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Reconstruction of lensing from the cosmic microwave background polarization
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Gravitational lensing of the cosmic microwave background~CMB! polarization field has been recognized as
a potentially valuable probe of the cosmological density field. We apply likelihood-based techniques to the
problem of lensing of CMB polarization and show that if theB-mode polarization is mapped, then likelihood-
based techniques allow significantly better lensing reconstruction than is possible using the previous quadratic
estimator approach. With this method the ultimate limit to lensing reconstruction is not set by the lensed CMB
power spectrum. Second-order corrections are known to produce a curl component of the lensing deflection
field that cannot be described by a potential; we show that this does not significantly affect the reconstruction
at noise levels greater than 0.25mK arcmin. The reduction of the mean squared error in the lensing recon-
struction relative to the quadratic method can be as much as a factor of two at noise levels of 1.4mK arcmin
to a factor of ten at 0.25mK arcmin, depending on the angular scale of interest.
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I. INTRODUCTION

Over the past decade the cosmic microwave backgro
~CMB! anisotropy has been established as a robust and p
erful cosmological probe. While much attention has focus
on the primary anisotropy generated in the early Univer
the CMB should also contain signatures of processes
occurred between the surface of last scatter and the pre
One of these is weak gravitational lensing, which has b
recognized as a probe of large scale structure~LSS! @1–5#.
Aside from its use as a probe of the matter power spectrum
low redshift z!1100, weak lensing of the CMB could b
cross correlated against other tracers of the density field s
as galaxy surveys@6# or weak lensing of galaxies@5#.
Through cross-correlation with the CMB temperature, an
proved measurement of the integrated Sachs-Wolfe ef
over that possible using the CMB power spectrum alone
possible, yielding constraints on the late-time growth fun
tion and hence on the dark energy@7,8#. Lensing has also
attracted attention recently as a cosmological source
B-mode polarization@9#; reconstruction and removal of lens
ing B modes will thus be an important part of a future sea
for B-mode polarization induced by primordial gravitation
waves@10–12#.

The lensing signal in the CMB is small, so it is importa
to construct optimal methods for estimating the lensing fi
from CMB data. The early investigations of lensing of t
CMB temperature showed that while there is an effect
lensing on the CMB power spectrum@13,14#, it is much
more promising to estimate the lensing field using quadr
combinations of the CMB temperature, and to estimate
lensing power spectrum using the four-point correlat
function ~or its harmonic equivalent, the trispectrum!
@1,3,15#. More recent work has identified the divergence
the temperature-weighted gradient as the optimal quad
combination of the CMB temperature for use in lensing st
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ies @4,16#. Analysis based on likelihood techniques@17# has
since shown that the quadratic estimator technique is st
tically optimal when the lensing effect on the CMB cova
ance matrix is small. This was shown to be a good appro
mation for lensing of temperature anisotropies in the ran
l<3500. For the small scalesl @3500, the primary CMB
power spectrum is much smaller than the lensed power s
trum, hence this argument breaks down. In this case for
ficiently small instrument noise the reconstruction of pr
jected mass density can be nearly perfect@18#. We will not
discuss the reconstruction on these very small scales in
paper.

Our ability to reconstruct the lensing field using the CM
temperature is limited because the temperature fluctuat
are stochastic and so we can only statistically determine
unlensed CMB temperature field. It is thus advantageou
consider lensing of the CMB polarization, since in the a
sence of primordial gravitational waves the unlensed CM
polarization is entirely inE rather thanB modes. This im-
plies that, in the terminology of galaxy lensing, there is
‘‘shape noise’’ in the CMB polarization field. Several autho
have developed algorithms that use theB modes induced by
lensing to probe LSS@5,19#. The optimal quadratic estimato
— the polarization analogue of the temperature-based q
dratic estimator using the divergence of the temperatu
weighted gradient — was constructed by Ref.@10#. There it
was shown that for sufficiently small detector noise most
the lensing reconstruction information with this method
provided by theB mode.

Even with polarization information these quadratic es
mators cannot improve the reconstruction beyond a cer
level, set by the coherence length of the polarization. It
been argued that this provides a fundamental limit to
ability to separate the lensing inducedB modes from theB
modes induced by gravity waves@11,12#. However, it has not
been determined whether quadratic estimation is optimal
the polarization-based lensing reconstruction, and ind
Refs. @11,12# comment that it might be possible to extra
additional information in higher-order statistics. The arg
ment for optimality of the quadratic estimator presented
©2003 The American Physical Society02-1
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CHRISTOPHER M. HIRATA AND UROSˇ SELJAK PHYSICAL REVIEW D68, 083002 ~2003!
Ref. @17# does not apply to polarization since theB-mode
power is dramatically increased by lensing. Here we c
struct likelihood-based estimators for lensing using the CM
polarization and show that the likelihood-based estimator
proves significantly on the quadratic estimator~although we
do not present these as series of higher-order statistics!. In-
deed, as noise is decreased the accuracy of CMB len
reconstruction continues to improve without bound. Conc
tually this is because if the lensed polarization is measu
with zero noise, then the equationBunlensed50 can be solved
~except possibly for a small number of degenerate mod!
for the projected matter density with zero noise. The eq
tion Bunlensed50 is ill-behaved in the presence of instrume
noise; fortunately, the likelihood formalism easily incorp
rates noise and, as we show in this paper, regularizes
problem.

In practice, a perfect reconstruction of the lensing pot
tial is impossible because as instrument noise is redu
some contaminant to the lensing signal will eventually b
come more important than the instrument noise. One ca
date for this limiting factor is lensing field rotation caused
the fact that the density perturbations causing the lensing
spread out along the line of sight~i.e. there is more than on
‘‘lens plane’’! and that the lensing is not perfectly weak~i.e.
the first-order Born approximation to the lensing field is
exact!. We will show that even for an experiment with nois
0.25mK arcmin and 2 arcmin full-width half maximum
beam, the field rotation does not substantially worsen
lensing reconstruction. It is however possible that foregrou
contamination will be a more serious problem.

Studies of lensing of CMB polarization will require tha
the polarization field be mapped with noise levels of t
order of ;1 mK arcmin; this would be a substantial im
provement in sensitivity beyond that of the currentWilkinson
Microwave Anisotropy Probe ~WMAP; http://
map.gsfc.nasa.gov/! and the upcoming Planck ~http://
astro.estec.esa.nl/Planck/! experiments~see Table I!. Never-
theless,;1 mK arcmin may be achieved with a futur
polarization satellite. The noise levels of,0.25mK arcmin
at which field rotation becomes important will probably r
main unachievable for the foreseeable future.

This paper is organized as follows: in Sec. II, we defi
our notations and conventions. In Sec. III, we consider
properties of the likelihood function and its implications f
likelihood and Bayesian analyses of CMB lensing reco

TABLE I. Parameters for CMB experiments.

Experiment
NP /mK
arcmin uFWHM/arcmin l c

WMAP, 4 yrs ~94 GHz! 700 13 620
Planck, 1 yr ~143 GHz! 81 8 1010
Ref. expt. A 3.0 7 1160
Ref. expt. B 1.41 7 1160
Ref. expt. C 1.41 4 2020
Ref. expt. D 1.00 4 2020
Ref. expt. E 0.50 2 4050
Ref. expt. F 0.25 2 4050
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struction. In Sec. IV, we investigate the breakdown of t
Born approximation for CMB lensing and its implication
for lensing reconstruction. Determination of the lensi
power spectrum from CMB maps is discussed in Sec. V.
show numerical simulations of CMB polarization lensin
and reconstruction using our estimators in Sec. VI, and c
clude in Sec. VII.

The fiducial cosmology used in these simulations is a s
tially flat cosmological constant-dominated universe w
baryon fractionVb050.046; cold dark matter fractionVc0
50.224; cosmological constant fractionVL050.73; Hubble
parameterH0572 km/s/Mpc; primordial helium abundanc
YP50.24; reionization optical deptht r50.17; primordial
scalar spectral indexns51; and no primordial vector or ten
sor perturbations. We have used theCMBFAST numerical
package@20# to compute all power spectra except in Se
IV B. The experiments considered are as shown in Tabl
TheWMAPand thePlanckwill not be able to map the lens
ing field using polarization and are included in the table
comparison. The reference experiments A through F are
cessively lower-noise~or finer-beam! experiments that were
analyzed to determine how the signal-to-noise ratio in
lensing reconstruction depends on experimental parame
Note that experiment C is the reference experiment of R
@10,11#.

II. FORMALISM

Here we describe our normalization conventions; n
that for some quantities, there are many conventions in us
the literature, and appropriate conversion factors must be
plied if one wishes to compare results.

A. CMB

We work in the normalized flat-sky approximation, i.e. th
sky is taken to be a flat square of side lengthA4p ~i.e. total
area 4p) with periodic boundary conditions. The CMB tem
perature and polarization fields can then be expressed
sum over Fourier modes:

S T~ n̂!

Q~ n̂!

U~ n̂!

D 5
1

A4p
(

l S Tl

Ql

U l

D ei l•n̂, ~1!

where thel modes are distributed in the two-dimensional
space with number density 1/p. Defining the angle of a
mode by tanf l5 l y / l x , we haveE andB polarization modes
given by

S El

Bl
D 5S cos~2f l! sin~2f l!

2 sin~2f l! cos~2f l!
D S Ql

U l
D . ~2!

~Technically the anglef0 of the l50 mode is undefined
however this will not concern us since within the flat-s
approximation we will convert sums overl into integrals:
( l → * d2l/p. If an integral is divergent atl50, then it can-
not be computed accurately within the flat-sky approxim
tion.!
2-2
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RECONSTRUCTION OF LENSING FROM THE COSMIC . . . PHYSICAL REVIEW D 68, 083002 ~2003!
We will use the following notations for CMB fields
$T,Q,U% for the unlensed~primary! CMB anisotropies;

$T̃,Q̃,Ũ% for the lensed CMB anisotropies; and$T̂,Q̂,Û% for
the measured anisotropies~including noise!. These are mea
sured inmK ~blackbody temperature!, and we will assume
that the monopole ~mean temperature! and special-
relativistic effects~kinematic dipole or quadrupole and ste
lar aberration! have been removed. The instrument noise w
be assumed to be statistically uncorrelated with any cos
logical signal and will be denoted byhX , whereX is one of
T, Q, or U ~or T, E, and B depending on which basis i
more convenient!. The unlensed CMB will have a powe
spectrum given by

^Xl* Xl8
8 &5Cl

XX8d l,l8 , ~3!

where hereX and X8 are T, E, or B ~here we desire rota
tional symmetry so we cannot useQ or U). We assume the
universe is statistically parity-invariant so thatCl

TB5Cl
EB

50; in some parts of this paper we will discuss univers
with no tensor perturbations, in which case we also h
Cl

BB50.
Throughout most of this paper we will take general no

covarianceN; when we wish to show expected performan
for particular experiments, we will use the following nois
power spectrum appropriate for a Gaussian beam profile

Nl
TT5N T

2el ( l 11)uFWHM
2 /8 ln 25N T

2el ( l 11)/l c( l c11), ~4!

whereuFWHM is the full width at half maximum~FWHM! of
the beam. We take a similar form forNl

EE5Nl
BB , except that

NT is replaced withNP . The quantitiesNT , NP , and
uFWHM ~combined with the fractionf sky of the sky surveyed!
thus parametrize the performance of the experiment. N
curves compared to the CMB for the experiments shown
Table I are shown in Fig. 1. Thel value at which the beam
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CMB polarization and noise power spectra

FIG. 1. CMB polarization power spectra forE-type andB-type
polarization~upper and lower solid curves, respectively!. The noise
curves for the experiments of Table I are shown as dashed li
from top to bottom:WMAP, Planck, and reference experiments A
B, C, D, E, and F.
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transfer function drops to 1/Ae is given approximately by
l c'(8095 arcmin)/uFWHM .

We will introduce a vectorx containing both temperatur
and polarization information:x5(T,Q,U). The lensed and
measured temperature or polarization vectors will be deno
x̃ and x̂, respectively.@Note: x is a ‘‘vector’’ in the sense of
linear algebra, i.e. it is an element of a vector space, in
case a Hilbert space with the usualL2(S2) inner product, on
which matrix operations such asC can act. It is not a vector
in the sense of differential geometry.# Since most of the
fields we deal with, including CMB temperature and pola
ization, are real, their Fourier modes satisfy e.g.Tl5T2 l* .
Consequently, if we have N Fourier modes, the
N-dimensional vector with components$Tl% only hasN/2
independent complex components; the remainder contain
dundant information.~Of course, there are stillN indepen-
dent real components.!The covariance matrixC is defined as
Cx̂x̂5^x̂x̂†&; note that it is Hermitian by construction.

