
PHYSICAL REVIEW D 68, 076001 ~2003!
Meson masses in largeNf QCD from the Bethe-Salpeter equation

Masayasu Harada,* Masafumi Kurachi,† and Koichi Yamawaki‡
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~Received 2 May 2003; published 1 October 2003!

We solve the homogeneous Bethe-Salpeter~HBS! equation for the scalar, pseudoscalar, vector, and axial-
vector bound states of quarks and antiquarks in largeNf QCD with the improved ladder approximation in the
Landau gauge. The quark mass function in the HBS equation is obtained from the Schwinger-Dyson~SD!
equation in the same approximation for consistency with the chiral symmetry. Amazingly, because of the fact
that the two-loop running coupling of largeNf QCD is explicitly written in terms of an analytic function, large
Nf QCD turns out to be the first example in which the SD equation can be solved in the complex plane and
hence the HBS equation directly in the time-like region. We find that approaching the chiral phase transition
point from the broken phase, the scalar, vector, and axial-vector meson masses vanish to zero with the same
scaling behavior, all degenerate with the massless pseudoscalar meson. This may suggest a new type of
manifestation of the chiral symmetry restoration in largeNf QCD.

DOI: 10.1103/PhysRevD.68.076001 PACS number~s!: 11.10.St, 11.30.Rd, 12.38.Aw, 12.40.Yx
o
om
x-
io

n

h
r

io

-

as
th
t
e

ud
tra

ch

pa
ie

sless
the

e
int,

ctly
s

ition

nd
e-

the
lue
-
be

l as

unc-
nc-
BS

ife
of
on
n-
m

e
-

ral

ua-
s
ent
he
r the
ua-
n-
I. INTRODUCTION

Spontaneous chiral symmetry breaking is one of the m
important properties to understand the low-energy phen
ena of QCD in the real world. This chiral symmetry is e
pected to be restored in QCD at several extreme condit
such as QCD with a large number of massless quarks~‘‘large
Nf QCD’’, see, e.g., Refs.@1–7#!, and QCD in hot and/or
dense matter~see, e.g., Ref.@8#!. In Ref. @2#, based on the
infrared~IR! fixed point existing at a two-loop beta functio
for a large number of massless quarks (Nf&

11
2 Nc) @1#, it was

found through the improved ladder Schwinger-Dyson~SD!
equation that chiral symmetry restoration takes place forNf

such thatNf
crit,Nf,

11
2 Nc , where Nf

crit.4Nc(512 for Nc

53). Then, in Ref.@3# this chiral restoration atNf
crit was

further identified with ‘‘conformal phase transition’’ whic
was characterized by the essential singularity scaling. Mo
over, such chiral restoration is also observed by other var
methods such as lattice simulation@5#, dispersion relation
@6#, instanton calculus@7#, effective field theoretical ap
proach@9#, etc.

More attention has been paid to the property of the ph
transition. Especially, it is interesting to ask what are
light degrees of freedom near the phase transition poin
the largeNf QCD: For example, in the manifestation of th
chiral symmetry restorationá la the linear sigma model, the
scalar bound state becomes a chiral partner of the pse
scalar bound state and becomes massless at the phase
tion point. On the contrary, in the vector manifestation~VM !
@10,11# obtained by the effective field theoretical approa
based on the hidden local symmetry model@12#, it is the
vector bound state which becomes massless as a chiral
ner of the pseudoscalar bound state. Besides, from the v
point of the conformal phase transition@3#, it is natural to
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suppose that all the existing bound states become mas
near the phase transition point when approached from
broken phase~see Ref.@13#!.

Then, it is quite interesting to study which types of th
bound states actually exist near the phase transition po
and investigate the critical behavior of their masses dire
from QCD. Such studies from the first principle will give u
a clue to understand the nature of the chiral phase trans
in largeNf QCD.

A powerful tool to study the bound states of quark a
antiquark directly from QCD is the homogeneous Beth
Salpeter~HBS! equation in the~improved! ladder approxi-
mation ~see, for reviews, Refs.@14–16#!. When the mass of
the quark is regarded as a constant, we can easily solve
HBS equation by using a so-called fictitious eigenva
method@14#. However, for consistency with the chiral sym
metry, the quark propagator in the HBS equation must
obtained by solving the SD equation with the same kerne
that used in the HBS equation@17–20#, and as a result, the
quark mass becomes a certain momentum dependent f
tion. Then, in order to obtain the masses and the wave fu
tions of the bound states, it is necessary to solve the H
equation and the SD equation simultaneously.

When we try to solve these two equations in real-l
(Nf53) QCD, however, we encounter difficulties. First
all, for the consistency of the solution of the SD equati
with QCD in a high energy region, we need to use the ru
ning coupling which obeys the evolution determined fro
QCD b-function in the high energy region~see, for reviews,
Refs.@15,16#!. Since the running coupling diverges at som
infrared scale,LQCD, we have to regularize the running cou
pling in the low energy region, for which there exist seve
ways ~see, e.g., Refs.@21–25#!. Even if we fix the infrared
regularization in such a way that we can solve the SD eq
tion on the real~space-like! axis, another problem arise
when we try to solve the HBS equation. Since the argum
of the quark mass function in the HBS equations for t
massive bound states becomes a complex quantity afte
Wick rotation has been made, we have to solve the SD eq
tion on the complex plane, which requires an analytic co
©2003 The American Physical Society01-1
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tinuation of the running coupling. Several works such as
Refs. @26,27# proposed models of running couplings for
general complex variable which are consistent with pertur
tive QCD for large space-like momentum. However, th
still have branch cuts on the complex plane, and it is a co
plicated task to obtain the solution of the SD equation fo
general complex variable. One way to avoid such a com
cation is solving the inhomogeneous BS equation for ver
functions to obtain the current correlators in the space-
region which we can fit the mass of the relevant bound s
to ~see, e.g., Refs.@28,29#!. Another way might be replacing
the entire running coupling with anad hocanalytic function
~see, e.g., Ref.@30#!. Anyway, it is impossible to solve the
SD equation on the complex plane without modeling
running coupling.

In this paper, we point out that the situation dramatica
changes when we increase the number of massless qu
When Nf becomes larger thanNf* .8.05, the running cou-
pling obtained from the renormalization group equati
~RGE! with two-loop approximation takes a finite value fo
all the range of the energy region due to the emergence o
infrared~IR! fixed point. Then, we need no IR regularizatio
and we do not have any ambiguities coming from the re
larization scheme which do exist in the case of smallNf .
Moreover, an explicit solution of the two-loop RGE can
written in terms of the LambertW function @4,31#, and when
Nf is close toNf

crit the solution of the RGE has no singulari
on the complex plane except for the time-like axis@31#. Con-
sequently, we can solve the SD equation on the comp
plane without introducing any models for the running co
pling.

Based on these facts, we solve the HBS equations for
bound states of quark and antiquark in largeNf QCD with
the improved ladder approximation in the Landau gauge.
mass function for complex arguments needed in the H
equation is obtained by solving the SD equation with
same kernel as that used in the HBS equation. We find
solution of the HBS equation in each of the scalar, vec
and axial-vector channels, which implies that the scalar, v
tor, and axial-vector bound states are actually formed n
the phase transition point. Our results show that the ma
of the scalar, vector, and axial-vector bound states go to
as the number of quarksNf approaches to its critical valu
Nf

crit where the chiral symmetry restoration takes place. T
may suggest the existence of a new type of manifestatio
chiral symmetry restoration in largeNf QCD other than the
linear sigma model-like manifestation and a simple vers
of the vector manifestation proposed in Ref.@10#.

