PHYSICAL REVIEW D 68, 075009 (2003

Quark mass dependence of the nucleon axial-vector coupling constant
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We study the quark mass expansion of the axial-vector coupling corgtasftthe nucleon. The aim is to
explore the feasibility of chiral effective field theory methods for extrapolation of lattice QCD results—so far
determined at relatively large quark masses corresponding to pion nmasse8.6 GeV—down to physical
values ofm,_ . We compare two versions of non-relativistic chiral effective field theory: One scheme restricted
to pion and nucleon degrees of freedom only, and an alternative approach which incorporate A R(X)
resonance degrees of freedom. It turns out that, in order to approach the physical vgjue af leading-
one-loop calculation, the inclusion of the explidif1230) degrees of freedom is crucial. With information on
important higher order couplings constrained from analyses ofrifie> 7N reaction, a chiral extrapolation
functionga(m,,) is obtained, which works well from the chiral limit across the physical point into the region
of present lattice data. The resulting enhancemegjbfn,.) near the physical pion mass is found to arise from
an interplay between long- and short-distance physics.
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[. INTRODUCTION plicit inclusion of theA (1230) isobar, has been performed in
[4]. It turned out to be of crucial importance to promote the

Lattice QCD is developing into a powerful tool for study- isovector couplings of thé to leading order in the power
ing the structure of nucleongl,2]. In practice, however, counting characteristic of chiral effective theories. Truncated
these computations are so far limited to relatively large quarkersions of chiral perturbation theory usually “freeze” the
masses. The typical “light” quark masses that can be manand relegate its effects to higher order counterterms, with the
aged on the lattice are usually at least ten times larger thagonsequence that the range of convergence of this truncated
the u- and d-quark massesm, 4=10 MeV, determined at theory is often quite limited. The importance of theas an
renormalization scales around 1 GeV. The correspondingxplicit degree of freedom in various aspects of nucleon sub-
masses of a pion on the lattice—defined as the lowest-lyingtructure has long been known. It has played a prominent
0~ state in the simulation—are larger than 0.5 GeV, quite faart in chiral models of the nucled@,5] and earlier studies
above the physical value,=0.14 GeV. based on current algebfé].

In the limit m, 4—0, on the other hand, low-energy  In the present papkme investigate the quark mass de-
2-flavor QCD displays a spontaneously broken chiralpendence ofy,, the axial-vector coupling constant of the
SU(2)XSU(2) symmetry. Pions as massless Goldstonewcleon. This is a key quantity for our understanding of the
bosons are the relevant degrees of freedom oféffective ~ nucleon’s chiral structurg2]. Furthermore, lattice QCD de-
theory. Their coupling to baryons is also subject to the rulegerminations ofy, are progressing to the point where such an
imposed by chiral symmetry. It produces the pion cloud ofinvestigation is in demand for interpolating between lattice
the nucleon, an important low-energy, long-wavelength asdata and the actual observahles].
pect of nucleon structure, di2] and references therein. Of course plenty of ChEFT calculations pertaining to this

For baryon properties the interpolation between lattice requantity exist in the literaturg9], and the special importance
sults obtained at relatively large pion masses and actual ot®f intermediate spin 3/2 resonance contributions for the axial
servables determined at the physiog) has become an issue properties of baryons has been recognized a long time ago.
of great interest recently. Chiral effective field theory Recall, for example, the Adler-Weisberger sum riie]:
(ChEFT) can, in principle, provide such extrapolations. The
first steps in this direction were made by Leinweber ef3l.
for the case of the magnetic moments. They used Rade

2 2f727 o) d(l)

g =1+—f = l0p(w)— 0, p(®)]
proximants based on the leading dependence on the pion A ™ mm/wz‘—mfr P P
mass as dictated by chiral symmetry. A perturbative analysis

of nucleon magnetic moments, using ChEFT with the ex- m2
+0 —2 . 1)
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It relates the surplus of the axial-vector coupling constanpoint, which would at the same time connect with the lattice
beyond its “trivial” value ga=1 (for a point-like, structure- results. In this work we go beyond the existing analyses by
less nucleonto the excess of the" p cross section over the performing a systematic perturbative calculatiorabbfshort-
7~ p cross section, a feature that is dominatedA(1230) and long-distance contributions which are allowed to
resonance excitation. leading-one-loop order in chiral power counting.

