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Quantum corrections to the Schwarzschild and Kerr metrics
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We examine the corrections to the lowest order gravitational interactions of massive particles arising from
gravitational radiative corrections. We show how the masslessness of the graviton and the gravitational self-
interactions imply the presence of nonanalytic pieces;A2q2,;q2ln2q2, etc., in the form factors of the
energy-momentum tensor and that these correspond to long range modifications of the metric tensorgmn of the
form G2m2/r 2,G2m\/r 3, etc. The former coincide with well known solutions from classical general relativity,
while the latter represent new quantum mechanical effects, whose strength and form is necessitated by the low
energy quantum nature of the general relativity. We use these results to define a running gravitational charge.
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I. INTRODUCTION

In this paper we will discuss the long distance classi
and quantum corrections to the Schwarszchild and Kerr m
rics using the techniques of effective field theory. We w
show how the nonanalytic radiative corrections to t
energy-momentum tensor can be used to obtain the clas
nonlinear terms in these metrics at long distance, and ca
late the analogous nonanalytic quantum corrections. For
Schwarzschild metric we consider the case of a massive
lar particle. Here we clear up some numerical disagreem
in related calculations that have emerged in the literature.
then present the Kerr results, using a massive fermion
source, and show that the spin-independent quantum co
tions are the same as those of the scalar particle. We
elucidate various theoretical issues and compare with o
results in the literature.

Effective field theory is ideally suited for discussing th
quantum effects of general relativity at scales well below
Planck mass@1,2#. While it is expected that the degrees
freedom and the interactions of gravity will be modified b
yond the Planck scale, at low energies these ingredients
accurately described by general relativity. Effective fie
theory separates the known quantum effects of the low
ergy particles from the unknown physics at high energy. T
latter effects are represented by the most general serie
effective Lagrangians consistent with the symmetry of g
eral relativity. However the propagation of the low ener
particles yields identifiable quantum effects that can be
lated by the techniques of effective field theory.

The present study builds on two sets of recent work. O
of these is the use of effective field theory to study quant
corrections to the gravitational potential@1,3–9#. While the
basic principles of these studies are the same, there are
differences and/or disagreements. Since there is not a un
sal definition of the meaning of a potential, different autho
0556-2821/2003/68~8!/084005~16!/$20.00 68 0840
l
t-

l

cal
u-
he
a-
ts
e
a
c-

lso
er

e

-
re

n-
e
of
-

-

e

me
er-
s

use different definitions of potential in terms of Feynm
diagrams, and hence obtain different answers. Even in a
where the same definition is used, different results have b
obtained. We will provide some clarification of these d
agreements. A related paper@9# provides a full and detailed
calculation of the scattering potential of scalar particles.
the present paper we note that a subset of diagrams is m
readily interpreted as a change in the metric, and we ca
late these effects.

The other precedent for the present paper is the calc
tion of the the leading quantum corrections to the Reissn
Nordström and Kerr-Newman metrics using effective fie
theory@10#.1 These metrics involve charged particles, so th
the quantum corrections involved photon loops, not gravi
loops. However, this provided a particularly clear laborato
for the study of metric corrections. Interestingly, we saw th
the classical nonlinearities in the metric can be calculate
straightforwardly using Feynman diagram techniques. At
same time we saw that there was a clear identification
certain nonanalytic terms with long-distance quantum effe
in the metric. We use the insights of that study to investig
the present problems, which involve graviton loops. In t
present case the interpretation is not as clear, although
calculations are well defined.

We will be using harmonic gauge throughout this pap
In this gauge, the Schwarzschild metric has the form@12,14#,

g005S 12
Gm

r

11
Gm

r

D 5122
Gm

r
12

G2m2

r 2 1 . . . ,

1These corrections have also been considered from the poin
view of S-matrix theory in Ref.@11#.
©2003 The American Physical Society05-1



-
m

ia
n

ent
ion.
ce

sor
mo-
t a
ical
y-

ca-
or-
are
ies

tion
eld
the
he

ange
and

lcu-
sor
eads
ure
s

l
hey
tric

s of
Ex-

uce

saw
ob-
he

nal
par-
int
car-
an
use

rms

BJERRUM-BOHR, DONOGHUE, AND HOLSTEIN PHYSICAL REVIEW D68, 084005 ~2003!
g0i50,

gi j 52d i j S 11
Gm

r D 2

2
G2m2

r 2 S 11
Gm

r

12
Gm

r

D r i r j

r 2

52d i j S 112
Gm

r
1

G2m2

r 2 D2
r i r j

r 2

G2m2

r 2 1 . . . . ~1!

The Kerr metric@15# refers to a particle with spin and, keep
ing only terms up to first order in the angular momentu
has the harmonic gauge form

g005S 12
Gm

r

11
Gm

r

D 1 . . . 5122
Gm

r
12

G2m2

r 2 1 . . . ,

g0i5
2G

r 2~r 1mG!
~SW 3rW ! i1 . . .

5S 2G

r 3 2
2G2m

r 4 D ~SW 3rW ! i1 . . . ,

gi j 52d i j S 11
Gm

r D 2

2
G2m2

r 2 S 11
Gm

r

12
Gm

r

D r i r j

r 2 1 . . .

52d i j S 112
Gm

r
1

G2m2

r 2 D2
r i r j

r 2

G2m2

r 2 1 . . . . ~2!

We will show that using a particular set of Feynman d
grams we reproduce the former with the addition of a lo
distance quantum correction

g005122
Gm

r
12

G2m2

r 2 1
62G2m\

15pr 3 1 . . . ,

g0i50,

gi j 52d i j S 112
Gm

r
1

G2m2

r 2 1
14G2m\

15pr 3 D
2

r i r j

r 2 S G2m2

r 2 1
76G2m\

15pr 3 D1 . . . . ~3!

For the Kerr metric,

g005122
Gm

r
12

G2m2

r 2 1
62G2m\

15pr 3 1 . . . ,

g0i5S 2G

r 3 2
2G2m

r 4 1
36G2\

15pr 5 D ~SW 3rW ! i1 . . . ,
08400
,

-
g

gi j 52d i j S 112
Gm

r
1

G2m2

r 2 1
14G2m\

15pr 3 D
2

r i r j

r 2 S G2m2

r 2 1
76G2m\

15pr 3 D1 . . . . ~4!

It is of course required that the classical spin-independ
terms must be the same for a scalar particle and a ferm
We know of no firm requirement for the spin independen
of the quantum corrections tog00 and gi j , but from our
calculation they are seen to be identical.

II. REVIEW

The metric is derived from the energy-momentum ten
of a source, using Einstein’s equation as the equation of
tion. At lowest order in the fields, the source particle is jus
point particle in coordinate space. However, both class
fields and their quantum fluctuations modify the energ
momentum of a particle at long distance. These modifi
tions can be found by the consideration of the radiative c
rections to the energy-momentum tensor. When these
translated into a metric, they yield the classical nonlinearit
and quantum modifications of the metric.

