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Reconstruction of lensing from the cosmic microwave background polarization
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Gravitational lensing of the cosmic microwave backgro(@WB) polarization field has been recognized as
a potentially valuable probe of the cosmological density field. We apply likelihood-based techniques to the
problem of lensing of CMB polarization and show that if tBenode polarization is mapped, then likelihood-
based techniques allow significantly better lensing reconstruction than is possible using the previous quadratic
estimator approach. With this method the ultimate limit to lensing reconstruction is not set by the lensed CMB
power spectrum. Second-order corrections are known to produce a curl component of the lensing deflection
field that cannot be described by a potential; we show that this does not significantly affect the reconstruction
at noise levels greater than 0.28 arcmin. The reduction of the mean squared error in the lensing recon-
struction relative to the quadratic method can be as much as a factor of two at noise levelg Bf drémin
to a factor of ten at 0.2 K arcmin, depending on the angular scale of interest.
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I. INTRODUCTION ies[4,16]. Analysis based on likelihood techniquls’] has
since shown that the quadratic estimator technique is statis-
Over the past decade the cosmic microwave backgrountically optimal when the lensing effect on the CMB covari-
(CMB) anisotropy has been established as a robust and powance matrix is small. This was shown to be a good approxi-
erful cosmological probe. While much attention has focusednation for lensing of temperature anisotropies in the range
on the primary anisotropy generated in the early Universel<3500. For the small scalds>3500, the primary CMB
the CMB should also contain signatures of processes thgfower spectrum is much smaller than the lensed power spec-
occurred between the surface of last scatter and the presemtum, hence this argument breaks down. In this case for suf-
One of these is weak gravitational lensing, which has beeficiently small instrument noise the reconstruction of pro-
recognized as a probe of large scale structll®S) [1-5].  jected mass density can be nearly perfdd]. We will not
Aside from its use as a probe of the matter power spectrum afiscuss the reconstruction on these very small scales in this
low redshift z<1100, weak lensing of the CMB could be paper.
cross correlated against other tracers of the density field such Our ability to reconstruct the lensing field using the CMB
as galaxy surveyg6] or weak lensing of galaxie$5].  temperature is limited because the temperature fluctuations
Through cross-correlation with the CMB temperature, an im-are stochastic and so we can only statistically determine the
proved measurement of the integrated Sachs-Wolfe effeecinlensed CMB temperature field. It is thus advantageous to
over that possible using the CMB power spectrum alone igonsider lensing of the CMB polarization, since in the ab-
possible, yielding constraints on the late-time growth func-sence of primordial gravitational waves the unlensed CMB
tion and hence on the dark enerfi§,8]. Lensing has also polarization is entirely irE rather thanB modes. This im-
attracted attention recently as a cosmological source gflies that, in the terminology of galaxy lensing, there is no
B-mode polarizatioi9]; reconstruction and removal of lens- “shape noise” in the CMB polarization field. Several authors
ing B modes will thus be an important part of a future searchhave developed algorithms that use Bienodes induced by
for B-mode polarization induced by primordial gravitational lensing to probe LS$5,19]. The optimal quadratic estimator
waves[10-12. — the polarization analogue of the temperature-based qua-
The lensing signal in the CMB is small, so it is important dratic estimator using the divergence of the temperature-
to construct optimal methods for estimating the lensing fieldveighted gradient — was constructed by Ré0]. There it
from CMB data. The early investigations of lensing of thewas shown that for sufficiently small detector noise most of
CMB temperature showed that while there is an effect ofthe lensing reconstruction information with this method is
lensing on the CMB power spectrufid3,14), it is much  provided by theB mode.
more promising to estimate the lensing field using quadratic Even with polarization information these quadratic esti-
combinations of the CMB temperature, and to estimate thenators cannot improve the reconstruction beyond a certain
lensing power spectrum using the four-point correlationlevel, set by the coherence length of the polarization. It has
function (or its harmonic equivalent, the trispectrum been argued that this provides a fundamental limit to our
[1,3,15. More recent work has identified the divergence ofability to separate the lensing inducBdmodes from theB
the temperature-weighted gradient as the optimal quadratimodes induced by gravity wavgsl,12. However, it has not
combination of the CMB temperature for use in lensing studbeen determined whether quadratic estimation is optimal for
the polarization-based lensing reconstruction, and indeed
Refs.[11,12 comment that it might be possible to extract
*Email address: chirata@princeton.edu additional information in higher-order statistics. The argu-
"Email address: useljak@princeton.edu ment for optimality of the quadratic estimator presented by
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TABLE I. Parameters for CMB experiments. struction. In Sec. IV, we investigate the breakdown of the
Born approximation for CMB lensing and its implications
NpluK for lensing reconstruction. Determination of the lensing
Experiment arcmin - Gpwyw/arcmin g power spectrum from CMB maps is discussed in Sec. V. We
WMAP, 4 yrs (94 GH2 700 13 620 shtc)jw numerica_l simu_lations of _CMB p(_)larization lensing
Planck 1 yr (143 GH2 81 8 1010 an re_constructlon using our estimators in Sec. VI, and con-
Ref. expt. A 3.0 7 1160 clude in Sec. VII. . o
Ref. expt. B 141 7 1160 . The fiducial cosmplogy used in thesg S|mulat|9ns is a spa-
' ' ' tially flat cosmological constant-dominated universe with
Ref. expt. € 141 4 2020 baryon fractionQ),;=0.046; cold dark matter fractiof) .y
Ref. expt. D 1.00 4 2020 =0.224; cosmological constant fractiéh, o= 0.73; Hubble
Ref. expt. B 0.50 2 4050 parameteiH =72 km/s/Mpc; primordial helium abundance
Ref. expt. F 0.25 2 4050 Yp=0.24; reionization optical depth,=0.17; primordial

scalar spectral indemg=1; and no primordial vector or ten-

Ref. [17] does not apply to polarization since tBemode  SOf perturbations. We have used th®BFAST nume_rical
power is dramatically increased by lensing. Here we conpackage[20] to compute all power spectra except in Sec.
struct likelihood-based estimators for lensing using the CMBY B. The experiments considered are as shown in Table I.
polarization and show that the likelihood-based estimator imThe WMAPand thePlanckwill not be able to map the lens-
proves significantly on the quadratic estimatalthough we N9 ﬂeld_ using polarization and are included in the table for
do not present these as series of higher-order stajistics ~ comparison. The reference experiments A through F are suc-
deed, as noise is decreased the accuracy of CMB lensirggssively lower-noiséor finer-beam experiments that were
reconstruction continues to improve without bound. Concepanalyzed to determine how the signal-to-noise ratio in the
tually this is because if the lensed polarization is measurefnsing reconstruction depends on experimental parameters.
with zero noise, then the equati@),ense0 can be solved Note that experiment C is the reference experiment of Refs.
(except possibly for a small number of degenerate moded 10,11

for the projected matter density with zero noise. The equa-

tion Bnensed 0 is ill-behaved in the presence of instrument Il. FORMALISM

noise; fortunately, the likelihood formalism easily incorpo-

rates noise and, as we show in this paper, regularizes tqﬁat for some quantities, there are many conventions in use in

problem. : : . the literature, and appropriate conversion factors must be ap-
In practice, a perfect reconstruction of the lensing poten- lied if one wishes to compare results

tial is impossible because as instrument noise is reduce(ﬁ), P '

some contaminant to the lensing signal will eventually be-

come more important than the instrument noise. One candi- A. CMB

date for this limiting factor is lensing field rotation caused by =~ We work in the normalized flat-sky approximation, i.e. the

the fact that the density perturbations causing the lensing arky is taken to be a flat square of side lengthr (i.e. total

spread out along the line of sigite. there is more than one area 4r) with periodic boundary conditions. The CMB tem-

“lens plane”) and that the lensing is not perfectly we@le.  perature and polarization fields can then be expressed as a
the first-order Born approximation to the lensing field is in- sum over Fourier modes:

exac). We will show that even for an experiment with noise

Here we describe our normalization conventions; note

0.25uK arcmin and 2 arcmin full-width half maximum T(n) T

beam, the field rotation does not substantially worsen the ~ 1 0

lensing reconstruction. It is however possible that foreground Qn) | = \/T—Trzl Qi e, 1)
contamination will be a more serious problem. u(n) U,

Studies of lensing of CMB polarization will require that
the polarization field be mapped with noise levels of thewhere thel modes are distributed in the two-dimensiohal
order of ~1 uK arcmin; this would be a substantial im- space with number density 2/ Defining the angle of a
provement in sensitivity beyond that of the curr@itkinson ~ mode by tanp =1, /1,, we haveE andB polarization modes
Microwave  Anisotropy Probe (WMAR, http://  given by
map.gsfc.nasa.gov/ and the upcomingPlanck (http:// .
astro.estec.esa.nl/Plangkéxperimentgsee Table)l Never- Ei| [ cos(Z¢) sin(2¢) [ Q
theless,~1 uK arcmin may be achieved with a future B,/ \|—sin(2¢) cos(2¢)/\U,/)’
polarization satellite. The noise levels €f0.25 uK arcmin
at which field rotation becomes important will probably re- (Technically the anglep, of the I=0 mode is undefined,
main unachievable for the foreseeable future. however this will not concern us since within the flat-sky
This paper is organized as follows: in Sec. Il, we defineapproximation we will convert sums ovérinto integrals:
our notations and conventions. In Sec. Ill, we consider th&€, — [ d?l/4. If an integral is divergent dt=0, then it can-
properties of the likelihood function and its implications for not be computed accurately within the flat-sky approxima-
likelihood and Bayesian analyses of CMB lensing recon-tion.)

)
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10 CMB polarization and noise power spectra _ transfer function drops to {& is given approximately by
/i |~ (8095 arcmin)frywim -
We will introduce a vectox containing both temperature
and polarization informationx=(T,Q,U). The lensed and
measured temperature or polarization vectors will be denoted

X andX, respectively[Note: x is a “vector” in the sense of
linear algebra, i.e. it is an element of a vector space, in this
case a Hilbert space with the usw#(S?) inner product, on
which matrix operations such &can act. It is not a vector
in the sense of differential geomefySince most of the
fields we deal with, including CMB temperature and polar-
. ization, are real, their Fourier modes satisfy elg=T*,.
L Consequently, if we haveN Fourier modes, the
10 el 1000 N-dimensional vector with componen{3 |} only hasN/2
Poe independent complex components; the remainder contain re-
FIG. 1. CMB polarization power spectra fértype andB-type ~ dundant information(Of course, there are stiN indepen-
polarization(upper and lower solid curves, respectiyelJhe noise  dent real componenidhe covariance matri is defined as
curves for the experiments of Table | are shown as dashed Iine@ii:<)‘o‘(‘r>; note that it is Hermitian by construction.
from top to bottom:WMAP, Planck and reference experiments A,
B,C,D,E, and F.

