and thus the model ignores internal tidal stres
that in this case are large~see Sec. III A!; ~b! lack of resolu-
tion; and~c! other. The issue is discussed further in the Co
clusion, Sec. VI.

C. Capture of particle by the black hole

The purpose of the test was to see how the code beh
as the particle approaches the event horizon atr 52, and the
particle was initialized atr 56, i.e. at the ISCO. The size o
the particle wasR* 52, and so, as with the complete orb
computation, the model ignores significant tidal stresses
is not physical. In order to shorten the inspiral time the p
ticle was given a small inward radial velocity (v r5
20.01), and the angular velocity was set to that for a cir
lar orbit in the test particle limit (vq50.0962,vp50). The

-

0 50 100 150 200 250
u

0

||J
,u
|| 1

4x10

3x10

2x10

       

1x10-7

-7
     

-7

-7

FIG. 5. L1 norm of the radiation indicator,iJ,ui1, for a complete
orbit.
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test was performed with two different grids, enabling us
see at which stage numerical errors become significant.
grids used werenx5121, nq5np535, du58.333331023

~medium grid!; and nx581, nq5np525, du51.2531022

~coarser grid!.
In the coordinates being used, asr→2 the evolution vari-

ablev r→`. Thus, because of this coordinate effect, we e
pect the code to crash at some value ofr just greater than 2
The results of the computation are shown in Figs. 6 to 9
the medium grid computation, the particle inspirals until t
code crashes atu5182.5 with the particle atr 52.00077 and
uv r u'5000. The particle completed just over two comple
revolutions, i.e. its angular position changed by just overp
radians during the evolution. The particle crossedr 52.1 at
u5162.5, r 52.01 atu5172.5 andr 52.001 atu5181.7;
thus demonstrating a freezing of radial position, as expec
due to the redshift inherent in theu coordinate. Throughou
the computation, the position of the particle varies smoot
~Fig. 6!. The particle loses energy~Fig. 8! and angular mo-
mentum ~Fig. 7! at a fairly constant rate, until aboutu
5150, r 53.2. Further, the activity of the gravitational fiel
~as measured byiJ,ui , Fig. 9! starts to grow rapidly at this
time. We have not analyzed the cause of this effect. T
results of the coarser grid match those of the medium g
reasonably well until aboutu5170, at which stager
'2.02.

D. Other experiments and computational issues

A run was performed using the same input parameter
in Sec. V B, except thatm50. The orbit was found to be
exactly circular, with no loss of energy or angular mome
tum. Because the numerical method implements the appr

FIG. 6. The orbit, in the (x,y)5(r cosf,r sinf) plane, traced
by a particle, initially atr 56, as it is captured by a black hole
Overlaid in the figure is the orbit traced by a particle initially atr
59 ~dotted line!. The central circle indicates the location of th
horizon (r 52).
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mate conservation of angular momentum, which in this c
is exact, the angular momentum behaved as expected. H
ever, conservation of energy was not enforced. The only~mi-
nor! error was in the time for an orbit: the numerical meth

0 50 100 150 200
u

3.465

3.464

3.463

3.462

L
/m

medium
coarser

FIG. 7. Angular momentum per unit particle mass for the ca
ture of a particle by a black hole.

0 50 100 150 200
u

0.9434

0.9432

0.943

0.9428

0.9426

E
/m

medium
coarser

FIG. 8. Energy per unit particle mass for the capture of a p
ticle by a black hole.
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yieldedDu5169.638~for the grid used in this specific run!,
whereas the analytic value is 2pr 3/25169.646. In order to
check that the exact conservation of energy was not ju
consequence of the orbit being exactly circular, we also d
run for a noncircular orbit, starting atr 59, q50, p51 and
with initial velocity v r50, vq50.047, vp50. The particle
was found to move in an orbit betweenr 59 andr 511.79,
and there was a very small change invu : energy was con-
served, in the sense ofdvu /du50, to the order of one par
in 1014.

A simple test of the code is to determine if it produc
results concerning caustic formation that are consistent w
the estimate given in Eq.~3.10!. We performed a number o
short runs~up to 100 iterations!, each with a different value
of particle massm, and made a binary chop search to find t
critical value ofm above which the code crashes due to
onset of caustic formation~indicated by the metric variable
b→` at I 1). The test was performed with initial velocit
v i50, initial positionr 59 at the north pole, and polytropi
radiusR* 52. The grid discretization wasnx5121, nq5np
535, with time stepdt58.333331023. We found that the
code behaved properly withm50.03 but crashed whenm
50.04, consistent with the critical value ofm50.111 indi-
cated by Eq.~3.10!.

