PHYSICAL REVIEW D 68, 084005 (2003
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We examine the corrections to the lowest order gravitational interactions of massive particles arising from
gravitational radiative corrections. We show how the masslessness of the graviton and the gravitational self-
interactions imply the presence of nonanalytic pieees— g% ~q?ln—q? etc., in the form factors of the
energy-momentum tensor and that these correspond to long range modifications of the metrig, teastve
form G2m?/r2,G?m#/r3, etc. The former coincide with well known solutions from classical general relativity,
while the latter represent new quantum mechanical effects, whose strength and form is necessitated by the low
energy quantum nature of the general relativity. We use these results to define a running gravitational charge.

DOI: 10.1103/PhysRevD.68.084005 PACS nunifer04.60—m, 04.20.Cv, 04.46:b, 11.10.Ef

I. INTRODUCTION use different definitions of potential in terms of Feynman
diagrams, and hence obtain different answers. Even in a case
In this paper we will discuss the long distance classicawhere the same definition is used, different results have been
and quantum corrections to the Schwarszchild and Kerr mepbtained. We will provide some clarification of these dis-
rics using the techniques of effective field theory. We will agreements. A related pap@] provides a full and detailed
show how the nonanalytic radiative corrections to thecalculation of the scattering potential of scalar particles. In
energy-momentum tensor can be used to obtain the classichl® Present paper we note that a subset of diagrams is more
nonlinear terms in these metrics at long distance, and calcjéadily interpreted as a change in the metric, and we calcu-
late the analogous nonanalytic quantum corrections. For thigt€ these effects. _
Schwarzschild metric we consider the case of a massive sca- "€ other precedent for the present paper is the calcula-
lar particle. Here we clear up some numerical disagreemenfn Of the the leading quantum corrections to the Reissner-
in related calculations that have emerged in the literature. walordstran f‘nd Kerr-Newman metrics using effective field
then present the Kerr results, using a massive fermion as €0ry[10].” These metrics involve charged particles, so that
source, and show that the spin-independent quantum corref€ quantum corrections involved photon loops, not graviton
tions are the same as those of the scalar particle. We ald8OPS- However, this provided a particularly clear laboratory

elucidate various theoretical issues and compare with othdPr the study of metric corrections. Interestingly, we saw that
results in the literature. the classical nonlinearities in the metric can be calculated

Effective field theory is ideally suited for discussing the Straightforwardly using Feynman diagram techniques. At the
quantum effects of general relativity at scales well below the$@Me time we saw that there was a clear identification of
Planck mas$1,2]. While it is expected that the degrees of certain nonanalytic terms with long-distance quantum effects
freedom and the interactions of gravity will be modified be-N the metric. We use the insights of that study to investigate
yond the Planck scale, at low energies these ingredients at8€ Present problems, which involve graviton loops. In the
accurately described by general relativity. Effective fieldPreSent case the interpretation is not as clear, although the
theory separates the known quantum effects of the low erfzalculations are well defined. _
ergy particles from the unknown physics at high energy. The We will be using harmonic gauge throughout this paper.

latter effects are represented by the most general series B this gauge, the Schwarzschild metric has the @14,
effective Lagrangians consistent with the symmetry of gen-

eral relativity. However the propagation of the low energy Gm

particles yields identifiable quantum effects that can be iso- 1- e Gm  G2m?

lated by the techniques of effective field theory. Jo=| —=— | =1-2—+2—5—+ ...,
The present study builds on two sets of recent work. One 14 G_m r r

of these is the use of effective field theory to study quantum r

corrections to the gravitational potentid,3—9. While the

basic principles of these studies are the same, there are some

differences and/or disagreements. Since there is not a univerfThese corrections have also been considered from the point of
sal definition of the meaning of a potential, different authorsview of S-matrix theory in Ref{11].
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The Kerr metrid 15] refers to a particle with spin and, keep-
ing only terms up to first order in the angular momentum,

has the harmonic gauge form
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We will show that using a particular set of Feynman dia-\el|l as analytic terms of ordeg?,q*, .
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It is of course required that the classical spin-independent
terms must be the same for a scalar particle and a fermion.
We know of no firm requirement for the spin independence
of the quantum corrections tgq, and g;;, but from our
calculation they are seen to be identical.

Il. REVIEW

The metric is derived from the energy-momentum tensor
of a source, using Einstein’s equation as the equation of mo-
tion. At lowest order in the fields, the source particle is just a
point particle in coordinate space. However, both classical
fields and their quantum fluctuations modify the energy-
momentum of a particle at long distance. These modifica-
tions can be found by the consideration of the radiative cor-
rections to the energy-momentum tensor. When these are
translated into a metric, they yield the classical nonlinearities
and quantum modifications of the metric.

Let us review what was found in Ref10] for the con-
ceptually simpler case of charged particles, as our calculation
here will follow the same procedure. In that case the field
around the particles was the electromagnetic field and the
gravitational interaction was treated purely classically. The
masslessness of the photon implies that there are long range
fields around a charged particle and these carry energy and
momentum. At the same time, in a Feynman diagram calcu-
lation of the renormalization of the energy momentum tensor
of the charged patrticle, the masslessness of the photon leads
to nonanalytic terms in the form factors having the structure
~VJ=0%,~ag’In—¢?, whereq is the momentum transfer, as
... It wasshown in

grams we reproduce the former with the addition of a longgetajl how the ~—q? terms account for the classical

distance quantum correction

_,,8m 262m2 62G°m#
goo— T+ r2 + ]_577[‘3 + sy

90i =0,
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For the Kerr metric,
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=1-2—+ + + ...
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3

energy-momentum of the electromagnetic field and how they
exactly reproduce the classical nonlinearities in the metric
that are present in the Reissner-Nordstreand Kerr-
Newman metrics. Nonanalytic terms of the forfdin—q?

also appear, and when they are included in the equations of
motion they produce further corrections in these metrics. Ex-
plicit examination shows that these latter are linedi+ni.e.

they are quantum effects. Finally the analytic terms produce
only delta functiongor derivatives of delta functionsn the
metric, such that they vanish at long distance. Thus we saw
that the long distance modifications of the metrics are ob-
tained from the nonanlaytic terms in the formfactors of the
energy momentum tensor.

