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Time-symmetric initial data for binary black holes in numerical relativity
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We look for physically realistic initial data in numerical relativity which are in agreement with post-
Newtonian approximations. We propose a particular solution of the time-symmetric constraint equation, ap-
propriate to two momentarily static black holes, in the form of a conformal decomposition of the spatial metric.
This solution is isometric to the post-Newtoni@N) metric up to the 2PN order. It represents a nonlinear
deformation of the solution of Brill and Lindquist, i.e. an asymptotically flat region is connected to two
asymptotically flat(in a certain weak senpgesheets that are the images of the two singularities through
appropriate inversion transformations. The total Arnowitt-Deser-Misner rivass well as the individual
massesn; andm, (when they exigtare computed by surface integrals performed at infinity. Using second
order perturbation theory on the Brill-Lindquist background, we prove that the binary’s interacting mass-
energyM —m; —m, is well defined at the 2PN order and in agreement with the known post-Newtonian result.
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I. MOTIVATION AND RELATION TO OTHER WORKS mal (unphysical metric, we obtain the Lichnerowici2]
equation, which is an elliptic-type equation to be satisfied by

The numerical computation of the collision of two black the conformal factor¥. In the time-symmetric case that

holes is of paramount importance for the observation ofequation becomes

gravitational waves by the network of laser-interferometric

detectors. When investigating this problem the ten Einstein ~ v

field equations are separated ifitbfour constraint equations A¥= §R' 1.2

that are to be satisfied by some initial data given on an initial

three-dimensional Cauchy hypersurface, ainflsix hyper-  The scalar curvatur® and Laplaciart are the ones associ-

bo"c.“ke. equations descf'b'”g the dynamical evolution Of.theated with the conformal metrig;, . The interest of the con-
gravitational field on neighboring hypersurfaces. The Bian- ]

chi identities guarantee that the constraint equations are Sa{‘grmal (rj]ecpmlposlltlc_)n 1S tr;athby solvmg Eq.2 we gener
isfied on neighboring hypersurfaces if they are on the initiaf'ite ap yS|ca. solutiony;; of the constraint .eiquatlon _Sta.rtmg
hypersurface. There are infinitely many ways that the initiaffom any choice for the conformal metrigy;; (a priori).
data can be chosen to represent the starting state of the evberefore the problem of initial conditions resides in the
lution of black holes. It is widely admitted that the problem choice of a physically well-motivated conformal metng .
of choosing physically realistic initial conditions for the col- ~ The simplest choice of initial condition®ne motivated
lision of two black holes has not yet been solved. There hapy simplicity rather than by physitss the one for Whicﬁyij
been a lot of concern in the literatuf&| for knowing what  equals the flat metrig;; . In that case Eq1.2) reduces to the
would really motivate physically a particular choice of initial flat-space Laplace equation. Some exact solutions, appropri-
data. ate to(momentarily statig black holes, have been obtained
Let us consider the problem dfme-symmetricinitial by Misner[5] and Lindquis{6], and Brill and Lindquis{7].
data, which are physically appropriate to two momentarilyThe solution of Brill and Lindquisffor which the conformal
static black holes, i.e. with zero initial velocities. The dy- factor WB- takes the form of Eq(3.2b] is particularly inter-
namical evolution of time-symmetric data describes the subesting: it describes the “geometrostatics” of two black holes,
sequenthead-oncollision of the two black holes. In this consisting of three asymptotically flat regions connected by
situation the constraint equations reduce to the Hamiltoniafwo Einstein-Rosen bridge®ctually, the solution is known
or scalar constraint equatid®=0 (in vacuum—the case ap- for N black holes. The one region containing the two throats
propriate to black holgswith R being the three-dimensional is supposed to represent our Universe, while the two sheets
scalar curvature. Considering as usigat4] a conformal de-  expanding behind it are associated with the two black holes.

composition of the spatial metritspatial indicesi,j, ...  The beauty of the Brill-Lindquist solution is that not only is
=1,2,3), the total Arnowitt-Deser-MisnefADM) mass-energ of

~ the binary computed “at infinity,” so are the two individual

Yij =‘1’47ij ) (1.9 massesn; andm, of the black holes. One can use, for in-

_ stance, standard surface integrals extending on topological
where y;; is the physical metric ang;; denotes the confor- two-spheres at infinity. The binary’s geometrostatic energy
(i.e. the gravitational interacting or binding energy, in the
center-of-mass framas therefore computed unambiguously
*Electronic address: blanchet@iap.fr asE/c’=M— m;—m,.
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Yet the solution of Brill and Lindquist, despite its unde- equations plus one evolution equationnder the two pre-
niable interest, is not “physically realistic” in the sense that mises of conformal flathess and the existence of a helical
it differs, in the limit c— + o, from the three-metric found Killing symmetry[15,16. Despite the conformal flatness of
for a post-Newtonian solution. Indeed the post-Newtoniarithe spatial metric, the latter calculation gives results in good
metric generated by two point particles is known to deviategreement with post-Newtonian predictidd$—18. Never-
from conformal flatness at the 2PN ordsee, e.g. Ref8]).X theless, we think that it is important, at some stage, to get rid
In consequence both the Brill-Lindquist metric and the asso®f the hypothesis of conformal flatness.
ciated binding energf disagree with the post-Newtonian We _emphas!z_e, furthermore, that the agreement between
results from the 2PN order. numerical relativity{15,16 and post-Newtonian theof{L6—

A compelling motivation for constructing physically real- 18] holds up to the very relativistic regime of the innermost

istic initial data is the agreement with the ost-NewtonianCirCUIar orbit(ICO), where the _orbital velocities_ are of the
approximation when C_g>+oo_ Recal thaFt) the post- order of 50% of the speed of lightin Refs.[17] it is sug-

. : . ) ested that the result for the ICO of two black holes with
Newtonian theory provides some explicit expressions for th%

i i £ moti d £ bi : omparable masses, at the 3PN approximdtisnlikely to
MELrc, equations or motion and energy of binary SySems Ohe g6 to the “exact” solution, within 1% of fractional

