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Quark mass dependence of the nucleon axial-vector coupling constant
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We study the quark mass expansion of the axial-vector coupling constantgA of the nucleon. The aim is to
explore the feasibility of chiral effective field theory methods for extrapolation of lattice QCD results—so far
determined at relatively large quark masses corresponding to pion massesmp*0.6 GeV—down to physical
values ofmp . We compare two versions of non-relativistic chiral effective field theory: One scheme restricted
to pion and nucleon degrees of freedom only, and an alternative approach which incorporates explicitD(1230)
resonance degrees of freedom. It turns out that, in order to approach the physical value ofgA in a leading-
one-loop calculation, the inclusion of the explicitD(1230) degrees of freedom is crucial. With information on
important higher order couplings constrained from analyses of thepN→ppN reaction, a chiral extrapolation
function gA(mp) is obtained, which works well from the chiral limit across the physical point into the region
of present lattice data. The resulting enhancement ofgA(mp) near the physical pion mass is found to arise from
an interplay between long- and short-distance physics.

DOI: 10.1103/PhysRevD.68.075009 PACS number~s!: 11.15.Ha, 12.39.Fe
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I. INTRODUCTION

Lattice QCD is developing into a powerful tool for stud
ing the structure of nucleons@1,2#. In practice, however,
these computations are so far limited to relatively large qu
masses. The typical ‘‘light’’ quark masses that can be m
aged on the lattice are usually at least ten times larger
the u- and d-quark masses,mu,d.10 MeV, determined at
renormalization scales around 1 GeV. The correspond
masses of a pion on the lattice—defined as the lowest-ly
02 state in the simulation—are larger than 0.5 GeV, quite
above the physical valuemp.0.14 GeV.

In the limit mu,d→0, on the other hand, low-energ
2-flavor QCD displays a spontaneously broken ch
SU(2)3SU(2) symmetry. Pions as massless Goldsto
bosons are the relevant degrees of freedom of the~effective!
theory. Their coupling to baryons is also subject to the ru
imposed by chiral symmetry. It produces the pion cloud
the nucleon, an important low-energy, long-wavelength
pect of nucleon structure, cf.@2# and references therein.

For baryon properties the interpolation between lattice
sults obtained at relatively large pion masses and actual
servables determined at the physicalmp has become an issu
of great interest recently. Chiral effective field theo
~ChEFT! can, in principle, provide such extrapolations. T
first steps in this direction were made by Leinweber et al.@3#
for the case of the magnetic moments. They used Pade´ ap-
proximants based on the leading dependence on the
mass as dictated by chiral symmetry. A perturbative anal
of nucleon magnetic moments, using ChEFT with the
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plicit inclusion of theD(1230) isobar, has been performed
@4#. It turned out to be of crucial importance to promote t
isovector couplings of theD to leading order in the powe
counting characteristic of chiral effective theories. Trunca
versions of chiral perturbation theory usually ‘‘freeze’’ theD
and relegate its effects to higher order counterterms, with
consequence that the range of convergence of this trunc
theory is often quite limited. The importance of theD as an
explicit degree of freedom in various aspects of nucleon s
structure has long been known. It has played a promin
part in chiral models of the nucleon@2,5# and earlier studies
based on current algebra@6#.

In the present paper1 we investigate the quark mass d
pendence ofgA , the axial-vector coupling constant of th
nucleon. This is a key quantity for our understanding of t
nucleon’s chiral structure@2#. Furthermore, lattice QCD de
terminations ofgA are progressing to the point where such
investigation is in demand for interpolating between latt
data and the actual observable@1,8#.

Of course plenty of ChEFT calculations pertaining to th
quantity exist in the literature@9#, and the special importanc
of intermediate spin 3/2 resonance contributions for the a
properties of baryons has been recognized a long time
Recall, for example, the Adler-Weisberger sum rule@10#:

gA
2511

2 f p
2

p
E

mp

` dv

Av22mp
2

@sp1p~v!2sp2p~v!#

1OS mp
2

MN
2 D . ~1!

1Some aspects of this work have already been reported in@7#.
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It relates the surplus of the axial-vector coupling const
beyond its ‘‘trivial’’ value gA51 ~for a point-like, structure-
less nucleon! to the excess of thep1p cross section over the
p2p cross section, a feature that is dominated byD(1230)
resonance excitation.

In ChEFTgA is calculated from the response of a bary
to the presence of an external background field with a
quantum number. In contrast to many earlier ChE
calculations—e.g. the pioneering ones of Refs.@11,12#—we
arenot onlyinterested in the non-analytic quark mass beh
ior generated by the Goldstone boson cloud around
baryon. In order to analyze the quark mass dependence
baryon observable in a quantitative way we follow the sa
philosophy as spelled out in Ref.@4#. We specify a power
counting scheme plus a certain order in that scheme and
systematically evaluate all contributions—short and lo
distance—to that order. It turns out that the role of sho
distance physics parametrized as higher order operato
chiral effective field theory is crucial for an understanding
the chiral extrapolation functiongA(mp). We utilize the so-
called SU~2! ‘‘small scale expansion’’ of Ref.@13# to
leading-one-loop order@O(e3)#, which includes explicit
nucleon andD(1230) degrees of freedom—some details
garding the formalism are summarized in Sec. II. In fact,
the long- and short-distance contributions considered in
analysis have already been found~as a by-product! in Ref.
@14#, where among other topics the~small! momentum de-
pendence of the axial form factors of the nucleon was st
ied. Here we reconsider these results and focus on the q
mass dependence ofgA . Unlike the situation in the vecto
current sector, where a modified power counting had to
developed@4# so that important effects of theD could be
captured already in leading-one-loop order, this turns out
to be necessary for axial current effects related to
D(1230). For theaxial structure of baryons—which is the
topic of the present analysis—the standard counting
ChEFT, as employed in Refs.@13,14#, is sufficient to obtain
D(1230) induced quark mass dependence already at
leading-one-loop level. Throughout this work we can the
fore apply standard~‘‘naive’’ ! counting rules.