In ChEFTg, is calculated from the response of a baryon  This paper is organized as follows. In Sec. Il we give a
to the presence of an external background field with axiaprief summary of the ChEFT formalism utilized here. In Sec.
quantum number. In contrast to many earlier ChEFTII we present the leading-one-loop analytic result iy
calculations—e.g. the pioneering ones of R¢1d,,12—we  both in a scheme without and in one with expligi{1230)
arenot onlyinterested in the non-analytic quark mass behavdegrees of freedom. In Sec. IV we compare these analytic
ior generated by the Goldstone boson cloud around th&esults with recent data from the QCDSF Collaborafibr,
baryon. In order to analyze the quark mass dependence ofeanploying three different fit procedures. Finally, in Sec. V
baryon observable in a quantitative way we follow the sameve check the stability of the obtained results by including the
philosophy as spelled out in Rg#4]. We specify a power physically known information abow, as an additional con-
counting scheme plus a certain order in that scheme and thetraint in the fit. The resulting chiral extrapolation function
systematically evaluate all contributions—short and longda(m,) provides a sensible description of the quark mass
distance—to that order. It turns out that the role of short-dependence from the chiral limit over the physical point out
distance physics parametrized as higher order operators t@ the present lattice data. We conclude with an outlook on
chiral effective field theory is crucial for an understanding offurther investigations required for a better understanding of
the chiral extrapolation functioga(m,,). We utilize the so- 0a-
called SU2) “small scale expansion” of Ref[13] to
leading-one-loop ordefO(e%)], which includes explicit IIl. CHIRAL EFFECTIVE FIELD THEORY INPUT
nucleon andA (1230) degrees of freedom—some details re- . ) ) o
garding the formalism are summarized in Sec. II. In fact, all Our analysis ofj, is based on chiral effective field theory
the long- and short-distance contributions considered in ouwith two light flavors (i,d). We work to leading-one-loop
analysis have already been foutas a by-produgtin Ref. ~ order. All other quark degrees of freedom are integrated out,
[14], where among other topics tiemal) momentum de- leaving their marks only in slightly shifted values of cou-
pendence of the axial form factors of the nucleon was studPlings sensitive to short distance dynamics. This effective
ied. Here we reconsider these results and focus on the quafield theory of low-energy QCD acts with pions as Goldstone
mass dependence gdf,. Unlike the situation in the vector bosons of the spontaneously broken chial(2)x SU(2)
current sector, where a modified power counting had to b&ymmetry of QCD. In addition the chiral symmetry of the
developed[4] so that important effects of tha could be QCD Lagrangian with two light flavors is explicitly broken
captured already in leading-one-loop order, this turns out no@Y the smallu andd quark masses which are treated as a
to be necessary for axial current effects related to thgerturbation. They shift the massless Goldstone bosons to the
A(1230). For theaxial structure of baryons-which is the  Physical pions with mase and lead to a string of quark
topic of the present analysis—the standard counting ofhass dependent operators which turn out to be of crucial
ChEFT, as employed in Refk13,14, is sufficient to obtain importance for the understanding of chiral extrapolation
A(1230) induced quark mass dependence already at tfgnctions. At present we ignore (Aaffects of isospin breaking
leading-one-loop level. Throughout this work we can there-and work with degenerate massess= (m,+mg)/2, for the
fore apply standard@‘naive” ) counting rules. up and down quarks.

Historically, attempts to obtain a chiral extrapolation We utilize two versions of ChEFT for our analysis@f.
function for g5 based on the known leading-nonanalytic The first scheme is S@) heavy-baryon chiral perturbation
(LNA) quark mass dependence in combination with a phetheory(HBChPT), which involves only the Goldstone boson
nomenologicalquark mass dependemegularization proce- modes(pions and spin 1/2 matter fieldsiucleons$, taken up
dure did not yield satisfactory results, displaying axial cou-to order p. The second scheme is the @Ysmall scale
plings less than unity at the physical poifit5]. In our  expansion(SSBH which in addition also involves explicit
opinion one should not have been surprised about such spin 3/2 matter field$four A(1230) statekand their inter-
failure, as the LNA quark mass term presumably is onlyactions with Goldstone bosons, taken up to orefein the
dominant for quark masses near the extreme chiral limit ofsmall scale” e which now includes also the non-zefAaN
the theory. Such a feature was indeed observed in the analynass differenc¢18].
sis of the anomalous magnetic moment of the nucletn For completeness—and for the proper definition of our
Recently, Detmold et aJ16], in their analysis of moments of couplings—we give the effective Lagrangian required for
polarized deep inelastic scatterifiglS) structure functions, this leading-one-loop analysis df; :
found an improved extrapolation formula fgr(m,) utiliz-
ing a chiral quark model which also allows for contributions L=LP+LP+LE+LR+P+c, )
from intermediate\ (1230 stateq5]. However, the resulting
extrapolation function—which has most of tA€1230) re- The well-known leading order pion Lagrangia}f; can be
lated couplings fixed from S@) symmetry—still does not found in [19]. The leading ordermN, #NA and wA
provide for an enhancement @fs(m,) near the physical Lagrangians
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are specified in detail ifil3]. Here we only note thatl, (T) Tary ? " * ? * ?
L. . A i AY 7 \ P \ 7
represents the non-relativistic spin-1/2 nucle@pin 3/2 ! H NI NI NI
delta field, with &5, denoting the isospin 3/2 projection el
operator. The chiral tensors, ,w,, encode couplings téex- (3) (6) Y] (8)

terna) axial sources withNN, NA and AA axial coupling
constantsgi,i'cA andgq, deflr_1ed in the_ chiral I|_m|t._ Further- pling constantg,, at leading-one-loop order. The wiggly line de-
more,D,,,D}, denote the chiral covariant derivatives of the gtes an externdlsovectoy axial-vector background field, interact-
nucleon, respectively, deltd, corresponds to thBlA mass  ing with a nucleon(solid lines.
splitting in the chiral limit. The two four-vectors
v, ,S,—related to kinematics and spin—are discussed in th
Appendix. It can be clearly seen from E@) that all cou-
plings considered as leading order follow the standard coun
ing of ChEFT.