point particles. The post-Newtonian metric is valid in the ;e racy or better. This constitutes a motivation for advocat-
binary's “near zone’(size of near zone is much less than ajng that the black-hole initial conditions, which are to be set
gravitational wavelengih but has been proved to come from (presumably around the location of the 1CO, should be in
the reexpansion whenc—+c of a “global” (post-  agreement with post-Newtonian theory.
Minkowskian-type solution, defined everywhere in space- |n the present paper we propose an alternative way for
time, including the wave zon®]. Furthermore, in the post- incorporating the post-Newtonian information into the initial
Newtonian approach the modeling of black holes by pointdata of black-hole binariegn the time-symmetric cageWe
like particles—i.e. technically by Dirac delta functions in the find, in Sec. Il, a simple expression for the conformal metric
stress-energy tensor—is rather well justified. We shall Pros,  which is such that the correspondipbysicalmetric y;;
. : p " Yii i
vide below some further evidence that the post-Newtoniang isometric(i.e. differs by a coordinate transformatjoto
masses” of point particles are indeed identical to the blackine standard post-Newtonian spatial metric at the 2PN order
hole masses. _ in the limit c— + . At the same time, the solution is defined
It has been suggest¢dl] (see alsq12]) that, in order of o 5pa)y in space, with a global structure similar to the one of
taking into account the post-Newtonian physics into the ini-gyjj| ang Lindquist. Our solution is not “exact,” but exists as
tial data, one should adopt for tlwwnformalmetric y;; di-  a certain non-linear perturbation, investigated in Sec. Ill, of
rectly a post-Newtonian solution. In such a proposal one exthe Brill-Lindquist solution, playing here the role of a “back-
pects that by correcting the post-Newtonian solution byground” metric. Most importantly, in Sec. IV we investigate
means of a conformal facto#* (computed numerically  the asymptotic structure of the solution, and compute “geo-
one will somehow be able to “compensate” in the physical metrically” the masses and m;,m,, i.e. by surface inte-
metric y;; (i.e., in fact, to cancel olthe systematic higher- grals performed in their respective domains at infinity. In
order post-Newtonian error terms that are neglecteg, jin Sec. V the binary’s interacting energy, deduced from the pre-
There has been other proposals for realistic initial data, irvious masses, is proved to be in agreement with the known
particular built on the relaxation of the assumption of con-post-Newtonian energy up to the 2PN ord&¥e shall find,
formal flatnesg1]. One of these is to use fgyij a linear however, that the definition we adopt for the two individual

combination of two(boosted versions pfKerr-Schild met- Massesn; andm, makes sense only up to the 2PN orjler.
rics [13,14]. It is not known if the physical metric which is
generated in this way from the numerically computed con- ||. CONFORMAL DECOMPOSITION OF THE SPATIAL

formal factor, is consistent with post-Newtoniéeg. 2PN METRIC
calculations. o .
On the other hand, we should remark that to which extent A. Definition of the conformal metric

the hypothesis of conformal flatness introduces some un- The conformal metric we propose, appropriate to two
physical spurious(and numerically importanteffects re-  plack holes of masses; and m, (to agree later with the
mains an issue. Indeed, relaxing this hypothesis may not al-

ways be a panacea. A quite different idea for settling the———

initial conditions of two black holes is to solve numerically & 3the |CO is defined by the minimum of the binary’s energy func-

subset of the Einstein field equatiofthe four constraint tjon for circular orbits. It represents a useful reference point for the
numerical[15,16 and 3PN[17] calculations because for both of
them the ICO is well-defined and can be meaningfully compared.
!In this paperc and G denote the speed of light and the gravita- However, the radiation reaction terms are neglected in its definition,
tional constant. As usual thePN order means the terms of order so the ICO probably does not have a rigorous physical meaning in
1/c®™ whenc— +oe. a context of exact radiative solutions.
2See also, in a similar context, the matching of a 1PN solution for “We mean the standard Taylor-expanded form of the
the orbital motion of point particles to two perturbed Schwarzschildapproximation—without using any post-Newtonian resummation
black holeq10]. techniques.
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“geometrical” massef located at the singular poingg and ~ dard post-Newtonian spatial metric, calculated by standard

y,, and momentarily at rest({=v,=0), is post-Newtonian methods, by a mere change of coordinates at
the 2PN order, i.e.

8G’mym, g

4

(2.1

Yij = 0ij aviiavh)” _ 2PN
Yidyy Yii =9 |v1:v2:o+f7i§j+5j§i+(9

c

1
Ik (2.9

The function g introduced here represents an elementary ) N ) ]
“kernel” playing an important role in post-Newtonian calcu- 10 be precise, by7"™ we mean the spatial metric mer-
lations[19—23. It depends on the “field” poink, on the one  Monic coordinateswhen truncated at the 2PN order, which

hand, and on the pair of “source” pointg, y,, on the other is given by Eq.(7.20 in Ref. [8]. As indicated in Eq(2.4),

hand; it is defined by we must set the particles’ velocities andv, to zero in the
post-Newtonian metric in order to conform with the assump-
g y1,Y2)=In(ri+ro+rq9), (2.2)  tion of time symmetry. The remaindé¥(1/c®) stands for the

neglected 3PN and higher-order terms.
wherer;=|x—y,| andr,=|x—y,| are the distances to the  The proof of Theorem 1 is easily achieved on the basis of
black holes, and;,=|y;—Ys,| is their separation. The func- a post-Newtonian iteration of Eq1.2). At the 2PN order,
tion g satisfies, in the sense of distributiofie. for all values  this equation becomes
of x, including the singular pointg, andy,),
G’mym,
1 AV=———2

Ag=— (2.3 ct aij(<igj>)+0

1

o where we denoteg;=a%g/dy}/ay}. The most general solu-
whereA denotes the usual flat-space Laplacian with respecfo reads as

to the field poinix. In Eq.(2.1) the derivatives are taken with

respect to the two source point3he carets around the in- G2mym, (g ri+1, 1
dices refer to the symmetric and trace-ff&I'F) projection: U =y— 2 (§ + T +0 = (2.6
Tiiy=3(Tij+ T;i) = 56 Tuk; so the trace of the metri@.1) 2c 12 ¢

is normalized to bey;; =3. It is of course quite naturadnd  \yhere y represents a solution of the homogeneous equation
useful in practicgto impose that the deviation of the confor- (j ¢ A y,=0).7 By comparing with the post-Newtonian met-
mal metric from flat space be trace-free. ric [see EQ.(7.20 in Ref. [8] in which v;=v,=0], we

_ Our proposal is to generate, by means of numerical techyeqgily find that the latter solution is uniquely specified, at
niques (i.e. with the help of elliptic solvejs a conformal e 2PN order. as being

factor¥ solving the constraint equatidi.2) corresponding

to the particular choice of conformal met(i2.1). The metric Gm, Gm, Gm, Gm,
Yii =‘lf“§/ij we obtain in this way will incorporate the post- =1+ - -
Newtonian(2PN) physics of the initial state of the head-on
collision of two black hole§.The latter assertion will now be 1
proved, for the rest of the paper, with the help of analytic +(9( —6>. (2.7
perturbation methods.