Historically, attempts to obtain a chiral extrapolatio
function for gA based on the known leading-nonanaly
~LNA ! quark mass dependence in combination with a p
nomenological~quark mass dependent! regularization proce-
dure did not yield satisfactory results, displaying axial co
plings less than unity at the physical point@15#. In our
opinion one should not have been surprised about suc
failure, as the LNA quark mass term presumably is o
dominant for quark masses near the extreme chiral limi
the theory. Such a feature was indeed observed in the an
sis of the anomalous magnetic moment of the nucleon@4#.
Recently, Detmold et al.@16#, in their analysis of moments o
polarized deep inelastic scattering~DIS! structure functions,
found an improved extrapolation formula forgA(mp) utiliz-
ing a chiral quark model which also allows for contributio
from intermediateD~1230! states@5#. However, the resulting
extrapolation function—which has most of theD(1230) re-
lated couplings fixed from SU~6! symmetry—still does not
provide for an enhancement ofgA(mp) near the physica
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point, which would at the same time connect with the latt
results. In this work we go beyond the existing analyses
performing a systematic perturbative calculation ofall short-
and long-distance contributions which are allowed
leading-one-loop order in chiral power counting.

This paper is organized as follows. In Sec. II we give
brief summary of the ChEFT formalism utilized here. In Se
III we present the leading-one-loop analytic result forgA
both in a scheme without and in one with explicitD(1230)
degrees of freedom. In Sec. IV we compare these ana
results with recent data from the QCDSF Collaboration@17#,
employing three different fit procedures. Finally, in Sec.
we check the stability of the obtained results by including
physically known information aboutgA as an additional con-
straint in the fit. The resulting chiral extrapolation functio
gA(mp) provides a sensible description of the quark ma
dependence from the chiral limit over the physical point o
to the present lattice data. We conclude with an outlook
further investigations required for a better understanding
gA .

II. CHIRAL EFFECTIVE FIELD THEORY INPUT

Our analysis ofgA is based on chiral effective field theor
with two light flavors (u,d). We work to leading-one-loop
order. All other quark degrees of freedom are integrated
leaving their marks only in slightly shifted values of co
plings sensitive to short distance dynamics. This effect
field theory of low-energy QCD acts with pions as Goldsto
bosons of the spontaneously broken chiralSU(2)3SU(2)
symmetry of QCD. In addition the chiral symmetry of th
QCD Lagrangian with two light flavors is explicitly broke
by the smallu and d quark masses which are treated as
perturbation. They shift the massless Goldstone bosons to
physical pions with massmp and lead to a string of quark
mass dependent operators which turn out to be of cru
importance for the understanding of chiral extrapolati
functions. At present we ignore effects of isospin break
and work with degenerate masses,m̂5(mu1md)/2, for the
up and down quarks.

We utilize two versions of ChEFT for our analysis ofgA .
The first scheme is SU~2! heavy-baryon chiral perturbatio
theory~HBChPT!, which involves only the Goldstone boso
modes~pions! and spin 1/2 matter fields~nucleons!, taken up
to order p3. The second scheme is the SU~2! small scale
expansion~SSE! which in addition also involves explici
spin 3/2 matter fields@four D(1230) states# and their inter-
actions with Goldstone bosons, taken up to ordere3 in the
‘‘small scale’’ e which now includes also the non-zeroD-N
mass difference@18#.

For completeness—and for the proper definition of o
couplings—we give the effective Lagrangian required
this leading-one-loop analysis ofgA :

L5L N
(1)1L N

(2)1L N
(3)1L ND

(1)1L D
(1)1L pp

(2) . ~2!

The well-known leading order pion LagrangianL pp
(2) can be

found in @19#. The leading orderpN, pND and pD
Lagrangians
9-2
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L N
(1)5N̄v@ iv•D1gA

0S•u#Nv ,

L ND
(1)5T̄i

mcAwm
i Nv1H.c.,

L D
(1)5T̄i

m@j I 53/2
i j D02 iv•Di j 2g1S•ud i j #gmnTj

n ~3!

are specified in detail in@13#. Here we only note thatNv(Ti
m)

represents the non-relativistic spin-1/2 nucleon~spin 3/2
delta! field, with j I 53/2

i j denoting the isospin 3/2 projectio
operator. The chiral tensorsum ,wm

i encode couplings to~ex-
ternal! axial sources withNN, ND and DD axial coupling
constantsgA

0 , cA andg1, defined in the chiral limit. Further
more,Dm ,Dm

i j denote the chiral covariant derivatives of th
nucleon, respectively, delta.D0 corresponds to theND mass
splitting in the chiral limit. The two four-vectors
vm ,Sm—related to kinematics and spin—are discussed in
Appendix. It can be clearly seen from Eq.~3! that all cou-
plings considered as leading order follow the standard co
ing of ChEFT.

While the leading order Lagrangians given above are w
known in the literature we also want to discuss the le
known higher order couplings required for a comple
leading-one-loop calculation ofgA both in HBChPT and in
SSE. We utilize

L N
(2)5N̄vF2

igA
0

2M0
$S•D,v•u%11 . . . GNv ,

L N
(3)5N̄vF gA

0

4M0
2 v•DS•uv•D

2
gA

0

4M0
2 ~$S•D,v•u%v•D1H.c.!

2
gA

0

8M0
2 ~S•uD21H.c.!1

gA
0

4M0
2 ~S•Du•D1H.c.!

1B9S•u Tr~x1!1B20@Tr~x1!iv•D1H.c.#

1D0
2B30iv•D1D0

2B31S•u1 . . . GNv . ~4!

