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Evaluation of two-loop self-energy basis integrals using differential equations
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I study the Feynman integrals needed to compute two-loop self-energy functions for general masses and
external momenta. A convenient basis for these functions consists of the four integrals obtained at the end of
Tarasov’s recurrence relation algorithm. The basis functions are modified here to include one-loop and two-
loop counterterms to render them finite; this simplifies the presentation of results in practical applications. I
find the derivatives of these basis functions with respect to all squared-mass arguments, the renormalization
scale, and the external momentum invariant, and express the results algebraically in terms of the basis. This
allows all necessary two-loop self-energy integrals to be efficiently computed numerically using the differential
equation in the external momentum invariant. I also use the differential equations method to derive analytic
forms for various special cases, including a four-propagator integral with three distinct nonzero masses.
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I. INTRODUCTION

The comparison of data with the predictions of the st
dard model, and candidate extensions of it, requires the
of accuracy obtained from two-loop and even higher-or
calculations. As a forward-looking example, if supersymm
try proves to be correct then the CERN Large Hadron C
lider will be able to measure the mass of the lightest neu
Higgs scalar boson to an accuracy of order 100 MeV, an
future linear collider will certainly do better@1#. In contrast,
even assuming perfect knowledge of all input parameters
present theoretical uncertainty is probably at least 10 tim
larger @2#.

The motivation for the present paper is to facilitate ro
tine calculations of self-energies, and thus pole masses
particles in any field theory. A key step in this process is
evaluation of the necessary two-loop integrals. It has beco
clear that analytical methods will only work in special cas
so practical numerical methods are needed. In this pap
will build on the many important advances that have be
made in this area@3–49#, with the goal of streamlining both
computations and presentations of results for self-energi

Tarasov@3# has provided a solution to the problem
reducing two-loop self-energy integrals to a minimal bas
such that any scalar integral can be represented as a l
combination of integrals of just four types, plus terms qu
dratic in one-loop integrals.~Other useful reduction algo
rithms are presented in@4# and @5#.! Tarasov’s algorithm re-
lies on the integration by parts technique@6# and repeated
use of recurrence relations involving integrals in differe
numbers of dimensions@7#. The two-loop scalar basis inte
grals remaining after applying this algorithm have the
pologies shown in Fig. 1.

They are the three-propagator ‘‘sunrise’’ diagramS, a dia-
gram T which is obtained from the sunrise diagram by d
ferentiating with respect to one of the squared masse
four-propagator diagramU, and the five-propagator ‘‘mas
ter’’ @11# diagramM.
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Consider a generic two-loop integralFi(s;x,y, . . . ),
which depends on the external momentum invariant

s52p2, ~1.1!

@using either a Euclidean or a signature (2111) metric#
and propagator squared massesx,y, . . . . For special values
of the arguments, it may be possible to computeFi analyti-
cally in terms of polylogarithms@50# or Nielsen’s general-
ized polylogarithms@51#. This requires@8# that there is no
three-particle cut of the diagram for which the three c
massesm1 ,m2 ,m3, the invariantŝ for the total momentum
flowing across the cut, and the four quantities

ŝ2~m16m26m3!2 ~1.2!

are all non-zero. Many analytical results for various su
special cases have been worked out@9–20#. There are also
expansions@21–25# in large and small values of the extern
momentum invariant, and near the thresholds and pseu
thresholds@26–33#. Integral representations@34–41# allow
for systematic numerical evaluations.

In this paper I rely instead on the differential equati
method@42–48# for evaluating the basis integrals. The ide
is to take advantage of the fact that the basis integralsFi
satisfy a set of coupled first-order linear ordinary different
equations ins, of the form

s
d

ds
Fi5(

j
Ci j F j1Ci . ~1.3!

Here Ci j and Ci are ratios of polynomials ins and the
squared masses.~If we include only genuine two-loop func
tions in the setFi , thenCi will also include terms linear and
quadratic in the one-loop functions, which are known an
lytically and present no problems.! The values of the func-
tionsFi are known analytically ats50. So one can integrate
the differential equations from the initial conditions ats50
©2003 The American Physical Society02-1
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FIG. 1. Feynman diagrams for the two-loop basis integrals.
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to the desired value ofs using well-known numerical tech
niques such as Runge-Kutta. For the integrals of the t
S,T,U, this has already been done and explained in deta
@45–48#. Here, I will extend these results to include the ma
ter integralM, and present results forS,T,U integrals in a
different basis which may be more convenient for some p
poses.