2¢%ry 2¢%ry,)  2¢%r, 2¢%ry,

c

Also uniquely determined is the expression of the vedtor
in EqQ. (2.4), which represents an infinitesimal gauge trans-
The first result shows that the “near-zone” behavior of theformation. At the 2PN order it takes the expression
solution(i.e. r/c—0) is physically sound. _ _
Theorem 1.The post-Newtonian expansiofwhen c— G?mZ n}  G?m3 n, ( 1
6

B. Relation with the post-Newtonian metric

+x) of the solutionyij=W4~yij of the constraint equation - 4c* 1 4ct 1y 6’ 28
(1.2, Where}ij is defined by Eq(3), differs from the stan-
wheren;=(x—y;)/r; and n,=(x—Y,)/r,. The system of
spatial coordinates employed in the present paper, i.e. which

The following explicit formula holds:

Fz nionk,— &' ni,—n})(nh,+ nl o
0= 'gj - 12:2 - +( 12~ M)(Mo 22)_ "We employ the notational shorthand=?%/dy'/dy}, (so that
L R S R T I (FE o PR PP Dg=g;). Notice the useful relations
Here, ni=(xI—y})/ry, nb=(x'=yb)/r, and ni,=(y\—yb)/rs. 1 1 1
See Ref.[8] for further discussion and formulas concerning the Dg= > - - )
. My 2rqrqyp  2rors
function g.
5See Refs[24,25 for numerical calculations of the head-on col- d:(,g)=D 1 " 1 T 1
lision of black holes; see also RéR6] for a post-Newtonian cal- e 2riry  2rirgp  2ro0p)

culation.
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corresponds to a conformal metric of the particular form dis-where s denotes the Brill-Lindquist conformal fact¢i],
played by Eq(2.1), is thereby determined, and related up to parametrized by two constants and«, (in the case of two
the 2PN order to the harmonic coordinate system used iparticles. The quantityc denotes a certain perturbation of
Ref. [8], by the coordinate changéx'=¢' (with &'=46"¢;). .

Summarizing this section, we have found a conformal de- With full generality—within the present perturbative
composition of the metriey;; that is in agreement with the framework—we look for the expression ofin the form of
post-Newtonian metric up to the 2PN order. Notice, howeveran infinite power series i, solving the equatiornl.2):
that the conformal metric we propose is not unique, because
we can always add higher-order terrfesg. 3PN to Eq. N
(2.1). A contrarig this means that with the metri@.1) one U:rgl B o) 3.3
should not expect Theorem 1 to hold at the 3PN order and
beyond. At the 3PN order, for instance, the conformal metrique insist that in our approach the Brill-Lindquist solution
will be more complicated than the simple expressidr). plays the role of théackgroundmetric (it depends solely on
a; anday), while the functions;; yields a non-linear defor-
mation of this background, perturbatively ordered by the
bookkeeping parametgB. For a given choice of;;, we
expect that the resulting solution is unigia least in a sense

Having checked the near-zone structure of the metric, le@f formal power series iB). Becauses involves two mass
us investigate some of itglobal properties, when it is factorsm; andm,, so it is proportional taG?, the perturba-
viewed as a solution of the constraint equatiar?) that isa tion series we look for is like a “double” post-Minkowskian
priori valid everywhere on a space-like hypersurface. Fo€xpansion, going “twice as fast” as the usual post-
this purpose, we impose thay; is a non-linear perturbation Minkowskian expansion whe—0. Considering this se-
of the exact solution of Brill and Lindquidt7]—which is  ries on the point of view of a post-Newtonian reexpansion,
conformally flat G/EL: 8;). This will mean that the topol- we see that each nonl-linear prder brings in.a new factd, 1/.
ogy of our solution is identical to the topology of the Brill- SC_that our perturbation series can be said to go by—quite

Lindquist solution, i.e. be “three-sheeted,” in contrast with €fficient indeed—steps of 2PN orders.

; ; ; ; Let us compare our definitior{8.2)—(3.3) with the results
the two-sheeted topology of the Misner-Lindquist solution
pology a (2.6) and(2.7) provided by the agreement with the 2PN met-

+ oo

IIl. PERTURBATION OF THE BRILL-LINDQUIST
SOLUTION

(5.6l ric. We find that the constanis,,«, are determined with
relative 1PN accuracy,
A. Hierarchy of perturbation equations
. . ~ Gm Gm, 1
Let us write Eq.(2.1) in a more transparent formy;; a=—; 1— 2+O(—4) and 1~2, (3.9
= 5” + ﬂsij y Where 2c Zrlzc C
8G2m,m, and that with this accuracy they agree with the prediction of
=——, (3.1a the Brill-Lindquist solutior? In addition, we find that the
c perturbations in the conformal factor is given by the second
term in the right side of Eq2.6), which comes in only at the
5 2PN order—it is purely linear i8. Hence,
J
Sij &yﬁiay'} (such thats;;=0). (3.1b 1 D(g ftr, 0( 1) .
TMT16713 " 21y, 2/ '

It is helpful to view the non-linear perturbation we want to
consider, as being generated by the “seed” or “generating
functions;;, and to interpret the parametgras the magni-
tude of that perturbation. In the followingd will play the
role of a “bookkeeping” parameter, allowing us to label the
successive non-linear perturbation orders. Besides the noff<
conformally flat piece of the metric brought about &y, it

is evident that we must also introduce a perturbation in the
conformal factor. We pose

.with all higher-ordero,'s being negligible with this ap-
proximation. Actually, Eqs(3.4) and (3.5 correspond to a
particular “sharing” of the terms betweed, ,«a, on the one
hand, andr(;) on the other hand, since we can always add to
1) Ssome “homogeneous” terms 1/r, and ~ 1/r, without

e recall thateP- and a5 in the case of the Brill-Lindquist

solution are related to the masses by the exact relations

BL CYEL Gm]_
V=y+o, (3.2a a1+ ——|= and 12,
12 2c?
GM
a a BL, BL_ -V
l/l:1+r—l+r—2, (32b) @1 +a2 _202'
1 2
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changing the equation fow(;y. It is obvious that such a 1

sharing is physically irrelevant. However, we shall forbid a AH1=2igjf9ij(r—>, (3.9a
different sharing of terms by adopting below the prescription !