Logarithmic power, [L(L+1)CL/2n]1’2 /K

B. Lensing

We will use the following notations for CMB fields: =~ The lensed temperature and polarization are given in
{T,Q,U} for the unlensed(primaryy CMB anisotropies; terms of the unINenAsed temE)erature by means of the remap-
{T,0,0} for the lensed CMB anisotropies; afi,®,0} for ~ Ping functiong: T(n)=T[g(n)], and similarly forQ andU
the measured anisotropiéscluding nois¢. These are mea- [howeverE andB do not transform this way, rather one must
sured inuK (blackbody temperatuyeand we will assume Use€ Eq.(2)]. The remapping function can be decomposed
that the monopole (mean temperatufe and special- into a longitudinal part generated by the lensing potembial
relativistic effects(kinematic dipole or quadrupole and stel- @nd a transverse part generated by the lensing cross-potential
lar aberratiophave been removed. The instrument noise will
be assumed to be statistically uncorrelated with any cosmo- A - -
logical signal and will be denoted by, whereX is one of g(n)=n+Ve(n)+*VQ(n), ®)

T, Q, or U (or T, E, and B depending on which basis is ) ] ] .
more convenient The unlensed CMB will have a power Where * is the ninety-degree rotation operatoke,

spectrum given by =€, *ey=—éx. Past studies of CMB lensing reconstruc-
tion have ignored the cross-potential sir{tar scalar pertur-

, ' bationg it vanishes at first order in perturbation theory. In
XX =Cl oy, 3 3 P y

principle it could become important given the high precision
) enabled by lensing of CMB polarization. However, we will
where hereX and X" areT, E, or B (here we desire rota- spow in Sec. IV and Sec. VI A that the cross-potential is
tional symmetry so we cannot u§gor U). We assume the unimportant for most near-term experiments.

universe is statistically parity-invariant so th@y®=Cf® We restrict our attention to the weak lensing regime, i.e.
=0; in some parts of this paper we will discuss universesye assume the magnification matrix:

with no tensor perturbations, in which case we also have

cPo=0. 9 99y
Throughout most of this paper we will take general noise ag(n) ax ay

covariance\; when we wish to show expected performance M= ——=

for - - : : - an dg9y dQy
particular experiments, we will use the following noise = =

power spectrum appropriate for a Gaussian beam profile: ax - ay

2
NITT:N_ZI_eI(Hl)HFWHM/S In 2:N$e'('*l)"c('c+l), @) =

1+ 070 — a0y dydy®— 50
G P+ 1+ D+ 3,0,

wherefgwhw is the full width at half maximuniFWHM) of

the beam. We take a similar form foi-5=NP®, except that =
N7 is replaced withAp. The quantitiesNT, Np, and

Orwrm (combined with the fractioffig, of the sky surveyed  is everywhere invertible. This is a necessary and sufficient
thus parametrize the performance of the experiment. Noiseondition to disallow caustics and multiple images of the
curves compared to the CMB for the experiments shown irsame portion of the surface of last scatter. Lensing by large-
Table | are shown in Fig. 1. Thlevalue at which the beam scale structure is too weak to create caustics on the surface of

l+K+yQ Yyt o

(6)

Yu— @ 1+K—’)/Q
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last scatter, so the weak lensing assumption is violated onlthe ¢ differential operator(and analogouslyr®) as the
in the vicinity of astrophysical objects such as clusters. Weaction of an infinitesimal lens configuration:o|
classify clusters and other strong lenses as foreground C°'°=‘(f9/\g/(9f<|[g])|g:(o,0)- Then, noting that\ (¢ is the iden-
taminants and do not consider them further here. In the retity operatorl, we find that to first order in£, w):

gime where the lensing distortion is small—iM.is close to
the identity—we may interpret the four components
K,Yq,Yu,w in Eg. (6) as follows. The convergence mag-
nifies a feature on the last-scattering surface of infinitesimal
angular sized 9 to size (1+ x)dd. The field rotation angle The o operator acts as follows on a fieklin the {T,Q,U}
o rotates the feature clockwise hy radians. TheQ-shear pasis:

Yo produces a stretching along thexis while compressing

it alongy: the apparent angular extents of a feature along the 2\1-(I'=1

two axes are (¥ yo)dd, and (1-yq)dd,, respectively. (fo)lfz(l—z)T\/—x|/|,

The U-shear has a similar effect, stretching along ytvex ™
axis and compressing along tlye= —x axis. It should be

A(K’w)=l+2| (K|U|K+a)|0'|“’)+O(K2,w2,Kw). (9

noted that the four field,yq,yy,® are not independent (0X)p = 2 |‘*(|'—|)X 10
because they are all generated by differentiating the two YY) e TN
fields® and(}. In particular, if weEB-decompose the shear
field into its positive-parity €) and negative-parity®) com-  In the {T,E,B} basis, thes-matrices mixE and B because
ponents: these are nonlocal quantities. Specifically, they have compo-
nents
€=[volicos 2p+ [ yylisin 2¢,
in 2¢,+ 7) g 2 Lo 0
= — n —

Bi=—[vqlisin2¢,+[ yyli cos 24y, ol = - Iyl |2(_2> ()| 0 cosz —sinza
we find thate,= x; and 8,= w,. These are then related to the Vam 0 sin2a cos2u
potentials viax,;= (12/2)®, and w,= (12/2)Q),. This immedi- (12)

ately implies the power spectrum relatior§"=C*
= 711|4Cf1’d’ andclﬂ)wzclﬁﬂz }_t|4clQQ . Itis of interest to note Where the rows correspond to th‘lé,E,B},1 and the columns

that the convergence and field rotation can be determinetb the{T,E,B},,z, and we have defined the anghe= b1,

from the deflection angld(n)=g(n)—n by — ¢, The matrix foro}” differs by replacing the prefactor
1 1 I-15 with *1-1,. The o matrices satisfyr{‘=(o’_i|)T.
K= — EV .d and w= EV - %d. (8) Lensing alters the CMB anisotropy covariance; the cova-

riance matrixC**’, whereX e {T,Q,U} (or Xe{T,E,B}) of
If x,7q,7u,@ are not small compared to 1, then the the lensed temperatures is depengen:[ onNtNh,e lens configura-
physical interpretation of these quantities is somewhat mortion g, and thus we will denote it b€} * =C7* . Since the
complicated. We will continue to_cal& the f‘convergence," lensed CMB field is7<=Agx, we havef:g=AgCA;. The
(vq.7u) the “shear,” andw the “field rotation angle” even |ensed covariance averaged over the ensemble of LSS con-
in this case, although this convention is not universally fo"figurations will be denoted bYEXX,>LSS- Note, however,

lowed in the literature. Note, however, that the relatiens that whereas the primary CMB is expected to be nearly

= k; and B,= w, continue to holdin fact, they remain valid . . . oy
even for strong lenses!which makes our definitions of con- Gaussian, the_: lensed CMB is non-G_al_JSS|an an( )Lss
doesnot specify completely the statistics of the lensed CMB

vergence, shear, and field rotation angle particularly conve: s o
nie?]t gep y field. Indeed, it is the non-Gaussianity of the lensed CMB

- ; ; - ; that enables separation of the lensing and gravitational wave
Sometimes we will specify a lens remappigdy its con- S :
vergence and field rotatio=(x,®). Most authors have contributions toB. It also means that the standard Gaussian

. . . formula for the uncertainty in the power spectrum,
performed the lensing analysis usidgrather thank as the 221 Al .
field to be estimated, since the deflection angle is a loc (C,)(/1C|— I 2./(2| .+l)f3k>A|'”d°eS| not necessarily apply to
function of the former. In the present analysis, we take -rlno_ € pod§|1r|zat|0n on ?ma éciles.h lensi
(and w when it is importantto be the fundamental field. Of tis readily apparent from Ed11) that lensing can pro-

course, the two fields contain exactly the same informationduceB modes even if the_se are not eresent in }he_ primary
being related by the differential relatior= — V2d in real CMB. We show in Appendix B that for “almost all” primary

space and by a multiplicative factor ¢%/2 in harmonic CMB realizations, there are only a small nu'mb.er of conver-
space. gence modes that do not produBeype polarization.

It is convenient to introduce the lensing operaftqy de-
fined by A ¢X(n)=X(g(n)), whereX is one ofT, Q, or U.
[In the{T,E,B} basis, the action oA 4 is not so simple and We illustrate our formalism with a simple lensing recon-
the transformation of Eq(2) must be applied.We define  struction viay? minimization (the “least squares” method

C. Chi-squared analysis of lensing
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We perform a full likelihood analysis in Sec. lIl, but the& ment and the presence of foregrounds or other contaminants,
analysis is sufficiently similar that it illustrates the basic con-not by statistics of the convergence or primary CMB field.
cept. Define the functionak?(«x) of a convergence field One can note that for zero instrument noise, ¥AeEq. (12),

given CMB datax: is infinite unless the delensed CMB fielf, ', x has vanish-
~ . ing B modes, i.e. in this case th¢ analysis is solving for
XA () =(ALpO T(CHN) AL X+kTC k. (12 Byensed O (€Xcept possibly for a few degenerate modes; see
R Appendix B. We extend this methodology to a full likeli-
Here A(’K?o)x is the delensed CMB, i.e. we have taken thehood analysis in Sec. Ill, where we find that the general
measured CMB and projected it back onto the primary CMBconclusions of this section remain valid.
assuming that the lens configuration is given by convergence
« with no rotation. To a first approximation, this should have IIl. LENSING RECONSTRUCTION: LIKELIHOOD
covarianceC+ N since it is the sum of primary CMB and ANALYSIS
instrument noise(The matrixC+ N is equal to the measured ) ) )
CMB covariance in the absence of lensing and hence will In this section we explore the accuracy of reconstruction

frequently be denoted b@(o,oy Technically the noise cova- of lensing based on CMB temperature and polarization. We

riance is not exactlN because the noise has been delenseaf'OIIOW the analysis performed in Refl7] for the CMB tem-

) perature; most of the analysis extends easily to polarization,
see Sec. lll B.We have thus chosen to define oif as the : . . L
amount of pnger in this de-lensed CMB, with the variousWlth one exception: the primary CMB has very littié any)

modes weighted according to their variance. The addition OP-mode pnggzaﬂon. This means that the lensed CMB power
the x'C**~1x term serves to regularize the problem by pre_spectrurn(CI YLsscannot be expressed as a small perturba-

venting the convergence from running off oin search of ~ ton on the unlensed power spectrum. We also include the
smaller primary CMB power. effect of the field rotation in our discussion of the likelihood
If we take the first-order approximation to~* given by gradient and Fisher matrix, although we do not construct a

Eq. (9), Eq. (12) becomes “practical” estimator for it.

A. Likelihood function and gradient
X=X (0)+22 miw+ X« (A . o | .
[ L’ For a given lens configuration with remapping functmn

+CIKK715| DK (13) the covariance matri of the measured CMB is computed
* from
where A ~n ~ ~ ~
Co=(xx")=((x+ ) (x+ ) =Cy+ N=A CA{+N,
X*(0)=x"(C+N) "™, (17)

~t 1 kA whereN=(77") is the noise matrix. The measured CMB is

m=x(C+N)"“ofx, Gaussian-distributed if we assume that the primary C¥B

R R and instrument noisey are both Gaussiar(Note: the as-

A =x"o" (C+ N)~tox. (14  sumption of Gaussianity only applieeforewe average over

LSS realizations.The (negative log likelihood function £
Note thatm is a real vector and\ is Hermitian. This is @ for a lens configuration with remapping functignis then
quadratic function ok and hence it has a minimum that can given (up to an irrelevant constanty
be determined via standard techniques. The minimum is at

1 R
K, =(A+ CKK—l)—lm_ (15) L(g)= E In deth+ EXTCQ 1X. (18

The error covarianc,2 of « is found by the usual method Now we wish to determine the likelihood gradient with re-
of setting XZ(K)=XZ(K*)+(K—K*)TS;21(K—K*): this  spect to the lens configuratian=(«,»). We will compute
yields the gradient of the likelihood function, E¢18), using Eq.
_ kk—1y—1 (17)
S2=(A+C ) . (16)
. . . 9L A1 aAg t StA-1 g9 tA-13

The most important feature of this analysis is the recon- &_;qur Cq arlg] CAg|—x'Cqy WCAgCg X.
struction errorS 2. Note that as the instrument noise goes to (19)
zero, the matrixC+ N develops null directions correspond-
ing to theB modes. Therefore G+ N) ! has infinite eigen- The maximum-likelihood estimator is given by the rela-
values in these directions, and if the number of convergencgon d£/d«;=0. (We also require)L/dw,;=0 if we are esti-
modes being reconstructed is less than or equal to the nunmating  as well ask.) However, maximum likelihood es-
ber of B modes measured, we hake-« andS,2—0. This  timation of the lensing field is generally unstable because the
leads us to the conclusion that the accuracy of convergendensing field has too many degrees of freedom. In order to
reconstruction is limited only by the sensitivity of the instru- regularize the problem, we introduce a Bayesian prior prob-
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ability distribution «<e™¥ for g=(«,w), i.e. we take prior Here A;lNA;’l is the delensed noise covariance matrix,
probability dP=e™ @ dxdw,. It is most convenient to  which is equal to the noise covarianbefor g=0 (no de-
take a Gaussian prior based on the power spectkaaofd (if lensing. Under most circumstances, delensing has much less
applicablg w: effect on the noise than on the CMB signal, because instru-
ment noise is a relatively smooth function lohnd contains
both E and B modes with similar power. It is possible that
Ag*™NA{T*#N if the noise power spectrum contains sharp
1 features; in this case, the approximation- C(’O'lo) used be-
+ ~(0'C® 1w+ IndetC®?) low may result in a nonoptimal, ofin extreme casesun-

2 stable estimator.

