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Higher dimensional Bell-Szekeres metric
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The collision of pure electromagnetic plane waves with collinear polarizatioN-@iimensional N=2
+n) Einstein-Maxwell theory is considered. A class of exact solutions for the higher dimensional Bell-
Szekeres metric is obtained and its singularity structure is examined.
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[. INTRODUCTION Sec. Il we formulate theN-dimensional Einstein-Maxwell
equations. In Sec. IV we present tNedimensional colliding

One of the main fields of interest in general relativity is exact plane wave solutions describing the collision of shock
the collision of gravitational plane waves. Colliding plane €lectromagnetic waves. We also examine the singularity
wave space-times have been investigated in detail in genergiructure of the corresponding space-times and show that in-
relativity [1]. The first exact solution of the Einstein- t_eraction region of our solution admits curvature singulari-
Maxwell equations representing colliding plane shock elecll€s.
tromagnetic waves with collinear polarizations was obtained
by Bell and Szekere@BS) [2]. This solution is conformally Il. THE BELL-SZEKERES METRIC
flat in the interaction region and its singularity structure has
been considered by Matzner and Tip[8l, Clarke and Hay-
ward [4], and Helliwell and Konkowskj5]. Later Halil[6], _ —U[aVAy2 1 a— VA2
Gurses and Halilsoy[7], Griffiths [8], and Chandrasekhar ds*=2dudy +e”"(e’dx"+e™"dy’) @
and Xanthopoulof9] studied exact solutions of the Einstein- where the metric functionsl andV depend on the null co-
Maxwell equations describing the collision of gravitational ordinatesu andv. The electromagnetic vector potential has a
and electromagnetic waves. Furthermorerdes and Ser- single nonzero componemt=(0,0,0A), whereA is func-

mutlu[10], and more recently Halilsoy and Sak4lld], have  tions of u and v. The complete solution of the Einstein-
obtained the extensions of the BS solution in the Einsteinyaxwell equations is

Maxwell-dilaton and Einstein-Maxwell-axion theories, re-

The BS metric is given by

spectively. U=—log[f(u)+g(v)], A=y(pw—rq),
One of the purposes of this work is to observe which of
the relevant physical properties of BS metric are conveyed to V= log(rw—pq)— log(rw+pq), (2

higher dimensions. Another motivation is that the BS metric
has attracted many researchers working in the context othere
string theory. Plane wave metrics in various dimensions pro-
vide exact solutions in string theof{2]. It is interesting to
study the collision of plane waves at least in the low energy
limit of string theory. There have been some attempts in this
direction [10,13-19. In addition, the collision of plane
waves may shed some light on string cosmoldgge[16]
and references thergin
In this work we give a higher dimensional generalizationwith
of the BS metric. We present an exact solution generalizing L X
the BS solution and examine the singularity structure of the . .
corresponding space-times in the context of curvature and f=5- SiP, g= 2 i Q. )
Maxwell invariants. We show that this space-time, unlike the
BS metric, is not conformally flat. Here P=au®(u), Q=bv®(v), where® is the Heaviside
In Sec. Il we give a brief review of the BS solution and in unit step function,a and b are arbitrary constants, ang’
=8/ k with k being the gravitational constant. The nature
of the space-time singularity of the BS solution has been

1/2 1 1/2
, q=<§—g) 3
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metric in the collision region the invariaht= R“”“BRMWB is 1 (\/detg)
constant everywhere in the interaction region. It is given by Rag= — —(g "Hagb) a— 59 Has b —
2 "l Jdetg
8
- fgf2g2+w2p2g2r2f,,9,, (vdetH) o/ 1 . ED
B szzqzrz(f+g)2 g ugu p=q uud +W +§ga HEA,bH HDB,aa (12)
1
+ 7L(3g—H)r*p*f,g0+ (3f—g)wa%g,, f{] Ran=0, (13)
—3922p2. (5) whereR,}, is the Ricci tensor of the two-dimensional metric

Oab- The Maxwell potential 1-fornA is

In the BS solution, the singularity that occurs whén
+g=0 corresponds to a Cauchy horizon. This solution is
conformally flat in the interaction region; as an example one
of the components of the Weyl tensor is given by

A=ApdyA. (14)
The components of the electromagnetic field

1
F=5F ,5dx*/\dx? (15)

v (6) 2

2rp(rw+pa)*(f+9)

2
ot fuul-

Co20= —

I,szf

The global structure of the BS solution has been analyzed iﬁre
detail by Clarke and Haywaid]. They have shown that this
solution possesses quasiregular singularities at the null
boundaries. Finally, the invariant

FaAzAA,aa Fab=0, FAB= 0 (16)