B. Lensing

The lensed temperature and polarization are given
terms of the unlensed temperature by means of the rem
ping functiong: T̃(n̂)5T@g(n̂)#, and similarly forQ andU
@however,E andB do not transform this way, rather one mu
use Eq.~2!#. The remapping function can be decompos
into a longitudinal part generated by the lensing potentialF,
and a transverse part generated by the lensing cross-pote
V:

g~ n̂!5n̂1¹F~ n̂!1!¹V~ n̂!, ~5!

where ! is the ninety-degree rotation operator:!êx

5êy , !êy52êx . Past studies of CMB lensing reconstru
tion have ignored the cross-potential since~for scalar pertur-
bations! it vanishes at first order in perturbation theory.
principle it could become important given the high precisi
enabled by lensing of CMB polarization. However, we w
show in Sec. IV and Sec. VI A that the cross-potential
unimportant for most near-term experiments.

We restrict our attention to the weak lensing regime,
we assume the magnification matrix:

M5
]g~ n̂!

]n̂
5S ]gx

]x

]gx

]y

]gy

]x

]gy

]y

D
5S 11]x

2F2]x]yV ]x]yF2]y
2V

]x]yF1]x
2V 11]y

2F1]x]yV
D

5S 11k1gQ gU1v

gU2v 11k2gQ
D ~6!

is everywhere invertible. This is a necessary and suffici
condition to disallow caustics and multiple images of t
same portion of the surface of last scatter. Lensing by lar
scale structure is too weak to create caustics on the surfac

s;
2-3
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CHRISTOPHER M. HIRATA AND UROSˇ SELJAK PHYSICAL REVIEW D68, 083002 ~2003!
last scatter, so the weak lensing assumption is violated o
in the vicinity of astrophysical objects such as clusters.
classify clusters and other strong lenses as foreground
taminants and do not consider them further here. In the
gime where the lensing distortion is small—i.e.M is close to
the identity—we may interpret the four componen
k,gQ ,gU ,v in Eq. ~6! as follows. The convergencek mag-
nifies a feature on the last-scattering surface of infinitesi
angular sizedq to size (11k)dq. The field rotation angle
v rotates the feature clockwise byv radians. TheQ-shear
gQ produces a stretching along thex axis while compressing
it alongy: the apparent angular extents of a feature along
two axes are (11gQ)dqx and (12gQ)dqy , respectively.
The U-shear has a similar effect, stretching along they5x
axis and compressing along they52x axis. It should be
noted that the four fieldsk,gQ ,gU ,v are not independent
because they are all generated by differentiating the
fieldsF andV. In particular, if weEB-decompose the shea
field into its positive-parity (e) and negative-parity (b) com-
ponents:

e l5@gQ# l cos 2f l1@gU# l sin 2f l ,

b l52@gQ# l sin 2f l1@gU# l cos 2f l , ~7!

we find thate l5k l andb l5v l . These are then related to th
potentials viak l5( l 2/2)F l andv l5( l 2/2)V l . This immedi-
ately implies the power spectrum relationsCl

kk5Cl
ee

5 1
4 l 4Cl

FF andCl
vv5Cl

bb5 1
4 l 4Cl

VV . It is of interest to note
that the convergence and field rotation can be determ
from the deflection angled(n̂)5g(n̂)2n̂ by

k52
1

2
¹•d and v5

1

2
¹•!d. ~8!

If k,gQ ,gU ,v are not small compared to 1, then th
physical interpretation of these quantities is somewhat m
complicated. We will continue to callk the ‘‘convergence,’’
(gQ ,gU) the ‘‘shear,’’ andv the ‘‘field rotation angle’’ even
in this case, although this convention is not universally f
lowed in the literature. Note, however, that the relationse l
5k l andb l5v l continue to hold~in fact, they remain valid
even for strong lenses!!, which makes our definitions of con
vergence, shear, and field rotation angle particularly con
nient.

Sometimes we will specify a lens remappingg by its con-
vergence and field rotation,g[(k,v). Most authors have
performed the lensing analysis usingF rather thank as the
field to be estimated, since the deflection angle is a lo
function of the former. In the present analysis, we takek
~andv when it is important! to be the fundamental field. O
course, the two fields contain exactly the same informat
being related by the differential relationk52 1

2 ¹2F in real
space and by a multiplicative factor ofl 2/2 in harmonic
space.

It is convenient to introduce the lensing operatorLg de-
fined byLgX(n̂)5X„g(n̂)…, whereX is one ofT, Q, or U.
@In the $T,E,B% basis, the action ofLg is not so simple and
the transformation of Eq.~2! must be applied.# We define
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the sk differential operator~and analogouslysv) as the
action of an infinitesimal lens configuration:s l

k

[(]Lg /]k l@g#)ug5(0,0) . Then, noting thatL (0,0) is the iden-
tity operator1, we find that to first order in (k,v):

L (k,v)511 (
l

~k ls l
k1v ls l

v!1O~k2,v2,kv!. ~9!

The s operator acts as follows on a fieldX in the $T,Q,U%
basis:

~s l
kX! l85S 2

l 2D l•~ l82 l!

A4p
Xl82 l ,

~s l
vX! l85S 2

l 2D l•!~ l82 l!

A4p
Xl82 l . ~10!

In the $T,E,B% basis, thes-matrices mixE and B because
these are nonlocal quantities. Specifically, they have com
nents

@s l
k# l1 ,2 l2

52
d l1 ,l2 l2

A4p
S 2

l 2D ~ l• l2!S 1 0 0

0 cos 2a 2 sin 2a

0 sin 2a cos 2a
D ,

~11!

where the rows correspond to the$T,E,B% l1
and the columns

to the $T,E,B%2 l2
, and we have defined the anglea5f l1

2f l2
. The matrix fors l

v differs by replacing the prefacto

l• l2 with ! l• l2. Thes matrices satisfys l
k5(s2 l

k )†.
Lensing alters the CMB anisotropy covariance; the co

riance matrixCX̃X̃8, whereXP$T,Q,U% ~or XP$T,E,B%) of
the lensed temperatures is dependent on the lens config

tion g, and thus we will denote it byC̃g
XX8[Cg

X̃X̃8 . Since the

lensed CMB field isx̃5Lgx, we haveC̃g5LgCLg
† . The

lensed covariance averaged over the ensemble of LSS
figurations will be denoted bŷC̃XX8&LSS. Note, however,
that whereas the primary CMB is expected to be nea
Gaussian, the lensed CMB is non-Gaussian and so^C̃XX8&LSS
doesnot specify completely the statistics of the lensed CM
field. Indeed, it is the non-Gaussianity of the lensed CM
that enables separation of the lensing and gravitational w
contributions toB. It also means that the standard Gauss
formula for the uncertainty in the power spectrum
s(Cl)/Cl5A2/(2l 11) f skyD l , does not necessarily apply t
B-mode polarization on small scales.

It is readily apparent from Eq.~11! that lensing can pro-
duceB modes even if these are not present in the prim
CMB. We show in Appendix B that for ‘‘almost all’’ primary
CMB realizations, there are only a small number of conv
gence modes that do not produceB-type polarization.

C. Chi-squared analysis of lensing

We illustrate our formalism with a simple lensing reco
struction viax2 minimization ~the ‘‘least squares’’ method!.
2-4
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RECONSTRUCTION OF LENSING FROM THE COSMIC . . . PHYSICAL REVIEW D 68, 083002 ~2003!
We perform a full likelihood analysis in Sec. III, but thex2

analysis is sufficiently similar that it illustrates the basic co
cept. Define the functionalx2(k) of a convergence field
given CMB datax̂:

x2~k![~L (k,0)
21 x̂!†~C1N!21L (k,0)

21 x̂1k†Ckk21k. ~12!

Here L (k,0)
21 x̂ is the delensed CMB, i.e. we have taken t

measured CMB and projected it back onto the primary CM
assuming that the lens configuration is given by converge
k with no rotation. To a first approximation, this should ha
covarianceC1N since it is the sum of primary CMB an
instrument noise.~The matrixC1N is equal to the measure
CMB covariance in the absence of lensing and hence
frequently be denoted byĈ(0,0) . Technically the noise cova
riance is not exactlyN because the noise has been delens
see Sec. III B.! We have thus chosen to define ourx2 as the
amount of power in this de-lensed CMB, with the vario
modes weighted according to their variance. The addition
the k†Ckk21k term serves to regularize the problem by p
venting the convergence from running off tò in search of
smaller primary CMB power.

If we take the first-order approximation toL21 given by
Eq. ~9!, Eq. ~12! becomes

x2~k!5x2~0!12 (
l

ml* k l1 (
l,l8

k l* ~Al,l8

1Cl
kk21d l,l8!k l8 , ~13!

where

x2~0!5 x̂†~C1N!21x̂,

ml5 x̂†~C1N!21s2 l
k x̂,

Al,l85 x̂†s2 l
k ~C1N!21s l8

k x̂. ~14!

Note thatm is a real vector andA is Hermitian. This is a
quadratic function ofk and hence it has a minimum that ca
be determined via standard techniques. The minimum is

k* 5~A1Ckk21!21m. ~15!

The error covarianceSx2 of k is found by the usual metho
of setting x2(k)5x2(k* )1(k2k* )†Sx2

21(k2k* ); this
yields

Sx25~A1Ckk21!21. ~16!

The most important feature of this analysis is the rec
struction error,Sx2. Note that as the instrument noise goes
zero, the matrixC1N develops null directions correspond
ing to theB modes. Therefore, (C1N)21 has infinite eigen-
values in these directions, and if the number of converge
modes being reconstructed is less than or equal to the n
ber ofB modes measured, we haveA→` andSx2→0. This
leads us to the conclusion that the accuracy of converge
reconstruction is limited only by the sensitivity of the instr
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ment and the presence of foregrounds or other contamina
not by statistics of the convergence or primary CMB fie
One can note that for zero instrument noise, thex2, Eq.~12!,
is infinite unless the delensed CMB fieldL (k,0)

21 x̂ has vanish-
ing B modes, i.e. in this case thex2 analysis is solving for
Bunlensed50 ~except possibly for a few degenerate modes;
Appendix B!. We extend this methodology to a full likeli
hood analysis in Sec. III, where we find that the gene
conclusions of this section remain valid.

III. LENSING RECONSTRUCTION: LIKELIHOOD
ANALYSIS

In this section we explore the accuracy of reconstruct
of lensing based on CMB temperature and polarization.
follow the analysis performed in Ref.@17# for the CMB tem-
perature; most of the analysis extends easily to polarizat
with one exception: the primary CMB has very little~if any!
B-mode polarization. This means that the lensed CMB pow
spectrum̂ C̃l

BB&LSS cannot be expressed as a small pertur
tion on the unlensed power spectrum. We also include
effect of the field rotation in our discussion of the likelihoo
gradient and Fisher matrix, although we do not construc
‘‘practical’’ estimator for it.

A. Likelihood function and gradient

For a given lens configuration with remapping functiong,
the covariance matrixĈ of the measured CMB is compute
from

Ĉg5^x̂x̂†&5^~ x̃1h!~ x̃1h!†&5C̃g1N5LgCLg
†1N,

~17!

whereN5^hh†& is the noise matrix. The measured CMB
Gaussian-distributed if we assume that the primary CMBx
and instrument noiseh are both Gaussian.~Note: the as-
sumption of Gaussianity only appliesbeforewe average over
LSS realizations.! The ~negative log! likelihood functionL
for a lens configuration with remapping functiong is then
given ~up to an irrelevant constant! by

L~g!5
1

2
ln detĈg1

1

2
x̂†Ĉg

21x̂. ~18!

Now we wish to determine the likelihood gradient with r
spect to the lens configurationg5(k,v). We will compute
the gradient of the likelihood function, Eq.~18!, using Eq.
~17!:

]L
]k l

5TrS Ĉg
21 ]Lg

]k l@g#
CLg

†D2 x̂†Ĉg
21 ]Lg

]k l@g#
CLg

†Ĉg
21x̂.

~19!

The maximum-likelihood estimator is given by the rel
tion ]L/]k l50. ~We also require]L/]v l50 if we are esti-
matingv as well ask.! However, maximum likelihood es
timation of the lensing field is generally unstable because
lensing field has too many degrees of freedom. In orde
regularize the problem, we introduce a Bayesian prior pr
2-5
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ability distribution }e2` for g5(k,v), i.e. we take prior
probability dP}e2`(g)) ldk ldv l . It is most convenient to
take a Gaussian prior based on the power spectra ofk and~if
applicable! v:

`~k,v!5
1

2
~k†Ckk21k1 ln detCkk!

1
1

2
~v†Cvv21v1 ln detCvv!

5
1

2 (
l

S uk lu2

Cl
kk

1 ln Cl
kkD

1
1

2 (
l

S uv lu2

Cl
vv

1 ln Cl
vvD , ~20!

where in the second equality we have assumed that the
on k andv is statistically isotropic.~Note that this assume
the power spectra are known; we will consider the probl
of estimatingCl

kk from CMB data in Sec. V. The method
we present in Sec. V allow iterative determination of both
convergence fieldk and the power spectrumCl

kk .! If we are
neglecting the field rotation then the terms involvingv
should simply be removed. The mode of the posterior pr
ability distribution is given by minimizingL1`; we thus set
]`/]k l52]L/]k l , or

@Ckk21k# l* 52TrS Ĉg
21 ]Lg

]k l@g#
CLg

†D
1 x̂†Ĉg

21 ]Lg

]k l@g#
CLg

†Ĉg
21x̂. ~21!