While the leading order Lagrangians given above are wel
known in the literature we also want to discuss the less-

FIG. 1. Diagrams contributing to the nucleon axial-vector cou-

§n the infinite partB; denotes the HBChPTrespectively
SSH beta function associated with this counterterm, whereas
tt'he infinities are encoded in the quantity discussed in the
'Appendix.fw is the pion-decay constant.

known higher order couplings required for a complete 1. ANALYTIC RESULTS
leading-one-loop calculation af, both in HBChPT and in
SSE. We utilize We now proceed to a discussion of the results for the axial
coupling of the nucleon expressed as a function of the pion
2 o igQ massga(m,), first for the HBChPT and then for the SSE
LN'=Ny| =5 1S Dov-up+ . Ny, case. The leading one-loop HBChPT result for the quark
0 mass dependence gf, is known for a long timd9]. Evalu-
o ating diagrams 1-5 of Fig. 1 and projecting out the axial
LO=N, 9A2U .DS-uv-D coupling constant gives
0
92 2 0 2 m?
_2A S Duv-u'v- (M2)=g%Zn+4m2BH(\) + ——
4M2({S D,v-ulv-D+H.c) 9a 9aln 9 3072f2
O w
a 9 x| (627~ 4g2lIn 7 + (62| + O(p*), (6)
———(S-uD’+H.c)+ ——(S-Du-D+H.c) A AN A :
8Mjg 4M3
+BoS-uTr(x ) +Ba Tr(x+)iv-D+H.c] whereg? again denotes the axial-vector coupling constant in
the chiral limit. TheZ-factor of the nucleon to leading-one-
+A2Bagdv-D+A2BgS U+ ... |N, . (4)  loop order reads
0\2,12
Here M, denotes the nucleon mass in the chiral limit, Zo(m)=1— 3(gp) Mz 1+3InE>
whereas the chiral tensqr, encodes quark-mass dependent NV 327-,2f37 N

short distance physics. For the higher order coupliBgga/e 5

follow the nomenclature of Ref14] where a complete set of —8m2Bhy(\)+O(ph). (7)
counterterms is listed, appropriate for renormalization of
both leading one-loop HBChPT and SSE calculations. W . . e
note thaiBs, andBs, are identically zero in HBChPT, but are el':ollowmg Ref.[20], we note that thig-factor is finite since

required for leading-one-loop calculations in SSE. In generelY\’elﬂ‘;"\'e nothtransformtidtatvr\]/ayf_thte cou?tefrteBFTra. It is

all B; have a finite regularization scabe dependent part well known, however, that the hinité part of a low-energy

B'(A) as well as an infinite part: counterterm such aB,y cannot be observed independently
i :

[of B§(M) in our casg To orderp® in HBChPT, ga(m?)
. therefore depends on only two unknown parametga&sand
Bi=B/(\)+ LlezL. (5) C()\)EB{)()\)—ZggBEO()\), for each choice of the regular-
(4mf )2 ization scalex:
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m, parameter choice of Eq10) we have restore@f\ as the
CHB(N) + ¥"BIn T] me chiral limit value ong(m,zT). Furthermore, we note that the
leading quark mass dependence starting proportional to
m2Inm, is not modified by the addition of explicit (1230)
degrees of freedom, again consistent with chiral symmetry.
Having taken care of the decoupling constraints we now
present the complete leading-one-loop resultdgrin the
small scale expansion:

(g0)?®
1672f2
+0(p%),

HB 2 0 2
A (mﬂ'):gA_ m77+4

8
with

1
167 2f2

HB_ _

y = : 9

1,
(QA) 29A

ch

47T2ffT

155
ﬁgl

(gA)3 2
16772f2

gatm2)=ga— +4[ CSSEN) +

We expect Eq.(8) to hold for sufficiently small quark
masses, close to the chiral limit. All observable short dis-
tance dynamics is collected @(\). The procedure outlined
here is well defined in the sense that the scale-dependent
logarithm in Eq.(8) cooperates with the scale-dependent co-
efficientC(\) in just such a way that the overall sum is scale
independent.

Next we turn to the result of the SSE approach which
includes explicitA(1230) degrees of freedom. The bare re-
sult depending on all four counterterms of E4) has been 02A2
given in Ref.[14]. It originates from diagrams 1-8 of Fig. 1.

We note that diagrams 2 and 3 in principle also exist when
the intermediate nucleon is replaced by a spin 3/2 baryon.
However, the leading ordédA transition Lagrangian of Eq.

(3) does not include operators connectiNg via an even
number of axial fields. The corresponding diagrams are
therefore of higher order than the ones considered here at tRgip,

Cada 4
———m
277Tf 7TAO

8 [ m2
2.,0..2 ™
77212 cagam;\/1- A2 InR

0

24,
m,

17 m
0 SS T\ 2
36gA n N ] &

8122

m?,
— 1_P|HR

0

——— (259, — 57g§i>{ In

+0O(e%), (12)

leading-one-loop level. Extending the work of REE4] we

also impose the constraint of decoupling which implies that,

in the chiral limit, effects of thé\(1230) can be absorbed in

contact interactions. This makes sure that the addition of

explicit delta degrees of freedom maintains the corragt
—0 limit of ga,

2A
——cin—

MINE .

2f2

B ci [ 40 16 |
iz 2439 1%

(10

and the leading-one-loop SSHactor given in the Appendix
we find the chiral limit behavior

X{ 2 0 He 2, M 2 (gA)3 Ss
gX(m2)~ga+4y quInTerqT "o 5 +4C3SR\)
ci [(259;, ol | 2A0 115 35
222\ 162 18/ " N ' 4889 549
+0O(md). (1)

We emphasize the point that, while the regaft) is unique,
the separation int®5, and B, can be done in several pos-
sible ways. Comparing with Eq8) we note that with our

1 50
SSE= 16/772f [81 Agl ZgA 9 gA (gA) ’

(13

We note that the first line in Eq12) has the same structure
as the heavy baryon result of E®). New structures appear-
ing in the leading-one-loop SSE result are the terms propor-
tional to me as well as the logarithms depending explicitly
on theN-A mass splitting value. For the chiral extrapolation
of g, we will utilize the full analytic form as given in Eq.
(12). The much simpler chiral limit form Eg11) will only

be used to constrain coupling constants.