Let us review what was found in Ref.@10# for the con-
ceptually simpler case of charged particles, as our calcula
here will follow the same procedure. In that case the fi
around the particles was the electromagnetic field and
gravitational interaction was treated purely classically. T
masslessness of the photon implies that there are long r
fields around a charged particle and these carry energy
momentum. At the same time, in a Feynman diagram ca
lation of the renormalization of the energy momentum ten
of the charged particle, the masslessness of the photon l
to nonanalytic terms in the form factors having the struct
;A2q2,;q2ln2q2, whereq is the momentum transfer, a
well as analytic terms of orderq2,q4, . . . . It wasshown in
detail how the ;A2q2 terms account for the classica
energy-momentum of the electromagnetic field and how t
exactly reproduce the classical nonlinearities in the me
that are present in the Reissner-Nordstro¨m and Kerr-
Newman metrics. Nonanalytic terms of the formq2ln2q2

also appear, and when they are included in the equation
motion they produce further corrections in these metrics.
plicit examination shows that these latter are linear in\—i.e.
they are quantum effects. Finally the analytic terms prod
only delta functions~or derivatives of delta functions! in the
metric, such that they vanish at long distance. Thus we
that the long distance modifications of the metrics are
tained from the nonanlaytic terms in the formfactors of t
energy momentum tensor.

The same effects are present in the purely gravitatio
case. If one expands the energy and momentum of the
ticle in powers of G, the lowest order result is that of a po
particle. However, there is energy and momentum also
ried by the gravitational field around the particle and this c
be calculated via the one loop Feynman diagrams. Beca
the graviton is massless, there will also be nonanalytic te
of the forms;A2q2,;q2ln2q2 in the form factors of the
5-2
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energy momentum tensor. Again these will produce lo
range modifications of the metric. If we include the releva
dimensionful couplings, this will have the schematic form

metric;GmE d3q

~2p!3eiqW •rW
1

qW 2 F12aGqW 2Am2

q
2

2bGqW 2log~qW 2!2cGqW 21 . . .

;GmF1

r
1

aGm

r 2 1
bG\

r 3 1cGd3~x!1 . . . G . ~5!

Herea,b,c are dimensionless numbers and further numer
factors of order unity will be inserted later. We will examin
the A2q2 terms in detail and show how they correctly r
produce all the features of the classical metric. For theq2ln
2q2 terms we have included the factor of\ that follows
from dimensional analysis. The analytic correction to the
ergy momentum tensor yields the delta function term tha
not relevant for the long distance behavior.

The nonanalytic terms come from the low energy pro
gation of gravitons, using the couplings of general relativ
Because these features are independent of the high en
behavior of gravity, they are unambiguous predictions of l
energy general relativity. There is also no influence of ot
possible terms in the gravitational Lagrangian, such asR2 or
related corrections in the matter Lagrangian. These y
only analytic corrections to the form factor and hence do
provide long distance modifications of the metric. These
behaviors that are well known in the effective field theory
gravity @1#.

Finally, we comment on some of the potential difficulti
that arenot present in our calculation. In general, quantu
gravity calculations can present novel difficulties for fie
theory. In a general background geometry, the basis state
the ‘‘in’’ basis and the ‘‘out’’ basis may be significantly dif
ferent as the geometry changes. It may be difficult to de
the single particle states or to have well defined amplitud
Fortunately, these complications are not present in our ca
lation. We have a perturbative treatment about flat space,
our external particles are well defined. Use of a plane w
basis allows one to extract information about moment
space transitions or, by constructing wave packets, local
states in coordinate space. The external gravitational c
pling used for defining the metric is itself classical and t
only quantum aspects to the calculation are the propaga
internal to the loop diagrams. Thus our calculation is n
beset with the subtleties that are peculiar to quantum gra
The basic setup of the problem is analogous to the extrac
of physical predictions in other field theories, with the mo
est change that we have gravitons within the loops. As
scribed above, the low momentum component of such lo
is well defined. Indeed, the closest model is the calcula
of the quantum effects in the Reissner-Nordstro¨m metric,
Ref. @10# which is a very similar calculation within QED.

III. LOWEST ORDER

Let us first consider the theory without loop correction
The metric tensor is expanded as
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gmn[hmn1hmn
(1)1 . . . , ~6!

wherehmn5(1,21,21,21)diag is the usual Minkowski met-
ric and the superscript refers to the number of powers of
gravitational coupling which appear. The dynamical relati
which connectshmn

(1) and the energy momentum tensorTmn is
the Einstein equation, whose linearized form in harmo
gauge—gmnGmn

l 50—is

hhmn
(1)5216pGS Tmn~x!2

1

2
hmnT~x! D , ~7!

where T5hmnTmn represents the trace. The metric for
nearly static source is then recovered via the Green func
in either coordinate or momentum space

hmn~x!5216pGE d3yD~x2y!S Tmn~y!2
1

2
hmnT~y! D

5216pGE d3q

~2p!3 eiqW •rW
1

qW 2 S Tmn~q!2
1

2
hmnT~q! D .

~8!

The matrix elements ofTmn are described by

^p2uTmn~x!up1&

and the conservation condition]mTmn50 together with the
requirement thatTmn transform as a second rank Loren
tensor demands the general~scalar field! form2

^p2uTmn~x!up1&5
ei (p22p1)•x

A4E2E1

@2PmPnF1~q2!

1~qmqn2hmnq2!F2~q2!#, ~10!

where we have definedPm5 1
2 (p11p2)m and qm5(p1

2p2)m . Conservation of energy and momentum requi
F1(q250)51 but there exists no constraint onF2(q2).

The form factorsF1 and F2 encode all the information
about the distribution of energy and momentum for t
heavy particle. Although these are defined in moment
space, coordinate space quantities can be studied by form
wave packets. For a very heavy particle, this involves m
menta only very close to zero. At lowest order, in particul
we require only the form factors at zero momentum. Ho
ever, the real quantum content of this paper concerns
quantum loops that modify the form factors. For the lead
long distance corrections to this result, we will show by d
rect calculation how they are extracted by considering
nonanalytic terms in in expansion around zero momentu
The form factors also in principle contain, in their depe

2Here we use the conventional normalization for the scalar fie

^p2up1&52E1~2p!3d3~pW22pW1! ~9!
5-3
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dence on higher powers ofq2, more information about the
short distance distribution of energy-momentum. Howev
in contrast with the nonanalytic terms, this is not univer
but depends on the internal structure of the particles, and
do not consider them further.

For the case of a point massm the lowest order form is
@cf. Eq. ~B5!#

^p2uTmn
(0)~0!up1&5

1

A4E2E1
F2PmPm2

1

2
~qmqn2hmnq2!G

~11!

while in the case of the spin 1/2 system we have

^p2uTmn
(0)~0!up1&5ū~p2!

1

2
~gmPn1gnPm!u~p1!

5F 1

m
PmPn2

i

4m
~smlqlPn1snlqlPm!G

3u~p1!, ~12!

where we use here the conventions of Bjorken and Drell
have employed the Gordon identity@13#. In either case, for a
heavy point mass located at the origin we have the low
order Breit frame result

^p2uTmn
(0)~0!up1&.mdm0dn0 . ~13!

