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Cosmic shear with next generation redshift surveys as a cosmological probe
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The expansion of the Universe causes spacetime curvature, distinguishing between distances measured along
and transverse to the line of sight. The ratio of these distances, e.g., the cosmic shear distortion of a sphere
defined by observations of large scale structure as suggested by Alcock andsRaqavides a method for
exploring the expansion as a function of redshift. The theoretical sensitivity to cosmological parameters,
including the dark energy equation of state, is presented. Remarkably, sensitivity to the time variation of the
dark energy equation of state is best achieved by observations at redshifts While systematic errors
greatly degrade the theoretical sensitivity, this probe may still offer useful parameter estimation, especially in
complementarity with a distance measure such as the type la supernova method implemented by SNAP.
Possible future observations of the Alcock-Paaskjrdistortion by the KAOS project on an 8-meter ground-
based telescope are considered.
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[. INTRODUCTION redshift limit: Az/z= — qoHoAt, whereqq is the present de-
celeration parameter. However since the astronomical ob-

We now have strong evidence that the expansion of thserving time is much smaller than the Hubble timt
Universe is accelerating, from the original method of type Ia<H51, this is not a practical probe. For example in the most
supernova distance-redshift measuremghtg] and concor-  optimistic case of observing over a period of 10 years a
dant observations of the cosmic microwave backgroundypothetical spectral line emitted at the CMB last scattering
(CMB) power spectrum and of large scale struct[8ed].  surface az=10° one requires a redshift measurement of a
Understanding the nature of the dark energy responsible fgsart in 1¢ to distinguish cosmological models. For emission
the acceleration will have profound implications for cosmol-jine objects az=5, this becomes a part in 40
ogy, high energy physics, and fundamental physics. Mapping Moreover, just as peculiar velocities affect redshift mea-
the expansion history of the Universe offers a way to gainsurements at the level af/c, so do peculiar accelerations,
insight into the dark energy and the fate of the Universe, fofi.e. local gravitational potential® from inhomogeneously
example by characterizing the equation of state behaviogiistributed matter affect the redshift drift measurements at a
which is directly related to properties of the scalar field po-level ®/c?~1075. This latter effect even ruins the generali-
tential. zation of the redshift drift called the cosmic pulsar test,

Distance measures, notably the supernova method, hayghere timing is improved by measuring a large numef
proved useful at constraining the energy density and equatiogavelengths or pulsd$].
of state of the dark energy, with great improvements ex- But if we are stymied in measuring the acceleration di-
pected in the next decade. But these involve an integratiofectly, at least we can hope to measure the first derivative of
over the expansion rate behavid(z), which itself involves  the expansionH(z). One of the ways to do this is the cos-
a redshift integral over the equation of stat¢z). We can  mic shear, or Alcock-Paczghi test. In Sec. Il we set up the
ask whether we can devise a more direct probe of the acceformalism while in Sec. Ill we apply Fisher matrix analysis
eration. In fact one such test, the redshift drift test, was proto investigate the theoretical sensitivity of this method for
posed by Sandaggs] in 1961 and developed further by estimating the cosmological parameters. In Sec. IV we intro-
Linder [6]. duce observational sanity in the form of systematic uncer-

The redshift of a source is a central astrophysical obserainties and discuss the proposed KAOS project the Kilo-
able. Itis directly related to the change in time intervals dueaperture Optical Spectrometer proposed as a front end for
to the cosmic expansion between a photon’s emission anghe 8-m Gemini South telescope as a means of carrying out
observation,z=dt,/dt.—1=a,/a,—1, wherea(t) is the this test. We summarize our conclusions and plans for future
scale factor of the Universe. But obviously one could con-work in Sec. V.
sider a second derivative term, a time dependence of the

redshift itself as the Universe ages: Il COSMIC SHEAR TEST

dz_ d
dt, dt,

a(to)
a(te)

1) Proper distances measured along the line of sight carry
information through light emitted at different times in the
expansion history of the Universe. Therefore, in a sphere of

=Hy(1+2z)—H(2z). (20  comoving points, differences in the emission times lead to
probing the geometry at different expansion rates. So obser-