The components of the energy-momentum tensor

F.sF?=—2y%ab 7 1
_ af _ ap
v g F Fva g vFa F } (17)
which is also a constant quantity in the interaction region. "oAm He 4=mr ab
The BS solution in the interaction region is isometric to the
Bertotti-Robinson space-tinid.,4]. are
1 1
I1l. N-DIMENSIONAL EINSTEIN-MAXWELL EQUATIONS Tap= E[ HABFaAFbB_ EgabFz}'
Let M be anN =2+ n dimensional manifold with a metric
ds?= dx® dxB 1 ab, 1 2
=Jqp OX° OAX Tag= 2.9 FaaFbe— 5HasF"|,
= Qap(X9)dX2d X+ Hag(x®)dy*dy® (8
TaA:O, (18)

where x“=(x2, y*), x denote the local coordinates on a
two-dimensional manifold, ang” denote the local coordi- whereF2=F_,,F2P. Then the Einstein field equations are
nates on an-dimensional manifold, thusa,b=1,2,A,B

=1,2,...n. The Christoffel symbols of the metrg,; can 1
be calculated to give Ruv=xk| Tyt ﬂng (19
A—l AD a = 1 ab h the t f th t tensd
FBa_EH Hopa, Dag=— 59 Hagp, (9)  Where the trace of the energy momentum teris&
[o=T2=T3y=0lf=T5 (10 T=gn (2~ WF @0
where the Fgc are the Christoffel symbols of the two- The Einstein-Maxwell equations are
dimensional metri@g,p, .
The components of the Ricci tensor are given by 1
Rapt Ztr( d,H r9,H)—V .V, log VdetH
1
Rap= RS p=Rap+ 7tr(dH *d,H)— V,V, log VdetH, B B
‘ 4 = HABE ,F s~ —— GapF? (21)
(11 4 aATDB 4qn YRt
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d,[detHg g?PHASo H Ag] n n k(1—n)
: " 58 ~ 5 UV = 5 UVt 2V =———e" A,
K
= — 5 \detHg| HAS™F o Fep— —F2|, (22 (29)
n—2
and (T) (UuAv+ UuAu) +VnuAv+VnuAu: 2AUU ’ (30)
d,[JdetH g FA3]=0, (23 N n-1 1
--U2-= Vi) %= = (Vpw) 2+ nUy+nM,U
whereV is the covariant differentiation with respect to the 271 2 gl Vi)™= 5 (Vo) uu a
connectionl'§, (or with respect to metrig,,). We may «
rewrite the two-dimensional metric as ZZWeU*Vn(Au){ (31
gab:eiM Nab (24) n-1
n , 1 )
where 7 is the metric of flat 2-geometry with arbitrary sig- —5Ui— 24 2 (Vi) (an) +nU,,+nM,U,
nature (0 or=2)the functionM depends on the local coor-
dinatesx®. The corresponding Ricci tensor and the Christof- K Uy )
fel symbols are =56 A (32
Rup= = (V2M n = 1
=2 (VM) 7ab, 2Mu, = 5UuU,= 5 2 ViaViu 5 Vi Vaut U,

1 K
ab= S[—M 05— M 285 +M 47°nap]. (295 =5 (2= nje’"VrA A, (33
wherek=1, ... n—1. Note that the last equation is not in-
dependent. It can be obtained from the other equations. The
In this section we give the higher dimensional colliding most general solution to E@27) is given by

exact plane wave metric generalizing the BS metric. For this

IV. HIGHER DIMENSIONAL BELL-SZEKERES METRIC

; : 2
purpose leH be a diagonal matrix —_ ﬁlog[f(u)+g(v)] (34)
H=e "h 26 . . .
in terms of two arbitrary function$ and g. Now changing
where variables (1,v) to (f,g) the remaining field equations be-
come
eV1
n n Ky
h= O - EUkag_ EUngf+ 2kag—%e ”Ang , (35)
O
v n n k(1—n)
emn —5UVng= 5UgVni+2Vpig= e’ VnAA,,
with deth=1, i.e.,=}_] V,+V,=0. (36)

Now taking the signature of the flat-space metric with null

coordinates (T) (UsAg+UGAN) + Vo Ag+ Vo Ar=2A¢,, (37)

0 1
77=( ) xt=u, x*=v, fuo (n=1) f, (f+g)
10 - 24 2
Mu fu n f+g 4 u 2 (Vku) ( nu)
and
K _u-v, 2
AA=(0,... A) e A } (38
the Einstein-Maxwell equations become 9,, (n—1) g, (f+g) 2 . 5
_ _ Mv_ g + n f+g 4 < Vkv) +(an)
2U,,—nuU,U,=0, (27) v 9
K
n n K ZaU-Vaea )2
a EUquu_ EUkau"' 2Vkuu:_neU7V"AuAvv (28) " '”'e (") } ' 39
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Equationg35), (36), and(37) are integrability conditions for n—1 4+n2m
Egs.(38) and(39). An exact solution to the above Eq85), M=—log(cf,g,)+|—— —21 log(f+q)
(36), and(37) is
V= aylog (rw —paq) + By log (rw + pq), (40) ) (L log 1—f L log 1+f
4(n—1) 2 4(n—1) 2
V= —alog(rw—pq)—glog(rw+paq), (41) ( n ) (1 ) ( n ) 1
+| 77— 09| 5—9|+|7=—]log 5 +9g
A= y(pw—rq) (42) 4(n—1) 2 4(n—1) 2
1
with + %[8—4n+n(m1—m2)] log(1+4fg+4prwq)
2
Ky (48
—By=5— 43
P 2mn “43 wherec is a constant and
forallk=1,...n—1, and ! !
> ag=m;, 2 Bi=m,. (49
n-1 n—-1 k= k=1
2 2
g,l a=a=, k§=:1 Bx=B= 5—2- (44 m, andm,, using Eq.(43), satisfy
4 4(2—n)
Then we may obtain the value of as y?=4nm/k(n—1). My M= 2Mg =0y Mmmp=ga—y (50
It is convenient to put Eq$38) and(39) in the following _
form [1]: with
n—1
f =
M W s (45) kzl ayBx=ms.
(f_’_g)(n*l)/n