The Einstein equation then has the solution

hmn
(1)~qW !52

8pGm

qW 2
3H 1, m5n50

0, m50,n5 i 1 . . . ,

d i j m5 i ,n5 j
~14!

which, using

E d3q

~2p!3 eiqW •rW
1

qW 2
5

1

4pr
, E d3q

~2p!3 eiqW •rW
qj

qW 2
5

ir j

4pr 3 ,

~15!

corresponds to the coordinate space result3

hmn
(1)~rW !5 f ~r !3H 1, m5n50,

0 m50,n5 i 1 . . . ,

d i j , m5 i ,n5 j ,

~16!

with

3Here the ellipses represent a very short range component as
ated with the q-dependent piece ofTmn .
08400
r,
l
e

d

st

f ~r !52
2Gm

r

and reproduces the well-known leading order piece of
Schwarzschild solution@14#. In the case of spin 1/2 there i
an additional classical component which arises from the s
Using

^p2uT0i
(0)~0!up1&.x2

†sW x13qW ~17!

we find the off-diagonal component of the metric

h0i
(1)~qW !528p iG

1

qW 2
~SW 3qW ! i ~18!

which corresponds to the coodinate space result

h0i
(1)~rW !5

2G

r 3 ~SW 3rW ! i ~19!

and agrees to this order with the Kerr metric@15#. With this
basic material in hand we now proceed to the inclusion
loop corrections.

IV. LOOP CORRECTIONS TO THE ENERGY MOMENTUM
TENSOR—SPIN 0

Of course, the lowest order discussion given above
straightforward and familiar, while the purpose of the pres
paper is determine the nonanalytic correctio
;A2q2, q2log2q2 to the form factors arising from the
higher order gravitational self-interaction. The appearance
such terms was found in Ref.@10# ~hereafter referred to a
‘‘I’’ ! to be associated with the feature that the gravi
couples to the~massless! photon, and the same is expected
happen in the case of gravitational self-interaction since
graviton is itself massless. The relevant diagrams are sh
in Fig. 1 and are similar to their electromagnetic analog c
sidered in I, although the tensor nature of the graviton ma
the calculationconsiderablymore tedious. Details of the cal
culation are given in Appendix A and the results are@1,5#
ci-

FIG. 1. The vacuum polarization diagram.
5-4
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F1~q2!511
Gq2

p S 2
3

4
log

2q2

m2 1
1

16

p2m

A2q2D 1 . . . ,

F2~q2!52
1

2
1

Gm2

p S 22 log
2q2

m2 1
7

8

p2m

A2q2D 1 . . . .

~20!

As found in the case of the electromagnetically correc
vertex studied in I, we observe that theq250 value of the
leading form factorF1(q2) is unchanged from its lowes
order value of unity, as required by energy-momentum c
servation, while the form factorF2(q2), which is not pro-
tected,is modified. Such higher order corrections are to
expected from the feature that gravity is nonlinear and m
contain terms to all orders in the gravitational coupling.

The momentum space form factors imply a coordin
space structure of the energy momentum tensor whic
modified at large distance. Using the integrals listed in A
pendix A, we find the correction to the lowest order energ
momentum tensor to be

T00~rW !5E d3q

~2p!3 eiqW •rWS mF1~q2!1
qW 2

2m
F2~q2! D

5E d3q

~2p!3 eiqW •rWFm1pGm2S 2
1

16
1

7

16D
3uqW u1

Gm

p
qW 2logqW 2S 3

4
21D G

5md3~r !2
3Gm2

8pr 4 2
3Gm\

4p2r 5 ,

T0i~rW !50,

Ti j ~rW !5
1

2mE d3q

~2p!3 eiqW •rW~qiqj2d i j qW
2!F2~q2!

5E d3q

~2p!3eiqW •rWF7pGm2

16uqW u
~qiqj2d i j qW

2!

2~qiqj2d i j qW
2!

Gm

p
logqW 2G

52
7Gm2

4pr 4 S r i r j

r 2 2
1

2
d i j D1

2Gm\

p2r 5 d i j . ~21!

We have inserted factors of\ where appropriate, althoug
we continue to usec51 units.

Note that the leading correction toTmn is classical in na-
ture, since there are no factors of\. We can show that this
effect is generated by the energy and momentum that
carried by the gravitational field—Eq.~16!— surrounding
the point mass. This field possesses an energy-momen
tensor@12#
08400
d

-

e
st

e
is
-
-

re

um

8pGTmn
grav52

1

2
h(1)lk@]m]nhlk

(1)1]l]khmn
(1)2]k~]nhml

(1)

1]mhnl
(1)!#2

1

2
]lhsn

(1)]lhm
(1)s1

1

2
]lhsn

(1)]shm
(1)l

2
1

4
]nhsl

(1)]mh(1)sl2
1

4
hmnS ]lhsx

(1)]sh(1)lx

2
3

2
]lhsx

(1)]lh(1)sxD
2

1

4
hmn

(1)hh(1)1
1

2
hmnh(1)abhhab

(1) ~22!

in terms of which the classical field correction to the po
mass form of the energy-momentum tensor is determine
be

T00
grav~r !5

1

8pG S 2
3

4
¹W f ~r !•¹W f ~r !23 f ~r !¹W 2f ~r ! D1 . . .

52
3Gm2

8pr 4 1 . . . ,

Ti j
grav~r !5

1

8pG S 2
1

2
¹i f ~r !¹j f ~r !1

3

4
d i j ¹W f ~r !•¹W f ~r !

2 f ~r !¹i¹j f ~r !1d i j f ~r !¹W 2f ~r ! D1 . . .

52
7Gm2

4pr 4 S r i r j

r 2 2
1

2
d i j D1 . . . , ~23!

where the ellipses indicate contributions localized about
origin. Obviously Eqs.~21! and ~23! are identical, demon-
strating the correspondence of the nonanalyticA2q2 terms
and the classical field energy, just as found in I for the el
tromagnetic case.

The remaining corrections toTmn contain an explicit fac-
tor of \ and are thus intrinsically quantum mechanical
nature. The ‘‘physics’’ behind these modifications can be u
derstood in terms of the position uncertainty associated w
quantum mechanics, which implies the replacement of
distance r in the classical expression by the value;r
1\/m. Since for macroscopic distances\/m,,r , expan-
sion of the classical result in powers of 1/r leads qualita-
tively to the quantum modifications found in our loop calc
lation. We emphasize that both Eq.~21!,~23! are long range
effects which arise only because the graviton couples t
masslessvirtual particle—in this case the self-interactio
The explicit factor of\ in the latter indicates clearly tha
these are quantum effects whose strength and form are
cessitated by the quantum nature of the field theory.