Because of the presence of the priorCkk21, this estimator
will filter out lensing modes that cannot be accurately rec
structed from the CMB data. It can thus be viewed as a
of nonlinear generalization of the Wiener filter.

B. Practical estimator for the convergence

The likelihood gradient, Eq.~19!, and hence the conver
gence estimator Eq.~21! based on it, are difficult to evaluate
We therefore investigate several approximations to the l
lihood function. First, we consider only the convergence,k;
the rotationv will be shown in Sec. IV to be unimportan
unless instrument noise is very small. We note that Eq.~21!
can be rewritten as

@Ckk,21k# l* 52TrS Lg
†21wLg

21 ]Lg

]k l@g#
CwLg

21ĈgD
1 x̂†Lg

†21wLg
21 ]Lg

]k l@g#
CwLg

21x̂, ~22!

where the weight matrixw is defined by

w5Lg
†Ĉg

21Lg5~C1Lg
21NLg

†21!21. ~23!
08300
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Here Lg
21NLg

†21 is the delensed noise covariance matr
which is equal to the noise covarianceN for g50 ~no de-
lensing!. Under most circumstances, delensing has much
effect on the noise than on the CMB signal, because ins
ment noise is a relatively smooth function ofl and contains
both E and B modes with similar power. It is possible tha
Lg

21NLg
†21'” N if the noise power spectrum contains sha

features; in this case, the approximationw'Ĉ(0,0)
21 used be-

low may result in a nonoptimal, or~in extreme cases! un-
stable estimator.

We would like to approximateLg
21(]Lg /]k l@g#) using

the s matrices; this can be done by expanding

Lg
21 ]Lg

]k l@g#
5

]k l8@g21g8#

]k l@g8#
U

g85g

s l
k

1
]v l8@g21g8#

]k l@g8#
U

g85g

s l
v , ~24!

where the juxtapositiong21g8 indicates composition of the
lensing operations: (g21g8)X5g21(g8(X)). If the lensing
is very weak we may take (]k l8@g21g8#/k l@g8#)ug85g

'@Lg
21# l8,l and (]v l8@g21g8#/k l@g8#)ug85g'0, that is, the

composition of lensing operations can be approximated
remapping the convergence field and neglecting rotation
this regime, the statistical properties of the convergence fi
k should not differ greatly from those of the ‘‘delensed
convergence fieldLg

21k; mathematically, this means that w
may takeLg and Ckk to commute. With these approxima
tions, Eq.~22! becomes

Cl
kk21~Lgk! l* 5~Lg

21x̂!†ws l
kCwLg

21x̂

2Tr@ws l
kCwLg

21ĈgLg
†21#. ~25!

The right-hand side of Eq.~25! is our approximation to
the likelihood gradient, and the left-hand side is our~ap-
proximate!prior gradient. Note that the right-hand side eva
ated at the correct lensing configurationg has expectation
value zero, regardless of the choice of weight function;
will therefore choose the slightly suboptimal weight functio
w5Ĉ(0,0)

21 in order to reduce computational difficulties. Th
leads us to the estimator

Cl
kk21~Lgk! l* 5~Ĉ(0,0)

21 Lg
21x̂!†s l

kCĈ(0,0)
21 Lg

21x̂

2Tr@Lg
†21Ĉ(0,0)

21 s l
kCĈ(0,0)

21 Lg
21Ĉg#.

~26!

@This choice leads to some difficulty for low-noise, wid
beam (uFWHM>10 arcmin! experiments; see Sec. VI A fo
details.# By expandingĈg using Eq.~17!, and noting that in
the harmonic-space basis,C andĈ(0,0) are diagonal wherea
s l

F has no nonzero diagonal elements, we convert this in
2-6
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Cl
kk21~Lgk! l* 5~Ĉ(0,0)

21 Lg
21x̂!†s l

kCĈ(0,0)
21 Lg

21x̂

2Tr@Lg
†21Ĉ(0,0)

21 s l
kCĈ(0,0)

21 Lg
21N#.

~27!

C. Fisher matrix

The Fisher matrix is defined as the expectation value
the second derivative of the likelihood function:

F@k l ,k l8#[K ]2L
]k l* ]k l8

L U
(k,v)

5K ]L
]k l*

]L
]k l8

L U
(k,v)

,

~28!

where the second equality follows from taking the seco
derivative (]2/]k l* ]k l8)of the normalization condition

* e2LDx̂51 and noting that the expectation value of a
statisticS is ^S&5 * Se2LDx̂. ~This also shows thatF has
all non-negative eigenvalues.! A similar relation holds for the
field-rotation modesv l . We may thus compute the lensin
nt

is
at

e
e

th

08300
f

d

Fisher matrix as the covariance of the likelihood gradie
the easiest method of doing this is to apply Wick’s theor
to compute the variance of Eq.~19!. This yields

F@k l ,k l8#5K ]L
]k l*

]L
]k l8

L 5Tr~Lg
†Ĉg

21s2 l
k CLg

†Ĉg
21s l8

k C!

1Tr~Ĉg
21s2 l

k CLg
†Ĉg

21LgCs l8
k†

! ~29!

and similarly for the components of the Fisher matrix e
ments involving the field rotation. For simplicity, we com
pute the Fisher matrix atg5(0,0), i.e. thek5v50 point, so
that L (0,0) is the identity. TheC and Ĉ(0,0)

21 matrices are di-
agonal in the$T,E,B% basis:

C5S Cl
TT Cl

TE 0

Cl
TE Cl

EE 0

0 0 Cl
BB
D ~30!

and
Ĉ(0,0)
21 5S ~Cl

EE1Nl
EE!/Dl 2Cl

TE/Dl 0

2Cl
TE/Dl ~Cl

TT1Nl
TT!/Dl 0

0 0 1/~Cl
BB1Nl

BB!
D , ~31!

whereDl5(Cl
TT1Nl

TT)(Cl
EE1Nl

EE)2(Cl
TE)2.

The overall Fisher matrix is then computed from Eq.~29!:

F@k l ,k l8#'
1

2
Tr@Ĉ(0,0)

21 f2 l
k Ĉ(0,0)

21 fl8
k

#, ~32!

where

@ fl
k# l1 ,2 l2

5@Cs2 l
k †1s l

kC# l1 ,l2

52
d l1 ,l2 l2

A4p
S 2

l 2D l•S l1Cl 1
TT1 l2Cl 2

TT l1Cl 1
TE cos 2a1 l2Cl 2

TE 2 l1Cl 1
TE sin 2a

l1Cl 1
TE1 l2Cl 2

TE cos 2a ~ l1Cl 1
EE1 l2Cl 2

EE! cos 2a ~ l2Cl 2
BB2 l1Cl 1

EE! sin 2a

l2Cl 2
TE sin 2a ~ l2Cl 2

EE2 l1Cl 1
BB! sin 2a ~ l1Cl 1

BB1 l2Cl 2
BB! cos 2a

D . ~33!
of
ec-
the

the
he

is
and

ns
is
~The matrix fl
v is identical except for the replaceme

l•→! l•.!Note that by hermiticity ofC, we havefl
k5f2 l

k † ;
for the individual 333 blocks in the harmonic-space bas
@ fl

k# l1 ,2 l2
5@ f2 l

k †#2 l1 ,l2
† . Also our construction guarantees th

fl
k5]Ĉ/]k l where the derivative is evaluated atk5v50.

It can be verified by explicit matrix multiplication that th
computation forF@k,k# here yields the uncertainty in th
minimum-variance quadratic estimator of Ref.@10#, with one
exception: we have computed the Fisher matrix atg50,
hence the denominator of Eq.~32! contains theunlensed
CMB power spectrum plus the instrument noise, whereas
equivalent calculation in Ref.@10# contains thelensedCMB
,

e

power spectrum plus the instrument noise. In the case
quadratic estimation, it is clear that the lensed power sp
trum should be used in order to minimize the variance of
estimator. Conceptually, this is because the lensingB modes
can be iteratively cleaned from the map, thereby reducing
post-cleaningB-mode power spectrum and reducing t
noise in the lensing estimator. Our ability to clean the map
bounded, of course, by the sum of the unlensed CMB
noise contributions toCl

BB .

D. Uncertainty in lens reconstruction

The usual method of estimating the uncertainty in le
reconstruction would be to invert the Fisher matrix. Th
2-7



ic
ti

;
th

od
es
a

a

on

t
v

e
er
ob

ch
m
th
n
o

io
ls
w
m

t

n
u

r
o

y
on
s
op

ing

y of

om

ge

ro

use
e
the
ters
.
pt-
hen

po-
ns-
re
re

re-

ver-
v-
B,

of

red

for

on-
e.
not
d in
n-
er

CHRISTOPHER M. HIRATA AND UROSˇ SELJAK PHYSICAL REVIEW D68, 083002 ~2003!
approach is motivated by the Cramer-Rao inequality, wh
states that an unbiased estimator of the lensing configura
must have covariance at least equal toF21. Unfortunately,
the Cramer-Rao inequality is only an inequality, and there
no guarantee that the boundF21 can actually be reached
indeed this bound is only achieved in the case where
likelihood function is Gaussian with curvatureF. The tradi-
tional justification for assuming Gaussianity of the likeliho
function is the central limit theorem. This works for studi
of lensing of the CMB temperature field, in which the typic
lensing mode being reconstructed is atl;100 whereas the
temperature fluctuations that are being lensed have w
number l;1000; thus there are roughly (1000/100)25100
patches of primary CMB behind each lensing mode.~Most
of the information comes from nonlocal correlations in theT
field, so this argument technically requires more justificati
nevertheless the calculations in Ref.@17# seem to indicate
that it gives the correct answer.! This argument does no
apply to lensing of the CMB polarization because the wa
numbers of the primaryE polarization modes and of th
lensing field modes (k l) are both at wave numbers of ord
l;1000. We should therefore be careful of possible pr
lems with the Fisher matrix estimate, Eq.~32! of the uncer-
tainty in the lensing field. In this section, we outline two su
problems that occur in lensing reconstruction: first, a co
plete breakdown of the Fisher matrix approach when
field rotationv becomes important; and second, fluctuatio
in the curvature matrix resulting from the statistical nature
the primaryE field.

Consider first the problem of simultaneous reconstruct
of bothk andv. ~We will see in Sec. IV that the noise leve
required for this are not achievable in the near term, ho
ever, this extreme example serves to illustrate the proble!
One can see that if there are no primaryB modes, then as
instrument noise goes to zero, the uncertainty ink and v
obtained by inverting Eq.~32! goes to zero. But this canno
be true because theoneequationBunlensed50 cannot be used
to solve for thetwo fieldsk andv simultaneously. Therefore
inverting the Fisher matrix yields a qualitatively absurd co
clusion. What went wrong? The observation that one eq
tion ~the vanishing of the unlensedB-mode field! cannot be
solved for two variables (k and v) yields a clue. Conside
the case where instrument noise is negligible; then we kn
that the measuredB mode is purely caused by lensing:

B̂l5 (
l8

1

A4p
S 2

l 82D @ l8•~ l2 l8!k l81! l8•~ l

2 l8!v l8#El2 l8 sin 2a, ~34!

wherea5f l2f l2 l8 . To the extent that theE mode is domi-
nated by the primary~not lensing! contribution, Eq.~34! is a
linear system containing 2N unknown variables~the ampli-
tudes of thek and v modes! but only N equations~the
knowledge of the lensedB modes!, thus there are degenerac
directions in lens configuration space which are unc
strained by the vanishing of theB modes. These direction
must be constrained by a combination of the statistical pr
08300
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erties of primary temperature andE-type polarization, and
prior knowledge about the lensing field.

We can now understand why the lensing Fisher matrixF
is inadequate for determining the uncertainty in the lens
fields k andv. The curvature matrix:

F @k l ,k l8#~g!5
]2L

]k l* ]k l8

~35!

has very small eigenvalues in the directions of degenerac
Eq. ~34! and very large eigenvalues~approaching̀ as N
→0) in the orthogonal directions. But as one can see fr
Eq. ~34!, the direction of degeneracy depends onE and
hence on the specific realization of the CMB. If we avera
over CMB realizations to obtain a Fisher matrixF, then we
deriveF5`, which does not accurately reflect the nonze
errors in the degenerate directions of Eq.~34!. Mathemati-
cally, the Fisher matrix methodology does not work beca
the error bars on (k,v) are extremely non-Gaussian. Th
lesson is that we should be careful about interpreting
inverse of the Fisher matrix as an uncertainty in parame
when the central limit theorem does not come to our aid

A similar but less spectacular problem occurs in attem
ing reconstruction of small-scale lensing modes even w
there is sufficient instrument noise thatV is irrelevant. This
is the regime of interest to a near-future high-resolution
larization experiment. The statistical uncertainty in the le
ing reconstruction is given by the inverse of the curvatu
matrix F. When doing a lens reconstruction, this curvatu
matrix is augmented by the curvature of the prior,Ckk21, so
that the posterior error covariance matrix of the lensing
construction is approximately (F1Ckk21)21. We wish to
compute the mean squared error in the reconstructed con
gencek̂, which is obtained by computing the ensemble a
erage of this covariance matrix over all realizations of CM
noise, and LSS:

Skk5^~ k̂2k!~k̂2k!†&LSS'^~F1Ckk21!21&LSS.
~36!

