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Topological charged black holes in high dimensional spacetimes and their formation
from gravitational collapse of a type II fluid

Yumei Wu,1,* M. F. A. da Silva,2,† N. O. Santos,3,4,‡ and Anzhong Wang2,5,6,§

1Instituto de Matema´tica, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, CEP. 21945-970, Rio de Janeiro-RJ, Br
2Departamento de Fı´sica Teo´rica, Universidade do Estado do Rio de Janeiro, Rua Sa˜o Francisco Xavier 524, Maracana˜, CEP.

20550-013, Rio de Janeiro-RJ, Brazil
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Topological charged black holes coupled with a cosmological constant inR23XD22 spacetimes are studied,
where XD22 is an Einstein space of the form(D22)RAB5k(D23)hAB . The global structure for the four-
dimensional spacetimes withk50 is investigated systematically. The most general solutions that represent a
type II fluid in such a high dimensional spacetime are found and show that topological charged black holes can
be formed from the gravitational collapse of such a fluid. When the spacetime is~asymptotically! self-similar,
the collapse always forms black holes fork50, 21, in contrast with the casek51, where it can form either
black holes or naked singularities.
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I. INTRODUCTION

Lately black holes in high dimensions have attracted
great deal of attention in the gravity-gauge theory corresp
dence@1#, and have been further promoted by theories
TeV gravity, in which high dimensional black holes are pr
dicted to be produced in the next generation of colliders@2#.

In black hole physics, one of the fundamental feature
the topology of a black hole. In four-dimensional asympto
cally flat stationary spacetimes, Hawking first showed tha
black hole has necessarily anS2 topology, provided that the
dominant energy condition holds@3#. Later, it was realized
that Hawking’s theorem can be improved in various aspe
see @4# and references therein. However, once the ene
condition is relaxed, a black hole can have quite differ
topologies. Such examples can occur even in 311 dimen-
sional spacetimes where the cosmological constant is n
tive @5#. In high dimensional spacetimes, it was found th
even if the energy conditions hold, the topology is still n
unique. In particular, a five-dimensional rotating vacuu
black hole can have either anS3 topology @6#, or an S2

3S1 topology @7#, although a static charged dilaton blac
hole in high dimensional asymptotically flat spacetimes
deed has a unique topology, which is a (D22)-sphere@8#.
When the cosmological constant is different from zero, sim
lar to the four-dimensional case, static black holes can h
different topologies@9#.

In this paper we shall study the formation of topologic
black holes from gravitational collapse of a type II fluid
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high dimensional spacetimes. Specifically, the paper is o
nized as follows: In Sec. II we present a generalR23XD22

decomposition. In Sec. III, assuming thatXD22 is an Ein-
stein space with a constant curvature,(D22)RAB5kDhAB , we
rederive the charged solutions coupled with a cosmolog
constant in any dimensional spacetimes, without assum
that the spacetime is static. In Sec. IV we systematica
study the global structure for the caseD54 and kD50,
while in Sec. V, all the type II fluid solutions in
D-dimensional spacetimes are given. In Sec. VI we study
formation of topological charged and uncharged black ho
from the gravitational collapse of such a fluid, while in Se
VII our main conclusions are summarized. There is also
Appendix, in which trapped surfaces and apparent horiz
are defined.

Before proceeding further, we would like to note that t
formation of topological black holes from gravitational co
lapse in four-dimensional spacetimes was studied in@10#,
while gravitational collapse in high dimensional spherica
symmetric spacetimes was investigated in@11#.

II. R2ÃXDÀ2 DECOMPOSITION

In this paper let us consider aD-dimensional spacetime
described by the metric

ds25gmndxmdxn5gab~xc!dxadxb1s2~xc!hAB~xC!dxAdxB,
~2.1!

where we use Greek indices, such asm, n, l, to run from 0
to D21, lowercase Latin indices, such asa, b, c, . . . , to
run from 0 to 1, and uppercase Latin indices, such
A, B, C . . . , to run from 2 to D21. Clearly, the above
metric is invariant under the coordinate transformations,

xa5xa~x8b!, xA5xA~x8B!. ~2.2!
©2003 The American Physical Society12-1
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Introducing the quantitiesgab(xc) andhAB(xC) via the rela-
tions

gacgcb5db
a , hAChCB5dB

A , ~2.3!

we find that

gmn5S gab 0

0 s2hABD , gmn5S gab 0

0 s22hABD .

~2.4!

Then, the nonvanishing Christoffel symbols are given by

(D)Gbc
a 5 (2)Gbc

a , (D)GAB
a 52hABss,a,

(D)GaB
A 5s21s,adB

A , (D)GBC
A 5 (n)GBC

A , ~2.5!

where s,a[]s/]xa, s,a[gabs,b , (2)Gbc
a and(n)GBC

A are the
Christoffel symbols calculated, respectively, fromgab(x

c)
andhAB(xC), andn[D22. From Eq.~2.5! we find that the
Ricci tensor, defined by

(D)Rmn5 (D)Gmn,l
l 2 (D)Glm,n

l 1 (D)Gls
l (D)Gmn

s

2 (D)Gsn
l (D)Glm

s , ~2.6!

has the following nonvanishing components:

(D)Rab5 (2)Rab2
D22

s
¹a¹bs,

(D)RAB5 (n)RAB2@shs1~D23!~¹cs!

3~¹cs!#hAB , ~2.7!

whereh[gab¹a¹b , and¹a denotes the covariant derivativ
with respect togab .

To calculate(2)Rab , we first note that the Riemann tens
(2)Rabcd has only one independent component, say,(2)R0101.
Then, in terms of(2)R0101 we have

(2)Rabcd5
(2)R0101~da

0db
1dc

0dd
12da

0db
1dc

1dd
02da

1db
0dc

0dd
1

1da
1db

0dc
1dd

0!,

(2)Rab[
(2)Rc

acb

5 (2)R0101@g11da
0db

02g01~da
0db

11da
1db

0!

1g00da
1db

1#. ~2.8!

On the other hand, for the second block of the metric,
shall consider only the case wherehAB represents an
n-dimensional surface with constant curvature,

(n)RAB5kDhAB~xC!, ~2.9!

where, without loss of generality, one can always setkD
5(D23)k with k521, 0, 1. Then the surfaces of consta
xa will be referred to, respectively, to ashyperbolic, flat, and
elliptic.
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III. TOPOLOGICAL CHARGED BLACK HOLES
COUPLED WITH THE COSMOLOGICAL CONSTANT

Using the gauge freedom of Eq.~2.2!, in this section we
shall choose the coordinates such that

g tr~xc!50, s~xc!5r , ~3.1!

where xc5$t,r %. This will be referred to asthe Schwarz-
schild gauge. Then, we find that

ds252e2F(t,r )dt21e2C(t,r )dr21r 2hAB~xC!dxAdxB.
~3.2!

For such a form, there still remains the gauge freedom

t5t~ t̄ !. ~3.3!

Later, we shall use it to fix some integration functions. F
the metric~3.2! we find

(2)Rab52
1

2
(2)R~e2Fda

0db
02e2Cda

1db
1!,

(2)R52$e22F@C ,tt1C ,t~C ,t2F ,t!#

2e22C@F ,rr 1F ,r~F ,r2C ,r !#%. ~3.4!

It can be also shown that

¹a¹br 52e2(F2C)F ,rda
0db

02C ,t~da
0db

11da
1db

0!2C ,rda
1db

1 ,

hr 5e22c~F ,r2C ,r !. ~3.5!

Substituting Eqs.~2.9!, ~3.4!, and ~3.5! into Eq. ~2.7! we
obtain

(D)R0052@C ,tt1C ,t~C ,t2F ,t!#1e2(F2C)

3FF ,rr 1F ,r S F ,r2C ,r1
D22

r D G , ~3.6!

(D)R015
D22

r
C ,t , ~3.7!