The same effects are present in the purely gravitational
case. If one expands the energy and momentum of the par-
ticle in powers of G, the lowest order result is that of a point
particle. However, there is energy and momentum also car-
ried by the gravitational field around the particle and this can
be calculated via the one loop Feynman diagrams. Because
the graviton is massless, there will also be nonanalytic terms
of the forms~ = q?,~q?In—cf in the form factors of the
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energy momentum tensor. Again these will produce long U=+ hE}V)JF (6)
range modifications of the metric. If we include the relevant
dimensionful couplings, this will have the schematic form where,,,=(1,—1,—1,— 1)4jgis the usual Minkowski met-

ric and the superscript refers to the number of powers of the

ddq --1 ., m? itati i i i -

metric~ij q3e'q'r7 1-aG@R+/—2 gra.wtatlonal COLé[l))hng which appear. The dynamical re_Iat|on

(2m) 2 q which connect$,; and the energy momentum tendqy, is
the Einstein equation, whose linearized form in harmonic

_ 2 32\ 2 PN .
bGalog(g9)—cGa+ ... gauge—g“'T",,=0—is
1 aGm bGnh 5 ) 1
~Gm o+ 7+ 5 +cGT)t ... (B Dhiw)z—l&rG(TW(x)—EWWT(X)>, @

Herea,b,c are dimensionless numbers and further numerical,here T= »#'T,, represents the trace. The metric for a
)24 .

factors of order unity will be inserted later. We will examine ey static source is then recovered via the Green function
the \—q? terms in detail and show how they correctly re- i either coordinate or momentum space
produce all the features of the classical metric. Fordfla

—g? terms we have included the factor 6f that follows 3 1
from dimensional analysis. The analytic correction to the en-Nu.(X)=— 1677Gf d*yDX=Y)| Tpuo(Y) = 5 20, T(Y)
ergy momentum tensor yields the delta function term that is

not relevant for the long distance behavior. d’q --1 1

The nonanalytic terms come from the low energy propa- = —1@77(3] 27)3 e'q'ra—z(TW(Q)— > nMvT(Q))-
gation of gravitons, using the couplings of general relativity. q
Because these features are independent of the high energy (8)

behavior of gravity, they are unambiguous predictions of low . .
energy general relativity. There is also no influence of other The matrix elements of ,, are described by
possible terms in the gravitational Lagrangian, sucRasr
related corrections in the matter Lagrangian. These yield (2| T (X)) Py)
. . mv 1
only analytic corrections to the form factor and hence do not
provide long distance modifications of the metric. These areind the conservation conditioft'T ,, =0 together with the
behaviors that are well known in the effective field theory ofrequirement thaff,, transform as a second rank Lorentz

gravity [1]. tensor demands the genetatalar field form?
Finally, we comment on some of the potential difficulties
that arenot present in our calculation. In general, quantum gl (P2=p1)-x
gravity calculations can present novel difficulties for field (P2l Tu(X¥)|pr) = —=—=——="1[2P P F1(0?)
theory. In a general background geometry, the basis states for 4E2E,
the “in” basis and the “out” basis may be significantly dif- +(0,9,— anz)pz(qz)], (10)

ferent as the geometry changes. It may be difficult to define

the single particle states or to have well defined amplitudesyhere we have defined = H(py+ p2), and g,=(p;
Fortunately, these complications are not present in our calcu= p2),. Conservation of energy and momentum requires
lation. We have a perturbative treatment about flat space, aqgil(qzzo): 1 but there exists no constraint &3(q?).

ourlexternal particles are weII. defined.. Use of a plane wave “Tha form factorsF, and F, encode all the information
basis aIIowg_one to extract |nfo_rmat|0n about momentumyy ot the distribution of energy and momentum for the
space transitions or, by constructing wave pack_ets', localize eavy particle. Although these are defined in momentum
states in coordlna_\te_z space. Thg ext_ernal grav!tatlonal COpace, coordinate space quantities can be studied by forming
pling used for defining the metric is |_tself classical and the,, o\ /a packets. For a very heavy particle, this involves mo-
only quantum aspects to the calculation are the propagatofsenia only very close to zero. At lowest order, in particular,

internal to the loop diagrams. Thus our calculation is not, require only the form factors at zero momentum. How-
beset with the subtleties that are peculiar to quantum gravit)éver, the real quantum content of this paper concerns the
The basic setup of the problem is analogous to the extractioauamum loops that modify the form factors. For the leading
of physical predictions in other_field th_eo_ries, with the mod-|ong distance corrections to this result, we will show by di-
est change that we have gravitons within the 00ps. AS d€facy calculation how they are extracted by considering the
scribed above, the low momentum component of such 100p§gnanalytic terms in in expansion around zero momentum.
is well defined. Indeed, the closest model is :[he caIcuIanq—he form factors also in principle contain, in their depen-
of the quantum effects in the Reissner-Nordstronetric,

Ref.[10] which is a very similar calculation within QED.

2 . . . .
Ill. LOWEST ORDER Here we use the conventional normalization for the scalar field

Let us first consider the theory without loop corrections. B S
The metric tensor is expanded as (P2lp)=2E4(2m)° (P2~ py) ©)
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dence on higher powers of, more information about the

PHYSICAL REVIEW B8, 084005 (2003

short distance distribution of energy-momentum. However,
in contrast with the nonanalytic terms, this is not universal

but depends on the internal structure of the particles, and we

do not consider them further.

For the case of a point mass the lowest order form is

[cf. Eq. (B5)]

1 1
0 —
(P2 T2(0) ) = JiEE 2PePe 2 7,8
(11)

while in the case of the spin 1/2 system we have

— 1
(P2l TEXO)P1) =u(P2)5 (7,P,+ ¥, P)u(py)

1 i \ \
= apupv_m(o-,u)\q P,+o.,\q P,u)

Xu(py), 12

FIG. 1. The vacuum polarization diagram.

