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Meson masses in largeN; QCD from the Bethe-Salpeter equation
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We solve the homogeneous Bethe-SalpétBS) equation for the scalar, pseudoscalar, vector, and axial-
vector bound states of quarks and antiquarks in I&tg&CD with the improved ladder approximation in the
Landau gauge. The quark mass function in the HBS equation is obtained from the Schwingert®9son
equation in the same approximation for consistency with the chiral symmetry. Amazingly, because of the fact
that the two-loop running coupling of largés QCD is explicitly written in terms of an analytic function, large
N; QCD turns out to be the first example in which the SD equation can be solved in the complex plane and
hence the HBS equation directly in the time-like region. We find that approaching the chiral phase transition
point from the broken phase, the scalar, vector, and axial-vector meson masses vanish to zero with the same
scaling behavior, all degenerate with the massless pseudoscalar meson. This may suggest a new type of
manifestation of the chiral symmetry restoration in laheQCD.
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[. INTRODUCTION suppose that all the existing bound states become massless
near the phase transition point when approached from the
Spontaneous chiral symmetry breaking is one of the mosbroken phasésee Ref[13]).

important properties to understand the low-energy phenom- Then, it is quite interesting to study which types of the
ena of QCD in the real world. This chiral symmetry is ex- bound states actually exist near the phase transition point,
pected to be restored in QCD at several extreme conditiongnd investigate the critical behavior of their masses directly
such as QCD with a large number of massless quétisge from QCD. Such studies from the first principle will give us
N; QCD’, see, e.g., Refs[1-7]), and QCD in hot and/or @ clue to understand the nature of the chiral phase transition
dense mattefsee, e.g., Refl8]). In Ref.[2], based on the N largeN; QCD.
infrared (IR) fixed point existing at a two-loop beta function A powerful tool to study the bound states of quark and
for a large number of massless quark € %N,) [1], it was antiquark directly frqm QCD is the homogeneous Be_the—
found through the improved ladder Schwinger-Dyg@p)  SalPeter(HBS) equation in thelimproved ladder approxi-
equation that chiral symmetry restoration takes placeNfor tmhatlon(ske_e, for regle&/vs, Ref$14t—1?). When the TaSSIOf th
such thatNe™<N,<IN,, where N&"'=4N(=12 for N, e quark is regarded as a constant, we can easily solve the

—3) Then. in Refl3] this chiral restorati et HBS equation by using a so-called fictitious eigenvalue
=3). Then, in Ref[3] this chiral restoration aN{™ was  ethod[14]. However, for consistency with the chiral sym-

further identified with “conformal phase transition” which metry, the quark propagator in the HBS equation must be
was characterized by the essential singularity scaling. Moregptained by solving the SD equation with the same kernel as
over, such chiral restoration is also observed by other variougat used in the HBS equatigi7—20, and as a result, the
methods such as lattice simulati¢f], dispersion relation quark mass becomes a certain momentum dependent func-
[6], instanton calculud7], effective field theoretical ap- tion. Then, in order to obtain the masses and the wave func-
proach[9], etc. tions of the bound states, it is necessary to solve the HBS
More attention has been paid to the property of the phasequation and the SD equation simultaneously.
transition. Especially, it is interesting to ask what are the When we try to solve these two equations in real-life
light degrees of freedom near the phase transition point ifN;=3) QCD, however, we encounter difficulties. First of
the largeN; QCD: For example, in the manifestation of the all, for the consistency of the solution of the SD equation
chiral symmetry restoratioa la the linear sigma model, the with QCD in a high energy region, we need to use the run-
scalar bound state becomes a chiral partner of the pseudning coupling which obeys the evolution determined from
scalar bound state and becomes massless at the phase tra@etD g-function in the high energy regiofsee, for reviews,
tion point. On the contrary, in the vector manifestatid) Refs.[15,16]). Since the running coupling diverges at some
[10,17 obtained by the effective field theoretical approachinfrared scaleA ocp, we have to regularize the running cou-
based on the hidden local symmetry mofl&P], it is the  pling in the low energy region, for which there exist several
vector bound state which becomes massless as a chiral pavays (see, e.g., Ref§21-25). Even if we fix the infrared
ner of the pseudoscalar bound state. Besides, from the viewegularization in such a way that we can solve the SD equa-
point of the conformal phase transiti¢B], it is natural to  tion on the real(space-likg¢ axis, another problem arises
when we try to solve the HBS equation. Since the argument
of the quark mass function in the HBS equations for the

*Electronic address: harada@eken.phys.nagoya-u.ac.jp massive bound states becomes a complex quantity after the
"Electronic address: kurachi@eken.phys.nagoya-u.ac.jp Wick rotation has been made, we have to solve the SD equa-
*Electronic address: yamawaki@eken.phys.nagoya-u.ac.jp tion on the complex plane, which requires an analytic con-
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tinuation of the running coupling. Several works such as in
Refs.[26,27] proposed models of running couplings for a
general complex variable which are consistent with perturba- ;1 _

tive QCD for large space-like momentum. However, they ! &(p) - FS -

still have branch cuts on the complex plane, and it is a com- — @

plicated task to obtain the solution of the SD equation for a p L

general complex variable. One way to avoid such a compli- full fermion propagator

cation is solving the inhomogeneous BS equation for vertex

functions to obtain the current correlators in the space-like FIG. 1. A graphical expression of the SD equation in (ime-

region which we can fit the mass of the relevant bound statgroved ladder approximation.

to (see, e.g., Ref$28,29). Another way might be replacing

the entire running coupling with aad hocanalytic function  states to obtain their masses. Finally we give a summary and

(see, e.g., Refl30]). Anyway, it is impossible to solve the discussion in Sec. VI. In Appendix A we solve the HBS

SD equation on the complex plane without modeling theequation for the orthopositronium with a constant electron

running coupling. mass to show the validity of the fictitious eigenvalue method.
In this paper, we point out that the situation dramaticallyBispinor bases for the bound states are listed in Appendix B.

changes when we increase the number of massless quarks.Appendix C we calculate the coupling constafts, F,,

When N becomes larger thaN¥ =8.05, the running cou- andGg of the vector, axial-vector, and scalar bound states to

pling obtained from the renormalization group equationthe vector current, axial-vector current, and scalar density.

(RGE) with two-loop approximation takes a finite value for We briefly study numerical uncertainties in the present analy-

all the range of the energy region due to the emergence of th&s in Appendix D.

infrared(IR) fixed point. Then, we need no IR regularization,

and we do not have any ambiguities coming from the regu-1l. SCHWINGER-DYSON EQUATION IN LARGE N; QCD

larization scheme which do exist in the case of sni\ll

Moreover, an explicit solution of the two-loop RGE can be

written in terms of the LambekV function[4,31], and when

In this section we numerically solve the Schwinger-Dyson
(SD) equation for the quark propagator with the improved
N; is close toNS™ the solution of the RGE has no singularity Iadpler approximation in the Lgndau gauge, and show the

critical behaviors of the dynamical mass and the decay con-

on the complex plane except for the t'me.'“ke 4ag]. Con- stant of the Nambu-Goldstone boson. We also show the be-
sequently, we can solve the SD equation on the compleX

plane without introducing any models for the running cou-havior of the fermion-antifermion pair condensatey) near

pling. the phase transition point.
Based on these facts, we solve the HBS equations for the
bound states of quark and antiquark in lalge QCD with A. SD equation in the (improved) ladder approximation

the improved ladder approximation in the Landau gauge. The The Schwinger-DysofSD) equation is a powerful tool to

mass function for complex arguments needed in the HBSy,qy the dynamical generation of the fermion mass directly

equation is obtained by solving the SD equation with thegqn, QCD (for reviews, see, e.g., RefE15,16). The SD
same kemel as that used in the HBS equation. We find thgation for the full fermion pr’opagatdr,sgle(pz)lb

solution of the HBS equation.in gach of the scalar, vector, B(p?) in the improved ladder approximatiof2,21] is
and axml-vgctor channels, which implies that the scalar, vec: iven by (see Fig. 1 for a graphical expression

tor, and axial-vector bound states are actually formed nea
the phase transition point. Our results show that the masses d4
of the scalar, vector, and axial-vector bound states go to zero iS:*(p)— p= CZJ -

as the number of quark; approaches to its critical value i(

9%(p,q)
2m)* (p—0q)?