The Fisher matrixF is defined to be the expectation value
the curvature:F5^F& ~with no LSS average!. If the curva-
ture matrix were always equal toF, then it would be permis-
sible to approximateSkk'(F1Ckk21)21. It can be shown
~see Appendix C! that the statistical fluctuations ofF always
increase the uncertainty, Eq.~36!; this increase we call the
‘‘curvature correction.’’

Conceptually, the naive calculation that the mean squa
error is approximatelyS05(F1Ckk21)21 suffers problems
for the same reason that the Fisher matrix calculation
simultaneously estimatingk andv failed: the different real-
izations of the primary CMB introduce fluctuations inF, and
when we average over CMB realizations we generate a n
Gaussian error distribution for the estimated convergenc

The actual computation of the curvature corrections is
pursued here; some of the relevant issues are discusse
Appendix C, where we show that the ‘‘first-order noise co
tribution’’ of Ref. @21# arises as one part of the second-ord
curvature correction.
2-8
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E. Relation to quadratic estimators

It is of interest to compare the estimator we have deriv
Eq. ~27!, to the quadratic estimation method of Ref.@10#.
The performance of the estimators is compared numeric
in Sec. III B. Here we display the quadratic estimator a
note the major differences between the quadratic and it
tive estimators. The Wiener-filtered quadratic estimator is

k̂ l* 5@Cl
kk21d l,l81F l,l8

(quad)
#21x̂†^Ĉ&LSS

21 s l8
k C^Ĉ&LSS

21 x̂,
~37!

where the quadratic Fisher matrix is determined as

F l,l8
(quad)

5
1

2
Tr@^Ĉ&LSS

21 f2 l
k ^Ĉ&LSS

21 fl8
k

#. ~38!

The ‘‘unbiased’’ ~to first order in F), non-Wiener-filtered
temperature is given by Eq.~37! with the ‘‘prior term’’
l

a
a

l
d
c
o

-
-
n

ld
th

n
a

ns

08300
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Cl
kk21d0,l1 l8 omitted. ~The quadratic Fisher matrix is no

technically a Fisher matrix, but its inverse does give the
variance of the unbiased quadratic estimator.! We prove in
Appendix A that Eq.~37! and its unbiased equivalent ar
identical to the minimum-variance quadratic estimator t
arises from the optimal weighting scheme of Ref.@10#. The
mean squared error in the reconstructed convergence ac
ing to Eq.~37! is

Skk(quad)5~Ckk211F(quad)!21. ~39!

Several features of Eqs.~37! through~39! are readily ap-
parent. First, the estimator Eq.~37! is a quadratic function of
the CMB temperature or polarization fieldx. Secondly, we
note that the uncertainty in the quadratic estimator is de
mined by the quadratic Fisher matrix, which contains t
inverse of^Ĉ&LSS. For statistically isotropic noise, this in
verse is given by
^Ĉ&LSS
21 5S ~C̃l

EE1Nl
EE!/D̃ l 2C̃l

TE/D̃ l 0

2C̃l
TE/D̃ l ~C̃l

TT1Nl
TT!/D̃ l 0

0 0 1/~C̃l
BB1Nl

BB!

D , ~40!
pro-
xi-
ef.
is

ar
y
for
fect

as

-

where D̃ l5C̃l
TTC̃l

EE2C̃l
TE 2 , and C̃l

XX8 is the lensed CMB

power spectrum~or cross-spectrum!: C̃l
XX85^X̃lX8̃ l* &LSS.

Comparison of the quadratic Fisher matrix@Eq. ~38!# to the
full Fisher matrix@Eq. ~32!# shows that the two are identica
except for replacement of Eq.~40! by Eq. ~31!. This results
in a qualitative difference between the two estimators:
instrument noise is reduced toward zero, the full Fisher m
trix improves without bound (F→`), so ~aside from fore-
grounds, field rotation, primaryB modes, and the statistica
concerns outlined in Sec. III D! the iterative estimator shoul
be able to reconstruct the convergence with arbitrary ac
racy. This is not so for the quadratic estimator, whose rec
struction accuracy is limited by the nonzero value ofC̃l

BB

and the resulting upper bounds on^Ĉ&LSS
21 and F(quad). At

high noise levels where theB mode cannot be mapped, how
ever, Cl

BB1Nl
BB'C̃l

BB1Nl
BB since both sides of the equa

tion are noise-dominated, and in this regime the performa
of the two estimators should be nearly identical.

IV. STATISTICS OF FIELD ROTATION

Here we investigate the statistics of weak lensing fie
with the objective of understanding the importance of
field rotation v ~or equivalently the cross-potentialV) in
CMB weak lensing. Field rotation is a cosmological co
taminant in the sense that even with noiseless CMB data
no foregrounds, we cannot hope to recover two fieldsk and
v from the single equationBunlensed50. Therefore a nonzero
power spectrumCl

vv translates into an uncertainty in the le
s
-

u-
n-

ce

s
e

-
nd

reconstruction. We compute the power spectrumCl
vv by

considering deflection angles; this has the advantage of
viding a unified treatment of the higher-order Born appro
mation and ‘‘lens-lens coupling’’ effects considered by R
@22#. We work in the longitudinal gauge because in th
gauge the perturbations to the metric remain small~of order
1025 except in the very small portion of the universe ne
neutron stars and black holes! and so perturbation theor
techniques are valid. We then consider the implications
lensing reconstruction; for near-term experiments, the ef
is seen to be negligible.

A. Lensing power spectra

In the flat-sky approximation, we treat the photons
propagating in roughly the2êz direction so that the CMB
experiment looks in theêz direction; the ‘‘sky’’ is in thexy
plane. The spacetime metric observed by the photon is~so
long as it does not stray far from thez axis!

ds25a2~t!@2~112C!dt21~122C!

3„dx21 sinK
2 x ~dn̂x

21dn̂y
2!…#, ~41!

where the Newtonian potentialC is generated by the non
relativistic matter inhomogeneities, and sinK x
5K21/2sin (K1/2x) whereK52VKH0

2 is the curvature of the
universe. The null geodesic equation in this metric is

d

dr
S dn̂

dr
sinK x D 522

]C

]n̂
sinK x. ~42!
2-9
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The initial conditions aren̂(x50)5n̂0 and]xn̂(x50)50.
The usual method here is to apply the first-order Bo

approximation to Eqs.~42!, i.e. we perform the integration
over the unperturbed photon trajectory. If we integrate f
ward, we find that

n̂~x!5n022 E
0

x

W~x8,x!
]C„x8,n̂~x8!…

]n̂
dx8, ~43!

where W(x8,x)5 cotK x82 cotK x. We may now apply the
second-order Born approximation, in which we integrate
over the unperturbed photon trajectory but rather over
photon trajectory given by the first-order Born approxim
tion, Eq.~42!. Taylor-expanding the result to second order
C yields

n̂~x!5n̂022 E
0

x

W~x8,x!] n̂C~x8,n̂0!dx8

14 E
0

x E
0

x8
W~x9,x8!W~x8,x!] n̂

2

3C~x8,n̂0!•] n̂C~x9,n̂0!dx9dx8. ~44!

The convergence and field rotation at radial coordinatex are
most easily derived by taking the angular Fourier transfo
of this result. If we compute the deflection angle and perfo
the (k,v) decomposition of Eq.~8!, we derive

k l52 l 2 E
0

x

W~x8,x!C l~x8!dx822 (
l8

~ l8• l!@ l8•~ l2 l8!#

3E
0

x E
0

x8
W~x9,x8!W~x8,x!

3C l8~x8!C l2 l8~x9!dx9dx8 ~45!

and

v l522 (
l8

~ l8•! l!@ l8•~ l2 l8!#

3E
0

x E
0

x8
W~x9,x8!W~x8,x!

3C l8~x8!C l2 l8~x9!dx9dx8. ~46!

We now turn our attention to the statistics of Eqs.~45! and
~46!. We assume thatC can be described as a Gaussi
random field because even in the nonlinear regime, our
of sight passes through many regions of independent den
fluctuation and hence non-Gaussianity is suppressed by
central limit theorem. The power spectrum is

^C l1
~x1!C l2

~x2!&5d l11 l2,0Cl 1
CC~x1!d~x12x2!. ~47!

Here the projected potential power spectrum is determi
using the Limber equation:
08300
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C l
CC~x!5

1

sinK
2 x

PCS k5
l

sinK x
,x D5

9 sinK
2 x

4l 4 Vm0
2 H0

4~1

1z!2PdS k5
l

sinK x
,x D . ~48!

Here we have used the 3D power spectra of the Newton
potentialC and fractional density perturbationd5r/ r̄21;
these are normalized in accordance with~hereqP$C,d%)

Pq~k!5 E ^q~0!q~x!&eik•xd3x, ~49!

so that the logarithmic band power is given byDq
2(k)

5(k3/2p2)P(k). The lowest-order contribution to the con
vergence power spectrum is given by the familiar result~here
x0 is the comoving radial distance to the surface of last sc
ter!

Cl
kk5 l 4 E

0

x0
W~x,x0!2C l

CC~x!dx. ~50!

~There are higher-order corrections toCl
kk , but we do not

consider them here since the purpose of this paper is to
vestigate lensing reconstruction, not to provide a precis
theoretical computation of the lensing power spectra. Clea
if a sufficiently high-precision measurement ofCl

kk is made,
higher-order Born corrections should be considered in
theoretical interpretation of the power spectrum.! The field
rotation power spectrum is given to lowest order by

Cl
vv54 (

l8
~ l8•! l!2@ l8•~ l2 l8!#2

3E
0

x0
dx E

0

x

dx8W~x,x0!2

3W~x8,x!2C l 8
CC

~x!C l2 l8
CC

~x8!. ~51!

Note that the lowest-order~in the Born expansion! contribu-
tion to Cl

vv comes from the trispectrum of the density fiel
If the density field is non-Gaussian and this non-Gaussia
is insufficiently suppressed by the central limit theorem, th
Eq. ~51! will also contain a term from the connected trispe
trum ^CCCC&connected. However, because the facto
W(x9,x8) in Eq. ~46! vanishes asx9→x8, it follows that the
trispectrum components contributing toCl

vv involve correla-
tions between points at widely spaced radial coordina
which are suppressed.~Conceptually, this is because a singl
screen lens only produces convergence and not field rota
regardless of its Gaussianity or lack thereof. Thus if str
tures at different radial distances are independent, as
sumed in the Limber approximation, then there is no co
nected contribution toCl

vv .!

B. Effect on lensing estimation

We have computed the field rotation power spectrum,
~51! for our fiducial cosmology using an analytic approxim
2-10
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FIG. 2. ~a! The convergence~upper curves! and field rotation~lower curves! power spectra in the fiducial cosmology. These a
normalized tos8

linear51.0 ~solid curves! ands8
linear50.7 ~dashed curves!. ~b! The power spectra ofDE ~solid curves! andDB ~long dashed!

in ‘‘noise units’’ (mK arcmin!. The short-dashed curves are the totalB-mode power introduced by the convergence component. The u
curves are calculated fors8

linear51.0, the lower curves for 0.7.
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tion to the growth factor@23# and a nonlinear mapping of th
power spectrum@24#. The results are plotted in Fig. 2~a!.

The effect of the field rotation on the lens reconstruct
is to add an additional term to the CMB given byDx
5¹x•!¹V. The power spectrum ofDx is given by

Cl
DTDT5

1

p (
l8

1

l 84
@! l8•~ l2 l8!#2Cl 8

vvCl2 l8
TT ,

Cl
DTDE5

1

p (
l8

1

l 84
@! l8•~ l2 l8!#2Cl 8

vvCl2 l8
TE cos 2a,

Cl
DEDE5

1

p (
l8

1

l 84
@! l8•~ l2 l8!#2Cl 8

vv
~Cl2 l8

EE cos2 2a

1Cl2 l8
BB sin2 2a!, ~52!