2Gm
f(r)=—T

and reproduces the well-known leading order piece of the
Schwarzschild solutioh14]. In the case of spin 1/2 there is
an additional classical component which arises from the spin.
Using

(P2 TE(0)|py)=x3ox1Xq (17)

where we use here the conventions of Bjorken and Drell angq fing the off-diagonal component of the metric

have employed the Gordon identft{3]. In either case, for a

heavy point mass located at the origin we have the lowest

order Breit frame result

(P2 T(0)[p1)=mM,,08,0- (13)

The Einstein equation then has the solution

87G Lo owmes
() gy= _ 2m=>m —0v=i
h,..(q)= az x{ 0, w=0p=i + ...,
5”' ,u,_i,V—.
(19
which, using
d®q --1 1 dq .--q i
J ﬁelq.rT:_, f—gelq'rT:—g,
(27) q> 4mr (2m) q? 4mr
(15
corresponds to the coordinate space résult
1, pn=r=0,
h(N=f(r)x{ 0 w=0wr=i +..., (1§

6ij1 ,L,L:i,V:j,

with

g oliae
hsi’(q)=—8wiG ?(qu)i (18
which corresponds to the coodinate space result
(1),= 2G . .
hoi (r)=r—3(3><r)i (19

and agrees to this order with the Kerr mefi&]. With this
basic material in hand we now proceed to the inclusion of
loop corrections.

IV. LOOP CORRECTIONS TO THE ENERGY MOMENTUM
TENSOR—SPIN 0

Of course, the lowest order discussion given above is
straightforward and familiar, while the purpose of the present
paper is determine the nonanalytic corrections
~J=d? g?log—¢? to the form factors arising from the
higher order gravitational self-interaction. The appearance of
such terms was found in Rdf10] (hereafter referred to as
“I") to be associated with the feature that the graviton
couples to thémasslessphoton, and the same is expected to
happen in the case of gravitational self-interaction since the
graviton is itself massless. The relevant diagrams are shown
in Fig. 1 and are similar to their electromagnetic analog con-
sidered in |, although the tensor nature of the graviton makes

®Here the ellipses represent a very short range component assothe calculatiorconsiderablymore tedious. Details of the cal-

ated with the g-dependent piece Df, .

culation are given in Appendix A and the results pteb|
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qu 3 —q2 1 7°m grav, 1 ()i (1) (1) (1)
Fl(q2)=l+—<——|og—2+—— + ... y 8WGT/_LV :__h [ﬁﬂgvh)\K_F&X&Khlu,y_(gk(avh,u,}\
- 479 m? 16— 2
1 1
L e “@ 7 wPm +aﬂh§§))]—§ath},}a”h§})"+ Eamf})a"hﬁ)x
Fo(g?)=— =+ —| —2log—5+ = ——| + ...
20 2 5@, 7,,”( ShDarh D

As found in the case of the electromagnetically corrected 3 1) An(1)o

vertex studied in |, we observe that thé=0 value of the ~ 5 O\ hteex

leading form factorF;(g?) is unchanged from its lowest

order value of unity, as required by energy-momentum con- 1 N

servation, while the form factoF,(g?), which is not pro- - Zhﬁgmhuhﬁ ”uvh(l) BDh(al,g (22
tected,is modified. Such higher order corrections are to be

expected from the feature that gravity is nonlinear and musin terms of which the classical field correction to the point

contain terms to all orders in the gravitational coupling. mass form of the energy-momentum tensor is determined to
The momentum space form factors imply a coordinatebe

space structure of the energy momentum tensor which is

modified at large distance. Using the integrals listed in Ap- gray 1 3. R .

pendix A, we find the correction to the lowest order energy- Too ()= g—=| = 7VI(r)-VI(r)=3f(n)V=i(r) |+ ...
momentum tensor to be

B 3Gn?
T G2 T Bt
TOO(r):f (ZW)Squ.r mFl(q2)+ﬁF2(q2)
1 1 3 . -
gaviey\—— | — _V a —5.. .
:f d3q eidf R _i+1 Tij (r) 8’7TG( 2V|f(r)V]f(r)+45,JVf(r) Vi(r)
(2m)® 16 16
. Gm. /3 —f(r)Viij(r)+5ijf(r)§2f(r))+
X|Q|+7q2|09q2<z—1”
7Gm2 rirj 1
s 3Gm* 3Gk R b aa L R (23
—MON) T G T g
where the ellipses indicate contributions localized about the
- (F)—O origin. Obviously Egs(21) and (23) are identical, demon-
Oi — Y

strating the correspondence of the nonanalyticq® terms
. and the classical field energy, just as found in | for the elec-
.1 d>q .- - - tromagnetic case.
Tij(r):ﬁf (277)36'0' "(9i9;— 8;0°)F2(a?) The remaining corrections ,,, contain an explicit fac-
tor of 2 and are thus intrinsically quantum mechanical in
d3q iGr 17G -y nature. The “physics” behind these modifications can be un-
R 164 (9i9;— ;A7) derstood in terms of the position uncertainty associated with
guantum mechanics, which implies the replacement of the
distancer in the classical expression by the valuer
+h/m. Since for macroscopic distancéém<<r, expan-
sion of the classical result in powers ofr lleads qualita-
7Gm? e 1 2GMmh tivgly to the quantu_m modifications found in our loop calcu-
=_ _4(_2_ = 8ij ) +—5 3 (21 lation. We emphasize that both E@1),(23) are long range
4mr®\ r 2 mr effects which arise only because the graviton couples to a
masslessvirtual particle—in this case the self-interaction.
We have inserted factors df where appropriate, although The explicit factor of# in the latter indicates clearly that
we continue to use=1 units. these are quantum effects whose strength and form are ne-

Note that the leading correction 1, is classical in na-  cessitated by the quantum nature of the field theory.
ture, since there are no factors fof We can show that this

effect is generated by the energy and momentum that are
carried by the gravitational field—Ed16)— surrounding

the point mass. This field possesses an energy-momentum Here we use this energy momentum tensor to calculate the
tensor{12] associated metric. In | we were able to show that this proce-

-, Gm .
— (49— 5;9°)—log g’

V. CLASSICAL TERMS IN THE METRIC
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dq --1[m__ .
hi(jZ)(r):_].@?TGf (z;:ge'q f?[iﬂ (—9%) 8
NN X
1 1 12 Gl 12
+ﬁ QiQJ+§5ijq Fy'(—q9)
+4sz2(5—2— Q)
FIG. 2. Vacuum polarization modification of the energy- r '
momentum tensor. d3q |df
=—-167G f ( 27T)g,e
dure reproduced well-known results for classical metrics. We
will demonstrate the same feature for the gravitational case. 1 Gmm?q| 7Gwm?[q|
In this section we treat only the classicat g2 terms, which 2 Si\ =735 T3
we denote by./q superscripts to the form factors. The
method here is made somewhat more complex by the neces- 7G7rm> g - 5 M|
sity of dealing with the nonlinearity of the Einstein equation. 16 |ﬁ| +4G"m 2 —2-z .

