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Topological charged black holes coupled with a cosmological constditiXP 2 spacetimes are studied,
where XP~2 is an Einstein space of the forf? ~?R,g=k(D—3)h,g. The global structure for the four-
dimensional spacetimes with=0 is investigated systematically. The most general solutions that represent a
type Il fluid in such a high dimensional spacetime are found and show that topological charged black holes can
be formed from the gravitational collapse of such a fluid. When the spacetifasyisptotically self-similar,
the collapse always forms black holes for 0, —1, in contrast with the cade=1, where it can form either
black holes or naked singularities.
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[. INTRODUCTION high dimensional spacetimes. Specifically, the paper is orga-

nized as follows: In Sec. Il we present a gend®ak XP 2

Lately black holes in high dimensions have attracted adecomposition. In Sec. Ill, assuming thdb~2 is an Ein-

great deal of attention in the gravity-gauge theory corresponstein space with a constant curvatéPe,2Rpg=kphag, we
dence[1], and have been further promoted by theories ofrederive the charged solutions coupled with a cosmological
TeV gravity, in which high dimensional black holes are pre-constant in any dimensional spacetimes, without assuming
dicted to be produced in the next generation of colliJejs ~ that the spacetime is static. In Sec. IV we systematically

In black hole physics, one of the fundamental features i$tudy the global structure for the cafe=4 andkp=0,

the topology of a black hole. In four-dimensional asymptoti-While in Sec. 'V, all the type I fluid solutions in

cally flat stationary spacetimes, Hawking first showed that 42-dimensional spacetimes are given. In Sec. VI we study the
black hole has necessarily & topology, provided that the formation of topological charged and uncharged black holes

dominant energy condition hold8§]. Later, it was realized {;(IJIrgé?emg?a\riﬁvggzglzzliocr?!zprzeszfr:;gr]i;eguI‘Iqhévrg”;Iglssoegn
that Hawking’s theorem can be improved in various aspects :

see[4] and references therein. However, once the energg‘r%pggghxéén which trapped surfaces and apparent horizons

conditiqn is relaxed, a black hole can have .quite' different Before proceeding further, we would like to note that the
topologies. Such examples can occur even #13dimen- ¢, mati0n of topological black holes from gravitational col-
s_lonal space_tlmes_ Wher_e the cosmqloglca_l constant is Nedfipse in four-dimensional spacetimes was studied1ii,
tive [5]. In high dimensional spacetimes, it was found thathile gravitational collapse in high dimensional spherically
unique. In particular, a five-dimensional rotating vacuum

black hole can have either a& topology [6], or an S?

x St topology [7], although a static charged dilaton black

hole in high dimensional asymptotically flat spacetimes in- In this paper let us consider B-dimensional spacetime

deed has a unique topology, which is - 2)-sphere[8].  described by the metric

When the cosmological constant is different from zero, simi-

lar to the four-dimensional case, static black holes can haves?=g,,,dx“dx"= y,p(X®)dx2dx?+ s2(X°) hag(X®) dx dx®,

different topologieg9]. (2.1
In this paper we shall study the formation of topological

black holes from gravitational collapse of a type Il fluid in where we use Greek indices, suchigsv, \, to run from 0

II. R?XXP~2 DECOMPOSITION

to D—1, lowercase Latin indices, such asb, ¢, ..., to

run from 0 to 1, and uppercase Latin indices, such as
*Email address: yumei@dmm.im.ufrj.br A, B, C ..., torunfrom 2 to D—1. Clearly, the above
"Email address: mfas@dtf.if.uerj.br metric is invariant under the coordinate transformations,
*Email address: nos@chpf.br
$Email address: aw@guava.physics.uiuc.edu x2=x3(x'?), xA=xA(x'B). (2.2
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Introducing the quantities®’(x®) andh”B(x®) via the rela-
tions

Y*Yep= 5%, hAChcg= 53, (2.3
we find that
Yao O 2P 0
guv:( 0 s2hAB) , 9‘”=( 0 s‘zhAB) :
(2.9

Then, the nonvanishing Christoffel symbols are given by

D _ (2
( )Fgc_( )Fgcv

O =515 .58,

(D)FaAB: —hagss?,

(2.9

where s ;= ds/9x?, s?=y3%,, T2 and"T'g. are the
Christoffel symbols calculated, respectively, frop,(x°)
andh”B(x%), andn=D—2. From Eq.(2.5 we find that the
Ricci tensor, defined by

A _ (mpA
®Irge="rge,

(@R, = @A @) @) Cp7

- O, ©Oryg, (2.6)
has the following nonvanishing components:
D-2
(D)Rab: (Z)Rab_ Tvavbsv
PIR\g= MRpg—[sOs+(D—3)(V,s)
X(V®s)]hag, (2.7

where[J=y?*V,V,, andV, denotes the covariant derivative
with respect toy,p, .

To calculate®R,,,, we first note that the Riemann tensor
)R,,cq has only one independent component, $3R010;.
Then, in terms of?Ry;0, we have

®Ranca= PRorof 650500 34— 90550 65— 5365605
+62009¢55),
(Z)RabE (Z)Rcacb
= @Ry of Y8305~ y*H( 8355+ 5567)

+9%8%58]. (2.9

On the other hand, for the second block of the metric, we

shall consider only the case whele,g represents an
n-dimensional surface with constant curvature,
(WRxg=kphag(x®), 2.9
where, without loss of generality, one can always kgt
=(D—3)k with k=—1, 0, 1. Then the surfaces of constant

x2 will be referred to, respectively, to diyperbolic flat, and
elliptic.

PHYSICAL REVIEW D 68, 084012 (2003

Ill. TOPOLOGICAL CHARGED BLACK HOLES
COUPLED WITH THE COSMOLOGICAL CONSTANT

Using the gauge freedom of E.2), in this section we
shall choose the coordinates such that

’)/tr(xc) = Ov

where x®={t,r}. This will be referred to ashe Schwarz-
schild gauge Then, we find that

s(x%)=r, (3.1

ds?=—e2®*tNdt2+ 2Vt dr2+r?h 4 5(x©)dx d xB.
(3.2

For such a form, there still remains the gauge freedom
(3.3

Later, we shall use it to fix some integration functions. For
the metric(3.2) we find

1
BRap=— 5 R 5350 - €77 5,57,

@R=2{e V[V +W (¥ — P )]
_eiz\lj[q),rr+(D,r(q),r_\p,r)]}- (3-4)
It can be also shown that

VaWor = =€ 5960~V (5305+ 6300) — W 5355,

(3.5

Substituting Egs(2.9), (3.4), and (3.5 into Eq. (2.7) we
obtain

Or=e 2Y®,—V ).

PIRye= _[‘I’,tt+q',t(\[',t_q),t)]+92((D_q,)

X

D-2
(D,rr+q),r(q),r_q,,r+T) ) (3.6)
D-2

r

PR v, (3.7

01~

ORy,= ez(wilb)[q’,tt"'q',t(q’,t_ D )]

D-2
<I>‘”+<1>,r(<13,,—\1f',)—T\If‘r , (3.8
PCIRpg={kp—[1(P,—V¥ ) +(D—3)]e 2 }hpg.