Here M0 denotes the nucleon mass in the chiral lim
whereas the chiral tensorx1 encodes quark-mass depende
short distance physics. For the higher order couplingsBi we
follow the nomenclature of Ref.@14# where a complete set o
counterterms is listed, appropriate for renormalization
both leading one-loop HBChPT and SSE calculations.
note thatB30 andB31 are identically zero in HBChPT, but ar
required for leading-one-loop calculations in SSE. In gene
all Bi have a finite regularization scalel dependent par
Bi

r(l) as well as an infinite part:

Bi[Bi
r~l!1

b i

~4p f p!2
16p2L. ~5!
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In the infinite partb i denotes the HBChPT~respectively
SSE! beta function associated with this counterterm, wher
the infinities are encoded in the quantityL, discussed in the
Appendix. f p is the pion-decay constant.

III. ANALYTIC RESULTS

We now proceed to a discussion of the results for the a
coupling of the nucleon expressed as a function of the p
massgA(mp), first for the HBChPT and then for the SS
case. The leading one-loop HBChPT result for the qu
mass dependence ofgA is known for a long time@9#. Evalu-
ating diagrams 1–5 of Fig. 1 and projecting out the ax
coupling constant gives

gA~mp
2 !5gA

0ZN14mp
2 B9

r ~l!1
mp

2

32p2f p
2

3F @~gA
0 !324gA

0 # ln
mp

l
1~gA

0 !3G1O~p4!, ~6!

wheregA
0 again denotes the axial-vector coupling constan

the chiral limit. TheZ-factor of the nucleon to leading-one
loop order reads

ZN~mp
2 !512

3~gA
0 !2mp

2

32p2f p
2 S 113 ln

mp

l D
28mp

2 B20
r ~l!1O~p4!. ~7!

Following Ref.@20#, we note that thisZ-factor is finite since
we have not transformed away the countertermB20. It is
well known, however, that the finite part of a low-energ
counterterm such asB20 cannot be observed independen
@of B9

r (l) in our case#. To order p3 in HBChPT, gA(mp
2 )

therefore depends on only two unknown parameters,gA
0 and

C(l)[B9
r (l)22gA

0B20
r (l), for each choice of the regular

ization scalel:

FIG. 1. Diagrams contributing to the nucleon axial-vector co
pling constantgA at leading-one-loop order. The wiggly line de
notes an external~isovector! axial-vector background field, interact
ing with a nucleon~solid lines!.
9-3
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gA
HB~mp

2 !5gA
02

~gA
0 !3

16p2f p
2

mp
2 14H CHB~l!1gHBln

mp

l J mp
2

1O~p4!, ~8!

with

gHB52
1

16p2f p
2 F ~gA

0 !31
1

2
gA

0 G . ~9!

We expect Eq.~8! to hold for sufficiently small quark
masses, close to the chiral limit. All observable short d
tance dynamics is collected inC(l). The procedure outlined
here is well defined in the sense that the scale-depen
logarithm in Eq.~8! cooperates with the scale-dependent
efficientC(l) in just such a way that the overall sum is sca
independent.

Next we turn to the result of the SSE approach wh
includes explicitD(1230) degrees of freedom. The bare r
sult depending on all four counterterms of Eq.~4! has been
given in Ref.@14#. It originates from diagrams 1–8 of Fig. 1
We note that diagrams 2 and 3 in principle also exist wh
the intermediate nucleon is replaced by a spin 3/2 bary
However, the leading orderND transition Lagrangian of Eq
~3! does not include operators connectingND via an even
number of axial fields. The corresponding diagrams
therefore of higher order than the ones considered here a
leading-one-loop level. Extending the work of Ref.@14# we
also impose the constraint of decoupling which implies th
in the chiral limit, effects of theD(1230) can be absorbed i
contact interactions. This makes sure that the addition
explicit delta degrees of freedom maintains the correctmp

→0 limit of gA ,

B30
r ~l!5

1

p2f p
2

cA
2 ln

2D0

l

B31
r ~l!5

cA
2

p2f p
2 S 40

243
g12

16

81
gA

0

1
25

81
g1ln

2D0

l
1

8

27
gA

0 ln
2D0

l D ~10!

and the leading-one-loop SSEZ factor given in the Appendix
we find the chiral limit behavior

gA
x~mp

2 !'gA
014gHBmp

2 ln
mp

l
1mp

2 H 2
~gA

0 !3

16p2f p
2

14CSSE~l!

1
cA

2

p2f p
2 F S 25g1

162
2

gA
0

18D ln
2D0

l
1

115

486
g12

35

54
gA

0 G J
1O~mp

3 !. ~11!

We emphasize the point that, while the result~11! is unique,
the separation intoB30

r andB31
r can be done in several pos

sible ways. Comparing with Eq.~8! we note that with our
07500
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parameter choice of Eq.~10! we have restoredgA
0 as the

chiral limit value ofgA(mp
2 ). Furthermore, we note that th

leading quark mass dependence starting proportiona
mp

2 ln mp is not modified by the addition of explicitD(1230)
degrees of freedom, again consistent with chiral symmet

Having taken care of the decoupling constraints we n
present the complete leading-one-loop result forgA in the
small scale expansion:

gA
SSE~mp

2 !5gA
02

~gA
0 !3mp

2

16p2f p
2

14H CSSE~l!1
cA

2

4p2f p
2 F155

972
g1

2
17

36
gA

0 G1gSSEln
mp

l J mp
2 1

4cA
2gA

0

27p f p
2 D0

mp
3

1
8

27p2f p
2

cA
2gA

0mp
2A12

mp
2

D0
2

ln R

1
cA

2D0
2

81p2f p
2 ~25g1257gA

0 !H lnF2D0

mp
G

2A12
mp

2

D0
2

ln RJ 1O~e4!, ~12!

with

gSSE5
1

16p2f p
2 F50

81
cA

2g12
1

2
gA

02
2

9
cA

2gA
02~gA

0 !3G ,

R5
D0

mp
1AD0

2

mp
2

21. ~13!