Cl
DBDB5

1

p (
l8

1

l 84
@! l8•~ l2 l8!#2Cl 8

vv
~Cl2 l8

EE sin2 2a

1Cl2 l8
BB cos2 2a!,

wherea5f l82f l . The field rotation is forbidden to hav
first-order correlations with the primary CMB and the co
vergence (Cl

Tv5Cl
Ev5Cl

kv50) by parity; higher-order cor-
relations with the primary CMB will be highly suppresse
becausev is determined by small-scale fluctuations in de
sity along the line of sight with window function that van
ishes at the last-scattering surface. There are nonvanis
higher-order correlations betweenk and v, but we do not
investigate these here.@But note that by reducing the cond
tional covariancêv2&uF2(^v&uF)2, these correlations ma
enable us to reduce the ‘‘noise’’ due to field rotation furthe#

The Dx power spectrum@Fig. 2~b!# shows that the
v-induced modifications to the CMBB modes are of the
same order as instrument noise when the latter is reduce

(Nl
BB)1/2'N Pel 2/2l c

2
'0.2 mK arcmin. @Since we are trying
08300
-

ing

to

to set Bunlensed50, contamination in theB modes is more
serious for lensing than contamination in theE modes; this is
made mathematically explicit by multiplication byĈ(0,0)

21 in
Eq. ~31!.# SinceDx has vanishing first-order correlation wit
x, one might conjecture that the field rotation begins to
terfere with lensing when the noiseNP is reduced to
;0.2 mK arcmin; however,Dx is highly non-Gaussian and
exhibits many higher-order correlations withx, so we should
be cautious of trusting this conjecture. In the simulatio
~Sec. VI A!, we find that even for our reference experimen
with 0.25mK arcmin the field rotation does not significant
contaminate the reconstruction of the convergence field —
increases the mean squared error of the reconstruction
only ;15%. We conclude that~at least at the level of the
experiments considered here! the field rotation is not a prob
lem for lens reconstruction.

V. ESTIMATING THE CONVERGENCE POWER
SPECTRUM

Having investigated the reconstruction of the lensi
field, we turn our attention to the convergence power sp
trum, or equivalently the potential power spectrum, since
two are related byCl

kk5 1
4 l 4Cl

FF . In this section, we will
ignore any complications associated with the field rotation
these are likely to be small for near-term experiments.
Sec. V A, we integrate the likelihood function for the co
vergence to yield the ‘‘grand likelihood function’’ for the
lensing power spectrum; since this results in a functio
integral over lens realizations, we simplify the problem
introducing a Gaussian approximation. We make further
proximations in Sec. V B to yield an estimator that is suitab
for actual computation.

A. Likelihood function and Gaussian approximation

Our basic approach, modeled after Ref.@17#, is to com-
pute the grand likelihood functionL̄, which is a function of
the lensing power spectrum:
2-11
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L̄@Cl
kk#52 ln E Dk e2`(k)2L(k)5

1

2
ln detCkk

2 ln E Dk expF2
1

2
k†Ckk21k2L~k!G .

~53!

The objective of this section is to develop formalism to co
pute the minimum ofL̄. A ‘‘practical’’ version suitable for
numerical computation will be given in Sec. V B.

The integral in Eq.~53! has one dimension for each len
ing mode and hence cannot be performed by any brute-f
technique. In this situation the preferred solution is usually
use a Markov chain; unfortunately, the integral has of or
106 dimensions, and the integrand is expensive to comp
in

f,

ig
c

-

08300
-
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o
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hence Eq.~53! does not appear to be solvable by Mark
chains either. We therefore choose to approximate Eq.~53! as
a Gaussian, in which case the functional integral can be c
puted exactly:

L̄@Cl
kk#'

1

2
ln detCkk1

1

2
ln det@F~k* !1Ckk21#

1
1

2
k

*
† Ckk21k* 1L~k* !, ~54!

wherek* is the point whereL1 1
2 k†Ckk21k is minimized,

andF(k* ) is the curvature matrix, Eq.~35!, evaluated at the
lens configurationg5(k* ,0).

A grand likelihood gradientG l can then be defined:
.

e

G l5
]L̄

]Cl
kk

'
1

2
TrFCkk21

]Ckk

]Cl
kkG1

1

2
TrF „F~k* !1Ckk21

…

21S ]F~k* !

]Cl
kk

2Ckk21
]Ckk

]Cl
kk

Ckk21D G
2

1

2
k

*
† Ckk21

]Ckk

]Cl
kk

Ckk21k* 1
]L~k* !

]Cl
kk

1
]k*
]Cl

k H TrF „F~k!1Ckk21
…

21
]F~k!

]k G1
]

]k S 1

2
k†Ckk21k1L~k! D J U

k5k
*

.

~55!

Note thatL(k* ), and henceF(k* ), do not depend onCl
kk except implicitly throughk* . Also, if we use thatk* is the

maximum of 1
2 k†Ckk21k1L with respect tok, we find that the final derivative with respect tok in this equation vanishes

We further note that]Ckk/]Cl
kk is simply the projection operator onto thel representation ofSO(3), i.e. in harmonic space

it has 1’s as diagonal elements with multipolel and 0’s everywhere else. Definingdl to be the number of modes of multipol
l ~note that on the sphere,dl52l 11), this allows us to simplify Eq.~55! to

G l'
dl

2Cl
kk

2 (
l: u lu5 l

@„F~k* !1Ckk21
…

21# l,l

2Cl
kk 2

2 (
l: u lu5 l

uk* lu2

2Cl
kk 2

1
]k*
]Cl

kk
TrF „F~k* !1Ckk21

…

21
]F~k!

]k U
k
*
G . ~56!
-

m-

the
Here the sums are over all modesl of multipole l.
It sometimes occurs that we wish to estimate the lens

power spectrum not by estimating the individualCl
kk , but

rather by ‘‘binning’’ the power spectrum. This is useful i
e.g., the (S/N)2 per multipole is low or if the partial-sky
nature of a survey causes confusion between power in ne
boring multipoles. In this case, we introduce ‘‘basis fun
tions’’ $M m% for the lensing power spectrum:

Cl
kk5 (

m
cmM l

m . ~57!

The coefficientscm are now to be estimated. The maximum
likelihood estimator is then the choice ofcm that satisfies:

(
l

M l
mG l50 ;m. ~58!
g

h-
-

B. Practical estimator and uncertainty

Ideally, we would like to implement the maximum
likelihood estimator for the coefficientscm , i.e. Eq. ~58!.
Unfortunately, this involves setting to zero some linear co
bination of theG l ’s given by Eq.~56!, which is a highly
nontrivial task. We therefore take the approximation that
curvature matrixF does not depend onk, thenG l is seen to
depend only on the quantitiesCl

kk and

v̇ l[
1

2Cl
kk 2 (

l: u lu5 l

uk* lu2, ~59!

which explicitly depends onCl
kk but is also implicitly a

function ofCl
kk through its dependence onk* . Note that the

functional form ofG l is G l(Cl
kk ,v̇ l)5G l

(0)(Cl
kk)2 v̇ l . Equa-

tion ~58! then reads
2-12
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05 (
l

M l
m@G l

(0)~Cl
kk!2 v̇ l~cn!#5Gm

(0)~cn!2vm~cn!,

~60!

where we have definedvm(cn)5 ( l M l
mv̇ l(cn). We are thus

attempting to solvevm(cn)5Gm
(0) , but Gm

(0) is some compli-
cated function of the convergence power spectrum coe
cients $cn%. We solve this problem by approximatin
Gm

(0)(cn)'^vm(cn)&LSS[cn] , i.e. the expected value ofvm(cn)
where the LSS realizations are drawn from a lensing con
gence power spectrumCl

kk5 (n cnM l
n . We therefore use

the estimator

vm~cn!5^vm~cn!&LSS[cn] ;m. ~61!

Equation ~61! is somewhat abstract, so we clarify i
meaning here. The statisticvm(cn) is proportional to the
power spectrum of the iterative convergence estimator
tained by solving Eq.~27!; this depends on the prior powe
spectrumCl

kk5 (n cnM l
n as well as on the data. The solu

tion $cn% to Eq.~61! is the set of power spectrum coefficien
for which vm equals its expected value~which is most easily
determined via Monte Carlo simulation!. This approach has
the advantage of ‘‘calibrating out’’ the noise biases discus
by Ref. @21#. ~Note that some convergence modes—tho
corresponding to large eigenvalues of the curvatureF—are
reconstructed better than others. What is especially us
aboutvm , or equivalently the power spectrum of the iterati
estimator, is that the iterative estimator filters out the poo
reconstructed modes. Thus the convergence modes tha
reconstructed more accurately are weighted more heavil
determiningvm and hence in determining the convergen
power spectrum.!

Finally, we wish to determine the uncertainty on the s
lution $cn% to Eq. ~61!. If we average over many conve
gence modes, then this uncertainty should be given by
inverse of the grand Fisher matrix(G)F for power spectrum
determination:

(G)Fm,m85^GmGm8&LSS'^dvmdvm8&LSS

5^vmvm8&LSS2^vm&LSŜ vm8&LSS, ~62!

i.e. (G)F is the covariance matrix ofvm . If the reconstructed
convergencek* can be approximated as a Gaussian rand
field ~which is true in the case where the reconstruction
high signal-to-noise ratio since in this case thek* 'k, which
is Gaussian becausek is produced by many LSS fluctuation
along the line of sight!, then we can take the Gaussian a
proximation to Eq.~62!. This is obtained by considering th
covariance ofv̇ l according to Eq.~59! and using Wick’s
theorem; this yields

(G)Fm,m85 (
l

dlM l
mM l

m8

2 S Cl
k
*

k
*

Cl
kk 2 D 2

. ~63!

We remind the reader once again that the approximation
~63! to the power spectrum estimation uncertainty is o
08300
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valid if the reconstructed convergence fieldk* is approxi-
mately Gaussian. Ifk* has a significant trispectrum whe
averaged over LSS1CMB1noise realizations, then Eq.~62!
must be used instead. This is only a problem in the l
signal-to-noise~high l ) regime in which lensing modes can
not be reconstructed individually and their power is on
statistically detected.

VI. NUMERICAL SIMULATIONS
Throughout our derivation of lensing and tensor pow

estimators, we have made various approximations
should be tested. The most robust way to do this is to c
duct a numerical simulation of the CMB and lensing fie
and then construct lensing estimators, comparing the erro
the theoretical estimates of Eqs.~32! and ~38!. In all cases,
we have used a flat sky with toroidal boundary conditio
We will only simulate the CMB polarization here; formally
the polarization-only estimators are obtained by settingNT
5` in the relevant equations.

A. Reconstructing the convergence

The simplest simulations involve reconstruction of t
convergencek. We generate simulated CMBT, Q, U, and
k fields on a 34°088 square patch of sky with resolution
arcmin per pixel (204832048 pixels!; lens the simulated
CMB; and add appropriate noise.

We wish to compare the quadratic estimator, Eq.~37! with
our new estimator, Eq.~27!. The former is relatively straight-
forward to compute; the latter requires that we apply
methods of Sec. III B. We simulate Gaussian random real
tions of theQ, U, andk fields, perform the lensing remap
ping, and add appropriate noise. We then compute the
mators of Eqs.~37! and ~27!. There are two tricks that are
very useful in numerical computation of these estimato
first, simultaneous computation of inner productst†s l

ku for
all l; and second, stochastic trace computation. We disc
each of these here.

The simultaneous computation of inner products was
troduced by Refs.@4,10# in order to compute quadratic est
mators. A general version of this is~on a flat sky; see Ref
@25# for an all-sky version!

(
l

S l 2

2 D ~ t†s2 l
k u!ei l•n̂5 (

XP$T,Q,U%
¹n̂•@ tX* ~ n̂!¹n̂uX~ n̂!#.

~64!

~Note that this equation requires thatt andu be written in the
$T,Q,U% basis sinceE and B have different transformation
properties under lensing. Also the asterisk ontX is of course
unnecessary ift is a real field.! If t and u are expressed in
real-space, then the right-hand side is easily evaluated.
quantities 1

2 l 2t†s l
ku are then obtained via a fast Fourie

transform; division then trivially removes thel 2/2. There is a
zero-wavenumber mode corresponding tol 50 which pre-
sents a problem for division. Here we simply set this conv
gence mode to zero; in the complete all-sky treatment
would be justified by noting that the convergence is2 1

2

times the divergence of the deflection angle vector, he
2-13
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* k d2n̂50 and sok l 5050. @There is a corresponding tric
for the field rotation: Eq.~64! remains valid if we make the
replacementss l

k→s l
v and¹n̂uX(n̂)→!¹n̂uX(n̂).#

The trace in Eq.~27! is most easily evaluated stochas
cally: if we generate a random noise vectorh with covari-
anceN, then the trace is equal to the expectation value:

Tr@Lg
†21C(0,0)

21 s l
kCĈ(0,0)

21 Lg
21N#

5^~Ĉ(0,0)
21 Lg

21h!†s l
kCĈ(0,0)

21 Lg
21h&. ~65!

If this Monte Carlo method is used to compute the trace, t
the Monte Carlo error in its computation for one realizati
of h is less than or equal to the instrument noise contribut
to the uncertainty on the right-hand side of Eq.~27!. @This is
because the right-hand side of Eq.~27! is a quadratic func-
tion of x̂, with covarianceĈ, which is greater than the nois
covarianceN along all directions.# Since the Monte Carlo
error variance scales as the reciprocal of the number of r
izations ofh used, it follows that of order a few realization
of h are sufficient in evaluating Eq.~65!. In fact for the
reference experiments described here, we find that the
little gain in taking more than one realization ofh.

We solve Eq.~27! using the iterative procedure:

kn11,l* 5z l@Lg
21#2 l,2 l8Cl 8

kk$~Ĉ(0,0)
21 Lg

21x̂!†s l8
k CĈ(0,0)

21 Lg
21x̂

2Tr@Lg
†21Ĉ(0,0)

21 s l8
k CĈ(0,0)

21 Lg
21N#%1~12z l !kn,l* .

~66!