V. CLASSICAL TERMS IN THE METRIC

Here we use this energy momentum tensor to calculate
associated metric. In I we were able to show that this pro
5-5
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dure reproduced well-known results for classical metrics.
will demonstrate the same feature for the gravitational ca
In this section we treat only the classicalA2q2 terms, which
we denote byAq superscripts to the form factors. Th
method here is made somewhat more complex by the ne
sity of dealing with the nonlinearity of the Einstein equatio
Here we must consistently work to second order inG and to
this order there is a nonlinear modification of the equatio
of motion relating the energy momentum tensor and the m
ric. This is worked out in Appendix A—Eq.~A16!—the
result has the form to second order inG

hhmn
(2)5216pGS Tmn

grav2
1

2
hmnTgravD2]m@ f ~r !]n f ~r !#

2]n@ f ~r !]m f ~r !#. ~24!

Noting that

¹i@ f ~r !¹j f ~r !#1¹j@ f ~r !¹i f ~r !#

58G2m2S 4
r i r j

r 6 2
d i j

r 4 D 54G2m2¹2S d i j

r 2
22

r i r j

r 4 D
~25!

we find then that

h00
(2)~r !5216pGE d3q

~2p!3 eiqW •rW
1

qW 2 S m

2
F1

Aq~2qW 2!

2
qW 2

4m
F2

Aq~2qW 2! D
5216pGE d3q

~2p!3 eiqW •rWS 2
Gpm2

32uqW u
2

7Gpm2

32uqW u
D

5
2G2m2

r 2 ,

h0i
(2)~r !50,

FIG. 2. Vacuum polarization modification of the energ
momentum tensor.
08400
e
e.

s-
.

s
t-

hi j
(2)~r !5216pGE d3q

~2p!3 eiqW •rW
1

qW 2 Fm

2
F1

Aq~2qW 2!d i j

1
1

2m S qiqj1
1

2
d i j qW

2DF2
Aq~2qW 2!G

14G2m2S d i j

r 2
22

r i r j

r 4 D
5216pGE d3q

~2p!3 eiqW •rW

3
1

qW 2 Fd i j S 2
Gpm2uqW u

32
1

7Gpm2uqW u
32

D
1

7Gpm2

16

qiqj

uqW u
G14G2m2S d i j

r 2
22

r i r j

r 4 D
52

G2m2

r 2 S d i j 1
r i r j

r 2 D . ~26!

Comparing with the Schwarzschild solution in harmon
coordinates— Eq.~1!—we find complete agreement.

VI. ADDITIONAL QUANTUM CORRECTIONS TO THE
METRIC

Having identified the classical corrections, we could p
ceed in a similar fashion to calculate the quantum correcti
using theq2ln q2 nonanalytic terms. However there is on
additional feature which needs to be included. There i
quantum modification of the equations of motion, whi
amounts to the addition of the vacuum polarization diagr
of Fig. 2. In order to see that this is required, let us look
the quantum corrected effective action, which also has n
local long distance modifications. At one loop one finds t
effective action

Z@h#52E d4xd4y
1

2
@hmn~x!Dmn,ab~x2y!hab~y!

1O~h3!#1Zmatter@h,f#. ~27!

Here the renormalized actionDmn,ab(x2y) contains

Dmn,ab~x2y!5d4~x2y!D2
mn,ab1P̂mn,ab~x2y!1O~]4!,

~28!

whereD2
mn,ab is the differential operator following from the

Einstein action andP̂mn,ab(x2y) is the vacuum polarization
function after renormalization, see Fig. 1. Following th
steps in Appendix A we find that the vacuum polarizati
induces a change in the equations of motion
5-6



o

o
c
e

a
a

in
sor

ga-
ion
Eq.

zed
by

ent
ng.

rs

QUANTUM CORRECTIONS TO THE SCHWARZSCHILD . . . PHYSICAL REVIEW D68, 084005 ~2003!
hhmn~x!1Pmn,abE d4yP̂ab,gd~x2y!hgd~y!

5216pGS Tmn
grav2

1

2
hmnTgravD

2]m@ f ~r !]n f ~r !#2]n@ f ~r !]m f ~r !#, ~29!

where the projection operatorPmn,ab is given by

Pmn,ab5I mn,ab2
1

2
hmnhab ,

I mn,ab5
1

2
~hmahnb1hnahmb!. ~30!

Equation~29! can be written, in harmonic gauge, as

hhmn5216pGS Tmn
grav2

1

2
hmnTgravD2]m@ f ~r !]n f ~r !#

2]n@ f ~r !]m f ~r !#

116pGE d4yd4zPmn,abP̂ab,gd~x2y!D~y2z!

3S Tgd
matt~z!2

1

2
hgdTmatt~z! D , ~31!

where the last term is just the vacuum polarization graph
Fig. 2.

The vacuum polarization has been calculated by ’tHo
and Veltman@17#, and in momentum space it contains a fa
tor of q4log(2q2) which is the source of the nonlocality. Th
specific form is

P̂ab,gd52
2G

p
log~2q2!F 21

120
q4I ab,gd1

23

120
q4habhgd

2
23

120
q2~habqgqd1hgdqaqb!

2
21

240
q2~qaqdhbg1qbqdhag

1qaqghbd1qbqghad!1
11

30
qaqbqgqdG . ~32!

When we employ this form along with the graviton propag
tor, we find for that the vacuum polarization contributes
shift in the metric

dhmn
(2)vac pol~x!532G2E d3q

~2p!3eiqW •rWlog~qW 2!F 21

120
Tmn

matt~q!

1S 1

240
hmn2

11

60

qmqn

qW 2 D Tmatt~q!G . ~33!

In terms of components, we find,
08400
f

ft
-

-

dh00
(2)vac pol52

43G2m\

15pr 3 ,

dhi j
(2)vac pol5

G2m\

15pr 3 S d i j 144
r i r j

r 2 D . ~34!

The remaining corrections come from the logarithms
the vertex correction. Using the energy momentum ten
shown above plus the integrals listed Appendix A we find

dh00
(2)vertex~r !5216pGE d3q

~2p!3 eiqW •rW
1

qW 2 S m

2
F1~2qW 2!

2
qW 2

4m
F2~2qW 2! D

5216pGE d3q

~2p!3 eiqW •rW
Gm

p S 3

8
1

1

2D logqW 2

5
7G2m\

pr 3 ,

dh0i
(2)vertex~r !50,

dhi j
(2)vertex~r !5216pGE d3q

~2p!3 eiqW •rW
1

qW 2
logqW 2

3Fm

2
F1~2qW 2!

3d i j 1
1

2m S qiqj1
1

2
d i j qW

2DF2~2qW 2!G
5216pGE d3q

~2p!3 eiqW •rW
Gm

p Fd i j S 3

8
2

1

2D
2

qiqj

qW 2 G
52

G2m\

pr 3 S d i j 18
r i r j

r 2 D , ~35!

where we have shown only the effects of the quantum lo
rithms. Adding these corrections to the vacuum polarizat
and classical terms reproduces the metric displayed in
~3!.4

4Logarithmic corrections in many gauge theories can be analy
using the renormalization group and the results are described
anomalous dimensions. In general relativity the situation is differ
because of the dimensionful nature of the gravitational coupli
The one loop correction is of orderGq2ln q2, and higher orders will
involve higher powers ofq2 and logarithms—hence higher orde
will be power suppressed at low energy.
5-7
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VII. FERMIONS AND SPIN

Having understood the spinless sector, we now turn
attention to the case of a particle with spin, in particular s
one-half. The general form for the spin 1/2 matrix elemen
the energy-momentum tensor can be written as@18#

^p2uTmnup1&5ū~p2!FF1~q2!PmPn

1

m
2F2~q2!