We note that the first line in Eq.~12! has the same structur
as the heavy baryon result of Eq.~8!. New structures appear
ing in the leading-one-loop SSE result are the terms prop
tional to mp

3 as well as the logarithms depending explicit
on theN-D mass splitting value. For the chiral extrapolatio
of gA we will utilize the full analytic form as given in Eq
~12!. The much simpler chiral limit form Eq.~11! will only
be used to constrain coupling constants.

IV. CHIRAL EXTRAPOLATION TO LATTICE DATA

A. General remarks

We now turn to a numerical evaluation of the two analy
extrapolation formulas forgA considered here. In principle
all couplings and masses—aside frommp—on the left-hand
side of Eqs.~8!,~12! are understood to denote their values
the chiral limit. However, for many of them the chiral lim
values are only poorly known. For the pion decay const
we use its physical valuef p , because the difference betwee
this and f p

0 is known to be only a few percent. ForcA and
D0—following the reasoning laid out in Ref.@4#—we also
use the empirical values, specified in Table I.
9-4
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Choosing l51 GeV without loss of generality in
leading-one-loop SSE~HBChPT!, we are then left with three
~two! poorly known couplings:gA

0 , CSSE(1 GeV),g1, or
gA

0 ,CHB(1 GeV), respectively. To determine these sho
distance physics parameters of interest, we utilize
~quenched! gA simulation data of the QCDSF collaboratio
@17# in the mass region 0.3 GeV2,mp

2 ,0.6 GeV2, contain-
ing 5 data points. Hereby we are working under t
assumption—following again the reasoning of Ref.@4#—that
for lattice pion masses larger than 600 MeV the effects
‘‘quenching’’ can be neglected. This intuitive expectation h
recently been put on firm ground by the analysis of Ref.@8#.
It was concluded that for present state-of-art simulation d
for moments of nucleon structure functions~such asgA) in-
deed no significant differences between quenched and
dynamical QCD simulations could be found formp

.500 MeV. However, the difference2 between ‘‘quenched’’
and fully dynamical QCD simulations should become visib
at lower pion masses.

While we are confident that~un!quenching effects are
small in the mass range considered here possible correc
arising from the finite simulation volume could turn out to
important for the exact position of the lattice data. The fi
data points we are utilizing here actually result from thr
different lattice spacings which, however, roughly cor
spond to the same physical volume3 of (L
51.45, . . . ,1.60 fm)3 @17#. Given this data situation no con
clusions on finite volume dependence can be drawn from
QCDSF data. In Ref.@23# for a simulation utilizing domain
wall fermions it has been reported thatgA is a quantity which
can be sensitive to such corrections. We note that the
analyzed here are consistent with one another~cf. Fig. 2! and
are basically flat in theirmp dependence. The data shown
Ref. @23# are also rather flat for the largest volume cons
ered there, albeit the overall location of the plateau seem
lie slightly higher than the QCDSF data discussed here
present no systematic study of these effects exists and
therefore assume that possible shifts in the data due to

2In quenched QCD the axial coupling of the nucleon develop
chiral singularitygA(mp→0); log mp in the chiral limit @21#, in
contrast to the finite valuegA(mp→0)→gA

0 in full QCD.
3While this volume at first glance appears rather small to study

physics of an extended object like a nucleon, we note that
nucleon radii are considerably smaller at these large quark ma
than at the physical point. See Ref.@22# for an analysis of the quark
mass dependence of the electromagnetic radii.

TABLE I. Values of the parameters which are taken at th
physical value.

Parameter Physical value

f p
0 → f p 0.0924 GeV

cA
0→cA 1.125

D0→Re@D# 0.2711 GeV
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finite simulation volume fall within the size of the error ba
of the data. Once a larger amount of data forgA(mp) are
obtained at different lattice sizes, we will take up this iss
again to recheck our analysis.

For the purpose of our numerical analysis thegA simula-
tion data thus only provide the constraint of specifying t
location of the typical ‘‘data plateau’’~e.g. see Fig. 2!, which
is quite analogous to the situation in the case of the ano
lous magnetic moments@4#. Once more, we emphasize th
empirical observation that any sensible chiral extrapolat
formula must have enough structure to reproduce such a
teau, at least over a certain range inmp

2 . In essence, this
implies a strong constraint: different terms in the quark m
expansion ofgA must cooperate in such a way that the pi
cloud effects are basically counterbalanced by short-dista
physics once the pion mass exceeds 0.6 GeV. Given tha
available lattice data are still restricted to relatively lar
quark/pion masses, can one nevertheless utilize this infor
tion to determine the chiral extrapolation function? In ord

a

e
e
es

r

FIG. 2. The long-dashed curve represents the free fit to
QCDSF lattice data belowmp5750 MeV, utilizing the leading-
one-loop SSE~fit Ib! results of Eq.~12!. The analogous leading
one-loop HBChPT result~fit Ia! originating from Eq.~8! is shown
as the short-dashed curve. The solid line represents fit II for the
extrapolation with the additional SU~6! quark model constraintg1

59/5gA
0 . The indicated error band results from the 95% confiden

ellipse shown in Fig. 3, while the solid dot indicates the physi
value ofgA .

FIG. 3. Confidence ellipse for the SU~6!-constrained leading-
one-loop SSE fit II shown in Fig. 2. The two parameters sho
denote the nucleon coupling constantgA

0 in the chiral limit versus
the parameterC(l) discussed in the text, evaluated at the regul
ization scalel51 GeV.
9-5
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TABLE II. Fit results discussed in the text.