(3.9
On the other hand, thB-dimensional Einstein-Maxwell
equations with the cosmological constafy, , read
OR ! OR=87G, PE,,—A
,uv_zg,u,v =0omTSp nv Dg,u,yi
(3.10

where the energy-momentum tensBtE,, is given by
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©) O (O)ea 1 ©) (O)ap where_ Dy(t) is an arbi_trary function. However, using the
E’”:47TGD Fua 'Fy= 709 "Fap 'F*7) coordinate transformation3.3), we can always se(t)
(3.12) =0, a condition that will be assumed below. Then, substi-
tuting the above expression into .19 and integrating it,
with the electromagnetic fiellP’F ,, satisfying the Maxwell ~ we obtain
equations,
1 2M 2
D*(®F,,=0, (3.12 b=—¥=In k—rD—3+%—Ar2 . (3.21)
whereD , denotes the covariant derivative with respect to the
D-dimensional metrig,,, . From the symmetry of the space- \yhere
time, without loss of generality, we can always assume
that (°’F ,, is a function oft andr only, and takes the form 2Ap
OF ,,=F(t,r)(858,—5,69). (3.13 A (D-1)(D-2)° 322

Substituting Eqs(3.11) and (3.12 into Eq. (3.10 we find
that

14

O, ,~F¥ 2(e 2V 0o 205,

2
+_2e—2(<p+«y)glw n

5 (3.14

b
D—29w
Combining Eq.(3.7) with the above equation, we obtain

(3.195

On the other hand, from the Maxwell field equati12
we have

W(t,r)y=w(r).

C
F(t,r)=rD_2 ,

(3.19

whereC, is an integration constant. Inserting E¢®.15 and
(3.16 into Egs.(3.6)—(3.9), we find the following indepen-
dent equations:

D-2
O+ D | D -

C 2A
_ 2% 1 D
B r20-2) D—2]’ .17
D-2
q),rr"_q),r((b,r_\lr,r)__\lf,r
C, 2Ap
— 2V _
=g (rZ(DZ) D—Z)’ (3.18
kpe?¥ —r(® ,—V¥ )—(D-3)
C, 2Ap
_ a2V 2
e (D—3)r2(D*3)+D—2r ) (3.19

where C,=2(D—3)C3/(D—2). From Egs.(3.17 and
(3.18 we obtain

O(t,r)=—¥(r)+Dy(t), (3.20

andM andQ are two arbitrary constants, related to the total
massM and chargeQp of the spacetime via the relations
[12]

. 87TGDMD

_4’7TGDQD
T (D-2Ay T Ay

As (3.23

whereAs denotes the total area of th® ¢ 2)-dimensional
surface spanned by,g,

As= J JhdP~2x, (3.24

It can be shown that the solutigi3.21) also satisfies Egs.
(3.17 and(3.18), with the electromagnetic field given by

08— st s0

53 (0.0, 9,0,).

(3.29

(D)FMV:((D_Z)Z(D_S))llz Q
.

When the surfaces of constanandr are not compact,
clearly As becomes infinity, so dd/y, and Qp. However,
one can still keep the quantiti@s andq finite, where

(3.2

which may be interpreted as the mass and charge per unit
area.

On the other hand, from the above derivation of the solu-
tions one can see that they represent the most general solu-
tions of the Einstein-Maxwell field equations coupled with
the cosmological constant iD-dimensional spacetimes de-
scribed by the metri¢3.2). In general the spacetime is sin-
gular atr=0 and all the other singularities are coordinate
ones. This can be seen, for example, from the Ricci scalar,
which now is given by

(D-3)(D-4)Q? 2D

D)R= _
R r2(0-2) D-2

Ap. (327
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Thus to have a geodesically complete spacetime one needsgmgularity, which divides the wholet,)-plane into two
extend the spacetime beyond these coordinate singularitiesausally disconnected regionsy>0 andx<0. All the other
In the next section, we shall restrict ourselves only to thesingularities are coordinate ones, and to have a geodesically

case wher&p=0 andD=4. complete spacetime, we need to extend the metric beyond
these singularities.
IV. FLAT TOPOLOGICAL BLACK HOLES In the stationary axisymmetric case, a significant quantity
IN FOUR-DIMENSIONAL SPACETIMES that characterizes a horizon is the surface graiity. In the

) ) . following we shall derive this quantity for the spacetimes
To study the global structure of the solutions given in thegescribed by the metrie4.1) [15]. To this end, let us con-

above section, in this section we shall restrict ourselves onlyiger the four-acceleration of a static observer with the four-
to the flat casekp=0, and assume that the spacetime haﬁ/elocity Uk =f-L2gm

only four dimensionsP=4. Then, the surface of constant

andr can be a plane, a cylinder, a ldios band, a torus, or a at=u*; u"=k(x) 8%, (4.9
Klein bottle, depending on how to identify the two coordi-
nates inX? [13]. where
Settingk=0 and D=4 in Eq. (3.2) we find that the 1
corresponding metric can be written in the form K(X)= Efvx(x)- (4.5

ds?=—f(x)dt?+ f ~1(x)dx®+x3(dy?+dZ?), (4.1
From the above equations we can see that in order to stay at

where a fixed pointx, the observer has to fire a jet engine whose
5 thrust per unit mass i¢(x)| in the positivex direction for
f(x)= @Jr Q éxz f,.(X)>0, and in the negative direction forf,,(x)<0. On
X x2 377 the horizonx=x,, wheref(xy)=0, the quantityx defined
by
— a 0 o1 1
P 2 Oubim 3,0, 42 K= k()= 5 o) 4.9

with b=—M, q=Q, andA actually being\ . To consider s called the surface gravity of the horizén.

the most gene_ral case, we assume that the mass pardmeter 1o extend the spacetime across the horizon, we can first
and the coordinate take their values from the range>  introduce a new coordinate® by [16]

<b, x<+oo. It is interesting to note that if we make the
replacement1,r)—(—M,—r), we find that the Reissner- . dx
Nordstran solution coupled with a cosmological constant X :fm (4.7)
remains the same. That is, the physicsNb=0, r=0 is the
same as that foM <0, r<0. When the spacetime has plane and then two null coordinates, andw, via the relations
symmetry, the range of the coordinatels —oo<x<<+oo,
This is the main reason why here we are allowing ourselves p=extH) = et 4.9
to also consider the case whdye-0. )
It should be noted that the above solutions were also stud? terms ofv andw, metric (4.1) becomes
ied[5]. Since here we would like to give a systematical study 72 ot 5 o
for this case, some of the materials to be presented below ds’=—«"*f(x)e dvdw+x(dy*+dz*). (4.9
will be unavoidably overlapped with some presented there.
From Eq.(4.1) we can see that the metric is singular on
the hypersurface§(x) =0. However, these singularities are
coordinate singularitigs, except for the one located on the A) b#0g+#0A=0; B) b#0g=0,A#0;
hypersurfacex=0. This can be seen, for example, from Eq.
(3.27) as well as the corresponding Kretschmann scalar, C) b=0g+#0A+#0; D) b#0g+#0A+0;
which now is given by

To study the global structure of the spacetime, it is found
convenient to distinguish the following cases:

