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Kantowski-Sachs universe cannot be closed

Xin-zhou Li* and Jian-gang Hao
Shanghai United Center for Astrophysics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China

~Received 29 April 2003; published 30 October 2003!

In this paper, by analyzing the instability against spatially homogeneous and anisotropic perturbations of the
Kantowski-Sachs type during different cosmological epochs, we show that it is a theoretical consequence of
general relativity that the KS universe must be open or flat if it underwent a matter-dominated and/or radiation-
dominated era in its past evolution, which theoretically confirms the flatness of our observable Universe.
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The observations of the cosmic microwave backgrou
~CMB! anisotropy and of the spatial distribution of galaxi
on a large scale are believed to have a cosmological or
and it would be very difficult to explain their existence a
their isotropy if the hypothesis of the spatial homogene
and isotropy of the Universe were not valid to a very go
approximation on a large scale. There is a connection
tween isotropy and spatial homogeneity: unless a fundam
tal observer occupies a special position in the Universe,
isotropy implies spatial homogeneity. The assumption of s
tial homogeneity and isotropy of space determines the me
completely except the sign of the curvature. Considera
more freedom is left if one assumes only spatial homoge
ity of space@1,2#. All homogeneous cosmologies fall int
two classes: the Bianchi models, for which the isome
group admits a three-dimensional simply transitive subgro
and the Kantowski-Sachs models, for which the isome
subgroup is neither simply transitive nor admits a sim
transitive subgroup@3#. There exist nine Bianchi types an
correspondingly, nine Bianchi cosmologies and each c
has subclasses with extra symmetries. The Bianchi types
in general anisotropic so that they do not have all spa
directions at a point being equivalent. Many authors ha
addressed the evolution of spatially homogeneous cos
logical models @4#. Spatially homogeneous cosmologic
models with a positive cosmological constant are inve
gated @5#. Exact string cosmological solutions have be
found for the Kantowski-Sachs model by Barrow and Da
rowski @6#. Reula@7# showed that all small enough nonline
perturbations decay exponentially during expanding pha
of flat homogeneous cosmologies. Recently, Barrowet al.
@8# showed that the Einstein static model is unstable to s
tially inhomogeneous gravitational wave perturbatio
within the Bianchi type IX class of spatially homogeneo
universes.

Recently, the Wilkinson Microwave Anisotropy Prob
~WMAP! has provided high-resolution CMB data@9–11# for
cosmology. Among the interesting conclusions that ha
been reached from these data are constraints on the pr
valueV0 of the total density parameter of the Universe. T
new results indicate that while the Universe is close to be
flat V0.1, a closed universe is marginally preferred:V0
.1 @9#. Especially, with a prior on the Hubble constant, o
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gets thatV051.0360.05 at 95% confidence level, whil
combining WMAP data with SNeIa leads toV051.02
60.04 or toV051.0260.02, respectively, without and with
a prior on the Hubble parameter. The latter may be regar
as the present best estimate of this parameter. In this pa
we study the instability against spatially homogeneous
anisotropic perturbations, which can be used as a prob
the curvature of space. We show that the anisotropy will
increase when the expansion rate is greater than certain
ues while it will increase when the expansion rate is less t
that value or the universe is contracting. We find that
radiation-dominated and matter-dominated eras, which
respond to the scale factora(t);t1/2 anda(t);t2/3, will not
produce significant anisotropy when and only when the u
verse is spatially flat or open. In other words, we find
connection between isotropy and noncloseness:the closed
universe is unstable against spatially homogeneous and
isotropic perturbations of the Kantowski-Sachs type dur
the radiation-dominated and matter-dominated eras.