Fit gA
0 C(l51 GeV) (GeV22) g1 DOF x2/DOF

Ia 0.7160.04 10.1260.03 - 3 0.37
Ib 0.7860.04 11.0660.08 0.060.1 2 0.55
II 0.9460.04 20.2560.04 9/5gA

0 3 0.39
III 1.12 . . . 1.26 22.2 . . .24.6 4.3 . . . 6.6 3 0.48 . . .0.60
IVa 1.3660.07 25.361.2 - - -
IVb 1.2160.01 23.460.4 5.660.5 3 0.54
IVc 1.21 25.361.2 - - -
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to answer this question we perform three different fit pro
dures of varying sophistication.

B. Free fits

In the first round of fits we want to explore whether t
available lattice data are sufficient to constrain the unkno
parameters gA

0 ,CSSE(l),g1 for SSE, or respectively
gA

0 ,CHB(l) for HBChPT. The numerical values obtained a
given in Table II with the labels fit Ia, fit Ib. The results a
shown in Fig. 2 via the short-dashed~HBChPT! and long-
dashed~SSE! curves. While thex2 per degree of freedom
~cf. Table II! for either curve is small, clearly both extrapo
lation functions have to be consideredunphysical, as indi-
cated by the small values ofgA

0 violating the Adler-
Weisberger sum rule as well as the physical constr
gA

phys.51.2670(30) obtained from neutron beta decay@24#.
In addition, the SSE curve has a value of the axialDD cou-
pling constantg1'0, whereas we expectg1>gA

0 from SU~6!
symmetry considerations. We note that the resulting~un-
physical! HBChPT curve is quite similar to the one found
Ref. @15#, where the chiral logarithm withgHB of Eq. ~8!
plus a phenomenological~quark mass dependent! cutoff pro-
cedure parametrizing short-distance physics was emplo
We note that both the HBChPT as well as the SSE ‘‘free fi
prefer a small positive value for the short distance phys
parametrized viaC(l)—at a regularization scale ofl
51 GeV. The reason for this unsatisfactory situation is t
the present lattice data are not yet sufficiently accurate
obtain a realistic value forC, as we will see in the next two
sections: additional physics constraints need to be invoke
order to limit the range ofC.

C. SU„6… constrained fit

One possible conclusion from the mismatch between
chiral extrapolation and present lattice data could be that
extrapolation formulas~8! and~12! are just too simplistic to
cover such a large region inmp

2 ~for example, this was the
case with the corresponding extrapolation functions
schemesA or B of the anomalous magnetic moments in R
@4#!. In the following we argue that this is indeed true for t
leading-one-loop HBChPT result of Eq.~8!, whereas the cor-
responding SSE extrapolation function Eq.~12!, with the
D~1230! added as an explicit degree of freedom, does c
tain enough quark-mass dependent structures to repro
the plateau-like behavior at pion masses above 600 M
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without missing the physical value ofgA . In other words, we
suspect that the lattice data are just not accur
enough to properly constrain all three paramet
gA

0 , CSSE(1 GeV),g1—which does not come as comple
surprise given the low statistics of our data sample. In or
to test this hypothesis we are trying to further constrain th
couplings via available information from hadron pheno
enology. An obvious idea is to fix the axialDD coupling
g159/5gA

0 from SU~6! symmetry, leaving onlygA
0 andC as

free parameters to be determined from the fit utilizing E
~12!. The numerical values resulting from this fit are show
in Table II with the label fit II. The associated chiral extrap
lation curve is shown in Fig. 2. Itsx2/DOF is comparable
with the values for the free fits Ia and Ib. We conclude tha
from a physical point of view—the SU~6! constrained fit
does slightly better than the free fits when one considers
‘‘higher’’ value for gA

0 . Nevertheless, the axial coupling
still smaller than 1 in the chiral limit, which is hard to rec
oncile with the Adler-Weisberger sum rule Eq.~1!. Surpris-
ingly, even when an error analysis at the 95% confide
level is performed~see Fig. 3!, the resulting band shown in
Fig. 2 does not include the physical point, despite the rat
large error bars of the lattice data. We thus conclude that
SU~6! assumption does not provide us with a reasona
mechanism that would allow for an enhancement of the c
ral extrapolation curve around the physical pion mass. Si
lar conclusions can be drawn from the recent calculation
Detmold et al.@16#, which also utilized SU~6! assumptions to
reduce the number of unknown couplings. Interestingly,
note that the resulting value forC(1 GeV) is still rather
small, buthas changed signwhen compared to the free fi
results. In the following we will pursue the hypothesis tha
is the sign and magnitude of this coupling@and the resulting
interplay with the non-analytic chiral results given in E
~12!# that are responsible for the enhancement ofgA(mp)
around physical pion mass.

D. Fit constrained by pN\ppN

When varying the three poorly known parametersgA
0 ,

C(l),g1 of the SSE extrapolation formula Eq.~12! one re-
alizes that it is the short-distance physics encoded inC(l)
which is crucial for a possible enhancement ingA(mp) at
small pion masses. Empirically one finds that with negat
values around forC(l51 GeV)'24 GeV22 it would be
possible to counterbalance the trend ofgA(mp) towards val-
9-6
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QUARK MASS DEPENDENCE OF THE NUCLEON AXIAL- . . . PHYSICAL REVIEW D 68, 075009 ~2003!
ues below 1, which is driven by the chiral logarithm~cf. fit Ia
in Fig. 2!. The question arises whether such a value
C(l51 GeV) at such a regularization scale is consist
with known physics.