(D)R115e2(C2F)@C ,tt1C ,t~C ,t2F ,t!#

2S F ,rr 1F ,r~F ,r2C ,r !2
D22

r
C ,r D , ~3.8!

(D)RAB5$kD2@r ~F ,r2C ,r !1~D23!#e22C%hAB .
~3.9!

On the other hand, theD-dimensional Einstein-Maxwel
equations with the cosmological constant,LD , read

(D)Rmn2
1

2
gmn

(D)R58pGD
(D)Emn2LDgmn ,

~3.10!

where the energy-momentum tensor(D)Emn is given by
2-2
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(D)Emn5
1

4pGD
S (D)Fma

(D)Fn
a2

1

4
gmn

(D)Fab
(D)FabD ,

~3.11!

with the electromagnetic field(D)Fmn satisfying the Maxwell
equations,

Dn (D)Fmn50, ~3.12!

whereDn denotes the covariant derivative with respect to
D-dimensional metricgmn . From the symmetry of the space
time, without loss of generality, we can always assu
that (D)Fmn is a function oft andr only, and takes the form

(D)Fmn5F~ t,r !~dm
0 dn

12dm
1 dn

0!. ~3.13!

Substituting Eqs.~3.11! and ~3.12! into Eq. ~3.10! we find
that

(D)Rmn5F2S 2~e22Cdm
0 dn

02e22Fdm
1 dn

1!

1
2

D22
e22(F1C)gmnD1

2LD

D22
gmn . ~3.14!

Combining Eq.~3.7! with the above equation, we obtain

C~ t,r !5C~r !. ~3.15!

On the other hand, from the Maxwell field equation~3.12!
we have

F~ t,r !5
C0

r D22
eF1C, ~3.16!

whereC0 is an integration constant. Inserting Eqs.~3.15! and
~3.16! into Eqs.~3.6!–~3.9!, we find the following indepen-
dent equations:

F ,rr 1F ,r S F ,r2C ,r1
D22

r D
5e2CS C1

r 2(D22)
2

2LD

D22D , ~3.17!

F ,rr 1F ,r~F ,r2C ,r !2
D22

r
C ,r

5e2CS C1

r 2(D22)
2

2LD

D22D , ~3.18!

kDe2C2r ~F ,r2C ,r !2~D23!

5e2CS C1

~D23!r 2(D23)
1

2LD

D22
r 2D , ~3.19!

where C1[2(D23)C0
2/(D22). From Eqs. ~3.17! and

~3.18! we obtain

F~ t,r !52C~r !1F0~ t !, ~3.20!
08401
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where F0(t) is an arbitrary function. However, using th
coordinate transformation~3.3!, we can always setF0(t)
50, a condition that will be assumed below. Then, sub
tuting the above expression into Eq.~3.19! and integrating it,
we obtain

F52C5
1

2
lnS k2

2M

r D23
1

Q2

r 2(D23)
2Lr 2D , ~3.21!

where

L[
2LD

~D21!~D22!
, ~3.22!

andM andQ are two arbitrary constants, related to the to
massMD and chargeQD of the spacetime via the relation
@12#

M5
8pGDMD

~D22!AS
, Q5

4pGDQD

AS
, ~3.23!

whereAS denotes the total area of the (D22)-dimensional
surface spanned byhAB ,

AS5E AhdD22x. ~3.24!

It can be shown that the solution~3.21! also satisfies Eqs
~3.17! and ~3.18!, with the electromagnetic field given by

(D)Fmn5S ~D22!~D23!

2 D 1/2 Q

r D22
~dm

0 dn
12dm

1 dn
0!.

~3.25!
‘

When the surfaces of constantt and r are not compact,
clearly AS becomes infinity, so doMD and QD . However,
one can still keep the quantitiesm andq finite, where

m[
MD

AS
, q[

QD

AS
, ~3.26!

which may be interpreted as the mass and charge per
area.

On the other hand, from the above derivation of the so
tions one can see that they represent the most general
tions of the Einstein-Maxwell field equations coupled wi
the cosmological constant inD-dimensional spacetimes de
scribed by the metric~3.2!. In general the spacetime is sin
gular at r 50 and all the other singularities are coordina
ones. This can be seen, for example, from the Ricci sca
which now is given by

(D)R52
~D23!~D24!Q2

r 2(D22)
1

2D

D22
LD . ~3.27!
2-3



ds
iti
th

he
n
a

i-

et

e
-
n

e

ve

tu
d
lo

re
on
re
th
q
la

a

te

e

cally
ond

tity

es

ur-

y at
se

first

nd

WU et al. PHYSICAL REVIEW D 68, 084012 ~2003!
Thus to have a geodesically complete spacetime one nee
extend the spacetime beyond these coordinate singular
In the next section, we shall restrict ourselves only to
case wherekD50 andD54.

IV. FLAT TOPOLOGICAL BLACK HOLES
IN FOUR-DIMENSIONAL SPACETIMES

To study the global structure of the solutions given in t
above section, in this section we shall restrict ourselves o
to the flat case,kD50, and assume that the spacetime h
only four dimensions,D54. Then, the surface of constantt
andr can be a plane, a cylinder, a Mo¨bius band, a torus, or a
Klein bottle, depending on how to identify the two coord
nates inX2 @13#.

Setting k50 and D54 in Eq. ~3.21! we find that the
corresponding metric can be written in the form

ds252 f ~x!dt21 f 21~x!dx21x2~dy21dz2!, ~4.1!

where

f ~x!5
2b

x
1

q2

x2
2

L

3
x2,

Fmn5
q

x2
~dm

0 dn
12dm

1 dn
0!, ~4.2!

with b[2M , q[Q, andL actually beingLD . To consider
the most general case, we assume that the mass paramb
and the coordinatex take their values from the range2`
,b, x,1`. It is interesting to note that if we make th
replacement (M ,r )→(2M ,2r ), we find that the Reissner
Nordström solution coupled with a cosmological consta
remains the same. That is, the physics forM>0, r>0 is the
same as that forM<0, r<0. When the spacetime has plan
symmetry, the range of the coordinatex is 2`,x,1`.
This is the main reason why here we are allowing oursel
to also consider the case whereb.0.

It should be noted that the above solutions were also s
ied @5#. Since here we would like to give a systematical stu
for this case, some of the materials to be presented be
will be unavoidably overlapped with some presented the

From Eq.~4.1! we can see that the metric is singular
the hypersurfacesf (x)50. However, these singularities a
coordinate singularities, except for the one located on
hypersurfacex50. This can be seen, for example, from E
~3.27! as well as the corresponding Kretschmann sca
which now is given by

R[RmnldRmnld58H 1

x8
@6~q21bx!21q4#1

1

3
L2J .

~4.3!

The above expression shows clearly that the Kretschm
scalar becomes unbounded only whenx→0. As uxu→1`
the spacetime is asymptotically de Sitter or anti–de Sit
depending on the signs of the cosmological constant,L.
Thus only the singularity atx50 is a spacetime curvatur
08401
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singularity, which divides the whole (t,x)-plane into two
causally disconnected regions,x.0 andx,0. All the other
singularities are coordinate ones, and to have a geodesi
complete spacetime, we need to extend the metric bey
these singularities.

In the stationary axisymmetric case, a significant quan
that characterizes a horizon is the surface gravity@14#. In the
following we shall derive this quantity for the spacetim
described by the metric~4.1! @15#. To this end, let us con-
sider the four-acceleration of a static observer with the fo
velocity um5 f 21/2d t

m ,

am[um;nun5k~x!dx
m , ~4.4!

where

k~x![
1

2
f ,x~x!. ~4.5!