N‘f’”t where the chiral symmetry restoration takes place. This

may suggest the existence of a new type of manifestation of ( — m YHiSe(q)y”
chiral symmetry restoration in large; QCD other than the e (p—0q)? F '
linear sigma model-like manifestation and a simple version 2.1)

of the vector manifestation proposed in Rgf0].

This paper is organized as follows. In Sec. Il we numeri'whereCZ[Z(Ni— 1)/2N.] is the second casimir invariant,
cally solve the SD equation with an approximate form of the da is th . i The Landau gauge is
running coupling, and study the critical behavior of theag g(%,?) ISh € runmgg coupiing. U gauge |
Nambu-Goldstone boson decay constant. In Sec. Ill we solv8 Eﬁ’}te S[o)rt € gf_\uge os.cc)jn propaglatgr. i for t
the SD equation for complex arguments. Section IV is de-f t'e A egu;_lor:h prfO\lll'feS coupie eqltjaglon\:,Nhor wo
voted to summarizing the numerical method for solving the unctions .’:.m N the tull termion prgpaga 0 w en
HBS equation. Section V is the main part of this paper. WeVe use a simple ansatz for the running coupligé(p,q)
first solve the HBS equation for the pseudoscalar bound state gz(x),xzmax(pé ,qé) [22,21], with (pé ,qé) being the Eu-
to show that the approximation adopted in the present analyclidean momenta, we can carry out the angular integration
sis is consistent with the chiral symmetry. We next solve theand getA(p?)=1 in the Landau gauge. Then the SD equa-

HBS equation for the scalar, vector, and axial-vector boundion becomes a self-consistent equation for the mass function
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Oy —

FIG. 2. Two-loop running coupling(solid
line) compared with the approximate form in Eq.
(2.9) (dashed lingfor Ny=9.

-15 -10 -5

log M

3 (p?)=B(p?). The resultant asymptotic behavior of the dy- where
namical mas& (p?) is shown to coincide with that obtained
by the operator product expansion technifiL®,16.

However, it was shown in Ref18] that the axial Ward-
Takahashi identity is violated in the improved ladder ap-
proximation unless the gluon momentum is used as the argu- ) Ng— 1
ment of the running coupling ag?[(pe—qg)?]. In this c 34NC— 10NN —=3—5—
choice we cannot carry out the angle integration analytically ¢
since the running coupling depends on the angle factofrom the above beta function we can easily see that, when
cos6=pe- e /|pel[qel- Furthermore, we would need to intro- 1y~ andc<o, ie., N; takes a value in the range off
duce a nonlocal gauge fixind 8] to preserve the condition <N;<%N, (N*=8.05 forN,=3), the theory is asymptoti-

A=1. ; :
. cally free and the beta function has a zero, corresponding to
In Ref. [24], however, it was shown that an angle aver- iR stable fixed poirftL, 2], at

aged frorrEZ(pE+ qé) gives a good approximation. Then, in

1
b= & (1IN.—2Ny),

= 24172 Nf . (25)

the present analysis we take the argument of the running b
coupling as =" (2.6)
9%(Pe ., 0e)=02(p2+q2). 2.2 Existence of the IR fixed point implies that the running

coupling takes a finite value even in the low energy region.
After applying this angle approximation and carrying out theActually, the solution of the two loop RGE in E(2.4) can
angular integration, we can showsee, e.g., Refs. be explicitly written[31,34 in all the energy region as
[32,33,15,1% that A always satisfieA(p?)=1 in the Lan- b b .
dau gauge. Then the SD equation becomes a(p)= a, [W(p>**[eA>*)+1]77, (2.7

where W(x)=F ~1(x) with F(x)=x¢€" is the Lambertw

2
3(x)=C, f y y2(y) g°(x+y) , (2.3 function, andA is a renormalization group invariant scale
1672 y+32(y) maxx,y) defined by[2]
wherex=p2 andy=qZ. Although the choice of arguments Az pexd — 1 og| & —a(p)) 28
in Eq. (2.2) explicitly breaks the chiral symmetry as men- —H ba, a(pm) ba(u)| '

tioned above, it will be shown later that the magnitude of the
breaking is negligible. We note that, in the present analysis, we fix the valu &b
compare the theories with a different number of flavors, and
that we have no adjustable parameters in the running cou-
pling in Eq. (2.7), accordingly (see discussion belgw

In QCD with N¢ flavors of massless quarks, the renormal-\ye show an example af(u) for Ny=9 by the solid line in
ization group equatiofRGE) for the running couplingy(u) Fig. 2.
[ =g%(u)/47] in the two-loop approximation is given by The fact that the running coupling is expressed by a cer-

g tain function as in Eq(2.7) implies that, in the case of large
_ 2 3 N; QCD, we do not need to introduce any IR regularizations
’“@a(’“)_ ~bat(p)=cat(p), 29 ich as the ones adopted in R¢f&1—23 for studying real-

B. Running coupling in large Ny QCD
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life QCD with smallN; in which the IR regularization pa- 5 (X)
rameter must be chosen in such a way that the running cou A

pling in the infrared region becomes larger than the critical '

value a= /4 for realizing the dynamical chiral symmetry 09 |
breaking[21]. The running coupling in larghl; QCD takes a °or |
certain value in the IR region for giveN;, so that we can orr 7
definitely determine, within the framework of the SD equa- o6 i
tion, whether or not the dynamical chiral symmetry breaking e i
is realized. Actually, the value ok, decreases monotoni- 04r 1
cally with increasingN;, and the chiral symmetry restores 03 i
whenN; becomes large enough. In Reffg,4], it was shown 02 q
that the phase transition occurshft"=11.9 forN.=3 (cor- o1f .
responding tax, = ay= m/4). o o - - -

In order to reduce the task of numerical calculations in
solving the HBS equation, we modify the shape of the run-
ning coupling. Since the dynamics in the infrared region
governs the chiral symmetry breaking, we adopt the follow- FIG. 3. A solution of the discretized SD equation in Eg.14)

ing approximation for the running coupliri@,4]: for Ny=9.
¢ 1 - v 2(y))
g*(x+y) _ ) 3 (x)= —=D (x4 y )] D
4. AT (x+y)]. (2.9 ) 42 SD; g7 yJ)max(xi Vi) y;+32(y;)
(2.149