At first glance one would expect that only lattice simu
tions can provide more information onC(l)—respectively,
the couplingsB9 ,B20—to further constrain the fits. Howeve
when analyzing the chiral tensors in Eq.~4!, one notices that
the physically observable couplingB9 also contributes in in-
elastic pion-nucleon scattering processes likepN→ppN
@25#. In Ref. @26# this process was analyzed toO(p3) in
HBChPT and values for the couplings of interest we
obtained.4 Here, however, we follow the substantially revis
analysis of Ref.@28#. Translating these findings into our con
ventions we obtain

B9
r ~l5mp

phys!5~21.461.2! GeV22,

B20
r ~l5mp

phys![0, ~14!

with the error bar arising from three different fitting proc
dures described in@28#. We note that Refs.@26,28# follow the
convention to set all equation-of-motion dependent coun
terms likeB20 identically equal to zeroat the scale of their
analysis, which corresponds tol50.138 GeV. While we can
directly utilize this information in the heavy baryon analys
~cf. the discussion in Sec. V! there is no unique procedur
how to import this information into the framework with ex
plicit D(1230) degrees of freedom. The complication aris
from the fact thatB9

r (l),B20
r (l) have different beta func

tions in HBChPT and SSE. One can, therefore, produce
ferent chiral extrapolation curves depending on the sc
where the matching between the two theories takes plac
the following we will perform the matching at the interm
diate scalel52D050.54 GeV which suggests itself as
‘‘natural’’ scale in SSE by looking at Eqs.~10!,~11!. We have
carefully examined that our results are not sensitive~within
the uncertainties of thepN→ppN analysis! to changes of
the scalel between 0.4 and 0.8 GeV. At the end of th
section we demonstrate that this matching choice is con
tent with available information on the chiral limit behavior
gA , which is the only constraint one can put on differe
matching prescriptions. First, we evaluate the couplings
Eq. ~14! at the scalel52D0 via the relation

Bi
r~2D0!5Bi

r~mp
phys!2

b i
HB

~4p f p!2
ln

2D0

mp
phys

, i 59,20

~15!

leading to the values

B9
r ~l52D0!uHB5~21.861.2! GeV22,

B20
r ~l52D0!uHB50.9 GeV22. ~16!

4A second analysis ofpN→ppN scattering@27# unfortunately
does not specify the value for the analogue of the couplingB9 they
utilized.
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The leading-one-loop HBChPT beta functions required c
be found in Ref.@20#. Note that we have utilized physica
couplings in the heavy baryon beta functions, inducing
uncertainty which is negligible compared to the error bar
B9. At the scalel52D0 we then perform the matching

B9
r ~l52D0!uSSE[B9

r ~l52D0!uHB ,

B20
r ~l52D0!uSSE[B20

r ~l52D0!uHB . ~17!

Next we run the SSE couplings up to the scalel51 GeV to
facilitate an easier comparison with the previous fits~cf.
Table II!:

Bi
r~1 GeV!5Bi

r~2D0!2
b i

SSE

~4p f p!2
ln

1 GeV

2D0
, i 59,20.

~18!

Utilizing the leading-one-loop SSE beta functions of R
@14# with the couplings shown in fit III of Table II one finally
obtains

B9
r ~l51 GeV!uSSE5~1.261.2! GeV22,

B20
r ~l51 GeV!uSSE51.9 GeV22. ~19!

The error bar given forB9(1 GeV) originates from the de
termination of Ref.@28# shown in Eq.~14!. No errors arising
from the couplings in the HBChPT or SSE beta functions
shown, as they are smaller than the uncertainty inB9 result-
ing from thepN→ppN analyses.

The resulting chiral extrapolation curve forgA(mp), uti-
lizing Eqs.~12!,~19! and fittinggA

0 ,g1 to the five lattice data
points, is shown in Fig. 4. The resulting parameters
shown as fit III in Table II. The solid line in Fig. 4 refers t
the central value forB9 in Eq. ~19!, whereas the two dashe
curves indicate the influence of the~large! uncertainty about
the precise value ofB9 given in Eq.~19!. Nevertheless, while
the x2/DOF values are comparable with fits I and II show
in Fig. 2, only fit III is consistent with the physical poin

FIG. 4. Fit III: Incorporating known information frompN
→ppN differential cross sections into the leading-one-loop S
analysis. The solid line shows the central value, whereas the da
curves denote the upper and lower error bar from Eq.~19!. The
matching of the coupling constants was performed atl
50.54 GeV as discussed in the text.
9-7
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HEMMERT, PROCURA, AND WEISE PHYSICAL REVIEW D68, 075009 ~2003!
gA
phys as shown in Fig. 4. We note that it is indeed the lar

negative values for the parameter

C~1 GeV!5B9
r ~1 GeV!22gA

0B20
r ~1 GeV!

5~23.461.2! GeV22 ~20!

that can produce an enhancement near the physical p
Given the large uncertainty inC(1 GeV) ~resulting fromB9)
we believe that at present any normalization issues~e.g. re-
sulting from finite volume effects! can be accounted for b
our extrapolation functiongA(mp) of Eq. ~12!. Analyzing the
ellipsoidal joint 95% confidence region for the fit paramet
(gA

0 ,g1) associated with the central value ofC(1 GeV) in fit
III ~cf. Fig. 5!, the band of allowed fit curves complete
covers the uncertainty region resulting fromB9 ~dashed
curves! and shows that at this confidence level no fit so
tions exist for whichgA(mp) becomes smaller than unity, i
agreement with the Adler-Weisberger sum rule Eq.~1!.