In order to find the differential equations ins that the basis
integrals satisfy, I proceed by first calculating the derivativ
of the basis integrals with respect to their propaga
squared-mass arguments. Using Tarasov’s recurrence
tions, these derivatives are expressed algebraically in te
of the basis functions, in the linear form:

]

]x
Fi5(

j
Kxi jF j1Kxi . ~1.4!

Equations~1.3! in s will then follow by elementary dimen-
sional analysis, using the known dependence of the b
functions on the renormalization scale. The derivatives of
basis functions with respect to the squared masses are
useful in their own right, since each derivative adds an ex
power of the corresponding propagator in the denomina
This provides a simplified algebraic algorithm for computi
integrals with arbitrary powers of the propagators presen
the master integral topology.

The rest of this paper is organized as follows. Section
defines the basis integrals, and gives conventions and n
tions. Section III presents the derivatives of the basis in
grals with respect to their squared-mass arguments. In
IV, I give the differential equations ins satisfied by the basis
functions. The numerical integration of the differential equ
tions nears50 relies on expansions for smalls, which are
provided in Sec. V. Section VI presents some analytic
pressions for the basis functions in special cases that
useful both for comparison with the literature and for pra
tical purposes. Section VII describes the numerical comp
tion of the basis integrals, and gives two examples.

II. CONVENTIONS AND SETUP

The loop functions in this papers are defined by sca
Euclidean momentum integrals regularized by dimensio
reduction tod5422e dimensions. Let us define a loop fa
tor
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C5~16p2!
m2e

~2p!d
5~2pm!2e/p2. ~2.1!

The regularization scalem is related to the renormalizatio
scaleQ ~in theMS scheme@52#, or theDR scheme@53# for
supersymmetric theories, or in theDR8 scheme@54# for
softly broken supersymmetric theories! by

Q254pe2gm2. ~2.2!

Logarithms of dimensionful quantities are always given
terms of

ln X[ ln~X/Q2!. ~2.3!

The loop integrals are functions of a common external m
mentum invariants as explained in the Introduction.~Note
that the sign convention is such that for a stable phys
particle with massm, there is a pole ats5m2.! Throughout
this paper,s should be taken to have an infinitesimal positi
imaginary part. Since all functions in any given equati
have the sames, it will not be included explicitly in the list
of arguments.

The one-loop self-energy integrals@55# are defined as:

A~x!5CE ddk
1

@k21x#
, ~2.4!

B~x,y!5CE ddk
1

@k21x#@~k2p!21y#
. ~2.5!

The two-loop integrals are defined as:

S~x,y,z!5C2E ddk

3E ddq
1

@k21x#@q21y#@~k1q2p!21z#
,

~2.6!

T~x,y,z!52
]

]x
S~x,y,z!, ~2.7!
2-2
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U~x,y,z,u!5C2E ddkE ddq
1

@k21x#@~k2p!21y#@q21z#@~q1k2p!21u#
, ~2.8!

M ~x,y,z,u,v !5C2E ddkE ddq
1

@k21x#@q21y#@~k2p!21z#@~q2p!21u#@~k2q!21v#
. ~2.9!
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I find it convenient to introduce modified integrals in whic
appropriate divergent parts have been subtracted. At o
loop order, define the finite ande-independent integrals:

A~x!5 lim
e→0

@A~x!1x/e#5x~ ln x21!, ~2.10!

B~x,y!5 lim
e→0

@B~x,y!21/e#

52E
0

1

dt ln@ tx1~12t !y2t~12t !s#. ~2.11!

At two loops, let

S~x,y,z!5 lim
e→0

@S~x,y,z!2Sdiv
(1)~x,y,z!2Sdiv

(2)~x,y,z!#,

~2.12!

where

Sdiv
(1)~x,y,z!5~A~x!1A~y!1A~z!!/e, ~2.13!