In this approximation the coupling takes the constant ValueI'his discretized version of the SD equation is solved by the
a, (the value at the IR fixed poinbelow the scale\ and recursion relation:

entirely vanishes in the energy region above this scale. The
dashed line in Fig. 2 represents the approximated form of the L
running coupling folN¢=9. S (s 1y (X)= _ZDSDE. gz(xi+yj)
41 ]
C. Numerical solution for the SD equation
q % sz E(n)(yj)
max(xi.yj) y;+ 37, (y))

(2.15

In this section we briefly explain how we solve the SD
equation numerically.
We first introduce the infraredR) cutoff A 5p and ultra-

violet (UV) cutoff Ap as Starting from a suitable initial conditiofwe choose

2 0)(xj)=1], we update the mass function by the above re-
A2etsp/A<yx,  y<AZefso/A, (2.10 cursion relation. Then, we stop the iteration when the con-
vergence condition

Then, we discretize the momentum variaklendy into Ngp )
oints as X

P DSDEi F;_Z[E(n+l)(xi)_E(H)(Xi)]2<82A6
xi=A2exgfAsp/A+Dgp-i], (i=0,1,2...,(Ngp—1)), (2.1

21y - . :
is satisfied for sufficiently smali, and regard thi& ) as a

where solution of Eq.(2.14. In Fig. 3, we show the numerical
solution for the mass functioB (x).
(Aso—Asp)/ A Here, we tookN;=9 («, =5.2) as an example and used

— . 'Sb 7SO the following parameters:
Dsp Nep— 1 . (2.12

Agp/A=+15, Agp/A=-15 Ngp=1000, £=10"1°

Accordingly, the integration ovey is replaced with a sum- (2.17

mation as - ) )
Now, let us study the critical behavior of the fermion mass

asN; is varied. Note that we can uge, instead ofN; as an
f dy=Dgp>, e (2.13  input parameter, because once we choose a valtg othe
I value of a, is uniquely determined from E¢2.6). For ex-
ample, a, =1 implies Ny=11.42 anda, = a, implies N;
Then, the SD equation in E¢R.3) with the running coupling =11.91. We solve Eq(2.14 for various values ofr, and
in Eq. (2.9 is rewritten as plot the values of (m?) in Fig. 4.
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FIG. 4. Numerical solutions aE (x=m?) for several values of
a, (indicated by ¢). The solid line shows the function in Eq.

' : FIG. 5. Values of~ calculated from the Pagels-Stokar formula
(2.19 with the best fitted valuel=4.0.

for several values of, (indicated by< ). The dotted line shows

] ] the function of the form in Eq(2.19 with the best fitted valuel
Here, m represents the dynamical mass definedrby =15,

=3(m?). It should be noticed thanis defined in the space-

like region which does not represent the pole mass of fering N; for fixed N, as we discussed in the previous section,

mion. As we will show in Sec. IlI, the present fermion propa- we see that the chiral symmetry restoration actually occurs at
gator does not have any poles and then there are no po}@f:Ngfit: 12(N./3) [2,4].

masses of fermion.

We compare this result with the analytic soluti@)4]: D. Pseudoscalar meson decay constant in largé, QCD

So far we have solved the SD equation and obtained the

S(m?)~Aexp| — T for a, > a. mass functions for the various values ®f . Now we can
a, calculate the pseudoscalar meson decay conBtauit each
\/ a——l a, by using the Pagels-Stokar formuja5]:
cr
(2.18 x2 d
N XEZ(X)—Z&[EZ(X)]

In the above form there is an ambiguity in the prefactor. FE,: ¢ f dx . (222

Then, we introduce the function 472 [x+32(x)]?

In Fig. 5, we plot the values df, for several values of,

h(e,)=dA exp| — T , (2.19 (indicated by< ). To study the critical behavior of the pseu-
Qg doscalar meson decay constant we use the function of the
—-1 form in Eq.(2.19 and fit the value ofl by minimizing
Ay
and fit the value of the prefactarby minimizing E IFp(a,)—h(ay)l? (2.23
E IS (x=m?a,)—h(a,)|? (220  for @, €[0.885:1]. The resultant best fitted value dfis
d=1.5=dg,). (2.29
in the range ofa, €[0.885:1. The resultant best fitted
value ofd is We plot the fitting function withd=1.5 in Fig. 5 (dotted
line). This shows that the results of the numerical calcula-
d=4.0. (2.2 tions forF, are well fitted by the function of the form in Eq.

o ) _ (2.19, and that the pseudoscalar meson decay constant has
d=4.0 in Fig. 4(solid line). This clearly shows that the,
dependence of the resultab{m?) from our numerical cal-
culation is consistent with the analytic result: The dynamical
mass function vanishes Wheﬂ* reaches the critical value In this SeCtion, we calculate the fermion-antifermion pair

aq=ml4. Noting that decreasing, corresponds to increas- condensaté%//) in largeN; QCD, and show that the system

E. Fermion-antifermion pair condensate
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in the present analysis has the large anomalous dimengjon ,

for the operato%/x. We also show that the values ¢f, are Ym
not affected so much by the approximation for the running

coupling used in the present analysis. 20 4yl 7
The condensatéy) is calculated from the following RVALED
equation: sk i
<E¢>A - _ Ne anv X2 (X) (2.25 e 2909900900000 608563555583 |
W ag2lo X+ 32(x)

where2, (x) is the mass function obtained from the SD equa- o5 | 4
tion and Ay, represents UV cutoff introduced to regularize
the UV divergence. In the improved ladder approximation,
the high-energy behavior of the mass function is consistent °¢ 08 085 09 095 1
with that derived using the operator product expansion Olx
(OPB. The chiral condensate calculated using the mass
function was shown to obey the renormalization group equa-
tion derived with the OPEsee, e.g., Ref$15,16)). Then, as FIG. 6. Values ofy,, for several values of, . ¢ and+ rep-
was adopted in Refg2—4], we identify the condensate, resent the values of;, calculated from Eq(2.30 with and without
which is calculated with UV cutoff\,,,, with that renormal- a?gggXignatiO” for the running couplingwe call themy' (" and
ized at the scalé\,, in QCD* Y'mo P respectively.

We expect that infrared dynamics in largg QCD is
similar to that of strong coupling QED or walking gauge . logc
theories[36] since the running coupling in large; QCD is &= —logFp’
well approximated by the constant couplitape Fig. 2[4].
Then, we also expect that the value of the anomalous dimensere, we note thay,, approaches,, for a, — ey, sinceFp

sion in largeN; QCD becomesyy,=1 since the walking  pacomes small, i.e.{log Fp)>1, near the critical pointsee

(2.31

gauge theories have,=1 [36]. Fig. 5):
When a considering system has the anomalous dimension
vm, scaling properties dfp and — () with respect taw, e—0 for a, — ag. (2.32

near the critical point are expressed as folld@8]:

In Fig. 6, we plot the values of,, for several values of

a, as an estimation of the anomalous dimension.

s 3y The data indicated by in Fig. 6 is obtained with the
(Ygh)~m>=7m, (2.27) approximated running couplinglashed line in Fig. Rin the
D equation(We call this kind of datay’ #P" .) On the other
and, the data indicated by is the result from the calcula-

tion with the two-loop running coupling given in E.7).