We would like to approximaté\g_l(r?Ag/aK,[g]) using

1
o(k,0)= E(KTCKHKJr In detC* )

1 K|? ; e .
_ —E ( | e +Incee the o matrices; this can be done by expanding
29 CIKK
) . OAg  axplgTig’] .
+32 o™ cee (20) Ao Gxlal - a9’ 7
249 | cwe b ' 9'=g
: . : Jor[g'g'] "
where in the second equality we have assumed that the prior e o), (29
on «x andw is statistically isotropic(Note that this assumes arl9'] gy g

the power spectra are known; we will consider the problem

of estimatingC™ from CMB data in Sec. V. The methods \yhere the juxtapositiog g’ indicates composition of the
we present in Sec. V allow iterative determination of both theiensing operations:o("1g’)X=g"%(g’(X)). If the lensing
convergence fielat and the power spectru@“.) If we are s very weak we may take a@,[gflgf]/,q[g'])|g,:g
neglecting the field rotation then the terms involviag ”[Ag_l]m and (r9w|r[g_1g']/l<|[g'])|gr:gNO. that is, the
should simply be removed. The mode of the posterior probcomposition of lensing operations can be approximated by
ability distribution is given by minimizingC+¢; we thus set  remapping the convergence field and neglecting rotation. In

dpldky=—3dLldk,, or this regime, the statistical properties of the convergence field
x should not differ greatly from those of the “delensed”
[Cre 1] = _Tr(él IAg c T) convergence fieI(AglK; mathematically, this means that we
' 9 dr[g] 0 may takeA, and C** to commute. With these approxima-

. 9A o tions, Eq.(22) becomes
+x'Cl—=CcAlC, % (21
9 dr[g] 970 . .
CI* M Agr)f =(Ag ™) TwofCwA S X
Because of the presence of the prdf*~*, this estimator A 1
will filter out lensing modes that cannot be accurately recon- —Tr{woCwWA"CyAg 7] (25
structed from the CMB data. It can thus be viewed as a sort
of nonlinear generalization of the Wiener filter. The right-hand side of Eq25) is our approximation to
the likelihood gradient, and the left-hand side is dap-
B. Practical estimator for the convergence proximateprior gradient. Note that the right-hand side evalu-
The likelihood gradient, Eq19), and hence the conver- ated at the correct lensing conﬂguraﬂgrhqs expect{;mqn
value zero, regardless of the choice of weight function; we

gence estimator Eq21) based on it, are difficult to evaluate. will therefore choose the slightly suboptimal weight function
We therefore investigate several approximations to the like-"" gntly P 9

_ _l . . cpps . .
lihood function. First, we consider only the convergeneg, W= Cio,0) in order to reduce computational difficulties. This
the rotatione will be shown in Sec. IV to be unimportant !€@ds us to the estimator
unless instrument noise is very small. We note that (2d)

can be rewritten as Cr N Agr)F =(CigloA g )T CC oA g '

dA R T-1A-1 _k~A—1 4 —1A
[Cre L] = —Tr| Al PwA g 2 CwA S, ~TMAg Co0TCCoAg Col:
dxi[g] 26

~ JA -
+XTATT WA T ——=CwA X, (22)

9 k9] [This choice leads to some difficulty for low-noise, wide-

beam @rwnnm=10 arcmin experiments; see Sec. VI A for

where the weight matrix is defined by details] By expandingC, using Eq.(17), and noting that in
fal1 e o1 the harmonic-space bas'@,andé(ovo) are diagonal whereas
W=AgCq " Ag=(CH+Ay " NAG ) (23 &P has no nonzero diagonal elements, we convert this into
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Cl,m—l(AgK)l*:(é(—()}o)Aglg()TUrCé(—()’lo)Agli Fisher matrix as the covariance .of the Ilkellh(_)oq gradient;
the easiest method of doing this is to apply Wick’s theorem
—Tr[A;’16@?0)0(CC(})?0)AQ’1N]. to compute the variance of E¢L9). This yields
(27) L oL

_ tA-1 _k ~ATA-L K
" E>—Tr(AgCg o \CAIC a7 C)

F[K|,K|']:<

C. Fisher matrix
The Fisher matrix is defined as the expectation value of +Tr(C, o CALC, T Cal) (29

the second derivative of the likelihood function:
9L aL L
F[K|,K|/:|E = —*—

&K| (9K|r (x0) . . . A1 ) .

(29 thatA(olo) is the identity. TheC and Cq o) matrices are di-

agonal in the{T,E,B} basis:

K} Ik
where the second equality follows from taking the second

and similarly for the components of the Fisher matrix ele-
ments involving the field rotation. For simplicity, we com-
' pute the Fisher matrix &= (0,0), i.e. thex= =0 point, so

(x,0)

TT TE
derivative %/ dx} dx/)of the normalization condition ¢ G 0
f e £Dx=1 and noting that the expectation value of any c=| cF cff o (30
statisticS is (S)= [ Se”£Dx. (This also shows thaE has 0 0 CIBB
all non-negative eigenvalug#\ similar relation holds for the
field-rotation modesv;. We may thus compute the lensing and
|
(CFE+NFF)/D, —-C/®/D, 0
Cioby= —C/F/D, (C/T+N/ /D, 0 , (31)
0 0 1UCPB+NPB)
whereD,=(C] "+ N/ ") (CFE+NFF) — (C[5)2.
The overall Fisher matrix is then computed from E2P):
1 ~—1 ek A—1 ¢k
F[K| ,K|r]~ ETr[C(Ojo)f,|C(O‘0)f|r]. (32)
where
[f1],,-1,=[Co "+ a{C ),
|lc|T1T+ |2c|T2T |1c,TlE cos 2+ I2C|T2E - I1C,T1Esin 2a
S |-
__ %(é) I.| LCTE+1,ClEcos 2 (I,CEF+1,CEF) cos e (1,CPP—1,CEF)sin2e | (33
VAT
|zclT2E sin 2« (|2cEE— |1c,BlB) sin 2« (|lclBlB+ IZCFZB) cos 2o

(The matrix f” is identical except for the replacement power spectrum plus the instrument noise. In the case of
|.—x*I-.)Note that by hermiticity ofC, we haveflszgl‘r; quadratic estimation,_it is clear th_at_ the lensed power spec-
for the individual 3< 3 blocks in the harmonic-space basis, 'um should be used in order to minimize the variance of the
[fIK]Il 7|2:[f:il’r]1:| . Also our construction guarantees that estimator. C(_)nceptually, this is because the Ienarlgodgas
. 1072 can be iteratively cleaned from the map, thereby reducing the

fi'=0Cldk| where the derivative is evaluated at w=0. post-cleaningB-mode power spectrum and reducing the

It can be verified by explicit matrix multiplication that the noise in the lensing estimator. Our ability to clean the map is
computation forF[ «,«] here yields the uncertainty in the bounded, of course, by the sum of the unlensed CMB and
minimum-variance quadratic estimator of Rgif0], with one  noise contributions tcﬁ:lBB.
exception: we have computed the Fisher matrixgatO,
hence the denominator of E¢32) contains theunlensed D. Uncertainty in lens reconstruction
CMB power spectrum plus the instrument noise, whereas the The usual method of estimating the uncertainty in lens
equivalent calculation in Ref10] contains thdensedCMB reconstruction would be to invert the Fisher matrix. This
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approach is motivated by the Cramer-Rao inequality, whiclerties of primary temperature ariettype polarization, and
states that an unbiased estimator of the lensing configuratigorior knowledge about the lensing field.
must have covariance at least equalFto’. Unfortunately, We can now understand why the lensing Fisher mdgrix
the Cramer-Rao inequality is only an inequality, and there ids inadequate for determining the uncertainty in the lensing
no guarantee that the bouriti ! can actually be reached; fields k andw. The curvature matrix:
indeed this bound is only achieved in the case where the
likelihood function is Gaussian with curvatufFe The tradi-
tional justification for assuming Gaussianity of the likelihood
function is the central limit theorem. This works for studies
of lensing of the CMB temperature field, in which the typical has very small eigenvalues in the directions of degeneracy of
lensing mode being reconstructed islat100 whereas the Eq. (34) and very large eigenvalugapproaching= as N
temperature fluctuations that are being lensed have wave, () in the orthogonal directions. But as one can see from
number| ~1000; thus there are roughly (1000/186)100  Eq. (34), the direction of degeneracy depends Bnand
patches of primary CMB behind each lensing modéost  hence on the specific realization of the CMB. If we average
of the information comes from nonlocal correlations in e gyer CMB realizations to obtain a Fisher matfix then we
field, so this argument technically requires more justificationgerive F=«, which does not accurately reflect the nonzero
nevertheless the calculations in RgL7] seem to indicate errors in the degenerate directions of E&4). Mathemati-
that it gives the correct answprThis argument does not cally, the Fisher matrix methodology does not work because
apply to lensing of the CMB polarization because the wavéhe error bars on ¥,«) are extremely non-Gaussian. The
numbers of the primanE polarization modes and of the |esson is that we should be careful about interpreting the
lensing field modesK|) are both at wave numbers of order jnyerse of the Fisher matrix as an uncertainty in parameters
|~1000. We should therefore be careful of possible probywhen the central limit theorem does not come to our aid.
lems with the Fisher matrix estimate, H§2) of the uncer- A similar but less spectacular problem occurs in attempt-
tainty in the |enSing field. In this SeCtion, we outline two SUChing reconstruction of small-scale |ensing modes even when
problems that occur in lensing reconstruction: first, a coM+here is sufficient instrument noise thatis irrelevant. This
plete breakdown of the Fisher matrix approach when thgs the regime of interest to a near-future high-resolution po-
field rotationw becomes important; and second, fluctuationgarization experiment. The statistical uncertainty in the lens-
in the curvature matrix resulting from the statistical nature Ofing reconstruction is given by the inverse of the curvature
the primaryE field. matrix . When doing a lens reconstruction, this curvature
Consider first the problem of simultaneous reconstructionnatrix ijs augmented by the curvature of the priof< 2, so
of bothx andw. (We will see in Sec. IV that the noise levels that the posterior error covariance matrix of the lensing re-
required for this are not achievable in the near term, howggnstruction is approximatelyA+C*<~1)~1. We wish to
ever, this extreme example serves to illustrate the problemcompute the mean squared error in the reconstructed conver-

One can see that if there are no priméfymodes, then as gencek, which is obtained by computing the ensemble av-

mstrgment NOISE goes to zero, the uncertamtyd'land @ erage of this covariance matrix over all realizations of CMB,
obtained by inverting Eq.32) goes to zero. But this cannot noise. and LSS:

be true because thaneequationB ,enseq= 0 Cannot be used
to solve for thetwo fields k andw simultaneously. Therefore K (e V(e Ty kic—1y—1

inverting the Fisher matrix yields a qualitativelil/ absurd con- SH=((k =) (k= 1) Drsg=((F+C ) s (36)
clusion. What went wrong? The observation that one equa-

tion (the vanishing of the unlensdgtmode field cannot be  The Fisher matrix is defined to be the expectation value of
solved for two variables£ and w) yields a clue. Consider the curvatureF=(F) (with no LSS average If the curva-
the case where instrument noise is negligible; then we knowure matrix were always equal f§ then it would be permis-
that the measureB mode is purely caused by lensing: sible to approximat&<“~ (F+C“*~1)~1, It can be shown
(see Appendix Cthat the statistical fluctuations ¢t always