1 1 E) b#09=0A=0; F) b=0,4g#0,A=0;
— RMVAS — - 2 2 4 TA2
R=RK™R,,\s=8 X8[6(q +bx)°+q ]+3A . G) b=0g=0A#0. 4.10
4.3

The above expression shows clearly that the Kretschmanninoe the similarity to the spherical caseds?=f(r)dt?
scalar becomes unbounded only wher0. As [X|—+%  _f(r)~1dr2—r?(d6?+sirPéde?). For a static observer with the
the spacetime is asymptotically de Sitter or anti—de Sitterfour-velocity u“=f"Y2s¢, its four-acceleration is given bgp*
depending on the signs of the cosmological constant, =u*; u’=(f,/2)8*. The quantityx=f,(r)/2 is called the sur-
Thus only the singularity ak=0 is a spacetime curvature face gravity of the horizon at=r [14].
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f(x) f(x)

o

x

o
x

\X/ 3
- ‘ Lt

(a) (b)

FIG. 1. The functionf(x) given by Eq.(4.11) in the text.(a)
The case wherb<0, in which the functionf(x) is zero atx=Xx,
=@%(2|b|) and has a minimum ak=x;=2x, where f;(x;)
= —bzlqz. (b) The functionf(x) £0r2b>0 and now we have FIG. 2. The Penrose diagram for the solution of E11) with
=—q°/(2b)<0 andf,(2x0) = —b*/q". b<0 in the regionx<0. The singularity ak=0 is timelike and

naked. The vertical curves are the hypersurfacesonst and the
In the above classification, case €rresponds to the Taub horizontal dotted lines are the ones const.
vacuum solutior{17] and the properties of which are well-
known. In particular, it has a naked singularityxat 0. Case 4|p|3
F) represents a pure electromagnetic field with a naked sin- K=——7 (b<0). (4.13
gularity atx=0, while case g corresponds to the de Sitter a
or ann—dg Sitter spacetime, depending on the sign of thel'hus a stationary observer near the hypersurfeee in
cosmological constant. The global structure of the latter i
studied extensively if18]. Therefore in the following we
shall focus our attention only on the first four cases.

his region feels a repulsive force from the regior<X
<Xg, and the totally effective gravitational mass should be
also negative in this region. Integrating E¢.7) we obtain

2 2 4

A. b#049#0A=0 L. X q x+ q In ) 2/blx) (4.14
X*=———+4+—In(g*— X). .
WhenA =0, we find 4b 207 gp3 0
2b q? On the other hand, the coefficiegt,, now is given by
(x)= —2<X %)
X
. 2lblx
Gow=—(\2kx) "Zexp| — ¢ +lb|x) |, (4.19
, q?
fr(x)=— ) X+ (4.1 which shows that the metric now is well defined across the

hypersurfacex=x,. Combining Egs.(4.8) and (4.14), we
also have
Now let us consider the two casks:0 andb>0 separately.

Case A.) b<0: In this case the functiof(x) is positive 5 2|bl? , 2|b]
in the whole regiorx< 0 [cf. Fig. (@], and the singularity at vw=—(gq*~2|b[x)ex 2 Xt — x|, (418
x=0 is naked. The corresponding Penrose diagram is that of q a
Fig. 2. Note that nowx(x)=f’(x)/2=(|bx|+q?)|x| 3 is

3 2
also positive in this region, so the naked singularityxat v=(q2—2|b|x)1/2exp( _ 4|b] t+ ﬁxz
=0 produces a repulsive force to a stationary observer who q* q*
stays in this region. Consequently, the naked singularity
should effectively have negative gravitational mass. L :
However, in the regiox>0, the functionf(x) becomes + ?X (region ). (4.19

zero at the point
From the above expressions we can see that the coordinate

9 transformationg4.8) are restricted only to the region where
x0=m>0 (b<0), (412 v>0 andw<0, which will be referred to as region|[Etf.
Fig. 3]. To extend the metri¢4.9) to cover the whole space-
time, one simply takes the range ofandw as —o<v,w
and the corresponding surface gravity is given by <+, Then, in the {,w) coordinates we obtain three ex-
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f(Xx)

N fl X

FIG. 3. The Penrose diagram for the solution of E11) with FIG. 4. The functiorf(x) given by Eq.(4.20 in the text, where
b<0 in the regiorx>0. The singularity ak=0 is timelike and the ~ X1=—(3b/A)"® andf(x;) = —[(3b)?A]**<0.
linesbc andad wherex=x, are Cauchy horizons.
becomes singular at the hypersurfacex,=—q?/(2b) [cf.
tended regions'| I, and II', which are absent in thet,&)  Fig- 1(b)], on which we now have
coordinates. In each of the three extended regions, the coor-

dinate transformations fromv(w) to (t,x) are given by o 4_t:3>0 (b>0). 4.19
q
ol APE L IDE
v="—(q"=2[b]x)"ex 3 ?X That is, a stationary observer near the hypersurfaeg, in
this region feels a repulsive force from the regiggp<x
|b] <0. After extending the spacetime beyond this surface, the
+—x|, (regionl), corresponding Penrose diagram is similar to that of Fig. 3 but
q with x<0.
4b]®  |p|? =
v=(2|b|x—q2)1’2exp<— |4| tJr%x2 B.b#0g=0A+0
q q Whenqg=0, we have
+Mx (region ) f(x)= A8 s 4.2
q2 ) g ) (X)_3_X X—X . ( . O)
ab]®  |bJ2 In this case it is found convenient to distinguish the four
v=— (2|b|x—q2)1/2exp< -t 2 subcases,
q q
b 1) A>0, b>0; 2) A>0, b<0;
b
+— i ' _
qzx)’ (region IF), (4.18 3) A<0, b<0: 4) A<0, b>0. (421
wherew can be found through Eq4.16. Then, the corre- Case B.2 A>0,b>0: In this subcase, we find th&{x)

sponding Penrose diagram is that of Fig. 3. From there wéS negative for alk<<0. Thus in this regiox is timelike and

can see that the hypersurfacesx, (or yw=0) are Cauchy tis spacelike. Then, the singularity x#0 is spacelike and

horizons that separate the two regions | ahdrom the two ~ naked. So, in this region the spacetime has a global structure

asymptotically flat(only in the x direction ones Il and It thatiis quite similar to some cosmological models.

[18]. The timelike coordinaté is past-directed in region | In the regionx>0 the functionf(x) is positive only for

and future-directed in region’] as we can see from Eqs. 0<X=<Xo [cf. Fig. 4], where

(4.16—(4.18. Across the horizonst becomes spacelike, 13

while x becomes timelike. o= (@)
Case A.2 b>0: In this case the spacetime properties can ol A)

be obtained from the cade<0 by the replacementb(x)

—(—b,—x). In particular, in the regiox>0 the function On the hypersurfac&=x, we havef(xy)=0, which, as

f(x) is strictly positive and the singularity at=0 is naked. shown before, is only a coordinate singularity. Thus we need

The corresponding Penrose diagram is similar to that giveto extend the solution beyond this hypersurface. Before do-

by Fig. 2, but now withx>0. In the regiorx<0, the metric  ing so, we first note that now we have

(4.22
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f(x)

X1 0 Xo X

FIG. 5. The Penrose diagram for the solution of E§20 with
b>0 and A>0 in the regionx>0. The singularity atx=0 is
timelike and the linedc andad wherex=x, are Cauchy horizons.
On the curved linesb and cd we havex=rco.