(which represents simply a convenient choiteat o ;) and Inr,

all subsequent iterations solve the equation for the conformal AK = ZDZ(—) , (3.9
factor in the sense of distributions. Some results more com- M2

plete than Eqgs(3.4) and (3.5 will be obtained below. in which igjzﬁzg/ﬁyil/ﬁyjz- The functionsH, andK , admit

By inserting the perturbation ansat2.3) into the con- the closed-form expressions given by E@A48—(3.51) in
straint equatior(1.2), and by identifying each of the coeffi- o ¢ [21], or equival%ntly by E33(.6.3)—{6.5)q?r.1 Re]g. [.8]1')for
cients of the successive powers gfin both sides of the the presént purpose we adopt the formiilas '

equation, we obtain a hierarchiindexed by nelN) of

Poisson-type equations:
ype eq Hl:Ali‘FD r1+rlzg”_D(lnr12)_ED(Inrl)
2r4o 2 rq 2\ rqp
AO’(n):E(n)[U(l), o ,O'(n,l)], (36)

ro 1 1

where we recall thal=¢;9;. The nth-order source term B 2rfrfz+ 2f§f12_ Zrlriz’ (3.109

2 depends on the solutions of the preceding iterations

a(1), - - O(n-1), ON the “generating” functions;; and on 1 Ir 1 1 "

the “background” conformal factoys. Notice thatys satisfies K1=D(—In RS >— + +—2

the equation Ay=—4m(a,8,+a,8,), where, e.g.s; ro o Lraal)  2rfr, 2ry%, 2rfrd,

= §(x—y;) denotes the Dirac function at the poit. Ob- (3.10b

viously we may include t.he equation for th_e background Con'Anyway, we find that the exact solution of the linearized
formal factor into our hierarchy of equations by posiyg

© ) erturbation equation is
:E::OBnO'(n), with (T(O):l// and 2(0):_477(61151 P q

+a252). 1 g r{+r 1
B 1112 g ri+rip
0'(1)—1—6D(§ —2r12 +(11 EAl[r—lz"‘D 2 g)}
B. Analytic closed form of the linearized solution
To the linearized order the perturbation equation reads _ED(Inrlz)_E (Inrl)+ by _iAz(i)
explicitly 2 ry 327\ ryp) 12ry 32 °\rqn
A 1 @7 5, 1 1 [ 3
o (1)=5 Yo S+ ;S Y+ Si; 0 . : - - -
1= g %S T IS A9 ¥ 64rfre, Arfry, 64ir, 2413, 64rri,

Interestingly, this equation turns out to be solvable in ana- +ap{le2). (3.19

lytic closed form. We find that the@nique solution of Eq.

St L A= Let us quote also, for completeness, the fully explicit form
(3.7, which 1S V.a“.d n _the sense of dIStI’IbutIOI‘!S and tends 10, ptained by expanding all the derivatives in this result:
zero at spatial infinityi.e. whenr=|x|— +x), is

1 ri+r, 1 (1 1) 1 (rf

o= + + o e
g L9 Tatre)  JHL K L f1 Doer, 64l 1925\t ead\re
W716713 " 2ry, N2 32 327\r, |rp
+r§ . 1 13 1 5
9 [Inr D 1 1 T T e - -
+3—2D(r—l)+%+ZAl(rg)—3—2Az(ri) M1 4r3 64y, 24ryri, 1927,
12 1 12, 12
1 N 5 rq N 3 1 N ro
_24rlr2+32rzr2 +a{l-2}. (3.8 192%r, 32r,r3, 64rri, 24T 4rgrd,
12 12

Besides the already met shorthane: B/ 9y1/9y5, we de-  %ywe notice herdsince it was not noticed in Reff21,8)) thatK,
note the Laplacians with respect to the source pointaby can also be given an interesting form in connection with a simple
Eﬁzlﬂy'l/&yll and AZE&Z/&y'Z/z?y'Z. In Eq. (3.8), the two  elementary kernek,, viz.

terms proportional tar; anda, are deduced from each other

by label exchange 4-2. The solution involves the special Aklzi'
functionsH,; andK; (and 1~2) which were introduced in T2

Refs.[8,21] for solving some elementary equatiofis the 1 Ir

sense of distributionsin the problems of equations of mo- K,=D Eln r_llz fkl).

tion and wave generation at the 2PN order. We have
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150, r, 15r§ r% rg lytic closed form. Fortunately, what we shall need is only to
- =t 53 T 33 control the expansion af ) at spatial infinity(i.e. in the far
64riry, Arirpp G4Ariry; Ariry  4Arr, zone,r — + ). And thiscanbe achieved, without disposing
+ay{le2). (3.12 of the exact expression ef,), from the knowledge of the

far-zone expansion of the corresponding source-t&rgy.

The terms obtained by setting; = a,=0 in Egs.(3.11) More generally, the far-zone expansion of the solutigp,

or (3.12 contribute at the 2PN order in the conformal factor for any n can be obtained on condition that the far-zone
and they are in agreement with EQ.5). The other terms, expansion of its sourcE,, has been determined beforehand
proportional toa; or a,, will not contribute before the 3PN  (say, by induction om).

order(becauser; ande, carry a factor 1¢2 in front). There- The method is issued from the investigation, in Refs.
fore, only a small part of the linearized approximation, the[27,28, of the multipole expansion of the solution of a Pois-
one given by the former terms in E€B.11), is necessary in  son equation with a non-compact-support soui@ whose
the proof of Theorem 1. As a matter of fact, the non-linearsupport ispﬁ)_ In the present context, the multipole expan-
perturbation we consider contains much more informatiorsion is completely equivalent to the far-zone expansion,
than a mere post-Newtoniai@PN) expansion. Theorem 1 \whenr— +c. Following Eq.(C9) in Ref.[28], we obtain

does not constitute a very stringent requirement on the NoRye (formal) multipole expansion obr(y in the fornt
linear solution of the perturbation equations.

A point we make by writing the linear solutiom, into
the primary form(3.8), involving the intermediate functions
H, andKy, is that the latter functions do enter in the post- M(O-(n)):Fp’
Newtonian metric at the 3PN order—with the same numeri-
cal coefficients as predicted by E€.8). This can be in- o '
ferred from the expression of the 3PN spatial metric given by 1 (-) al= J By, S
Eqg. (111 in Ref.[9], which contains the particular non-linear 4o =y €1 “H\r) )gs W)
potential calledX, together with the way that the potentil (3.14
contains the functionsl; andK, as calculated by Eq6.11)
in [8]. Thus, although our solution agrees with post-
Newtonian calculations up to the 2PN order only, it doesW
contain some correct 3PN features.

ATM(Z ()]

here the calligraphic letteM refers to the multipole or
equivalently the far-zone expansion. The first term in the
right side of Eq.(3.14 represents the effect of integrating

C. Quadratic and higher-order approximations “term by term” the multipole expansion of the sour&q,,
At the level of the second-order perturbationg?) the  (this term exists only in the case of non-compact-support
equation reads sources, because the multipole expansion of a compact-

support function is zepo The second term in Eq3.14) is

1 1 i i H ” H B
arametrized by the “multipole moments” associated with
AO—(Z):_U(l)aijSij+ajsij(9i0(l)+sijaij0(l)+_ SijASij p y p

