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Higher dimensional Bell-Szekeres metric
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The collision of pure electromagnetic plane waves with collinear polarization inN-dimensional (N52
1n) Einstein-Maxwell theory is considered. A class of exact solutions for the higher dimensional Bell-
Szekeres metric is obtained and its singularity structure is examined.
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I. INTRODUCTION

One of the main fields of interest in general relativity
the collision of gravitational plane waves. Colliding plan
wave space-times have been investigated in detail in gen
relativity @1#. The first exact solution of the Einstein
Maxwell equations representing colliding plane shock el
tromagnetic waves with collinear polarizations was obtain
by Bell and Szekeres~BS! @2#. This solution is conformally
flat in the interaction region and its singularity structure h
been considered by Matzner and Tipler@3#, Clarke and Hay-
ward @4#, and Helliwell and Konkowski@5#. Later Halil @6#,
Gürses and Halilsoy@7#, Griffiths @8#, and Chandrasekha
and Xanthopoulos@9# studied exact solutions of the Einstei
Maxwell equations describing the collision of gravitation
and electromagnetic waves. Furthermore, Gu¨rses and Ser-
mutlu @10#, and more recently Halilsoy and Sakallı@11#, have
obtained the extensions of the BS solution in the Einste
Maxwell-dilaton and Einstein-Maxwell-axion theories, r
spectively.

One of the purposes of this work is to observe which
the relevant physical properties of BS metric are conveye
higher dimensions. Another motivation is that the BS me
has attracted many researchers working in the contex
string theory. Plane wave metrics in various dimensions p
vide exact solutions in string theory@12#. It is interesting to
study the collision of plane waves at least in the low ene
limit of string theory. There have been some attempts in
direction @10,13–19#. In addition, the collision of plane
waves may shed some light on string cosmology~see@16#
and references therein!.

In this work we give a higher dimensional generalizati
of the BS metric. We present an exact solution generaliz
the BS solution and examine the singularity structure of
corresponding space-times in the context of curvature
Maxwell invariants. We show that this space-time, unlike
BS metric, is not conformally flat.

In Sec. II we give a brief review of the BS solution and
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Sec. III we formulate theN-dimensional Einstein-Maxwel
equations. In Sec. IV we present theN-dimensional colliding
exact plane wave solutions describing the collision of sho
electromagnetic waves. We also examine the singula
structure of the corresponding space-times and show tha
teraction region of our solution admits curvature singula
ties.

II. THE BELL-SZEKERES METRIC

The BS metric is given by

ds252dudv1e2U~eVdx21e2Vdy2! ~1!

where the metric functionsU andV depend on the null co-
ordinatesu andv. The electromagnetic vector potential has
single nonzero componentA5(0,0,0,A), whereA is func-
tions of u and v. The complete solution of the Einstein
Maxwell equations is

U52 log @ f ~u!1g~v !#, A5g~pw2rq !,

V5 log ~rw2pq!2 log ~rw1pq!, ~2!

where

r 5S 1

2
1 f D 1/2

, p5S 1

2
2 f D 1/2

,

w5S 1

2
1gD 1/2

, q5S 1

2
2gD 1/2

~3!

with

f 5
1

2
2 sin2 P, g5

1

2
2 sin2 Q. ~4!

Here P5auQ(u), Q5bvQ(v), whereQ is the Heaviside
unit step function,a and b are arbitrary constants, andg2

58p/k with k being the gravitational constant. The natu
of the space-time singularity of the BS solution has be
considered by Matzner and Tipler@3#, Clarke and Hayward
@4#, and more recently by Helliwell and Konkowski@5#. To
investigate the singularity structure of a space-time o
needs all curvature invariants. Due to the simplicity of B
©2003 The American Physical Society07-1
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metric in the collision region the invariantI 5RmnabRmnab is
constant everywhere in the interaction region. It is given

I BS5
8

w2p2q2r 2~ f 1g!2 H f g fu
2gv

21w2p2q2r 2f uugvv

1
1

4
@~3g2 f !r 2p2f uugv

21~3 f 2g!w2q2gvv f u
2#J

532a2b2. ~5!