This paper is organized as follows. In Sec. II we nume
cally solve the SD equation with an approximate form of t
running coupling, and study the critical behavior of t
Nambu-Goldstone boson decay constant. In Sec. III we s
the SD equation for complex arguments. Section IV is
voted to summarizing the numerical method for solving
HBS equation. Section V is the main part of this paper.
first solve the HBS equation for the pseudoscalar bound s
to show that the approximation adopted in the present an
sis is consistent with the chiral symmetry. We next solve
HBS equation for the scalar, vector, and axial-vector bou
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states to obtain their masses. Finally we give a summary
discussion in Sec. VI. In Appendix A we solve the HB
equation for the orthopositronium with a constant electr
mass to show the validity of the fictitious eigenvalue meth
Bispinor bases for the bound states are listed in Appendix
In Appendix C we calculate the coupling constantsFV , FA ,
andGS of the vector, axial-vector, and scalar bound states
the vector current, axial-vector current, and scalar dens
We briefly study numerical uncertainties in the present ana
sis in Appendix D.

II. SCHWINGER-DYSON EQUATION IN LARGE Nf QCD

In this section we numerically solve the Schwinger-Dys
~SD! equation for the quark propagator with the improv
ladder approximation in the Landau gauge, and show
critical behaviors of the dynamical mass and the decay c
stant of the Nambu-Goldstone boson. We also show the
havior of the fermion-antifermion pair condensate^c̄c& near
the phase transition point.

A. SD equation in the „improved… ladder approximation

The Schwinger-Dyson~SD! equation is a powerful tool to
study the dynamical generation of the fermion mass dire
from QCD ~for reviews, see, e.g., Refs.@15,16#!. The SD
equation for the full fermion propagatoriSF

215A(p2)p”
2B(p2) in the improved ladder approximation@22,21# is
given by ~see Fig. 1 for a graphical expression!

iSF
21~p!2p”5C2E d4q

i ~2p!4
ḡ2~p,q!

1

~p2q!2

3S gmn2
~p2q!m~p2q!n

~p2q!2 D gmiSF~q!gn,

~2.1!

whereC2@5(Nc
221)/2Nc# is the second casimir invarian

and ḡ(p,q) is the running coupling. The Landau gauge
adopted for the gauge boson propagator.

The SD equation provides coupled equations for t
functionsA andB in the full fermion propagatorSF . When
we use a simple ansatz for the running coupling,ḡ2(p,q)
5ḡ2(x),x[max(pE

2 ,qE
2) @22,21#, with (pE

2 ,qE
2) being the Eu-

clidean momenta, we can carry out the angular integra
and getA(p2)[1 in the Landau gauge. Then the SD equ
tion becomes a self-consistent equation for the mass func

pSi F

-1

( p)

fermion  propagatorfull

p q

     =  

FIG. 1. A graphical expression of the SD equation in the~im-
proved! ladder approximation.
1-2
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FIG. 2. Two-loop running coupling~solid
line! compared with the approximate form in Eq
~2.9! ~dashed line! for Nf59.
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S(p2)[B(p2). The resultant asymptotic behavior of the d
namical massS(p2) is shown to coincide with that obtaine
by the operator product expansion technique@15,16#.

However, it was shown in Ref.@18# that the axial Ward-
Takahashi identity is violated in the improved ladder a
proximation unless the gluon momentum is used as the a
ment of the running coupling asḡ2@(pE2qE)2#. In this
choice we cannot carry out the angle integration analytic
since the running coupling depends on the angle fa
cosu5pE•qE /upEuuqEu. Furthermore, we would need to intro
duce a nonlocal gauge fixing@18# to preserve the condition
A51.

In Ref. @24#, however, it was shown that an angle ave
aged fromḡ2(pE

21qE
2) gives a good approximation. Then,

the present analysis we take the argument of the runn
coupling as

ḡ2~pE ,qE!⇒ḡ2~pE
21qE

2 !. ~2.2!

After applying this angle approximation and carrying out t
angular integration, we can show~see, e.g., Refs
@32,33,15,16#! that A always satisfiesA(p2)51 in the Lan-
dau gauge. Then the SD equation becomes

S~x!5C2

3

16p2E dy
yS~y!

y1S2~y!

ḡ2~x1y!

max~x,y!
, ~2.3!

wherex5pE
2 andy5qE

2 . Although the choice of argument
in Eq. ~2.2! explicitly breaks the chiral symmetry as me
tioned above, it will be shown later that the magnitude of
breaking is negligible.

B. Running coupling in large Nf QCD

In QCD with Nf flavors of massless quarks, the renorm
ization group equation~RGE! for the running couplinga(m)

@5ḡ2(m)/4p# in the two-loop approximation is given by

m
d

dm
a~m!52ba2~m!2ca3~m!, ~2.4!
07600
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b5
1

6p
~11Nc22Nf !,

c5
1

24p2 S 34Nc
2210NcNf23

Nc
221

Nc
Nf D . ~2.5!

From the above beta function we can easily see that, w
b.0 and c,0, i.e., Nf takes a value in the range ofNf*
,Nf,

11
2 Nc (Nf* .8.05 forNc53), the theory is asymptoti-

cally free and the beta function has a zero, correspondin
an IR stable fixed point@1,2#, at

a* 52
b

c
. ~2.6!

Existence of the IR fixed point implies that the runnin
coupling takes a finite value even in the low energy regi
Actually, the solution of the two loop RGE in Eq.~2.4! can
be explicitly written@31,34# in all the energy region as

a~m!5a* @W~mba
* /eLba

* !11#21, ~2.7!

where W(x)5F21(x) with F(x)5xex is the LambertW
function, andL is a renormalization group invariant sca
defined by@2#

L[m expF2
1

ba*
logS a* 2a~m!

a~m! D2
1

ba~m!G . ~2.8!

We note that, in the present analysis, we fix the value ofL to
compare the theories with a different number of flavors, a
that we have no adjustable parameters in the running c
pling in Eq. ~2.7!, accordingly ~see discussion below!.
We show an example ofa(m) for Nf59 by the solid line in
Fig. 2.

The fact that the running coupling is expressed by a c
tain function as in Eq.~2.7! implies that, in the case of larg
Nf QCD, we do not need to introduce any IR regularizatio
such as the ones adopted in Refs.@21–23# for studying real-
1-3
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life QCD with small Nf in which the IR regularization pa
rameter must be chosen in such a way that the running
pling in the infrared region becomes larger than the criti
valueacr5p/4 for realizing the dynamical chiral symmetr
breaking@21#. The running coupling in largeNf QCD takes a
certain value in the IR region for givenNf , so that we can
definitely determine, within the framework of the SD equ
tion, whether or not the dynamical chiral symmetry break
is realized. Actually, the value ofa* decreases monoton
cally with increasingNf , and the chiral symmetry restore
whenNf becomes large enough. In Refs.@2,4#, it was shown
that the phase transition occurs atNf

crit.11.9 forNc53 ~cor-
responding toa* 5acr5p/4).

In order to reduce the task of numerical calculations
solving the HBS equation, we modify the shape of the ru
ning coupling. Since the dynamics in the infrared regi
governs the chiral symmetry breaking, we adopt the follo
ing approximation for the running coupling@3,4#:

ḡ2~x1y!

4p
5a* u@L22~x1y!#. ~2.9!

In this approximation the coupling takes the constant va
a* ~the value at the IR fixed point! below the scaleL and
entirely vanishes in the energy region above this scale.
dashed line in Fig. 2 represents the approximated form of
running coupling forNf59.

C. Numerical solution for the SD equation

In this section we briefly explain how we solve the S
equation numerically.

We first introduce the infrared~IR! cutoff lSD and ultra-
violet ~UV! cutoff LSD as

L2elSD/L<x, y<L2eLSD/L. ~2.10!

Then, we discretize the momentum variablex andy into NSD
points as

xi5L2exp@lSD/L1DSD• i #, ~ i 50,1,2, . . . ,~NSD21!!,
~2.11!

where

DSD5
~LSD2lSD!/L

NSD21
. ~2.12!

Accordingly, the integration overy is replaced with a sum
mation as

E dy⇒DSD(
j

y j . ~2.13!

Then, the SD equation in Eq.~2.3! with the running coupling
in Eq. ~2.9! is rewritten as
07600
u-
l

-
g

-

-

e

e
e

S~xi !5
1

4p2
DSD(

j
ḡ2~xi1yj !

yj
2

max~xi ,yj !

S~yj !

yj1S2~yj !
.

~2.14!