3S i

4m
smlqlPn1

i

4m
snlqlPmD

1F3~q2!~qmqn2hmnq2!
1

mGu~p1!. ~36!

The normalization conditionF1(q250)51 corresponds to
energy-momentum conservation as found before, while
second normalization conditionF2(q250)51 is required by
the constraint of angular momentum conservation. This
be seen by defining

M̂125E d3x~T01x22T02x1!

→
q→0

2 i ~¹q!2E d3xeiqW •rWT01~rW !1 i ~¹q!1E d3xeiqW •rWT02~rW !,

~37!

whereby

lim
q→0

^p2uM̂12up1&5
1

2
5

1

2
ū↑~p!s3u↑~p!F2~q2!, ~38!

i.e., F2(q250)51, as found explicitly in our calculation.
The Feynman diagrams for fermions are shown in Fig

We find, as shown in the Appendix A

F1~q2!511
Gq2

p S p2m

16A2q2
2

3

4
log

2q2

m2 D 1 . . . ,

F2~q2!511
Gq2

p S p2m

4A2q2
1

1

4
log

2q2

m2 D 1 . . . ,

F3~q2!5
Gm2

p S 7p2m

16A2q2
2 log

2q2

m2 D 1 . . . . ~39!

We convert this into an energy-momentum tensor. Writ
SW 5sW /2 for the spin, the general relation to the fermion for
factors is

T00~rW !5E d3q

~2p!3 eiqW •rWS mF1~2qW 2!1
qW 2

m
F3~2qW 2! D ,

T0i~rW !5 i E d3q

~2p!3 eiqW •rW
1

2
~SW 3qW ! iF2~2qW 2!,
08400
r
n
f

e

n

.

g

Ti j ~rW !5
1

mE d3q

~2p!3 eiqW •rW~qiqj2d i j qW
2!F3~2qW 2!. ~40!

Using our results~39! for the form factors this becomes

T00~rW !5E d3q

~2p!3 eiqW •rWS m1
3Gm2p

8

3uqW u2
Gm

4p
qW 2logqW 2D1 . . .

5md3~rW !2
3Gm2

8pr 4 2
3Gm\

4pr 5 1 . . . ,

T0i~rW !5
i

2E d3q

~2p!3 eiqW •rW~SW 3qW ! i

3S 12
Gmp

4
uqW u2

G

4p
qW 2logqW 2D1 . . .

5
1

2
~SW 3¹W ! id

3~rW !

1S 2
Gm

2pr 6 1
15G\

4p2r 7D ~SW 3rW ! i1 . . . ,

Ti j ~rW !5E d3q

~2p!3 eiqW •rWS 7Gm2p

16uqW u
2

Gm

p
logqW 2D

3~qiqj2d i j qW
2!1 . . .

52
7Gm2

4pr 4 S r i r j

r 2 2
1

2
d i j D1

2Gm\

p2r 5 d i j

1 . . . . ~41!

We can again check the classical piece of this res
against our expectations of the energy-momentum carried
the gravitational field. The spin-independent pieces are id
tical to that found for the spinless case. In the case of
off-diagonal component of the energy-momentum tensor,
~A16! yields

T0i
grav5

1

8pG S 2
1

2
h0 j

(1)¹i¹jh00
(1)1

1

2
¹jhki

(1)¹khj 0
(1)D

5
1

16pGm
$2@~SW 3¹W ! j f ~r !#¹i¹j f ~r !

1@¹j f ~r !#¹i~SW 3¹W ! j f ~r !%

52
Gm

2pr 6 ~SW 3rW ! i ~42!

in agreement with the result obtained from Eq.~41!.
Now let us calculate the metric components. In this ca

we find the relation of the metric to the fermion form facto
is given by
5-8
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h00~rW !5216pGE d3q

~2p!3 eiqW •rW
1

qW 2 S m

2
F1~2qW 2!

2
qW 2

2m
F3~2qW 2! D ,

h0i~rW !5216pG
i

2E d3q

~2p!3 eiqW •rW
1

qW 2
F2~2qW 2!~SW 3qW ! i ,

hi j ~rW !5216pGE d3q

~2p!3 eiqW •rW
1

qW 2 Fm

2
F1~2qW 2!d i j

1
1

m S qiqj1
1

2
d i j qW

2DF3~2qW 2!G
1

4G2m2

r 2 S d i j 22
r i r j

r 2 D . ~43!

With the form factors calculated above this yields

h00
vertex~rW !5216pGE d3q

~2p!3 eiqW •rW
1

qW 2 S m

2
2

Gm2puqW u
4

1
7GmqW 2

8
logqW 2D 1 . . .

52
2Gm

r
1

2G2m2

r 2 1
7G2m\

pr 3 1 . . . ,

h0i
vertex~rW !5216pG

i

2E d3q

~2p!3 eiqW •rW
1

qW 2 S 12
GmpuqW u

4

2
GqW 2

4p
logqW 2D ~SW 3qW ! i1 . . .

5S 2G

r 3 2
2G2m

r 4 1
3G2\

pr 5 D ~SW 3rW ! i1 . . . ,

hi j
vertex~rW !5216pGE d3q

~2p!3 eiqW •rW
1

qW 2 S m

2
d i j

2S Gm2puqW u
32

2
3GmqW 2

8p
logqW 2D d i j 1S qiqj

1
1

2
qW 2d i j D S 7Gm2p

16uqW u
2

Gm

p
log

qW 2

m2D D
1

4G2m2

r 2 S d i j 22
r i r j

r 2 D1 . . .

52d i j

2Gm

r
2

G2m2

r 2 S d i j 1
r i r j

r 2 D
2

G2m\

pr 3 S d i j 18
r i r j

r 2 D1 . . . . ~44!
08400
We observe that the diagonal components of the vertex
rection are identical to those found for the spinless case
expected, and that there exists a nonvanishing nondiag
term associated with the spin. The diagonal component
the vacuum polarization are also clearly identical to t
bosonic case, but there is a new off-diagonal component
sociated with the spin

h0i
(2)vac pol532G2E d3q

~2p!3 eiqW •rWlogqW 2
21

240
iF 2~q2!~SW 3qW ! i

5
21G2\

5pr 5 ~SW 3rW ! i ~45!

Again these are added together in order to yield the re
quoted in the introduction. We have thus reproduced the K
metric—Eq.~2!—in harmonic gauge together with the ass
ciated quantum corrections.