8 8 the solution, which are given by some definite integrals ex-
3 tending over the non-compact supptirt of 2 (n)- The sym-
— 25, 01 04Sik— ;S OhSik + Z&ksijaksij bol F_P acts on both terms of_E_c(3.14), and_ stan_ds for a
certain operation of taking thénite part defined in Refs.
1 [27,28 by means of a process of complex analytic continu-
- Eaksijaisjk z,/x+( — i Sjk — SikIkSij ation (with parameteB e C). The finite part has proved to

play a crucial role, in the case of non-compact-support
1 sources likeX ), in order to ensure the well definiteness of
+§sik‘9isjk)ai'/’_siksikﬁij‘ﬂ- (313 the integrals giving the multipole moments in E@.14.
Notice that Eq.(3.14) has been proved, in Reff27,29, to
At the next level, cubic order, the equation will be made ofhold in the case of a regular souridee. C*(IR®)]. Neverthe-
the same terms as in E¢.13 but with the replacements l€ss, in the presence of the singular poigisandy,, the
o(1)—0(2) and y— oy, together with many other terms formula (3.14 can still be applied, but only in the case of
that are purely cubic irs;, and so on for the higher-order that solutiono ) for which Ao, =2y, is satisfied in the
equations. sense of distributions.
We shall see in Sec. IV that in order to prove the agree-
ment with the 2PN binary'energy(in contrast with the 2PN
metrig), we need the full information content about the lin- 1°Technical notations in Eq3.14) areA~* for the standard Pois-
earized solution given by Egé3.11)—(3.12), and also a cru- son integraliL=i,- - -i, for a multi-index composed of indices;
cial piece coming from theecond-ordemperturbation, solu- d,=d;---4;, for the product of ¢ partial derivatives;y,
tion of Eq. (3.13. In the case of non-linear perturbations =y; - --y; for the product ot spatial vectors. We do not write the
(n=2), it is in general impossible to find a solution in ana- ¢ summation symbols over theindices composing.
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MASSES the expansion ok (;,, we get a similar expansion, but which
A. Asymptonc structure of the solution starts at the Ordw(l/r 1). Clearly, the Solutiom(l) y when

B r,—0, will be composed of the latter expansion, which rep-
_Acentral result O.f the present paper concerns the _aSYMBiesents a particular solution, and augmented by a possible
totics” of our solution—both at spatial infinity and in the p,4eneoussolution, solving the(source-freg Laplace
vicinity of the two partlcles._ . ) equation. However, because our original Poisson equation
_ Theorem 2.(i) The metric ; is asymptotically flat at Ao y)=2 ) is satisfied in the sense of distributions, the only
infinity (whenr=|x|— <), i.e. possible homogeneous solution we can add is one of the type
1) “regular at the origin,” taking the form of a sum of STF
r

4.7) productsi,_ESTF(xil- --X;,). Because it is regular when

r,—0, this homogeneous solution does not modify the lead-
(ii) The two singular pointy, andy, are the images, via ing singular behavior oér(;), that we have therefore proved
some appropriate inversions of the radial coordinajgs: to be given byo)=0O(1/r;). And, again, this can be
~1/r; andp,~1/r,, of two “asymptotically finite” regions  checked with Eqs3.11)—(3.12. The argument is easily gen-
(whenp;— +« andp,— +=), in the sense that the metric, eralized to any non-linear order(by induction onn), thus

%ij=06ij+ O

in coordinates g, ,n;), behaves like we conclude that the non-linear perturbation diverges
. whenr,—0, but not faster thaor=O(1/r;). As a result, the
Tij(py.ny) =6, +m;(ny) +O E) 4.2 expansion of the conformal factdr =+ o is of the type
. i _ g(nl) 0
where;; denotes a certain function of the angles. V= +0(ry), (4.4

Theorem 2 says that the solution is composed of an as-

ymptotically flat universe connected by continuity, via someyhere; depends on the unit direction but not onr,. From

Einstein-Rosen-like bridges, to two other regions which argy; ded that: = ¥4 beh dominantly wh
asymptotically finite in the sense of E¢.2). Note that, rli(\;v?ikee uce tha;; vij behaves dominantly when

though the metric(4.2), unlike the corresponding Brill-
Lindquist metric, is not asymptotically flat in the vicinity of
the two particleqstricto sensy the violation of asymptotic Vi j(x)=(
flatness is not very severe, because the metric tends toward a

constant with respect tp;, and does not involve any diver-
gency “at infinity”: it remains asymptotically finite—hence
the name. On the other hand, what is very important is thaﬁ
the real universe, as depicted by this solutios,asymptoti-
cally flat at spatial infinity in the usual sense of Eg.1).
The global structure described by Theorem 2 represents an

Z(np)\*

o [Sj+eij(n)+0O(r)]. (49

See Eq(A4a) for the expression of(n,) at linearized order.
Let us now perform some inversion of the radial coordi-

ater,. We consider the coordinate change, valid in a neigh-

borhood of the particle 1, that is defined By-(p1,n4),
here

attractive feature, we argue, for considering the solution as a 22(ny)
physically well-motivated initial state of binary black holes. p1= . (4.6
The asymptotic flathess whan— +oo follows from the f1

far-zone expansion of the generating functi@ilb, which

, i g i
is easily checked to start at = O(1/r). Using this fact we First :Ne havedx i__drl’ %’Vherirl_(réinl)’ beca]tjse the
find that the source term for the linearized perturbation—i.eParticle is atrestw; =0. Then, the coordinate transformation

the right side of Eq.(3.7—behaves like3 ;)= O(1/r%). r1—p1=(p1,ny) involves simply the change of the radial
With the help of Eq.(3.14 we readily obtain oy, variable glvlen by Eq(4.6), with the angular parh; being
=(O(1/r), as can also be checked directly with our exactunchanged: We compute

results(3.11)—(3.12. Then, similarly, we deduce, by induc-

tion on the non-linear order[using Eq.(3.14 at each step dri1= (ﬁ) 2( S _2ni1nj1+2nilxj)dpjl, (4.73
that o(,)=O(1/r) for anyn. So o=0(1/Ir), and the result P1
follows.

The main point about Theorem 2 is the behavior of the _ _ C e dIng
solution in the vicinity of the two particles. When—0, we x'=(*—nin)—r. (4.7b
find thats;; admits aboundedexpansion(i.e. s;; does not Ny

enlarge wherr,—0), of the type (Notice thatnf'lxj =0.) We then find that, in the new coordi-

Bsij=ei;(n) +O(ry), (4.3  nate systenp;=(py,n;), the metric, sayl’;; , admits when

whereg;; is a function ofn;=(x—y,)/r,, the direction of

approach to the singularify; is given by Eq(A3a)]. From More general coordinate transformations, involving a change of
Eq. (4.9), the linearized source terly;) whenr;—0 is like  the unit directionn;, are also possible.
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p1— + the boundedexpansion announced in E@.2), in direct contribution, computed “term by term” from the ex-

which the quantityr;;(n;) reads pansion of the source term, to the multipole expansion at the
. . orderO(1/r): i.e. the first term in the right side of E¢3.14)
mj=—an{ Y+ 4y + (84— 2nkn} +2nfx) is at leastO(1/r%). The looked-for non-linear contribution is
. m . therefore given directly by the value of the “mass mono-
X (81 =2nin}+2n;x)) ey . (4.8 pole” of o(2), i-e. the integral appearing in the second term