IV. CHIRAL EXTRAPOLATION TO LATTICE DATA
A. General remarks

We now turn to a numerical evaluation of the two analytic
extrapolation formulas fog, considered here. In principle
all couplings and masses—aside fromy—on the left-hand
side of Egs(8),(12) are understood to denote their values in
the chiral limit. However, for many of them the chiral limit
values are only poorly known. For the pion decay constant
we use its physical valuk, , because the difference between
this andf?T is known to be only a few percent. Fop and
A,—following the reasoning laid out in Ref4]—we also
use the empirical values, specified in Table I.
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TABLE I. Values of the parameters which are taken at their 1.5
physical value. 1.4
Parameter Physical value Lah 5
2 e
0 =
fo—f, 0.0924 GeV ga 1.1 ///
cS—ca 1.125 ] P =~
Ag—ReA 0.2711 GeV 2
o ReA] 09|’ ~*
/
0.8 /7
Choosing A=1 GeV without loss of generality in B %7 05 5 04 5E 0B
leading-one-loop SSEHBChPT), we are then left with three m,2 [GeV?2]

(two) poorly known couplings:gy, CSS{1 GeV)g,, or

gg CHB(l GeV), respectively. To determine these short- FIG. 2. The long-dashed curve represents the free fit to the
distance physics parameters of interest, we utilize thQCDSF lattice data belown,=750 MeV, utilizing the leading-
(quenchelig, simulation data of the QCDSF collaboration one-loop SSHfit Ib) results of Eq.(12). The analogous leading-

. . 2 . one-loop HBChPT resulffit la) originating from Eq.(8) is shown
,[17] in the mass. region 0.3 Géw m7<0.6 Ge,\'z’ contain- as the short-dashed curve. The solid line represents fit Il for the SSE
ing 5 data points. Hereby we are working under the

, : - . extrapolation with the additional §6) quark model constrairg,
assumption-following again the reasoning of Ré#]—that  _g/540 The indicated error band results from the 95% confidence
for lattice pion masses larger than 600 MeV the effects ofyjipse shown in Fig. 3, while the solid dot indicates the physical

“quenching” can be neglected. This intuitive expectation hasyajye ofg, .
recently been put on firm ground by the analysis of R&¥.

It was concluded that for present state-of-art simulation dat"f‘mite simulation volume fall within the size of the error bars

for moments of nucleon structure functiofsich a in-
deed no significant differences between ﬁjjenchsgjé)and fuIIOf th'e data. ane a Iarger 6!”‘0“”‘ of Qata (m;,) are
Sbtained at different lattice sizes, we will take up this issue

dynamical QCD simulations could be found famn, . ;
>500 MeV. However, the differenédetween “quenched” again to recheck our analysis, . . .
For the purpose of our numerical analysis thesimula-

and fully dynamical QCD simulations should become V|S|bletion data thus only provide the constraint of specifying the

at lower pion masses. location of the typical “data plateaule.g. see Fig. 2 which

Wh_|le we are confident thatun)quenchlng _effects are s quite analogous to the situation in the case of the anoma-
small in the mass range considered here possible correctiotis : X

o o2 ) Ious magnetic momentgt]. Once more, we emphasize the
arising from the finite simulation volume could turn out to be

important for the exact position of the lattice data. The ﬁveempmcal observation that any sensible chiral extrapolation

. o formula must have enough structure to reproduce such a pla-
data points we are utilizing here actually result from threeteau at least over a certain range i In essence. this
different lattice spacings which, however, roughly corre-. I', ; traint: diff gtt C h ,k
spond to the same physical volue of (L implies a strong constraint: different terms in the quark mass

=1.45...,1.60 fmy’ [17]. Given this data situation no con- expansion o, must cooperate in such a way that the_ pion
clusions on finite volume dependence can be drawn from thSIOUd. effects are bgsmally counterbalanced by short-dlstance
QCDSF data. In Ref23] for a simulation utilizing domain physics once the pion mass exceeds 0.6 GeV. Given that the

wall fermions it has been reported thgt is a quantity which available lattice data are still restricted to relatively large
can be sensitive to such corrections. We note that the da uark/pion masses, can one nevertheless utilize this informa-

analyzed here are consistent with one anotbirFig. 2 and ion to determine the chiral extrapolation function? In order
are basically flat in theim_ dependence. The data shown in

Ref. [23] are also rather flat for the largest volume consid- -0.15 N
ered there, albeit the overall location of the plateau seems to _02
lie slightly higher than the QCDSF data discussed here. At
present no systematic study of these effects exists and we S8 (Gev 2] -0.25 -
therefore assume that possible shifts in the data due to the 68
-0.35
2In quenched QCD the axial coupling of the nucleon develops a 0.85 09 0.95 1
chiral singularityga(m,—0)~logm, in the chiral limit[21], in ga®

contrast to the finite vaIugA(m,T—>0)—>g(,§ in full QCD.

SWhile this volume at first glance appears rather small to study the FIG. 3. Confidence ellipse for the $6)-constrained leading-
physics of an extended object like a nucleon, we note that th@ne-loop SSE fit Il shown in Fig. 2. The two parameters shown
nucleon radii are considerably smaller at these large quark masseenote the nucleon coupling const@ﬂt in the chiral limit versus
than at the physical point. See RE22] for an analysis of the quark the paramete€(\) discussed in the text, evaluated at the regular-
mass dependence of the electromagnetic radii. ization scalen=1 GeV.
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TABLE Il. Fit results discussed in the text.