(We call this kind of datay{">® )2 From these results, we

Fp"“m, (226

where m represents the dynamical fermion mass. Thes

equations mean that the relation betwéens) and Fp can
be written as

—(yyy=c-F> ", (2.28

. . . . . °The reason why we introduced the approximated running cou-
wherec is a certain positive constant. From this equation, we_,. ) S :
. : pling (2.9 in the present analysis is to reduce the task of numerical
can express the anomalous dimension as

calculations in solving the HBS equations. As for the SD equation,
we can easily solve it numerically with the two-loop running cou-

Ym= Ym™ &, (229 pling given in Eq.(2.7). Since we have to comparg’ ?*” and
Where y' (3PP at the same energy scale, we have lowered the scale of
(py)("3P) from Ay, to A by the following two-loop renormal-
- ization group equation:
log(— ) iza
m=3- % (230 — o [a(Agy)]PRe
g P <¢¢>A2<¢¢>AUV a(A)
7R 29 a(A) —a(Ayy)
When the condensate is calculated using the approximated run- X1+ a7b b2 ppe ,

ning coupling defined by Eq2.9), the integration in Eq(2.25 is
effectively cut off at the scale oA due to the truncation of the
running coupling for any values of ,y>A. [See Fig. 3:3(x)
=0 for x>AZ2]

where,
97 10 )

Y®=6C,, Y%):C2(3C2+ 3 Ne= 7Nt
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conclude that larg&l; QCD with two-loop running coupling

Im
as well as with approximated running coupling actually 1t

V]

.
.
-~

possessés '\ 7
Y= 'yr,n: 1. (2.33 ,', Integral path

Moreover, Fig. 6 shows that the datapf2"” is in good /\'9 X
agreement with that of’ (">@" which implies that the ap- 0 -
proximation for the running coupling used in the present Rey
analysis works well. We also expect that the approximation
does not affect the results so much when we calculate the
HBS equations for the bound states.

Ill. SD EQUATION ON THE COMPLEX PLANE

As we will discuss in Sec. IV, we need the mass funCtion FIG. 7. Integral path of the SD equati¢d.1). Here, the branch
for complex arguments when we solve the HBS equation fogyt appears from the four-dimensional angle integration.
the massive bound state. In this section, we first introduce
the SD equation for the complex argument following Ref.up the consistency with perturbative QCD and use models of
[37] (see also Ref38]), and then solve it in the case of large running coupling with analyticity such as the one used in

N¢ QCD.
The SD equation for the complex argument is expresse

(ny) (x'oo)

where C(a,b) is the integral path on the complex plane.

e
X

9A(x+y)S(y)

2(x)=C
y+32(y)
(3.1

2 1672

Here, we took the same argument of the running coupling a;

that in Eq.(2.2), and carried out the angle integration. Note
that the integral patle(a,b) must be taken so as to avoid the
branch cut appearing in the integral.

We first study the structure of the running coupling ap-
pearing in the SD equatiof8.1) to clarify the branch cut. In
the improved ladder approximation it is essential to use th
running coupling determined from th&function in the high
energy(space-like region for consistency with perturbative
QCD. In QCD with smalN;, however, the running coupling
obtained from the perturbativg-function diverges at some
infrared scale,Aqcp. In the ordinary SD equation in the
space-like region, the infrared singularity is avoided by in
troducing infrared regularization such as the so-calle
Higashijima-Miransky approximatiof21,22 and its exten-
sion as in Ref[23]. However, since the running coupling in
Eq. (3.1) is a complex function which has the complex argu-

ment, we need an extension with analyticity satisfied. Sev-

eral works such as in Refg26,27] proposed models of run-
ning coupling which are consistent with perturbative QCD in

the high energy region. But they still have branch cuts on thé

Ref. [30].
d Here we point out that the situation dramatically changes
in the largeN; QCD. In the case of largdl; QCD, as we
explained in Sec. Il B, the running coupling, as well as the
two-loop B-function, is finite for any space-like momentum.
This implies that we may be able to construct the running
coupling by analytic continuation using th#function. Ac-
tually, an explicit solution of the two-loop renormalization
group equatiofRGE) can be written in terms of the Lambert

function[4,31]. WhenN; is close toN{™, the solution of

e RGE has no singularity on the complex plane except for
the time-like axig31].

As a result, for general complexexcept on the time-like
axis (x<0), we can take the integral pa@(a,b) in such a
way that it just avoids the branch cut coming from the angle

éntegration. In Fig. 7 we show the branch cut together with a

Simple choice of the integral pafB7].

We stress again that the reason why we can take this
simple integral path is that the running coupling has no sin-
gularity on the complex plane except for the time-like axis.

For solving the SD equation on the complex plane, we
here study the explicit form of the running coupling. In Fig.

08 we show the real part of the running coupling on the com-

plex plane which is obtained by performing the analytic con-
tinuation from the running coupling on the real axis deter-
mined from the two-loog3-function.

This figure shows that Re=«, , i.e., Ima=0, in the
range ofY=|y|<A?, and that Rer<a, in the range ofY

> A2. Thus we take the following approximation for the run-
ing coupling on the complex plane:

complex plane, and it is a burdensome task to evade all the

branch cuts by carefully selecting the integral path in Eq.

(3.1). One way to avoid such a complication might be to give

3From the values o€ obtained by fitting to the data @), we
find £=0.04-0.06 for the approximated running coupling, and
=0.16-0.25 for the two-loop running coupling.

a(y)=a, 6(A>-Y), 3.2
which is smoothly connected to the approximation adopted
in Eq. (2.9 for the running coupling on the space-like axis.
Now, let us solve the SD equati@8.1) to obtain the mass
function for complex variablex. Along the integral path
shown in Fig. 7, the variablesandy are parametrized as
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Note that the fermion propagat8f does not have any poles
since the kinetic park and the mass pai?(x) have the

same phases ast+32(x)=e [ X+32(X)] [see Eq.(3.5)]

Re[a (ve®)]

14
12 and the mass function in the space-like region satisfies

1 +32(X)>0.
08 We should note that the above solution in E8.5) is a
06 double-valued function on the complex plane: The variable
8-‘2‘ T x=Xe"? can be parametrized as= Xe/(?*2™ for which the

solution takess (x) =e'(#2* M3 (X) = — €' ¥25(X). This cor-

10 o 0 20 30 responds to the fact that the SD equation has two solutions:
IogY 5 WhenZ (x) is a solution,— > (x) also satisfies the equation.

When we choose the range éfas e[ — : 7], the branch

cut emerges on the time-like axis. This choice is natural be-

FIG. 8. Real part of the two-loop running coupling =11 cause the appearance of the branch cut in the time-like region
on the complex plane obtained by the analytic continuation from the

running coupling on the real axise use the Cauchy-Rieman rela- S€€MS consistent with the analytic structure of the running
tion). The complex argument af is expressed ag=Y , wherey ~ coupling. We will see that this branch cut does not matter in

and ¢ are real. Note thay is in the space-like region fa#=0 and ~ calculating the bound state masses.
in the time-like region forg= .