In the BS solution, the singularity that occurs whenf
1g50 corresponds to a Cauchy horizon. This solution
conformally flat in the interaction region; as an example o
of the components of the Weyl tensor is given by

C020252
wq

2rp~rw1pq!2~ f 1g!
F f

r 2p2
f u

21 f uuG . ~6!

The global structure of the BS solution has been analyze
detail by Clarke and Hayward@4#. They have shown that thi
solution possesses quasiregular singularities at the
boundaries. Finally, the invariant

FabFab522g2ab ~7!

which is also a constant quantity in the interaction regi
The BS solution in the interaction region is isometric to t
Bertotti-Robinson space-time@1,4#.

III. N-DIMENSIONAL EINSTEIN-MAXWELL EQUATIONS

Let M be anN521n dimensional manifold with a metric

ds25gab dxa dxb

5gab~xc!dxadxb1HAB~xc!dyAdyB ~8!

where xa5(xa, yA), xa denote the local coordinates on
two-dimensional manifold, andyA denote the local coordi
nates on an-dimensional manifold, thusa,b51,2, A,B
51,2, . . . ,n. The Christoffel symbols of the metricgab can
be calculated to give

GBa
A 5

1

2
HAD HDB,a , GAB

a 52
1

2
gab HAB,b , ~9!

GBD
A 5Gab

A 5GAb
a 50,Ḡbc

a 5Gbc
a ~10!

where the Gbc
a are the Christoffel symbols of the two

dimensional metricgab .
The components of the Ricci tensor are given by

Rab5Raab
a 5Rab1

1

4
tr ~]aH21]bH !2,a,b logAdetH,

~11!
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RAB52
1

2
~gabHAB,b! ,a2

1

2
gabHAB,bF ~Adetg! ,a

Adetg

1
~AdetH ! ,a

AdetH
G1

1

2
gabHEA,bHEDHDB,a , ~12!

RaA50, ~13!

whereRab is the Ricci tensor of the two-dimensional metr
gab . The Maxwell potential 1-formA is

A5AAdyA. ~14!

The components of the electromagnetic field

F5
1

2
Fabdxa`dxb ~15!

are

FaA5AA,a , Fab50, FAB50. ~16!

The components of the energy-momentum tensor

Tmn5
1

4p FgabFmbFna2
1

4
gmnFabFabG ~17!

are

Tab5
1

4p FHABFaAFbB2
1

2
gabF

2G ,
TAB5

1

4p FgabFaAFbB2
1

2
HABF2G ,

TaA50, ~18!

whereF25FaDFaD. Then the Einstein field equations are

Rmn5kFTmn1
1

22N
gmnTG ~19!

where the trace of the energy momentum tensorT is

T5
1

8p
~22n!F2. ~20!

The Einstein-Maxwell equations are

Rab1
1

4
tr~]aH21]bH !2,a,b logAdetH

5
k

4p
HABFaAFbB2

k

4pn
gabF

2, ~21!
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]a@AdetHg gabHAS]bHAB#

52
k

2p
AdetHgFHASgabFAaFBb2

dB
S

n
F2G , ~22!

and

]a@AdetH g FAa#50, ~23!

where, is the covariant differentiation with respect to th
connectionGbc

a ~or with respect to metricgab). We may
rewrite the two-dimensional metric as

gab5e2M hab , ~24!

whereh is the metric of flat 2-geometry with arbitrary sig
nature (0 or62)the functionM depends on the local coor
dinatesxa. The corresponding Ricci tensor and the Christ
fel symbols are

Rab5
1

2
~,h

2M ! hab ,

Gab
c 5

1

2
@2M ,bda

c2M ,adb
c1M ,dhcdhab#. ~25!

IV. HIGHER DIMENSIONAL BELL-SZEKERES METRIC

In this section we give the higher dimensional collidin
exact plane wave metric generalizing the BS metric. For
purpose letH be a diagonal matrix

H5e2Uh ~26!

where

h5S eV1

� s

s �

eVn

D
with deth51, i.e.,(k51

n21 Vk1Vn50.
Now taking the signature of the flat-space metric with n

coordinates

h5S 0 1

1 0D , x15u, x25v,

and

AA5~0, . . . ,A!

the Einstein-Maxwell equations become

2Uuv2nUuUv50, ~27!