Sdiv
(2)~x,y,z!5~x1y1z!/2e21~s/22x2y2z!/2e ~2.14!

are the contributions from one-loop subdivergences and f
the remaining two-loop divergences, respectively. Also,

T~x,y,z!52
]

]x
S~x,y,z!. ~2.15!

Similarly, define

U~x,y,z,u!5 lim
e→0

@U~x,y,z,u!2Udiv
(1)~x,y!2Udiv

(2)#

~2.16!

where

Udiv
(1)~x,y!5B~x,y!/e, ~2.17!

Udiv
(2)521/2e211/2e ~2.18!

and, since the master integral is free of divergences,

M ~x,y,z,u,v !5 lim
e→0

M ~x,y,z,u,v !. ~2.19!

Thus, the bold-faced lettersA,B,S,T,U represent the origina
regularized integrals that diverge ase→0, while the ordinary
lettersA,B,S,T,U,M are finite and independent ofe by defi-
nition. Also, note that these integrals have various symm
tries that are clear from the diagrams:
07500
e-

m

-

S(x,y,z) is invariant under interchange of any two o
x,y,z.

T(x,y,z) is invariant undery↔z.
U(x,y,z,u) is invariant underz↔u.
M (x,y,z,u,v) is invariant under the interchange

(x,z)↔(y,u), and (x,y)↔(z,u), and (x,y)↔(u,z).
This leads to many obvious permutations on formu

given below, which will not be noted explicitly.
It is useful to define several related functions. The tw

loop vacuum integral is

I ~x,y,z!5S~x,y,z!us50 . ~2.20!

It is equal to (16p2)2 times the integralÎ (x,y,z) in @16# and
is precisely equal to the same function used in@20#. In the
present paper, the analytical expression is reviewed in S
VI and the recurrence relation for derivatives in Sec. V.

The integralT(x,y,z) has a logarithmic infrared diver
gence asx→0. This divergence must cancel from physic
quantities, but as a book-keeping device it is useful to hav
version of the integralT(0,x,y) with the infrared divergence
removed:

T̄~0,x,y!5 lim
d→0

@T~d,x,y!1B~x,y!ln d#. ~2.21!

Finally, for future reference we note that the topologyV in
Fig. 2 arises quite often.

When the vertical propagators are different, the result
the diagram is just the difference of twoU functions. How-
ever, when the vertical propagators have the same squ
massy, it is useful to define the corresponding integral

V~x,y,z,u!52
]

]y
U~x,y,z,u!. ~2.22!

In Sec. III, I will provide the formula expressingV(x,y,z,u)
algebraically in terms of the other basis integrals.

FIG. 2. The two-loop Feynman diagram forV(x,y,z,u).
2-3
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To illustrate the usefulness of the above definitions, c
sider the most general renormalizable theory of real sc
fields f i , governed by the interaction Lagrangian

L52
1

2
mi

2f i
22

l i jk

6
f if jfk2

l i jkn

24
f if jfkfn .

~2.23!

Here mi
2 , l i jk and l i jkn are the tree-level renormalize

masses and couplings. Then, defining the self-energy m
functionP i j (s) so that the pole masses and widthsM ,G are
or
d
s

t o
gu
ar
s

o
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the solutions1 for complexs5M22 iGM of the eigenvalue
equation

~s2mi
2!d i j 2P i j ~s!50, ~2.24!

one has:

P i j ~s!5
1

16p2
P i j

(1)~s!1
1

~16p2!2
P i j

(2)~s!1•••,

~2.25!

with
P i j
(1)~s!5

1

2
l i jkkA~mk

2!2
1

2
l iknl jknB~mk

2 ,mn
2!, ~2.26!

P i j
(2)~s!52

1

2
l iknl jmplkmrlnprM ~mk

2 ,mm
2 ,mn

2 ,mp
2 ,mr

2!1
1

2
l ikml jknlmprlnpr@U~mk

2 ,mm
2 ,mp

2 ,mr
2!

2U~mk
2 ,mn

2 ,mp
2 ,mr

2!#/@mm
2 2mn

2#1
1

2
@l ikml jknplmpnU~mk

2 ,mm
2 ,mn

2 ,mp
2!1~ i↔ j !#

2
1

6
l ikmnl jkmnS~mk

2 ,mm
2 ,mn

2!1
1

4
l ikml jnplkmnpB~mk

2 ,mm
2 !B~mn

2 ,mp
2!