30 20

x=Xée? y=Yd?’, (3.3 IV. HOMOGENEOUS BETHE-SALPETER EQUATION

whereX, Y, and ¢ are real. Then the SD equatid8.1) is In this section we briefly review the homogeneous Bethe-
rewritten as Salpeter(HBS) equation for the bound states of quark and
X Y ES
2 fo in'f' fx d

antiquark and show how to solve it numerically.
From this we can easily see that the solution is expressed as |, this paper, we consider the scalar, pseudoscalar, vector

3(x)=€'(#D3 (X)), (3.5

GAX+Y)S(YE?)
Y+e 03(yd?)
(3.9 A. Bethe-Salpeter amplitude

S(Xe?%=C 3
?16m

and axial-vector bound states of quark and antiquark, and we
write these bound states &3(q)), |P(q)), |V(qg,€)), and

whereE(X) is real and satisfies the original SD equation 0n|A(q €)), respectively. Hereg” represents the momentum
of the bound states angt represents the polarization vector

the real axis: satisfyinge. q=0 ande? 1
€- € —=—1.
_ g 2(X+Y)2(Y) Now, we introduce the Bethe-Salpet®&S) amplitudesy
E(X)ZCZ f dY— fx TViso? for the bound states of quark and antiquark as follows:
(3.6
|
()\a)fl _i d4p Zior
(O o0 7 OIS = 0 =5 dl o M IxePi s (4.1
(0T i (X iy (X ) | Pa(@)) = 5'( ot _iqxf : e P xp)(p:a)] (4.2
afi(X4 B a \/— (277)4 (PAF: M dap
il ]( a)f g—iax 'p —ipr .
O (X )T ) V() = & | ® "L (P s (4.3
aDb ‘v
(O T (x4 ¥ (x| Ag(q, €)) = 8] ﬁf e"qXJ (277)4e"p’[X(A)(p;q,e)]aﬁ, (4.9
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p+9, p+d,  k+9%, T(p;a)=iSe (p+a/2)®iSe '(p—q/2), (412

- q <4 whereS is the full fermion propagatafiS; *(p)=p—3 ],

— and the BS kernd( in the improved ladder approximation is
expressed as

p-9, p-9, k-(yz _
o Ne—1g%(p.k) (P=K)u(p—K),
FIG. 9. A graphical representation of the HBS equation in the K(p;k)= 2N, (p——k)2 Guv™ (p——k)2 A
(improved ladder approximation.
®v". (4.13

wherex.=X=*r/2, \, is the generator of SU;) normal-

ized as f\a\p]=26ap, and (@,B), (f,f'), and (,j) de- | the above expressions we used the tensor product notation
note the spinor, flavor, and color indices, respectively.

We can expand the BS amplitugein terms of the bis-

pinor based™' and the invariant amplitudeg as follows: (A®B)x=AxB, (4.14
4 . and the inner product notation
[xs (P = 2, [Ts ) (Pi@)JapX(s,e) (P,
B 4
49 Kx(p;q)=f —— K(p.kx(kiq). (419
i(2)

8
. _ [ . i . It should be noticed that the fermion propagators included

[xv.m(Pi0:€)]up .21 [T v,a)(P:d, €)lapx(v,a)(P;a)- in Tin Eq. (4.12 have complex-valued arguments after the
(4.6)  Wick rotation. The arguments of the mass functions appear-

ing in two legs of the BS amplitude are expressed as
The bispinor bases can be determined from spin, parity, and

charge conjugation properties of the bound states. The ex- Mg 2
plicit forms of I'(s), I'(p), 'ty , andI'(,) are summarized in —(piq/2)2:u2+x2—(7 FiuMg. (4.16
Appendix B.
We take the rest frame of the bound state as a frame of S ) ]
reference: In general, it is difficult to obtain mass functions for complex
arguments. However, as we have shown in Sec. lll, it is easy
g*=(Mg,0,0,0, (4.7)  to obtain them in the case of largg QCD.

We now modify Eg.(4.11) so that we can solve it
where Mg represents the bound state mass. After the Wickhumerically? It is convenient to introduce the conjugate bis-
rotation, we parametrizp# by the real variabless andx as  pinor bases defined by

p-q=iMgu, p?=—-u?—x° (4.9

T'(p;g,e)=7yol " (p*;0.€) yo. (4.17)
Consequently, the invariant amplitudgsbecome functions
in uandx: Multiplying these conjugate bispinor bases from the left, tak-
. . ing the trace of spinor indices, and summing over the polar-
X(s.Pv.A) = X(sp.v.a)(U,X). (4.9  izations, we rewrite Eq(4.11) into the following form:

From the charge conjugation properties for the BS amplitude 24
S : : . ) ) . y“dydv .
x and the bispinor bases defined in Appendix B, the invariant Tij(ux) X (u,x)= f ?Kij(u,x;v X (v,y),
a

amplitudesy'(u,x) are shown to satisfy the following rela-
tion: (4.18

X(s.p.v.2) (U:X) = X (s p.v.a)( — U,X). (4.10  where the summation over the indgis understood, and

B. HBS equation

1 .
- _ _ Tij(u) =2 St (pia, o) T(p;a) I (pid.e)],
The HBS equation is the self-consistent equation for the €
BS amplitude(see, for a review, Refi14]), and it is ex- (4.19
pressed agsee Fig. 9

Tx=Ky. (4.11) “In the following we explain the method for the vector and axial-
vector bound states. The extension to the scalar and pseudoscalar
The kinetic parfT is given by bound states is easily done.
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1 1 In order to avoid integrable singularities in the kernel
Kij(u1X;U-y):J d cos6, 3 K(u,x;v,y) at (u,x)=(v,y), we adopt the following four-
-t € splitting prescriptior] 28]:

Xt (pia, K (p.K)TI(Kig, €], 1
(42@ Kij(U,X,U,y):>Z[Kij(U,X,U+ ly+)+ Kij(U,X,U+ -Y—)

with the real variables andy introduced a&-g=ivMg and

k-p=—uv —xycosé. Here, we note that although the mass HKjj(uxv -y ) +HKj(uxo -y )],

function 3 (x) has the branch cut on the time-like axis as (4.29

mentioned in Sec. IlIT;; has no singularity and becomes a

continuous function for all the range afandx. As for Kj; ,

the branch cut of running couplirggdoes not matter since its Dy

argument pZ+k2) never takes a negative value. =ex;{VtT
Using the property ofy' in Eq. (4.10, we restrict the

integration range as>0:

where

Y+ =ex Y‘T . (4.27)

C. Fictitious eigenvalue method

f doKij(u,xv,y)x) (v,y) Now that all the variables have become discrete and the
original integral equatio.11) turned into a linear algebraic
one, we are able to deal it numerically. However, it is diffi-
=f dU[Kij(U,X;U,y)+Kij(U,X;—U,y)]Xj(U,y). cult to find the bound state mabég and the corresponding
v=0 BS amplitudey directly since the HBS equation depends on
(4.22) Mg nonlinearly. A way which enables us to solve the non-
linear eigenvalue problem is thietitious eigenvalue method
Then, all the variables, x, v, andy can be treated as posi- [14]. In this method we introduce a fictitious eigenvalue
tive values. and interpret the HBS equatida.11) as a linear eigenvalue
To discretize the variablas x, v, andy we introduce new  equation for a given bound state mags :
variablesU, X, V, andY as
U= AeUA = A Tx=\-Ky. (4.28
Consequently, the HBS equation turns into an ordinary ei-
v=Ae"A, y=Ae"A, (422 genvalue problem which we can solve by standard algebraic
techniques. By adjusting an input madsg such that an ei-
genvaluex equals unity, we obtain the bound state mass and
UVelry,Ayl, X Ye[lx,Ax]. (4.23 the corresp_onding BS amplituc_ie as a solution of the_original
HBS equation(4.11). In Appendix A, to show the validity of
We discretize the variables andV into Nggy points evenly, this method, we calculate the mass of the positronium using
andX andY into Nggx points. Then, the original variables this method.
are labeled as

and set UV and IR cutoffs as

V. NUMERICAL ANALYSIS
U[|U] =A eXF[)\U A+ Dul U]!

In this section we show the results of our numerical analy-

X[IX]:A eXF[)\)(/A'f'Dxlx], SIS.
vy =Aexg\y/A+Dyly], A. Pseudoscalar bound state
As discussed in Sec. Il A, the approximation to the argu-
Yoy =A exgAx/A+Dxly], ment of the running coupling in Eq2.2) breaks the chiral
symmetry explicitly[18]. So, before solving the HBS equa-

where  1y,1y=0,1,2...(Ngsy—1) and  Ix,ly  tion for the massive bound states, we solve that for the pseu-
=0,1,2...(Ngsx—1). The measureB, and Dy are de-  doscalar bound state and see how much the chiral symmetry
fined as is explicitly broken by this approximation.