2
n

2
UuVkv2

n

2
UvVku12Vkuv5

k

pn
eU2VnAuAv , ~28!
08400
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2
n

2
UuVnv2

n

2
UvVnu12Vnuv5

k~12n!

pn
eU2VnAuAv ,

~29!

S n22

2 D ~UuAv1UvAu!1VnuAv1VnvAu52Auv , ~30!

2
n

2
Uu

22
1

2 (
k51

n21

~Vku!
22

1

2
~Vnu!

21nUuu1nMuUu

5
k

2p
eU2Vn~Au!2, ~31!

2
n

2
Uv

22
1

2 (
k51

n21

~Vkv!22
1

2
~Vnv!21nUvv1nMvUv

5
k

2p
eU2Vn~Av!2, ~32!

2Muv2
n

2
UuUv2

1

2 (
k51

n21

VkvVku2
1

2
VnvVnu1nUuv

5
k

2pn
~22n!eU2VnAuAv , ~33!

wherek51, . . . ,n21. Note that the last equation is not in
dependent. It can be obtained from the other equations.
most general solution to Eq.~27! is given by

U52
2

n
log @ f ~u!1g~v !# ~34!

in terms of two arbitrary functionsf and g. Now changing
variables (u,v) to ( f ,g) the remaining field equations be
come

2
n

2
U fVkg2

n

2
UgVk f12Vk f g5

k

pn
eU2VnAfAg , ~35!

2
n

2
U fVng2

n

2
UgVn f12Vn f g5

k~12n!

pn
eU2VnAfAg ,

~36!

S n22

2 D ~U fAg1UgAf !1Vn fAg1VngAf52Af g , ~37!

Mu52
f uu

f u
1

~n21!

n

f u

f 1g
2

~ f 1g!

4 f u
F (

k51

n21

~Vku!
21~Vnu!

2

1
k

p
eU2Vn~Au!2G , ~38!

M v52
gvv

gv
1

~n21!

n

gv

f 1g
2

~ f 1g!

4gv
F (

k51

n21

~Vkv!21~Vnv!2

1
k

p
eU2Vn~Av!2G . ~39!
7-3
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Equations~35!, ~36!, and~37! are integrability conditions for
Eqs.~38! and~39!. An exact solution to the above Eqs.~35!,
~36!, and~37! is

Vk5ak log ~rw2pq!1bk log ~rw1pq!, ~40!

Vn52a log ~rw2pq!2b log ~rw1pq!, ~41!

A5g~pw2rq ! ~42!

with

ak2bk5
kg2

2pn
~43!

for all k51, . . . ,n21, and

(
k51

n21

ak5a5
2

n
, (

k51

n21

bk5b5
2

n
22. ~44!

Then we may obtain the value ofg asg254np/k(n21).
It is convenient to put Eqs.~38! and~39! in the following

form @1#:

e2M5
f ugv

~ f 1g!(n21)/n
e2S ~45!

whereS satisfies

Sf52
~ f 1g!

4 F (
k51

n21

~Vk f!
21~Vn f!

21
k

p
eU2Vn~Af !

2G ,

~46!

Sg52
~ f 1g!

4 F (
k51

n21

~Vkg!
21~Vng!

21
k

p
eU2Vn~Ag!2G .

~47!

Therefore we may write the metric functionM as
08400
M52 log ~c fugv!1Fn21

n
2

41n2m1

4n2 G log ~ f 1g!

1S n

4~n21! D log S 1

2
2 f D1S n

4~n21! D log S 1

2
1 f D

1S n

4~n21! D log S 1

2
2gD1S n

4~n21! D logS 1

2
1gD

1
1

8n
@824n1n~m12m2!# log ~114 f g14prwq!

~48!

wherec is a constant and

(
k51

n21

ak
25m1 , (

k51

n21

bk
25m2 . ~49!

m1 andm2, using Eq.~43!, satisfy

m11m222m35
4

n21
, m12m25

4~22n!

n~n21!
~50!

with

(
k51

n21

akbk5m3 .