From the above equations we can see that in order to sta
a fixed pointx, the observer has to fire a jet engine who
thrust per unit mass isuk(x)u in the positivex direction for
f ,x(x).0, and in the negativex direction for f ,x(x),0. On
the horizonx5x0, where f (x0)50, the quantityk defined
by

k[k~x0!5
1

2
f ,x~x0! ~4.6!

is called the surface gravity of the horizon.1

To extend the spacetime across the horizon, we can
introduce a new coordinatex* by @16#

x* 5E dx

f ~x!
, ~4.7!

and then two null coordinates,v andw, via the relations

v5ek(t1x* ), w52e2k(t2x* ). ~4.8!

In terms ofv andw, metric ~4.1! becomes

ds252k22f ~x!e22kx* dvdw1x2~dy21dz2!. ~4.9!

To study the global structure of the spacetime, it is fou
convenient to distinguish the following cases:

A) b5” 0,q5” 0,L50; B) b5” 0,q50,L5” 0;

C) b50,q5” 0,L5” 0; D) b5” 0,q5” 0,L5” 0;

E) b5” 0,q50,L50; F) b50,q5” 0,L50;

G) b50,q50,L5” 0. ~4.10!

1Note the similarity to the spherical case:ds25 f (r )dt2

2 f (r )21dr22r 2(du21sin2udf2). For a static observer with the
four-velocity um5 f 21/2d t

m , its four-acceleration is given byam

5um;nun5( f ,r /2)d r
m . The quantityk[ f ,r(r g)/2 is called the sur-

face gravity of the horizon atr 5r g @14#.
2-4
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In the above classification, case E! corresponds to the Tau
vacuum solution@17# and the properties of which are wel
known. In particular, it has a naked singularity atx50. Case
F! represents a pure electromagnetic field with a naked
gularity atx50, while case G! corresponds to the de Sitte
or anti–de Sitter spacetime, depending on the sign of
cosmological constant. The global structure of the latte
studied extensively in@18#. Therefore in the following we
shall focus our attention only on the first four cases.

A. bÄ” 0,qÄ” 0,LÄ0

WhenL50, we find

f ~x!5
2b

x2 S x1
q2

2bD ,

f 8~x!52
2b

x3 S x1
q2

b D . ~4.11!

Now let us consider the two casesb,0 andb.0 separately.
Case A.1… b,0: In this case the functionf (x) is positive

in the whole regionx,0 @cf. Fig. 1~a!#, and the singularity at
x50 is naked. The corresponding Penrose diagram is tha
Fig. 2. Note that nowk(x)5 f 8(x)/25(ubxu1q2)uxu23 is
also positive in this region, so the naked singularity ax
50 produces a repulsive force to a stationary observer w
stays in this region. Consequently, the naked singula
should effectively have negative gravitational mass.

However, in the regionx.0, the functionf (x) becomes
zero at the point

x05
q2

2ubu
.0 ~b,0!, ~4.12!

and the corresponding surface gravity is given by

0 0

x

x

 f(x) f(x)

f f

x x
x x 0

 1

1

1

 0

1

( a ) ( b )

FIG. 1. The functionf (x) given by Eq.~4.11! in the text.~a!
The case whereb,0, in which the functionf (x) is zero atx5x0

[q2/(2ubu) and has a minimum atx5x1[2x0, where f 1(x1)
52b2/q2. ~b! The function f (x) for b.0 and now we havex0

[2q2/(2b),0 and f 1(2x0)52b2/q2.
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k52
4ubu3

q4
~b,0!. ~4.13!

Thus a stationary observer near the hypersurfacex5x0 in
this region feels a repulsive force from the region 0,x
,x0, and the totally effective gravitational mass should
also negative in this region. Integrating Eq.~4.7! we obtain

x* 5
x2

4b
2

q2x

4b2
1

q4

8b3
ln~q222ubux!. ~4.14!

On the other hand, the coefficientgvw now is given by

gvw52~A2kx!22expS 2
2ubux

q4
~q21ubux!D , ~4.15!

which shows that the metric now is well defined across
hypersurfacex5x0. Combining Eqs.~4.8! and ~4.14!, we
also have

vw52~q222ubux!expS 2ubu2

q4
x21

2ubu

q2
xD , ~4.16!

v5~q222ubux!1/2expS 2
4ubu3

q4
t1

ubu2

q4
x2

1
ubu

q2
xD ~region I!. ~4.17!

From the above expressions we can see that the coord
transformations~4.8! are restricted only to the region wher
v.0 andw,0, which will be referred to as region I@cf.
Fig. 3#. To extend the metric~4.9! to cover the whole space
time, one simply takes the range ofv and w as 2`,v,w
,1`. Then, in the (v,w) coordinates we obtain three ex

x 
   

 =
   

 0

FIG. 2. The Penrose diagram for the solution of Eq.~4.11! with
b,0 in the regionx,0. The singularity atx50 is timelike and
naked. The vertical curves are the hypersurfacesx5const and the
horizontal dotted lines are the onest5const.
2-5
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tended regions I8, II, and II8, which are absent in the (t,x)
coordinates. In each of the three extended regions, the c
dinate transformations from (v,w) to (t,x) are given by

v52~q222ubux!1/2expS 2
4ubu3

q4
t1

ubu2

q4
x2

1
ubu

q2
xD , ~region I8!,

v5~2ubux2q2!1/2expS 2
4ubu3

q4
t1

ubu2

q4
x2

1
ubu

q2
xD , ~region II!,

v52~2ubux2q2!1/2expS 2
4ubu3

q4
t1

ubu2

q4
x2

1
ubu

q2
xD , ~region II8!, ~4.18!

wherew can be found through Eq.~4.16!. Then, the corre-
sponding Penrose diagram is that of Fig. 3. From there
can see that the hypersurfacesx5x0 ~or vw50) are Cauchy
horizons that separate the two regions I and I8 from the two
asymptotically flat~only in the x direction! ones II and II8
@18#. The timelike coordinatet is past-directed in region
and future-directed in region I8, as we can see from Eqs
~4.16!–~4.18!. Across the horizons,t becomes spacelike
while x becomes timelike.

Case A.2… b.0: In this case the spacetime properties c
be obtained from the caseb,0 by the replacement (b,x)
→(2b,2x). In particular, in the regionx.0 the function
f (x) is strictly positive and the singularity atx50 is naked.
The corresponding Penrose diagram is similar to that gi
by Fig. 2, but now withx.0. In the regionx,0, the metric

II'
x 

  =
   

0 x    =
   0

 II

II'

a b

 dc

FIG. 3. The Penrose diagram for the solution of Eq.~4.11! with
b,0 in the regionx.0. The singularity atx50 is timelike and the
lines bc andad wherex5x0 are Cauchy horizons.
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becomes singular at the hypersurfacex5x0[2q2/(2b) @cf.
Fig. 1~b!#, on which we now have

k5
4b3

q4
.0 ~b.0!. ~4.19!

That is, a stationary observer near the hypersurfacex5x0 in
this region feels a repulsive force from the regionx0,x
,0. After extending the spacetime beyond this surface,
corresponding Penrose diagram is similar to that of Fig. 3
with x,0.

B. bÄ” 0,qÄ0,LÄ” 0

Whenq50, we have

f ~x!5
L

3x S 6b

L
2x3D . ~4.20!

In this case it is found convenient to distinguish the fo
subcases,

1) L.0, b.0; 2) L.0, b,0;

3) L,0, b,0; 4) L,0, b.0. ~4.21!

Case B.1… L.0,b.0: In this subcase, we find thatf (x)
is negative for allx,0. Thus in this regionx is timelike and
t is spacelike. Then, the singularity atx50 is spacelike and
naked. So, in this region the spacetime has a global struc
that is quite similar to some cosmological models.

In the regionx.0 the functionf (x) is positive only for
0<x<x0 @cf. Fig. 4#, where

x05S 6b

L D 1/3

. ~4.22!

