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Kantowski-Sachs universe cannot be closed
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In this paper, by analyzing the instability against spatially homogeneous and anisotropic perturbations of the
Kantowski-Sachs type during different cosmological epochs, we show that it is a theoretical consequence of
general relativity that the KS universe must be open or flat if it underwent a matter-dominated and/or radiation-
dominated era in its past evolution, which theoretically confirms the flatness of our observable Universe.
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The observations of the cosmic microwave backgroundyets that{);=1.03=0.05 at 95% confidence level, while
(CMB) anisotropy and of the spatial distribution of galaxiescombining WMAP data with SNela leads t0,=1.02
on a large scale are believed to have a cosmological origin- 0.04 or to{)o=1.02+0.02, respectively, without and with
and it would be very difficult to explain their existence and a prior on the Hubble parameter. The latter may be regarded
their isotropy if the hypothesis of the spatial homogeneityas the present best estimate of this parameter. In this paper,
and isotropy of the Universe were not valid to a very goodwe study the instability against spatially homogeneous and
approximation on a large scale. There is a connection beanisotropic perturbations, which can be used as a probe of
tween isotropy and spatial homogeneity: unless a fundamerthe curvature of space. We show that the anisotropy will not
tal observer occupies a special position in the Universe, thincrease when the expansion rate is greater than certain val-
isotropy implies spatial homogeneity. The assumption of spades while it will increase when the expansion rate is less than
tial homogeneity and isotropy of space determines the metrithat value or the universe is contracting. We find that the
completely except the sign of the curvature. Considerablyadiation-dominated and matter-dominated eras, which cor-
more freedom is left if one assumes only spatial homogenerespond to the scale facta(t) ~t2 anda(t) ~t° will not
ity of space[1,2]. All homogeneous cosmologies fall into produce significant anisotropy when and only when the uni-
two classes: the Bianchi models, for which the isometryverse is spatially flat or open. In other words, we find a
group admits a three-dimensional simply transitive subgroupgonnection between isotropy and nonclosengss: closed
and the Kantowski-Sachs models, for which the isometryuniverse is unstable against spatially homogeneous and an-
subgroup is neither simply transitive nor admits a simplyisotropic perturbations of the Kantowski-Sachs type during
transitive subgroup3]. There exist nine Bianchi types and, the radiation-dominated and matter-dominated eras
correspondingly, nine Bianchi cosmologies and each class In this paper, the cosmological anisotropy is the whole
has subclasses with extra symmetries. The Bianchi types agisotropy of the scale factor and is different from CMB
in general anisotropic so that they do not have all spatiafinisotropy. Why the cosmological anisotropy is still very
directions at a point being equivalent. Many authors havdiny today begs for an explanation. Therefore, it is very in-
addressed the evolution of spatially homogeneous cosmderesting whether the degree of the cosmological anisotropy
logical models[4]. Spatially homogeneous cosmological will increase during the evolution of the universe. We begin
models with a positive cosmological constant are investiwith the line element of anisotropic spacetime,
gated [5]. Exact string cosmological solutions have been
found for the Kantowski-Sachs model by Barrow and Dab- ~ d8°=—dt?+a(t)’[(1+ 8)’dx*+d6*+ S*()d$?],
rowski[6]. Reula[ 7] showed that all small enough nonlinear @
perturbations decay exponentially during expanding phase\/%here
of flat homogeneous cosmologies. Recently, Bartval.

[8] showed that the Einstein static model is unstable to spa- sing  for k=1,

tially inhomogeneous gravitational wave perturbations

within the Bianchi type IX class of spatially homogeneous S()=1 ¢ for k=0, 2
universes. sinhg for k=-1,

Recently, the Wilkinson Microwave Anisotropy Probe

(WMAP) has provided high-resolution CMB ddi@—11] for ~ andk=0 and—1 are just axisymmetric Bianchi type | and

cosmology. Among the interesting conclusions that havell universes while the&k=1 model, or the closed anisotropic

been reached from these data are constraints on the presemiiverse model, is referred to as the Kantowski-Sachs uni-

value (), of the total density parameter of the Universe. Theverse. Although only the closed models fall outside of the

new results indicate that while the Universe is close to bein@®ianchi classification, one can generally refer to them all as

flat Q1y=1, a closed universe is marginally preferred; Kantowski-Sachs-like models for conveniend. In this

>1 [9]. Especially, with a prior on the Hubble constant, onepaper, we analyze instability against spatially homogeneous
and anisotropic perturbations within the Kantowski-Sachs-
like models. The Einstein equations corresponding to the
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‘. 3 S PPN o 6
> =K, () T 175/ (PtP): (6)
Substituting Eq(5) into Eq. (4), we have

=—kp, 4 . a. k
P @ 5+325— —(1+8)=0. @)

a a2
5 It does not lose generality that we assud(gy)=0 for

1T_—Kp, (5) definiteness. In the following, we investigate the generic

evolution of the anisotropy in the power law expansion and
exponential expansion. Fortunately, E) can be solved

where k=87G and p and p are the pressure and energy exactly in the above cases. For the power law expansion
density of the perfect fluid, respectively. The energy consera(t) =a(t/ty)?, the solutions for Eq(7) are the following.

vation of the perfect fluid is expressed as

Case(i): q=0,

o(t) =9

146 o
( 0)CO 2

\

where 8o= 8(t,) and 8o= &(to).

Case(ii): k=0 andq#0,

Case(iii): k#0 andq=1,

to—t

where integral constants; andC, can be fixed by initial values, and &,.