9L
Flrp,kp](@)=—]—— (35

K} Ik

8= 2 i 20 (=1 4171 increase the uncertainty, E(B6); this increase we call the
' AL K “curvature correction.”
Conceptually, the naive calculation that the mean squared
—1" e ]E,_y sin 2a, (34)  error is approximatehg,= (F+ C**~ 1)1 suffers problems

for the same reason that the Fisher matrix calculation for

simultaneously estimating and w failed: the different real-
wherea= ¢,— ¢,_|, . To the extent that thE mode is domi- izations of the primary CMB introduce fluctuations/ and
nated by the primarynot lensing contribution, Eq(34) isa  when we average over CMB realizations we generate a non-
linear system containing® unknown variablesthe ampli-  Gaussian error distribution for the estimated convergence.
tudes of thex and w modes but only N equations(the The actual computation of the curvature corrections is not
knowledge of the lense modes, thus there are degeneracy pursued here; some of the relevant issues are discussed in
directions in lens configuration space which are unconAppendix C, where we show that the “first-order noise con-
strained by the vanishing of th® modes. These directions tribution” of Ref. [21] arises as one part of the second-order
must be constrained by a combination of the statistical propeurvature correction.
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E. Relation to quadratic estimators Cr* 18q,, 1, omitted. (The quadratic Fisher matrix is not
It is of interest to compare the estimator we have derivedtechnically a Fisher matrix, but its inverse does give the co-
Eqg. (27), to the quadratic estimation method of REE0]. variance of the unbiased quadratic estimat@d/e prove in
The performance of the estimators is compared numericalldppendix A that Eq.(37) and its unbiased equivalent are
in Sec. Il B. Here we display the quadratic estimator anddentical to the minimum-variance quadratic estimator that
note the major differences between the quadratic and iterarises from the optimal weighting scheme of Héf0]. The
tive estimators. The Wiener-filtered quadratic estimator is mean squared error in the reconstructed convergence accord-
(quady 1ot . . ing to Eq.(37) is
Sk _ kk—1 —13t/ A\ — K ~\—1C
ki =[C{" o +F) X <C>LSSU|’C<C>LSSX’(37) grex(quad_ (14 Flavad) 1 (39)
Several features of Eq§37) through(39) are readily ap-
parent. First, the estimator E@7) is a quadratic function of
(quad)_ L 1 ek A1 ek the CMB temperature or polarization field Secondly, we
Fii :ETV[<C)L5§—|<C>L3§|J- (38 note that the uncertainty in the quadratic estimator is deter-
mined by the quadratic Fisher matrix, which contains the
The “unbiased” (to first order in®), non-Wiener-filtered inverse of(C), ss. For statistically isotropic noise, this in-
temperature is given by Eq37) with the “prior term”  verse is given by

where the quadratic Fisher matrix is determined as

(CFE+NFE)/D, —~Cl®ID, 0
Os|  -CED (ET+N/D, 0 , (40)
0 0 1/(CPB+ NEB)

whereD,=C/"CFE-C[E?, and EIXX’ is the lensed CMB reconstruction. We compute the power spectr@fi® by
considering deflection angles; this has the advantage of pro-
viding a unified treatment of the higher-order Born approxi-
mation and “lens-lens coupling” effects considered by Ref.
[22]. We work in the longitudinal gauge because in this

power spectrum(or cross-spectrum G X =(XX"*), ss.
Comparison of the quadratic Fisher matfiq. (38)] to the
full Fisher matrix[Eq. (32)] shows that the two are identical
except for replacement of E€40) by Eq. (31). This results

in a qualitative difference between the two estimators: agauge the perturbations to the metric remain siwilbrder

instrument noise is reduced toward zero, the full Fisher maﬁgutr(?r)l(csetgtrsm;:g l\glggkshmoa)lga?]%rtfg oérttﬁszggfrtsheegrear
trix improves without bound F—<), so (aside from fore- P y

grounds, field rotation, primarp modes, and the statistical tech_niques are vali_d. We then consider thg implications for
concerns outlined in Sec. lll Ohe iterative estimator should !ensmg reconstruction; for near-term experiments, the effect
be able to reconstruct the convergence with arbitrary accy® S€€" to be negligible.

racy. This is not so for the quadratic estimator, whose recon-
struction accuracy is limited by the nonzero vaIueE&ﬁB

and the resulting upper bounds ¢€), & and F(@ad), At e P
high noise levels where tH&mode cannot be mapped, how- Propagating in roughly the-e, direction so that the CMB
ever C|IBB+NIBB%6;BB+ NIBB since both sides of the equa- experiment looks in the, direction; the “sky” is in thexy
tion are noise-dominated, and in this regime the performanc lane. T,h% spacetime m(fatrlc; obserrx\gd. by the photaisds
of the two estimators should be nearly identical. ong as it does not stray far from tizeaxis)

A. Lensing power spectra

In the flat-sky approximation, we treat the photons as

ds?=a%(7)[—(1+2¥)dr?+(1-2V)

IV. STATISTICS OF FIELD ROTATION 5 (dX2+ Sinﬁ)( (dﬁi-f—dﬁi))], (41)
Here we investigate the statistics of weak lensing fields ) S

with the objective of understanding the importance of theVhere the Newtonian potentidl is generated by the non-
field rotation w (or equivalently the cross-potentifl) in  relativistic  matter mhomogegu_ames, and §jp
CMB weak lensing. Field rotation is a cosmological con- =K sin (<) whereK = —QHg is the curvature of the
taminant in the sense that even with noiseless CMB data ariéniverse. The null geodesic equation in this metric is
no foregrounds, we cannot hope to recover two fietdend N
o from the single equatioB ense= 0. Therefore a nonzero i(@sir\( X
power spectrunt,”” translates into an uncertainty in the lens dr\dr

ov
=—2—=Sin x. (42
on
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The initial conditions are(y=0)=n, andd,n(x=0)=0. - 1 I 9sikx , .,
The usual method here is to apply the first-order Born €1~ (X)= 7~ Pw| k= ——— x| = —7— Q5oHo(1
. . . . . Sing x Sing x 4]
approximation to Eqs(42), i.e. we perform the integration
over the unperturbed photon trajectory. If we integrate for- 5
ward, we find that +2)°Ps| k= sincy X/’ (48
X
- X , o (x' ,n(x")) ) Here we have used the 3D power spectra of the Newtonian
N(xX)=no=2 fo Wx".x) - dx". 43 Lotentialw and fractional density perturbatiad= p/p—1;

these are normalized in accordance witlereq e {WV,5})

where W(x', x) = cot x' — colk x. We may now apply the
second-order Born approximation, in which we integrate not Py(k)= J (q(O)q(x))e‘k'Xd3x, (49)
over the unperturbed photon trajectory but rather over the

photon trajectory given by the first-order Born approxima-

tion, Eq.(42). Taylor-expanding the result to second order in>° that the logarithmic band power is given mé(k)

=(k327%)P(k). The lowest-order contribution to the con-

v yields vergence power spectrum is given by the familiar regétre
X Xo is the comoving radial distance to the surface of last scat-
n(x)=hp—2 JO W(x" x) ¥ (x".no)dx’ ten)

X (X Cie=1 J W x0) % ¥ () dx (50)
+4 fo fo WX X WX x) - ' 0 on '
(There are higher-order corrections @&, but we do not
consider them here since the purpose of this paper is to in-
vestigate lensing reconstruction, not to provide a precision
theoretical computation of the lensing power spectra. Clearly
Mt a sufficiently high-precision measurement®f“ is made,
rT}'nigher—order Born corrections should be considered in the
theoretical interpretation of the power spectrumhe field
rotation power spectrum is given to lowest order by

XW(x',Ng)- W (x",No)dx"dx’. (44)

The convergence and field rotation at radial coordinasre
most easily derived by taking the angular Fourier transfor
of this result. If we compute the deflection angle and perfor
the (x,w) decomposition of Eq(8), we derive

k=12 [ WO 0w ay =23 i 0-11]
| Coo=a> (I'[I-(1-1")]2
I/

X (v
Xf fx W(X" xIW(x",x)
0 Jo X0 X
XJ dXJ dx'W(x,x0)?
XV (x )W -p (XM dx"dx’ (45) 0 0
and XW(x' 0% oe ). (6D
Note that the lowest-ord€m the Born expansioncontribu-
w=—22 (I"*xD[I"-(1=1")] tion to C”” comes from the trispectrum of the density field.
I If the density field is non-Gaussian and this non-Gaussianity
is insufficiently suppressed by the central limit theorem, then
X (x' . - .
Xf f WX, x YW(x',x) Eq. (51) will also contain a term from the connected trispec-
0o Jo trum (WWWW) onecteds  HOWever, because the factor
W(x",x") in Eq.(46) vanishes ag”— x’, it follows that the
trispectrum components contributing®@j“ involve correla-
tions between points at widely spaced radial coordinates,
which are suppresse@onceptually, this is because a single-
gcreen lens only produces convergence and not field rotation,
gardless of its Gaussianity or lack thereof. Thus if struc-
res at different radial distances are independent, as as-
sumed in the Limber approximation, then there is no con-
nected contribution t&€"* .)

XWy (X)W -y (x")dx"dx’". (46)

We now turn our attention to the statistics of EGE) and
(46). We assume thaW¥ can be described as a Gaussian
random field because even in the nonlinear regime, our lin
of sight passes through many regions of independent densi
fluctuation and hence non-Gaussianity is suppressed by t
central limit theorem. The power spectrum is

(U, (X)W1, (x2)) =81, (X1) S(x1—x2)- (47) o
B. Effect on lensing estimation

Here the projected potential power spectrum is determined We have computed the field rotation power spectrum, Eq.
using the Limber equation: (51) for our fiducial cosmology using an analytic approxima-
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a) Power spectra of kK and w b) Ax power spectra
001 (@ Powerspectraofkandw 10 ) Axpower spectra ____
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FIG. 2. (@) The convergencéupper curves and field rotation(lower curve$ power spectra in the fiducial cosmology. These are
normalized tooy™®®=1.0 (solid curve$ and oy"®®=0.7 (dashed curves(b) The power spectra aiE (solid curve$ andAB (long dashed
in “noise units” (uK arcmin). The short- dashed curves are the t@ahode power introduced by the convergence component. The upper
curves are calculated farp™®*=1.0, the lower curves for 0.7.

tion to the growth factof23] and a nonlinear mapping of the to setB,enses0, CONtamination in théd modes is more

power spectruni24]. The results are plotted in Fig(@. ~  serious for lensing than contamination in Benodes; this is
The effect of the field rotation on the lens reconstruction o qe mathematically explicit by multiplication @(—(}}0) in

is to add an additional term to the.CI\/.IB given hyx Eq. (31).] SinceAx has vanishing first-order correlation with
= Vx-x V(. The power spectrum akx is given by X, one might conjecture that the field rotation begins to in-
1 terfere with lensing when the noisd/; is reduced to
CATAT= _2 [*|r (1-1"] Cl"i‘”C, . ~0.2 uK arcmin; howeverAx is highly non-Gaussian and
I exhibits many higher-order correlations withso we should
be cautious of trusting this conjecture. In the simulations
amag 1 , y w0 (Sec. VI A), we find that even for our reference experiment F
Cr = ;2 [*' -(I=1"72CpCE, cos 2a, with 0.25 x.K arcmin the field rotation does not significantly
’ contaminate the reconstruction of the convergence field — it
L L increases the mean squared error of the reconstruction by
AEAE_ N T .y /1y 12~ee, ~EE only ~15%. We conclude thafat least at the level of the
e ; |/4["(I {(I=INPPCI(C cos' 2 experiments considered hgtae field rotation is not a prob-
lem for lens reconstruction.
| ’ B sir2a), (52

V. ESTIMATING THE CONVERGENCE POWER
ClABAB: EE i[*l’ . (l_lf)]zcla),w(cllElEI, Slr'|22a SPECTRUM
T Having investigated the reconstruction of the lensing

field, we turn our attention to the convergence power spec-
trum, or equivalently the potential power spectrum, since the
two are related byC{“=%I*C"*. In this section, we will
ignore any complications associated with the field rotation as
these are likely to be small for near-term experiments. In
Sec. V A, we integrate the likelihood function for the con-
vergence to yield the “grand likelihood function” for the
lensing power spectrum; since this results in a functional
integral over lens realizations, we simplify the problem by

roducing a Gaussian approximation. We make further ap-
proximations in Sec. V B to yield an estimator that is suitable
for actual computation.