Here we must consistently work to second ordeGiand to

this order there is a nonlinear modification of the equations
of motion relating the energy momentum tensor and the met-

ric. This is worked out in Appendix A—Eq(A16)—the
result has the form to second orderGn

1
Oh@®)=— 16776( To'= 5 1 79| =, [f(r)a,f(1)]
—a,[f(1)a,f(n)]. (24)

Noting that

ViLE(N)ViE (N 1+ Vil f(r)Vif(r)]

rir: 6 Oii rir
_ar2m2 V)P0 pp2m2e2| 25 1
_8Gm(4r6 r4)—4GmV(r2 2r4)

(25
we find then that
(2)(r)——167TGf 9 giai ( ST
(2m) 2
62 Voo 52
“amF2 (—a)
16 GJ’ d*q s Gmm* 7Gmwm?
— T —ge — = — =
(2m) 32q| 32q|

2G?m?

=T

hi(r)=0,

G2m? i
:_I’—2 5ij+r—2. (26)

Comparing with the Schwarzschild solution in harmonic
coordinates— Eq(l)—we find complete agreement.

VI. ADDITIONAL QUANTUM CORRECTIONS TO THE
METRIC

Having identified the classical corrections, we could pro-
ceed in a similar fashion to calculate the quantum corrections
using theg?ln g nonanalytic terms. However there is one
additional feature which needs to be included. There is a
guantum modification of the equations of motion, which
amounts to the addition of the vacuum polarization diagram
of Fig. 2. In order to see that this is required, let us look at
the quantum corrected effective action, which also has non-
local long distance modifications. At one loop one finds the
effective action

1
201~ [ @'y Th, 00" 2=y, (y)

+0(h*) 1+ Zanel h, 1. (27)

Here the renormalized actioh*”*#(x—y) contains

AP eB(x—y) = 54(x—y)D§“"“'B+ l:["”'“'g(x—y) +0(d%),

(28)

whereD4"*# s the differential operator following from the

Einstein action andll#**#(x—y) is the vacuum polarization
function after renormalization, see Fig. 1. Following the
steps in Appendix A we find that the vacuum polarization
induces a change in the equations of motion
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Oh,,(X) + P,uV,aBJ d*yI1*# 7 (x—y)h,4(y)

=- 1@77@( L % nu”TGfﬁV)

=d,[f(r)a,f(r)]=a,[f(r)a,f(r)], (29)
where the projection operatét,, .z is given by

1
P,uV,aﬁz I e E 7],1,Lv7]a,8 ’

1
I,Lw,aﬁzi(n,u.anuﬁ—i_ nvan,u.ﬁ)- (30)

Equation(29) can be written, in harmonic gauge, as

1
Oh,,,=—16G| Ti7"- 5 angfaV) —3d,[f(r)a,f(r)]
—d,[F(r)d,f(r)]

1/ 7°(x—y)D(y—2)

+167G f dlyd*zP,, .z

1
it nyﬁTma“(Z)) , (31)

Fig. 2.

The vacuum polarization has been calculated by 'tHooft
and Veltmar{17], and in momentum space it contains a fac-
tor of g*log(—q?) which is the source of the nonlocality. The

specific form is

2 ) 21 4 23 4
Haﬁ,y§:_7log(_q ) ﬁ)q Iaﬁ,y5+ ﬁ)q NapMys

23 ’
- 1_20q (naﬁqu5+ ﬂy&qan)

21
- 2_40q (qaqﬁﬂﬁy—‘r qu¢$77a7

11
+0,9,7851 A0y 7as) + %qaqﬁqus} . (32
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2
5h(2)vac poL __ pkacdlili
00 15713
Sh(2)vac pol_ G*m# S+ 44m (34
L T A R

The remaining corrections come from the logarithms in
the vertex correction. Using the energy momentum tensor
shown above plus the integrals listed Appendix A we find

d®q --1(m -
(2)verte I iq-r | __ _ (A2
5h00 Tr) 1677Gf (277)3e az( 2 Fl( q )
~2
q -
—m':z(—qz))
__16 Gj d3q lq*r*Gm 3 1 | =5
= 167G | et | gt g loud
_7G*mh
o3

5hg?)verte>t ry=0,

d3q .- - R
where the last term is just the vacuum polarization graph of sh(?Y*"™{(r)= —167TGJ’ Wequ?mng

X

m 22
§F1(_q )

1 1 ~2 ~2
XGijt 50 Gl 56197 | Fa(—9%)

16 Gf d®q -;Gm| (3 1
TR a3 A %l 2
_ 49
P
G’mh M
=T 3\ %ite T (39

where we have shown only the effects of the quantum loga-

When we employ this form along with the graviton propaga-rithms. Adding these corrections to the vacuum polarization
tor, we find for that the vacuum polarization contributes agnd classical terms reproduces the metric displayed in Eq.

shift in the metric

21
t
Too o (@)

d®q -- .
(2)vac po — 2 iq-r 2
sh{2)vecPoly) =32G f(zw)Be log(q?)