We therefore conclude that the strong downward bend
of gA(mp) driven by the Goldstone boson cloud around s
1/2 and spin 3/2 baryon states is counterbalanced by l
short-distance corrections parametrized viaC(l). The com-
bination of these two effects leads to a rather flat chiral
trapolation function forgA(mp), which—according to cru-
cial input frompN→ppN scattering analyses—can displa
an enhancement near the physical point to reconcile the
tice data with our knowledge from neutron beta decay. T
analysis presented here suggests that in the~lattice! observ-
ablegA(mp) no strong curvature is to be expected betwe
the physical point and the location of the lattice data. T
large LNA terms contained ingA(mp) presumably only be-
come visible for quark masses rather close to the chiral lim

Finally, we comment on the validity of our matching pr
cedure resulting in the couplings of Eq.~19!. Once the cou-
plings are specified at one particular scale the resulting S
extrapolation curve shown in Fig. 4 does not depend a
more onl, but it does depend on the matching point E
~17!. Nevertheless, for each baryon observable there ex
one unique curve through which the chiral limit value

FIG. 5. Confidence ellipses for the constrained leading-one-l
SSE fit III shown in Fig. 4. The two parameters shown denote
nucleon coupling constantgA

0 in the chiral limit versus the axialDD
couplingg1. The three ellipses shown correspond to central, up
and lower values for the short distance couplings determined in
~19! at a scale ofl51 GeV.
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approached when the quark masses go to zero. This is
reason why it is possible to utilize information about co
pling constants in one version of ChEFT and transcribe i
another version of that theory. From Eq.~11! we already
know that the first two terms in the chiral expansion
gA(mp) are identical in HBChPT and SSE, providing a
important consistency check. However, the terms;mp

2 can
be different between the two ChEFTs—even when each
is evaluated at leading-one-loop order as done here—bec
the two schemes can build up the contributions to a part
lar term in the chiral expansion more or less effectively
their respective perturbative series. Utilizing Eq.~16! one
finds

gA
x uHB51.214gHBmp

2 ln
mp

2D0
1mp

2 ~217.864.8! GeV22

1O~mp
3 ! ~21!

for the chiral limit behavior of the leading-one-loo
HBChPT result of Eq.~8!. On the other hand, utilizing the
parameters of fit III~cf. Table II! one obtains

gA
x uSSE51.214gHBmp

2 ln
mp

2D0
1mp

2 ~210.464.8! GeV22

1O~mp
3 ! ~22!

for the chiral limit behavior of the leading-one-loop SS
result of Eq.~12!. Themp

2 terms agree within the error bar
and the shifts of the central values could reasonably be
counted for by higher order corrections to the heavy bary
result of Eq.~21!. We conclude that the matching procedu
used in this work is consistent with all presently known i
formation about the chiral limit ofgA(mp). In the next sec-
tion we will test the stability of fit III by including the physi-
cal point as an additional constraint for the fit and th
conclude our analysis.

V. DISCUSSION

In the previous section we have found that the leadi
one-loop SSE result, Eq.~12!, together with input from scat-
tering analyses, can provide a meaningful chiral extrapo
tion of the present lattice data which is consistent with
experimentally known value forgA . In order to test the sta
bility of our result we now study the changes to our curv
when we include the information at the physical point as
additional constraint together with the lattice data. Reas
ingly, one finds only small changes in the SSE case. Num
cal values for the set of couplings labeled fit IVb are given
Table II, entirely consistent with the couplings of fit II
which does not know about the location of the physic
point. The resulting extrapolation function is shown in Fig.
providing a sensible connection between the chiral lim
value, the physical point and the QCDSF lattice data.
note that a large negative value ofC(1 GeV) and g1

.g1
SU(6) are common features of fits III and IVb, indicatin

that our reasoning provided in the previous section was
the right track.
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QUARK MASS DEPENDENCE OF THE NUCLEON AXIAL- . . . PHYSICAL REVIEW D 68, 075009 ~2003!
When taking the physical point as additional input, w
can now also examine the validity of the leading-one-lo
HBChPT extrapolation formula of Eq.~8!. In fit IVa we have
taken C(1 GeV)525.3 GeV22, which corresponds to the
~central! value suggested in Ref.@28#. The resulting~short-
dashed! curve shown in Fig. 6 completely misses the latti
data and leads to a substantially different chiral limit va
gA

0 , even if the rather large uncertainty inC(1 GeV) ~cf.
Table II!—indicated via the bands in Fig. 7—is taken in
account. According to our analysis this finding forces us
the conclusion that the leading-one-loop HBChPT curve
given in Eq.~8! is not sufficient to even perform the chira
extrapolation from the chiral limit to the physical point. Wit
the help of the decoupling constraints Eq.~10! we have made
sure that the chiral limit value ofgA(mp) is the same in both
approaches, as there exists only one definite axial charg
the nucleon in the chiral limit. In order to further test th
applicability of the HBChPT curve we have also perform
fit IVc, demanding thatgA

0 takes the same value as in th
leading-one-loop SSE analysis. The resulting~long-dashed!

FIG. 6. Fit IV: Incorporating the physical point and the lattic
data into the leading-one-loop SSE extrapolation formula result
a well behaved chiral extrapolation function~solid line, fit IVb!
from the chiral limit over the physical point out to the region of t
lattice data. The short-dashed line shows the corresponding lea
one-loop HBChPT result~fit IVa!. The long-dashed line~fit IVc !
indicates the HBChPT result assuming the same chiral limit va
gA

0 as in the SSE analysis of fit IVb.

FIG. 7. We have magnified the region around the chiral limit
to the physical point. The bands indicated for the two heavy bar
curves arise from the uncertainty of thepN→ppN analysis of
Eq. ~14!.
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extrapolation curve is shown in Fig. 6. It follows the SS
curve only for extremely small values ofmp , misses the
physical point and breaks down before it comes anywh
close to the existing lattice data. We therefore consider
use of Eq.~8! as not appropriate for a stable chiral extrap
lation outside the region of the extreme chiral limit.