This discretized version of the SD equation is solved by
recursion relation:

S (n11)~xi !5
1

4p2
DSD(

j
ḡ2~xi1yj !

3
yj

2

max~xi ,yj !

S (n)~yj !

yj1S (n)
2 ~yj !

. ~2.15!

Starting from a suitable initial condition@we choose
S (0)(xi)51], we update the mass function by the above
cursion relation. Then, we stop the iteration when the c
vergence condition

DSD(
i

xi
2

16p2
@S (n11)~xi !2S (n)~xi !#

2,«2L6

~2.16!

is satisfied for sufficiently small«, and regard thisS (n) as a
solution of Eq. ~2.14!. In Fig. 3, we show the numerica
solution for the mass functionS(x).

Here, we tookNf59 (a* .5.2) as an example and use
the following parameters:

LSD/L5115, lSD/L5215, NSD51000, «510215.
~2.17!

Now, let us study the critical behavior of the fermion ma
asNf is varied. Note that we can usea* instead ofNf as an
input parameter, because once we choose a value ofNf , the
value ofa* is uniquely determined from Eq.~2.6!. For ex-
ample,a* 51 implies Nf511.42 anda* 5acr implies Nf
511.91. We solve Eq.~2.14! for various values ofa* and
plot the values ofS(m2) in Fig. 4.
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FIG. 3. A solution of the discretized SD equation in Eq.~2.14!
for Nf59.
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Here, m represents the dynamical mass defined bym
5S(m2). It should be noticed thatm is defined in the space
like region which does not represent the pole mass of
mion. As we will show in Sec. III, the present fermion prop
gator does not have any poles and then there are no
masses of fermion.

We compare this result with the analytic solution@3,4#:

S~m2!'L expS 2
p

Aa*
acr

21
D for a* .acr .

~2.18!

In the above form there is an ambiguity in the prefact
Then, we introduce the function

h~a* !5dL expS 2
p

Aa*
acr

21
D , ~2.19!

and fit the value of the prefactord by minimizing

(
a
*

uS~x5m2;a* !2h~a* !u2, ~2.20!

in the range ofa* P@0.885:1#. The resultant best fitted
value ofd is

d.4.0. ~2.21!

We plot the function in Eq.~2.19! with the best fitted value
d54.0 in Fig. 4~solid line!. This clearly shows that thea*
dependence of the resultantS(m2) from our numerical cal-
culation is consistent with the analytic result: The dynami
mass function vanishes whena* reaches the critical value
acr5p/4. Noting that decreasinga* corresponds to increas

α∗αcr

Σ m(    )

Λ
2

0

0.002

0.004

0.006

0.008

0.01

0.8 0.85 0.9 0.95 1

FIG. 4. Numerical solutions ofS(x5m2) for several values of
a* ~indicated byL). The solid line shows the function in Eq
~2.19! with the best fitted valued54.0.
07600
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ing Nf for fixed Nc as we discussed in the previous sectio
we see that the chiral symmetry restoration actually occur
Nf5Nf

crit.12(Nc/3) @2,4#.

D. Pseudoscalar meson decay constant in largeNf QCD

So far we have solved the SD equation and obtained
mass functions for the various values ofa* . Now we can
calculate the pseudoscalar meson decay constantFP at each
a* by using the Pagels-Stokar formula@35#:

FP
2 5

Nc

4p2E dx

xS2~x!2
x2

4

d

dx
@S2~x!#

@x1S2~x!#2
. ~2.22!

In Fig. 5, we plot the values ofFP for several values ofa*
~indicated byL). To study the critical behavior of the pseu
doscalar meson decay constant we use the function of
form in Eq. ~2.19! and fit the value ofd by minimizing

(
a
*

uFP~a* !2h~a* !u2, ~2.23!

for a* P@0.885:1#. The resultant best fitted value ofd is

d.1.5~[dFP
!. ~2.24!

We plot the fitting function withd51.5 in Fig. 5 ~dotted
line!. This shows that the results of the numerical calcu
tions forFP are well fitted by the function of the form in Eq
~2.19!, and that the pseudoscalar meson decay constan
the same critical behavior as the mass function has.

E. Fermion-antifermion pair condensate

In this section, we calculate the fermion-antifermion p
condensatêc̄c& in largeNf QCD, and show that the system

α∗

FP
Λ

αcr

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.8 0.85 0.9 0.95 1

FIG. 5. Values ofFP calculated from the Pagels-Stokar formu
for several values ofa* ~indicated byL). The dotted line shows
the function of the form in Eq.~2.19! with the best fitted valued
51.5.
1-5
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in the present analysis has the large anomalous dimensiogm

for the operatorc̄c. We also show that the values ofgm are
not affected so much by the approximation for the runn
coupling used in the present analysis.

The condensatêc̄c& is calculated from the following
equation:

^c̄c&LUV
52

Nc

4p2E0

LUV
2

dx
xS~x!

x1S2~x!
, ~2.25!

whereS(x) is the mass function obtained from the SD equ
tion andLUV represents UV cutoff introduced to regulariz
the UV divergence. In the improved ladder approximatio
the high-energy behavior of the mass function is consis
with that derived using the operator product expans
~OPE!. The chiral condensate calculated using the m
function was shown to obey the renormalization group eq
tion derived with the OPE~see, e.g., Refs.@15,16#!. Then, as
was adopted in Refs.@2–4#, we identify the condensate
which is calculated with UV cutoffLUV , with that renormal-
ized at the scaleLUV in QCD.1

We expect that infrared dynamics in largeNf QCD is
similar to that of strong coupling QED or walking gaug
theories@36# since the running coupling in largeNf QCD is
well approximated by the constant coupling~see Fig. 2! @4#.
Then, we also expect that the value of the anomalous dim
sion in largeNf QCD becomesgm.1 since the walking
gauge theories havegm.1 @36#.

When a considering system has the anomalous dimen
gm , scaling properties ofFP and2^c̄c& with respect toa*
near the critical point are expressed as follows@36#:

FP;m, ~2.26!

2^c̄c&;m32gm, ~2.27!

where m represents the dynamical fermion mass. Th
equations mean that the relation between^c̄c& andFP can
be written as

2^c̄c&5c•FP
32gm , ~2.28!

wherec is a certain positive constant. From this equation,
can express the anomalous dimension as

gm5gm8 2«, ~2.29!

where

gm8 532
log~2^c̄c&!

logFP
, ~2.30!

1When the condensate is calculated using the approximated
ning coupling defined by Eq.~2.9!, the integration in Eq.~2.25! is
effectively cut off at the scale ofL due to the truncation of the
running coupling for any values ofLUV.L. @See Fig. 3:S(x)
50 for x.L2.#
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«5
logc

2 logFP
. ~2.31!

Here, we note thatgm8 approachesgm for a* →acr sinceFP

becomes small, i.e., (2 logFP)@1, near the critical point~see
Fig. 5!:

«→0 for a* →acr . ~2.32!

In Fig. 6, we plot the values ofgm8 for several values of
a* as an estimation of the anomalous dimension.

The data indicated byL in Fig. 6 is obtained with the
approximated running coupling~dashed line in Fig. 2! in the
SD equation.~We call this kind of datag8m

(app) .! On the other
hand, the data indicated by1 is the result from the calcula
tion with the two-loop running coupling given in Eq.~2.7!.
~We call this kind of datagm

(no-app) .!2 From these results, we

n-

2The reason why we introduced the approximated running c
pling ~2.9! in the present analysis is to reduce the task of numer
calculations in solving the HBS equations. As for the SD equati
we can easily solve it numerically with the two-loop running co
pling given in Eq.~2.7!. Since we have to compareg8m

(app) and
g8m

(no-app) at the same energy scale, we have lowered the scal

^c̄c& (no-app) from LUV to L by the following two-loop renormal-
ization group equation:

^c̄c&L5^c̄c&LUVFa~LUV!

a~L! Ggm
(0)/4pb

3F11S gm
(1)

4pb
2

2gm
(0)

b2 D a~L!2a~LUV!