1 11 g#g” mat
+<%7)W—@ FZ )T (q)

. (33

In terms of components, we find,

(34

4Logarithmic corrections in many gauge theories can be analyzed
using the renormalization group and the results are described by
anomalous dimensions. In general relativity the situation is different
because of the dimensionful nature of the gravitational coupling.
The one loop correction is of ord&g?In g, and higher orders will
involve higher powers of? and logarithms—hence higher orders
will be power suppressed at low energy.
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VII. FERMIONS AND SPIN

Having understood the spinless sector, we now turn our
attention to the case of a particle with spin, in particular spin
one-half. The general form for the spin 1/2 matrix element of

the energy-momentum tensor can be writterj 15

_ 1
(P2 Tyl Py = U(p2)| F1(a?) PP, ——Fa(0?)

|
X m(}'#)\qxpy‘l‘ 4-—0',,)\(])\'3#)

2 2 1
+F3(q )(q,u,qv_ 77,uvq )E U(p]_)- (36)

The normalization conditiorF,(g?=0)=1 corresponds to

energy-momentum conservation as found before, while the

second normalization conditidf,(q?=0)=1 is required by

the constraint of angular momentum conservation. This can

be seen by defining

'\7|12: f dSX(To1X2_T02X1)

q—0 L L
— —i(Vq)zf d3xe'q'rT01(r)+i(Vq)1f d3x €9 " Tour),
(37
whereby
) A 1 1 )
lim (po|M g p1)= 5= EUT(D)USUT(p)FZ(q ), (38
gq—0

i.e.,F»(g?=0)=1, as found explicitly in our calculation.
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Tj(r qlqj .;ﬁz)Fa(—t?). (40)

1=

Using our result€39) for the form factors this becomes

i r(

- Gm. -
x|a| - 4 —a%ogq’

d3q

(2m)°

3G Ml
8

Too<F>=J

3Gmh

— s+ ...,
4y

3Gm?
—

=ma3(r)—

2|

8mr

3

>

Toi(r)=

a Gral-
(2,”.)3elq r(S><q)i
Gmm . G . )
1——IQI——q logq

s

%(éxﬁ)iés(F)

15G#
2727

Gm

+ +
- 2mr®

J

X(giq;—
7G P

4ar?

(S><r)+

)

7G Ml Gm -
— —logq
16/q|
5ij612)+

T
rir; 1
i oij | +

d3q
2m)3°

iq-r

-

Tii(r)=

2Gmh

-5
7T2r5 ij

+.... (41)

The Feynman diagrams for fermions are shown in Fig. 2.

We find, as shown in the Appendix A

5 G m’m 3
Fi(g9)=1+

q2
—lo
™ (16\/—q2 49

q)

G| m®m 1 —¢?
Fo(g®) =1+ ( N 4Iog
Fo 2)_Gm2 77w°m —q . 39
2(q p 16\/_ e

We convert this into an energy-momentum tensor. Writing

S= /2 for the spin, the general relation to the fermion form

factors is
d’q .- -
<2w)3e'q'r( )

-

. QP R
mF(—g%)+ EFs(_qz)

Toolr) = J'

Toi(r)= f(—ge'q r—(S><q) Fa(—0?),

2
We can again check the classical piece of this result
against our expectations of the energy-momentum carried by
the gravitational field. The spin-independent pieces are iden-
tical to that found for the spinless case. In the case of the
off-diagonal component of the energy-momentum tensor, Eq.
(A16) yields

Tgrav—

1
(1) (1) Dy K1)
Oi 87G hg VVh +2Vh th

20

= Tomami— LX) f(NIRVif(r)

+[V () IV(SX V) ()}

Gm . .
— 55 (SXT), (42
in agreement with the result obtained from E41).

Now let us calculate the metric components. In this case
we find the relation of the metric to the fermion form factors

is given by
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—Fi(—9?

-1
hoo( 1) = — 167G glar =
0 i f(z R

32
o Fa(— qZ))

hoi(r)=—16 Gi 4 i‘1"1|= —g?)(Sxq
0i(r)= G5 We ? 2(—g9)(SXq);,

hi (F) = lGWGf 3e“1{m|:1(—c32)5--
1] (2 ) q 1]

1 1o = 2
o519kt 5 8507 [ Fa(—q%)

4G?m?
- r2

r

With the form factors calculated above this yields

3 2 =

vertex(r 16’7TGf ((217:; ui fj'z(r;_ Gm477|q|
q

7Gm¢ .
+—3 qzIogq2

7G%m#h
3 +...,

2Gm 2G?m?

=— +
r r2

r

i ddq --1 Gmmlq|
vertex(r — 167G = J'(Z )Seq ?(1_T

~2

Gq S R
—Elogq2 (SXQ)i+ ...

= (SXr)i+ ...,

(2@ 2G%m 3G?%

rs ré ar®

d®q --1

_167TGf (2 )3elq rq2(§5ij

Gm27r|ci| 3Gmq
32 g 1090°

h}/jerteY F) —

+1 qiq;

e ) 7GnPm  Gm q°
270\ T1gq T ome

4G?°m? [
R =27z |t

5 _2”") 43
ij— 2| (43

A (44)
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We observe that the diagonal components of the vertex cor-
rection are identical to those found for the spinless case, as
expected, and that there exists a nonvanishing nondiagonal
term associated with the spin. The diagonal components of
the vacuum polarization are also clearly identical to the
bosonic case, but there is a new off-diagonal component as-
sociated with the spin

h<2>va°p°L3zef )3e'q log 4° 24sz(q2)(S><q).

2162ﬁ g

Again these are added together in order to yield the result
quoted in the introduction. We have thus reproduced the Kerr
metric—Eq.(2)—in harmonic gauge together with the asso-
ciated quantum corrections.

VIIl. DISCUSSION OF THE METRIC AND
GRAVITATIONAL POTENTIAL

The quantum correction to the Schwarzschild metric has
previously been discussed by Dyff9]. While that discus-
sion properly identifies lng? terms as the source of the
quantum effects, the calculation is incomplete because it
only includes the effect of the vacuum polarization diagram.
This can be traced to the assumption of a “classical source,”
which meant that the vertex diagrams were not included.
However, any source has a gravitational field surrounding it
and that field has a quantum component. The effective field
theory treatment demonstrates the existence of quantum cor-
rections due to the vertex diagrams—they are of the same
order as those due to vacuum polarization and they must be
included. In this sense, there is no fully classical source in
gravity. If one takes the mass of a particle to infinity, the
gravitational coupling also grows and the quantum effects do
not decouple. Rather for a heavy mass it is long distances
which determines the classical limit, as the quantum effects
become smaller than the classical effects in the limit of large
distance. However, the vertex corrections are as important as
the vacuum polarization for the quantum correction to the
metric and they must be included.