FIG. 6. The functionf(x) given by Eq.(4.29 in the text, for
A<0 andb<0, wheref(x;)=[(3b)?|A|]**>0.

A It is also interesting to note that now the acceleration of a
Kk=— =Xo<O0, (4.23 : O .
2 static observer is given by E@.4) with

that is, an observer near the horizon will feel a repulsive <0, x<Xq
force from the region 8:x<x,. Then, we would expect that AT 5 80y ) =0, x=x,
the singularity atx=0 has an effectively negative gravita- K(x)= 352 o i (4.26
tional mass. This is understandable, since in the present case =0, x=x<0,
we haveA >0, which is energetically equivalent to a matter
field with a negative mass density. wherex;=—|3b/A |,

Following the same line as outlined in the last subcase, In the regionx>0, we have
we find that the corresponding Penrose diagram is given by
Fig. 5. The hypersurfaces=x, (or vw=0) are Cauchy ho- <0, Xx<Xo
rizons. The singularities at=0 now are also timelike. The _) =0, x=Xx,
coordinatet is past-directed in region | and future-directed in fx)= (4.27)

. >0, X>Xgq,
region I'.

Case B.2 A>0b<0: From Eqg.(4.20 we can see that
this case can be obtained from the last case by the replaceserex,=|6b/A|*3, and
ment &,b)—(—x,—b). Thus the spacetime structure for
this case can be also obtained from the ones given in the last 1, A
case by this replacement. In particular, now the solution in K= Ef (Xo) = 2 Xo>0. (4.28

the regionx>0 may represent a cosmological model, and
the spacetime has a naked singularityxatO, which is Extending the solutions into the regiord&<x,, we find
spacelike. In the regiox< 0, the corresponding Penrose dia- the following relevant quantities:
gram is that of Fig. 5 but now witk<<0.
Case B.3 A<0b<0: In this case, we find that 2(x2+ Xox+x2) 32 p{ g(2x+x0>]
- xp, — /3 arct ,

Qow™ 2
Al[ , b 3| A|xgx V3%
10=3 1" 1&)

f’ _ 124l S+ 3b 4.2
(X)_¥ X T . ( . 4)
Thus in the regiox<<0 the function is always positive as
shown by Fig. 6. As a result, the singularityxat O is naked.
On the other hand, for any hypersurface C, its normal
vectorn,, is given byn,= d(x—C)/dx“= &} . Thus we have

X XO=f(X)— + 0, (4.29

b

asx— —o, which means that the spatial infinik= —o in
the present case is timelike. Then, the corresponding Penrose FIG. 7. The Penrose diagram for the solutions given by Eq.
diagram is given by Fig. 7. (4.29 in the regionx<0 for A<0 andb<O0.
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responding Penrose diagram is similar to that of Fig. 7.
WhenA >0, we have

A
f(x)= y(x§+ x?)(x5—x?), (4.31)
but nowx, is given by
3q2 1/4
XOE(T) . (4.32

From the above equations we can see thaf)=0 holds
only in the region B<x<Xq. On the hypersurface=x, the
surface gravity is given by

FIG. 8. The Penrose diagram for the solution of Ef24) with
b<0 and A<O0 in the regionx>0. The singularity atx=0 is
spacelike and the lindsc andad wherex=x, represent event ho-
rizons, while the curved linesc andbd represent the spatial infinity

K— — _X0<0,

3 (4.33

that is, the effective gravitational mass in the regioq»0

“ <Xg should be negative. One can show that the correspond-
ing Penrose diagram is similar to that of Fig. 5.
X—Xg 2X+Xq
VW= — z—mexpl J3 arcti ] ,
(X%+ XX+ X3) V3% D. b#0g#0A %0
4.29 When none of the three parameters are zero, we need to
12 distinguish the four subcases as defined by (B®1). How-
0= (X=X%o) ex —éx t ever, as shown in cases) Aaand B, the properties of the
(X% + Xox + x2) 4 270 spacetimes for the cage<0 can be obtained from those for
the caséb>0 by simply replacingk by —x. Thus we actu-
J3 2X+Xg ) ally need to consider only the subcases0b>0 andA
+ 7arct% \/§X0 ] (region ). (4.30 <0b<0.

Case D.2 A>0,b>0: In this case, it can be shown that

The corresponding Penrose diagram is given by Fig. ST(X) takes the form

which shows that now the hypersurfaces x, (or vw=0)
represent event horizons, and the singularitiex-ab are
spacelike. Regions Il and’llare two catastrophic regions,
while regions | and’l are two asymptotically anti—de Sitter
regions. The timelike coordinatés future-directed in region where
| and past-directed in regiorl.| Region Il can be considered
as a black hole, while region’llas a white hole. Since now (4.35
the surface gravity of the horizon is positive, the spacetime
Singularity atx=0 is graVitationa”y attractive and eXpeCted andx+ are the two rea' roots Of the equaub('x) :O, given
to have an effectively positive gravitational mass. via the relations

Case B.4 A<0,b>0: This is the case which corresponds

A
— (X4 —X)(X—X_)(x*+Bx+C),

f
(x) .~

(4.39

- =2 2
B=x,+x_, C=Xx_+Xx.x_+x2,

to case B.R As a matter of fact, replacingby —x, we can 6b 302
obtain one from the other. Therefore the corresponding Pen- B(xi +x%)= A Cxyx_=— N (4.36
rose diagrams in the two subcases are the same, after the
above replacement is taken into account. .
with the property
C.b=0g#0A#0 x,>0, x_<O0. (4.37)

When b=0, from Eq. (4.2 we can see thatf(x)
=f(—x). Thus the spacetime has reflection symmetry withFrom the above equations we can see tt{a)=0 is true

respect to the hypersurfage=0. Then, without loss of gen-
erality, in the following we shall only consider the regign
>0 in this case.

When A <0, f(x) is always greater than zero for ary

Consequently, the singularity at=0 is naked, and the cor-

only in the regionx_<x<0 or 0<x=<x, . Then, we need
to extend the solutions beyond both of the hypersurfaces
X=X .

Let us first consider the extension across the hypersurface
X=X, . We first note that

084012-8
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f(x)

FIG. 9. The functionf(x) given by Eq.(4.42 in the text, for
A<0b<0, and|g|<q., wheref;(x;)=[(3b)?A|]¥*>0.