+C7%, cof 2a),

where = ¢, — ¢,. The field rotation is forbidden to have
first-order correlations with the primary CMB and the con-
vergence C“=C[“=Cr”=0) by parity; higher-order cor-
relations with the primary CMB will be highly suppressed
becausew is determined by small-scale fluctuations in den-
sity along the line of sight with window function that van-
ishes at the last-scattering surface. There are nonvanlshu?
higher-order correlations betweenand o, but we do not
investigate these herfBut note that by reducing the condi-
tional covariance w?)|,— ((»)|e)?, these correlations may
enable us to reduce the “noise” due to field rotation further. o ] ) o
The Ax power spectrum[Fig. 2b)] shows that the A. Likelihood function and Gaussian approximation
w-induced modifications to the CMB modes are of the Our basic approach, modeled after Rgf7], is to com-

same order as mstrument noise when the latter is reduced Bute the grand likelihood functios, which is a function of
(NEB) 12~ \fpel®/2C~0.2 uK arcmin. [Since we are trying the lensing power spectrum:
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— ; 1 hence Eq.(53) does not appear to be solvable by Markov
LIC"]==1In f Dk e (9~ (")=§|n detC"~ chains either. We therefore choose to approximate&3).as
a Gaussian, in which case the functional integral can be com-

1 puted exactly:
—In f Drexp| — = k'C* 1k—L(k)|.
2
— 1 1
(53 LIC[* ]~ E|n detC*<+ E|n det[ Ak, )+ Cr< 1]
The objective of this section is to develop formalism to com- 1
pute the minimum ofZ. A “practical” version suitable for + Ekl C i, +L(k,), (54)

numerical computation will be given in Sec. V B.

The integral in Eq(53) has one dimension for each lens-
ing mode and hence cannot be performed by any brute-forceherex, is the point whereZ+ 3 k'C**~ 1« is minimized,
technique. In this situation the preferred solution is usually teand F(«, ) is the curvature matrix, Eq35), evaluated at the
use a Markov chain; unfortunately, the integral has of ordetens configuratiorg= («, ,0).
10° dimensions, and the integrand is expensive to compute, A grand likelihood gradient’; can then be defined:

L 1 K AF(k,) Flo
r ~ rr—1 + =Tr| (F(k,)+Cr Y —==—crel——crel
! acKe 2 |2 (s aC ™" aC ™
1 JdCK« IL(k,) Ik [ OF (k)] 9 (1
T ~rx—1 kk—1 * * kk—1y—1 torkk—1

-=-k,C —0C Kyt — Tr| (A k)+C ) T ——|+—| =«'C K+ L(k)

27 Flont K aCk ( gk | dk\2 ( e=r,
(55)

Note thatL(«,), and henceF(«,), do not depend o except implicitly throughk, . Also, if we use thatk, is the
maximum of 2 x'C*“~1x+ £ with respect tok, we find that the final derivative with respect koin this equation vanishes.
We further note thatC"**/dC|“ is simply the projection operator onto theepresentation 08Q(3), i.e. in harmonic space
it has 1's as diagonal elements with multipblend 0's everywhere else. Defininly to be the number of modes of multipole
| (note that on the spherd,=2l+1), this allows us to simplify Eq(55) to

d [(Flx,)+CH 1y, [k 1l? any IF (k)
I~——— S— > + —Tr| (F(k, ) +CH 2 ——=| |, (56)
2C" = 2Cy" 2 =1 2C" 2 oni * dKk .,
|
Here the sums are over all modesf multipolel. B. Practical estimator and uncertainty

It sometimes occurs that we wish to estimate the lensing Ideally, we would like to implement the maximum-

power spectrum not by estimating the individ/&f", but jikelihood estimator for the coefficients,, i.e. Eq. (58).
rather by “binning” the power spectrum. This is useful if, ynfortunately, this involves setting to zero some linear com-
e.g., the §/N)? per multipole is low or if the partial-sky pination of thel'’'s given by Eq.(56), which is a highly
nature of a survey causes confusion between power in neighmntrivial task. We therefore take the approximation that the
boring multipoles. In this case, we introduce “basis func-cyrvature matrix* does not depend o, thenT, is seen to

tions” { M *#} for the lensing power spectrum: depend only on the quantitie&* and
KK _ M . 1
Cl % C,LLMI . (57) U|Eﬁ 2 |K*||21 (59)
2C 71 =1

The coeﬁicients:M are now to be estimated. The maximum-

likelihood estimator is then the choice of, that satisfies: which explicitly depends orC{™ but is also implicitly a

function of C{ through its dependence a) . Note that the
S MET,=0 V. (5  functional form ofl', is I(CF,0)=T(C[*)~v,. Equa-
[ tion (58) then reads
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YU ©) valid if the reconstructed convergence fietq is approxi-
0= EI METF(C) —vi(c,)]=T""(c,) —v,(c,), mately Gaussian. I, has a significant trispectrum when
(60) averaged over LSSCMB+noise realizations, then E(2)
must be used instead. This is only a problem in the low

where we have defined,(c,) = =, Mtv(c,). We are thus signzl-to-noise(high l()j r_e%i_mg inl;/vhichdle;ls?ng modes canl-
; _"1(0) (0) i . not be reconstructed individually and their power is only
attempting to solvev ,(c,)=1I",”, butI',” is some compli statistically detected.

cated function of the convergence power spectrum coeffi-
cients {c,}. We solve this problem by approximating
F(0)~(v,(eu))sge,) . L. the expected value of,(c,) Thro hoV![. 21UerEei'lcaAtl'_oilI\(AJ:‘JII_eAr:;%NSand tensor power
where the LSS realizations are drawn from a lensing conver- ughout ou vatl N9 pow

ence power spectruiB =S ¢ M”. We therefore use estimators, we have made various approximations that
?he esti?nator P ! v should be tested. The most robust way to do this is to con-

duct a numerical simulation of the CMB and lensing field,
c )= c V. 61 and then construct lensing estimators, comparing the error to
0u(C)=(0u(Co)lisge,) Vi 61 the theoretical estimates of Eq82) and(38). In all cases,
: : . .. we have used a flat sky with toroidal boundary conditions.
Equation (61) is somewhat abstract, so we clarify its We will only simulate the CMB polarization here; formally,

meaning here. The statisti¢,(c,) is proportional to the 7 i :
power spectrum of the iterative convergence estimator obt—he polanzanon only estlmators are obtained by setfing
= in the relevant equations.

tained by solving Eq(27); this depends on the prior power
spectrumC;“= X, ¢, M/ as well as on the data. The solu- .
tion{c,} to Eq.(61) is the set of power spectrum coefficients A. Reconstructing the convergence
for whichv , equals its expected valyahich is most easily The simplest simulations involve reconstruction of the
determined via Monte Carlo simulatipriThis approach has convergencec. We generate simulated CMB, Q, U, and
the advantage of “calibrating out” the noise biases discussed fields on a 34°08 square patch of sky with resolution 1
by Ref.[21]. (Note that some convergence modes—thosearcmin per pixel (20482048 pixel3; lens the simulated
corresponding to large eigenvalues of the curvatbreare ~ CMB; and add appropriate noise.
reconstructed better than others. What is especially useful We wish to compare the quadratic estimator, &) with
aboutv,,, or equivalently the power spectrum of the iterative our new estimator, Eq27). The former is relatively straight-
estimator, is that the iterative estimator filters out the poorlyforward to compute; the latter requires that we apply the
reconstructed modes. Thus the convergence modes that arfethods of Sec. Il B. We simulate Gaussian random realiza-
reconstructed more accurately are weighted more heavily ifions of theQ, U, and« fields, perform the lensing remap-
determiningv,, and hence in determining the convergenceping, and add appropriate noise. We then compute the esti-
power spectruny. mators of Eqs(37) and (27). There are two tricks that are
Finally, we wish to determine the uncertainty on the so-very useful in numerical computation of these estimators:
lution {c,} to Eq. (61). If we average over many conver- first, simultaneous computation of inner produttsu for

gence modes, then this uncertainty should be given by thgj| |; and second, stochastic trace computation. We discuss
inverse of the grand Fisher matrf®)F for power spectrum each of these here.

determination: The simultaneous computation of inner products was in-
©) troduced by Refg[4,10] in order to compute quadratic esti-
Frw =T ulu)iss=(0v,00 1) 155 mators. A general version of this {gn a flat sky; see Ref.

:<UMUM’>LSS_<UM>LS§UM’>LSS (62) [25] for an all-sky versiop
2 ~

i.e. (¥F is the covariance matrix of , . If the reconstructed > (l_) (o wel = > Vi [th(N)Vaux(M)].

convergences, can be approximated as a Gaussian random | 2

field (which is true in the case where the reconstruction has (64)

high signal-to-noise ratio since in this case e~ x, which i i , ) ,

is Gaussian becauseis produced by many LSS fluctuations (NOte that this equation requires thaindu be written in the

along the line of sight then we can take the Gaussian ap_{T,Q,U} basis sinceE and B have different transformation

proximation to Eq(62). This is obtained by considering the Properties under lensing. Also the asterisktgns of course
covariance ofy according to Eq.(59) and using Wick's unnecessary if is a real field) If t andu are expressed in
theorem: this yilelds ) real-space, then the right-hand side is easily evaluated. The

quantities 31%t"o{u are then obtained via a fast Fourier
2 transform; division then trivially removes thé&/2. There is a

€

dMPEME [ Clx . :
©F = (63) zero-wavenumber mode correspondingl to0 which pre-
Hokt T 2 (OF 2 sents a problem for division. Here we simply set this conver-

gence mode to zero; in the complete all-sky treatment this
We remind the reader once again that the approximation Equould be justified by noting that the convergence-ig
(63) to the power spectrum estimation uncertainty is onlytimes the divergence of the deflection angle vector, hence
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[ x d?n=0 and sok|_o=0. [There is a corresponding trick hence we conclude that the iterative procedure should be

for the field rotation: Eq(64) remains valid if we make the convergent for 8:{)<2 in the absence of curvature cor-

replacements-— ¢ and Viuy (R) — * Vit (P).] rections. In reality, very small_valu_es d¢f) may be neces-
The trace in Eq(27) is most easily evaluated stochasti- sary fqr convergence, .espeC|a'I(I3/7|ln. cases wherg gurvature

cally: if we generate a random noise vectpwith covari- corrections are large. Sincé+C is positive definite at

anceN, then the trace is equal to the expectation value: € maximum posterior probability point, there is always a
positive value of{(, that results in convergence. The cases

Tr[A;_10@10)0{‘06(‘010)/\;1N] in which the small values of ., are required are those in
. ’ ' ) which curvature corrections are large; we have found from
=((Coiphg 'm0 CC A g 7)- (65  our simulations that these are the low-noise experiments.