The bosonic diagrams that we have considered have also
been parts of the calculations of the quantum corrections to
the Newtonian potential. We have shown them in detail be-
cause there has been numerical disagreements in the litera-
ture. We believe that our results are the correct ones. There
appears to have been a numerical error in the original result
of Ref.[1]. We have identified the location of that error and
carefully reconsidered that value. The identity of EB8)
makes it easy to repeat this part of the calculation. The au-
thors of Ref.[4] also appear to be in error. Their calculation
would lead to the wrong classical terms, which certainly in-
dicates an error and implies that the quoted quantum portion
is also not trustworthy. In addition, our fermionic calculation
serves as an independent confirmation of the bosonic result,
as the calculational details are quite different even though the
result is the same.
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APPENDIX A: THE EQUATIONS OF MOTION

The method for describing the quantum gravitational field
has been understood since the classic works of 't Hooft and
Veltman[17]. In particular, the gauge fixing procedure and
the introduction of ghost fields are fully described there. We
use their calculation of the vacuum polarization diagram,
where the gauge treatment is particularly crucial. In this ap-
pendix we do not repeat the standard features that can be
found in their work. However, we do make use of a some-
what specific treatment of the equations of motion, so that
we describe in this appendix the features that are needed for
FIG. 3. Diagrams contributing to the one-particle-reducible po-our calculation. Further relevant details concerning the cou-
tential. pling of the gravitons to the quantum fields are presented in
Appendix B.
If we use our present result to define the one-particle- The full gravitational action is given by
reducible potential, including the diagrams in Fig. 3, we ob-
tain the result

jdAXJ_(mR c ) (A1)

Gmm G(m;+m 167 Gh
V(r)=— Sl (my 2)___+

r r 307 2 ) where/L,, is the Lagrange density for matter. Variation of Eq.
(Al) yields the Einstein equation
(46)
This potential is not itself the scattering potential. In a sepa- R —= —87GT A2
rate work[9] we calculate the other diagrams which are re- v ™ 29 T T (A2)

quired to fully define the scattering amplitude. These include
box diagrams and several triangle diagrams. However, theshere the energy-momentum tendqy, is given by
1PR potential represents the sets of diagrams that are used to

define the running charge in QED and QCD and these dia- 2
grams can be used for a similar definition here. We propose (\/_ﬁm) (A3)
that the quantum correction from these diagrams be used to V=g dg"”
define a running gravitational coupling appropriate for har-
monic gauge. This results in We work in the weak field limit, with an expansion in powers
of the gravitational couplings
167 G#
G(r)=G 1—ﬁr—2) (47) 9=+ h+h2+

_ o ghr=pht’— hWuv _ [@uv 4 h(l)m\h(l)K
The fact that this definition is independent of the masses of
the objects involved suggests that it has a universal character + ..., (A4)
appropriate for the running charge. Our work shows that this
form is independent of spin. Note also that the charge bewhere here the superscript indicates the number of powers of
comes weaker at shorter distances. This is in accord with & which appear and indices are understood to be raised or
heuristic expectation that the gravitational interaction at largéowered by7,,,. We shall also need the determinant which
distances feels the total mass of the object, but when probed given by
at small distances gravity will see a smaller effect because
the quantum fluctuations spread out the energy contained in 1 1 1
the fields. That the running gravitational coupling varies with \—9= exp trlogg=1+ E(h(l)+ h(®)— Zhgl,(gh(l)aﬁ
a power ofr rather than the logarithm is required by the

dimensional gravitational coupling constant. 1
g ping +§h(1)2+ (A5)
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! 5 5 ) 5 As shown in Sec. Il, this equation has the familiar solution
Rﬁgzi[aﬂﬂph( )+ 9,2 —3g,0"n@) -, )] for a static point mass
hM=s f(r), (A11)
25,009, hWa - L 5 h@gen() wr = O
41 20 " where
4 Lo ey Zp@nags 5 0015 5 HO 2Gm
2 e M\ v 2 [ AN ua ANullya f(r):_T_
1 1 - . . .
_%ﬁvhg_axﬁahﬁyﬁ > aﬁh(l)ﬁ“— z(;ozh(l) _In second order the validity of the Einstein equation re-
quires that
X(3,hD+3,h0)— g h(D), o 1 o Lo
RMV_EWMVR _EhMVR =0. (AlZ)
3
(2)— (2)_ g gvp(2)_ Z (1) g (L)aB . . . N
R Cih "N 407#ha:3a h It is useful to write this equation in the form
1 (1) AR (L)pa 1 (N BRr(1) (1) (2) 1 (2) BRh(2) 1 (2)
+§(9ahm\(9 h +§h (20,0 haﬁ_Dh)\a Dhﬂv—zﬂw,ljh —d,ld hBV_EﬁVh
— 0.9 hM | gBRMa_ E(yah(l) -9 (9,3h(2)_£07 h(2)
ANa ) B 2 v Bu 2%
- grav
x| o)~ ;aaw). (A6) -t (ALY

where 97" can be identified as the energy-momentum car-

In order to define the propagator, we must make a gaugHed by the gravitational field and can be read off 6]
choice and we shall work in harmonic gauge—

1

)\ _ . . . K

g“'T},,=0—which reads, to second order in the field expan- 87GTg}'= — S (d,d,h{})+ 3,9, = 3,.(3,h (3
sion

J7ARIDN ov

1
(A1 = (1) AL
0=Ph(L) - %ﬁahm +3,h) 1= 5a\hE)ang

1 1
+ 2. hWgoenA_Z 5 D)y RL)or
_ &ﬁh(BZCZ_ %ﬁah(z)_ %h(l))\g(é’)\hg_lcz+ ﬁgh&)— aahffl)\))> 2 (9)\ o'yé’ n 4 071/ a')xé,ﬂ

1 3
1) s o (1N 1) AR (1)o
(A7) —Z’)?/_w( (?)\hSrX)(? h( ) X—Ea)\hg.x)ﬁ h( ) X
Using these results, the Einstein equation reads, in lowest 1 1
1 1 1)« 1
order, - ZhEUZDh( )+ Eﬂwrﬂ fOn().  (A14)
Dhﬁv)_ ;me h(l)_%( aﬁh(ﬁlv)—%ayh(l)> Using the gauge condition E¢A7), Eq. (A13) becomes