_ A 2 FIG. 10. The Penrose diagram for the solution of @342 with
K|X=X+_ B a(h —x-) (X +Bx, +C)<0. lgl<q. in the regionx>0. The linesad andbc wherex=x_. rep-
(4.39 resent event horizons, and the ors ha, cf, and de, wherex
=Xx_, represent Cauchy horizons. The singularitiedlatga, df,
Thus a static observer near the horizon will feel a repulsiveand ce are timelike. The curvesic and bd represent the spatial
force from the region &x<x, , which means that the ef- infinity (x= ), which is timelike. To have a geodesically maximal
fective gravitational mass in this region is negative. One cargpacetime, the extension in the vertical directions should be con-
also show that the Penrose diagram is similar to that given bfjnuous to infinity.
Fig. 5.
On the other hand, the surface gravityxatx_ is given ~From Egs.(4.42 and(4.43 we can see that in the region
by <0 the functionf(x) is positive, and the singularity at
=0 is nakedcf. Fig. 9]. The corresponding Penrose diagram
5 is similar to that given by Fig. 7.
Kly=x_= 67(X+—X—)(X_+BX—+C)>0, (4.39 When x>0, f(x) is non-negative only in the regions
- =x, or 0=x=x_. Thus an extension across the hypersur-

which means, similar to that in the regias-0, now a static facesx=x. is needed. Let us first consider the extension

observer near the horizon will also feel a repulsive force@TOSSX=X. . _
from the regionx_<x<0. It can be also shown that the 'N€ extension across the hypersurfacex. : Following

corresponding Penrose diagram is that of Fig. 5, but with Previous cases, we find the following:

<0. w

Case D.2 A<0,b<0: In this case we find that it is con- . _ an
venient to distinguish the following three subcases: X 2K, In(x X+)+n§1 n =X )%,

) lal<dc, i) [al=qc, ii) |a|>ac,  (4.40 o Al
e T L — 2
where Ke=—>% 6xi(x+ X_)(x4 +bx, +¢)>0,
3b 2/3
— —1/6]
D700 AT e |

X=X

Case D.2) |g|<q.: In this case, it is found that the
function f(x) can be written as

f(x)= m
3x2

Jow=—[2650(x)] "

“a
xexp{—2K+2 —n(x—x+)”},
n=1 N

(X=X )(X—X_)(X*>+Bx+C), (4.42

whereB, C, andx.. are given by Eqs4.35 and(4.36), but
now with the properties

= — — 2 —_— — n ,
X.>0, x_>0, (|a|<qc). (4.43 bw=—(x x+)exp{ K+n§="1 n X X+)]

084012-9
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“ a Thus f(x)>0 holds for allx<0. As a result, in the region
v=(x—x+)1’2exp[ Kio|lt+ E —n(x x<0 the singularity ak=0 is naked, and the corresponding
n=1 N Penrose diagram is that of Fig. 7.
In the regionx>0, f(x) is also positive, except at the
—x,)" ] (region |). (4.44) point x=X,, where f(xg)=0. See Fig. 9, and notice that
now we havex, =x_=Xq. This is quite similar to the ex-
) ) treme case of the RN solutidd8]. Integrating Eq(4.7), we
Then, we get four regions, I,’| I, and Il in the (@v,w) obtain
plane, as shown in Fig. 10. The hypersurfagesx, now
are event horizons. The coordindtes future-directed in re- . X 1 (X—Xg)?
gion | and past-directed in region.INote that asx— + o, X" =- — 1 n
we havef(x)— +o. Therefore the hypersurface= + is 2/ Axo(x=x0) 3 AIXo "+ 2xox+ 35
timelike and represented by the cunagsandbd in Fig. 10. 7.2 X X
The extension across the hypersurfacex_: Now we + arct% 0 +x%, (4.48
find that 12/ Alxo V2xq

wherexg is an integration constant. In the following, without

1 “ b,
L — iy — n
X Pa In(x x,)~|—n§:1 = (x—x_)",

fm(x—) |A¢ 2

Ko=—> =—@(x+—x,)(x,+bx,+c)<0,
X—X_ 1 d"g(x)

f(X):: — ) n::_T n
g(x) n: dx

X=X_

n=1

Jow= —[ZKZ_E(X)]_leXp{ —2k_ 2 %(X_X—)n} '

loss of generality, we shall choosg such thatx* (0)=0.
On the other hand, from Eq&.6) and(4.46 we find

1
K= §f7X(XO):0'

(4.49

That is, the surface gravity now is zero. As a result, the usual

method of the extension given by Eq&.7)—(4.9) is not

applicable to this case, and we have to consider other possi-

bilities. Following Carter[19], let us define the two null

coordinatesy andw by
v=tan (t+x*), w=tan (t—x*),

(4.50

~ b, where — w/2<v<3w/2, and—3mw/2<sw=<7/2. In terms of
VW=~ (X—X_)exp —2k_ 21 o (X=x)", v andw, the metric reads
n=
“ b dsz=—f(—x)dvdw+x2(dy2+dzz) (4.51)
U:(X_X)llzexp{ K_|t+ 21 Fn(x cosv cosw S
n=
Using the relation
—x_)" ¢, (region llI). (4.45
] (reg Sirf(v —w) A(x*)? (452
——————=4(x*)%, .
cogv cosw

Clearly, by this extension, we get two more regions Il and
[Il", as shown in Fig. 10. The singularitiesxat 0 are time-
like and repulsive, since now we haxe <0. The hypersur-

facesx=x_ represent Cauchy horizons. Extensions 8CTOS2 onts an extension. As a matter of fact, one can show that this
these hypersurfaces are further needed in order to have 5 X :

geodesically complete spacetime. However, since these Slﬁg(tension is analytic and the extended spacetime is given by

: . regions | and Ill in Fig. 11, which is quite similar to the
faces are Cauchy horizons, the extensions across them aé%%reme RN black hol§18]. The only difference is that in

not unique, a situation quite similar to that of the Reissner-th i the h face 1 o is timelike. Si
Nordstran (RN) or Kerr solution[18]. € pris;aon case he yeerSL:crz?stee K IS '”][ﬁ.' e, S'F‘Cj
Case D.2.i) |g|=q,: In this case, we find asx— We Now haver — Tnite. Beeping tis in mind,
we can deduce all the properties of this solution from the
Al

extreme RN black hole. For example, the horizonsxg
3x?

one can show that the metric coefficients of E451) be-
gome regular across the hypersurfacex,. Thus it repre-

represent event horizons. The regixyi x<<+ o is mapped

to region |, while the one &x<Xxq to region lll. The
t-coordinate is future-directed in region |. The singularity at
x=0, represented by the vertical double lines in Fig. 11, is
timelike. From the diagram we can see that the extension
should be continuous to infinity in the vertical directions, in
order to get a geodesically complete spacetime.

f(X)= — (X—X0) 2(X?+ 2XoX+ 3x3),

(4.49

wherex, now is given by

3b 1/3
XO::<___)

oA (4.47
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A(v,r)=e¢[2f¢,”+f},,+(2f¢',+3f,,)¢,r]
_25¢,ur ’

1 fy
VaVor =— 5 fe/| 2fy +1 +ee™/ == 500

1

— S ee’(2fy, +1,)(6005+ 5300)
- lﬁ,r5§5%’

Or=fy,+f . (5.3

Inserting the above expressions into E2,.7), we obtain

(D)RUU = %fezw

2f‘»l’,rr—i' f,rr+(2f'7[f,r+3f,r)‘//,r

D-2 1
+——@fy )| - Eefe”/ 2,

(D_z)f,v

FIG. 11. The Penrose diagram for the solutions given by Eq.
(4.46 in the text with|g|=q, and in the regiorx>0. The space- 1
time singularity ax=0, represented by the vertical liae, is time- DR = = ee¥| 2f +f 4+ (2 +3f
like. The surfacese, ab, cb, andcd, wherex=x,, all represent o€ Vet Tt (21, D
event horizons. The hypersurfaces +o now are timelike, given D—2
by the curvedd andeb. The extension in the vertical directions is —

+— +f,)|— .

continuous to infinity. r CHe 0| = v (5.9

Case D.2.ii) |g|>qc: In this case it can be shown that D—2
f(x)>0 holds for anyx. As a result, the singularity at OR, = ; I/ (5.6)
=0 is naked, and the corresponding Penrose diagram is
given by Fig. 7.