Case(iv): k#0 andq+0,1,

£\ (-3
5(t)=(—) {Clzy

to

1+50+a060ex t_to 1+50_a050ex _ for k:+1,
2 dp 2 dp
-50t+ 60_t0-50 fOI’ k:O,
. [t t [t ; to)] [t
- — — |+ (1+ — |+ — —|—1 for k=-1,
a0503|n<a0) Cos( » (1+ &) sin 2 aO(SOCOS(aO) sin 2 1
8
t395 St
0 0 45— 22 for q#1/3,
t3a-1 1-3q
8(t)= t 9
todoIn C|+e for a=1/3.
0
5(1:) — Clt71+ \/1+ktg/a(2)+ C2t717 \ l+kt§/ag_ 1, (10)
) _V_kt°<i B _V_kt°<l>qu_1 (11
a(1—-q)\to 27 ag(1-a) \to '

where v=(1-30)/2(1—q), C, and C, are integral constants, art{") and z{* are Bessel functions fk=—1 and the
modified Bessel functions fdt= + 1, respectively, which can be fixed by the initial values. For example=if-1 andv

#integer, we have

wherexy=+—kty/(1—q)a,.

131G 72 (3= 21)2(1+ 80)Z3 - ,(Xo) + 48080Z _ ,(X0)]

5 (12
(83=2v)[Z,-1(X0)Z_ ,(Xo) T Z1-,(X0)Z,(Xo)]

1=

t3/C72[(3—21)2(1+ 80)Z, - 1(X0) + 480 50Z,(Xo) ]

o= 5 (13
(83=2v)[Z,-1(X0)Z_ ,(Xo) T Z1-,(X0)Z,(Xo)]
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For the exponentially expansia(t) =agexdH(t—tp)], the solutions of Eq(7) are as follows:

3
5(t)=Clexp{ - EH(t—to)}Zyg(H—aOeXF[H(t_to)]

3
+C, ex;{ - EH(t—to)}Z_yz(H—aoeXF[H(t—to)] -1, (19

where the integral constan®, andC, can also be fixed by and boundary function, theh= [[a(ty)/a(t)]3dt is a con-
initial valuesd, andd,. Using the asymptotic expressions of Vergent integral. Therefore, we have rigorously proved that a
Bessel functions and modified Bessel functionsatl, we 1t universe is stable against a spatially homogeneous and
find that the anisotropy will increase rapidly if the expansion@NiSOtropic perturbation of Kantowski-Sachs type during the
ratea(t) is slower thara(t)~t*for k= —1,0 ora(t)~t for radiation- and matter-dominated eras.

k=+1. Therefore, during the matter-dominated era and Now, let summarize the key points of the above discus-

radiation-dominated era, the open and flat universes arsions. In this paper, we focus on the Kantowski-Sach-like
. o P i : fodel of cosmology and discuss the evolution of the cosmo-
stable against the spatially homogeneous anisotropic pertu

Irc')gical anisotropy. We showed that for open and flat uni-

bation during 'Fhe matter- and radiationl—dominat_ed eras, Wh"?/erses, the expansion rate of the scale factor must be greater
the closed universe is not and the anisotropy increase exp@;4n, a(t)~tY3 so that the cosmological anisotropy does not

nentially. - , . increase while this constraint beconas) ~t for the closed
The recent data from WMAP indicate that the universe isnjyerse. The implication of these constraints are thahe
almost flat[10,12. In the following, we will rigorously igqtropic universe must also be open or flat if it underwent
prove the conclusion in the flat universe case. EQuatdn  he ragiation- and matter-dominated eras in its past evolu-
can be rewritten as tion, (i) the oscillation universe and static universe, corre-
. 3 sponding tag= 0, are generally unstable against the spatially
@: ) (15) homogeneous anisotropic perturbation unless an unnatural
So fine-tuning is introducedfor example, fine-tuning % &,
. . +ap8p=0 is needed for the static universe modaid (iii )
The scale factos(t) is determined by the pressure and togtoetk?er with the recent observation, which favors a closed

energy density of the perfect fluid in the Einstein equations,j fia¢ universe, it will be better to say that the Universe is
(3)—(5). For example, we can apply these equations specifiﬂ t '

cally to the initial stage of cosmological evolution which is
assumed to be governed by the ordinary scalar field. In thiﬁe
paper, these equations are applicable to matter with th
energy-momentum tensor of arbitrary form so that we shoul
discuss the varied form a@(t). From Eq.(15), we have

) t
5o+|5o|'ft
0

Next, we discuss the convergence of definite integral in Eq
(16). At t>t,, we rewritea(t) asf(t)/t9, if g>3% andf(t)
<const +«, then the integral is convergent. <3 and The authors thank P. Steinhardt and J. Barrow for helpful
f(t)>const=0, then the integral is divergent. This argumentcomments. This work was partially supported by the Na-
can be extended to the following form by using the consentional Nature Science Foundation of China under Grant No.
sus Cauchy criterion: ifa(to)/a(t)]3="f(t)-g(t) for t>t,, 19875016 and the Foundation of Shanghai Development for
fti)g(t)dt is a convergent integral ant(t) is a monotonic  Science and Technology under Grant No. JC 14035.

8o
a(t)

As is known to all, when constructing spatially homoge-
ous cosmological models, we simply choose a three-
imensional Lie groupG, choose a basis of left invariant
ual vector fields orG, and choose a time-dependent left
invariant metrich,,(t) on G. Then we can express the space-

) i ay |3 time metricg,,, in term of h,, [13]. The Kantowski-Sachs-
<&(t)<35y+| 5| U [—} dt like model considered here can be treated by a similar tech-
tola(1) nique [14]. Although there are many other spatially
16) homogeneous cosmological models that do not isotropize
and their cosmological anisotropy evolution may also be in-
teresting to study, they are beyond the scope of this paper.

3
dt

2N
a(t)
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