) ) Convergence is generally found to be faster for the High
If this Monte Carlo method is used to compute the trace, the'&onvergence modes.

the Monte Carlo error in its computation for one realization
of » is less than or equal to the instrument noise contributio
to the uncertainty on the right-hand side of E2j7). [This is
because the right-hand side of E&7) is a quadratic func-

tion of )2, with CovarianCé, which is greater than the noise delenSing Operatiomil in Eq (66) mixes hlgh-mult|p0|e
g .

g(r)r\(/)?ri/zr;?:rll\::ealsocg?ezllagltrﬁgtlrzrc]:iﬂ.r%lggleomﬁehf&r;%e(r:?)rfl?eaP-Oise down to lower multipoles where it disrupts the lensing
N ) P o estimation. This problem is in principle solvable by using the
izations of used, it follows that of order a few realizations

“IngAT- -1 i i ;
of n are sufficient in evaluating E(q65). In fact for the correct C+Aq NAg 7)™" weight function in place of

71 . . . . .
reference experiments described here, we find that there fs©.0) N Ed. (23). However, since this occurs in a regime
little gain in taking more than one realization gf where the iterative approach does not improve upon the qua-

One problem we have encountered is that for experiments
Tith low noise and wide beam6fyv=10 arcmin, the
iterative estimator given by Ed66) is unstable. This insta-
bility arises because the noidg is strongly blue; hence the

We solve Eq(27) using the iterative procedure: _dratic estimator_apprpach anyway, we recommen_d simply us-
ing the quadratic estimator for wide-beam experiments.
kX =AY CR(CE AL ) T CE L A Ik We illustrate by considering the reconstruction of lensing
nru= GlAg 1o -rCii(Croot ' (0.0y"g using reference experiments A—F. The residual error in the
T AL *C oo CCOA G NI+ (1= £k, - reconstructed convergenge as measured by computing the

(66) power spectrum of the differener—_K betwefen i_nput and

reconstructed convergence maps, is shown in Fig. 3 for both

Hereg is the lens configuration with convergeneeand no  quadratic and iterative estimators. For the iterative estimator
rotation: g=(«,0), and the{, are convergence parameters; applied to Ref. expt. C, we séf,=0.12 in Eq.(66), used

we choose them to be three realizations of the field in Eq.(65), and performed 64
iterations. Reference expt. F has a lower noise level and so it

) is necessary to use the smaller convergence pararigier
é“lzm’ (67) =0.04; the convergence is thus slower and we used 256

iterations. Reference expt. A has a higher noise level and so
we can us€()=0.2 and 24 iterations. Maps of the input and
that the Wiener-filtered quadratic estimator, Eg7), is a recon;tructed ﬁonvgrge_nce f|elr(]js(;or thed Ref. e>f<prt]. C recon-
good choice for initializing this iteration. The choice &, strqctlon are shown in Fig. 4. The dependence of the |t¢rat|ve
estimator reconstruction accuracy on noléeand beam size

is an intricate issue: if it is set too small, the rate of conver- ) T )
gence of the iteration becomes unacceptably slow; if it is setT WHM) Grwiwm is shown in Fig. 5. We have also displayed

too high, the iteration can fail to converge entirely. The con-

in Fig. 5 the(theoretical reconstruction error curves for the
vergence can be understood by approximating B6) as guadratic estimator in the absence of instrument noise. These
linear in k,:

where {() is a constant satisfying 0{(,)<2. It is found

curves represent the fundamental limit to the reconstruction
accuracy possible with quadratic estimators; it is readily seen
£ A O Fem— ) T (1— _ 68 that the iterative estimator can do better if noise is low
R S A 9 (NMp<0.5-1 uK arcmin, depending on the range loton-
Here we have approximated the response matrix of the likesidered. [Note that we displayC{™ in these plots, whereas
lihood gradient using the curvature matrix. Then the requiresome authors have displayed insté@d+ 1)C%2, where
ment for convergence is that all of tipossibly complex ~d=V® is the deflection angle. The two are related Il
eigenvalues of the matrix +1)CY27r=(2/7)C[*~.]
The accuracy of reconstruction can also be represented by

Cl "+ i the correlation coefficienp, = C<*/\/C“Ci**. The correla-
R|,|':5|,|f—§(c)c' (69) : icienp; = C; PGt

|'<K—1+ F tion coefficient is the figure of merit if the objective is to
cross-correlate the convergence from CMB lensing with an-
lie within the unit circle. Note that, averaged over CMB other tracer of the densitie.g. weak lensing of galaxigs
+noise realizations{F)=F, and hencgR)=(1-{()1,  since the signal-to-noise ratio of the cross-correlation is de-
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Error in lens reconstruction: quadratic vs. iterative estimators
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FIG. 3. The power spectrum of the error in the convergence reconstruction for reference expts. A—F. The top curve in each panel shows
the overall convergence power spectr@ff. The middle curve shows the theoretical, i.e. from B4) power spectrum of the convergence
error x— k in the Wiener-filtered quadratic estimator E§7); the “+” data points indicate the power spectrum of this error as recovered
from simulations. The error power spectrum for the iterative estimatof@&). again as recovered from simulations, is shown with the *
X" data points. The bottom curve shows the theoretical best performance if the Fisher matrix lif@2Egan be achieved, i.e. if we had
a truly optimal estimator and no curvature corrections. Note the more dramatic improvement provided by the iterative estimator when the
noise is small. Field rotation was neglected in the calculations for this figure.

termined byp,. We have plotted the correlation coefficient is shown in Fig. 7; it is seen that the field rotation increases
in Fig. 6 for the various reference experiments. The iterativehe mean squared error of the reconstruction by ong%
estimator offers improved reconstruction, especially for thefor Ref. expt. E (0.5wK arcmin noise, 2 arcmin begnand
lower-noise experiment&C—F). ~15% for Ref. expt. F (0.2 K arcmin noise, 2 arcmin

Up until this point we have neglected the field rotation ~ beam).
we should verify that this is justified. We do this by intro-  As a final note, we find that for low noise levels, a large
ducing field rotation with power spectrum given by Eg§1) number of iterations is required because our iterative process
as computed in Sec. IV B with normalizatiarl™*=0.84. s ill-conditioned. Indeed, it is possible that there are eigen-
We then compare the performance of the iterative estimatoralues ofR that are so close to unity that their corresponding
Eq. (66), with and without the field rotation. The comparison modes have not converged even after tens or hundreds of

FIG. 4. A simulated reconstruction of the lensing convergence using polarization and reference expt. C parameters. In the left panel, we
display the realization of the convergence fisddused to produce the simulated CMB. The reconstructions using the Wiener-filtered
quadratic estimator and the iterative estimator are shown in the center and right panels, respectively. These frames aré eaahg@it&2
width, corresponding to 1/16 of the simulated area; the scale ranges from (disekging, x= —0.12) through whitg/converging,x =
+0.12). Although all lensing multipoles up te- 3600 are simulated, we have only displayedItsed 600 modes in these figures for clarity.

Field rotation was neglected in the calculations for this figure.
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a) Dependence on noise (Bgyyy = 4 arcmin (b) Dependence on beam (Np = 1.41 pK arcmin)
T T T T T T T T T T T T T T

i
x
oy
S

X

i

X

oy

Qe

2

1x10°8 1x10°®

Convergence power per mode, C*
Convergence power per mode, C*

0.50 .
0.25 ]

1 1 1 1 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Multipole number, L Multipole number, L

1x10° F e

FIG. 5. The dependence of the mean squared error in lensing reconstrptiens,|2), on the instrument parameters. The baseline is
Ref. expt. CNp=1.41 uK arcmin, fgywyw=4 arcmin. The thick solid line is the raw power spectr@ff*; the thin solid lines indicate the
mean squared error for the lensing reconstruction using the iterative estimator. As described in the text, the iterative estimator is unusable for
wide-beam experiments=(10 arcmin; we used the quadratic estimator for these cédesdashed curvesThe dashed lines indicate the
ideal zero-noise reconstruction error from the quadratic estimator according t@&aqwith polarization only(top) and temperature
+polarization(bottom). (a) Changing/Np ; units arewK arcmin. (b) Changingfgwnwv; Units are arcmin.

iterations; if this is the case, then it should be possible taive: we adjust the power spectru@(™ until v ,=(v ) ss-
improve upon our results by increasing the number of iterafNote that both the left and right sides of E§1) depend on
tions, or by finding an iterative scheme that converges faste(r;fK_] We will attempt here to compute the binned power
than Eqg.(66). This is allowed by the Fisher matrix noise spectrum, i.e. we choose a basis for the convergence power
limits, which are significantly lower than the achieved noisespectrum given by

levels(see Fig. 3. We consider this possibility unlikely since
we tried increasing the number of iterations in several of the
simulations and found little improvement. Additionally,
modes with eigenvalu&y close to unity correspond to flat
directions of the curvature matrif [see EQ.(69)]; such
directions, however, cannot be reconstructed accurately re-
gardless of how many iterations are used.

L1 pAl<I=(ptD)Al

|0 otherwise, (70)

where Al is the bin width andu ranges from 0 through
Npin—1. We are thus attempting to reconstruct the power

spectrum inNy;, bins, equally spaced out to maximum mul-
We compute the lensing power spectrum from simulatedipole | 5= NpinAl.

data by solving Eq(61). The approach, once again, is itera-  Our iterative algorithm for solving Eq61) is

B. Extracting the convergence power spectrum

(a) Quadratic estimator (b) Iterative estimator
T T T T

pquad
Piter

0 1 1 O 1 1
0 500 1000 1500 0 500 1000 1500
Multipole number, L Multipole number, L

FIG. 6. The correlation coefficient=( xk)/( k?)% k?)*”? between the estimated and reconstructed lensing convergences as a function
of multipole |, as determined in simulations. The correlation coefficients for the quadratic estimator are shown if@panese for the
iterative estimator are shown in parg). In both of these panels, the eight curves are for reference expts. A, B, C, D, E,(anttdm to
top) from Table I. Field rotation was not included in the calculations for this figure.
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(a) Power spectrum of reconstruction error (b) Worsening due to field rotation
T T T T T T T T T T T T

=
w

1x107 |

I
N
a
T
>
1

In
[N}
T

1

1x10® |

I
S

KK
Convergence power C|'

©

i
x
oy
o
Ratio of mean squared error
with w to without w
P
=
(5]
T
1

[y
o
a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Multipole, L Multipole, L

FIG. 7. The effect of field rotation on lensing estimation for Ref. expts. E af@ Power spectra of the convergeneéthick solid line,
convergence errog— x with field rotation(thin solid lines, and convergence errei— % without field rotation(thin dashed lines (b) The
worsening of the reconstruction due to the presence of field rotation, as measured by the ratio of power spectra of the convergence errors:

(k= K1 [Pwith o /(| (K= K)1|PDwithout » - The same CMB, LSS, and noigecaled appropriately to the experimerealizations were used for
all the simulations in this figure.

¢ d, In Fig. 8(@), we show a determination of the convergence
Cun+1=C, P C,u,n+2<v Tl power spectrum from simulated data using Ref. expt. C noise
NI ILS Sy ) parameters. The choice of bins wWilg;,=32, Al =50, | 12
v,(C,n) J0) =1600, and the survey area was 0.355 steradians
X ' - , (71) (2048 arcminx 2048 arcmin, with toroidal periodic bound-
<U,L(CV,n)>|_sch'n]

ary condition$. We initialized the power spectrum estima-
tion with the white spectrunC[“*=1x10"°, corresponding
to ¢, 0=10"°. We used,=0.5 for the first two iterations
of Eq. (71), which are sufficient to bring the estimated power

S?_pectrum:mnﬁ to the correct order of magnitude. Once this
ballpark” estimation has been completed, we usgg =1

for the subsequenin&2) iterations.

An examination of Fig. &) shows that the power spec-

m estimator Eq(71) has been successful in reproducing

wheren represents the iteration number, ahdis the num-
ber of modes that fall into theth band. It is readily apparent
that the final values,, .. will satisfy v, =(v ,)_ss

In order to compute the convergence power spectrum e
timator, the expected valye ,(c, ))Lsgc, ] Must be deter-
mined; the simplest method for doing this is via Monte Carlo
simulations. Since in the end we are solving the equatiorfru

v, =(vu)Lss, We want to make sure that the Monte .Carlo_Fhe qualitative features of the power spectrum; however, the
induced error in the right-hand side of this equation is smal

compared with the statistical error in the left-hand sidePOWVer has evidently be_en.overesnm.ated at the highd.
(which depends only on the data anda@yy,). It is trivial to We can perform a quantlt_atlve anal_y5|s of the perfqrmance of
see that afteNy,c Monte Carlo simulations, the variance in the power spectrum estimator using tJ@§ test, using the
determination of the right-hand side i} of the statisti- Gaussian error estimate of Eq2). The x* value for thel .

cal variance in the left-hand side. Therefore, we expect that if- 1000 region(where the power spectrum determination
we useNy,c Monte Carlo simulations to determirge ,), ss, should be cosmlc—\ianance_hm_u)ec_i; x“=25.46 for 20 de-
then the variance of our determination of the convergencd"ees of freedomi(=0.18), indicating that Eq.72) appears
power spectrum will increase by a factor of-L/Nyc. A to be giving a reasonable estimate of the uncertainty on the
reasonable choice, then, is to takg =3, which results in  POWEr spectrum. . .