In this paper, the cosmological anisotropy is the who
anisotropy of the scale factor and is different from CM
anisotropy. Why the cosmological anisotropy is still ve
tiny today begs for an explanation. Therefore, it is very
teresting whether the degree of the cosmological anisotr
will increase during the evolution of the universe. We beg
with the line element of anisotropic spacetime,

ds252dt21a~ t !2@~11d!2dx21du21S2~u!df2#,
~1!

where

S~u!5H sinu for k51,

u for k50,

sinhu for k521,

~2!

andk50 and21 are just axisymmetric Bianchi type I an
III universes while thek51 model, or the closed anisotropi
universe model, is referred to as the Kantowski-Sachs u
verse. Although only the closed models fall outside of t
Bianchi classification, one can generally refer to them all
Kantowski-Sachs-like models for convenience@6#. In this
paper, we analyze instability against spatially homogene
and anisotropic perturbations within the Kantowski-Sac
like models. The Einstein equations corresponding to
above setup are
©2003 The American Physical Society12-1
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3H21
2H ḋ

11d
1

k

a2
5kr, ~3!

2
ä

a
1H21

k

a2
52kp, ~4!

2
ä

a
1H21

3H ḋ

11d
1

d̈

11d
52kp, ~5!

where k58pG and p and r are the pressure and energ
density of the perfect fluid, respectively. The energy cons
vation of the perfect fluid is expressed as
08351
r-

dr

dt
52S 3H1

ḋ

11d
D ~r1p!. ~6!

Substituting Eq.~5! into Eq. ~4!, we have

d̈13
ȧ

a
ḋ2

k

a2
~11d!50. ~7!

It does not lose generality that we assumed(t0)>0 for
definiteness. In the following, we investigate the gene
evolution of the anisotropy in the power law expansion a
exponential expansion. Fortunately, Eq.~7! can be solved
exactly in the above cases. For the power law expans
a(t)5a(t/t0)q, the solutions for Eq.~7! are the following.

Case~i!: q50,
d~ t !55
11d01a0d 0̇

2
expS t2t0

a0
D1

11d02a0d 0̇

2
expS t02t

a0
D21 for k511,

d 0̇t1d02t0d 0̇ for k50,

F ~11d0!cosS t0

a0
D2a0d 0̇ sinS t0

a0
D GcosS t

a0
D1F ~11d0! sinS t0

a0
D1a0d 0̇ cosS t0

a0
D GsinS t

a0
D21 for k521,

~8!

whered0[d(t0) andd 0̇[ḋ(t0).
Case~ii !: k50 andqÞ0,

d~ t !55
t0
3qd 0̇

t3q21
1d02

d 0̇t0

123q
for qÞ1/3,

t0d 0̇ lnS t

t0
D1d0 for q51/3.

~9!

Case~iii !: kÞ0 andq51,

d~ t !5C1t211A11kt0
2/a0

2
1C2t212A11kt0

2/a0
2
21, ~10!

where integral constantsC1 andC2 can be fixed by initial valuesd0 andd 0̇.
Case~iv!: kÞ0 andqÞ0,1,

d~ t !5S t

t0
D (123q)/2H C1Zn

(1)F A2kt0
a0~12q! S t

t0
D 12qG1C2Zn

(2)F A2kt0
a0~12q! S t

t0
D 12qG J 21, ~11!

wheren5(123q)/2(12q), C1 and C2 are integral constants, andZn
(1) and Zn

(2) are Bessel functions fork521 and the
modified Bessel functions fork511, respectively, which can be fixed by the initial values. For example, ifk521 andn
Þ integer, we have

C15
t0
3n/(322n)@~322n!2~11d0!Z12n~x0!14a0d 0̇Z2n~x0!#

~322n!2@Zn21~x0!Z2n~x0!1Z12n~x0!Zn~x0!#
, ~12!