The mass of the lowest-lying pseudoscalar bound state
U:M X:M_ (4.24  should become zero because it appears as a Nambu-
Ngsy—1 Npsx—1 Goldstone boson when the chiral symmetry is spontaneously
) . ) ._broken. So, we substitute zero for the bound state mass and
As a result, the integration is converted into the summation.pack whether the fictitious eigenvaliebecomes unity.

We use the following parameters for the calculations:

2 “ e 3.;-
fv>oy dyd :>DuDV|§Y”y - 429 Ny Au]=[-18.0.0, [Ag,Ax]=[—850], (5.1
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TABLE I. Fictitious eigenvalues obtained by solving £4.28 M //\
for the pseudoscalar bound state with zero mass used as an input.’ AV.S:P

a>‘<ial vecttor meson‘ mass i !)
a, ) a, A 0.04 ‘scalar meson mass 0 ot ]
pseudoscalar meson mass< o
0.035 i
0.89 1.00121 0.95 1.00262 ° K
0.90 1.00205 0.96 1.00267 0.03" 3 1
0.91 1.00230 0.97 1.00273 0.025 ot 7
0.92 1.00241 0.98 1.00279 0.02 23?? B
0.93 1.00249 0.99 1.00284 0.015- ® |
' ¢ b
0.94 1.00255 1.00 1.00290 001k o? DDDD |
B ¢ O
0.005- 0@"& DBBDDDBB .
% pEo
_ _ | | e1el8ly) & &
NBSU_NBS,X_30' (5.2 0¢ 0.8 0.85 0.9 0.95 1
Acr af

We calculate the fictitious eigenvalues for several values of

a, and show them in Table _l' . . . FIG. 10. Values of the scalar, pseudoscalar, vector, and axial-
We can see that=1 is satisfied within 0.3% uncertainty. ,o.tor meson masses for several values.of

This implies that our calculations actually reproduce the

massless Nambu-Goldstone boson within the numerical er-

ror, and that the effect of explicit chiral symmetry breaking

I(?a'ltjasl’ed by the approximation for the running coupling is nedfor the vector and the axial-vector bound states, and
igible.
Ngsu=Npsx=30 (5.7

for the scalar bound states. In Appendix D, we show that
In this section we show the results of the numerical calthese numbers of discretization are large enough for the

culations for the masses of the vector, axial-vector, and scgresent analysis.

lar bound states. For the UV and IR cutoffs we adjust the We should stress that we actually found a solution for Eq.

values of them in such a way that the dominant supports of4.28 reproducing\ =1 for all the types of the bound states

the integrands of the decay constant in £G4) and the in the range ofa, [0.885:1]. This means that there do

normalization condition in Eq(C5) lie in the energy region exist the vector, axial-vector, and scalar bound states near the

between the UV and IR cutoffs. As an example, we show thephase transition point in the broken phése.

integrands of the decay constant and the normalization con- Now, let us show the critical behavior of the masses of the

dition for the vector bound states in Appendix D. From theseexisting bound states. In Fig. 10, we plot all the bound state

figures, the dominant supports lie in the lower energy regiormasses calculated for several valuesrgftogether with the

for smaller value ofe, . Then, we use the following pseudoscalar meson masses obtained in the previous section.

a,-dependent UV and IR cutoffs for the vector and the This figure shows that the masses of the vector, axial-

NBS,UZZOY NBS‘XZSS (56)

B. Vector, axial-vector, and scalar bound states

axial-vector bound states: vector and scalar bound states go to zero simultaneously as
the coupling approaches its critical valger, equivalently,
[Ny, Ayl=[—12.0+22.0X(a, — 1.0, —1.0+35.0 N — NS
X(a, —1.0)], (5.3 Mg,My ,Mp—0 for a, —ag. (5.8
[Ax,Ax]=[—5.0+22.0X(a, —1.0), —2.0+20.0 Next, to study the critical behavior ®flg, M\, andM , we

use the function of the form in E¢2.19 and fit the value of

X(a,=1.0]. R by minimizing
For the scalar bound state, on the other hand, we use the 5
following fixed UV and IR cutoffs: aE IMsv,ala@y,)—h(a,)|* (5.9
[Ay,Ayl=[—18.0,0], [Ax,Ax]=[—10.0,0]. The resultant best fitted values @for the scalar, vector, and

(5.5  axial-vector bound states are

Although the integrands of the normalization conditions are——

shown in Appendix D only for the vector bound states, we 50n the other hand, we cannot find any solutions for the HBS

have checked that the dominant supports always lie withirquations in the symmetric phase, i.e, <a. (or, equivalently,

the energy region between UV and IR cutoffs for all kinds of N,>N¢™). This fact seems consistent with the property of the con-

bound states and for all values @f . As for the numbers of formal phase transition which has no bound states in the symmetric
the discretization, we use phasef3,4].
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VI. CONCLUSION AND DISCUSSION

2
(MA’V’ST/F") In this paper we first pointed out that, when we solve the
200 [- b Schwinger-DysoriSD) equation in largéN; QCD, we do not

o (Ma/R)? d L .

4 (MV/FZ)Z need to introduce any IR regularizations for the running cou-
O

X

EMspr; pling since it takes a finite value for all the range of the
Mp/F, |

150 energy region due to the existence of the IR fixed point. In

AT b the case of smalN;, we have to regularize the IR diver-
gence of the running coupling, and different schemes of
regularizations would give different results. Furthermore, it
is difficult to find the regularization which makes the analytic
50 - . structure of the running coupling simple enough. On the con-
trary, the solution of the two-loop RGE in largé QCD is
****************** DEEEEEREEEESE0A008B6EEEAM 1 explicitly written in terms of the LambenV function, and

o 08 o8 s Py X the running coupling does not have any singularities on the
Olcr Olx complex plane except for the time-like axis whignis close

to N§™. This significant feature of the running coupling in
large N; QCD enabled us to solve the SD equation on the

©022%9000000000900000000 -

100 b

FIG. 11. Values of MA/Fp)2, (My/Fp)2 (Mg/Fp)?, and

N complex plane.
(Mp/Fp)? for several values ofy, (indicated by¢, +, O, and
X, respectively. Dotted lines represent the values dfl {/Fp)? Then, we solved the homogeneous Bethe-SalfiétBs)

=17, (My/Fp)2=121, and Ws/Fp)?=132 obtained from Egs. equations for the scalar, pseudosqalar, vector, and axial-
(5.10 and (2.24). vgctor boqnd states of quark and ar}t|-qqark in lageQCD
with the improved ladder approximation in the Landau
_ _ _ gauge. In the quark propagator included in the HBS equa-
du =62, dyu,~165 dy, =172, (510 tion, we used the quark mass function obtained from the SD
equation with the same approximation, which is needed for
respectively. We also plotthe square ofthe ratio of the the consistency with the chiral symmetry.
bound state massesf for several values ok, in Fig. 11. We first showed that the HBS equation provides the mass-
The dotted lines plotted together with the data in this fig-less pseudoscalar bound state in the broken phase which is
ure represent the values of the following ratios obtained fromgentified with the Nambu-Goldstone boson associated with

Egs.(5.10 and(2.24: the spontaneous breaking of the chiral symmetry. Next, we
) ) ) showed that there actually exist vector, axial-vector, and sca-
(Ms/Fp)*=17, (My/Fp)°=121, (Ma/Fp)°=132. lar bound states even near the phase transition point in the

(5.11 broken phase, and that their masses decreases as the number
o of massless quarky; increases. At the critical point all the
This figure clearly shows that all the masses of the scalamasses go to zero, showing the same scaling property as that
VeCtor, and axial-vector bound states have the same Scalll’& the pseudosca'ar meson decay Const_ﬁntconsistenﬂy

property as that oFp: with the picture expected from the conformal phase transi-
tion [3,13].