15% increase in the variance of the power spectrum estima- 1 N€ same is not true of Zthe high+egion 1006

tor over the case ofNyc=o (exact computation of <1600, for which \£v7e com_putg :_53'05 for 12 degre(_as of
(v,)Ls9- The uncertainty in the power spectrum estimation/'€€dom =410 7). It is readily apparent from Fig. 8

can then be estimated from E@2) with the correction for that the failure of they? test is due to an upward bias in the
power spectrum estimator E(.1). This bias occurs because,

regardless o, , our power spectrum estimator assumes that
5 there is no convergence powerlat 1600. However, it still
Ci 2 1 detects theB modes induced by this short-wavelength con-
76, crar N E(H Nuc)- (72 Vergence power, and introduces excess convergence power at
! | <1600 to reproduce thed® modes — henc€[“ is over-

o ] estimated. This bias can be removed by either estimating the
(Note that this is the standard Gaussian formula for errop,qdes to highet or including the aliasing of power from

bars, except that it is corrected fNM'g f‘”q is written in those modes into the modes we estimate as an additional
terms of the filtered power spectru@y*"* instead of the source of nois¢26]. This explanation of the upward bias is
noise powej. confirmed by Fig. &), in which we have artificially “turned

Nyc:
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Convergence power spectrum estimation
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FIG. 8. (a) Simulated convergence power spectrum estimation from Ref. expt. C with solid angle 0.355 steradians. The solid curve is the
fiducial modelC[“; the points are the convergence power spectrum measured from simulated data after 5 itébafidressame, except
that thel = 1600 convergence modes were ignored in producing the simulatethdataver, exactly the same CMB.SS+noise realization
was usedl The horizontal error bars indicate the widths of the bins, while the vertical error bars arertheedsurement uncertainties
according to Eq(72). Note that the vertical error bars include the Monte Carlo error associated withNigigrg 3 simulations to determine
(v,); if we had calculatedv ,) exactly Nyc>1), the vertical error bars would be 13% smallsee text for details

off” the lensing effect for convergence modeslat 1600, VIl. CONCLUSIONS

then produced a simulated data set and applied the power o .
spectrum estimator Eq71). In order to make the compari- Weak gravitational lensing of the CMB allows us to re-

son between the original simulation and the restridieel construct the_(projected mass distribution_in the universe,
short-wavelength lensing turned pimulation as simple as thereby probing large-scale structure and its power spectrum.
possible, we have used the same CMB, noise, and LSS reap!nce the window functions for lensing peak at redshiff
izations for both. One can see by comparing Figs) &nd order unity, lensing offers t.he possibility of using the CMB
8(b) that there is little effect at low, where the power spec- 0 study the low-redshift univerg@—5]. “Cleaning” of lens-
trum estimation is limited by cosmic variance. However, ating from CMB maps is potentially valuable for studying the
high|, one can see that the bias present in the original simuPrimary CMB, particularly for inflationary gravitational
lation has disappeared in the restricted simulation, therebwave searches using the IdB-mode polarizatiof11,12.
confirming that the bias was due to higheonvergence Since the primary CMB polarization is expected to contain
power. They? for the 1008<|<1600 range has been re- only E modes on the relevant angular scalesf(order 18),
duced to x?=31.36 (12 degrees of freedomp=1.7  while lensing transfers some of the CMB polarization power
x10~%), which is still indicative of underestimation of the into B modeg9], all B modes that we see on these scales are
uncertainty in thec,, . Thus we conclude that in this regime, due to lensingor foregrounds Thus the CMBB-mode po-
either the Gaussian error estimate E£p) is underestimating larization allows much better lensing reconstruction than is
the error by a factor of-31/12~1.6, or the error bars are possible using temperature data alone. It is thus of interest to
correlated, or the iteration of Eq71) has not completely consider optimal methods of reconstructing the lensing field
converged. from CMB polarization data; in this paper, we have investi-
In a real lensing experiment, the underlying primary gated this problem in detail and improved significantly on
power spectrun€Cy" is unknown and only the lensed power the previous quadratic estimator method®]. We have
spectrum is directly observablend even our knowledge of shown that this improvement can be up to an order of mag-
this is limited by instrument noise and cosmic variance pitude in mean squared error over the zero-noise reconstruc-
Thus a slightly more complicated version of the above analytjon error for the quadratic estimator.
sis will be necessary to simultaneously solve @~ and We make several comments concerning the present calcu-
Ci“. (Although since in the regime we are examinifg, lations. First of all, our lensing estimator, E(21), while
<3000, theE power spectrum is dominated by primary statistically superior to the quadratic estimator, still does not
anisotropies rather than lensing, we do not expect a degemchieve the Cramer-Rao bound on reconstruction accuracy.
eracy between these two quantitjds will also be necessary We have argued that this results in part from “curvature cor-
to estimate the convergence power spectrum well beyond thections,” fluctuations in the curvature matrix that render the
region of interest in order to avoid the upward bias describe€ramer-Rao bound impossible to achieyeore generally,
here. Since the signal-to-noise ratio at high low, it will be  this should also serve as a warning against blindly assuming
necessary to use wider birfse. largerAl) in this region. that the statistical errors in any measurement are given by
The choice of exactly which bins to use must be determinedr—1.). We expect that our lensing reconstruction estimator is
by the characteristics of the specific experiment. near-optimal since it is an approximation to the maximum-
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likelihood estimator and our iterative estimator shows novergence maps and CMB polarization, variation of the con-
signs of incomplete convergence, however the possibility offergence power spectrum between “clean” and “dirty” por-
further improvement has not been ruled out. tions of the sky, correlation of the convergence maps with
Secondly, we have assumed negligible primBrynode  synchrotron or dust emission, etc.
polarization heréalthough the formalism described hereinis N summary, we have shown that taking into account the
trivially modified to include significant primar modes, the full likelihood function allows improved reconstruction of
results would be qualitatively differentin the absence of the lensing of the CMB polarization field over that achieved
vector or tensor perturbations, this is correct; if vector orby quadratic statistics. For purposes of computing the lensing
tensor perturbations are present, then one must consider th@@Wwer spectrum or cross-correlating CMB lensing with an-
effect on lensing reconstruction. In the case of inflationaryother tracer of the cosmological density field, the most im-
gravitational waves, primar modes are generated mostly Portantimprovement is at highwhere earlier approaches do
on very large angular scales; the arcminute-scale anisotropi@®t reconstruct the convergence at high signal-to-ndise.
used for lensing reconstruction are uncontamingte@].  low I, the reconstruction is already cosmic variance limited.
(Formally, if we were doing a lensing reconstruction with the If one’s objective is to clean out the lensing effect in search

objective of cleaning lensing contamination of the tensor-of primordial gravitational waves, then the relevant quantity
induced reionization bump &t 20, we would seNPB=co IS the residual error in the reconstruction, and it is important

for 1 <20 so that the lensing reconstruction does not remov&° reduce this even if the convergence has been mapped at

tensorB modes) A more rigorous investigation of the effect Nigh signal-to-noise; hence improvement at all multipoles is
on inflationary gravitational wave searches is deferred to fuUSeful. We conclude that the likelihood-based estimators de-

ture work. veloped here offer the best prospective so far to extract the
Thirdly, the real CMB is contaminated by foregrounds __full amount of information from future high-resolution CMB

an important issue for all CMB anisotropy experiments. OngPOlarization experiments.

advantage of using CMB polarization for lensing reconstruc-

tion is that whereas the small-scale CMB temperature field is ACKNOWLEDGMENTS
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acteristic of the CMB, and this property has been exploite '

to remove them; unfortunately, their fluctuation spectrum,

degree of polarization, non-Gaussianity, and variations in APPENDIX A: QUADRATIC ESTIMATOR

frequency dependence are poorly understood. Galactic fore- |, our simulations, we have compared the error of our
grounds do not correlate with the cosmological signals, angie,ative estimator, Eq27), with that of the quadratic esti-

in this sense the residuals from their subtraction act like i”'mator, Eq.(37). Here we show that the latter estimator cor-
strument noise contaminating tfmode (and, to a lesser regnonds to the optimally weighted quadratic estimator, as

extent, E-mode® polarization. The foreground power spec- hronosed by Ref[10]. Statistically isotropic noise is as-
trum is likely to be different from that of instrument noise ¢\, meq throughout.

and is variable across the sky; nevertheless, if the covariance We begin by expanding E438) using the formula fof*
{nat?x of the ;orgg;oundéo& r(tahS|duaIs after ?dr(?[ghro:cjnd sub- ﬁiven by Eq.(33). The off-diagonal elements vanish by sym-
rac |qr) can be aelermined, then we can a € foregroun etry, while the diagonal elements are

covariance to the instrument noise covariance matrixIf

the statistical properties of the foreground residuals cannot 1 A
be determined or at least constrained, then any cosmological F,(q”ad)=iz Tr{F< ], 1, [(Chusdlr,!
analysis is pointless regardless of the methods u$tmar- It

ized point sources produce Poisson noise; also since many of « A 1

them are extragalactic, one could be concerned about their <[ ]'2v*'1[<C>L55]'1 g (A1)
correlation with LSS and hence the lensing signal. We leave ) )

a detailed study of foregrounds and their impact on lensingvhere we have defined=1-1,, and the inverses arex33

reconstruction to future investigation. We note that the pre/matrix inversegusing the{T,E,B} basis. Next we note that
dicted levels of foreground contamination from dust and syn{0 first order in «, the correlation between two Fourier
chrotron galactic emission are at a level of a few arcmin ~ Modes of temperature or polarization is

prior to any frequency cleanif@8], comparable to the noise A . 5

levels discussed here. Frequency cleaning should reduce this, (X XL )=~ r+O(x7). (A2)

at the expense of amplifying instrument noise. If foreground

removal is inadequate, this may result in anomalies in thé\ general quadratic estimator for the convergercis then
final results such as unphysical correlations between the coronstructed as
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. . . APPENDIX B: LENSING B-MODES AND IDEALIZED
K= lE XLLE D0, (A3) RECONSTRUCTION
1
The purpose of this appendix is to investigate the question
where = _; is the weight matrix, which we assume without of whether, in the absence of noise and field rotation, the
loss of generality to be HFrm|t|a(s|nce the anti-Hermitian equationB,ense= 0 could be used to completely reconstruct
part does not contribute te,). We further require it to sat- the convergence field. We show that with probability 1, it is
isfy [E_l]_|2,|l=[E|]|T2’_|l. (This guarantees that the esti- possible to reconstruct most of the convergence modes.
There may remain a small number of convergence modes
that cannot be reconstructed by this method. If we impose
periodic boundary conditions, the fraction of the conver-
gence modes that are in this category is at most of order
1N nax; however, there may be fewer of these degenerate
modes, or possibly none at all. We have not investigated
more realistic survey topologies but we would expect the
. . . . general result to be similar on scales small compared to the
~ IE TH(CLssli,[E -1, 1, [{C)Lssli,[Ed, -1} angular width of the survey. However, this seems mostly an
! academic point since zero noise is of course unrealistic, and
(Ad4)  there can be many almost-degenerate modes that spoil a re-

. ) . ) _ construction based oB 0.
subject to the constraint that the estimator be unbiased to first e B mode induceanﬁ;s7g—nsing is. 1o first order

order (i.e. have unit responge

mate « is a real fieldh We can construct the optimally
weighted unbiasedto first ordej estimator forx by mini-
mizing the variance of the estimat@meglecting the trispec-
trum contribution