4p G ,

where,

gm
(0)56C2 , gm

(1)5C2S 3C21
97

3
Nc2

10

3
Nf D .

αcr α*

m

(no app)
m

(app)
mγ

γ

γ

0

0.5

1

1.5

2

0.8 0.85 0.9 0.95 1

FIG. 6. Values ofgm8 for several values ofa* . L and1 rep-
resent the values ofgm8 calculated from Eq.~2.30! with and without
approximation for the running coupling.~We call themg8m

(app) and
g8m

(no-app) respectively.!
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conclude that largeNf QCD with two-loop running coupling
as well as with approximated running coupling actua
possesses3

gm.gm8 .1. ~2.33!

Moreover, Fig. 6 shows that the data ofg8m
(app) is in good

agreement with that ofg8m
(no-app) , which implies that the ap-

proximation for the running coupling used in the prese
analysis works well. We also expect that the approximat
does not affect the results so much when we calculate
HBS equations for the bound states.

III. SD EQUATION ON THE COMPLEX PLANE

As we will discuss in Sec. IV, we need the mass funct
for complex arguments when we solve the HBS equation
the massive bound state. In this section, we first introd
the SD equation for the complex argument following R
@37# ~see also Ref.@38#!, and then solve it in the case of larg
Nf QCD.

The SD equation for the complex argument is expres
as @37#

S~x!5C2

3

16p2 F E
C(0,x)

dy
y

x
1E

C(x,`)
dyG ḡ2~x1y!S~y!

y1S2~y!
,

~3.1!

where C(a,b) is the integral path on the complex plan
Here, we took the same argument of the running coupling
that in Eq.~2.2!, and carried out the angle integration. No
that the integral pathC(a,b) must be taken so as to avoid th
branch cut appearing in the integral.

We first study the structure of the running coupling a
pearing in the SD equation~3.1! to clarify the branch cut. In
the improved ladder approximation it is essential to use
running coupling determined from theb-function in the high
energy~space-like! region for consistency with perturbativ
QCD. In QCD with smallNf , however, the running coupling
obtained from the perturbativeb-function diverges at some
infrared scale,LQCD. In the ordinary SD equation in th
space-like region, the infrared singularity is avoided by
troducing infrared regularization such as the so-cal
Higashijima-Miransky approximation@21,22# and its exten-
sion as in Ref.@23#. However, since the running coupling i
Eq. ~3.1! is a complex function which has the complex arg
ment, we need an extension with analyticity satisfied. S
eral works such as in Refs.@26,27# proposed models of run
ning coupling which are consistent with perturbative QCD
the high energy region. But they still have branch cuts on
complex plane, and it is a burdensome task to evade all
branch cuts by carefully selecting the integral path in E
~3.1!. One way to avoid such a complication might be to gi

3From the values ofc obtained by fitting to the data of^c̄c&, we
find «50.04–0.06 for the approximated running coupling, and«
50.16–0.25 for the two-loop running coupling.
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up the consistency with perturbative QCD and use model
running coupling with analyticity such as the one used
Ref. @30#.

Here we point out that the situation dramatically chang
in the largeNf QCD. In the case of largeNf QCD, as we
explained in Sec. II B, the running coupling, as well as t
two-loop b-function, is finite for any space-like momentum
This implies that we may be able to construct the runn
coupling by analytic continuation using theb-function. Ac-
tually, an explicit solution of the two-loop renormalizatio
group equation~RGE! can be written in terms of the Lambe
W function @4,31#. WhenNf is close toNf

crit , the solution of
the RGE has no singularity on the complex plane except
the time-like axis@31#.

As a result, for general complexx except on the time-like
axis (x,0), we can take the integral pathC(a,b) in such a
way that it just avoids the branch cut coming from the an
integration. In Fig. 7 we show the branch cut together wit
simple choice of the integral path@37#.

We stress again that the reason why we can take
simple integral path is that the running coupling has no s
gularity on the complex plane except for the time-like ax

For solving the SD equation on the complex plane,
here study the explicit form of the running coupling. In Fi
8 we show the real part of the running coupling on the co
plex plane which is obtained by performing the analytic co
tinuation from the running coupling on the real axis det
mined from the two-loopb-function.

This figure shows that Rea.a* , i.e., Ima.0, in the
range ofY5uyu,L2, and that Rea!a* in the range ofY
.L2. Thus we take the following approximation for the ru
ning coupling on the complex plane:

a~y!5a* u~L22Y!, ~3.2!

which is smoothly connected to the approximation adop
in Eq. ~2.9! for the running coupling on the space-like axi

Now, let us solve the SD equation~3.1! to obtain the mass
function for complex variablex. Along the integral path
shown in Fig. 7, the variablesx andy are parametrized as

FIG. 7. Integral path of the SD equation~3.1!. Here, the branch
cut appears from the four-dimensional angle integration.
1-7
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x5Xeiu, y5Yeiu, ~3.3!

whereX, Y, and u are real. Then the SD equation~3.1! is
rewritten as

S~Xeiu!5C2

3

16p2 F E
0

X

dY
Y

X
1E

X

`

dYG ḡ2~X1Y!S~Yeiu!

Y1e2 iuS2~Yeiu!
.

~3.4!

From this we can easily see that the solution is expresse

S~x!5ei (u/2)S̄~X!, ~3.5!

whereS̄(X) is real and satisfies the original SD equation
the real axis:

S̄~X!5C2

3

16p2 F E
0

X

dY
Y

X
1E

X

`

dYG ḡ2~X1Y!S̄~Y!

Y1S̄~Y!2
.

~3.6!

Re α[ ]( θiYe )

π

θ
Y 2Λlog

0 10 20 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

02 0 1 03 0

FIG. 8. Real part of the two-loop running coupling forNf511
on the complex plane obtained by the analytic continuation from
running coupling on the real axis~we use the Cauchy-Rieman rela
tion!. The complex argument ofa is expressed asy5Yeiu, whereY
andu are real. Note thaty is in the space-like region foru50 and
in the time-like region foru5p.
07600
as

Note that the fermion propagatorSF does not have any pole
since the kinetic partx and the mass partS2(x) have the

same phases asx1S2(x)5eiu@X1S̄2(X)# @see Eq.~3.5!#
and the mass function in the space-like region satisfieX

1S̄2(X).0.
We should note that the above solution in Eq.~3.5! is a

double-valued function on the complex plane: The varia
x5Xeiu can be parametrized asx5Xei (u12p) for which the

solution takesS(x)5ei (u/21p)S̄(X)52eiu/2S̄(X). This cor-
responds to the fact that the SD equation has two solutio
WhenS(x) is a solution,2S(x) also satisfies the equation
When we choose the range ofu asuP@2p:p#, the branch
cut emerges on the time-like axis. This choice is natural
cause the appearance of the branch cut in the time-like re
seems consistent with the analytic structure of the runn
coupling. We will see that this branch cut does not matte
calculating the bound state masses.

IV. HOMOGENEOUS BETHE-SALPETER EQUATION

In this section we briefly review the homogeneous Bet
Salpeter~HBS! equation for the bound states of quark a
antiquark and show how to solve it numerically.

A. Bethe-Salpeter amplitude

In this paper, we consider the scalar, pseudoscalar, ve
and axial-vector bound states of quark and antiquark, and
write these bound states asuS(q)&, uP(q)&, uV(q,e)&, and
uA(q,e)&, respectively. Here,qm represents the momentum
of the bound states andem represents the polarization vecto
satisfyinge•q50 ande2521.

Now, we introduce the Bethe-Salpeter~BS! amplitudesx
for the bound states of quark and antiquark as follows:

e

^0uTca f i~x1!c̄b
f 8 j~x2!uSa~q!&5d i

j
~la! f

f 8

A2
e2 iqXE d4p

~2p!4
e2 ipr@x (S)~p;q!#ab , ~4.1!

^0uTca f i~x1!c̄b
f 8 j~x2!uPa~q!&5d i

j
~la! f

f 8

A2
e2 iqXE d4p

~2p!4
e2 ipr@x (P)~p;q!#ab , ~4.2!

^0uTca f i~x1!c̄b
f 8 j~x2!uVa~q,e!&5d i

j
~la! f

f 8

A2
e2 iqXE d4p

~2p!4
e2 ipr@x (V)~p;q,e!#ab , ~4.3!