Fit a C(A=1 GeV) (GeV?) g1 DOF X?/DOF
la 0.71+0.04 +0.12+0.03 - 3 0.37

Ib 0.78+0.04 +1.06+0.08 0.0:0.1 2 0.55

I 0.94+0.04 —0.25+0.04 9/59% 3 0.39

I 1.12...1.26 -22...—46 43...66 3 0.48...0.60
IVa 1.36+£0.07 -53+1.2 - - -

Vb 1.21+0.01 —3.4+0.4 5.6:0.5 3 0.54
IVe 1.21 -53+1.2 - - -

to answer this question we perform three different fit proce-without missing the physical value gf, . In other words, we

dures of varying sophistication. suspect that the lattice data are just not accurate
enough to properly constrain all three parameters
B. Free fits g%, CSS§1 GeV)g;—which does not come as complete

In the first round of fits we want to explore whether the SUrPrise given the Io_w statistics pf our data sample. In order
available lattice data are sufficient to constrain the unknowriO test this hypothesis we are trying to further constrain these
parameters g%,CSS§\),g; for SSE, or respectively, couplings via available information from hadron phenom-
gg\,CHB()\) for HBChPT. The numerical values obtained areenoIogy.OAn obvious idea is to fix the axidlA coupling
given in Table I with the labels fit la, fit Ib. The results are 91=9/5g3 from SU6) symmetry, leaving onlg andC as
shown in Fig. 2 via the short-dash¢dBChPT) and long- free parameters to be determined from the fit utilizing Eq.
dashed(SSB curves. While they? per degree of freedom (12). The numerical values resulting from this fit are shown
(cf. Table 1)) for either curve is small, clearly both extrapo- in Table Il with the label fit Il. The associated chiral extrapo-
lation functions have to be consideredphysical as indi- lation curve is shown in Fig. 2. Itg?/DOF is comparable
cated by the small values of2 violating the Adler- with the values for the free fits la and Ib. We conclude that—
Weisberger sum rule as well as the physical constrainfrom a physical point of view—the SB8) constrained fit
g,ﬁhys: 1.2670(30) obtained from neutron beta de¢ag]. does slightly better than the free fits when one considers the
In addition, the SSE curve has a value of the atial cou-  “higher” value for g%. Nevertheless, the axial coupling is
pling constang;~0, whereas we expeg=>g3 from SU6) still smaller than 1 in the chiral limit, which is hard to rec-
symmetry considerations. We note that the resulting-  oncile with the Adler-Weisberger sum rule Ed). Surpris-
physica) HBChPT curve is quite similar to the one found in ingly, even when an error analysis at the 95% confidence
Ref. [15], where the chiral logarithm with/"® of Eq. (8)  level is performedsee Fig. 3, the resulting band shown in
plus a phenomenologicédjuark mass dependemutoff pro-  Fig. 2 does not include the physical point, despite the rather
cedure parametrizing short-distance physics was employethrge error bars of the lattice data. We thus conclude that the
We note that both the HBChPT as well as the SSE “free fits”"SU(6) assumption does not provide us with a reasonable
prefer a small positive value for the short distance physicsnechanism that would allow for an enhancement of the chi-
parametrized viaC(\A)—at a regularization scale ok ral extrapolation curve around the physical pion mass. Simi-
=1 GeV. The reason for this unsatisfactory situation is thatar conclusions can be drawn from the recent calculation by
the present lattice data are not yet sufficiently accurate t®etmold et al[16], which also utilized S(B) assumptions to
obtain a realistic value fo€, as we will see in the next two reduce the number of unknown couplings. Interestingly, we
sections: additional physics constraints need to be invoked inote that the resulting value fo€(1 GeV) is still rather

order to limit the range o€. small, buthas changed sigwhen compared to the free fit
results. In the following we will pursue the hypothesis that it
C. SU(6) constrained fit is the sign and magnitude of this couplifend the resulting

interplay with the non-analytic chiral results given in Eq.
12)] that are responsible for the enhancemenggfm.,)
round physical pion mass.

One possible conclusion from the mismatch between th
chiral extrapolation and present lattice data could be that th
extrapolation formulag8) and(12) are just too simplistic to
cover such a large region irme (for example, this was the
case with the corresponding extrapolation functions of
schemesA or B of the anomalous magnetic moments in Ref.  When varying the three poorly known parametefs,
[4]). In the following we argue that this is indeed true for the C(\),g, of the SSE extrapolation formula EGL2) one re-
leading-one-loop HBChPT result of E@), whereas the cor- alizes that it is the short-distance physics encode@(R)
responding SSE extrapolation function E@2), with the  which is crucial for a possible enhancementgg(m,) at
A(1230 added as an explicit degree of freedom, does consmall pion masses. Empirically one finds that with negative
tain enough quark-mass dependent structures to reprodusalues around foC(A=1 GeV)~—4 GeV 2 it would be
the plateau-like behavior at pion masses above 600 Me\possible to counterbalance the trendgg{m,,) towards val-

D. Fit constrained by wN— 7N
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ues below 1, which is driven by the chiral logarithod. fit la 1.5
in Fig. 2. The question arises whether such a value for 14
C(A=1 GeV) at such a regularization scale is consistent ’
with known physics. 134/ T~ -
At first glance one would expect that only lattice simula- — ~
tions can provide more information dd(\)—respectively, 9a 1.2 / - - s
the couplingsBg,B,5—to further constrain the fits. However, 1.1
when analyzing the chiral tensors in Eg), one notices that
the physically observable couplimgy also contributes in in- !
elastic pion-nucleon scattering processes likN— 77N 09
[25]. In Ref. [26] this process was analyzed t(p°) in 0 61 02 03 04 05 06
HBChPT and values for the couplings of interest were m,? [GeV?]
obtained" Here, however, we follow the substantially revised FIG. 4. Fit Ill: Incorporating known information fromsN

analysis of Ref[28]. Translating these findings into our con-

: - — N differential cross sections into the leading-one-loop SSE
ventions we obtain

analysis. The solid line shows the central value, whereas the dashed
curves denote the upper and lower error bar from @§). The
matching of the coupling constants was performed Xt
=0.54 GeV as discussed in the text.