Hereg is the lens configuration with convergencek and no
rotation: g5(k,0), and thez l are convergence parameter
we choose them to be

z l5
z (c)

11Cl
kkFl

kk
, ~67!

where z (c) is a constant satisfying 0,z (c),2. It is found
that the Wiener-filtered quadratic estimator, Eq.~37!, is a
good choice for initializing this iteration. The choice ofz (c)
is an intricate issue: if it is set too small, the rate of conv
gence of the iteration becomes unacceptably slow; if it is
too high, the iteration can fail to converge entirely. The co
vergence can be understood by approximating Eq.~66! as
linear in kn :

kn11,l* 'z lCl
kk@F~kn2k̂ !# l1~12z l !kn,l . ~68!

Here we have approximated the response matrix of the l
lihood gradient using the curvature matrix. Then the requ
ment for convergence is that all of the~possibly complex!
eigenvalues of the matrix

Rl,l85d l,l82z (c)

Cl,l8
kk21

1Fl,l8

Cl
kk211Fl

kk
~69!

lie within the unit circle. Note that, averaged over CM
1noise realizations,̂F &5F, and hencê R&5(12z (c))1;
08300
n

n

l-

is

-
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-

e-
-

hence we conclude that the iterative procedure should
convergent for 0,z (c),2 in the absence of curvature co
rections. In reality, very small values ofz (c) may be neces-
sary for convergence, especially in cases where curva
corrections are large. SinceF1Ckk21 is positive definite at
the maximum posterior probability point, there is always
positive value ofz (c) that results in convergence. The cas
in which the small values ofz (c) are required are those i
which curvature corrections are large; we have found fr
our simulations that these are the low-noise experime
Convergence is generally found to be faster for the higl
convergence modes.

One problem we have encountered is that for experime
with low noise and wide beam (uFWHM>10 arcmin!, the
iterative estimator given by Eq.~66! is unstable. This insta-
bility arises because the noiseNl is strongly blue; hence the
delensing operationLg

21 in Eq. ~66! mixes high-multipole
noise down to lower multipoles where it disrupts the lens
estimation. This problem is in principle solvable by using t
correct (C1Lg

21NLg
†21)21 weight function in place of

C(0,0)
21 in Eq. ~23!. However, since this occurs in a regim

where the iterative approach does not improve upon the q
dratic estimator approach anyway, we recommend simply
ing the quadratic estimator for wide-beam experiments.

We illustrate by considering the reconstruction of lensi
using reference experiments A–F. The residual error in
reconstructed convergencek̂, as measured by computing th
power spectrum of the differencek̂2k between input and
reconstructed convergence maps, is shown in Fig. 3 for b
quadratic and iterative estimators. For the iterative estima
applied to Ref. expt. C, we setz (c)50.12 in Eq.~66!, used
three realizations of theh field in Eq.~65!, and performed 64
iterations. Reference expt. F has a lower noise level and
is necessary to use the smaller convergence parameterz (c)
50.04; the convergence is thus slower and we used
iterations. Reference expt. A has a higher noise level and
we can usez (c)50.2 and 24 iterations. Maps of the input an
reconstructed convergence fields for the Ref. expt. C rec
struction are shown in Fig. 4. The dependence of the itera
estimator reconstruction accuracy on noiseNP and beam size
~FWHM! uFWHM is shown in Fig. 5. We have also displaye
in Fig. 5 the~theoretical! reconstruction error curves for th
quadratic estimator in the absence of instrument noise. Th
curves represent the fundamental limit to the reconstruc
accuracy possible with quadratic estimators; it is readily s
that the iterative estimator can do better if noise is lo
(NP,0.5–1 mK arcmin, depending on the range ofl con-
sidered!. @Note that we displayCl

kk in these plots, wherea
some authors have displayed insteadl ( l 11)Cdd/2p, where
d5¹F is the deflection angle. The two are related byl ( l
11)Cdd/2p5(2/p)Cl

kk .#
The accuracy of reconstruction can also be represente

the correlation coefficientr l5Cl
kk̂/ACl

kkCl
k̂k̂. The correla-

tion coefficient is the figure of merit if the objective is t
cross-correlate the convergence from CMB lensing with
other tracer of the density~e.g. weak lensing of galaxies!,
since the signal-to-noise ratio of the cross-correlation is
2-14
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FIG. 3. The power spectrum of the error in the convergence reconstruction for reference expts. A–F. The top curve in each pa
the overall convergence power spectrumCl

kk . The middle curve shows the theoretical, i.e. from Eq.~38! power spectrum of the convergenc

error k̂2k in the Wiener-filtered quadratic estimator Eq.~37!; the ‘‘1 ’’ data points indicate the power spectrum of this error as recove
from simulations. The error power spectrum for the iterative estimator Eq.~66!, again as recovered from simulations, is shown with the
3 ’’ data points. The bottom curve shows the theoretical best performance if the Fisher matrix limit Eq.~32! can be achieved, i.e. if we ha
a truly optimal estimator and no curvature corrections. Note the more dramatic improvement provided by the iterative estimator
noise is small. Field rotation was neglected in the calculations for this figure.
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termined byr l . We have plotted the correlation coefficie
in Fig. 6 for the various reference experiments. The itera
estimator offers improved reconstruction, especially for
lower-noise experiments~C–F!.

Up until this point we have neglected the field rotationv;
we should verify that this is justified. We do this by intro
ducing field rotation with power spectrum given by Eq.~51!
as computed in Sec. IV B with normalizations8

linear50.84.
We then compare the performance of the iterative estima
Eq. ~66!, with and without the field rotation. The compariso
08300
e
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is shown in Fig. 7; it is seen that the field rotation increas
the mean squared error of the reconstruction by only;5%
for Ref. expt. E (0.5mK arcmin noise, 2 arcmin beam! and
;15% for Ref. expt. F (0.25mK arcmin noise, 2 arcmin
beam!.

As a final note, we find that for low noise levels, a lar
number of iterations is required because our iterative proc
is ill-conditioned. Indeed, it is possible that there are eig
values ofR that are so close to unity that their correspondi
modes have not converged even after tens or hundred
panel, we
tered

y.
FIG. 4. A simulated reconstruction of the lensing convergence using polarization and reference expt. C parameters. In the left
display the realization of the convergence fieldk used to produce the simulated CMB. The reconstructions using the Wiener-fil
quadratic estimator and the iterative estimator are shown in the center and right panels, respectively. These frames are each 8°328 in angular
width, corresponding to 1/16 of the simulated area; the scale ranges from black~diverging, k520.12) through white~converging,k5
10.12). Although all lensing multipoles up tol 53600 are simulated, we have only displayed thel<1600 modes in these figures for clarit
Field rotation was neglected in the calculations for this figure.
2-15



is

usable for
e

CHRISTOPHER M. HIRATA AND UROSˇ SELJAK PHYSICAL REVIEW D68, 083002 ~2003!
1x10-9

1x10-8

1x10-7

0 200 400 600 800 1000 1200 1400

C
on

ve
rg

en
ce

 p
ow

er
 p

er
 m

od
e,

 C
κκ L

Multipole number, L

(a) Dependence on noise (θFWHM = 4 arcmin)

11.3

5.66

2.83

1.41

0.50

0.25

0 200 400 600 800 1000 1200 1400

C
on

ve
rg

en
ce

 p
ow

er
 p

er
 m

od
e,

 C
κκ L

Multipole number, L

(b) Dependence on beam (NP = 1.41 µK arcmin)
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FIG. 5. The dependence of the mean squared error in lensing reconstruction,^uk l2k̂ lu2&, on the instrument parameters. The baseline
Ref. expt. C,NP51.41mK arcmin,uFWHM54 arcmin. The thick solid line is the raw power spectrumCl

kk ; the thin solid lines indicate the
mean squared error for the lensing reconstruction using the iterative estimator. As described in the text, the iterative estimator is un
wide-beam experiments (>10 arcmin!; we used the quadratic estimator for these cases~dot-dashed curves!. The dashed lines indicate th
ideal zero-noise reconstruction error from the quadratic estimator according to Eq.~38! with polarization only~top! and temperature
1polarization~bottom!. ~a! ChangingNP ; units aremK arcmin. ~b! ChanginguFWHM ; units are arcmin.
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iterations; if this is the case, then it should be possible
improve upon our results by increasing the number of ite
tions, or by finding an iterative scheme that converges fa
than Eq.~66!. This is allowed by the Fisher matrix nois
limits, which are significantly lower than the achieved no
levels~see Fig. 3!. We consider this possibility unlikely sinc
we tried increasing the number of iterations in several of
simulations and found little improvement. Additionall
modes with eigenvaluelR close to unity correspond to fla
directions of the curvature matrixF @see Eq.~69!#; such
directions, however, cannot be reconstructed accurately
gardless of how many iterations are used.

B. Extracting the convergence power spectrum

We compute the lensing power spectrum from simula
data by solving Eq.~61!. The approach, once again, is iter
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tive: we adjust the power spectrumCl
kk until vm5^vm&LSS.

@Note that both the left and right sides of Eq.~61! depend on
Cl

kk .# We will attempt here to compute the binned pow
spectrum, i.e. we choose a basis for the convergence po
spectrum given by

M m
l 5H 1 mD l , l<~m11!D l ,

0 otherwise,
~70!

where D l is the bin width andm ranges from 0 through
Nbin21. We are thus attempting to reconstruct the pow
spectrum inNbin bins, equally spaced out to maximum mu
tipole l max5NbinD l .

Our iterative algorithm for solving Eq.~61! is
nction
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(a) Quadratic estimator
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FIG. 6. The correlation coefficientr5^kk̂&/^k2&1/2^k̂2&1/2 between the estimated and reconstructed lensing convergences as a fu
of multipole l, as determined in simulations. The correlation coefficients for the quadratic estimator are shown in panel~a!; those for the
iterative estimator are shown in panel~b!. In both of these panels, the eight curves are for reference expts. A, B, C, D, E, and F~bottom to
top! from Table I. Field rotation was not included in the calculations for this figure.
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FIG. 7. The effect of field rotation on lensing estimation for Ref. expts. E and F.~a! Power spectra of the convergencek ~thick solid line!,

convergence errork2k̂ with field rotation~thin solid lines!, and convergence errork2k̂ without field rotation~thin dashed lines!. ~b! The
worsening of the reconstruction due to the presence of field rotation, as measured by the ratio of power spectra of the converge

^u(k2k̂) l u2&with v /^u(k2k̂) l u2&without v . The same CMB, LSS, and noise~scaled appropriately to the experiment! realizations were used fo
all the simulations in this figure.
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cm,n115cm,n
12z(p)Fcm,n1

dm

2^vm~cn,n!&LSS[cn,n]

3S vm~cn,n!

^vm~cn,n!&LSS[cn,n]
21D G z(p)

, ~71!

wheren represents the iteration number, anddm is the num-
ber of modes that fall into themth band. It is readily apparen
that the final valuescn,` will satisfy vm5^vm&LSS.

In order to compute the convergence power spectrum
timator, the expected value^vm(cn,n)&LSS[cn,n] must be deter-
mined; the simplest method for doing this is via Monte Ca
simulations. Since in the end we are solving the equa
vm5^vm&LSS, we want to make sure that the Monte Carlo
induced error in the right-hand side of this equation is sm
compared with the statistical error in the left-hand s
~which depends only on the data and oncn,n). It is trivial to
see that afterNMC Monte Carlo simulations, the variance
determination of the right-hand side is 1/NMC of the statisti-
cal variance in the left-hand side. Therefore, we expect th
we useNMC Monte Carlo simulations to determine^vm&LSS,
then the variance of our determination of the converge
power spectrum will increase by a factor of 111/NMC . A
reasonable choice, then, is to takeNMC53, which results in
15% increase in the variance of the power spectrum esti
tor over the case ofNMC5` ~exact computation of
^vm&LSS). The uncertainty in the power spectrum estimati
can then be estimated from Eq.~62! with the correction for
NMC :

scm
5

Cl
kk 2

Cl
k
*

k
*
A 2

dm
~11NMC

21 !. ~72!

~Note that this is the standard Gaussian formula for e
bars, except that it is corrected forNMC and is written in
terms of the filtered power spectrumCl

k
*

k
* instead of the

noise power.!
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In Fig. 8~a!, we show a determination of the convergen
power spectrum from simulated data using Ref. expt. C no
parameters. The choice of bins wasNbin532, D l 550, l max

51600, and the survey area was 0.355 steradi
(2048 arcmin32048 arcmin, with toroidal periodic bound
ary conditions!. We initialized the power spectrum estima
tion with the white spectrumCl

kk5131029, corresponding
to cm,051029. We usedz (p)50.5 for the first two iterations
of Eq. ~71!, which are sufficient to bring the estimated pow
spectrumcm,n52 to the correct order of magnitude. Once th
‘‘ballpark’’ estimation has been completed, we usedz (p)51
for the subsequent (n>2) iterations.