^0uTca f i~x1!c̄b
f 8 j~x2!uAa~q,e!&5d i

j
~la! f

f 8

A2
e2 iqXE d4p

~2p!4
e2 ipr@x (A)~p;q,e!#ab , ~4.4!
1-8
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wherex65X6r /2, la is the generator of SU(Nf) normal-
ized as tr@lalb#52dab , and (a,b), ( f , f 8), and (i , j ) de-
note the spinor, flavor, and color indices, respectively.

We can expand the BS amplitudex in terms of the bis-
pinor basesG i and the invariant amplitudesx i as follows:

@x (S,P)~p;q!#ab5(
i 51

4

@G (S,P)
i ~p;q!#abx (S,P)

i ~p;q!,

~4.5!

@x (V,A)~p;q,e!#ab5(
i 51

8

@G (V,A)
i ~p;q,e!#abx (V,A)

i ~p;q!.

~4.6!

The bispinor bases can be determined from spin, parity,
charge conjugation properties of the bound states. The
plicit forms of G (S)

i , G (P)
i , G (V)

i , andG (A)
i are summarized in

Appendix B.
We take the rest frame of the bound state as a fram

reference:

qm5~MB,0,0,0!, ~4.7!

whereMB represents the bound state mass. After the W
rotation, we parametrizepm by the real variablesu andx as

p•q5 iM Bu, p252u22x2. ~4.8!

Consequently, the invariant amplitudesx i become functions
in u andx:

x (S,P,V,A)
i 5x (S,P,V,A)

i ~u,x!. ~4.9!

From the charge conjugation properties for the BS amplit
x and the bispinor bases defined in Appendix B, the invari
amplitudesx i(u,x) are shown to satisfy the following rela
tion:

x (S,P,V,A)
i ~u,x!5x (S,P,V,A)

i ~2u,x!. ~4.10!

B. HBS equation

The HBS equation is the self-consistent equation for
BS amplitude~see, for a review, Ref.@14#!, and it is ex-
pressed as~see Fig. 9!

Tx5Kx. ~4.11!

The kinetic partT is given by

( p ; q )χ
q

q
2+p q

2+p

q
2

q
2

q
2

q
2

( ; q )χ
q

k

-p -p

+

-k

k

FIG. 9. A graphical representation of the HBS equation in
~improved! ladder approximation.
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T~p;q!5 iSF
21~p1q/2! ^ iSF

21~p2q/2!, ~4.12!

whereSF is the full fermion propagator@ iSF
21(p)5p”2S#,

and the BS kernelK in the improved ladder approximation i
expressed as

K~p;k!5
Nc

221

2Nc

ḡ2~p,k!

~p2k!2 S gmn2
~p2k!m~p2k!n

~p2k!2 D •gm

^ gn. ~4.13!

In the above expressions we used the tensor product nota

~A^ B!x5AxB, ~4.14!

and the inner product notation

Kx~p;q!5E d4k

i ~2p!4
K~p,k!x~k;q!. ~4.15!

It should be noticed that the fermion propagators includ
in T in Eq. ~4.12! have complex-valued arguments after t
Wick rotation. The arguments of the mass functions appe
ing in two legs of the BS amplitude are expressed as

2~p6q/2!25u21x22S MB

2 D 2

7 iuMB . ~4.16!

In general, it is difficult to obtain mass functions for comple
arguments. However, as we have shown in Sec. III, it is e
to obtain them in the case of largeNf QCD.

We now modify Eq. ~4.11! so that we can solve i
numerically.4 It is convenient to introduce the conjugate bi
pinor bases defined by

Ḡ i~p;q,e![g0G i~p* ;q,e!†g0 . ~4.17!

Multiplying these conjugate bispinor bases from the left, ta
ing the trace of spinor indices, and summing over the po
izations, we rewrite Eq.~4.11! into the following form:

Ti j ~u,x!x j~u,x!5E y2dydv

8p3
Ki j ~u,x;v,y!x j~v,y!,

~4.18!

where the summation over the indexj is understood, and

Ti j ~u,x!5(
e

1

3
tr@Ḡ i~p;q,e!T~p;q!G j~p;q,e!#,

~4.19!

4In the following we explain the method for the vector and axi
vector bound states. The extension to the scalar and pseudos
bound states is easily done.

e

1-9
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Ki j ~u,x;v,y!5E
21

1

d cosu(
e

1

3

3tr@Ḡ i~p;q,e!K~p,k!G j~k;q,e!#,

~4.20!

with the real variablesv andy introduced ask•q5 ivMB and
k•p52uv2xy cosu. Here, we note that although the ma
function S(x) has the branch cut on the time-like axis
mentioned in Sec. III,Ti j has no singularity and becomes
continuous function for all the range ofu andx. As for Ki j ,
the branch cut of running couplingḡ does not matter since it
argument (pE

21kE
2) never takes a negative value.

Using the property ofx i in Eq. ~4.10!, we restrict the
integration range asv.0:

E dvKi j ~u,x;v,y!x j~v,y!

5E
v.0

dv@Ki j ~u,x;v,y!1Ki j ~u,x;2v,y!#x j~v,y!.

~4.21!

Then, all the variablesu, x, v, andy can be treated as pos
tive values.

To discretize the variablesu, x, v, andy we introduce new
variablesU, X, V, andY as

u5LeU/L, x5LeX/L,

v5LeV/L, y5LeY/L, ~4.22!

and set UV and IR cutoffs as

U,VP@lU ,LU#, X,YP@lX ,LX#. ~4.23!

We discretize the variablesU andV into NBS,U points evenly,
and X and Y into NBS,X points. Then, the original variable
are labeled as

u[ I U]5L exp@lU /L1DUI U#,

x[ I X]5L exp@lX /L1DXI X#,

v [ I V]5L exp@lU /L1DUI V#,

y[ I Y]5L exp@lX /L1DXI Y#,

where I U ,I V50,1,2, . . . (NBS,U21) and I X ,I Y
50,1,2, . . . (NBS,X21). The measuresDU and DX are de-
fined as

DU5
~LU2lU!/L

NBS,U21
, DX5

~LX2lX!/L

NBS,X21
. ~4.24!

As a result, the integration is converted into the summati

E
v.0

y2dydv•••⇒DUDV (
I V ,I Y

vy3
•••. ~4.25!
07600
:

In order to avoid integrable singularities in the kern
K(u,x;v,y) at (u,x)5(v,y), we adopt the following four-
splitting prescription@28#:

Ki j ~u,x,v,y!⇒ 1

4
@Ki j ~u,x,v1 ,y1!1Ki j ~u,x,v1 ,y2!

1Ki j ~u,x,v2 ,y1!1Ki j ~u,x,v2 ,y2!],
~4.26!

where

v65expFV6
DU

4 G ,y65expFY6
DX

4 G . ~4.27!

C. Fictitious eigenvalue method

Now that all the variables have become discrete and
original integral equation~4.11! turned into a linear algebraic
one, we are able to deal it numerically. However, it is dif
cult to find the bound state massMB and the corresponding
BS amplitudex directly since the HBS equation depends
MB nonlinearly. A way which enables us to solve the no
linear eigenvalue problem is thefictitious eigenvalue method
@14#. In this method we introduce a fictitious eigenvaluel
and interpret the HBS equation~4.11! as a linear eigenvalue
equation for a given bound state massMB :

Tx5l•Kx. ~4.28!

Consequently, the HBS equation turns into an ordinary
genvalue problem which we can solve by standard algeb
techniques. By adjusting an input massMB such that an ei-
genvaluel equals unity, we obtain the bound state mass a
the corresponding BS amplitude as a solution of the origi
HBS equation~4.11!. In Appendix A, to show the validity of
this method, we calculate the mass of the positronium us
this method.

V. NUMERICAL ANALYSIS

In this section we show the results of our numerical ana
sis.

A. Pseudoscalar bound state

As discussed in Sec. II A, the approximation to the arg
ment of the running coupling in Eq.~2.2! breaks the chiral
symmetry explicitly@18#. So, before solving the HBS equa
tion for the massive bound states, we solve that for the ps
doscalar bound state and see how much the chiral symm
is explicitly broken by this approximation.