BiA=mPM9=(-1.4+1.2 GeV ?

Boo( A =m}"9=0, (14)
The leading-one-loop HBChPT beta functions required can

with the error bar arising from three different fitting proce- b , . )
. . e found in Ref[20]. Note that we have utilized physical
dures described if28]. We note that Ref§26,28 follow the couplings in the heavy baryon beta functions, inducing an

convention to set all equation-of-motion dependent counter- - o - :
terms likeB,q identically equal to zerat the scale of their uncertainty which is negligible compared to the error bar in

analysis which corresponds th=0.138 GeV. While we can Bo. Atthe scale\ =24, we then perform the matching

directly U'FI|IZG thls |r_1format|on in th_e heavy_baryon analysis BL(A=2A0)|sse=B5(A=2A0)|us.
(cf. the discussion in Sec.)\there is no unique procedure
how to import this information into the framework with ex- Bl =2A0)|sse=Bh(A=2A0)|ns. (17)

plicit A(1230) degrees of freedom. The complication arises

from the fact thatBg(M),B5(\) have different beta func- Next we run the SSE couplings up to the scatel GeV to
tions in HBChPT and SSE. One can, therefore, produce diffacilitate an easier comparison with the previous fit&
ferent chiral extrapolation curves depending on the scal@able II):

where the matching between the two theories takes place. In

the following we will perform the matching at the interme- SSE 1 Gev
diate scalex =2A,=0.54 GeV which suggests itself as a Bij(1 GeV)=B{(24)— ;INn—y— 1=9.20.

“natural” scale in SSE by looking at Eq$10),(11). We have (4mfn) 0 18
carefully examined that our results are not sensitivithin (18)

the uncertainties of therN— 777N analysi$ to changes of  yjlizing the leading-one-loop SSE beta functions of Ref.

the scalex between 0.4 and 0.8 GeV. At the end of this [14] with the couplings shown in fit Il of Table Il one finally
section we demonstrate that this matching choice is consigsptains

tent with available information on the chiral limit behavior of

ga, Which is the only constraint one can put on different By(A=1 GeV)|sse=(1.2+1.2) GeV 2,

matching prescriptions. First, we evaluate the couplings of

Eq. (14) at the scale.=2A via the relation BlyA=1 GeV)|sse=1.9 GeV 2 (19
iHB 2A The error bar given foBy(1 GeV) originates from the de-

r _pf phys, _ H-
Bi(240)=B{(m7™) 1=9,20 termination of Ref[28] shown in Eq.(14). No errors arising

from the couplings in the HBChPT or SSE beta functions are
(15 A
shown, as they are smaller than the uncertaintgdrresult-

n—a
(4mf )2 mphvs

leading to the values ing from thewN— 77N analyses.
The resulting chiral extrapolation curve fga(m,), uti-
Bo(A=2A¢)|pg=(—1.8+1.2) GeV ? lizing Eqgs.(12),(19) and fittinggX,g; to the five lattice data
points, is shown in Fig. 4. The resulting parameters are
Bho(A=2A0)|45=0.9 GeV 2 (16)  shown as fit Ill in Table II. The solid line in Fig. 4 refers to

the central value foBg in Eq. (19), whereas the two dashed
curves indicate the influence of tiilarge uncertainty about
“A second analysis offN— 77N scattering[27] unfortunately ~ the precise value dq given in Eq.(19). Nevertheless, while

does not specify the value for the analogue of the couligthey ~ the x?/DOF values are comparable with fits | and 1l shown
utilized. in Fig. 2, only fit lll is consistent with the physical point
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1.35 approached when the quark masses go to zero. This is the
13 / reason why it is possible to utilize information about cou-
/ / pling constants in one version of ChEFT and transcribe it to
1.25 another version of that theory. From E@.1) we already
0 12 / know that the first two terms in the chiral expansion of
Ga / / 4 ga(m,) are identical in HBChPT and SSE, providing an
115 / important consistency check. However, the termsf, can
1.1 be different between the two ChEFTs—even when each one
105 / is evaluated at Ieading-or_le-loop order as do_ne here—bec_ause
’ 4’ 15 5 EE 5 55 the two schemes can build up the contributions to a particu-

lar term in the chiral expansion more or less effectively in

their respective perturbative series. Utilizing E46) one
FIG. 5. Confidence ellipses for the constrained leading-one-looginds

SSE fit Il shown in Fig. 4. The two parameters shown denote the

nucleon coupling constagﬁ in the chiral limit versus the axial A

g1

m’ﬂ'

OXlhe=1.2+49"BmiIn - =+ m?(—17.8+4.8) GeV ?