V|:<|'A<I|2>Lss

1 2 .
1= 3 T, =) 89) Bliensng™ 7= 2 (w_z)' (=1 sin 2 By
1
We may compute the minimum of E¢A4) constrained by = Ty Ky (B1)
|I

Eqg. (A5) using the method of Lagrange multipliers. The

equationsV,+\ 751=0 becomes where7 is a transfer matrix that is a linear function Bf

R R (and once agaimv= ¢,— ¢,/). In the absence of noise, we
lZ T 2[(C) sl [ 65 11,1, [{C)Lssli,[Eili, -1, may SetB) ensing €qual to the observed polarizatid). We
! see that ifN Fourier modes are considered, there [dilgear

1 . equations forN unknownsk;. (We do not considet=0
R LI PR =1 B (AB)  modes since there does not existamode, and lensing has
no effect on zero-wave-number CMB modeBhus any con-
The solution to thigallowing 55 _; to be arbitrary is vergence mode that cannot be reconstructed must be associ-

ated with a degenerate directiondflt is clear that for some
_ 1 . rex - 1 realizations of the primary CMB, e.de=0, 7 is massively
[Z-0-1,,= 53 {Cuseli, T, -1, [{Chussl, ™ degenerate. We thus wish to explore whether these singular
(A7) realizations are “likely” or have probability zero. We will
assume here thaEE5>0 for all of the E modes so that
The correct normalization is obtained by substitution into “probability zero” and “measure zero” can be taken to be
Eq. (A5); it is easily seen to ba =F(%2)_The variance of equivalent.
this estimator in the absence of lensing, determined by sub- In order to do this, we consider the characteristic polyno-
stitution into Eq.(A4), is 1F{%%9) The quadratic estimator mial of 7
we have used, Eq37), is then seen to be a Wiener-filtered N
version of Eq.(A7) with the optimized choice foE, Eq. e . n
(A7), and its covariance Eq39) then follows from the P(\E)= det(7T-A1)= ,120 an(B)A™ (B2)
theory of Wiener-filtering.

Hu and Okamotq10] derive a quadratic estimator using The determinant of alN XN matrix is a polynomial of de-
essentially the same method outlined in this appendix. WhilgreeN in the entries of the matrix, hence eaah(E) is a
they have chosen to separately optimize the different compgsolynomial of order at most—n in the E,. We know from
nents ofZ (TT, TE, EE, TB, andEB) and then combine linear algebra that the roots and multiplicities B{\;E)
these to form a “minimum variance” estimator, the end re- (viewed as a polynomial in) are precisely the eigenvalues
sult of the optimal filtering must be the sam@ote that and multiplicities of7; in particular, the number of degener-
while our covariance response functibims the same as Hu ate \=0) modes is equal to the smallest value rofor
and Okamoto’s aside from a factor of?/2 due to use of  which a,,(E) #0. Now suppose it were the case for some
vs k as the fundamental field, we have usgdin place of thata,(E)#0 with nonzero probabilityrecall that the pri-
their F/A to avoid confusion with the Fisher matrjx. mary CMB polarizatiorE is a random variab)e This implies
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thata,(E)#0 is generic, i.e. only a smalmeasure zefjoset  number of equations as variables. Thus one cannot conclude
of values ofE give a,(E)=0. The significance of this result from the counting argument alone that there is a degeneracy
is that if we can exhibit even one possible polarization fieldin the case of full-sky coveragéThe analysis on the sphere

E for which a,(E)#0, it follows thata,(E)#0 with unit  would be slightly more intricate since the sky is curved and
probability for the real primary CMB polarization field. A the boundary conditions have different topology than in the
similar statement holds for the number of degenerate conveftat-sky approximation; however, on scales1 small com-
gence modes: if we can exhibit a possible polarization fielgpared to the curvature scale, we expect that the results pre-
with n degenerate modes, then it follows that with unit prob-sented here will still apply.

ability, the lensing field as reconstructed from the real CMB

will have at mostn degenerate modes. Conceptually, this APPENDIX C: CURVATURE CORRECTIONS

means that the generic lensing reconstruction uBifg:nsed

=0 cannot be more degenerate than any special case e,
exhibit. (It may, however, be less degenerate.

We consider here the following very simple realization:
take a sky with area#, squarewith sidelengthy4 ), and
with periodic boundary conditions. Suppose that only Ehe
mode E, where L=(2x/\47,0) (i.e. the longest-

wavelength mode in the direction is NONZEro. NOW CON- ot studied in detail in Kesdezt al [21], where it was called
sider a degenerate convergence mode, i.e. one that does BRL  “first-order noise contribution” and denoted by

contrlbute 10Bjensing: From Eq.(B1), we see that th&=0 N%Z, xxn(L). Here we show that in fact the curvature cor-
requirement forces all of the convergence modesto be ,

zero except those for which sim20, i.e. those for whicl’ rection contains the likelihood analysis manifestation of the
» 1€ 1)
is either parallel to or perpendicular to+L. The latter is N WOf Ref. [21]. te th t i o thi ol
impossible given the boundary conditions and the former € can compute the curvature corrections o this as Tol-
requires!’ to lie in the x direction. Thus, out OD(|23X) lows. If we definesF=F—F, and retain our approximation
' o m from Eq. (32) thatF is independent ok, then we have
convergence modes, only tia¥l,,,) modes with wavevec-
tor in thex direction cannot be reconstructed. Hence no more S={(6F+F+C 1) 1) g~ S+ So(6F S6F ) s
than a fractionO(1/,,,) of the convergence modes are de-
generatdi.e. cannot be reconstructed frdg,enseq 0), and T (Cy

by the argument of the previous paragraph this must hold _ o1y —1 . . .
with probability 1 for the actual realization of the primary whereSy=(F+C ) . [To derive this equation, we have

polarization field. Note that this is only an upper limit and merely Taylor-expanded ia, then taken the CMB noise

the actual number of degenerate modes may be smaller, SLrLSS ensemble average, and noted that by deﬂmﬁﬁh
even zero vanishes when ensemble-averaged over GMBise realiza-

The problem of lensing reconstruction USiBgyenses0 tions. Note that beca}use we have taken th_e expectgtlon value,
has been considered previously using real-space methods g (C1) should be viewed as an asymptotic expansion rather

Ref.[5]. They derive the following equation for the lensing- | an a Taylor equn5|,9hThe mean ;quared errSrplcks_up
inducedB mode: curvature correction” terms involvingS.F that cause it to

not equal the naive resufy. Note that curvature corrections
1 to S only increaseS, they cannot decrease (in the sense
§V25|ensing= YuV?Q—yoV?U+Vy,-VQ—Vyq- VU, thatS— S, has all eigenvalues0; equivalently the diagonal
(B3) elementsS;; =[S ];; in all orthonormal basgsThis is true to
all orders indF because the inverse of the mean of a set of
where (as abovg vy and y, are second derivatives @b. positive definite Hermitian matrices is smaller than the mean
This is therefore a third-order partial differential equation forof the inversegin this same senge
®. Referencd5] then performs a two-dimensional Taylor ~ In order to compute the second-order curvature correction
expansion of® and finds that some of the coefficients are €xplicitly, we must understand the fluctuations in the curva-
not fixed by Eq(B3). They thus determine that there exists ature matrix. For simplicity, we evaluat&F at «=0. In this
class of lensing potential modes that do not prodBiceodes ~ case, we find
purely by counting the number of equations and the number 2 1 1
of variables to be calculated. The relationship between our _ _ - AL TotA-1
approach and that of Ref5] is that we expresd in the Fur=Flea e ]=—= py (2 IndetCqt 5xCq X)
Fourier basidEq. (B1)], whereas they have expressg&dn

Our purpose in this appendix is to investigate in greater
tail the mathematical structure of the curvature corrections,
i.e. the increase in uncertainty in lensing reconstruction due
to fluctuations of the curvature matrix. We show that the
curvature correction has another interpretation: it represents
the increased noise in the reconstructionxgfdue to the
presence of other lensing modes, (wherel’# x1), an ef-

aK| d

the Taylor polynomiafx'y*};’, _, basis. These bases are not 1., aC ., dC PC | . .
equivalent due to the differing boundary conditions assumed =5xC 7| 20— ———|C X
; o . o 2 Ik Irp Ir_IKy

(the Fourier basis imposes periodic boundary conditions ' 1971
whereas the Taylor polynomial basis does)naind this leads A A 2¢

. / ; 1 |. JiCc . . dC d-C
to different conclusions regarding the number and character --TrCcY{——~Ct—--—+||, (C2
of degenerate modes. In the Fourier basis there are the same 2 IK—1 gy Ik Ky
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where the second line has tk¥s evaluated atc=0. Sub-
tracting out the average vallg,, over CMB+noise realiza-
tions yields

1ATA—1 A—1g 1 A-1
5fi’|r: - EX C J(,HI)C X+ ETI’(C J(*H'))’

(C3
where we have defined
LIC1 . aC ., aC
J—iiy=C——C =|—C *"—
IK_ 10K _ Ik Ik,
oC ., aC 9*C
+—C — (C4)
O’)K|/ (?K*| 5K,|(9K|/ =0

NOte that\](,“/):J(|/’,|):J2-|'7|/) .
Using this relation, and noting that at=0 we have
aClax,=f<, we can use Wick’s theorem to compute

1 . .
<5f|,.,5f.1,|1>=ZTr(C—la(_l,l,)c—lJ(_.,,,)). (C5)

In the case of statistically isotropic noise, EG5) allows us
to compute the covariance of the reconstruct®using Eq.

AV~ V2D [Soly THE HrC M5 C 1 C 1, +CHrC e CHSC Y ).
I!

2
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(C1). In harmonic space, the off-diagonal elementSoefan-
ish by symmetry whereas the diagonal elements are given by

1 A N
S=Soli+ 7[00 20 1Sl THCE 1€ M),

(Co)
which is a summation over quadrilateral configurations of
the modesdl, I’, and the mode over which we sum when

computing the trace.

To lowest order §F2), the curvature correction is given
by Eq. (C6). The correction to the mean inverse curvature
V|, i.e. to the covariance matrix of an unbiased estimator for
k, is related to the correction t§ by noting thatS(l
=V, '+ Cr 1, hence

V2 1 . .
AV, =§|2AS|~ VP ISl THE R4y 3.
lV
(C7)

We now pass to the “linear approximation” in which the

second derivatived’C/dxf ik, is neglected.(This was
found to be a valid approximation for temperature-based
lensing estimation on scalés:3500(17], although it is un-
clear whether this is also true in the present cont&ubsti-
tuting Eq.(C4) then yields

(C8)

This should be compared with the first-order noise contribubiéf of Ref.[21]. In our notation, and written in terms of
the convergence rather than the potential, their 8) can be rewritten with the help of some algebra and the reldfion

=f< as

[fl]IKl,—Iz[fl’]’i|2‘_|2_|r[f—I]i|2_|r'|l_|r[f—I’]|Kl—|r,|l

1 KK
N'(I'lT),TT( K|) = EVIZ E Cp

I I

[O) el H(Chsdis(Chissly s [(Chisdlf -

(C9

This is the first term of Eq(C8), except that it only includes temperature informatitrence we have multiplication of
numbers rather than>33 matrice$, and the residual power spectryr8,];: has been replaced with the raw convergence
power spectrunC,“. (The latter difference arises because Refl] computed the first-order noide?) for the quadratic
estimator; when the Bayesian estimator is used, the contaminating fwdesave their power reduced fro@ to [ Sy];
since the estimated lensing fieldis used to delens the CMBThus we see that the first-order noise arises in the likelihood

formalism as a curvature correction, which is not taken into account in the Fisher matrix for lensing reconstruction.
The question naturally arises as to the interpretation of the second term in the curvature correctiG8).Bfe note that

within the linear approximation,

(€ Niss=Cloot ; [Soli Cioofi- Croof 1 Ciony-

(C10

The second term of EqCS) is thus seen to be the correction to the Fisher matrix,(B8), due to the lensing effect on the

CMB power spectrum.
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