On the hypersurfacex5x0 we have f (x0)50, which, as
shown before, is only a coordinate singularity. Thus we ne
to extend the solution beyond this hypersurface. Before
ing so, we first note that now we have

f(x)

x

x x0 01

f 1

FIG. 4. The functionf (x) given by Eq.~4.20! in the text, where
x1[2(3b/L)1/3 and f 1(x1)52@(3b)2L#1/3,0.
2-6
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k52
L

2
x0,0, ~4.23!

that is, an observer near the horizon will feel a repuls
force from the region 0,x,x0. Then, we would expect tha
the singularity atx50 has an effectively negative gravita
tional mass. This is understandable, since in the present
we haveL.0, which is energetically equivalent to a matt
field with a negative mass density.

Following the same line as outlined in the last subca
we find that the corresponding Penrose diagram is given
Fig. 5. The hypersurfacesx5x0 ~or vw50) are Cauchy ho-
rizons. The singularities atx50 now are also timelike. The
coordinatet is past-directed in region I and future-directed
region I8.

Case B.2… L.0,b,0: From Eq.~4.20! we can see tha
this case can be obtained from the last case by the rep
ment (x,b)→(2x,2b). Thus the spacetime structure fo
this case can be also obtained from the ones given in the
case by this replacement. In particular, now the solution
the regionx.0 may represent a cosmological model, a
the spacetime has a naked singularity atx50, which is
spacelike. In the regionx,0, the corresponding Penrose di
gram is that of Fig. 5 but now withx,0.

Case B.3… L,0,b,0: In this case, we find that

f ~x!5
uLu
3x S x32U6b

L U D ,

f 8~x!5
u2Lu

3x2 S x31U3b

L U D . ~4.24!

Thus in the regionx,0 the function is always positive a
shown by Fig. 6. As a result, the singularity atx50 is naked.
On the other hand, for any hypersurfacex5C, its normal
vectorna is given byna5](x2C)/]xa5dm

x . Thus we have

xaxa5 f ~x!→1`, ~4.25!

asx→2`, which means that the spatial infinityx52` in
the present case is timelike. Then, the corresponding Pen
diagram is given by Fig. 7.

a b

c d
 

I' I

II

 II'

x 
   

=
   

 0

 x
   

 =
   

 0

FIG. 5. The Penrose diagram for the solution of Eq.~4.20! with
b.0 and L.0 in the regionx.0. The singularity atx50 is
timelike and the linesbc andad wherex5x0 are Cauchy horizons
On the curved linesab andcd we havex5`.
08401
e

se

e,
y

e-

st
n

se

It is also interesting to note that now the acceleration o
static observer is given by Eq.~4.4! with

k~x!5
uLu

3x2 S x31U3b

L U D5H ,0, x,x1

50, x5x1

.0, x1,x,0,
~4.26!

wherex1[2u3b/Lu1/3.
In the regionx.0, we have

f ~x!5H ,0, x,x0

50, x5x0

.0, x.x0,
~4.27!

wherex0[u6b/Lu1/3, and

k[
1

2
f 8~x0!5UL2Ux0.0. ~4.28!

Extending the solutions into the region 0,x,x0, we find
the following relevant quantities:

gvw52
2~x21x0x1x0

2!3/2

3uLux0
2x

expH 2A3 arctgS 2x1x0

A3x0
D J ,

x x

f

0 x

  f(x)

1 0 

1

FIG. 6. The functionf (x) given by Eq.~4.24! in the text, for
L,0 andb,0, wheref 1(x1)5@(3b)2uLu#1/3.0.

x 
   

=
   

 0

a

c

b

t  =  Const.

x = Const.

FIG. 7. The Penrose diagram for the solutions given by E
~4.24! in the regionx,0 for L,0 andb,0.
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vw52
x2x0

~x21x0x1x0
2!1/2

expH A3 arctgS 2x1x0

A3x0
D J ,

~4.29!

v5
~x2x0!1/2

~x21x0x1x0
2!1/4

expH 2
L

2
x0t

1
A3

2
arctgS 2x1x0

A3x0
D J ~region I!. ~4.30!

The corresponding Penrose diagram is given by Fig.
which shows that now the hypersurfacesx5x0 ~or vw50)
represent event horizons, and the singularities atx50 are
spacelike. Regions II and II8 are two catastrophic regions
while regions I and I8 are two asymptotically anti–de Sitte
regions. The timelike coordinatet is future-directed in region
I and past-directed in region I8. Region II can be considere
as a black hole, while region II8 as a white hole. Since now
the surface gravity of the horizon is positive, the spaceti
singularity atx50 is gravitationally attractive and expecte
to have an effectively positive gravitational mass.

Case B.4… L,0,b.0: This is the case which correspon
to case B.3!. As a matter of fact, replacingx by 2x, we can
obtain one from the other. Therefore the corresponding P
rose diagrams in the two subcases are the same, afte
above replacement is taken into account.

C. bÄ0,qÄ” 0,LÄ” 0

When b50, from Eq. ~4.2! we can see thatf (x)
5 f (2x). Thus the spacetime has reflection symmetry w
respect to the hypersurfacex50. Then, without loss of gen
erality, in the following we shall only consider the regionx
.0 in this case.

WhenL,0, f (x) is always greater than zero for anyx.
Consequently, the singularity atx50 is naked, and the cor

a b

dc

x    =    0

x    =    0

I

 II

II’

I’

FIG. 8. The Penrose diagram for the solution of Eq.~4.24! with
b,0 and L,0 in the regionx.0. The singularity atx50 is
spacelike and the linesbc andad wherex5x0 represent event ho
rizons, while the curved linesac andbd represent the spatial infinity
x5`.
08401
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responding Penrose diagram is similar to that of Fig. 7.
WhenL.0, we have

f ~x!5
L

3x2
~x0

21x2!~x0
22x2!, ~4.31!

but nowx0 is given by

x0[S 3q2

L D 1/4

. ~4.32!

From the above equations we can see thatf (x)>0 holds
only in the region 0,x,x0. On the hypersurfacex5x0 the
surface gravity is given by

k52
2L

3
x0,0, ~4.33!

that is, the effective gravitational mass in the region 0,x
,x0 should be negative. One can show that the correspo
ing Penrose diagram is similar to that of Fig. 5.

D. bÄ” 0,qÄ” 0,LÄ” 0

When none of the three parameters are zero, we nee
distinguish the four subcases as defined by Eq.~4.21!. How-
ever, as shown in cases A! and B!, the properties of the
spacetimes for the caseb,0 can be obtained from those fo
the caseb.0 by simply replacingx by 2x. Thus we actu-
ally need to consider only the subcasesL.0,b.0 andL
,0,b,0.

Case D.1… L.0,b.0: In this case, it can be shown tha
f (x) takes the form

f ~x!5
L

3x2
~x12x!~x2x2!~x21Bx1C!, ~4.34!

where

B[x11x2 , C[x1
2 1x1x21x2

2 , ~4.35!

andx6 are the two real roots of the equationf (x)50, given
via the relations

B~x1
2 1x2

2 !5
6b

L
, Cx1x252

3q2

L
, ~4.36!

with the property

x1.0, x2,0. ~4.37!

From the above equations we can see thatf (x)>0 is true
only in the regionx2<x,0 or 0,x<x1 . Then, we need
to extend the solutions beyond both of the hypersurfa
x5x6 .

Let us first consider the extension across the hypersur
x5x1 . We first note that
2-8
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kux5x1
52

L

6x1
2 ~x12x2!~x1

2 1Bx11C!,0.

~4.38!

Thus a static observer near the horizon will feel a repuls
force from the region 0,x,x1 , which means that the ef
fective gravitational mass in this region is negative. One
also show that the Penrose diagram is similar to that given
Fig. 5.

On the other hand, the surface gravity atx5x2 is given
by

kux5x2
5

L

6x2
2 ~x12x2!~x2

2 1Bx21C!.0, ~4.39!

which means, similar to that in the regionx.0, now a static
observer near the horizon will also feel a repulsive fo
from the regionx2,x,0. It can be also shown that th
corresponding Penrose diagram is that of Fig. 5, but witx
,0.