PIRpg=[kp—r(fy+f,)—(D—3)f]hug. (5.7

V- TYPE NI FLUID IN D-DIMENSIONAL SPACETIMES On the other hand, introducing two null vectdrsandn,,

Now using the gauge freedom of E@.2), we shall set  Vvia the relations

011(x%) =0, s=r, (5.1

L %

1
l,=6", n#=e¢’(§fe¢5ft+55;
where x®={v,r}. These coordinates are usually called

Eddington-Finkelstein coordinatesn terms of which the

A—O—n. nA A
metric (2.1) takes the form LW*=0=nn% lin 1, (5.9

_ o.r or we find that the energy-momentum tensor for a type Il fluid
ds?=— e’ Ndy(f(v,r)e’ Ndy +2edr) e be written agzo,z% yP
+r2hag(x%)dxAdxB, (5.2
OT,,=ul,l,+(+P)1,n,+1,n,)+Pg,,. (5.9
wheree==*=1. Whene=1, the radial coordinateincreases
towards the future along a ray=const. Whene=—1, the  Then, from the Einstein field equations we find that
radial coordinate decreases towards the future along a ray

v =const.
From Eq.(2.9) it can be shown that (D)RWISWGD[MUUJF(PJF P)(I,n,+1,n,)
o) 1 # <0 0 1, o1 2p
Rap= 5 Alfe’60op+ e(550,+ 530p) ], + 559 (5.10
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From Egs. (5.6) and (5.10 we obtain =0, that is, To see that the energy-momentum tensor given by Eq.
(v,r)=y(v). However, by introducing another null coor- (5.9 indeed represents a type Il fluid, let us first introduce

dinatev = fe¥“)dv, we can always set, without loss of the the following unit vectors:

generality,
(v,r)=0, ((D)GrrZSWGD(D)Trr)- (5.1 Ex | A4 nH Ex |#—n#
0= f = ,
On the other hand, from the rest of the Einstein field equa- © V2 g V2
tions, we find that
e(D—2) _ 1 _
h= oG o Ew=7TEmd%: 9uwEwER=7as
P (5.13
D-2 where =diagl—1,1,1...,3, and E}, (AB
pP 2[kD—I’f,r—(D—3)f], 77&,8_ It e BRI T ] (A) ’

- 167Gpr =2,3,...D—2) consist of an orthogonal base in the space

of hpg, that is

5 1 [ . 2(D—3)f
T ,rr - ,r
167Gp r ESyEDyhen= Sas- (5.14
P ko= (D—3)f 5.1
r [ko = - (5.12 Then, projectingr ,, into this base, we find that
|
1
S(kt+2p)  —u 0 0 0
! ! 2 0 0 0
ok 5(n=2p)
(T = 0 0 P 0 0l (5.19
0 0 0 . 0
0
0 0 0 0 P
|
which is exactly the type Il fluid, according to the classifica- eD-2) &
tion given in[18]. Therefore, for any given functiof(v,r) h=— 5 > a,(v)r",
with =0, the corresponding energy-momentum tensor of 87Gpr n=-e
the metric(5.2) can be always written in the form of a type Il
fluid. However, not for any choice df(v,r) is the solution .
physically acceptable. In fact, it must satisfy soifgeo- D=2 D ho1
metrical and physicalconditions, such as, the energy condi- P G D 2, =, Nan(v)rt=,
tions[18]. Following [21], we write f(v,r) in the form b
f(o,r) =k 2mwr) P LS nin-Dagonn?
= K- =T T 5 _a - v y
(Uyr) rD_3 ’ 87TGDrD73 nw n
(5.17
m(v,r)zn;m an(v)r". (5.16  where a prime denotes the ordinary differentiation with re-

Then, Eq.(5.12 becomes

spect to the indicated argument. Clearly, by properly choos-
ing the coefficients,(v), we can get many exact solutions.
For example, for the choice
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[ m(v), n=0
1 2
~50%v), n=—(D-3)
an(v)=9 1 (5.18
=A, n=D-1
2
0, otherwise,
\
we find that
2m(v)  q%(v) )
f(v,l’):k—rD—_:_3 r2(D—3)_Ar , (5.19)

and the corresponding energy-momentum tensor can be writ-

ten as

1
(D)T,w:l'blul At (D)FMH(D)F(;_ Z(D)FHB(D)FD[Bl

(5.20
with
©)F :((D—Z)(D—3))1/2q(v)(5051_5150)
uv 2 pD—2 Tutv Buel
_ €Db-2) Lo q'(v)
m= —87TGDrD_2[m(U) Q(v)IrD_3 :
(5.2))

PHYSICAL REVIEW D68, 084012 (2003

VI. FORMATION OF TOPOLOGICAL BLACK HOLES
FROM GRAVITATIONAL COLLAPSE OF ATYPE Il FLUID

To consider gravitational collapse of the type Il fluid
found in the last section let us choose — 1. Then, metric
(5.2) with =0 becomes

ds?= — f(v,r)dv2+2dvdr+r2h,p(xC)dx dxE.
(6.1)

To the present purpose, let us consider the solutions given by
Egs.(5.19—-(5.21) with

D-3

(Nvg >, v=vg
D-3
m(v)={ Av- 72, Osvsvug
0, v<0,
\
(su273, v=ug
D-3
a)=1 % v 0svsvo 6.2
0, v<0,

where N and § are arbitrary real constants, subject Xo
>0. Clearly, the solutions represent a charged null dust fluid
moving on a de Sitter or anti—de Sitter background in the
region O<v<v,, depending on the sign df. WhenA =0

Whenk=1 andD=4 the above solutions reduce to the the spacetime is self-similar, while whek#0 it is only
ones found in21]. Lately, these solutions were generalized asymptotically self-similar, «{,r)—(0,0). The correspond-

to high dimensional spherical spacetinig].

ing energy-momentum tensor is given by E§.20 with

( 1/2 D-3
(D-2)(D—-3)\ " 6v
- o7 (ol 0L, v=vo
®F ={ [(D-2)(D-3)|¥2syP"3
0, v<0,
\
( 2\,D—4
D-2)(D—-3)¢&
( )( )2 Yy (yCDf3_ny3), 0<U$UO
w= { 8’7TGDr (63)
0, otherwise,
\
|
where tains only the first order derivatives 6fwith respect tov.
YD-3) Thus there would be no matter shell to appear on a hyper-
_v _ i 6.4 surfacev =const, as long ag(v,r) is continuous across this
Y= YTl s 64 gurface. Clearly, this is the case for the choice of &)