An examination of Fig. 8~a! shows that the power spec
trum estimator Eq.~71! has been successful in reproducin
the qualitative features of the power spectrum; however,
power has evidently been overestimated at the high-l end.
We can perform a quantitative analysis of the performance
the power spectrum estimator using thex2 test, using the
Gaussian error estimate of Eq.~72!. The x2 value for thel
,1000 region ~where the power spectrum determinatio
should be cosmic-variance limited! is x2525.46 for 20 de-
grees of freedom (p50.18), indicating that Eq.~72! appears
to be giving a reasonable estimate of the uncertainty on
power spectrum.

The same is not true of the high-l region 1000< l
,1600, for which we computex2553.05 for 12 degrees o
freedom (p5431027). It is readily apparent from Fig. 8
that the failure of thex2 test is due to an upward bias in th
power spectrum estimator Eq.~71!. This bias occurs because
regardless ofcm , our power spectrum estimator assumes t
there is no convergence power atl>1600. However, it still
detects theB modes induced by this short-wavelength co
vergence power, and introduces excess convergence pow
l ,1600 to reproduce theseB modes — henceCl

kk is over-
estimated. This bias can be removed by either estimating
modes to higherl or including the aliasing of power from
those modes into the modes we estimate as an additi
source of noise@26#. This explanation of the upward bias
confirmed by Fig. 8~b!, in which we have artificially ‘‘turned
2-17
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FIG. 8. ~a! Simulated convergence power spectrum estimation from Ref. expt. C with solid angle 0.355 steradians. The solid cur
fiducial modelCl

kk ; the points are the convergence power spectrum measured from simulated data after 5 iterations.~b! The same, excep
that thel>1600 convergence modes were ignored in producing the simulated data~however, exactly the same CMB1LSS1noise realization
was used!. The horizontal error bars indicate the widths of the bins, while the vertical error bars are the 1s measurement uncertaintie
according to Eq.~72!. Note that the vertical error bars include the Monte Carlo error associated with usingNMC53 simulations to determine
^vm&; if we had calculated̂vm& exactly (NMC@1), the vertical error bars would be 13% smaller~see text for details!.
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off’’ the lensing effect for convergence modes atl>1600,
then produced a simulated data set and applied the po
spectrum estimator Eq.~71!. In order to make the compari
son between the original simulation and the restricted~i.e.
short-wavelength lensing turned off! simulation as simple as
possible, we have used the same CMB, noise, and LSS
izations for both. One can see by comparing Figs. 8~a! and
8~b! that there is little effect at lowl, where the power spec
trum estimation is limited by cosmic variance. However,
high l, one can see that the bias present in the original si
lation has disappeared in the restricted simulation, ther
confirming that the bias was due to high-l convergence
power. Thex2 for the 1000< l ,1600 range has been re
duced to x2531.36 ~12 degrees of freedom,p51.7
31023), which is still indicative of underestimation of th
uncertainty in thecm . Thus we conclude that in this regim
either the Gaussian error estimate Eq.~72! is underestimating
the error by a factor of;A31/12'1.6, or the error bars ar
correlated, or the iteration of Eq.~71! has not completely
converged.

In a real lensing experiment, the underlying prima
power spectrumCl

EE is unknown and only the lensed pow
spectrum is directly observable~and even our knowledge o
this is limited by instrument noise and cosmic varianc!.
Thus a slightly more complicated version of the above ana
sis will be necessary to simultaneously solve forCl

EE and
Cl

kk . ~Although since in the regime we are examining,l
,3000, theE power spectrum is dominated by prima
anisotropies rather than lensing, we do not expect a de
eracy between these two quantities.! It will also be necessary
to estimate the convergence power spectrum well beyond
region of interest in order to avoid the upward bias descri
here. Since the signal-to-noise ratio at highl is low, it will be
necessary to use wider bins~i.e. largerD l ) in this region.
The choice of exactly which bins to use must be determi
by the characteristics of the specific experiment.
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VII. CONCLUSIONS

Weak gravitational lensing of the CMB allows us to r
construct the~projected! mass distribution in the universe
thereby probing large-scale structure and its power spectr
Since the window functions for lensing peak at redshiftz of
order unity, lensing offers the possibility of using the CM
to study the low-redshift universe@1–5#. ‘‘Cleaning’’ of lens-
ing from CMB maps is potentially valuable for studying th
primary CMB, particularly for inflationary gravitationa
wave searches using the low-lB-mode polarization@11,12#.
Since the primary CMB polarization is expected to conta
only E modes on the relevant angular scales (l of order 103),
while lensing transfers some of the CMB polarization pow
into B modes@9#, all B modes that we see on these scales
due to lensing~or foregrounds!. Thus the CMBB-mode po-
larization allows much better lensing reconstruction than
possible using temperature data alone. It is thus of interes
consider optimal methods of reconstructing the lensing fi
from CMB polarization data; in this paper, we have inves
gated this problem in detail and improved significantly
the previous quadratic estimator methods@10#. We have
shown that this improvement can be up to an order of m
nitude in mean squared error over the zero-noise recons
tion error for the quadratic estimator.

We make several comments concerning the present ca
lations. First of all, our lensing estimator, Eq.~21!, while
statistically superior to the quadratic estimator, still does
achieve the Cramer-Rao bound on reconstruction accur
We have argued that this results in part from ‘‘curvature c
rections,’’ fluctuations in the curvature matrix that render t
Cramer-Rao bound impossible to achieve~more generally,
this should also serve as a warning against blindly assum
that the statistical errors in any measurement are given
F21.!. We expect that our lensing reconstruction estimato
near-optimal since it is an approximation to the maximu
2-18
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likelihood estimator and our iterative estimator shows
signs of incomplete convergence, however the possibility
further improvement has not been ruled out.

Secondly, we have assumed negligible primaryB mode
polarization here~although the formalism described herein
trivially modified to include significant primaryB modes, the
results would be qualitatively different!. In the absence o
vector or tensor perturbations, this is correct; if vector
tensor perturbations are present, then one must consider
effect on lensing reconstruction. In the case of inflation
gravitational waves, primaryB modes are generated most
on very large angular scales; the arcminute-scale anisotro
used for lensing reconstruction are uncontaminated@10#.
~Formally, if we were doing a lensing reconstruction with t
objective of cleaning lensing contamination of the tens
induced reionization bump atl ,20, we would setNl

BB5`
for l ,20 so that the lensing reconstruction does not rem
tensorB modes.! A more rigorous investigation of the effec
on inflationary gravitational wave searches is deferred to
ture work.

Thirdly, the real CMB is contaminated by foregrounds
an important issue for all CMB anisotropy experiments. O
advantage of using CMB polarization for lensing reconstr
tion is that whereas the small-scale CMB temperature fiel
heavily contaminated by scattering-induced second
anisotropies such as the thermal and kinetic Sunya
Zel’dovich effects, Ostriker-Vishniac effect, and patc
reionization, these effects are much smaller for polarizat
@27#. However, polarized point sources and galactic fo
grounds are still a serious concern. These have very diffe
frequency dependence than the blackbody fluctuations c
acteristic of the CMB, and this property has been exploi
to remove them; unfortunately, their fluctuation spectru
degree of polarization, non-Gaussianity, and variations
frequency dependence are poorly understood. Galactic f
grounds do not correlate with the cosmological signals,
in this sense the residuals from their subtraction act like
strument noise contaminating theB-mode ~and, to a lesser
extent, E-mode! polarization. The foreground power spe
trum is likely to be different from that of instrument nois
and is variable across the sky; nevertheless, if the covaria
matrix of the foregrounds~or residuals after foreground sub
traction! can be determined, then we can add the foregro
covariance to the instrument noise covariance matrixN. ~If
the statistical properties of the foreground residuals can
be determined or at least constrained, then any cosmolog
analysis is pointless regardless of the methods used.! Polar-
ized point sources produce Poisson noise; also since man
them are extragalactic, one could be concerned about
correlation with LSS and hence the lensing signal. We le
a detailed study of foregrounds and their impact on lens
reconstruction to future investigation. We note that the p
dicted levels of foreground contamination from dust and s
chrotron galactic emission are at a level of a fewmK arcmin
prior to any frequency cleaning@28#, comparable to the nois
levels discussed here. Frequency cleaning should reduce
at the expense of amplifying instrument noise. If foregrou
removal is inadequate, this may result in anomalies in
final results such as unphysical correlations between the
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vergence maps and CMB polarization, variation of the co
vergence power spectrum between ‘‘clean’’ and ‘‘dirty’’ po
tions of the sky, correlation of the convergence maps w
synchrotron or dust emission, etc.

In summary, we have shown that taking into account
full likelihood function allows improved reconstruction o
the lensing of the CMB polarization field over that achiev
by quadratic statistics. For purposes of computing the lens
power spectrum or cross-correlating CMB lensing with a
other tracer of the cosmological density field, the most i
portant improvement is at highl where earlier approaches d
not reconstruct the convergence at high signal-to-noise.~At
low l, the reconstruction is already cosmic variance limite!
If one’s objective is to clean out the lensing effect in sea
of primordial gravitational waves, then the relevant quant
is the residual error in the reconstruction, and it is import
to reduce this even if the convergence has been mappe
high signal-to-noise; hence improvement at all multipoles
useful. We conclude that the likelihood-based estimators
veloped here offer the best prospective so far to extract
full amount of information from future high-resolution CMB
polarization experiments.
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APPENDIX A: QUADRATIC ESTIMATOR

In our simulations, we have compared the error of o
iterative estimator, Eq.~27!, with that of the quadratic esti
mator, Eq.~37!. Here we show that the latter estimator co
responds to the optimally weighted quadratic estimator,
proposed by Ref.@10#. Statistically isotropic noise is as
sumed throughout.

We begin by expanding Eq.~38! using the formula forfl
k

given by Eq.~33!. The off-diagonal elements vanish by sym
metry, while the diagonal elements are

Fl
(quad)5

1

2 (
l1

Tr$@ f2 l
k #2 l1 ,l2

@^Ĉ&LSS# l 2
21

3@ fl
k# l2 ,2 l1

@^Ĉ&LSS# l 1
21%, ~A1!

where we have definedl25 l2 l1, and the inverses are 333
matrix inverses~using the$T,E,B% basis!. Next we note that
to first order in k, the correlation between two Fourie
modes of temperature or polarization is

^x̂l1
x̂2 l2

† &5@ fl
k# l1 ,2 l2

k l1O~k2!. ~A2!

A general quadratic estimator for the convergencek is then
constructed as
2-19
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k̂ l5 (
l1

x̂2 l2
† @J2 l#2 l2 ,l1

x̂l1
, ~A3!

whereJ2 l is the weight matrix, which we assume witho
loss of generality to be Hermitian~since the anti-Hermitian
part does not contribute tok̂ l). We further require it to sat-
isfy @J2 l#2 l2 ,l1

5@J l# l2 ,2 l1
† . ~This guarantees that the es

mate k̂ is a real field.! We can construct the optimall
weighted unbiased~to first order! estimator fork by mini-
mizing the variance of the estimator~neglecting the trispec
trum contribution!

Vl5^uk̂ lu2&LSS

' (
l1

Tr$@^Ĉ&LSS# l 2
@J2 l#2 l2 ,l1

@^Ĉ&LSS# l 1
@J l# l1 ,2 l2

%,

~A4!

subject to the constraint that the estimator be unbiased to
order ~i.e. have unit response!:

15 (
l1

Tr$@ fl
k# l1 ,2 l2

@J2 l#2 l2 ,l1
%. ~A5!

We may compute the minimum of Eq.~A4! constrained by
Eq. ~A5! using the method of Lagrange multipliers. Th
equationdVl1l21d150 becomes

(
l1

TrH 2@^Ĉ&LSS# l 2
@dJ2 l#2 l2 ,l1

@^Ĉ&LSS# l 1
@J l# l1 ,2 l2

1
1

l
@ fl

k# l1 ,2 l2
@dJ2 l#2 l2 ,l1J 50. ~A6!

The solution to this~allowing dJ2 l to be arbitrary! is

@J2 l#2 l2 ,l1
5

1

2l
@^Ĉ&LSS# l 2

21@ fl
k# l2 ,2 l1

@^Ĉ&LSS# l 1
21.

~A7!

The correct normalizationl is obtained by substitution into
Eq. ~A5!; it is easily seen to bel5Fl

(quad). The variance of
this estimator in the absence of lensing, determined by s
stitution into Eq.~A4!, is 1/Fl

(quad). The quadratic estimato
we have used, Eq.~37!, is then seen to be a Wiener-filtere
version of Eq.~A7! with the optimized choice forJ, Eq.
~A7!, and its covariance Eq.~39! then follows from the
theory of Wiener-filtering.