Case D.2… L,0,b,0: In this case we find that it is con
venient to distinguish the following three subcases:

i) uqu,qc , ii) uqu5qc , iii) uqu.qc , ~4.40!

where

qc[uLu21/6U3b

2 U2/3

. ~4.41!

Case D.2.i… uqu,qc : In this case, it is found that the
function f (x) can be written as

f ~x!5
uLu

3x2
~x2x1!~x2x2!~x21Bx1C!, ~4.42!

whereB, C, andx6 are given by Eqs.~4.35! and~4.36!, but
now with the properties

x1.0, x2.0, ~ uqu,qc!. ~4.43!

      

0 x

x x- +

   f(x)

x
f

 1
 1

FIG. 9. The functionf (x) given by Eq.~4.42! in the text, for
L,0,b,0, anduqu,qc , where f 1(x1)5@(3b)2uLu#1/3.0.
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e
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From Eqs.~4.42! and ~4.43! we can see that in the regionx
,0 the function f (x) is positive, and the singularity atx
50 is naked@cf. Fig. 9#. The corresponding Penrose diagra
is similar to that given by Fig. 7.

When x.0, f (x) is non-negative only in the regionsx
>x1 or 0<x<x2 . Thus an extension across the hypers
facesx5x6 is needed. Let us first consider the extensi
acrossx5x1 .

The extension across the hypersurfacex5x1 : Following
previous cases, we find the following:

x* 5
1

2k1
ln~x2x1!1 (

n51

`
an

n
~x2x1!n,

k15
f ,x~x1!

2
5

uLu

6x1
2 ~x12x2!~x1

2 1bx11c!.0,

f ~x!5
x2x1

g~x!
, an5

1

n!

dng~x!

dxn U
x5x1

,

gvw52@2k1
2 g~x!#21

3expH 22k1 (
n51

`
an

n
~x2x1!nJ ,

vw52~x2x1!expH 2k1 (
n51

`
an

n
~x2x1!nJ ,

a b

c d

g h

fe

II'

II'

II

IIIIII'

IIIIII'

FIG. 10. The Penrose diagram for the solution of Eq.~4.42! with
uqu,qc in the regionx.0. The linesad andbc wherex5x1 rep-
resent event horizons, and the onesgb, ha, cf, and de, where x
5x2 , represent Cauchy horizons. The singularities athb, ga, df,
and ce are timelike. The curvesac and bd represent the spatia
infinity (x5`), which is timelike. To have a geodesically maxim
spacetime, the extension in the vertical directions should be c
tinuous to infinity.
2-9
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v5~x2x1!1/2expH k1F t1 (
n51

`
an

n
~x

2x1!nG J , ~region I!. ~4.44!

Then, we get four regions, I, I8, II, and II8 in the (v,w)
plane, as shown in Fig. 10. The hypersurfacesx5x1 now
are event horizons. The coordinatet is future-directed in re-
gion I and past-directed in region I8. Note that asx→1`,
we havef (x)→1`. Therefore the hypersurfacex51` is
timelike and represented by the curvesac andbd in Fig. 10.

The extension across the hypersurfacex5x2 : Now we
find that

x* 5
1

2k2
ln~x2x2!1 (

n51

`
bn

n
~x2x2!n,

k25
f ,x~x2!

2
52

uLu

6x2
2 ~x12x2!~x2

2 1bx21c!,0,

f ~x!5
x2x2

ḡ~x!
, bn5

1

n!

dnḡ~x!

dxn U
x5x2

,

gvw52@2k2
2 ḡ~x!#21expH 22k2 (

n51

`
bn

n
~x2x2!nJ ,

vw52~x2x2!expH 22k2 (
n51

`
bn

n
~x2x2!nJ ,

v5~x2x2!1/2expH k2F t1 (
n51

`
bn

n
~x

2x2!nG J , ~region III!. ~4.45!

Clearly, by this extension, we get two more regions III a
III 8, as shown in Fig. 10. The singularities atx50 are time-
like and repulsive, since now we havek2,0. The hypersur-
facesx5x2 represent Cauchy horizons. Extensions acr
these hypersurfaces are further needed in order to ha
geodesically complete spacetime. However, since these
faces are Cauchy horizons, the extensions across them
not unique, a situation quite similar to that of the Reissn
Nordström ~RN! or Kerr solution@18#.

Case D.2.ii… uqu5qc : In this case, we find

f ~x!5
uLu

3x2
~x2x0!2~x212x0x13x0

2!, ~4.46!

wherex0 now is given by

x05S 3b

2L D 1/3

. ~4.47!
08401
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Thus f (x).0 holds for allx,0. As a result, in the region
x,0 the singularity atx50 is naked, and the correspondin
Penrose diagram is that of Fig. 7.

In the regionx.0, f (x) is also positive, except at th
point x5x0, where f (x0)50. See Fig. 9, and notice tha
now we havex15x25x0. This is quite similar to the ex-
treme case of the RN solution@18#. Integrating Eq.~4.7!, we
obtain

x* 52
x

2uLux0~x2x0!
1

1

3uLux0
ln

~x2x0!2

x212x0x13x0
2

1
7A2

12uLux0
arctgS x1x0

A2x0
D 1x0* , ~4.48!

wherex0* is an integration constant. In the following, withou
loss of generality, we shall choosex0* such thatx* (0)50.
On the other hand, from Eqs.~4.6! and ~4.46! we find

k5
1

2
f ,x~x0!50. ~4.49!

That is, the surface gravity now is zero. As a result, the us
method of the extension given by Eqs.~4.7!–~4.9! is not
applicable to this case, and we have to consider other po
bilities. Following Carter@19#, let us define the two null
coordinatesv andw by

v5tan21~ t1x* !, w5tan21~ t2x* !, ~4.50!

where2p/2<v<3p/2, and23p/2<w<p/2. In terms of
v andw, the metric reads

ds252
f ~x!

cos2v cos2w
dvdw1x2~dy21dz2!. ~4.51!

Using the relation

sin2~v2w!

cos2v cos2w
54~x* !2, ~4.52!

one can show that the metric coefficients of Eq.~4.51! be-
come regular across the hypersurfacex5x0. Thus it repre-
sents an extension. As a matter of fact, one can show that
extension is analytic and the extended spacetime is given
regions I and III in Fig. 11, which is quite similar to th
extreme RN black hole@18#. The only difference is that in
the present case the hypersurfacex51` is timelike, since
asx→1` we now havex* → finite. Keeping this in mind,
we can deduce all the properties of this solution from
extreme RN black hole. For example, the horizonsx5x0
represent event horizons. The regionx0,x,1` is mapped
to region I, while the one 0,x,x0 to region III. The
t-coordinate is future-directed in region I. The singularity
x50, represented by the vertical double lines in Fig. 11
timelike. From the diagram we can see that the extens
should be continuous to infinity in the vertical directions,
order to get a geodesically complete spacetime.
2-10
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Case D.2.iii… uqu.qc : In this case it can be shown tha
f (x).0 holds for anyx. As a result, the singularity atx
50 is naked, and the corresponding Penrose diagram
given by Fig. 7.

V. TYPE II FLUID IN D-DIMENSIONAL SPACETIMES

Now using the gauge freedom of Eq.~2.2!, we shall set

g11~xc!50, s5r , ~5.1!

where xa5$v,r %. These coordinates are usually call
Eddington-Finkelstein coordinates, in terms of which the
metric ~2.1! takes the form

ds252ec(v,r )dv~ f ~v,r !ec(v,r )dv12edr !

1r 2hAB~xC!dxAdxB, ~5.2!

wheree561. Whene51, the radial coordinater increases
towards the future along a rayv5const. Whene521, the
radial coordinater decreases towards the future along a
v5const.