VIII. DISCUSSION OF THE METRIC AND
GRAVITATIONAL POTENTIAL

The quantum correction to the Schwarzschild metric h
previously been discussed by Duff@19#. While that discus-
sion properly identifies ln2q2 terms as the source of th
quantum effects, the calculation is incomplete becaus
only includes the effect of the vacuum polarization diagra
This can be traced to the assumption of a ‘‘classical sourc
which meant that the vertex diagrams were not includ
However, any source has a gravitational field surroundin
and that field has a quantum component. The effective fi
theory treatment demonstrates the existence of quantum
rections due to the vertex diagrams—they are of the sa
order as those due to vacuum polarization and they mus
included. In this sense, there is no fully classical source
gravity. If one takes the mass of a particle to infinity, t
gravitational coupling also grows and the quantum effects
not decouple. Rather for a heavy mass it is long distan
which determines the classical limit, as the quantum effe
become smaller than the classical effects in the limit of la
distance. However, the vertex corrections are as importan
the vacuum polarization for the quantum correction to
metric and they must be included.

The bosonic diagrams that we have considered have
been parts of the calculations of the quantum correction
the Newtonian potential. We have shown them in detail
cause there has been numerical disagreements in the li
ture. We believe that our results are the correct ones. Th
appears to have been a numerical error in the original re
of Ref. @1#. We have identified the location of that error an
carefully reconsidered that value. The identity of Eq.~B8!
makes it easy to repeat this part of the calculation. The
thors of Ref.@4# also appear to be in error. Their calculatio
would lead to the wrong classical terms, which certainly
dicates an error and implies that the quoted quantum por
is also not trustworthy. In addition, our fermionic calculatio
serves as an independent confirmation of the bosonic re
as the calculational details are quite different even though
result is the same.
5-9
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If we use our present result to define the one-partic
reducible potential, including the diagrams in Fig. 3, we o
tain the result

V~r !52
Gm1m2

r S 12
G~m11m2!

r
2

167

30p

G\

r 2
1 . . . D .

~46!

This potential is not itself the scattering potential. In a se
rate work@9# we calculate the other diagrams which are
quired to fully define the scattering amplitude. These inclu
box diagrams and several triangle diagrams. However,
1PR potential represents the sets of diagrams that are us
define the running charge in QED and QCD and these
grams can be used for a similar definition here. We prop
that the quantum correction from these diagrams be use
define a running gravitational coupling appropriate for h
monic gauge. This results in

G~r !5GS 12
167

30p

G\

r 2 D . ~47!

The fact that this definition is independent of the masse
the objects involved suggests that it has a universal chara
appropriate for the running charge. Our work shows that
form is independent of spin. Note also that the charge
comes weaker at shorter distances. This is in accord wi
heuristic expectation that the gravitational interaction at la
distances feels the total mass of the object, but when pro
at small distances gravity will see a smaller effect beca
the quantum fluctuations spread out the energy containe
the fields. That the running gravitational coupling varies w
a power of r rather than the logarithm is required by th
dimensional gravitational coupling constant.
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FIG. 3. Diagrams contributing to the one-particle-reducible p
tential.
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APPENDIX A: THE EQUATIONS OF MOTION

The method for describing the quantum gravitational fie
has been understood since the classic works of ’t Hooft
Veltman @17#. In particular, the gauge fixing procedure an
the introduction of ghost fields are fully described there. W
use their calculation of the vacuum polarization diagra
where the gauge treatment is particularly crucial. In this
pendix we do not repeat the standard features that can
found in their work. However, we do make use of a som
what specific treatment of the equations of motion, so t
we describe in this appendix the features that are needed
our calculation. Further relevant details concerning the c
pling of the gravitons to the quantum fields are presented
Appendix B.

The full gravitational action is given by

Sg5E d4xA2gS 1

16pG
R1LmD , ~A1!

whereLm is the Lagrange density for matter. Variation of E
~A1! yields the Einstein equation

Rmn2
1

2
gmnR528pGTmn , ~A2!

where the energy-momentum tensorTmn is given by

Tmn5
2

A2g

]

]gmn
~A2gLm!. ~A3!

We work in the weak field limit, with an expansion in powe
of the gravitational couplingG

gmn[hmn1hmn
(1)1hmn

(2)1 . . . ,

gmn5hmn2h(1)mn2h(2)mn1h(1)mlh(1)
l
n

1 . . . , ~A4!

where here the superscript indicates the number of power
G which appear and indices are understood to be raise
lowered byhmn . We shall also need the determinant whi
is given by

A2g5exp
1

2
tr logg511

1

2
~h(1)1h(2)!2

1

4
hab

(1)h(1)ab

1
1

8
h(1)21 . . . . ~A5!

The corresponding curvatures are given by

Rmn
(1)5

1

2
@]m]nh(1)1]l]lhmn

(1)2]m]lh(1)
n

l 2]n]lh(1)
m

l #,

R(1)5hh(1)2]m]nh(1)mn,

-

5-10
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Rmn
(2)5

1

2
@]m]nh(2)1]l]lhmn

(2)2]m]lhln
(2)2]n]lhlm

(2)#

2
1

4
]mhab

(1)]nh(1)ab2
1

2
]ahml

(1)]ahln
(1)

1
1

2
]ahml

(1)]lhn
(1)a1

1

2
h(1)la@]l]nhma

(1)1]l]mhna
(1)

2]m]nhla
(1)2]l]ahmn

(1)#1
1

2 S ]bh(1)ba2
1

2
]ah(1)D

3~]mhna
(1)1]nhma

(1)2]ahmn
(1)!,

R(2)5hh(2)2]m]nhmn
(2)2

3

4
]mhab

(1)]mh(1)ab

1
1

2
]ahml

(1)]lh(1)ma1
1

2
h(1)la~2]l]bhab

(1)2hhla
(1)

2]l]ah(1)!1S ]bhb
(1)a2

1

2
]ah(1)D

3S ]shsa
(1)2

1

2
]ah(1)D . ~A6!

In order to define the propagator, we must make a ga
choice and we shall work in harmonic gauge
gmnGmn

l 50—which reads, to second order in the field expa
sion

05]bhba
(1)2

1

2
]ah(1)

5S ]bhba
(2)2

1

2
]ah(2)2

1

2
h(1)ls~]lhsa

(1)1]shla
(1)2]ahsl

(1)! D
~A7!

Using these results, the Einstein equation reads, in low
order,

hhmn
(1)2

1

2
hmnhh(1)2]mS ]bhbn

(1)2
1

2
]nh(1)D

2]nS ]bhbm
(1)2

1

2
]mh(1)D

5216pGTmn
matt ~A8!

which, using the gauge condition Eq.~A7!, can be written as

hS hmn
(1)2

1

2
hmnh(1)D5216pGTmn

matt ~A9!

or in the equivalent form

hhmn
(1)5216pGS Tmn

matt2
1

2
hmnTmattD . ~A10!
08400
e

-

st

As shown in Sec. II, this equation has the familiar soluti
for a static point mass

hmn
(1)5dmn f ~r !, ~A11!

where

f ~r !52
2Gm

r
.