Hu and Okamoto@10# derive a quadratic estimator usin
essentially the same method outlined in this appendix. W
they have chosen to separately optimize the different com
nents ofJ (TT, TE, EE, TB, andEB) and then combine
these to form a ‘‘minimum variance’’ estimator, the end r
sult of the optimal filtering must be the same.~Note that
while our covariance response functionf is the same as Hu
and Okamoto’sf aside from a factor ofl 2/2 due to use ofF
vs k as the fundamental field, we have usedJ in place of
their F/A to avoid confusion with the Fisher matrix.!
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APPENDIX B: LENSING B-MODES AND IDEALIZED
RECONSTRUCTION

The purpose of this appendix is to investigate the ques
of whether, in the absence of noise and field rotation,
equationBunlensed50 could be used to completely reconstru
the convergence field. We show that with probability 1, it
possible to reconstruct most of the convergence mod
There may remain a small number of convergence mo
that cannot be reconstructed by this method. If we imp
periodic boundary conditions, the fraction of the conv
gence modes that are in this category is at most of or
1/l max; however, there may be fewer of these degener
modes, or possibly none at all. We have not investiga
more realistic survey topologies but we would expect
general result to be similar on scales small compared to
angular width of the survey. However, this seems mostly
academic point since zero noise is of course unrealistic,
there can be many almost-degenerate modes that spoil
construction based onBunlensed50.

The B mode induced by lensing is, to first order,

Bl, lensing5
1

A4p
(
l8

S 2

l 82D l8•~ l2 l8! sin 2a El2 l8k l8

5 (
l8

Tl,l8k l8 , ~B1!

whereT is a transfer matrix that is a linear function ofE
~and once againa5f l2f l8). In the absence of noise, w
may setBl, lensing equal to the observed polarizationB̂l . We
see that ifN Fourier modes are considered, there areN linear
equations forN unknownsk l . ~We do not considerl50
modes since there does not exist ak0 mode, and lensing ha
no effect on zero-wave-number CMB modes.! Thus any con-
vergence mode that cannot be reconstructed must be as
ated with a degenerate direction ofT. It is clear that for some
realizations of the primary CMB, e.g.E50, T is massively
degenerate. We thus wish to explore whether these sing
realizations are ‘‘likely’’ or have probability zero. We wil
assume here thatCl

EE.0 for all of the E modes so that
‘‘probability zero’’ and ‘‘measure zero’’ can be taken to b
equivalent.

In order to do this, we consider the characteristic polyn
mial of T :

P~l;E!5 det~T2l1!5 (
n50

N

an~E!ln. ~B2!

The determinant of anN3N matrix is a polynomial of de-
greeN in the entries of the matrix, hence eachan(E) is a
polynomial of order at mostN2n in theEl . We know from
linear algebra that the roots and multiplicities ofP(l;E)
~viewed as a polynomial inl) are precisely the eigenvalue
and multiplicities ofT; in particular, the number of degene
ate (l50) modes is equal to the smallest value ofn for
which an(E)Þ0. Now suppose it were the case for somen
that an(E)Þ0 with nonzero probability~recall that the pri-
mary CMB polarizationE is a random variable!. This implies
2-20
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thatan(E)Þ0 is generic, i.e. only a small~measure zero! set
of values ofE give an(E)50. The significance of this resu
is that if we can exhibit even one possible polarization fi
E for which an(E)Þ0, it follows that an(E)Þ0 with unit
probability for the real primary CMB polarization field. A
similar statement holds for the number of degenerate con
gence modes: if we can exhibit a possible polarization fi
with n degenerate modes, then it follows that with unit pro
ability, the lensing field as reconstructed from the real CM
will have at mostn degenerate modes. Conceptually, th
means that the generic lensing reconstruction usingBunlensed
50 cannot be more degenerate than any special case
exhibit. ~It may, however, be less degenerate.!

We consider here the following very simple realizatio
take a sky with area 4p, square~with sidelengthA4p), and
with periodic boundary conditions. Suppose that only theE
mode EL where L5(2p/A4p,0) ~i.e. the longest-
wavelength mode in thex direction! is nonzero. Now con-
sider a degenerate convergence mode, i.e. one that doe
contribute toBlensing. From Eq.~B1!, we see that theB50
requirement forces all of the convergence modesk l8 to be
zero except those for which sin 2a50, i.e. those for whichl8
is either parallel to or perpendicular tol81L . The latter is
impossible given the boundary conditions and the form
requires l8 to lie in the x direction. Thus, out ofO( l max

2 )
convergence modes, only theO( l max) modes with wavevec-
tor in thex direction cannot be reconstructed. Hence no m
than a fractionO(1/l max) of the convergence modes are d
generate~i.e. cannot be reconstructed fromBunlensed50), and
by the argument of the previous paragraph this must h
with probability 1 for the actual realization of the prima
polarization field. Note that this is only an upper limit an
the actual number of degenerate modes may be smalle
even zero.

The problem of lensing reconstruction usingBunlensed50
has been considered previously using real-space method
Ref. @5#. They derive the following equation for the lensin
inducedB mode:

1

2
¹2Blensing5gU¹2Q2gQ¹2U1¹gU•¹Q2¹gQ•¹U,

~B3!

where ~as above! gQ and gU are second derivatives ofF.
This is therefore a third-order partial differential equation
F. Reference@5# then performs a two-dimensional Taylo
expansion ofF and finds that some of the coefficients a
not fixed by Eq.~B3!. They thus determine that there exists
class of lensing potential modes that do not produceB modes
purely by counting the number of equations and the num
of variables to be calculated. The relationship between
approach and that of Ref.@5# is that we expressT in the
Fourier basis@Eq. ~B1!#, whereas they have expressedT in
the Taylor polynomial$xjyk% j ,k50

` basis. These bases are n
equivalent due to the differing boundary conditions assum
~the Fourier basis imposes periodic boundary conditi
whereas the Taylor polynomial basis does not!, and this leads
to different conclusions regarding the number and chara
of degenerate modes. In the Fourier basis there are the s
08300
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number of equations as variables. Thus one cannot conc
from the counting argument alone that there is a degene
in the case of full-sky coverage.~The analysis on the spher
would be slightly more intricate since the sky is curved a
the boundary conditions have different topology than in
flat-sky approximation; however, on scalesl @1 small com-
pared to the curvature scale, we expect that the results
sented here will still apply.!

APPENDIX C: CURVATURE CORRECTIONS

Our purpose in this appendix is to investigate in grea
detail the mathematical structure of the curvature correctio
i.e. the increase in uncertainty in lensing reconstruction
to fluctuations of the curvature matrix. We show that t
curvature correction has another interpretation: it repres
the increased noise in the reconstruction ofk l due to the
presence of other lensing modes,k l8 ~wherel8Þ6 l), an ef-
fect studied in detail in Kesdenet al @21#, where it was called
the ‘‘first-order noise contribution’’ and denoted b
NXX8,X9X-

(1) (L). Here we show that in fact the curvature co
rection contains the likelihood analysis manifestation of
N(1) of Ref. @21#.

We can compute the curvature corrections to this as
lows. If we definedF5F2F, and retain our approximation
from Eq. ~32! that F is independent ofk, then we have

S5^~dF1F1Ckk21!21&LSS;S01S0^dF S0dF &LSSS0

2 . . . , ~C1!

whereS05(F1Ckk21)21. @To derive this equation, we hav
merely Taylor-expanded indF, then taken the CMB1noise
1LSS ensemble average, and noted that by definitiondF
vanishes when ensemble-averaged over CMB1noise realiza-
tions. Note that because we have taken the expectation v
Eq. ~C1! should be viewed as an asymptotic expansion rat
than a Taylor expansion.# The mean squared errorS picks up
‘‘curvature correction’’ terms involvingdF that cause it to
not equal the naive resultS0. Note that curvature correction
to S only increaseS, they cannot decrease it~in the sense
thatS2S0 has all eigenvalues>0; equivalently the diagona
elementsSj j >@S0# j j in all orthonormal bases!. This is true to
all orders indF because the inverse of the mean of a set
positive definite Hermitian matrices is smaller than the me
of the inverses~in this same sense!.

In order to compute the second-order curvature correc
explicitly, we must understand the fluctuations in the curv
ture matrix. For simplicity, we evaluatedF at k50. In this
case, we find

Fl,l8[F @k l ,k l8#5
]2

]k l* ]k l8
S 1

2
ln detĈg1

1

2
x̂†Ĉg

21xD
5

1

2
x̂†Ĉ21S 2

]Ĉ

]k2 l
Ĉ21

]Ĉ

]k l8

2
]2Ĉ

]k2 l]k l8
D Ĉ21x̂

2
1

2
TrF Ĉ21S ]Ĉ

]k2 l
Ĉ21

]Ĉ

]k l8

2
]2Ĉ

]k2 l]k l8
D G , ~C2!
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where the second line has theĈ’s evaluated atk50. Sub-
tracting out the average valueFl,l8 over CMB1noise realiza-
tions yields

dFl,l852
1

2
x̂†Ĉ21J(2 l,l8)Ĉ

21x̂1
1

2
Tr~Ĉ21J(2 l,l8)!,

~C3!

where we have defined

J(2 l,l8)5Ĉ
]2@Ĉ21#

]k2 l]k l8

ĈU
k50

5S ]Ĉ

]k2 l
Ĉ21

]Ĉ

]k l8

1
]Ĉ

]k l8

Ĉ21
]Ĉ

]k2 l
2

]2Ĉ

]k2 l]k l8
D U

k50

. ~C4!

Note thatJ(2 l,l8)5J( l8,2 l)5J( l,2 l8)
† .

Using this relation, and noting that atk50 we have
]Ĉ/]k l5fl

k , we can use Wick’s theorem to compute

^dFl,l8dFl1 ,l
18
&5

1

4
Tr~Ĉ21J(2 l,l8)Ĉ

21J(2 l8,l)!. ~C5!

In the case of statistically isotropic noise, Eq.~C5! allows us
to compute the covariance of the reconstructionS using Eq.
08300
~C1!. In harmonic space, the off-diagonal elements ofS van-
ish by symmetry whereas the diagonal elements are give

Sl5@S0# l1
1

4
@S0# l

2 (
l8

@S0# l 8Tr~Ĉ21J(2 l,l8)Ĉ
21J(2 l8,l)!,

~C6!

which is a summation over quadrilateral configurations
the modesl, l8, and the mode over which we sum whe
computing the trace.

To lowest order (dF 2), the curvature correction is give
by Eq. ~C6!. The correction to the mean inverse curvatu
Vl , i.e. to the covariance matrix of an unbiased estimator
k, is related to the correction toSl by noting that Sl

21

5Vl
211Cl

kk21 , hence

DVl5
Vl

2

Sl
2

DSl'
1

4
Vl

2 (
l8

@S0# l 8Tr~Ĉ21J(2 l,l8)Ĉ
21J(2 l8,l)!.

~C7!

We now pass to the ‘‘linear approximation’’ in which th
second derivative]2Ĉ/]k l* ]k l8 is neglected.~This was
found to be a valid approximation for temperature-bas
lensing estimation on scalesl ,3500@17#, although it is un-
clear whether this is also true in the present context.! Substi-
tuting Eq.~C4! then yields
f
n

f
ce

ood

e

DVl'
1

2
Vl

2 (
l8

@S0# l 8Tr~Ĉ21fl
kĈ21fl8

k Ĉ21f2 l
k Ĉ21f2 l8

k
1Ĉ21fl

kĈ21f2 l
k Ĉ21fl8

k Ĉ21f2 l8
k

!. ~C8!

This should be compared with the first-order noise contributionN(1) of Ref. @21#. In our notation, and written in terms o
the convergence rather than the potential, their Eq.~25! can be rewritten with the help of some algebra and the relatiofl

k

5f2 l
k † as

NTT,TT
(1) ~k l!5

1

2
Vl

2 (
l8

Cl 8
kk (

l1

@ f l# l1 ,2 l2
k @ f l8#2 l2 ,2 l22 l8

k
@ f 2 l#2 l22 l8,l12 l8

k
@ f 2 l8# l12 l8,l1

k

@^Ĉ&LSS# l 1
k @^Ĉ&LSS# l 2

k @^Ĉ&LSS# l21 l8
k

@^Ĉ&LSS# l12 l8
k . ~C9!

This is the first term of Eq.~C8!, except that it only includes temperature information~hence we have multiplication o
numbers rather than 333 matrices!, and the residual power spectrum@S0# l 8 has been replaced with the raw convergen
power spectrumCl 8

kk . ~The latter difference arises because Ref.@21# computed the first-order noiseN(1) for the quadratic
estimator; when the Bayesian estimator is used, the contaminating modes$k l8% have their power reduced fromCl 8

kk to @S0# l 8
since the estimated lensing fieldk̂ is used to delens the CMB.! Thus we see that the first-order noise arises in the likelih
formalism as a curvature correction, which is not taken into account in the Fisher matrix for lensing reconstruction.

The question naturally arises as to the interpretation of the second term in the curvature correction, Eq.~C8!. We note that
within the linear approximation,

^Ĉ21&LSS5Ĉ(0,0)
21 1 (

l8
@S0# l8Ĉ(0,0)

21 fl8
k Ĉ(0,0)

21 f2 l8
k Ĉ(0,0)

21 . ~C10!

The second term of Eq.~C8! is thus seen to be the correction to the Fisher matrix, Eq.~32!, due to the lensing effect on th
CMB power spectrum.
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