From Eq.~2.8! it can be shown that

(2)Rab5
1

2
A@ f ecda

0db
01e~da

0db
11da

1db
0!#,

a

c

e

b

d

I

I

III

III'

III'

I'

I'

FIG. 11. The Penrose diagram for the solutions given by
~4.46! in the text withuqu5qc and in the regionx.0. The space-
time singularity atx50, represented by the vertical lineac, is time-
like. The surfacesae, ab, cb, andcd, wherex5x0, all represent
event horizons. The hypersurfacesx51` now are timelike, given
by the curvesbd andeb. The extension in the vertical directions
continuous to infinity.
08401
is

y

A~v,r !5ec@2 f c ,rr 1 f ,rr 1~2 f c ,r13 f ,r !c ,r #

22ec ,vr ,

¹a¹br 52
1

2
f e2cS 2 f c ,r1 f ,r1ee2c

f ,v

f D da
0db

0

2
1

2
eec~2 f c ,r1 f ,r !~da

0db
11da

1db
0!

2c ,rda
1db

1,

hr 5 f c ,r1 f ,r . ~5.3!

Inserting the above expressions into Eq.~2.7!, we obtain

(D)Rvv5
1

2
f e2cF2 f c ,rr 1 f ,rr 1~2 f c ,r13 f ,r !c ,r

1
D22

r
~2 f c ,r1 f ,r !G2

1

2
e f ecS 2c ,rv

2
~D22! f ,v

r f D , ~5.4!

(D)Rvr5
1

2
eecF2 f c ,rr 1 f ,rr 1~2 f c ,r13 f ,r !c ,r

1
D22

r
~2 f c ,r1 f ,r !G2c ,rv , ~5.5!

(D)Rrr 5
D22

r
c ,r , ~5.6!

(D)RAB5@kD2r ~ f c ,r1 f ,r !2~D23! f #hAB . ~5.7!

On the other hand, introducing two null vectorsl m and nm
via the relations

l m5dm
v , nm5ecS 1

2
f ecdm

v 1edm
r D ,

l ll l505nlnl, l lnl521, ~5.8!

we find that the energy-momentum tensor for a type II flu
can be written as@20,21#

(D)Tmn5m l ml n1~r1P!~ l mnn1 l nnm!1Pgmn . ~5.9!

Then, from the Einstein field equations we find that

(D)Rmn58pGDH m l ml n1~r1P!~ l mnn1 l nnm!

1
2r

D22
gmnJ . ~5.10!

.
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From Eqs. ~5.6! and ~5.10! we obtain c ,r50, that is,
c(v,r )5c(v). However, by introducing another null coo
dinate v̄5*ec(v)dv, we can always set, without loss of th
generality,

c~v,r !50, ~ (D)Grr 58pGD
(D)Trr !. ~5.11!

On the other hand, from the rest of the Einstein field eq
tions, we find that

m5
e~D22!

16pGDr
f ,v ,

r5
D22

16pGDr 2
@kD2r f ,r2~D23! f #,

P5
1

16pGD
H f ,rr 1

2~D23!

r
f ,r

2
D24

r
@kD2~D23! f #J . ~5.12!
a

o
II

i-

08401
-

To see that the energy-momentum tensor given by
~5.9! indeed represents a type II fluid, let us first introdu
the following unit vectors:

E(0)
m 5

l m1nm

A2
, E(1)

m 5
l m2nm

A2
,

E(A)
m 5

1

r
E(A)

B dB
m , gmnE(a)

m E(b)
m 5hab ,

~5.13!

where hab5diag$21,1,1, . . . ,1%, and E(A)
B (A,B

52,3, . . . ,D22) consist of an orthogonal base in the spa
of hAB , that is

E(A)
C E(B)

D hCD5dAB . ~5.14!

Then, projectingTmn into this base, we find that
~T(m)(n)!51
1

2
~m12r! 2

1

2
m 0 0 . . . 0

2
1

2
m

1

2
~m22r! 0 0 . . . 0

0 0 P 0 . . . 0

0 0 0 P . . . 0

. . . . . . . . . . . . . . . 0

0 0 0 0 . . . P

2 , ~5.15!
re-
os-
s.
which is exactly the type II fluid, according to the classific
tion given in @18#. Therefore, for any given functionf (v,r )
with c50, the corresponding energy-momentum tensor
the metric~5.2! can be always written in the form of a type
fluid. However, not for any choice off (v,r ) is the solution
physically acceptable. In fact, it must satisfy some~geo-
metrical and physical! conditions, such as, the energy cond
tions @18#. Following @21#, we write f (v,r ) in the form

f ~v,r !5k2
2m~v,r !

r D23
,

m~v,r !5 (
n52`

`

an~v !r n. ~5.16!

Then, Eq.~5.12! becomes
-

f
m52

e~D22!

8pGDr D22 (
n52`

`

an8~v !r n,

r5
D22

8pGDr D22 (
n52`

`

nan~v !r n21,

P52
1

8pGDr D23 (
n52`

`

n~n21!an~v !r n22,

~5.17!

where a prime denotes the ordinary differentiation with
spect to the indicated argument. Clearly, by properly cho
ing the coefficientsan(v), we can get many exact solution
For example, for the choice
2-12
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an~v !55
m~v !, n50

2
1

2
q2~v !, n52~D23!

1

2
L, n5D21

0, otherwise,

~5.18!

we find that

f ~v,r !5k2
2m~v !

r D23
1

q2~v !

r 2(D23)
2Lr 2, ~5.19!

and the corresponding energy-momentum tensor can be
ten as

(D)Tmn5m l ml n1 (D)Fma
(D)Fn

a2
1

4
(D)Fab

(D)Fab,

~5.20!

with

(D)Fmn5S ~D22!~D23!

2 D 1/2q~v !

r D22
~dm

0 dn
12dm

1 dn
0!,

m52
e~D22!

8pGDr D22 H m8~v !2q~v !
q8~v !

r D23 J .

~5.21!

When k51 andD54 the above solutions reduce to th
ones found in@21#. Lately, these solutions were generaliz
to high dimensional spherical spacetimes@22#.
n-

08401
it-

VI. FORMATION OF TOPOLOGICAL BLACK HOLES
FROM GRAVITATIONAL COLLAPSE OF A TYPE II FLUID

To consider gravitational collapse of the type II flu
found in the last section let us choosee521. Then, metric
~5.2! with c50 becomes

ds252 f ~v,r !dv212dvdr1r 2hAB~xC!dxAdxB.
~6.1!

To the present purpose, let us consider the solutions give
Eqs.~5.19!–~5.21! with

m~v !5H lv0
D23 , v>v0

lvD23, 0<v<v0

0, v,0,

q~v !5H dv0
D23 , v>v0

dvD23, 0<v<v0

0, v,0,
~6.2!

where l and d are arbitrary real constants, subject tol
.0. Clearly, the solutions represent a charged null dust fl
moving on a de Sitter or anti–de Sitter background in
region 0<v<v0, depending on the sign ofL. WhenL50
the spacetime is self-similar, while whenL5” 0 it is only
asymptotically self-similar, (v,r )→(0,0). The correspond
ing energy-momentum tensor is given by Eq.~5.20! with
(D)Fmn55
S ~D22!~D23!

2 D 1/2dv0
D23

r D22
~dm

0 dn
12dm

1 dn
0!, v.v0

S ~D22!~D23!

2 D 1/2dyD23

r
~dm

0 dn
12dm

1 dn
0!, 0<v<v0

0, v,0,

m5H ~D22!~D23!d2yD24

8pGDr 2
~yc

D232yD23!, 0<v<v0

0, otherwise,
~6.3!
er-
s

where

y[
v
r

, yc[S l

d2D 1/(D23)

. ~6.4!