1
2 2)| —
D(h( )— = 7,,ht >)_—16WGTgf3V

1
— (1)_ — 1 v
av(aﬂhﬁﬂ 59uht >> w2

— matt
=—167GT]" (A8) +dy

1
o] 023083

which, using the gauge condition E@\7), can be written as

+(9V 2 M No

h(l»a( AhW— 1, h‘””
ou

1
1H_ = @] _ it
hw Wuh ) = 167TGT;";‘ (A9)

- 2

1
| ] 08~ S0

or in the equivalent form (A15)

Tma“). (A10) and, using the lowest order solution Eg11) we find the

1
1 _ matt__ —
Ohe) 167TG( e form

2 Nuv
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. d% K,
#ol@emf 9\’ q\? >
(k—z k+§ p—k+§ —m
SR P YRR i S
Y 327%mZ| =T 2m) T am2>) T
| d% KK,
22 (27T)d q 2 q 2 q 2 )
(k_i k+§ p—k+§ —m
a b
(a) (b) : . 1 i
FIG. 4. Gravitational radiative correction diagrams leading to = 322me| Pﬂpvzm? L+ ZS — (8,9, = 7,07
nonanalytic components of form factors.
1 1
X|—=L+=S||+ ...,
(2) grav 1 grav 4 8
Oh()=—16mG| TIN5 7, T%| = 3,[f(1)3,F(1)]
ddk k, kK,
—3,[f(1a,f(n)]. (AL6) 1= : 2 7 2
(2m) q q q 2
_ . . k—=| | k+ 3 p—k+=| —m
For use in the spin 1/2 case we note that the corresponding 2 2 2
off-diagonal equation reads i 9
= W P}LPVPCY(W L+[(q,u.qv_ 7/qu2) Pa

Oh$)=—167GTE™— V(h§PV;he) + Vi(hGvhED).
(A17)

L

+ (q/.an_ nuaqz)Pv+(qvqa_ nvaqz) P,u]l_z
However, using the lowest order solutions found above we
easily verify that + ..., (B1)

Vi(h§PVih§e) = Vi(h{PV;h§) = 0. (A18)  whereS=7?m/\—q?, L=Ilog(—o?n?). From Fig. 4a), we

then have

Thus the off-diagonal Einstein equation in second order has
the simple form ALy =iP @M iPYopI]

Oh@=— 167G T (A19) o [ 97 Tap(PP =T3P =P ) Tk ,)

@m*t A @ )]
while the general form in second order is seen to be given by (B2)
Eq. (A16).

while from Fig. 4b),
APPENDIX B: DETAILS OF THE BOSONIC

AND FERMIONIC VERTEX CORRECTIONS d%/ 7 p(r(/,q)

2m)* s/ —q)?
(B3)

i
1. Spin zero Aﬁ)V:EPaB’)\K'Pw'wTaﬁ,vé(p’p’)f (
Here we show the calculation of the nonanalytic terms in
vertex correction, following the method of Rdfl]. Such ) ] i
pieces arise from the diagrams in Fig. 4, wherein the external Here the coupling to matter via one-graviton and two-
graviton couples to the massless graviton fields in the loopdraviton vertices can be found by expanding the spin zero
We have found that a symmetric ordering of the momentunfnattér Lagrangian
is useful, using the following integrals:

1 1
V=9Lnw= J—_g(ED,qugWqub— Smee?|  (B4)

| fddk 1
| (278 2 2 2
(2m (k—g (k+g [(p—k+g —mz} via
[ 1
= 3ol LS+ .. V—gﬁﬁﬁ)zi(%(ﬁﬁ“(ﬁ—m%z),
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JmgrW= T 1 .
‘C == d d’ﬁv(rb 277#1;((%(1’(9 d)
- m2¢>2)),

1 1
\! _gﬁgnz): - Eh(Z)MV a,u(ﬁﬁv(rb_ E nﬂv(ﬁa(ﬁaa(ﬁ

1
+ > h(Wsrp@r

m?¢?)
1 1

B INGEB)A% Da 1

_Eh( Jh(Dw )aﬂd’&y(ﬁ_g(h( ) ﬁhfug

_ %h(l)Z)(aa¢aa¢—m2q§2). (BS)

ng,ya(KQ) =

I K
? Paﬁ,y&
=1 vaaﬁl )\#’yé‘] + [q)\q#( 7701[3' )\V'yé—i_ 77)/5'

+ 77'y§' #V'aﬁ) -

+1 y&,}\pl pmaﬁ)] +

= (K275l " gt (K= Q)2 7081 7" 5) ]

3
kK (k= a)#(k— )"+ Q" — 5 7477

)\V’aﬁ) + q)\qy( 77(1[3'
77p'yq>\qo-( naﬁl y5,)\0+ 77'y5| aﬁ,)\(r)] + [Zq)\(l Uy’aﬁl y&,)xa(k_ q),u.+ l (rlu”aﬁl 'y&,)\o(k_ q) g

) ) 2 s
=1 7 76| CY,B,)\(TkM_ I " y&l aﬁ,)\okv) + q (l T a,Bl V'y&,a'+ l Vaﬁ [od
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The one- and two-graviton vertices are then, respectively,

Tap(P,P") = [pap,;+p Ps— Map(P-p’ —m?)],

Tapys(PP )=k g el 5 s(PPP'7+p'Pp7)

- E( naﬁl po’,y5+ 7])/5' pa',aﬁ)p,pp(r

1 1 , 5
_E laﬁ,'yﬁ_inaﬁﬂyé (pp _m) ,

(B6)

where we have defineef=327G. We also require the triple
graviton vertexr, ; . 5(k,q) whose form is

\o, , \o, , A, )
+2q)\qa[| UaBIIuV 75+| 075”“} aﬁ_l Maﬁ|°'V b2

A, A, )
. 76+ 77'}/5' a aﬁ) - qz( naﬁl m vé

\ )
|7# 75)+ 77/“/q qo—(l a,B,)\pl e b2

1
(k2+(k—Q)2)<|‘”"aﬁ' oot 1 gl 50 5 1 Papys

(B7)