This provides a direct measure of acceleration, being effecvationally a sphere will appear to be distorted, or sheared,

tively a second time derivative, as can be seen from the lowvith the magnitude of the effect sensitive to the expansion

=[a(t,) —a(te)l/ate)
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rate. This is the cosmic shear effect discussed by Alcock angossibility for defining isotropically arranged sources in-
Paczymski ([7]; do not confuse this with shear from weak cludes large coherent objects such as superclusters in the
gravitational lensing—due to inhomogeneities rather than théinear density regime and so following the isotropic expan-
global structure of spacetime sion of the Universe or alternatively voids, which become
In more detail, if we consider the small difference in the more spherical with the expansid@]. Another approach

radial distance between nearby emitters, then we localize thgses lengths defined through correlation functions between
behavior in redshift and essentially measure the expansioRdividual objects, such as for galaxies or Lyman alpha forest
rate at that time. However transverse to the radial directionypsorbers. The extent to which these assumptions break
the angular separation between comoving points is measuregl o or cannot be corrected yield systematic errors to
at a constant value of the scale facafte), and then the 54,6 the method. As for many other cosmological probes,

light from each source propagates over the same intervenings"systematic errors turn out to be more severe than statis-
distance to the observergt. Thus in the radial case the data (jc4| errors from insufficient data. Section IV discusses this
gives a snapshot of the expansion rate while the transversginer.

distance contains an integration over the expansion history
from emission to observation.

Consider a sphere of comoving points. The distance
through the center of the sphere along the line of sight is the
proper distance, We begin by considering a purely theoretical analysis of

11 the capabilities of the test, leaving observational realities for
drj=dt=a(t)drc=(1+2) "H (2)Az. (3 sec. IV. A good way to understand the sensitivities and de-
generacies of cosmological probes is through Fisher matrix
analysis of the dependence of the observable on the param-
dr,=r,(2)A0=(1+2) ‘r(z)A6, (4) eters. We take a flat Universe defined by three parameters:
the dimensionless matter densiy,, (so the dark energy

IIl. SENSITIVITY TO COSMOLOGICAL PARAMETERS

The transverse distance is

D(z)EAz/AazH(z)fzdz’/H(z’). (5)
0

S=1/2

wherez=a"'—1 is the redshiftH=a/a is the Hubble pa- density is :-Q,), the value of the dark energy equation of
rameter,r . is the comoving distance, ang is the angular state todayv,, and a measure of its time variatiari. Since
distance(see, for example, Ref6)). we want to consider observations extending to redshifts
From the observables of the angular scAlé of such greater than unity, e.g. Lyman alpha observations are most
comoving sources, their central redstiftand their redshift ~ plentiful with z=~3, we adopt the equation of state param-
extentAz, one can form a quantity etrization w(z) =wy+w,z/(1+2z) with the definition w’
=dw/d In(1+2)|,-.,=w,/2 [9]. This approximates well the
behavior of several classes of dark energy models, especially
those with a slow roll phase, is well behaved even Zor
>1, and allows insight into the effects of the physically
The cosmic shear is then expected time variation in the equation of state.
The distance distortio (z)=H(z) fdz/H differs in its
Az\? behavior in an interesting way from distance or volume mea-
1- A I ©) sures: the two factors actually depend on the cosmological
parameters in opposite ways because they have reciprocal
This has some excellent properties for a cosmologicatlependence on the expansion rate. At low redshift the direct
probe. In particular, it has dependencetd(e) directly, not H(z) dependence dominates since all distances must be simi-
just through an integral. SincHl is related to the energy lar. But at high redshifts the Universe was matter dominated
density of the Universe then one can try to map the densitand soH(z>1) is insensitive to the equation of state param-
history and equation of state. Indeed for time varying equaeters and the distance factor takes over, since it retains
tion of state of the dark energy(z), H depends on an inte- memory of those parameters due to its integral nature.
gral ofw(z), so distance measures involwgz) as a double Figures 1 and 2 show the dependence of the Hubble pa-
integral. Therefore one might hope that the Alcock-rameter and the distanceg andr,, respectively, on the
Paczymski differential distance test might be more sensitivecosmological parametef3,,, andw, (w, behaves similarly
to reconstructing the dark energy equation of state than &®ne clearly sees that the dependencies are in inverse relation.
standard distance test. This implies that there can be crossover ranges in redshift
Another interesting characteristic of E¢) is that it does  where the distance distortidd is essentially independent of
not depend on any absolute scale, sikt@ppears in both one of the parameters. While this makes it impossible to
numerator and denominator. So there is no absolute measumetermine that aspect of cosmology with observations in that
ment to marginalize over. redshift range, it has a benefit as well. From the figures one
The physics of the test seems clean, using pure geometgan deduce that degeneracies exist where one parameter can
of the background spacetime, so long as we can find sourcé® adjusted to counteract the effect of another. But at the
that are comoving and defining a known local spatial geomerossover points one parameter wibht affect the distortion
etry. Conventionally the local source geometry is taken to bend so the degeneracy can be broken. Essentially, observa-
spherical, as it would be for an isotropic arrangement. Ondions near a crossover apply to a reduced phase space, and
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FIG. 3. The sensitivity of the observable, hé&e=H(z) r.(2),
to the cosmological parameters is encoded in the derivatives plotted
here. The larger the absolute magnitude of the derivative at a par-
ticular redshift, the more constraining the observations there.