couplingg,. The three ellipses shown correspond to central, upper 2A,
and lower values for the short distance couplings determined in Eqg. 5
(19) at a scale oh=1 GeV. +0(m?) (21

gB"S as shown in Fig. 4. We note that it is indeed the Iargefor the chiral limit behavior of the Ieading-_o_ne-loop
negative values for the parameter HBChPT result of Eq(8). On the other hand, utilizing the

parameters of fit lll(cf. Table I) one obtains
C(1 GeV)=Bj(1 GeV)—2g3BLy(1 GeV)
=(—3.4x1.2 GeV? (20

m7T
0¥|sse= 1.2+ 44HBm2In At m2(—10.4+4.8) GeV 2
0

+ 3
that can produce an enhancement near the physical point. O(mz) 22

Given the large uncertainty i8(1 GeV) (resulting fromBg)  for the chiral limit behavior of the leading-one-loop SSE
we believe that at present any normalization issi@eg. re- eyt of Eq.(12). The mZ2 terms agree within the error bars
sulting from finite volume effeciscan be accounted for by 5,y the shifts of the central values could reasonably be ac-

our extrapolation functioga(m,) of Eq. (12). Analyzing the  ;oynted for by higher order corrections to the heavy baryon

ellipsoidal joint 95% confidence region for the fit parametersyeg it of Eq.(21). We conclude that the matching procedure
(9a.91) associated with the central value@f1 GeV) infit  yseq in this work is consistent with all presently known in-

Il (cf. Fig. 5), the band of allowed fit curves completely formation about the chiral limit ofj(m,). In the next sec-
covers the uncertainty region resulting froBy (dashed tion we will test the stability of fit 11l by including the physi-
curveg and shows that at this confidence level no fit solu-ca| point as an additional constraint for the fit and then
tions exist for whichga(m,) becomes smaller than unity, in conclude our analysis.

agreement with the Adler-Weisberger sum rule Eg.

We therefore conclude that the strong downward bending
of ga(m,) driven by the Goldstone boson cloud around spin
1/2 and spin 3/2 baryon states is counterbalanced by large In the previous section we have found that the leading-
short-distance corrections parametrized @@ ). The com- one-loop SSE result, Eq12), together with input from scat-
bination of these two effects leads to a rather flat chiral extering analyses, can provide a meaningful chiral extrapola-
trapolation function forga(m,), which—according to cru- tion of the present lattice data which is consistent with the
cial input from7wN— 77N scattering analyses—can display experimentally known value fay, . In order to test the sta-
an enhancement near the physical point to reconcile the lability of our result we now study the changes to our curves
tice data with our knowledge from neutron beta decay. Thevhen we include the information at the physical point as an
analysis presented here suggests that in(litéice) observ-  additional constraint together with the lattice data. Reassur-
ablega(m,) no strong curvature is to be expected betweeringly, one finds only small changes in the SSE case. Numeri-
the physical point and the location of the lattice data. Thecal values for the set of couplings labeled fit IVb are given in
large LNA terms contained iga(m,) presumably only be- Table II, entirely consistent with the couplings of fit IlI
come visible for quark masses rather close to the chiral limitwhich does not know about the location of the physical

Finally, we comment on the validity of our matching pro- point. The resulting extrapolation function is shown in Fig. 6,
cedure resulting in the couplings of EQ.9). Once the cou- providing a sensible connection between the chiral limit
plings are specified at one particular scale the resulting SS#alue, the physical point and the QCDSF lattice data. We
extrapolation curve shown in Fig. 4 does not depend anynote that a large negative value &@(1 GeV) and g,
more on\, but it does depend on the matching point Eq.>gfu(6) are common features of fits Il and IVb, indicating
(17). Nevertheless, for each baryon observable there existhat our reasoning provided in the previous section was on
one unique curve through which the chiral limit value is the right track.

V. DISCUSSION
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extrapolation curve is shown in Fig. 6. It follows the SSE
curve only for extremely small values af_, misses the
physical point and breaks down before it comes anywhere
close to the existing lattice data. We therefore consider the
use of Eq.(8) as not appropriate for a stable chiral extrapo-
lation outside the region of the extreme chiral limit.

We note that it is the very leading-one-loop HBChPT for-
mula Eq.(8) that has been utilized recently in Ref29,3(
to study the behavior of the deuteron in the chiral limit. In
view of the findings presented here the question arises
whether conclusions drawn in Ref9,30 regarding the
bound state nature of the deuteron are unaltered, when the

chiral extrapolation 0§ ,(m,) from the physical point down

FIG. 6. Fit IV: Incorporating the physical point and the lattice 4 the chiral limit follows the curve from fit IVb, rather than
data into the leading-one-loop SSE extrapolation formula results "fhe one from IVa as shown in Fig. 6

a well behaved chiral extrapolation functideolid line, fit IVb)
from the chiral limit over the physical point out to the region of the
lattice data. The short-dashed line shows the corresponding leading-
one-loop HBChPT resulffit IVa). The long-dashed lingfit 1Vc)
indicates the HBChPT result assuming the same chiral limit value
g2 as in the SSE analysis of fit IVb.

VI. SUMMARY AND OUTLOOK

To conclude, we summarize the main results of our work.

The leading-one-loop HBChPT formula fgr(m,), EQ.

(8), depends on two free parametg&,,C()\). Crucial infor-

) _ ) » i mation on the sign and size @(\) can be obtained from
When taking the physical point as additional input, W€ analyses of therN— maN reaction.C(\) is large and nega-

can now also examine the validity of the leading-one-loopjye for typical values of the regularization scale.