. - .- of Eq. (3.14 for £=0. So,
It is such thatninie;;=ninimj; . [See also EqA5h) and
(AB).] This completes the proof of Theorem 2. 1

o=~ 57— | .Y () +O
B. The ADM mass @ 47TJR3 @

1
r_2 . (4.12

Because the metric is asymptotically flat at spatial infinity
(Theorem 2, the binary’s total ADM mass is given by the
usual surface integral on a topological 2-sphere at infinity:

The integral (4.12 can be computed analyticaft§, and
yields the following contribution to the ADM mass:

C2

M= 161G

. ; 1 1
lim fds divii — Vi), 4.9 :__J 3 = 4
o ( i7ij |')’JJ) (4.9 ZX(Z) oy de yE(z)(y) 128’22 O(a),

wheredS is the outward surface element on the surface at “13
infinity (dS'=d(Qr?n in the case of a coordinate sphefBo  \here the remaindef(«) indicates that the terms propor-
be more explicit abouM, we recall from Sec. IVA that tional to o or a, (in this second-order perturbationg?),
some functionsA;; and X of the unit directionn=x/r exist  are not to be considered for the present calculation. We
so that, whem — + o, thereby obtairM with sufficient accuracy for controlling the
energy at the 2PN ordét.The result reads

Ajj(n) 1
Bsij=——+0| 5|, (4.10a
r r c? Blai+as)
M= G| 2(artan) +————
X(n) 1 12
r r2 B 1 3
HereA;; is simply linear ing, while X is in the form of a full f12

non-linear series iB: X=,BX(1)+/32X(2)+ - - (see also the

i i ; 3
Appendiy. In terms of these functionl is given by The cubic and higher-order perturbatiod¥ 3°) are ne-

glected. See the Appendix for the explicit expansion coeffi-
c2 cients needed in this computation.

M = ) jdﬂ
—E (a1+a2)+ E

1.
2X+ En'n'A”— ]

(4.11 C. The black-hole masses

The first term is identical to the result in the Brill-Lindquist ~ 1ne Situation as concems the two individual massgs
solution. and m, is less easy than with the ADM mass because we

The computation of Eqi4.1)) is quite straightforward at dispose only of the notion of “asymptotic finiteness” in the
the level of thelinearized approximation, thanks to the ViCinity of the particles, described by the fall-off property
closed-form expressiof8.11). However, our aim will be the ~(4-2). Nevertheless, we wish to find an appropriate concept
computation of the 2PN energy in Sec. V, and we can ascefo! the black-hole masses. What we shall do islédine m
tain beforehandby counting the required powers 6f), that DY the same formula as for the ADM mals but using the
among all the terms contributing to the 2PN energy theré&oordinate systenp;=(py,n;) in the limit where p;—
must be one coming from theecond-ordeperturbation, so-  + . Accordingly we pose
lution of Eq. (3.13. We find that this particular non-linear

. . ) o 2

term is to be computed only iM (not in the individual __C Y EANIRAYT
1=———= lim dS| ———-| and -2,

massesn; ,m,). It comes from that part ofr,y—or, more leerﬁer aph  apy
precisely, of its leading order coefficient,) (whenr— (4.15
+o)—which does not involve the constants and as, i.e.
the part which would be the analogue of the first ternarjip, e
as given by Eq(3.11). The other parts, proportional te; or 2This integral is convergent, thus it is unnecessary to include a
@y, appear at the 3PN order at least. finite-part operationFP (for notational simplicity we skip the

We succeeded in obtaining this non-linear term thanks tenultipole-expansion symbob).
the method described by E@.14. First, one can check that  *This means, by the way, that the relative accuracyboitself is
the source term behaves IiI&(Z)z(D(llr“), so there is no  actually 3PN—because of the rest-mass contribution.
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wherel'j;(p1,n;) denotes the metric in the coordinat,éls, Here,r;; denotes the trace of the quanti#.8), and we have
with p; being shown in Eq(4.6), and where the outward used the facts thatninim;=ninie; and nin}x;

surface element readkS, =dQ,p?n} in the case of a coor- =ni1nj1,uij , together with the useful cancellation of the an-
dinate sphere. gular integral
Becausd'j; is not asymptotically flat in the usual sense,
due to the term withr;; in Eq. (4.2), the mass defined by the dQ, i ~0 41
. . ol . . Gy e nlnlgu(nl) ’ ( . 9)
previous integral will be typically unbounddde. m; will in 4

general tend toward infinity like4). Therefore, the defini-
tion (4.15 does not priori make sense. A possibility would Which can be checked from E¢A3a) in the Appendix.

be to discard the divergent partcf,) of the mass, and We observe that Eq4.18 contains a term proportional to
thereby to consider only the finite part of the integral in Eq.p1, With mj; as a factor, which can antbesmake the mass
(4.15, i.e. the coefficient of the zeroth power pf in the 0 become infinite in the limitp;— +c [indeed, see Eq.
expansion at infinity. This could represent an appropriatdA7)]. As suggested above, such an infinite term could be
postulate for the mass in a general situatjtie finite part removed by some procedure of taking the finite gastose
prescription would be similar to th&P present in Eq. Mmeaning woulda priori be quite uncleay but we find that
(3.14]. However such a “finite part” process imposed into this infinite term is in fact “negligible” for the present pur-
the definition of the mass appears to repredentil more  Pose, because;; starts only at non-linear order 8,
convincing justification is proposg¢d somewhat artificial i K 1okl i _ 2
and ad hocrecipe!* Gladly enough, we shall not need to mji=4x X!+ 4(npx +ninyx!x e =0(8%). »
invoke anyad hocfinite part because we shall prove that if (4.20
we restrict ourselves to the computation of the binary’s en
ergy at the 2PN order, which represents anyway the maxim
order at which our solution is physically relevant, the masses

ee also the expressi¢A6).] Therefore we get, at the lin-
arized level, a finite expression for the méssmally):

m; and m, needed in this computatioare perfectly well c? [ dQ, P 1., J. )
defined. mfgjﬁ 2n{(1+ninie;) + 55 nlnllu“ij}"—o(ﬁ ).
To computem; andm,, we must control the expansion of (4.21)
the metric wherr;—0 to one order beyond Eq#.3) and
(4.4). Let us pose This expression is sufficient to control the 2PN energy.