From Egs.(5.4—(5.7) we can see that the Ricci tensor con-

crossing the hypersurfaces=0 andv =v,,.
When k=1, A=0=45, and XP"2=35P"2 the corre-
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sponding solution is the Vaidya solution D-dimensional
spherically symmetric spacetinhi22], and was studied inde-

pendently in[23,24. In particular, da Rocha showed that 3_@*
when N>\, the collapse always forms black holes, and &
when A<\ the collapse always forms naked singularities, o |3
where (7CS
" '
1 0 Q>
_ (D-3)P3 6.5 o | ¥
* [2(D-2)]P~% ' |
0} - I

This result can be easily generalized to the case where
=0, =0, andXP~2 has a topology rather tha8P 2. As a

matter of fact, the case witk=1, A>0, §=0, andXP 2 o
=SP~2 was already studied if25], from which we can see
that Eq.(6.4) is also valid for anyA and other topologies for
XP~2 put still with k=1, §=0. =

Whenk=1, A=0, §+0, andD=4, Lake and Zannias

found that the collapse can form either black holes or naked
singularitied 26]. Ghosh generalized these results to the case
where A>0 [27]. From the analysis given in these two ar-

ticles one can see that the cosmological constant actually hag .\ -+~ 5—0 andA<0. The curved lineAH represents an

no effects on the final state of the_ collapse. Therefor_e th%pparent horizon, and the collapse always forms black holes.
results obtained by Lake and Zannias are actually valid for

any A. In addition, following their analysis it is not difficult
to be convinced that gravitational collapse of a charged typ
[I fluid in a higher dimensional de SitterA(>0) or anti—de

Siter (1) spacetine itk can fom eiter back £, 40) P o seeen b £, 1
holes or naked singularities, depending on the choica of | h b ~0 % |¥ 12 hat thi
and 5. only at the moment =0, from Fig. 12 we can see that this

singularity is always covered by the apparent horizon. This

Therefore in the following we shall consider only the S - ;
P . . can be seen further by studying “outgoing” null geodesics,
cases wher&=0, —1. Let us first consider the cage=0, which are given by

i.e., the collapse of a neutral null dust fluid. In this case from
Eqg. (5.19 we can see that to havév,r) be positive at least

FIG. 12. Collapsing type Il fluid described by E@.2) in the

Thus in the present case thB { 2) surfaces of constamt
Gndr are trapped in the regian>uv 5y(r). The hypersurface

in some regions of the spacetime, we have to assume that d_U: 2 6.9
A<0. Then, Eq(5.19 can be written as dy |A|r2—|k|—2)\yD‘3' '
f(v,r)=2) m(rz—rz)— D-3 At the momentv =0 if there exist out-going null geodesics
v 2\ o)=Y ' from the point ¢,r)=(0,0), we can see that the singularity

formed at that moment will be at least locally naked. The

k|12 existence of such null geodesics is characterized by the ex-
rOE‘K , (6.6 istence of positive roots of the equatif2s]
D-2 -
while Eq. (A17) yields 2nyo “+[Klyo+2=0, (6.10
where
.= ﬁ pD-3_ mrD—3(r2_r2)
bt 2\ 0 v dv
Vo= lim —= Iim —. (6.1
v,r—0 u,rHOdr
<0, v<van(r)
_! =0, v=vau(r) 6.7) Since all the coefficients of E@6.10 are positive, no posi-
>0, 0>van(r) tive roots exist. As a result, the collapse will always form

black holes with nontrivial topology. This generalizes the
results obtained in the four-dimensional cf%€] to the one
where with any dimensions.
When §#0, Eq.(6.10 should be replaced by
IA| X 1/(D—-3)
UAH(V)EV(X(YZ_ ro)}

©8 Y0 =20yg P Iklyo—2=0.  (6.12
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| , (b) v | G(Y,)
2 @
1 E ’ Y=Y,
o3/
D, -
e Y 2 Y P
n |9, 2 s ()
L R O] ¥, ¥ % _
= @ 3 7y
V4P s N ;7o Yo
)/ N i
LY <Ye |
o | ! i
Ny
= FIG. 14. (a) The function ofG(y,) defined by Eq.(6.13 for
N k=0. (b) The function of F(y,) defined by Egq.(6.17 for
k=-1.
and
FIG. 13. Null geodesics for collapsing type Il fluid described by
Eq. (6.2 with §#+0. The dashed lin&) represents an outgoing null G(ys)=—2
geodesic withyg<y., while (b) represents an outgoing null geode- Yo =72
sic with y§>y., whereyg denotes the positive root of E¢6.12)
andy. is defined by Eq(6.4). 4AN*(D—-2)(D—3)

/ —
FUC-3_p< o

G(yo)= 22D _5)?
It is important to note that in the present case the charged ( )
fluid satisfies the weak energy condition only in the region
y<y., as we can see from E@6.3). On the hypersurface
y=Yy. the energy density becomes zero. Afterwards, the Lor- G(ye)=~— 5
entz force will push the fluid particles to move outwards

[29]. As a result, the particles actually cannot enter into th
regiony>y. [cf. Fig. 13. Now to see if the spacetime sin-
gularity formed at ¢,r)=(0,0) is naked or not, one needs
not only to show that a positive root of E(f.12) exists, but s
also to show that the outgoing null geodesics fall inside the Yo~ Ye- (6.16
regiony=<y,., where the solution is actually valid.

From Fig. 13 we can see that if an outgoing null geodesicThat is, in the present case there does not exist outgoing null
falls into the regiony<y. we must have/g<y., and if an  geodesics in the regioy<y.. So, the singularity formed at
outgoing null geodesic falls into the regign-y., we must  the point ¢,r)=(0,0) is not naked.
havey3>y., whereyj is the smallest positive root of Eq. ~ Whenk=—1, setting
(6.12. Since in the regiory>y,. we haveu<0 and in a
realistic model this region should be replaced by an outgoing F(yo)=06%y3° °—2\y) 2—yo—2 (k=-1),
charged dust fluid. Thus in the latter case the singularity at (6.17
(v,r)=(0,0) should not be considered as naked, but in the
former case it is. Therefore to see if the singularity is nakedye find that
or not now reduces to find out i§<y. or y3>y.. To this
gnd, let us first consider the cake 0, and define the func- G(Yo)—F(Yo)=Yo, (6.19
tion G(y,) by

5 1/(D—3)
;) —2<-2. (6.15

QI'hen, the curve 06(y) vsygo must be that given by the line
(@) in Fig. 14, from which we can see that

5 205 - and the curve of(yg) vsy, must be given by the dashed
G(yo)=0%Yy “—2\yg ‘=2 (k=0). (6.13 |ine (b) in Fig. 14. From there we can see clearly that Eq.
(6.16) also holds fork=—1.