In second order the validity of the Einstein equation
quires that

Rmn
(2)2

1

2
hmnR(2)2

1

2
hmn

(1)R(1)50. ~A12!

It is useful to write this equation in the form

hhmn
(2)2

1

2
hmnhh(2)2]mS ]bhbn

(2)2
1

2
]nh(2)D

2]nS ]bhbm
(2)2

1

2
]mh(2)D

[216pGTmn
grav, ~A13!

whereTmn
grav can be identified as the energy-momentum c

ried by the gravitational field and can be read off as@16#

8pGTmn
grav52

1

2
h(1)lk@]m]nhlk

(1)1]l]khmn
(1)2]k~]nhml

(1)

1]mhnl
(1)!#2

1

2
]lhsn

(1)]lhm
(1)s

1
1

2
]lhsn

(1)]shm
(1)l2

1

4
]nhsl

(1)]mh(1)sl

2
1

4
hmnS ]lhsx

(1)]sh(1)lx2
3

2
]lhsx

(1)]lh(1)sxD
2

1

4
hmn

(1)hh(1)1
1

2
hmnh(1)abhhab

(1) . ~A14!

Using the gauge condition Eq.~A7!, Eq. ~A13! becomes

hS hmn
(2)2

1

2
hmnh(2)D5216pGTmn

grav

1]mFh(1)lsS ]lhsn
(1)2

1

2
]nhls

(1)D G
1]nFh(1)lsS ]lhsm

(1)2
1

2
]mhls

(1)D G
2hmn]aFh(1)lsS ]lhas

(1)2
1

2
]ahls

(1)D G
~A15!

and, using the lowest order solution Eq.~A11! we find the
form
5-11
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hhmn
(2)5216pGS Tmn

grav2
1

2
hmnTgravD2]m@ f ~r !]n f ~r !#

2]n@ f ~r !]m f ~r !#. ~A16!

For use in the spin 1/2 case we note that the correspon
off-diagonal equation reads

hh0i
(2)5216pGT0i

grav2¹i~h0 j
(1)¹jh00

(1)!1¹i~hjk
(1)¹jh0k

(1)!.

~A17!

However, using the lowest order solutions found above
easily verify that

¹i~h0 j
(1)¹jh00

(1)!5¹i~hjk
(1)¹jh0k

(1)!50. ~A18!

Thus the off-diagonal Einstein equation in second order
the simple form

hh0i
(2)5216pGT0i

grav ~A19!

while the general form in second order is seen to be given
Eq. ~A16!.

APPENDIX B: DETAILS OF THE BOSONIC
AND FERMIONIC VERTEX CORRECTIONS

1. Spin zero

Here we show the calculation of the nonanalytic terms
vertex correction, following the method of Ref.@1#. Such
pieces arise from the diagrams in Fig. 4, wherein the exte
graviton couples to the massless graviton fields in the lo
We have found that a symmetric ordering of the moment
is useful, using the following integrals:

I 5E ddk

~2p!d

1

S k2
q

2D 2S k1
q

2D 2F S p2k1
q

2D 2

2m2G
5

i

32p2m2 @2L2S#1 . . . ,

FIG. 4. Gravitational radiative correction diagrams leading
nonanalytic components of form factors.
08400
ng

e

s

y

n

al
p.

I m5E ddk

~2p!d

km

S k2
q

2D 2S k1
q

2D 2F S p2k1
q

2D 2

2m2G
5

i

32p2m2 FPmS 11
q2

2mDL1
q2

4m2 SG1 . . . ,

I mn5E ddk

~2p!d

kmkn

S k2
q

2D 2S k1
q

2D 2F S p2k1
q

2D 2

2m2G
5

i

32p2m2 F2PmPn

q2

2m2S L1
1

4
SD2~qmqn2hmnq2!

3S 1

4
L1

1

8
SD G1 . . . ,

I mna5E ddk

~2p!d

kmknka

S k2
q

2D 2S k1
q

2D 2S S p2k1
q

2D 2

2m2D
5

i

32p2m2 FPmPnPaS q2

6m2DL1@~qmqn2hmnq2!Pa

1~qmqa2hmaq2!Pn1~qnqa2hnaq2!Pm#
L

12G
1 . . . , ~B1!

whereS5p2m/A2q2, L5 log(2q2/m2). From Fig. 4~a!, we
then have

A(a)
mn5 iPa,lkiPgd,rsi

3E d4l

~2p!4

tab~p,p82l !tgd~p82l ,p8!trs,lk
mn ~ l ,q!

l 2~ l 2q!2@~ l 2p8!22m2#

~B2!

while from Fig. 4~b!,

A(b)
mn5

i

2
Pab,lkiPgd,rstab,gd~p,p8!E d4l

~2p!4

tlk,rs
mn ~ l ,q!

l 2~ l 2q!2
.

~B3!

Here the coupling to matter via one-graviton and tw
graviton vertices can be found by expanding the spin z
matter Lagrangian

A2gLm5A2gS 1

2
DmfgmnDnf2

1

2
m2f2D ~B4!

via

A2gL m
(0)5

1

2
~]mf]mf2m2f2!,
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A2gL m
(1)52

1

2
h(1)mnS ]mf]nf2

1

2
hmn~]af]af

2m2f2! D ,

A2gL m
(2)52

1

2
h(2)mnS ]mf]nf2

1

2
hmn~]af]af

2m2f2! D1
1

2 S h(1)mlh(1)n
l

2
1

2
h(1)h(1)mnD ]mf]nf2

1

8 S h(1)abhab
(1)

2
1

2
h(1)2D ~]af]af2m2f2!. ~B5!
08400
The one- and two-graviton vertices are then, respectively

tab~p,p8!5
2 ik

2
@papb81pa8pb2hab~p•p82m2!#,

tab,gd~p,p8!5 ik2F I ab,rjI s,gd
j ~prp8s1p8rps!

2
1

2
~habI rs,gd1hgdI rs,ab!p8rps

2
1

2 S I ab,gd2
1

2
habhgdD ~p•p82m2!G ,

~B6!

where we have definedk2532pG. We also require the triple
graviton vertextab,gd

mn (k,q) whose form is
function

re still

ontribu-
tab,gd
mn ~k,q!5

ik

2 H Pab,gdFkmkn1~k2q!m~k2q!n1qmqn2
3

2
hmnq2G12qlqs@ I ab

ls, I gd
mn, 1I gd

ls, I ab
mn, 2I ab

lm, I gd
sn,

2I ab
sn, I gd

lm, #1@qlqm~habI gd
ln, 1hgdI ab

ln, !1qlqn~habI gd
lm, 1hgdI ab

lm, !2q2~habI gd
mn,

1hgdI ab
mn, !2hmnqlqs~habI gd,ls1hgdI ab,ls!#1@2ql~ I ab

sn, I gd,ls~k2q!m1I ab
sm, I gd,ls~k2q!n

2I gd
sn, I ab,lskm2I gd

sm, I ab,lskn!1q2~ I ab
sm, I gd,s

n 1I ab,s
n I gd

sm, !1hmnqlqs~ I ab,lrI gd
rs,

1I gd,lrI ab
rs, !#1F ~k21~k2q!2!S I ab

sm, I gd,s
n 1I ab

sn, I gd,s
m 2

1

2
hmnPab,gdD

2~k2hgdI ab
mn, 1~k2q!2habI gd

mn, !G J . ~B7!