1
1

4
l i jkmlkmnnA~mn

2!@A~mk
2!2A~mn

2!#/@mk
22mn

2#1
1

2
l ikml jknlmnppA~mp

2!@B~mk
2 ,mm

2 !

2B~mk
2 ,mn

2!#/@mn
22mm

2 #1
1

4
l i jkmlknplmnp@ I ~mk

2 ,mn
2 ,mp

2!2I ~mm
2 ,mn

2 ,mp
2!#/@mm

2 2mk
2#, ~2.27!
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in which the MS counterterms have been included.~Note
that for degenerate masses, the functionV will appear, as
well as derivatives of the functionsA,B,I .! Of course, for
theories involving fermions and vectors, things are m
complicated, but the basis functions as defined above ten
neatly organize the counterterms, at least in ma
independent renormalization schemes.

In the following, a prime on a squared-mass argumen
a function stands for a derivative with respect to that ar
ment. This notation is particularly convenient when there
many derivatives or when some of the arguments are
equal after differentiation. Thus, for example,

f ~x9,x,y8![ lim
z→x

F ]3

]x2]y
f ~x,z,y!G . ~2.28!

Several kinematic shorthand notations used through
this paper are:

Dxyz5x21y21z222xy22xz22yz, ~2.29!

Dsxyz5s424s3~x1y1z!1s2@4~x1y1z!212Dxyz#

2s@64xyz14~x1y1z!Dxyz#1Dxyz
2 , ~2.30!
e
to

s-

f
-
e
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ut

D5s2v1s@v~v2u2x2y2z!1~x2y!~z2u!#

1~ux2yz!~u1x2y2z!1v~x2z!~y2u!.

~2.31!

III. DERIVATIVES OF BASIS INTEGRALS WITH
RESPECT TO SQUARED-MASS ARGUMENTS

In this section, I present the results of taking derivativ
of the basis integrals with respect to squared-mass a
ments. These can be obtained straightforwardly, if tediou
from Tarasov’s algorithm. The necessary recurrence relat
have been implemented by Mertig and Scharf in the co
puter algebra programTARCER @49#, which was used to de
rive or check most of the results in this section. The resu
below for ~the equivalents of! the S and T functions have
already been given in@45#.

1This equation should be solved in the Taylor series sense;
self-energy and its derivatives are first evaluated only fors with an
infinitesimal positive imaginary part. That data is then used to c
struct a Taylor series expansion for complexs. This is necessary
because the imaginary part of the pole mass is negative, while
standard convention~as here! is that the infinitesimal imaginary par
of the physical-sheets is positive.
2-4
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For the one-loop self-energy integral, one has:

]

]x
B~x,y!5

1

Dsxy
@~x2y2s!„B~x,y!22…

1~x1y2s!ln x22y ln y#. ~3.1!

Derivatives of the sunrise functionS are trivial, in the sense
that they are already included in the basis:
07500
]

]x
S~x,y,z!52T~x,y,z!. ~3.2!

For theT function, there are two distinct derivatives. First

]

]x
T~x,y,z!5

1

xDsxyz
@kTxSS~x,y,z!1kTxT1T~x,y,z!

1kTxT2T~y,x,z!1kTxT3T~z,x,y!1kTx#,

~3.3!

where the coefficient functions are
g

eynman
kTxS522s316s2~x1y1z!1s@2Dxyz28~x21y21z2!#12~x1y1z!Dxyz132xyz ~3.4!

kTxT152x~x2s!@s222s~x1y1z!1Dxyz18yz# ~3.5!

kTx5$5s4/121s3x@ ln x227/4#1s2x@ ln x~y ln y1z ln z23x27y27z!151x/4153~y1z!/4#

1sx@ ln x$2~z2x2y!y ln y12~y2x2z!z ln z13x2110x~y1z!111~y21z2!214yz%

241x2/42103x~y1z!/4111yz/6#1x ln x$y ln y@~x2y!212z~x1y!23z2#

1z ln z@~x2z!212y~x1z!23y2#1x~9y219z2226yz2x2!23x2~y1z!25~y1z!~y2z!2%

13x2@~x1y1z!224~y2z!2#%1$~x↔y!%1$~x↔z!%, ~3.6!