M i i -

SVA _ onstant. (5.12 Let us discuss the pattern of the chiral symmetry restora

tion by considering the representation of chiral 8IJy\
X SU(Ny)r of the low-lying mesons extending the analyses
We can also say that these masses have the same scali@ne in Refs[39,4Q.

Fp

property as that of(m?) since Fp and 3(m?) have the For N¢=3 the pseudoscalar meson denotedrbgind the
same scaling property. Their ratios are summarized as folongitudinal axial-vector meson denoted Ay are an admix-
lows: ture of (8,1 (1,8) and (3,8)®(3*,3), since the chiral

symmetry is spontaneously brokgso,40
2 2N -N2-N2 N2 —_1- . .

34(m?):M5:My:M3=1:2.4:17.0:18.5. (5.13 7y =](3,3)@(3* 3))siny+|(8,1) @ (1,8))cos,
One might think that the vector and axial-vector bound state P *
decay into a fermion and an antifermion sinddZ ?Al()‘_o)>_|(3’3*)®(3 ,3))cosi
>432(m?) andM3>432(m?). However, this does not hap- —|(8,)@(1,8)siny, (6.1
pen: As we noticed above E.18, 3(m?) is not the pole
mass but the dynamical mass defined in the space-like ravhere\ denotes the helicity in the collinear frame, and the
gion. Furthermore, as we have shown in Sec. Ill, the fermiorexperimental value of the mixing anglg is given by ap-
propagators do not have any poles in the entire compleproximately ¢y= /4 [40]. On the other hand, the longitudi-
plane including the time-like axis where the pole mass ofnal vector meson denoted by belongs to pure (8,1)
fermion should be defined. Thus the vector and axial-vectom (1,8) and the scalar meson denoted ®yo pure (3,3)
bound states do not decay into a fermion and an antifermions (3*,3):
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[p(A=0))=|(8,1)®(1,8)), solved. From Eq(6.1) one can easily see that there are two
ways to express the representations in the Wigner phase of
the chiral symmetry: The conventional manifestatida the
linear sigma mode(called the GL manifestation in Refl1])
corresponds to the limig— /2 in which | ) is in the rep-
When the chiral symmetry is restored at the phase transresentation of pure N;,Nf)®(NF ,Ns) of SU(N;).
tion point, it is natural that the chiral representations coincidex SU(N;)g together with the scalar meson, both being the
with the mass eigenstates: The representation mixing is dighiral partners:

|S)=1(3,3")&(3*,3)). (6.2

7). |S)—[(Ne ,Nf )@ (NF ,Np)),

GL
(G0 |A{(A=0)),|p(A=0))—|(Nf—1,D @& (1LNF-1)).

(6.3

On the other hand, the vector manifestatidfv) [10] corresponds to the limity—0 in which the A; goes to a pure
(N¢ ,N¥)@ (NF ,Ns), now degenerate with the scalar meson in the same representation, but nptiitN? —1,1)® (1,N?
—-1):

|7y, | p(A=0))—|(N?=1,1) ® (1N?— 1)),

VM
M A =000, 19— [(Ng N Y& (NF N,

(6.9

Namely, the degenerate masslesand (longitudina) p at  This may suggest the existence of a new type of manifesta-

the phase transition point are the chiral partners in the reption of chiral symmetry restoration in largés QCD which is

resentation of 47— 1,1)@ (1,N?—1). neither of the GL manifestation nor the simple version of the
Now, what does our result say on the chiral representationector manifestatioivVM ).

of low-lying mesons? As can be seen from Fig. 11, the re- Several comments are in order.

sultant values of the masses obtained from the HBS equation In Appendix C, we show the calculations of the coupling

roughly satisfies the following relatio0]: constantsFy, F,, and Gs of the vector, axial-vector, and
scalar bound states to the vector current, axial-vector current,
M2+M2=M2+M3, (6.5  and scalar density. The results shows that they also have the

same scaling properties & . These results indicate that all
the dimension-full quantities determined by the IR dynamics
have the same scaling properties, as far as(itin@roved
ladder approximation is concerned.

Although the masses obtained from the HBS equation sat-
fy the condition(6.5) needed for the saturation of the chiral
Igebra, the couplingép, F\, andF, do not seem to sat-
isfy the first Weinberg’'s sum rul@41]: F3+F4=F2. We
have not fully understood what this means for the pattern of
chiral symmetry restoration. Apparently, reducing the nu-
merical uncertainty will help us to reach the final understand-
ing.
tang=My /Mg~ 3. (6.6) In the present analysis we did not include the effect from

the four-fermion interaction which is induced in the case of

This implies thatr and the longitudina®, are still admix-  Ym=1 @s was conjectured in strong coupling QE2] and

tures of the pure chiral representation even at the chiral red¥as demonstrated in walking gauge theof#,43. Itisnot
toration point: clear at this moment whether or not the qualitative results in

the present analysis will be changed when we include such

for all values ofe,, . This relation holds independently of the
mixing angley given in Eq.(6.1) when the low-lying me-
sons saturate the chiral algebra shown in REJ]. Then, itis
reasonable to discuss the chiral representation without WOk
rying about the influence of the excited states of the boun
states. By using the relation tgr=M, /Mg [40] and the
values ofMy and Mg obtained from the HBS equation in
Sec. V B, the value of the mixing anglg is roughly deter-
mined as

N N . an effect.
| )= |(N¢,NF) @ (NF .Np))siny In the present analysis we stressed that the running cou-
I |(Nf2—l,1)ea(1,Nf2—1)>COSw, pling in largeN; QCD determined from a two-loop func-

tion is expressed as the Lamb#t function which enables
us to solve the HBS and SD equations with mutual consis-

|A1)—|(N¢ ,NF)@®(NF ,Ng))cosy tency near the critical point. Apparently, this Lamb#&it
) ) ) function can be used as an IR regularization to solve the
—|(Nf=1,D&(1Nf—1))siny. (6.7 HBS and SD equations with mutual consistency in the case
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of QCD with smallNs. It will be very interesting to study 3}‘

meson masses near the chiral phase transition in hot and/ RIS ’ '

dense QCD by using such an IR regularization. ol °3$gg J
We think that it is important to clarify which effective 2290, 8838

field theory (EFT) describes the new pattern of the chiral s ee8g 88g 8@% q

symmetry restoration expressed in E6.7). Especially, it is 8 e %%

very interesting to see how the matching between the EFT *[ Poce %o, |

<o
and the underlying QCD with largd; can be done to deter- ;| 000000000%%
00000

mine bare parameters of the Lagrangian of the EFT. oq %06, %6
2L Coo o, o B
0000000000000000 0000000 ©©©
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APPENDIX A: POSITRONIUM APPENDIX B: BISPINOR BASES FOR SCALAR,
. . . — PSEUDOSCALAR, VECTOR, AND AXIAL-VECTOR
In this appendix, to show the validity of the fictitious BOUND STATES

eigenvalue method for solving the HBS equation explained
in Sec. IV C, we calculate the mass of the orthopositronium In this appendix we show the explicit forms of the bis-
which is the vector bound state of the electron and the pospinor bases for the scalar, pseudoscalar, vector, and axial-
itron. The same analysis was done in H88], and here we  vector bound states. Here, we use the notatiprq,, /Mg
follow the analysis. with Mg being the mass of the bound states, &acb,c]