The mass of the lowest-lying pseudoscalar bound s
should become zero because it appears as a Nam
Goldstone boson when the chiral symmetry is spontaneo
broken. So, we substitute zero for the bound state mass
check whether the fictitious eigenvaluel becomes unity.

We use the following parameters for the calculations:

@lU ,LU#5@218.0,0#, @lX ,LX#5@28.5,0#, ~5.1!
1-10



o

.
th
l e
ng
eg

a
sc
th
s

th
o
s
io

he

t

ar
we
th
o

hat
the

q.
s

o
r the

the
ate

ction.
ial-
y as

BS

n-
etric

p

ial-

MESON MASSES IN LARGENf QCD FROM THE . . . PHYSICAL REVIEW D 68, 076001 ~2003!
NBS,U5NBS,X530. ~5.2!

We calculate the fictitious eigenvalues for several values
a* and show them in Table I.

We can see thatl51 is satisfied within 0.3% uncertainty
This implies that our calculations actually reproduce
massless Nambu-Goldstone boson within the numerica
ror, and that the effect of explicit chiral symmetry breaki
caused by the approximation for the running coupling is n
ligible.

B. Vector, axial-vector, and scalar bound states

In this section we show the results of the numerical c
culations for the masses of the vector, axial-vector, and
lar bound states. For the UV and IR cutoffs we adjust
values of them in such a way that the dominant support
the integrands of the decay constant in Eq.~C4! and the
normalization condition in Eq.~C5! lie in the energy region
between the UV and IR cutoffs. As an example, we show
integrands of the decay constant and the normalization c
dition for the vector bound states in Appendix D. From the
figures, the dominant supports lie in the lower energy reg
for smaller value of a* . Then, we use the following
a* -dependent UV and IR cutoffs for the vector and t
axial-vector bound states:

@lU ,LU#5@212.0122.03~a* 21.0!, 21.0135.0

3~a* 21.0!#, ~5.3!

@lX ,LX#5@25.0122.03~a* 21.0!, 22.0120.0

3~a* 21.0!#. ~5.4!

For the scalar bound state, on the other hand, we use
following fixed UV and IR cutoffs:

@lU ,LU#5@218.0,0#, @lX ,LX#5@210.0,0#.
~5.5!

Although the integrands of the normalization conditions
shown in Appendix D only for the vector bound states,
have checked that the dominant supports always lie wi
the energy region between UV and IR cutoffs for all kinds
bound states and for all values ofa* . As for the numbers of
the discretization, we use

TABLE I. Fictitious eigenvalues obtained by solving Eq.~4.28!
for the pseudoscalar bound state with zero mass used as an in

a* l a* l

0.89 1.00121 0.95 1.00262
0.90 1.00205 0.96 1.00267
0.91 1.00230 0.97 1.00273
0.92 1.00241 0.98 1.00279
0.93 1.00249 0.99 1.00284
0.94 1.00255 1.00 1.00290
07600
f

e
r-

-

l-
a-
e
of

e
n-
e
n

he

e

in
f

NBS,U520, NBS,X555 ~5.6!

for the vector and the axial-vector bound states, and

NBS,U5NBS,X530 ~5.7!

for the scalar bound states. In Appendix D, we show t
these numbers of discretization are large enough for
present analysis.

We should stress that we actually found a solution for E
~4.28! reproducingl51 for all the types of the bound state
in the range ofa* P@0.885:1#. This means that there d
exist the vector, axial-vector, and scalar bound states nea
phase transition point in the broken phase.5

Now, let us show the critical behavior of the masses of
existing bound states. In Fig. 10, we plot all the bound st
masses calculated for several values ofa* together with the
pseudoscalar meson masses obtained in the previous se

This figure shows that the masses of the vector, ax
vector and scalar bound states go to zero simultaneousl
the coupling approaches its critical value~or, equivalently,
Nf→Nf

crit):

MS ,MV ,MA→0 for a* →acr . ~5.8!

Next, to study the critical behavior ofMS , MV , andMA we
use the function of the form in Eq.~2.19! and fit the value of
d by minimizing

(
a
*

uMS,V,A~a* !2h~a* !u2. ~5.9!

The resultant best fitted values ofd for the scalar, vector, and
axial-vector bound states are

5On the other hand, we cannot find any solutions for the H
equations in the symmetric phase, i.e.,a* ,acr ~or, equivalently,
Nf.Nf

crit). This fact seems consistent with the property of the co
formal phase transition which has no bound states in the symm
phase@3,4#.

ut.

αcr α∗

ΛMA,V,S,P

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.8 0.85 0.9 0.95 1

axial vector meson mass
vector meson mass
scalar meson mass

pseudoscalar meson mass

FIG. 10. Values of the scalar, pseudoscalar, vector, and ax
vector meson masses for several values ofa* .
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dMS
.6.2, dMV

.16.5, dMA
.17.2, ~5.10!

respectively. We also plot~the square of! the ratio of the
bound state masses toFP for several values ofa* in Fig. 11.

The dotted lines plotted together with the data in this fi
ure represent the values of the following ratios obtained fr
Eqs.~5.10! and ~2.24!:

~MS /FP!2517, ~MV /FP!25121, ~MA /FP!25132.
~5.11!

This figure clearly shows that all the masses of the sca
vector, and axial-vector bound states have the same sc
property as that ofFP :

MS,V,A

FP
; constant. ~5.12!

We can also say that these masses have the same sc
property as that ofS(m2) since FP and S(m2) have the
same scaling property. Their ratios are summarized as
lows:

S2~m2!:MS
2 :MV

2 :MA
251:2.4:17.0:18.5. ~5.13!

One might think that the vector and axial-vector bound sta
decay into a fermion and an antifermion sinceMV

2

.4S2(m2) andMA
2.4S2(m2). However, this does not hap

pen: As we noticed above Eq.~2.18!, S(m2) is not the pole
mass but the dynamical mass defined in the space-like
gion. Furthermore, as we have shown in Sec. III, the ferm
propagators do not have any poles in the entire comp
plane including the time-like axis where the pole mass
fermion should be defined. Thus the vector and axial-vec
bound states do not decay into a fermion and an antiferm

α*αcr

Fp

MA

MV

MS

MP

Fp

Fp

Fp

Fp

/
/
/
/

/A,V,S,PM

(
(
(
(

)
)
)
)

2

2

2

2

( )
2

0

50

100

150

200

0.8 0.85 0.9 0.95 1

FIG. 11. Values of (MA /FP)2, (MV /FP)2, (MS /FP)2, and
(M P /FP)2 for several values ofa* ~indicated byL, 1, h, and
3, respectively!. Dotted lines represent the values of (MA /FP)2

517, (MV /FP)25121, and (MS /FP)25132 obtained from Eqs
~5.10! and ~2.24!.
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VI. CONCLUSION AND DISCUSSION

In this paper we first pointed out that, when we solve t
Schwinger-Dyson~SD! equation in largeNf QCD, we do not
need to introduce any IR regularizations for the running c
pling since it takes a finite value for all the range of t
energy region due to the existence of the IR fixed point.
the case of smallNf , we have to regularize the IR diver
gence of the running coupling, and different schemes
regularizations would give different results. Furthermore
is difficult to find the regularization which makes the analy
structure of the running coupling simple enough. On the c
trary, the solution of the two-loop RGE in largeNf QCD is
explicitly written in terms of the LambertW function, and
the running coupling does not have any singularities on
complex plane except for the time-like axis whenNf is close
to Nf

crit . This significant feature of the running coupling
large Nf QCD enabled us to solve the SD equation on
complex plane.

Then, we solved the homogeneous Bethe-Salpeter~HBS!
equations for the scalar, pseudoscalar, vector, and a
vector bound states of quark and anti-quark in largeNf QCD
with the improved ladder approximation in the Land
gauge. In the quark propagator included in the HBS eq
tion, we used the quark mass function obtained from the
equation with the same approximation, which is needed
the consistency with the chiral symmetry.