andkTxT2 is obtained fromkTxT1 by (x↔y), andkTxT3 is obtained fromkTxT1 by (x↔z). The symmetries of the precedin
expressions imply that

x
]2

]x2
S~x,y,z!5y

]2

]y2
S~x,y,z!, ~3.7!

an identity which seems somewhat remarkable since it is not immediately obvious from the symmetries of the F
diagram. Whenz50, this simplifies to:

xS~x9,y,0!5yS~x,y9,0!5B~x,y!. ~3.8!

The other derivative of theT function is given by

]

]y
T~x,y,z!5

1

Dsxyz
@kTySS~x,y,z!1kTyT1T~x,y,z!1kTyT2T~y,x,z!1kTyT3T~z,x,y!1kTy#, ~3.9!

where

kTyS524s218s~x1y2z!112z228z~x1y!24~x2y!2 ~3.10!

kTyT152s31s2~z13y2x!1s~5x216xy23y2214xz12yz1z2!23x2~x1z!1~y2z!3

17x2y17xz225xy222xyz ~3.11!

kTyT3528s2z18sz~x1y!18z2~z2x2y! ~3.12!

kTy5H s3F1

2
ln x ln y22 ln x1

11

4 G1s2@~2 ln x23!z ln z23~x1z/2!ln x ln y1~8x16y12z!ln x220x1z#

1s@~3x21xy12xz13z2/2!ln x ln y14z~x2y2z!ln x ln z1z~10z24x!ln z12~z223y225x224xy24xz

12yz!ln x147x2/2125xy/2111xz269z2/4#1„x2~y1z!2x325xyz1xz22z3/2…ln x ln y12z„y21z223x2

12x~y1z!22yz…ln x ln z1z~10x2210xy14xz27z2!ln z12~2x323x2y1y317x2z18xyz23y2z28xz2

13yz22z3!ln x19~xz22x31x2y23x2z2xyz13z3/2!J 1~x↔y!, ~3.13!
2-5
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andkTyT2 is obtained fromkTyT1 by (x↔y). For the special
case of a vanishing first argument, one finds

]

]x
T̄~0,x,y!5kT̄SS~0,x,y!1kT̄T̄T̄~0,x,y!1kT̄T1T~x,0,y!

1kT̄T2T~y,0,x!1kT̄ ~3.14!

where

kT̄S516y~y2x2s!/Dsxy
2 24/Dsxy ~3.15!

kT̄T̄5~x2y2s!/Dsxy ~3.16!

kT̄T158xy~y2x23s!/Dsxy
2 2~s13x1y!/Dsxy

~3.17!

kT̄T258y@2s21sx2yx1y2#/Dsxy
2 ~3.18!

kT̄5
2y

Dsxy
2

†s@4x ln x~ ln y21!1~4y28x!ln y115x

27y#1~x2y!@4x ln x~32 ln y!1~8x14y!ln y

229x27y#‡1@s~11/222 ln x!12y ln y~ ln x23!

1~4x22y!ln x29x113y#/Dsxy. ~3.19!

The derivatives of theU functions are:

]

]x
U~x,y,z,u!5

1

Dsxy
@~x2y2s!U~x,y,z,u!12zT~z,u,x!

12uT~u,x,z!1~3x2y1s!T~x,z,u!

14S~x,z,u!22I ~y,z,u!22„A~u!1A~x!

1A~z!…12~x1z1u!2s/2# ~3.20!

]

]z
U~x,y,z,u!5

1

Dyzu
†~z2y2u!U~x,y,z,u!1~u1z

2y!T~z,x,u!22uT~u,x,z!1u1y2z

1@~u1z2y!ln z12u~12 ln u!12y
07500
22z#B„x,y…‡ ~3.21!

]

]y
U~x,y,z,u!5kUUU~x,y,z,u!1kUT1T~x,z,u!

1kUT2T~u,x,z!1kUT3T~z,x,u!