From Eqs.~5.4!–~5.7! we can see that the Ricci tensor co
tains only the first order derivatives off with respect tov.
Thus there would be no matter shell to appear on a hyp
surfacev5const, as long asf (v,r ) is continuous across thi
surface. Clearly, this is the case for the choice of Eq.~6.2!
crossing the hypersurfacesv50 andv5v0.

When k51, L505d, and XD225SD22, the corre-
2-13
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sponding solution is the Vaidya solution inD-dimensional
spherically symmetric spacetime@22#, and was studied inde
pendently in@23,24#. In particular, da Rocha showed th
when l.lc the collapse always forms black holes, a
when l,lc the collapse always forms naked singularitie
where

lc[
~D23!D23

@2~D22!#D22
. ~6.5!

This result can be easily generalized to the case wherL
50, d50, andXD22 has a topology rather thanSD22. As a
matter of fact, the case withk51, L.0, d50, andXD22

5SD22 was already studied in@25#, from which we can see
that Eq.~6.4! is also valid for anyL and other topologies fo
XD22 but still with k51, d50.

When k51, L50, d5” 0, andD54, Lake and Zannias
found that the collapse can form either black holes or na
singularities@26#. Ghosh generalized these results to the c
whereL.0 @27#. From the analysis given in these two a
ticles one can see that the cosmological constant actually
no effects on the final state of the collapse. Therefore
results obtained by Lake and Zannias are actually valid
anyL. In addition, following their analysis it is not difficul
to be convinced that gravitational collapse of a charged t
II fluid in a higher dimensional de Sitter (L.0) or anti–de
Sitter (L,0) spacetime withk51 can form either black
holes or naked singularities, depending on the choice ol
andd.

Therefore in the following we shall consider only th
cases wherek50, 21. Let us first consider the cased50,
i.e., the collapse of a neutral null dust fluid. In this case fr
Eq. ~5.19! we can see that to havef (v,r ) be positive at leas
in some regions of the spacetime, we have to assume
L,0. Then, Eq.~5.19! can be written as

f ~v,r !52lF uLu
2l

~r 22r 0
2!2yD23G ,

r 0[U k

LU1/2

, ~6.6!

while Eq. ~A17! yields

u lun5
2lFG

r D21 S vD232
uLu
2l

r D23~r 22r 0
2! D

5H ,0, v,vAH~r !

50, v5vAH~r !

.0, v.vAH~r !,
~6.7!

where

vAH~r ![r H uLu
2l

~r 22r 0
2!J 1/(D23)

. ~6.8!
08401
,

d
e
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e
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Thus in the present case the (D22) surfaces of constantv
andr are trapped in the regionv.vAH(r ). The hypersurface
v5vAH(r ) represents an apparent horizon@cf. Fig. 12#.
Since the spacetime singularity atr 50 starts to be formed
only at the momentv50, from Fig. 12 we can see that th
singularity is always covered by the apparent horizon. T
can be seen further by studying ‘‘outgoing’’ null geodesic
which are given by

dv
dy

5
2

uLur 22uku22lyD23
. ~6.9!

At the momentv50 if there exist out-going null geodesic
from the point (v,r )5(0,0), we can see that the singulari
formed at that moment will be at least locally naked. T
existence of such null geodesics is characterized by the
istence of positive roots of the equation@28#

2ly0
D221ukuy01250, ~6.10!

where

y0[ lim
v,r→0

v
r

5 lim
v,r→0

dv
dr

. ~6.11!

Since all the coefficients of Eq.~6.10! are positive, no posi-
tive roots exist. As a result, the collapse will always for
black holes with nontrivial topology. This generalizes t
results obtained in the four-dimensional case@10# to the one
with any dimensions.

Whend5” 0, Eq. ~6.10! should be replaced by

d2y0
2D2522ly0

D222ukuy02250 . ~6.12!

v

r0

v

lµ

0

0r

r 
   

=
   

 0
r 

   
=

   
 0

Si
ng

ul
ar

ity

AH

FIG. 12. Collapsing type II fluid described by Eq.~6.2! in the
text with k<0, d50, andL,0. The curved lineAH represents an
apparent horizon, and the collapse always forms black holes.
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It is important to note that in the present case the char
fluid satisfies the weak energy condition only in the reg
y<yc , as we can see from Eq.~6.3!. On the hypersurface
y5yc the energy density becomes zero. Afterwards, the L
entz force will push the fluid particles to move outwar
@29#. As a result, the particles actually cannot enter into
regiony.yc @cf. Fig. 13#. Now to see if the spacetime sin
gularity formed at (v,r )5(0,0) is naked or not, one need
not only to show that a positive root of Eq.~6.12! exists, but
also to show that the outgoing null geodesics fall inside
regiony<yc , where the solution is actually valid.

From Fig. 13 we can see that if an outgoing null geode
falls into the regiony,yc we must havey0

s,yc , and if an
outgoing null geodesic falls into the regiony.yc , we must
havey0

s.yc , wherey0
s is the smallest positive root of Eq

~6.12!. Since in the regiony.yc we havem,0 and in a
realistic model this region should be replaced by an outgo
charged dust fluid. Thus in the latter case the singularity
(v,r )5(0,0) should not be considered as naked, but in
former case it is. Therefore to see if the singularity is nak
or not now reduces to find out ify0

s,yc or y0
s.yc . To this

end, let us first consider the casek50, and define the func
tion G(y0) by

G~y0![d2y0
2D2522ly0

D2222 ~k50!. ~6.13!

From this expression we can see thatG8(y0)50 has two
roots,y0

6 , given by

y0
250, y0

15S 2l~D22!

d2~2D25!
D 1/(D23)

, ~6.14!

v

r0

r 
   

=
   

 0
r 

   
=

   
 0

Si
ng

ul
ar

ity

(b)

y = yc

(a)

y < y

 y > yc

c

FIG. 13. Null geodesics for collapsing type II fluid described
Eq. ~6.2! with d5” 0. The dashed line~a! represents an outgoing nu
geodesic withy0

s,yc , while ~b! represents an outgoing null geod
sic with y0

s.yc , wherey0
s denotes the positive root of Eq.~6.12!

andyc is defined by Eq.~6.4!.
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and

G~y0
2!522,

G~y0
1!52

4l2~D22!~D23!

d2~2D25!2
y0

11/(D23)22,22,

G~yc!52
l2

d2 S l

d2D 1/(D23)

22,22. ~6.15!

Then, the curve ofG(y0) vs y0 must be that given by the line
~a! in Fig. 14, from which we can see that

y0
s.yc . ~6.16!

That is, in the present case there does not exist outgoing
geodesics in the regiony<yc . So, the singularity formed a
the point (v,r )5(0,0) is not naked.

Whenk521, setting

F~y0![d2y0
2D2522ly0

D222y022 ~k521!,
~6.17!

we find that

G~y0!2F~y0!5y0 , ~6.18!

and the curve ofF(y0) vs y0 must be given by the dashe
line ~b! in Fig. 14. From there we can see clearly that E
~6.16! also holds fork521.

Therefore it is concluded that the gravitational collapse
a charged null dust fluid given by Eqs.~5.19!, ~6.1!, and~6.2!
with k50 or k521 always forms black holes. This is i
contrast to the results obtained in@27#. The reason is that in
@27# the author did not consider the energy condition of t
charged null dust fluid.

0
(b)

    (a)

G(y  )

y

0

0

y y y

y
c 0

+
0

s

s
0

FIG. 14. ~a! The function ofG(y0) defined by Eq.~6.13! for
k50. ~b! The function of F(y0) defined by Eq. ~6.17! for
k521.
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VII. CONCLUSIONS

In this paper, we have studied topological black holes a
their formation from gravitational collapse of a type II flu
in D-dimensional spacetimes described by the metric
~2.1!. After presenting a generalR23XD22 decomposition in
Sec. II, we have rederived the charged solutions coup
with a cosmological constant, given by Eq.~3.21!, in Sec.
III. From their derivations we can see that these solutions
the most general ones for the spacetimes described by
~2.1!.