We first showed that the HBS equation provides the ma
less pseudoscalar bound state in the broken phase whi
identified with the Nambu-Goldstone boson associated w
the spontaneous breaking of the chiral symmetry. Next,
showed that there actually exist vector, axial-vector, and s
lar bound states even near the phase transition point in
broken phase, and that their masses decreases as the nu
of massless quarksNf increases. At the critical point all the
masses go to zero, showing the same scaling property as
of the pseudoscalar meson decay constantFP consistently
with the picture expected from the conformal phase tran
tion @3,13#.

Let us discuss the pattern of the chiral symmetry resto
tion by considering the representation of chiral SU(Nf)L
3SU(Nf)R of the low-lying mesons extending the analys
done in Refs.@39,40#.

For Nf53 the pseudoscalar meson denoted byp and the
longitudinal axial-vector meson denoted byA1 are an admix-
ture of (8,1)% (1,8) and (3,3* ) % (3* ,3), since the chiral
symmetry is spontaneously broken@39,40#

up&5u~3,3* ! % ~3* ,3!&sinc1u~8,1! % ~1,8!&cosc,

uA1~l50!&5u~3,3* ! % ~3* ,3!&cosc

2u~8,1! % ~1,8!&sinc, ~6.1!

wherel denotes the helicity in the collinear frame, and t
experimental value of the mixing anglec is given by ap-
proximatelyc5p/4 @40#. On the other hand, the longitud
nal vector meson denoted byr belongs to pure (8,1)
% (1,8) and the scalar meson denoted byS to pure (3,3* )
% (3* ,3):
1-12
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ur~l50!&5u~8,1! % ~1,8!&,

uS&5u~3,3* ! % ~3* ,3!&. ~6.2!

When the chiral symmetry is restored at the phase tra
tion point, it is natural that the chiral representations coinc
with the mass eigenstates: The representation mixing is
re

tio
re
ti

e

o
un

n

re

07600
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e
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solved. From Eq.~6.1! one can easily see that there are tw
ways to express the representations in the Wigner phas
the chiral symmetry: The conventional manifestationá la the
linear sigma model~called the GL manifestation in Ref.@11#!
corresponds to the limitc→p/2 in which up& is in the rep-
resentation of pure (Nf ,Nf* ) % (Nf* ,Nf) of SU(Nf)L
3SU(Nf)R together with the scalar meson, both being t
chiral partners:
~GL! H up&,uS&→u~Nf ,Nf* ! % ~Nf* ,Nf !&,

uA1~l50!&,ur~l50!&→u~Nf
221,1! % ~1,Nf

221!&.
~6.3!

On the other hand, the vector manifestation~VM ! @10# corresponds to the limitc→0 in which theA1 goes to a pure
(Nf ,Nf* ) % (Nf* ,Nf), now degenerate with the scalar meson in the same representation, but not withr in (Nf

221,1)% (1,Nf
2

21):

~VM ! H up&,ur~l50!&→u~Nf
221,1! % ~1,Nf

221!&,

uA1~l50!&,uS&→u~Nf ,Nf* ! % ~Nf* ,Nf !&.
~6.4!
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Namely, the degenerate masslessp and ~longitudinal! r at
the phase transition point are the chiral partners in the
resentation of (Nf

221,1)% (1,Nf
221).

Now, what does our result say on the chiral representa
of low-lying mesons? As can be seen from Fig. 11, the
sultant values of the masses obtained from the HBS equa
roughly satisfies the following relation@40#:

MA
21M P

2 5MV
21MS

2 , ~6.5!

for all values ofa* . This relation holds independently of th
mixing anglec given in Eq.~6.1! when the low-lying me-
sons saturate the chiral algebra shown in Ref.@40#. Then, it is
reasonable to discuss the chiral representation without w
rying about the influence of the excited states of the bo
states. By using the relation tanc5MV /MS @40# and the
values ofMV and MS obtained from the HBS equation i
Sec. V B, the value of the mixing anglec is roughly deter-
mined as

tanc5MV /MS;3. ~6.6!

This implies thatp and the longitudinalA1 are still admix-
tures of the pure chiral representation even at the chiral
toration point:

up&→u~Nf ,Nf* ! % ~Nf* ,Nf !&sinc

1u~Nf
221,1! % ~1,Nf

221!&cosc,

uA1&→u~Nf ,Nf* ! % ~Nf* ,Nf !&cosc

2u~Nf
221,1! % ~1,Nf

221!&sinc. ~6.7!
p-

n
-
on

r-
d

s-

This may suggest the existence of a new type of manife
tion of chiral symmetry restoration in largeNf QCD which is
neither of the GL manifestation nor the simple version of t
vector manifestation~VM !.

Several comments are in order.
In Appendix C, we show the calculations of the couplin

constantsFV , FA , and GS of the vector, axial-vector, and
scalar bound states to the vector current, axial-vector curr
and scalar density. The results shows that they also have
same scaling properties asFP . These results indicate that a
the dimension-full quantities determined by the IR dynam
have the same scaling properties, as far as the~improved!
ladder approximation is concerned.

Although the masses obtained from the HBS equation
isfy the condition~6.5! needed for the saturation of the chir
algebra, the couplingsFP , FV , andFA do not seem to sat
isfy the first Weinberg’s sum rule@41#: FP

2 1FA
25FV

2 . We
have not fully understood what this means for the pattern
chiral symmetry restoration. Apparently, reducing the n
merical uncertainty will help us to reach the final understa
ing.

In the present analysis we did not include the effect fro
the four-fermion interaction which is induced in the case
gm.1 as was conjectured in strong coupling QED@32# and
was demonstrated in walking gauge theories@42,43#. It is not
clear at this moment whether or not the qualitative results
the present analysis will be changed when we include s
an effect.

In the present analysis we stressed that the running c
pling in largeNf QCD determined from a two-loopb func-
tion is expressed as the LambertW function which enables
us to solve the HBS and SD equations with mutual con
tency near the critical point. Apparently, this LambertW
function can be used as an IR regularization to solve
HBS and SD equations with mutual consistency in the c
1-13
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of QCD with smallNf . It will be very interesting to study
meson masses near the chiral phase transition in hot an
dense QCD by using such an IR regularization.

We think that it is important to clarify which effective
field theory ~EFT! describes the new pattern of the chir
symmetry restoration expressed in Eq.~6.7!. Especially, it is
very interesting to see how the matching between the E
and the underlying QCD with largeNf can be done to deter
mine bare parameters of the Lagrangian of the EFT.
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APPENDIX A: POSITRONIUM

In this appendix, to show the validity of the fictitiou
eigenvalue method for solving the HBS equation explain
in Sec. IV C, we calculate the mass of the orthopositroni
which is the vector bound state of the electron and the p
itron. The same analysis was done in Ref.@38#, and here we
follow the analysis.

In the weak coupling limit the HBS equation for the o
thopositronium can be solved analytically, and the ene
spectrum takes the following form@44#:

MV
(n)52me2

mea
2

4n2
, ~A1!

whereme is the mass of the electron and the positron, a
a51/137 is the coupling constant of QED.

We use following parameters in our calculation:

@lU ,LU#5@218.5,22.9#,@lX ,LX#5@210.8,2.2#,
~A2!

NBS,U5NBS,X528, me5137.0. ~A3!

~We used the energy scale which satisfies the relationmea
51 following Ref. @38#.! In Fig. 12, we show the resultan
values of the fictitious eigenvaluel for several values of the
input parameterMV .

Finding the point where the smallestl becomes unity, we
determine the value of the mass of the ground stateMV

(1) as
the solution of the original HBS equation:

MV
(1)5273.99842. ~A4!

From this the binding energy is calculated as

E(1)50.00158. ~A5!
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These values are in good agreement with the valuesMV
(1)

5273.99817 andE(1)50.00183 derived from Eq.~A1!. This
shows that our numerical method works well to obtain t
mass of the ground state.