1kUS@S~x,z,u!2„A~x!1A~z!1A~u!

1I ~y,z,u!…/2#1kUBB~x,y!1kU ~3.22!

where the coefficient functions in the last expression are

kUU5~y2x2s!/Dsxy1~y2z2u!/Dyzu21/y ~3.23!

kUT152x~s2x!/yDsxy ~3.24!

kUT25u~s2x2y!/yDsxy1u~y1z2u!/yDyzu ~3.25!

kUS52~s2x2y!/yDsxy ~3.26!

kUB5@~y1z2u!u ln u1~y1u2z!z ln z

1~u2z!22y2#/yDyzu ~3.27!

kU5@2s2/41s~z1u15x/41y/4!2~z1u1x!~x

1y!#/yDsxy1~u1z2y!/Dyzu ~3.28!

andkUT3 is related tokUT2 by (z↔u). Some care is neede
in treating cases where the denominatorDyzu threatens to
vanish. One finds by taking the limits that

U~x,0,y,y8!5T~y,y8,x!/22T~y8,y,x!/22B~0,x!/2y
~3.29!

U~x,y,y8,0!5@ T̄~0,x,y!2T~y,0,x!2B~x,y!ln y#/2y
~3.30!

U~x,y8,y,0!52U~x,y,y8,0!1~22 ln y!B~x,y8!.
~3.31!

There are two types of derivatives of the master integ
function M. First,
]

]x
M ~x,y,z,u,v !5kMxU1U~x,z,u,v !1kMxU2U~y,u,z,v !1kMxU3U~z,x,y,v !1kMxU4U~u,y,x,v !

1kMxSFS~x,u,v !1S~y,z,v !1
s

2
B~x,z!B~y,u!2

1

2
I ~x,y,v !2

1

2
I ~z,u,v !G1kMxT1T~x,u,v !

1kMxT2T~y,z,v !1kMxT3T~z,y,v !1kMxT4T~u,x,v !1kMxT5@T~v,x,u!1T~v,y,z!#

1kMxB1B~x,z!1kMxB2B~y,u!1kMx ~3.32!

where the coefficient functions are

kMxU15
z

DsxzD
@s21s~2v2x2y2z2u!1~x2z!~y2u!# ~3.33!
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kMxU252u/D ~3.34!

kMxU35
v2u

D
1

1

DsxzD
@s~vx1vz12xz2yz2ux!1~x2z!~ux2vx1vz2yz!#

1
1

DxyvD
@sv~v2x2y!2uvx1ux22uxy12vxy2vyz2xyz1y2z# ~3.35!

kMxU45
y

DxyvD
@2sv2uv1v22ux2vx1uy2vy2vz1xz2yz# ~3.36!

kMxS5
2

DsxzD
@s~u2z2v !2ux1vx2uz2vz2xz12yz1z2# ~3.37!

kMxT15xkMxS/22kMxU3 ~3.38!

kMxT25ykMxS/22kMxU4 ~3.39!

kMxT35zkMxS/22kMxU1 ~3.40!

kMxT45ukMxS/22kMxU2 ~3.41!

kMxT55vkMxS/21
v

DxyvD
@s~v2x1y!1u~x1y2v !1y~x2y22z1v !# ~3.42!

kMxB15
u

D
ln u2kMxU4ln y1~kMxT52vkMxS/2!ln v

1
2

DxyvD
@sv~x1y2v !1uvx2ux21uxy22vxy1vyz1xyz2y2z# ~3.43!

kMxB25
2

D
~v1z!2kMxU3ln x2kMxU1ln z1~kMxT52vkMxS/2!ln v22kMxU4

1
2

DsxzD
@s~vx2ux2uz13vz13xz22yz1z2!1~x2z!2~u2v2z!# ~3.44!

kMx52kMxS~x ln x1y ln y1z ln z1u ln u12v ln v !/21
1

2D
~u1z1v22y!

1
1

DxyvD
†sv~x2y2v !1v~ux1uy23xy2y212yz!1~y2u!~x2y!2]

1
1

2DsxzD
@s@4u~u1v1y!28v213ux23vx24vy2uz29vz2xz26yz23z2#18v2~x2z!