The metric functione2M must be continuous across th
null boundaries. To make it so we assume that the functi
f andg take the form

f 5
1

2
2 sinn1 P, g5

1

2
2 sinn2 Q. ~51!

Then the metric functione2M is continuous across th
boundaries if

n15n25
4~n21!

3n24
. ~52!

Therefore, the metric functione2M reads
e2M5

~114 f g14pqrw!k1F12S 1

2
2 f D 2/n1G1/2F12S 1

2
2gD 2/n1G1/2

S 1

2
1 f D 12(1/n1)S 1

2
1gD 12(1/n1)

~ f 1g!k2

, ~53!
in
where

k15
n22

2~n21!
, k25

n21

n
2

1

4n2
~41n2m1!. ~54!

It may thus be observed that the constantn1 (5n2) is re-
stricted to the range satisfying
2>n15n2.
4

3
. ~55!

It is also appropriate to choosec51/n1
2ab.

The space-time line element generalizing the BS metric
N521n dimensions is

ds252e2Mdu dv1e2U~eV1dx1
21•••1eVndxn

2!, ~56!
7-4
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where the metric functions are given in Eqs.~40!, ~41!, and
~53!. Because of Eq.~55! the metric we have found isC1 for
n.2 across the null boundaries. In spite of this fact,
Ricci tensor is regular across the null boundaries due to
Einstein field equations. The above solution reduces to
well known BS solution forn52.

We now discuss the nature of the space-time singularit
We study the behavior of the metric functionsU, Vk , Vn ,
andM as f 1g tends to zero. In the BS solution the collisio
of the two shock electromagnetic plane waves generates
pulsive gravitational waves along the null boundaries. It
shown that, apart from the impulsive waves themselves,
BS solution has no curvature singularities and the only s
gularites are of the quasiregular type@4#. In general the
analysis of space-time singularities requires all invariants
a higher dimensional case it is not feasible to study all
variants of the space-time geometry. For this reason we c
sider only the quadratic Riemann invariantI which is con-
stant for the BS solution Eq.~5!. However, forn.2 this
invariant can be shown to have the behavior

I;e2M
~ f ugv!2

~ f 1g!4
~57!

as f 1g→0. UsingM from Eq. ~53! we find

I;~ f u gv!2 ~ f 1g!2k224 ~58!

as f 1g→0. It is obvious that space-times possess curva
singularities whenk2,2 and their strength depend onn and
m1. It is also of great importance to further analyze the g
bal singularity structure of these space-times. At present
global structure of only a few solutions~colliding plane
waves geometries! are known in the four-dimensional cas
@3,4#.

We also investigate the singularity structure of spa
times in the context of the Maxwell invariants; one of t
invariants is

FabFab52
g2n1

2

2k111
~rwpq!12(2/n1)~rw1pq!22k1

3~ f 1g!k2PuQv ~59!
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which has singularities forn.2 for the negative values o
k2.

We finally examine the Weyl tensor to see whether o
space-time is conformally flat. One of the components of
Weyl tensor in region II for our space-times is

C0n0n5
f u

2

8S 1

2
1 f D F 2m11

2

n~n21!
1

2n

~n21!
~a1b!3

1
~12n!

n
~a1b!12~a1b!

3

S 1

2
2 f D 2112/n1S 1

2
1 f D

12S 1

2
2 f D 2/n1 G1

~a1b!

4
f uu . ~60!

It can be seen that it vanishes only forn52. Therefore, the
higher dimensional extensions of the BS metric are not c
formally flat.

V. CONCLUSION

In this paper, we give a higher dimensional generalizat
of the BS metric which describes the collision of pure ele
tromagnetic plane waves with collinear polarization in
space-time dimensions. The solution has two free par
eters; the space-time dimensionN(521n) and an arbitrary
real numberm1. We show that these space-times, unlike t
BS metric, are not conformally flat. We find that, eve
though purely electromagnetic plane wave collision in fo
dimensional space-time possesses no curvature singular
in higher dimensions there exist curvature singularit
whose nature depend on the real numberm1 and the space-
time dimension.
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