Unfortunately, it is not possible, at this time, to prese
results on gravitational radiation output. The module used
the code for calculating the news@21# was originally devel-
oped and tested under conditions in which the fields are w
resolved atI 1, which is not the case for particle applica

0 50 100 150 200
u

10
7

10
6

10
5

10
4

10
3

10
2

||J
,u
|| 1

medium
coarser

FIG. 9. L1 norm of the radiation indicator,iJ,ui1, shown using
a logarithmic scale in the vertical axis, for the capture of a part
by a black hole.
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tions. Improvements in the news computation have rece
been investigated@38,39#, but it is not yet known whether the
radiation from a particle source can be reliably comput
Results will be reported elsewhere after the necessary de
opment and testing.

The tests were performed on a Linux machine with
single processor running at 1.8 GHz. The complete orbit
reported in Sec. V B used a grid of 1213352 points~on each
angular patch! and 25 000 time steps. The run time was abo
24 hours. Of course, the run time scales with grid discreti
tion asD24.

VI. CONCLUSION

In this paper we have described and implemented the
method for evolving the full Einstein equations using a ch
acteristic evolution code. The method could be adapted
used within other numerical relativity frameworks. The P
method can be a useful tool in modeling astrophysical s
ations involving a black hole and another much smaller
ject, in a regime in which a full hydrodynamic model is n
necessary. We have demonstrated that the method work
the sense that it computes orbits that are convergent,
deviations from a Schwarzschild orbit scale as expected w
particle massm. However, the computed inspiral rate wa
much larger than that predicted by other methods. A feat
of the code is that it avoids the computational expense
modeling the material object by means of relativistic hyd
dynamics.

The PP method has the potential to supply accurate or
including inspirals towards the ISCO and plunges to
black hole, as well as the associated gravitational radia
output. Such results would be useful both directly, and a
indirectly in providing error bars against which other met
ods could be tested. In the tests described here, the nee
resolve the particle has prevented us from making the p
ticle radius small enough so that its local rigidity is justifie
In order to achieve a proper physical basis for the model,
envisage the following future work.

~1! It is necessary to investigate the effect of the polytro
radius (R* ) on particle motion. On physical ground
one would expect that in some regime the particle m
tion should be independent ofR* . ~Of course, taking the
limit R* →0 is equivalent to changing from the poly
tropic to ad-function model, and this link provided mo
tivation for the investigation of that model.!

~2! Once parameters for the model that are physically re
istic can be attained, it will be necessary to investig
whether the PP method computes reliable energy
rates.

~3! The gravitational radiation output~Bondi news function!
is required, both to supply a waveform and to check
energy balance~the rate of loss of orbital energymvu

should be of the same magnitude as the radiation pow!.
~4! Once the above issues have been resolved, it will

necessary to validate the PP method by obtaining res
that agree, in some regime, with results obtained by
other method.

e
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APPENDIX: THE GEODESIC EQUATION

We have used Maple to compute the form of Eq.~4.1! for
the metric~2.1!. The angular part ofv i , vA is represented by
the spin weighted quantityVang5vAqA. Further, for ease of
application to the approximate conservation method~Secs.
III C and IV D!, the formulas are presented with the zero
order quantities~in each case, the first line! shown separately
from the perturbative (Ei) quantities:
dv r

dt
5

2V̄angVang2v r
2~rW,r2W!r

2r 3
1„14V̄angVang~12K !22~e22b21!v r

2~rW,r2W!rK 22JV̄ang
2 K14V̄angVangJ̄J

2rV̄angVangJ,r J̄2rV̄angVangJJ̄,r24b ,re
22bv r r

3ŪVangK24b ,re
22bv r r

3UV̄angK22J̄Vang
2 K

14e22bv r
2b ,r~r 1W!r 2K28b ,re

22bv r r
3vuK1rJ ,r V̄ang

2 K12e22bv r r
3Ū ,rVangK

12e22bv r r
3U ,r V̄angK1rJ̄ ,rVang

2 K…

1

4Kr 3
, ~A1!

dVang

dt
52

~q1 ip !V̄angVang

r 2
1„24~q1 ip !V̄angVang~K21!14~ZK !JJ̄V̄angVang22~ZJ!KJ̄V̄angVang

22~ZJ̄!KJV̄angVang24e22bv r~Zb!r 2UV̄ang24e22bv r~Zb!r 2ŪVang22e22bv r
2~ZW!r

14e22bv r
2~r 1W!~Zb!r 28e22bv r~Zb!r 2vu1~ZJ̄!J2V̄ang

2 1~ZJ!J̄2Vang
2 22~ZK !JKV̄ang

2 22~ZK !J̄KVang
2

12~ZK !V̄angVang1~ZJ!V̄ang
2 J̄J1~ZJ̄!Vang

2 J̄J14ipJ̄Vang
2 1~ZJ!V̄ang

2 1~ZJ̄!Vang
2 14qJ̄Vang

2

12r 2e22bv r~ZŪ !Vang12r 2e22bv r~ZU !V̄ang14r 2e22bv rqŪVang14ir 2e22bv rpŪVang…
1

4r 2
. ~A2!
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