1x2~3v23u25z!1z2~u13v12x112y!24u2~x1z!14~v1z2u!xy16~2y22u2x!vz

24uvx214uxz14uyz18zy213z3
‡. ~3.45!

Finally,

]

]v
M ~x,y,z,u,v !5kMvU1U~x,z,u,v !1kMvU2U~y,u,z,v !1kMvU3U~z,x,y,v !1kMvU4U~u,y,x,v !

1kMvSFS~x,u,v !1S~y,z,v !1
s

2
B~x,z!B~y,u!2

1

2
I ~x,y,v !2

1

2
I ~z,u,v !G1kMvT1T~x,u,v !

1kMvT2T~y,z,v !1kMvT3T~z,y,v !1kMvT4T~u,x,v !1kMvT5@T~v,x,u!1T~v,y,z!#1kMvB1B~x,z!

1kMvB2B~y,u!1kMv ~3.46!
075002-7
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where

kMvU15
z

DuzvD
@s~z2u2v !1u22uv12ux

2uy1vy2uz2yz# ~3.47!

kMvS522/D ~3.48!

kMvT152kMvU32x/D ~3.49!

kMvT552~s1v !/D1kMvU11kMvU21kMvU31kMvU4
~3.50!

kMvB15~kMvT51v/D!ln v2kMvU4ln y2kMvU2ln u12s/D

22kMvU122kMvU3 ~3.51!

kMv5
1

D
@x ln x1y ln y1z ln z1u ln u12v ln v

22~x1y1z1u!25v1s/2#2kMvT5 . ~3.52!

HerekMvU2 , kMvT2 , kMvB2 are each respectively related
kMvU1 , kMvT1 , kMvB1 by (x,z)↔(y,u). Similarly, kMvU3 ,
kMvT3 are each related tokMvU1 , kMvT1 by (x,y)↔(z,u),
and kMvU4 , kMvT4 are related to kMvU1 , kMvT1 by
(x,y)↔(u,z).

By repeatedly applying the identities in this section, o
may obtain the results for two-loop Feynman self-energy
tegrals with arbitrary powers of propagators in the deno
nator. An important example is that Eqs.~3.22! and ~3.31!
can be used to find the integralV(x,y,z,u) defined in Eq.
~2.22! and corresponding to the topology shown in Fig. 2

IV. DIFFERENTIAL EQUATIONS IN THE EXTERNAL
MOMENTUM INVARIANT s

In this section, I present results for the derivatives of
basis functions with respect tos. These are most easily ob
tained by dimensional analysis, using the facts thatB, S, T,
T̄, U, and M have mass dimensions 0, 2, 0, 0, 0, and22
respectively. Since the only dimensionful quantities on wh
they depend areQ2, s, and the propagator masses, we ha

(
a5Q2,s,x,y

a
]

]a
B~x,y!50, ~4.1!

(
a5Q2,s,x,y,z

a
]

]a
S~x,y,z!5S~x,y,z!, ~4.2!

(
a

a
]

]a
T~x,y,z!50, ~4.3!

(
a

a
]

]a
T̄~0,x,y!50, ~4.4!

(
a

a
]

]a
U~x,y,z,u!50, ~4.5!

(
a

a
]

]a
@sM~x,y,z,u,v !#50, ~4.6!
07500
e
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where in each casea is summed overQ2, s, and the appro-
priate x,y, . . . . Section III already gave the derivative
with respect to the squared masses. The derivatives with
spect to the renormalization scale are easily obtained f
the definitions in Sec II:

Q2
]

]Q2
A~x!52x, ~4.7!

Q2
]

]Q2
B~x,y!51, ~4.8!

Q2
]

]Q2
S~x,y,z!5A~x!1A~y!

1A~z!2x2y2z1s/2, ~4.9!

Q2
]

]Q2
T~x,y,z!52A~x!/x, ~4.10!

Q2
]

]Q2
T̄~0,x,y!512B~x,y!, ~4.11!

Q2
]

]Q2
U~x,y,z,u!511B~x,y!, ~4.12!

Q2
]

]Q2
M ~x,y,z,u,v !50. ~4.13!