HBChPT extrapolation formula of E@8). In fit IVa we have The leading-one-loop SSE formula fgi(m,), Eq. (12),

taken C(1 GeV)=—5.3 GeV 2, which corresponds to the can be matched to the HBChPT formula in the chiral limit. It

(centra) value suggested in Ref28]. The resulting(short- a5 syfficient quark mass dependent structures to provide a

dashed curve shown in Fig. 6 completely misses the latticeonsistent chiral extrapolation from the chiral limit across

data and leads to a substantially different chiral limit valueye physical point up to the lattice data, assuming that the

ga, even if the rather large uncertainty ®(1 GeV) (cf.  |arge quark mass quenched lattice data are consistent with

Table I)—indicated via the bands in Fig. 7—is taken into fylly dynamical simulations and that finite volume effects do
account. According to our analysis this finding forces us tonot provide large corrections.

the conclusion that the leading-one-loop HBChPT curve as present lattice data are not precise enough in order to
given in Eq.(8) is not sufficient to even perform the chiral determine all couplings of the SSE formula from the data
extrapOIation from the chiral limit to the phySical pOint. With alone. Additional information fromwN dynamics has to be
the help of the decoupling constraints E40) we have made  jnyoked. SU6) arguments are not sufficient to generate the
sure that the chiral limit value afa(m,,) is the same in both required form ofg(m..).

approaches, as there exists only one definite axial charge of The chiral extrapolation curve fay,(m,) is rather flat. It

the nucleon in the chiral limit. In order to further test the |mp||es a Cooperation of terms in the quark mass expansion
applicability of the HBChPT curve we have also performedsych that pion cloud effects are basically “turned off” for
fit IVc, demanding thagy takes the same value as in the pion masses exceeding 0.6 GeV. A small enhancement is
leading-one-loop SSE analysis. The resultitang-dashefi  seen around the physical pion mass. This enhancement re-
sults from an interplay between the Goldstone boson dynam-
ics of the nucleon and short distance contributions which can

1.45
i be constrained fromrN— 7r7rN scattering data. The chiral
Lo limit value of the axial coupling of the nucleon is found to be
1.35¢ s o
13 B 0%~1.2+0.1. (23)
9 125 S
12 —_ « The parameters of fit IVb give the best available descrip-
’ S > tion of our present knowledge agn(m,,).
1.15 S ) The leading one-loop HBChPT formul) for ga(m.,) is
1.1 S not useful for chiral extrapolation. It fails to connect the
0.005 0.01 0015 002 0.025 0.03

m,2 [GeV?]

chiral limit with the physical value of the pion mass. Accord-
ing to our analysis the chiral logarithm as the leading non-

FIG. 7. We have magnified the region around the chiral limit up@nalytic quark mass term in the HBChPT formula is only

to the physical point. The bands indicated for the two heavy baryoryisible in extrapolations performdaelowthe physical point.
curves arise from the uncertainty of theN— 77N analysis of Finally, we note that the role of finite size effects in the
Eqg. (14). lattice data forg, has to be analyzed in a systematic frame-
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work to better understand the systematics of the lattice error 2)3

bars. More data from simulations fop(m,) performed at  Amp,=i —277T7-'77—J2(r0)
different lattice volumes are called for to guide these studies. e o

We are confident that ChEFT is an important tool to resolve
this issue in the future.

We are of course aware of potential convergence prob-
lems when extrapolating one-loop chiral effective field
theory to pion masses as large as five times the physical 0 A
value ofm_. The results presented in this paper, promisingAmps= —i —Ayfr—nu(rz)s- eaU(ry)
as they are, should therefore be taken with the necessary (4mf )2 " 2
caveat. The situation is expected to become much more

. . ; m
stable once lattice data fa, will be available aroundn,, ><4mi< 16772L+In—”) (A3)
=300 MeV. In this respect, studies of the kind performed in A
Ref. [32] concerning chiral behavior in quenched QCD at 0.2
pion masses down to about 200 MeV, are instructive, andAm —Am :_igA_CA§ . —2_r )S. ()
investigations using quenched chiral perturbation theory ‘™ P P Af2 37 T g=u(r2)S eau(ry
should be further pursued along those lines. i

ro=0

_ 1
X U(ry)S- eaU(ry) §+S2 (A2)

X[J2(0) = J2(—A0)] (A4)
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APPENDIX: AMPLITUDES G4
- a—a"

%('yE—l—ln47T) , (AB)

Here we present the results for the 8 leading-one-loop 167
amplitudes, i.eO(€®) diagrams shown in Fig. 1 which can .
b O(e") diag g where yg denotes the Euler-Mascheroni constant.

contribut€ to the axial coupling constam, of a nucleon. . ) . . .
ping T . Finally, we note that with the decoupling choice made in

The Lagrangians needed for this calculation are discussed .
the main text. We work in the Breit frame and choose the'Eq' (10) the nucleorZ-factor calculated to leading-one-loop

velocity vectorv#=(1,0,0,0). WithS* denoting the Pauli- in SSE reads
Lubanski spin-vector ands the polarization 4-vector of an 3
external axial-vector source, one finds 7381 —— 1| = (g2)2+4c2 |m?
N (47Tf )2 2 A A T
Amp=in'7 7u(r,)s: Z3°54mZBg+A%B 9 m,
mp =in'7 gu(ry)S- €aU(r1)(gaZy mBo+AgBsy) +8quT 16772f,zTBr20()\)+ _(gg)z_,_ci n—=
(A1) 16 N
2
Amp,=Amp;=0-+O(&') 16242 In| 27 |+ /1- “ZnR| | +O(eY)
ATO 2A¢ A2 ’
0
(A7)

5To simplify the calculation we have made use of the gauge con-
dition €,-q=0. whereR has been defined in E¢L3).
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