In the weak coupling limit the HBS equation for the or- =a[b,c]+b[c,a]+c[a,b].
thopositronium can be solved analytically, and the energy The bispinor base for the scalar bound staté(
spectrum takes the following forifd4]: =0"") is given by

Mear?
2 1

n" oA 1 .
(Al Tg=1 T{y=p, Tig=d(p-a). Tig=35[p.dl.
(1)

M) =2m,—
v ° 4n

herem, is the mass of the electron and the positron, and _ .
\;v: 1/137 Iis the coupsling constant of QED pos and that for the pseudoscalar bound statB°0~ ") is

We use following parameters in our calculation: given by
1 _ 2 _ ~
[)\UIAU]:[_1851_29]1[)\X1AX]:[_108,2a, F(p)—’ys, F(P)—p(pq)»ys’
(A2) .
3 _4 4 _ ~
Nesu=Nggx=28, m,=137.0. (A3) Iipy=dys, T(py=5[b.dlys. (B2)

(We used the energy scale which satisfies the relatign ~ Furthermore, for the vector bound statf't=1"") we use
=1 following Ref.[38].) In Fig. 12, we show the resultant
values of the fictitious eigenvaluefor several values of the
input parameteM, .

Finding the point where the smallestbecomes unity, we

ri,=¢ T3 L ¢ s
w=& Ty=350&plp-a),

determine the value of the mass of the ground sta{f as 1. 1 .,
_ oL o I=5064], T{,=z[6p.4]
the solution of the original HBS equation: W~ ol&ADL W)~ grte AL
(D)= (B3)
M{M=273.99842. (A4) IS =(e-p). TS =P(e-p).

From this the binding energy is calculated as

oA N
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FIG. 13. Values of(a) Fy, Fa, Gg, andFp and(b) Gg/Fp,
Fv/Fp, andF,/Fp for several values of, .

and for the axial-vector bound statd”C=1"")

1 , 1 s 1 . -
Liny=£vs, F(A):E[é,pb’s, F(A)=§[é,d](p-q)75,

s _ 1o, 5 _ -
I'(a) 3![5451‘4]75' Ipy=(e-p)(p-ad)vs,

A A (B4)
F?A):lb(f‘p)%, FZA):Q(G'F))(D‘Q)YS,

. 1. ]
1ﬂ(A):E[Ié"l(I](f' P)(P-q)vs-

APPENDIX C: COUPLING CONSTANTS TO CURRENTS
AND SCALAR DENSITY

In this section we calculate coupling constahts, F,,

PHYSICAL REVIEW D 68, 076001 (2003

|

A
| ‘\\\
N

= /z///

(b)

FIG. 14. Integrands dfa) the decay constant in E¢C4) and(b)
the normalization condition in EC5) for «, =0.885.

— Aa
(O[¢(0) y* = (0)|V(0,€)) = SapFyMve”,  (CD)

— Na
(01#(0) 77575 $(0) | An(a, €)= SapF AMac”,
(2

— X4
<0|¢(0)7l!/(0)|5b(q,6)>= 9apGs. (C3)

where \, is the flavor matrix normalized as[N\p]
::Zééb'

By using the BS amplitudes for the vector bound stitg,
is expressed as

2iNg (= (= 4
F\/MV:_ %fo dufo dX

XXM (UX)~ XU
4

In the above expression, the normalization of the BS ampli-
tudesy' are determined by the following normalization con-
dition [14]:

4 aT(p;q)

[;(p;q,e)wvx(p;q,e’)
(CH

2M 666’:iNj
Y ) (2m*

Here, we notice again thak(p;q) has no singularity al-
though the fermion propagat@: has a branch cut in the
time-like region. So the integral in EQC5) is well-defined.
Once we have obtainelll,, and the corresponding BS am-
plitudes by solving the HBS equation, we can calculaie

andGg of the vector, axial-vector, and scalar bound states térom Eq.(C4). We can also calculate, andGg in a similar
the vector current, axial-vector current, and scalar densityway. In Fig. 13a) we show the values df,,, F5, andGg

They are defined by

together withFp for several values o#, .
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. . . ssu=20, Bsx = 55
To see the scaling properties, we plot the ratié¢f Fa, o6 Nes ° .
andGg to Fp in Fig. 13b). This figure ghows thefy, Fa, 005 - i
and Gg have the same scaling properties as thaf pf ol |
[ & _
APPENDIX D: UNCERTAINTIES FOR NUMERICAL 008 &
CALCULATIONS 002 - i
To solve the HBS equation for the bound states numeri-* | 8 |
cally, we introduced the UV and IR cutoffs and converted the © ' 08 085 09 0% 1
HBS equation into a linear eigenvalue equation by discretiz- o ar
ing the integral. As we have discussed in Sec. V B, we adjust b
the values of the UV and IR cutoffs in such a way that the ®)

dominant supports of the integrands of the decay constant in . .
Eqg. (C4) and the normalization condition in E¢C5) lie in choljclzcéé 1;}' ;ﬁplggeva;?edsiS?:trae)tix‘\t’iéﬁ]\laéri(%BZ‘)’(;/; (ffdrﬁ;';;
the energy region betwegn the UV and IR cutoffs. In F|g§. 14(16,32), (18,36), (20,40), and (20,55).
and 15 we show those integrands tey =0.885 and 1.0 in
the case of the vector bound state. o
These figures show that the dominant supports lie in th¥alues of the mass in Fig. & and those of the decay con-
lower energy region for a smaller value @L , and that the stant in Flg 16)) for five choices of the size of the discreti-
present choices in Eq$5.3) and (5.4) cover the supports. Zzation, Ngsuy,Ngsx) =(14,28), (16,32), (18,36), (20,40),
For other values ofr, used in the present analysis we haveand (20,55).
checked that the dominant supports always lie within the Figure 16a) clearly shows that the choice
energy region between the UV and IR cutoffs chosen as ifiNgsy ,Ngsx) =(20,55) is large enough to obtain the mass
Egs. (5.3 and(5.4). of the vector bound state. On the other hand, FiglbjL6
As for the numbers of the discretization, due to the limi-shows that there are still uncertainties in the value of the
tation of the computer resources we uddgs ;=20 and decay constant which come from the size of the discretiza-
Ngsx=55 as shown in Eq(5.6). Here we study the depen- tion. Apparently, this uncertainty from the size of discretiza-
dences of the mass and the decay constant of the vecttipn is the dominant part of the numerical uncertainties in the
bound state on the size of discretization. We show the typicgbresent analysis.
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