APPENDIX B: BISPINOR BASES FOR SCALAR,
PSEUDOSCALAR, VECTOR, AND AXIAL-VECTOR

BOUND STATES

In this appendix we show the explicit forms of the bi
pinor bases for the scalar, pseudoscalar, vector, and a
vector bound states. Here, we use the notationq̂m5qm /MB
with MB being the mass of the bound states, and@a,b,c#
[a@b,c#1b@c,a#1c@a,b#.

The bispinor base for the scalar bound state (JPC

5011) is given by

G (S)
1 51, G (S)

2 5p” , G (S)
3 5q”̂ ~p•q̂!, G (S)

4 5
1

2
@p” ,q”̂ #,

~B1!

and that for the pseudoscalar bound state (JPC5021) is
given by

G (P)
1 5g5 , G (P)

2 5p” ~p•q̂!g5 ,

G (P)
3 5q”̂g5 , G (P)

4 5
1

2
@p” ,q”̂ #g5 . ~B2!

Furthermore, for the vector bound state (JPC5122) we use

G (V)
1 5e” , G (V)

2 5
1

2
@e” ,p” #~p•q̂!,

G (V)
3 5

1

2
@e” ,q”̂ #, G (V)

4 5
1

3!
@e” ,p” ,q”̂ #,

~B3!
G (V)

5 5~e•p!, G (V)
6 5p” ~e•p!,

G (V)
7 5q”̂ ~p•q̂!~e•p!, G (V)

8 5
1

2
@p” ,q”̂ #~e•p!,

input MV

λ

0

1

2

3

4

5

6

273.996 273.997 273.998 273.999 274

FIG. 12. Fictitious eigenvalues for the positronium.
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and for the axial-vector bound state (JPC5111)

G (A)
1 5e”g5 , G (A)

2 5
1

2
@e” ,p” #g5 , G (A)

3 5
1

2
@e” ,q”̂ #~p•q̂!g5 ,

G (A)
4 5

1

3!
@e” ,p” ,q”̂ #g5 , G (A)

5 5~e•p!~p•q̂!g5 ,

~B4!
G (A)

6 5p” ~e•p!g5, G (A)
7 5q”̂ ~e•p!~p•q̂!g5 ,

G (A)
8 5

1

2
@p” ,q”̂ #~e•p!~p•q̂!g5 .

APPENDIX C: COUPLING CONSTANTS TO CURRENTS
AND SCALAR DENSITY

In this section we calculate coupling constantsFV , FA ,
andGS of the vector, axial-vector, and scalar bound state
the vector current, axial-vector current, and scalar den
They are defined by

α∗αcr

ΛGS
2

ΛA,V,PF

ΛGS
2

,

FP Λ

FV Λ

FA Λ

0

0.002

0.004

0.006

0.008

0.01

0.012

0.8 0.85 0.9 0.95 1

α∗αcr

G Fp ΛS FA,V Fp

F FV

F FA

G F Λp

p

p

S

,

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.8 0.85 0.9 0.95 1

(a)

(b)

FIG. 13. Values of~a! FV , FA , GS , andFP and ~b! GS /FP ,
FV /FP , andFA /FP for several values ofa* .
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o
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^0uc̄~0!gm
la

2
c~0!uVb~q,e!&5dabFVMVem, ~C1!

^0uc̄~0!gmg5

la

2
c~0!uAb~q,e!&5dabFAMAem,

~C2!

^0uc̄~0!
la

2
c~0!uSb~q,e!&5dabGS , ~C3!

where la is the flavor matrix normalized as tr@lalb#
52dab .

By using the BS amplitudes for the vector bound state,FV
is expressed as

FVMV52
A2iNc

p3 E
0

`

duE
0

`

dxFx2x1~u,x!2
x4

3
x6~u,x!G .

~C4!

In the above expression, the normalization of the BS am
tudesx i are determined by the following normalization co
dition @14#:

2MVdee85 iNcE d4p

~2p!4 F x̄~p;q,e!
]T~p;q!

]MV
x~p;q,e8!G .

~C5!

Here, we notice again thatT(p;q) has no singularity al-
though the fermion propagatorSF has a branch cut in the
time-like region. So the integral in Eq.~C5! is well-defined.
Once we have obtainedMV and the corresponding BS am
plitudes by solving the HBS equation, we can calculateFV
from Eq.~C4!. We can also calculateFA andGS in a similar
way. In Fig. 13~a! we show the values ofFV , FA , andGS
together withFP for several values ofa* .

-14
-12

-10
-8

-6
U

-7.5 -7 -6.5 -6 -5.5 -5 -4.5X

-14
-12

-10
-8

-6
U-7.5 -7 -6.5 -6 -5.5 -5 -4.5X

(a)

(b)

FIG. 14. Integrands of~a! the decay constant in Eq.~C4! and~b!
the normalization condition in Eq.~C5! for a* 50.885.
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To see the scaling properties, we plot the ratio ofFV , FA ,
andGS to FP in Fig. 13~b!. This figure shows thatFV , FA ,
andGS have the same scaling properties as that ofFP .

APPENDIX D: UNCERTAINTIES FOR NUMERICAL
CALCULATIONS

To solve the HBS equation for the bound states num
cally, we introduced the UV and IR cutoffs and converted
HBS equation into a linear eigenvalue equation by discre
ing the integral. As we have discussed in Sec. V B, we ad
the values of the UV and IR cutoffs in such a way that t
dominant supports of the integrands of the decay constan
Eq. ~C4! and the normalization condition in Eq.~C5! lie in
the energy region between the UV and IR cutoffs. In Figs.
and 15 we show those integrands fora* 50.885 and 1.0 in
the case of the vector bound state.

These figures show that the dominant supports lie in
lower energy region for a smaller value ofa* , and that the
present choices in Eqs.~5.3! and ~5.4! cover the supports
For other values ofa* used in the present analysis we ha
checked that the dominant supports always lie within
energy region between the UV and IR cutoffs chosen a
Eqs.~5.3! and ~5.4!.

As for the numbers of the discretization, due to the lim
tation of the computer resources we usedNBS,U520 and
NBS,X555 as shown in Eq.~5.6!. Here we study the depen
dences of the mass and the decay constant of the ve
bound state on the size of discretization. We show the typ

-12
-10

-8
-6

-4
-2

U
-5 -4.5 -4 -3.5 -3 -2.5 -2X

-12
-10

-8
-6

-4
-2

U
-5 -4.5 -4 -3.5 -3 -2.5 -2X

(a)

(b)

FIG. 15. Integrands of~a! the decay constant in Eq.~C4! and~b!
the normalization condition in Eq.~C5! for a* 51.0.
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values of the mass in Fig. 16~a! and those of the decay con
stant in Fig. 16~b! for five choices of the size of the discret
zation, (NBS,U ,NBS,X)5(14,28), (16,32), (18,36), (20,40)
and (20,55).

Figure 16~a! clearly shows that the choic
(NBS,U ,NBS,X)5(20,55) is large enough to obtain the ma
of the vector bound state. On the other hand, Fig. 16~b!
shows that there are still uncertainties in the value of
decay constant which come from the size of the discret
tion. Apparently, this uncertainty from the size of discretiz
tion is the dominant part of the numerical uncertainties in
present analysis.

α∗αcr

MV Λ

BS,UN BS,XN
BS,U

BS,U

BS,UN
N
N

BS,X

N
BS,XN
BS,X

N

BS,UN BS,XN

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.8 0.85 0.9 0.95 1

 = 20 ,  = 40

= 16 ,
= 18 ,

    = 14 ,

= 36

    = 28
= 32

 = 20 ,  = 55

BS,UN BS,XN
BS,U

BS,U

BS,UN
N
N

BS,X

N
BS,XN
BS,X

N

BS,UN BS,XN

αcr α∗

ΛVF

0

001
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003

004
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006

007

008

0.8 0.85 0.9 0.95 1

 = 20 ,  = 40

= 16 ,
= 18 ,

    = 14 ,

= 36

    = 28
= 32

 = 20 ,  = 55

(a)

(b)

FIG. 16. Typical values of~a! MV /L and ~b! FV /L for five
choices of the size of discretization, (NBS,U ,NBS,X)5(14,28),
(16,32), (18,36), (20,40), and (20,55).
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