C25
t0
3n/(322n)@~322n!2~11d0!Zn21~x0!14a0d 0̇Zn~x0!#

~322n!2@Zn21~x0!Z2n~x0!1Z12n~x0!Zn~x0!#
, ~13!

wherex05A2kt0 /(12q)a0.
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For the exponentially expansiona(t)5a0exp@H(t2t0)#, the solutions of Eq.~7! are as follows:

d~ t !5C1 expF2
3

2
H~ t2t0!GZ3/2SA2k

Ha0
exp@H~ t2t0!# D 1C2 expF2

3

2
H~ t2t0!GZ23/2SA2k

Ha0
exp@H~ t2t0!# D 21, ~14!
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where the integral constantsC1 andC2 can also be fixed by
initial valuesd0 andd 0̇. Using the asymptotic expressions
Bessel functions and modified Bessel functions atx@1, we
find that the anisotropy will increase rapidly if the expansi
ratea(t) is slower thana(t);t1/3 for k521,0 ora(t);t for
k511. Therefore, during the matter-dominated era a
radiation-dominated era, the open and flat universes
stable against the spatially homogeneous anisotropic pe
bation during the matter- and radiation-dominated eras, w
the closed universe is not and the anisotropy increase e
nentially.

The recent data from WMAP indicate that the universe
almost flat @10,12#. In the following, we will rigorously
prove the conclusion in the flat universe case. Equation~7!
can be rewritten as

ḋ~ t !

d 0̇

5F a0

a~ t !G
3

. ~15!

The scale factora(t) is determined by the pressure an
energy density of the perfect fluid in the Einstein equatio
~3!–~5!. For example, we can apply these equations spe
cally to the initial stage of cosmological evolution which
assumed to be governed by the ordinary scalar field. In
paper, these equations are applicable to matter with
energy-momentum tensor of arbitrary form so that we sho
discuss the varied form ofa(t). From Eq.~15!, we have

d01ud 0̇u•U E
t0

t F a0

a~ t !G
3

dtU<d~ t !<d01ud 0̇u•U E
t0

t F a0

a~ t !G
3

dtU.
~16!

Next, we discuss the convergence of definite integral in
~16!. At t@t0, we rewritea(t) as f (t)/tq, if q. 1

3 and f (t)
<const<1`, then the integral is convergent. Ifq< 1

3 and
f (t).const>0, then the integral is divergent. This argume
can be extended to the following form by using the cons
sus Cauchy criterion: if@a(t0)/a(t)#35 f (t)•g(t) for t@t0 ,
* t

` g(t)dt is a convergent integral andf (t) is a monotonic

0

-
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and boundary function, thenI[*@a(t0)/a(t)#3dt is a con-
vergent integral. Therefore, we have rigorously proved tha
flat universe is stable against a spatially homogeneous
anisotropic perturbation of Kantowski-Sachs type during
radiation- and matter-dominated eras.

Now, let summarize the key points of the above disc
sions. In this paper, we focus on the Kantowski-Sach-l
model of cosmology and discuss the evolution of the cosm
logical anisotropy. We showed that for open and flat u
verses, the expansion rate of the scale factor must be gre
thana(t);t1/3 so that the cosmological anisotropy does n
increase while this constraint becomesa(t);t for the closed
universe. The implication of these constraints are that~i! the
isotropic universe must also be open or flat if it underwe
the radiation- and matter-dominated eras in its past ev
tion, ~ii ! the oscillation universe and static universe, cor
sponding toq50, are generally unstable against the spatia
homogeneous anisotropic perturbation unless an unna
fine-tuning is introduced~for example, fine-tuning 11d0

1a0d 0̇50 is needed for the static universe model!, and~iii !
together with the recent observation, which favors a clo
and flat universe, it will be better to say that the Universe
flat.

As is known to all, when constructing spatially homog
neous cosmological models, we simply choose a thr
dimensional Lie groupG, choose a basis of left invarian
dual vector fields onG, and choose a time-dependent le
invariant metrichab(t) on G. Then we can express the spac
time metricgmn in term of hab @13#. The Kantowski-Sachs-
like model considered here can be treated by a similar te
nique @14#. Although there are many other spatial
homogeneous cosmological models that do not isotrop
and their cosmological anisotropy evolution may also be
teresting to study, they are beyond the scope of this pap
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