From this expression we can see tl@t(y,)=0 has two Therefore it is concluded that the gravitational collapse of
roots,y, , given by a charged null dust fluid given by Eq$.19), (6.1), and(6.2)
with k=0 or k=—1 always forms black holes. This is in
2N(D-2) 1/(D—3) contrast to the re_sults obtair_ned [@7]. The reason i.s. that in
yo =0, y§=(— , (6.14  [27] the author did not consider the energy condition of the
5%(2D—5) charged null dust fluid.
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VIl. CONCLUSIONS a=(|d, 3|13, 9,)¥2, (Al)

In this paper, we have studied topological black holes and . _ - )
their formation from gravitational collapse of a type Il fluid With éz=d, and¢,)=d, being the two killing vector in the
in D-dimensional spacetimes described by the metric Eq(_:yllndncal spacetimes. Lately, one of the present authors
(2.1). After presenting a gener&x X°~2 decomposition in showed that Hayward’s definition is consistent with the one
Sec. II, we have rederived the charged solutions Coup|eglefined by the expansions of the two null directions orthogo-
with a cosmological constant, given by E@.2D, in Sec. nal to the two-cylindef32]. _ -
IIl. From their derivations we can see that these solutions are !N this Appendix, we shall generalize the above definition
the most general ones for the spacetimes described by Ef the D-dimensional case described by the metc2).
(2.). Now let us consider the{ — 2)-surface S, of constant and

In Sec. IV, we have systematically studied the globall- Whenk=1 it could be a D—2)-sphere, although other
structure of the spacetime flap =0 andD =4, that is, four-  toPologies can also exist. Whee# 1 it can be compact or
dimensional spacetimes with flat topology of tK& sector, noncompact, dep_endmg on how to identify the coordinates in
which can be a two-dimensional plane, cylinder, bites S For more details, we refer readers|[it8,33 and refer-
band, torus, or Klein bottle, depending on how to identify the€Nces therein. , o
two coordinates inx2 [13]. All the corresponding Penrose To calculate the expansions of the two null directions or-

_ a; i

diagrams have been given. In particular, it has been founf0gonal to the D —2)-surfaceSof constan® in the metric
that the solution with\ <0 andgq=0 has a black hole struc- (5.2), itis found convenient to introduce two null coordinates
ture quite similar to the Schwarzschild black hpdé Fig. 9. v andu via the relations
In the case where <0, bg#0, the global structure of the

corresponding spacetime is quite similar to the Reissner- du=G(v,r)(fe’dv +2edr),
Nordstran solution, including the extreme cajs. Figs. 10
and 11. dv=F(v)dv, (A2)

In Sec. V, all the solutions of a type Il fluid have been
found, while in Sec. IV the gravitational collapse of such a

fluid has been studied. Whén- 1 the collapse in a de Sitter O "VerSelY

or anti—de Sitter background can form either black holes or ell _ 1 )

naked singularities, but whek=0 or k=—1 it always dr:_<_du__fe¢dv '

forms black holes. Therefore all the black hole solutions with 2\G F

different topologies found in Sec. IV can be realized from the

gravitational collapse of a type Il fluid ilD-dimensional 1 -

spacetimes. dv =g dv, (A3)
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Then, in terms oli andv the metric(5.2) takes the form

APPENDIX: TRAPPED SURFACES AND APPARENT _
HORIZONS ds?=—2e?dudu+r2hg(x*)dx*dxB, (A5)

The concept otrapped surfacevas originally from Pen-
rose[30], who defined it as a compact spatial two-surf&e
in a four-dimensional spacetime, on whidh, 6_|s>0,
where 6. denote the expansions in the future-pointing null
directions orthogonal t&, and the spacetime is assumed to o
be time-orientable, so that “future” and “past” can be as-
signed consistently. One may then define a past trapped sur- . o ] )
face by@.|s>0, and a future trapped surface By|s<0. Clearly, the_ metric(Ab) is invariant under the coordinate

Recently, Hayward31] generalized the above definition transformations
to the four-dimensional cylindrical spacetimes where the o o
two-surfaceSis not compact but an infinitely long cylinder, u=u(u), v=v(v). (A7)
and call it trapped, marginal, or untrapped, according to
wherea , is timelike, null, or spacelike, where is defined  Using this gauge freedom, we shall assume that me&g
by is free of coordinate singularities. Then, it can be shown that

whereo andr are now the functions af andv via Eq.(A2)
and

N| -

[4—In(2FG)]. (AB)
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PRap=—20 5 (835, + 5250),

VaVol =1 ab—2(0 f 48300+ 0 T ;536p). (A8)
Substituting Eq(A8) into Eq. (2.7) we find that
ORG=— —=(r w204 ),
D-2
ORG=-2050——"%,
OR =~ — (1572072,
PR g={kp+2e 2°[rr ;,+(D
=3)r ot L 1}has. (A9)

On the other hand, introducing two null vectégsandn,,
by

(A10)

PHYSICAL REVIEW D68, 084012 (2003

rory 1
P

—20

6,6,=e 4 rre. (A13)

,

-

It should be noted that the Effine paraﬁe)te[or o] is
unique only up to a functiofi~*(u) [or g~ *(v)], which is a
constant along each curwe=const(or v=const)[18]. In

fact, \=\/f(u) [ = 8/g(v)] is another affine parameter and
the corresponding tangent vectors are

=W, n,-90), (A14)
and the corresponding expansions are given by
Gr=f(Wo,  Gr=9(v)0,. (A15)

However, since along each curue= const(or v =const) the

function f(u) [or g(v)] is constant, this does not affect our
definition of trapped surfaces in terms of the expansions.
Thus, without loss of generality, in the following we consider
only the expressions given by EGA12).

Once we have the expansions, following Penrose we can

define that a D—2)-surface,S, of constantu and v is
trapped, marginally trapped, or untrapped, according to
whether 6,6,>0, 6,6,=0, or 6,0,<0. An apparent hori-
zon, or trapping horizon in Hayward’s terminolo§$1], is
defined as a hypersurface foliated by marginally trapped sur-

one can see that the two null vectors are future directed ances.

orthogonal to the) — 2)-surfaceS, of constanu andv (or

20

Sincee™ <7 is regular, except at some points or surfaces

constant ofv andr). In addition, each of them defines an ©n Which the spacetime is singular, from EA13) we can
affinely parametrized null geodesic congruence, since nowe® that trapped, marginally trapped, or untrapped surfaces

the following holds:

K= |M V=
5y “=107=0,

55 (A11)

n“=n#. n"=0,

where a semicolon “;” denotes the covariant derivative with
respect tog,,,, and\ and ¢ the affine parameters along the
null rays defined, respectively, By and n#. [It should be
noted that the symbob used here should not be confused
with the one used in Eq6.2) for the charge densitly.In
particular,|* defines the one moving along the null hyper-

surfacesu=const, whilen* defines the one moving along
the null hypersurfaces =const. Then, the expansions of
these null geodesics are defined [i]

20w

1
BIE—Bgaﬂla;B:e7 p ,

Fu

1
b= 0N, y=e 2t (A12)

Thus we have

can be also defined according to whethgris timelike, null,
or spacelike.
On the other hand, from E@A3) we find that

ar € _ AL6
ou 2G' gy (AL6)

Inserting the above expressions into E412) we obtain

~20lw

0|— Dgaﬁla;ﬁze

3 ef ei-20

2rF

20U

n

D 9% ngp=e

€
— —20
2rG e

FG
6,6, =— —fe " (A17)
r
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