In Sec. IV, we have systematically studied the glob
structure of the spacetime forkD50 andD54, that is, four-
dimensional spacetimes with flat topology of theX2 sector,
which can be a two-dimensional plane, cylinder, Mo¨bius
band, torus, or Klein bottle, depending on how to identify t
two coordinates inX2 @13#. All the corresponding Penros
diagrams have been given. In particular, it has been fo
that the solution withL,0 andq50 has a black hole struc
ture quite similar to the Schwarzschild black hole@cf. Fig. 9#.
In the case whereL,0, bq5” 0, the global structure of the
corresponding spacetime is quite similar to the Reissn
Nordström solution, including the extreme case@cf. Figs. 10
and 11#.

In Sec. V, all the solutions of a type II fluid have bee
found, while in Sec. IV the gravitational collapse of such
fluid has been studied. Whenk51 the collapse in a de Sitte
or anti–de Sitter background can form either black holes
naked singularities, but whenk50 or k521 it always
forms black holes. Therefore all the black hole solutions w
different topologies found in Sec. IV can be realized from t
gravitational collapse of a type II fluid inD-dimensional
spacetimes.
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APPENDIX: TRAPPED SURFACES AND APPARENT
HORIZONS

The concept oftrapped surfacewas originally from Pen-
rose@30#, who defined it as a compact spatial two-surfaceS
in a four-dimensional spacetime, on whichu1u2uS.0,
whereu6 denote the expansions in the future-pointing n
directions orthogonal toS, and the spacetime is assumed
be time-orientable, so that ‘‘future’’ and ‘‘past’’ can be a
signed consistently. One may then define a past trapped
face byu6uS.0, and a future trapped surface byu6uS,0.

Recently, Hayward@31# generalized the above definitio
to the four-dimensional cylindrical spacetimes where
two-surfaceS is not compact but an infinitely long cylinde
and call it trapped, marginal, or untrapped, according
wherea ,m is timelike, null, or spacelike, wherea is defined
by
08401
d
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a[~ u]z•]zu•u]w•]wu!1/2, ~A1!

with j (z)5]z andj (w)5]w being the two killing vector in the
cylindrical spacetimes. Lately, one of the present auth
showed that Hayward’s definition is consistent with the o
defined by the expansions of the two null directions ortho
nal to the two-cylinder@32#.

In this Appendix, we shall generalize the above definiti
to the D-dimensional case described by the metric~5.2!.
Now let us consider the (D22)-surface,S, of constantv and
r. When k51 it could be a (D22)-sphere, although othe
topologies can also exist. Whenk5” 1 it can be compact or
noncompact, depending on how to identify the coordinate
S. For more details, we refer readers to@13,33# and refer-
ences therein.

To calculate the expansions of the two null directions
thogonal to the (D22)-surfaceSof constantxa in the metric
~5.2!, it is found convenient to introduce two null coordinat

v̄ and ū via the relations

dū5G~v,r !~ f ecdv12edr !,

dv̄5F~v !dv, ~A2!

or inversely

dr5
e

2 S 1

G
dū2

1

F
f ecdv̄ D ,

dv5
1

F
dv̄, ~A3!

where G(v,r ) is determined by the integrability conditio
ū,vr5ū,rv , andF(v) is an arbitrary function ofv only. With-
out loss of generality we shall assume that they are
strictly positive,

F~v !.0, G~v,r !.0. ~A4!

Then, in terms ofū and v̄ the metric~5.2! takes the form

ds2522e2sdūdū1r 2hAB~xC!dxAdxB, ~A5!

wheres andr are now the functions ofū andv̄ via Eq.~A2!
and

s[
1

2
@c2 ln~2FG!#. ~A6!

Clearly, the metric~A5! is invariant under the coordinat
transformations

ū5ū~ ũ!, v̄5 v̄~ ṽ !. ~A7!

Using this gauge freedom, we shall assume that metric~A5!
is free of coordinate singularities. Then, it can be shown t
2-16
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(2)Rab522s ,ūv̄~da
0db

11da
1db

0!,

¹a¹br 5r ,ab22~s ,ūr ,ūda
0db

01s ,v̄r ,v̄da
1db

1!. ~A8!

Substituting Eq.~A8! into Eq. ~2.7! we find that

(D)Rūū52
D22

r
~r ,ūū22s ,ūr ,ū!,

(D)Rūv̄522s ,ūv̄2
D22

r
r ,ūv̄ ,

(D)Rv̄ v̄52
D22

r
~r ,v̄ v̄22s ,v̄r ,v̄!,

(D)RAB5$kD12e22s@rr ,ūv̄1~D

23!r ,ūr ,v̄#%hAB . ~A9!

On the other hand, introducing two null vectorsl m andnm
by

l l[
]ū

]xl
5dl

ū , nl[
] v̄

]xl
5dl

v̄ , ~A10!

one can see that the two null vectors are future directed
orthogonal to the (D22)-surface,S, of constantū andv̄ ~or
constant ofv and r ). In addition, each of them defines a
affinely parametrized null geodesic congruence, since n
the following holds:

D

Dl
l m5 l m

;nl n50,

D

Dd
nm5nm

;nnn50, ~A11!

where a semicolon ‘‘;’’ denotes the covariant derivative w
respect togmn , andl andd the affine parameters along th
null rays defined, respectively, byl m and nm. @It should be
noted that the symbold used here should not be confus
with the one used in Eq.~6.2! for the charge density.# In
particular, l m defines the one moving along the null hype
surfacesū5const, whilenm defines the one moving alon
the null hypersurfacesv̄5const. Then, the expansions
these null geodesics are defined by@18#

u l[2
1

D
gabl a;b5e22s

r ,v̄

r
,

un[2
1

D
gabna;b5e22s

r ,ū

r
. ~A12!

Thus we have
08401
nd

w

u lun5e24s
r ,v̄r ,ū

r 2
52

1

2r 2
e22sr ,ar ,a. ~A13!

It should be noted that the affine parameterl @or d] is
unique only up to a functionf 21(ū) @or g21( v̄)], which is a
constant along each curveū5const ~or v̄5const) @18#. In
fact, l̄5l/ f (ū) @ d̄5d/g( v̄)# is another affine parameter an
the corresponding tangent vectors are

l̄ m5 f ~ ū!dm
ū , n̄m5g~ v̄ !dm

v̄ , ~A14!

and the corresponding expansions are given by

ū l̄ 5 f ~ ū!u l , ū n̄5g~ v̄ !un . ~A15!

However, since along each curveū5const~or v̄5const) the
function f (ū) @or g( v̄)] is constant, this does not affect ou
definition of trapped surfaces in terms of the expansio
Thus, without loss of generality, in the following we consid
only the expressions given by Eq.~A12!.

Once we have the expansions, following Penrose we
define that a (D22)-surface,S, of constantū and v̄ is
trapped, marginally trapped, or untrapped, according
whetheru lun.0, u lun50, or u lun,0. An apparent hori-
zon, or trapping horizon in Hayward’s terminology@31#, is
defined as a hypersurface foliated by marginally trapped
faces.

Sincee22s is regular, except at some points or surfac
on which the spacetime is singular, from Eq.~A13! we can
see that trapped, marginally trapped, or untrapped surfa
can be also defined according to whetherr ,a is timelike, null,
or spacelike.

On the other hand, from Eq.~A3! we find that

]r

]ū
5

e

2G
,

]r

] v̄
52

e f

2F
ec. ~A16!

Inserting the above expressions into Eq.~A12! we obtain

u l[2
1

D
gabl a;b5e22s

r ,v̄

r

52
e f

2rF
ec22s,

un[2
1

D
gabna;b5e22s

r ,ū

r

5
e

2rG
e22s,

u lun52
FG

r 2
f e2c. ~A17!
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