_ 2 The non-linear correction®(3?) are infinite but will not be
Bsij = &ij () + Fapij(ny) +O(r3), (4163 | ocded in this paper. In a sense, they do not belong to the
Z(ny) “realm” of the present solution, which is limited to the phys-
+7(Nny)+O(rq). (4.16h ics at the 2PN approximation: i.e. agreement with the 2PN
metric in the near-zone, and internal consistency of the as-
%/mptotics up to the 2PN order as regards the energy content
of the solution(see Sec. Y*° As for the linearized terms in
Eq. (4.21), they are dealt with thanks to the explicit result
(3.11), and we get

=

r

[The expressions of the coefficients are relagated to Eq
(A3) and (A4) in the Appendix] It is straightforward to de-
rive from this the expression of the metilig; in the coordi-
nate systemg,,n,), taking into account the term 1/p4 in

Eq (42) 202a @ 25q
, my=— —2+i2(1——2 +0(B%)
{n { 1 G Nz 481, 2
P1 P1 P1 and 1-2. (4.22
where Kij_:(5ki__2r_1|;ni1+2n§)(i)(5”_anlnjl_+2n|1Xj)Mkl- By setting =0 into Eq. (4.22, we reproduce the result
Then, by inserting it into Eq(4.15, we obtain valid in the case of the Brill-Lindquist solution.
¢ dQ, _,
m=5 lim A | T 2P +27¢(1+ninis;)) V. THE BINARY'S GEOMETROSTATIC ENERGY
p14>+00
With the masses being defined and computed “geometri-
+E§2ni ni 4.18 cally” in Sec. IV, we get the opportunity of an interesting
25 Mk ' consistency check of our solution, concerning the

“geometrostatic” energy that is associated with those

The ADM mass, given by the surface term that arises in the
Hamiltonian, has been obtained even for space-times that are not®Recall that our proposal for binary black-hole initial data is to
asymptotically flat{29]. However, it seems difficult to apply this adopt the conformal metri@.1) and to deduce the conformal factor
result in the present case, notably because of our lack of knowledg# from it by numericalmethods. The preseanalyticinvestigation
of the lapse function N in the vicinity of the particléafter radial  [including the theoretical definition of the mags15] is aimed at
inversionr,— p, of the coordinates verifying the physical soundness of this proposal.
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masses. Indeed, in Theorem 1 we recovered the 2PN metric Substituting Eq(5.3) back into Eq.(5.2), we then arrive,

in the near zone, therefore we know the coordinate transforafter suitable post-Newtonian expansion, at the expression of
mation 5x'=¢' between our presently used coordinate systhe 2PN energy in terms of the two “physical” individual
tem and the harmonic one. The gauge transformation vectonasses:

has been obtained in E§2.8). Therefore it is possible to

control, without ambiguity—because we determined the co- Gmym, N G?mymy(m;+m,)

ordinate transformation—the binary’s interacting enefgy R 1 2r2.c2

up to the same 2PN order. If our solution has anything co- 12

gent (physically speaking the latter energy should be in G3m1m2(m§+19m1m2+m§) 1
complete agreement with the post-Newtonian result at the — 3 2 O(_e)' (5.4
2PN order known from Ref$30-33. 4r,c c

Theorem 3The binary’s interacting energy, deduced from
those masse@t.9) and(4.15 computed by surface integrals It is composed of the standard Newtonian potential energy
at infinity, i.e. (for static black holes augmented by 1PN and 2PN correc-
tions. The result, however, is not yet the one we want to
E M prove, because the particles’ separatigp corresponds to
—=M-m;—m,, (5.9 our . .
c particular coordinate system. If we want to comp@re
with the post-Newtonian prediction, we must take into ac-
gives back the energy calculated by standard post-Newtoniagpunt the coordinate transformati@in the “near zone’) that
methods at the 2PN ordéafter invoking the same coordi- was determined in Theorem 1.
nate transformation as in Theorem 1 The required link between,, and the particles’ separation
The ADM mass has been previously obtained in the formRy, in harmonic coordinates is readily obtained with the help
(4.14), while the masses,; andm, follow from the result of Eq. (2.8), which permits us to compute the shift of the
(4.22. The corresponding enerdy reads then world lines that is induced by the coordinate
transformatiort.” We get

M daga L 258\ pB?[ 1 o
TG| T e |\ aay) tl1est GAmi+md) (1
r12: R12_—+O _6 . (55)
Ry c? c
+0(B% (. (5.2 . . :
The result we find after replacing E¢.5 into Eq. (5.4),

. . . and effecting the post-Newtonian reexpansijtme replace-
As we said above, this formula is accurate enough to get fullnent is to be made only into the Newtonian term of Eq.
control of the 2PN approximation. We also remarked that a5 4)], is

this order the energy is well defindde. finite).

Our task is to expand that energy whes +, using the Gmm, GZm;m,(m;+m,)
facts thata, ,a,=O(1/c?) and 8= O(1/c*) [actually, we al- E=——f—+ >
ready applied the post-Newtonian approximation when argu- 12 2R C

ing that the remainde®(«) is negligiblg. Also, we know
thatB is given by Eq.(3.13. We first invert Eq(4.22), in an
iterative post-Newtonian way, so as to obtaif,a, with 4R§2c4
relative 2PN accuracy. The result is

G3m;my(2m2+19m;m,+2m3) 1
— +0 |-

C

(5.6
Gm Gm, G?my(5m;+3m,)
a=——1- >t 7 2 Most satisfactorily, we discover that E(.6) is in complete
2¢c 21y 12ric agreement with the prediction for the 2PN energy in har-

monic coordinates, calculated in Ref80—-33. The expres-
and 2. (5.3  sionwe end up with is the same as given by &) in Ref.
[32]—in which, of course, one must set the two particles’

1
C6
velocities to zero.
At the 1PN order, we are consistent with the Brill-Lindquist

prediction and with what is given by Eq3.4). But, quite

naturally, we find that Eq(5.3 differs from the Brill- \We discard an infinite “self-term” when considering the

Lindquist result at the 2PN ordeét. coordinate-transformation vectdt(x) at the singular location of
the two particles. Thus, from E@2.8), which is valida priori only
outside the singularities, we obtain the shift vector

+0

8In the case of the Brill-Lindquist solution we have szg n‘12 1
a?L:Gml _Gm G2my,(my+my) +(’)(i” &y = 2t T Ik
2c? 2r 7 arzct c® In other words we consider only the finite part §{(x) when x

—Y, (in Hadamard’s senge
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The latter agreement is interesting, but we said that it isvhere n=x/r and n;,=(y;—Y,)/r1, (with n-n;, denoting
quite mandatory if our solution makes sense. Technicallythe ordinary scalar productThe second-order perturbation
speaking, it necessitated the control of the metric up taoefficient was already computed in Eg.13:
second-order perturbation theory on the Brill-Lindquist 5
backgroundcf. the crucial contribution of Eq4.13 to the 2y _ﬂ 1
ADM masg. Furthermore, the resul{5.6) can be said to B - 256
check the global character of the solutigmotably the as-
ymptotics thereip—because the physical masses have been For the massesn; and m, we require the expansions
computed by surface integrals at infinity. Alternatively, it whenr,—0 of s; and the conformal factor to one order

shows the relevance at 2PN order of the definitié19 we  peyond the domlnant terfisee Eqs(4.16)]. Fors;; we have
adopted for the black-hole individual masses.