We note that it is the very leading-one-loop HBChPT fo
mula Eq.~8! that has been utilized recently in Refs.@29,30#
to study the behavior of the deuteron in the chiral limit.
view of the findings presented here the question ari
whether conclusions drawn in Refs.@29,30# regarding the
bound state nature of the deuteron are unaltered, when
chiral extrapolation ofgA(mp) from the physical point down
to the chiral limit follows the curve from fit IVb, rather tha
the one from IVa as shown in Fig. 6.

VI. SUMMARY AND OUTLOOK

To conclude, we summarize the main results of our wo
The leading-one-loop HBChPT formula forgA(mp), Eq.

~8!, depends on two free parametersgA
0 ,C(l). Crucial infor-

mation on the sign and size ofC(l) can be obtained from
analyses of thepN→ppN reaction.C(l) is large and nega-
tive for typical values of the regularization scale.

The leading-one-loop SSE formula forgA(mp), Eq. ~12!,
can be matched to the HBChPT formula in the chiral limit.
has sufficient quark mass dependent structures to provi
consistent chiral extrapolation from the chiral limit acro
the physical point up to the lattice data, assuming that
large quark mass quenched lattice data are consistent
fully dynamical simulations and that finite volume effects
not provide large corrections.

Present lattice data are not precise enough in orde
determine all couplings of the SSE formula from the da
alone. Additional information frompN dynamics has to be
invoked. SU~6! arguments are not sufficient to generate t
required form ofgA(mp).

The chiral extrapolation curve forgA(mp) is rather flat. It
implies a cooperation of terms in the quark mass expans
such that pion cloud effects are basically ‘‘turned off’’ fo
pion masses exceeding 0.6 GeV. A small enhancemen
seen around the physical pion mass. This enhancemen
sults from an interplay between the Goldstone boson dyn
ics of the nucleon and short distance contributions which
be constrained frompN→ppN scattering data. The chira
limit value of the axial coupling of the nucleon is found to b

gA
0'1.260.1. ~23!

The parameters of fit IVb give the best available descr
tion of our present knowledge ongA(mp).

The leading one-loop HBChPT formula~8! for gA(mp) is
not useful for chiral extrapolation. It fails to connect th
chiral limit with the physical value of the pion mass. Accor
ing to our analysis the chiral logarithm as the leading no
analytic quark mass term in the HBChPT formula is on
visible in extrapolations performedbelowthe physical point.

Finally, we note that the role of finite size effects in th
lattice data forgA has to be analyzed in a systematic fram
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HEMMERT, PROCURA, AND WEISE PHYSICAL REVIEW D68, 075009 ~2003!
work to better understand the systematics of the lattice e
bars. More data from simulations forgA(mp) performed at
different lattice volumes are called for to guide these stud
We are confident that ChEFT is an important tool to reso
this issue in the future.

We are of course aware of potential convergence pr
lems when extrapolating one-loop chiral effective fie
theory to pion masses as large as five times the phys
value ofmp . The results presented in this paper, promis
as they are, should therefore be taken with the neces
caveat. The situation is expected to become much m
stable once lattice data forgA will be available aroundmp

.300 MeV. In this respect, studies of the kind performed
Ref. @32# concerning chiral behavior in quenched QCD
pion masses down to about 200 MeV, are instructive,
investigations using quenched chiral perturbation the
should be further pursued along those lines.
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APPENDIX: AMPLITUDES

Here we present the results for the 8 leading-one-lo
amplitudes, i.e.O(e3) diagrams shown in Fig. 1 which ca
contribute5 to the axial coupling constantgA of a nucleon.
The Lagrangians needed for this calculation are discusse
the main text. We work in the Breit frame and choose
velocity vectorvm5(1,0,0,0). WithSm denoting the Pauli-
Lubanski spin-vector andeA

m the polarization 4-vector of an
external axial-vector source, one finds

Amp15 ih†t ihū~r 2!S•eAu~r 1!~gA
0ZN

SSE14mp
2 B91D0

2B31!

~A1!

Amp25Amp3501O~e4!

5To simplify the calculation we have made use of the gauge c
dition eA•q50.
02
.
,

n
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Amp45 i
~gA

0 !3

f p
2

h†t ih
]

]r 0
J2~r 0!U

r 050

3ū~r 2!S•eAu~r 1!S 1

2
1S2D ~A2!

Amp552 i
gA

0

~4p f p!2
h†

t i

2
hū~r 2!S•eAu~r 1!

34mp
2 S 16p2L1 ln

mp

l D ~A3!

Amp65Amp752 i
gA

0cA
2

D f p
2

8

3
h†t ih

d22

d21
ū~r 2!S•eAu~r 1!

3@J2~0!2J2~2D0!# ~A4!

Amp852 i
10g1cA

2

9 f p
2

h†t ihFd231
~d23!2

~d21!2G
3ū~r 2!S•eAu~r 1!

]

]r 0
J2~r 02D0!ur 050 . ~A5!

Explicit expressions for the functionJ2 are given in@31#. We
evaluate the amplitudes ind dimensions with induced regu
larization scalel. Any ultraviolet divergences appearing i
the limit d→4 are subsumed in

L5
ld24

16p2 F 1

d24
1

1

2
~gE212 ln 4p!G , ~A6!

wheregE denotes the Euler-Mascheroni constant.
Finally, we note that with the decoupling choice made

Eq. ~10! the nucleonZ-factor calculated to leading-one-loo
in SSE reads

ZN
SSE512

1

~4p f p!2 H F3

2
~gA

0 !214cA
2 Gmp

2

18mp
2 F16p2f p

2 B20
r ~l!1S 9

16
~gA

0 !21cA
2 D ln

mp

l G
216cA

2D0
2F lnS mp

2D0
D1A12

mp
2

D0
2

ln RG J 1O~e4!,

~A7!

whereR has been defined in Eq.~13!.
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