FIG. 1. The Hubble parametet(z) as a function of redshift, for
the fiducial flat modef},,= 0.3, w= —1 (solid curve and variants.
Upper (lower) dotted curves havé€,,=0.35(0.25; upper(lower)
dashed curves hawe=—0.8 (—1.2).

) . . dInD/ox. Figure 3 shows this central quantity of Fisher
hence the other parameter estimates will be sharper. This Khalysis.
clearly seen in later figures. o Indeed we can read off almost all of our results from this
~ An excellent way to explore the sensitivity of an observa-sengitivity graph. The previously discussed crossovers are
tional test to the cosmology is through Fisher matrix analysig|ear, with the probe aloof te, aroundz~1.3 and tow’

[10]. This methodology approximates the likelihood surface o w,) aroundz~2.3. Sensitivity to€),, grows out toz
of the parameter fit to observations with a Gaussian probabil 1  after which it levels off,w, has a sweet spot a

ity near the best fit, the fiducial model. The sensitivity of its _ 4 ang again above~2: the time variationw’ has a
estimation of parameter values depends on the derivatives ‘Bfroad, though low, impact from~0.6—1.1. However az
the observational quantity with respect to the parameter_q 3 e expectv’ to be uncorrelated withv, and so pos-
dD/dx, and the precision with which the observations can besibly easier to determine.
made. Writing the errors asD =(JD/D)D, we see that for Also note that while at low redshift the sensitivities(g,
a given fractional measurement precisiog= 6D/D we can g4\, enter with the same sign, this changes aftervihe
obtain a parameter error estima@ by investigating  crossover. This means that at low redshift the error ellipse in
the wo-Q,, plane will have the same orientation as for the
\ supernova distance case: making larger (less negative
15 A can be counteracted by makid,, smaller, defining a de-
¢ i generacy direction in that plane. However higher redshift
cosmic shear observations will have an orthogonal degen-
g eracy direction, holding out the promise of complementarity
with supernovae. A similar rotation of error ellipse contours
with redshift can be predicted betweeg andw’.
= Figure 3 for the Fisher sensitivity even allows us to cal-
=L J culate lower limits on the precision with which we can esti-
L , mate the parameters:
0.5 # r, f

- 5x>(2InDIax) Loy )

This lower limit refers to fixing all parameters but one, and
0 \ \ so will underestimate the true error due to degeneracies. If
0 1 R 3 we take, say, 1% precision in observations, then the lower
z limits on estimatind(},,,,wg,w’} are 0.015, 0.1, 0.15 for the
FIG. 2. The comoving distanae. and angular distance, as a  Peaks of the sensitivity curves. However multiple observa-
function of redshift, for the same models as Fig. 1. However nowtions can improve on the precision, while systematic errors
upper and lower models are interchanged, e.g.upger dotted ~ Will put a floor on it. To proceed further quantitatively we
curve has),,=0.25 etc. must input an observational suite into the Fisher method.