The metric functione™™ must be continuous across the

whereS satisfies null boundaries. To make it so we assume that the functions
] f andg take the form
__({+9 nil Vo) 24 (Vo024 2 aU=Va(A )2 1 1
= | & (Vi) "+ (V) "+ —e7 (A7, f=>—siMp, g=5-simQ. (51)
' (46)
Then the metric functione™ is continuous across the
[n-1 boundaries if
(f+g)| | 2 2. K u-v 2
Sy= 2 _k; (Vig)?+ (Vog)*+ —e " Vn(Ag)?|. e
(47) ny=n,= an_a - (52
Therefore we may write the metric functiovi as Therefore, the metric functioa™™ reads
|
1 2/nq71/ 1 2in71/2
(1+4fg+4pqrw)kl[1—(§—f) } 2[1—(5—g> }
e M= 1 T=(Thy)] | T—(Thy ; (53
(§+f 519 (f+g)ke
T
where
2>nl=n2>§. (55
n—-2 n—1

1
- = - = 2 : ; 2
Ky -1 T 4n2(4+ n‘m;). (54 It is also appropriate to choose=1/nfab.

N=2+n dimensions is
It may thus be observed that the constapt(=n,) is re- v e Voo
stricted to the range satisfying ds’=2e"Mdu dv +e"Y(eV1dx{+ - - - +eVndxy), (56)
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where the metric functions are given in Eg40), (41), and  which has singularities fon>2 for the negative values of
(53). Because of Eq(55) the metric we have found i8* for ks.

n>2 across the null boundaries. In spite of this fact, the We finally examine the Weyl tensor to see whether our
Ricci tensor is regular across the null boundaries due to thepace-time is conformally flat. One of the components of the
Einstein field equations. The above solution reduces to th¥Veyl tensor in region Il for our space-times is

well known BS solution fom=2.

We now discuss the nature of the space-time singularities. £2 2 2n
We study the behavior of the metric functiobs V,, V,, cOnOn=1—“ L Ry pe ) (a+pB)°
andM asf +g tends to zero. In the BS solution the collision 8l =4t n(n-1) (n-1)
of the two shock electromagnetic plane waves generates im- 2
pulsive gravitational waves along the null boundaries. It is (1-n)
shown that, apart from the impulsive waves themselves, the + (a+B)+2(a+p)
BS solution has no curvature singularities and the only sin- n
gularites are of the quasiregular typé]. In general the 1 ~1+2m ) 1
analysis of space-time singularities requires all invariants. In —_ f) i
a higher dimensional case it is not feasible to study all in- 2 2 (atp)

variants of the space-time geometry. For this reason we con- . (1 )2’”1 4 fus- (60

sider only the quadratic Riemann invaridnwhich is con-
stant for the BS solution Eq5). However, forn>2 this
invariant can be shown to have the behavior It can be seen that it vanishes only for=2. Therefore, the
o (Fu00)° higher dimensional extensions of the BS metric are not con-
~e

—_— 5 formally flat.
(f+g)° (57) y

asf+g—0. UsingM from Eg. (53) we find

V. CONCLUSION

In this paper, we give a higher dimensional generalization
I~(fyg,)% (f+g)?ke? (58  of the BS metric which describes the collision of pure elec-

) . ) tromagnetic plane waves with collinear polarization in all
asf+g—0. It is obvious that space-times possess Curvaturgpace-time dimensions. The solution has two free param-
singularities wherk,<2 and their strength depend orand eters: the space-time dimensibif=2+n) and an arbitrary
m;. Itis also of great importance to further analyze the glo- g4 numbem,. We show that these space-times, unlike the
bal singularity structure of these spacg-times:. At present thgg metric, are not conformally flat. We find that, even
global structure of only a few solutiongolliding plane gk purely electromagnetic plane wave collision in four-
waves geometrigsare known in the four-dimensional case gimensional space-time possesses no curvature singularities,
[3,4]. in higher dimensions there exist curvature singularities

_ We_also investigate the singulari';y structure of spaceynose nature depend on the real numivgrand the space-
times in the context of the Maxwell invariants; one of the jme dimension.

invariants is
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