Before presenting our results, we note a simplification—it can be easily seen that the terms in the 3-graviton vertex function
proportional tok? or (k—q)? do not produce nonanalytic pieces when inserted into either(B8) or Eq. (B3) and can be

dropped.
A further enormous simplification of indices results from the iderti}y

Py o o(K,Q)PYORP= i Elre(k ) (88)

for all the terms which lead to nonanalytic corrections. This can be verified straightforwardly. The resulting integrals are still

tedious, but can be done directly.
Decomposing the remaining piece of this vertex into the four bracketed terms, we list our results in terms of the contribu-

tions from each bracket separately: Figa)4

F2—Gq21210I 11102m
Q) =——| |7 ~2+1+ og(—q?)+ 6 11+ =7
_ G¢? 3 , . 1 7m
- ——09( Q)+16 =)
F 2 S 2 o1v0-1 2+71+21 mm
_sz | 2+7772m2
=— 13 5log(—q9) 8 =)’
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Fig. 4(b)
, _Gd’ 2
F1(9%) =——{([0+2+0~2]log(— %)} =0,
F 2)_ ™ 25022| 2| - &M 13| 2 B9
2007)=——| |~ 5 +0+2+2|log(—q") | = ——| — zlog(—a") |. (B9)
|
2. Spin 12 nected to the metric tensor, while their antisymmetric com-

For the case of spin 1/2 we require some additional forPonents are associated with freedom of homogeneous trans-
malism in order to extract the gravitational couplings. In thisformations of the local Lorentz frames and do not contribute

case the matter Lagrangian reads to nonanalyticity. We then find

— H=s
VeLn=1ey(iy*e4D,~m)y (B10) - %(0;11% o) = %hglv)
and involves the vierbeir; which links global coordinates
with those in a locally flat space. The vierbein is in somewe then have
sense the “square root” of the metric tengpy, and satisfies
the relations 1 1
dete=1+c+ -c?— —ccl+ ...

a b — a — 2 2
€ ,ue vnab_g,uw € ,u.eav_g/.wi

1 1 1
ete,, =82, eel=gH. (B11) =1+5h+ gh2— ghghg+ o (B17)

The covariant derivative is defined via
Using these forms the matter Lagrangian has the expansion

i
D, =04+~ w,ap, (B12) -
M " pa |
N Jéc(n?:ﬂzwagaﬁ—m v,
where
1 , 1 , \/éﬁ(l)z_lh(l)a;;% &LRl//_lh(l)l/f i_ﬂLR_m y
wﬂabziea (aﬂebv—&vebﬂ)—Eeb(aﬂeav—ﬁyew) m 2 Y8 2 > ,
+Ee Pe,7(d,€8c,— 0,€c,)€,° (B13 ) L @apgi, R, L1 R
288 (9080 = 1pc0)€, " VerL (== Sh® iy, gt y—Sh@y| 5 4F—m|y
The connection with the metric tensor can be made via the L e yalRss Lo R
expansion —gha/sh( By o\ R+ E(h( N2y a5y

e, =8 +cMayc@ay B14
e s (B14) _ Eh(l)% yahxakaJr ih(&l)h(l)aﬂa ,yaﬁLRw

. . . 8 a 16 o« M

where, as before, the superscript indicates the number of

powers of the gravitational couplinG which are present. 1 o 1 o
The inverse of this matrix is + Zh%h(l)“ﬁzpmlp— g(h(l))zwmzp
et=ot—c P —c@rt (D4 ... (B15) o Do s
and we find + 1gNov (6Ne” = dahg ") e Yy sy,
(B18)
- 1)L (M) ()4 ~(2) 1 (1)
U= Mt Cit )+ e+ et + et e+
where
gMV: 77/‘“’_ C(l),u'V_ C(l)Vﬂ_ C(z)/‘“’_ C(Z)V/U'+ C(l)aﬂci(il)”
+cMragvy cMuagvy - (B16) YOTY= 1 h—(3,0) .

For our purposes we shall use only the symmetric componerfthe corresponding one- and two-graviton vertices are found
of the c-matrices, since these are physical and can be cothen to be

084005-14



QUANTUM CORRECTIONS TO THE SCHWARZSCHILD . .. PHYSICAL REVIEW B8, 084005 (2003

_ Fig. 4(b)
Tap(PP') =5~ { [Ya(P+P) gt va(PTP o] ,
o G ([, 11 1 9] _2)_0
1 /1 , 199 =— 7 3 7/09(=99) )=
_Enaﬁ(i(p+p )—m) : )
2 Gq 1 2
2(q )_T 0+Z_§_Z log(—qg“) | =0,
1/1
Taﬁ,y&(p!p’):iKz(_E(E(p+p,)_m Pa,B,'yﬁ G2 10
Fs(qz)y=—({—§+0+0+ log(— qz))
1 aa
~ 161 Mapl V(PP )5t vs(PFP"),] G 19
=—T—|Og( a9). (B20)

+ 7, Ya(PtP) gt ¥a(P+P)o]}

All calculations of the form factors where done by hand and
+ Pt PV (g apl ®cyotlep vl cap) by computer. To do the various contractions of indices and
integrations by computer, a computer algorithmaeLE 7°
i (TM) were developed and used to do the calculations.
+ g e’ 2N 75(' Vaﬁ,nl ‘y&,o’vk;)
APPENDIX C: USEFUL INTEGRALS

=175 0l ap.oK )] (B19) Here we collect the integrals used to calculate the long
range corrections to the energy momentum tensor and the

metric. For the classical correction to the energy momentum
With these results in hand the loop integrations can nowensor we use

be performed, as before, yielding, for spin 1/2:

Fig. 4(a) d®q - - . 1
f (2,”_)3qu r|q|:__
Go?([1 3 1 1
n_“A|Z_2_= - . —4ir;
F.(99) - [4 2 2+4 log(—q*) f elq rq]|q| J,
+ 1+0 1+1—7T2m) d3q G0, 1 rr
16 - — 2 A g AT '}
= FRCNT
G’ 3 , . 1 7m
= T( — Z|og(_q )+ 6T 7’ and the quantum effect use
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