Before presenting our results, we note a simplification—it can be easily seen that the terms in the 3-graviton vertex
proportional tok2 or (k2q)2 do not produce nonanalytic pieces when inserted into either Eq.~B2! or Eq. ~B3! and can be
dropped.

A further enormous simplification of indices results from the identity@5#

Pjz,abtmn
ab,gd~k,q!Pgd,kr5tmn,jz,kr~k,q! ~B8!

for all the terms which lead to nonanalytic corrections. This can be verified straightforwardly. The resulting integrals a
tedious, but can be done directly.

Decomposing the remaining piece of this vertex into the four bracketed terms, we list our results in terms of the c
tions from each bracket separately: Fig. 4~a!

F1~q2!5
Gq2

p S F1

4
221110G log~2q2!1F 1

16
211110G p2m

A2q2D
5

Gq2

p S 2
3

4
log~2q2!1

1

16

p2m

A2q2D ,

F2~q2!5
Gm2

p S F13

3
211021G log~2q2!1F7

8
211221G p2m

A2q2D
5

Gm2

p S 7

3
log~2q2!1

7

8

p2m2

A2q2D ,
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Fig. 4~b!

F1~q2!5
Gq2

p
$~@0121022# log~2q2!%50,

F2~q2!5
Gm2

p S F2
25

3
101212G log~2q2! D5

Gm2

p S 2
13

3
log~2q2! D . ~B9!
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und
2. Spin 1Õ2

For the case of spin 1/2 we require some additional f
malism in order to extract the gravitational couplings. In th
case the matter Lagrangian reads

AeLm5Aec̄~ igaea
mDm2m!c ~B10!

and involves the vierbeinea
m which links global coordinates

with those in a locally flat space. The vierbein is in som
sense the ‘‘square root’’ of the metric tensorgmn and satisfies
the relations

ea
meb

nhab5gmn , ea
mean5gmn ,

eamebm5db
a , eamea

n5gmn. ~B11!

The covariant derivative is defined via

Dmc5]mc1
i

4
sabvmab , ~B12!

where

vmab5
1

2
ea

n~]mebn2]nebm!2
1

2
eb

n~]mean2]neam!

1
1

2
ea

reb
s~]secr2]recs!em

c . ~B13!

The connection with the metric tensor can be made via
expansion

ea
m5dm

a 1cm
(1)a1cm

(2)a1 . . . , ~B14!

where, as before, the superscript indicates the numbe
powers of the gravitational couplingG which are present
The inverse of this matrix is

ea
m5da

m2ca
(1)m2ca

(2)m1cb
(1)mca

(1)b1 . . . ~B15!

and we find

gmn5hmn1cmn
(1)1cnm

(1)1cmn
(2)1cnm

(2)1c(1)a
mcan

(1)1 . . . ,

gmn5hmn2c(1)mn2c(1)nm2c(2)mn2c(2)nm1c(1)amca
(1)n

1c(1)maca
(1)n1c(1)maca

(1)n1 . . . . ~B16!

For our purposes we shall use only the symmetric compon
of the c-matrices, since these are physical and can be
08400
r-

e

of

nt
n-

nected to the metric tensor, while their antisymmetric co
ponents are associated with freedom of homogeneous tr
formations of the local Lorentz frames and do not contrib
to nonanalyticity. We then find

cmn
(1)→ 1

2
~cmn

(1)1cnm
(1)!5

1

2
hmn

(1)

We then have

dete511c1
1

2
c22

1

2
ca

bcb
a1 . . .

511
1

2
h1

1

8
h22

1

8
ha

bhb
a1 . . . . ~B17!

Using these forms the matter Lagrangian has the expans

AeL m
(0)5c̄S i

2
gada

m]m
LR2mDc,

AeL m
(1)52

1

2
h(1)abc̄ iga]b

LRc2
1

2
h(1)c̄S i

2
]” LR2mDc,

AeL m
(2)52

1

2
h(2)abc̄ iga]b

LRc2
1

2
h(2)c̄S i

2
]” LR2mDc

2
1

8
hab

(1)h(1)abc̄ igg]l
LRc1

1

16
~h(1)!2c̄ igg]g

LRc

2
1

8
h(1)c̄ igaha

l]l
LRc1

3

16
hda

(1)h(1)amc̄ igd]m
LRc

1
1

4
hab

(1)h(1)abc̄mc2
1

8
~h(1)!2c̄mc

1
i

16
hdn

(1)~]bha
(1)n2]ahb

(1)n!eabdec̄geg5c,

~B18!

where

c̄]a
LRc[c̄]ac2~]ac̄ !c.

The corresponding one- and two-graviton vertices are fo
then to be
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tab~p,p8!5
2 ik

2 F1

4
@ga~p1p8!b1gb~p1p8!a#

2
1

2
habS 1

2
~p”1p” 8!2mD G ,

tab,gd~p,p8!5 ik2H 2
1

2 S 1
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~p”1p” 8!2mD Pab,gd
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1

16
$hab@gg~p1p8!d1gd~p1p8!g#

1hgd@ga~p1p8!b1gb~p1p8!a#%

1
3

16
~p1p8!egj~ I jf,abI f

e,gd1I jf,gdI f
e,ab!

1
i

8
ershlglg5~ I ab,h

n I gd,snkr8

2I gd,h
n I ab,snkr!J . ~B19!

With these results in hand the loop integrations can n
be performed, as before, yielding, for spin 1/2:

Fig. 4~a!
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All calculations of the form factors where done by hand a
by computer. To do the various contractions of indices a
integrations by computer, a computer algorithm forMAPLE 75

~TM! were developed and used to do the calculations.

APPENDIX C: USEFUL INTEGRALS

Here we collect the integrals used to calculate the lo
range corrections to the energy momentum tensor and
metric. For the classical correction to the energy moment
tensor we use

E d3q

~2p!3 eiqW •rWuqW u52
1

p2r 4 ,

E d3q

~2p!3 eiqW •rWqj uqW u5
24ir j

p2r 6 ,

E d3q

~2p!3 eiqW •rW
qiqj

uqW u
5

1

p2r 4 S d i j 24
r i r j

r 2 D , ~C1!

and the quantum effect use

E d3q

~2p!3 eiqW •rWqW 2logqW 25
3

pr 5 ,

E d3q

~2p!3 eiqW •rWqjqW
2logqW 25

i15r j

pr 7 ,

E d3q

~2p!3 eiqW •rWqiqj logqW 25
1

pr 5 d i j . ~C2!

For the metric we require

E d3q

~2p!3 eiqW •rW
1

uqW u
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2p2r 2 ,

E d3q

~2p!3 eiqW •rW
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uqW u
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5MAPLE and MAPLE V are registered trademarks of Waterlo
Maple, Inc.
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