083503-3



ERIC V. LINDER PHYSICAL REVIEW D68, 083503 (2003

-0.6 ‘ ——— — -0.6 T T
r w = constant z=1.8 B r a(9,)=0.03 w constant A
+ o0(Q,)=0.03 - 8 6D/D=0.02 sys E
| 6D/D=0.01/~/40 J L 68% cl E
68% cl Ze8
-0.8 - — -0.8 - -
F 2=0.5 1 F 1
B -1 — B -1 -
5 1 r z=[0,1] {
I ] | 2=[2,3] ]
-1.2 - — -12 - -
L Idealized L ]
gl L L L T gl Ll Ll Ll Ll
0.26 0.28 0.3 0.32 0.34 0.26 0.28 0.3 0.32 0.34
QM nM
FIG. 4. Idealized results for estimation wfand(},, with only FIG. 6. Parameter estimation in the(),, plane, with system-

statistical errors. Note the equation of state is fixed to be conatant atics. Note the equation of state is assumed constgmiori. Con-
priori. This is purely illustrative, showing the rotation of degen- tours correspond to the 68% confidence level.

eracy directions and decorrelation at the crossover redshift. The

sizes of the ellipses are idealized, corresponding to pure statistiGsontours with redshift is clear. Note that for the crossover
for 40 observations of precision 1% in a 0.1 bin in redshift. redshiftz~1.3 the determination of, is uncorrelated with

. L. . he other parameters, i.e. the contours are vertical or
To best illustrate the results we begin with a simple set o

observations. We assume equal numlmeo$ observations in orizontal.

redshift bins of width 0.1, each with the same precisign,

and vary the redshift range the observations cover. Initially IV. SYSTEMATIC UNCERTAINTIES AND
we apply only statistical errors and so only the combination OBSERVATIONAL METHODS

op/+/n matters.

Purely to test our intuition from the Fisher sensitivity fig-
ure, we take the highly idealized situation of constat)
(i.e. fix w'=0 a priori) in Fig. 4 and fixed},, in Fig. 5, as
well as unrealistically good precision. The rotation of the

Virtually all proposed observational methods for probing
cosmology run into limits imposed by systematic uncertain-
ties rather than statistical errors. So although the cosmic
shear test appears rather promising in its sensitivity to pa-
rameters and complementarity with other probes, as expected
from its inclusion of a bare factdf(z) as discussed in the
first two sections, it behooves us not to make estimates of its
power merely by speculating on achievable future survey
statistics. For more realistic assessment of the promise of this
i method for determination of cosmological parameters, we
: must investigate the effect of systematics. Detailed charac-
terization of irreducible uncertainties requires a comprehen-
i sive survey design and analysis; instead we present here a
f simple model that should illustrate the main effects and give
reasonably realistic quantitative results.

i We adopt a precision of 2% in measurement, with

: =10 observations per 0.1 redshift bin. We also include an
irreducible systematics floor of 2% in a bin. This makes the
i actual numbers used for the statistical error moot, except
1 when we later consider a systematic that declines at low
‘ L | L redshifts. Generally we adopt a Gaussian prior on the matter
-1.4 -12 -1 -0.8 -0.6 density of 0.03, but also investigated 0.01. The plots show
° results for observations over redshift ranges, esgl—2.

FIG. 5. Idealized results for estimating’ andw,, with Q,, ~ Figure 6 shows the-Q, plane, disallowing the possibil-
fixed and only statistical errors. This is purely illustrative, showing ity Of any time variation in the equation of state—aipriori
the rotation of degeneracy directions and decorrelation at the cros@ssumption without justification. Note that systematics have
over redshifts. The sizes of the ellipses are idealized, correspondirg large effect on the Alcock-Paczski test. In particular they
to pure statistics for 40 observations of precision 1% in a 0.1 bin inwipe out most of the complementarity at high redshift with
redshift. the supernova method that was given by thesensitivity

| —— ‘
L 0,=0.3 fixed

b 6D/D=0.01/~/40

L 88% cl :