+0(a)|. (A2)

Finally, let us comment that Theorem 3 tells us something B G iy 1 ( >
about the physical tenets at the basis of the usual post- gij= > n12n12_§nln , (A3a)
Newtonian approximation when it is applied to the descrip- 12
tion of black holes. Indeed, the “post-Newtonian” masses
. : i o . B G 3
m, andm,, which parametrize the post-Newtonian iteration, Wi =5 n12n11>2 —Ny-Npp— —
are introduced as being the coefficients of Dirac delta func- rfz 4

tions in the Newtonian density of point-like particl§8].

Now, we have_ju_st seen that in fact these post-New_tonian +n(1inj1>2<§n1.n12+ §) _ En(linjf . (A3b)
masses agre@vithin the present approach at least, i.e. in the 4 4] 4
time-symmetric situation, and up to the 2PN opdeith the
“geometrostatic” masses which are associated with soméor the conformal factor
Einstein-Rosen-like bridges. We view this as a confirmation
that the post-Newtonian calculations, which treat formally (=ay| 1+ ﬁ( _ E(nl.nlz)sz inl'n12+ E +O(B?),
the compact objects by means of delta-function ra,l 2 24 6
singularities'® are appropriate to the description of systems (Ada)
of black holes(as long as theorbital motion of the black
holes can be considered to be “slow” in the post-Newtonian ar, B 1 1
sense, i.e. in the so-called inspiralling phase of black-hole”? = 1% (=% 5| = 53M N2t 25+ ( 1)’
binaries. 12
+ > (ny-Ngp)? > n;-n 5)
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APPENDIX: RELEVANT EXPANSION FORMULAS ; 5
X'= a (nl Nip— 24)[ Nyt (Ng- NNy ]+ O(B?),

In this appendix we provide the explicit expressions of the r12

various coefficients in the expansion formulas introduced in (A5a)

Sec. IV for the computation of the masses. 3 1 1
For the ADM mass we need the dominant term, when = T(n<l ni)— §n<1 ni,— g(nl ny)ndnk; ) +0O(B?).

— o, in the generating functios; and the solution of the ri,

linear-order perturbation for the conformal fac{see Egs. (A5b)

(4.10]. They are given by
Note that at linear orderr;; is trace-free. Its trace arises only

B at second order i,
A= i, (Ala) 2 1 . 2 3
i) _r_AIZ( — g M M2t 75/[(N1 1) "= 1]+ O(B7).

B 1 1 ajta, (A6)
B (1):r—[ k7 (n'nlz)z_ T ,  (Alb)

12 12 At this order the angular average of; is nonzero,
P . . . fdQl 5 ,32+0 A7

For instance, the calculation of the 3PN equations of motion of pp. i = 216 4 (,3 ). (A7)

compact binaries reported in R¢83].

084002-11



LUC BLANCHET PHYSICAL REVIEW D 68, 084002 (2003

[1] For a review see G.B. Cook, Living Rev. Relatd;.5 (2000. [18] T. Damour, E. Gourgoulhon, and P. Granadeént, Phys. Rev.

[2] A. Lichnerowicz, J. Math. Pures App23, 37 (1944). D 66, 024007(2002.

[3] D.R. Brill, Ann. Phys.(N.Y.) 7, 466 (1959. [19] G. Schéer, Phys. Lett. A123 336(1987).

[4] J.W. York, Phys. Rev. LetR6, 1656(1971); 28 1082(1972.  [20] T. Damour and B.R. lyer, Ann. I.H.P. Phys. Te54, 115

[5] C.W. Misner, Ann. Phys(N.Y.) 24, 102(1963. (199).

[6] R.W. Lindquist, J. Math. Physt, 938 (1963. [21] L. Blanchet, T. Damour, and B.R. lyer, Phys. Rev5D 5360

[7] D.R. Brill and R.W. Lindquist, Phys. ReL31, 471(1963. (1995.

[8] L. Blanchet, G. Faye, and B. Ponsot, PhyS. Re%d)124002 [22] C.M. Will and A.G. Wiseman, Phys Rev. B, 4813(1996
(1998. [23] H. Asada and T. Futamase, Suppl. Prog. Theor. P138.123

[9] For a review see L. Blanchet, Living Rev. Relaty.3 (2002.
[10] K. Alvi, Phys. Rev. D61, 124013(2000.
[11] W. Tichy, B. Brigmann, M. Campanelli, and P. Diener, Phys.

(1997.
[24] L.L. Smarr, inSources of Gravitational Radiatioredited by
Rev. D67, 064008(2003. L.L. Smarr(Cambridge University Press, Cambridge, England,

; . 1979.
[12] J. Baker, M. Campanelli, C.O. Lousto, and R. Takahashi, Phys . . .
Rev. D65, 124012(2002. [25] P. Anninos, D. Hobill, E. Seidel, L. Smarr, and W.-M. Suen,

[13] R.A. Matzner, M.F. Hug, and D. Shoemaker, Phys. Re&9D Phys. Rev. Lett71, 2851(1993.

024015(1999 [26] L.E. Simone, E. Poisson, and C.M. Will, Phys. Rev.5D,
[14] E. Bonning, P. Marronetti, D. Neilsen, and R.A. Matzner, 4481(1995.

Phys. Rev. D68, 044019(2003. [27] L. Blanchet, Class. Quantum Grabb, 1971(1998.
[15] E. Gourgoulhon, P. Grandeteent, and S. Bonazzola, Phys. [28] O. Poujade and L. Blanchet, Phys. Rev6R 124020(2002.

Rev. D 65, 044020(2002. [29] S.W. Hawking and G.T. Horowitz, Class. Quantum Gras,
[16] P. Grandclment, E. Gourgoulhon, and S. Bonazzola, Phys. 1487(1996.

Rev. D65, 044021(2002. [30] T. Damour and N. Deruelle, C. R.&eaces Acad. Sci., el
[17] L. Blanchet, Phys. Rev. B5, 124009(2002; also in2001: A 293 877(198)).

Relativistic Spacetime Odysséroceedings of the 25th Johns [31] T. Damour, C. R. Sances Acad. Sci., ®el 294, 1355(1982.
Hopkins Workshop, edited by I. Ciufolirét al. (World Scien-  [32] L. Blanchet, Phys. Rev. B4, 1417(1996.
tific, Singapore, 2003 p. 411, gr-qc/0207037. [33] L. Blanchet and G. Faye, Phys. Rev.a3, 062005(2001).

084002-12