Idealized |

0.5 -

-0.5 -
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~0.6 —— :
L o(n,)=0.03
+  6D/D=0.02 sys

in comparison to the thin ellipses of Fig. 5. Uncertainty in
] Q,, broadens the contours in a more or less fixed direction in
] this plane, though, so it affects the ellipses for some redshift

r68%cl ‘ 1 ranges less than others. For example, data araun@.7
“08 " N does not suffer as much loss of sensitivity to the equation of
I 1 state parameters. Indeed observations covering the range of
I | z=0-1 at 2% precision permit determination of the time
s i variation of the equation of state with errors about 30%
| i looser than from SNAP. Unfortunately the respective error
L i regions mostly overlap, with little complementarity. Still,
| i they would provide independent checks of the results using
12k | very different methods.
L z=[0.1] | In a bid to optimize the parameter determination we can
]

: examine how best to concentrate the observations, and over
E what redshift range. Given a systematics floor, an increase in
Sl e e L the number of observations within a bin or an improvement
in the statistical precision accomplishes little. An exception
to this would be if external systematics needed to be reduced,
FIG. 7. Parameter estimation in thg-Q, plane, with system-  for example, by dividing the data into subsets for a “like to
atics, marginalizing ovew’. Removing the prior thatv is constant  like” comparison. As for the redshift range, the results found

strongly inflates the error contours. here indicate that relatively little leverage is gained, for the
) ) ) given prior and systematics, outside the ramge).2—0.9.
crossover and resulting rotation of the error ellipdéote This is well suited for ground-based observations by large

that the_ contours for the.next generation supernova surveyglescopes within a decade. Such a cosmic shear survey
SNAP, include systematigsSome complementarity is re- coyid be carried out by the KAOS project. This would have
tained f0.r observations at-2, allowing an |mprovem-ent N multiplexing capability from some 4000 apertures to mea-
determiningw and(), by a factor 2. Of course modeling the gyre detailed velocity maps of supercluster environments. In
dark energy as a constant equation of state becomes evg[(ich a linear overdensity region one might hope to apply the
more suspect as one increases the range of observation. ajcock-Paczyski test without any complications of nonlin-
When one removes the constraint that the equation ofar gravitational physics or gas dynamics. Another possibil-
state must be constaat priori, the Alcock-Paczyski test ity js studying the anisotropy of correlation functions of sub-
does not offer any improvement to SNAP in estimation ofcjasses of bright galaxies. Both approaches can cover the
the present value of the equation of stetg as seen in Fig. preferred redshift range and statistics would not be a problem
7. The combination of the two experiments does help to limityith 5 1.5 square degree field of view and coverage of some
1, but so does, for example, the weak gravitational lensingioo square degrees of sky to measure precise redshifts for
survey that is an integral part of the SNAP mission. 10° galaxies.
In the w’-w plane (recall w'=w,/2), Fig. 8 illustrates Observations at>1 were shown to be fairly insensitive
that not fixing(),, has a drastic effect on the error contourstg the dark energy equation of state for the cosmic shear test,
and thus can be used robustly to learn about astrophysics,
T perhaps from Lyman alpha forest observations. Of course the
a(9,)=0.03 | rich panoply of data from such a next generation survey as
00/D=0.02 sy | KAOS can be examined with other cosmological probes as
well (with similar cautions and care for the influence of sys-
tematic uncertaintigs

1

0.5 —

V. CONCLUSION

The cosmic shear test looks extremely promising theoreti-
cally for the determination of cosmological parameters. This
is evident from its tomographic dependence on the expansion
rate of the Universe, shown by the appearance of the Hubble
parameteH (z) by itself. It has further interesting properties
in the redshift evolution of its parameter degeneracies and
‘ ‘ complementarity with other probes.
~1.4 -1.2 -1 -0.8 -0.6 However, systematic uncertainties, most probably involv-
ing peculiar velocities and distortions related to the local

FIG. 8. Parameter estimation in the -w, plane, with system- ~€nvironment rather than cosmic expansion, put severe limits
atics, marginalizing ovef),,. Realistic assessment of systematics On the probe’s ability to fulfill its potential.
is key to evaluating the impact of the cosmic shear test. Unless systematic uncertainties can be brought under the

-0.5 —
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2% level, the cosmic shear test applied at low or high red+edshift surveys can bring this method of determining cos-
shift does not appear to offer significantly complementary omological parameters to fruition.
generally comparable limits to the supernova distance

method. Considering a linear systematic of @02 matter
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