Now, combining Eqs.~3.1!, ~4.1!, and~4.8!, one finds

s
d

ds
B~x,y!5

1

Dsxy
@„s~x1y!2~x2y!2

…B~x,y!1~s2x

1y!A~x!1~s1x2y!A~y!1s~x1y2s!#.

~4.14!

Similarly, combining Eqs.~3.2!, ~4.2!, and~4.9!, one gets the
result for the sunrise function

s
d

ds
S~x,y,z!5S~x,y,z!1xT~x,y,z!1yT~y,x,z!

1zT~z,x,y!2A~x!2A~y!2A~z!1x1y1z

2s/2, ~4.15!

and, from Eqs.~3.3!, ~3.9!, ~4.3!, and~4.10!:

s
d

ds
T~x,y,z!5cTSS~x,y,z!1cTT1T~x,y,z!1cTT2T~y,x,z!

1cTT3T~z,x,y!1cT ~4.16!

where
2-8
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cTS5
2

Dsxyz
@s32s2~3x1y1z!1s~3x22y22z222xy22xz110yz!1~y1z2x!Dxyz# ~4.17!

cTT15
1

Dsxyz
†s3@2x1y1z#2s2@6x213y213z213xy13xz12yz#1s@6x313y313z3

25x2~y1z!24x~y21z2!23yz~y1z!140xyz#1x~y1z2x!Dxyz2Dxyz
2

‡ ~4.18!

cTT25
y

Dsxyz
@3s31s2~3z27x25y!1s~5x21y227z226xy12xz114yz!1~y1z2x!Dxyz# ~4.19!

cT5
1

Dsxyz
$s4@~ ln x!/229/8#1s3@2y ln x ln y2~2y15x/2!ln x1y ln y143x/8121y/4#

1s2@y~x13y1z!ln x ln y23yz ln y ln z1~3xy19x2/2!ln x1y~x25y111z!ln y

275x2/8221xy/215y2/4269yz/4#1s@y~x212xy23y2210xz12yz1z2!ln x ln y12yz~x12y!ln y ln z

1~4x2y1xy212y322y2z25xyz27x3/2!ln x1y~7y225x222xy114xz222yz29z2!ln y

1~57x3/227x2y213xy2237y3125xyz1181y2z!/4#1Dxyz@y~y2x2z!ln x ln y1yz ln y ln z

1~x22xy2y21yz!ln x13y~x2y2z!ln y22x22xy15y214yz#%1~y↔z! ~4.20!

andcTT3 is obtained fromcTT2 by the interchange (y↔z). The equivalents of Eqs.~4.15! and~4.16! were found earlier in@45#.
For theT̄ function, I find from Eqs.~3.14!, ~4.4!, and~4.11!,

s
d

ds
T̄~0,x,y!5cT̄T̄T̄~0,x,y!1cT̄T1T~x,0,y!1cT̄T2T~y,0,x!1cT̄SS~0,x,y!1cT̄ ~4.21!

where

cT̄T̄5@s~x1y!2~x2y!2#/Dsxy ~4.22!

cT̄T15x~3s1x19y!/Dsxy18xy@s~5x1y!2~x2y!2#/Dsxy
2 ~4.23!

cT̄S52~s1x1y!/Dsxy132sxy/Dsxy
2 ~4.24!

cT̄5
1

Dsxy
2

†29s4/81s3x~ ln x121/4!1s2x@23y ln x ln y1~11y25x!ln x15x/4269y/4#

1sx@4xy ln x ln y1~7x2222xy29y2!ln x237x2/41181xy/4#

1~x2y!2x@y ln x ln y23~x1y!ln x15x14y#‡1~x↔y!, ~4.25!

andcT̄T2 is obtained fromcT̄T1 by x↔y.
The differential equation for theU function, obtained from Eqs.~3.20!, ~3.21!, ~3.22!, ~4.5!, and~4.12!, is

s
d

ds
U~x,y,z,u!5

1

Dsxy
„@s~x1y!2~x2y!2#U~x,y,z,u!1x~y2x23s!T~x,u,z!1~y2x2s!@2S~x,z,u!1uT~u,x,z!

1zT~z,x,u!2I ~y,z,u!1x~22 ln x!1z~22 ln z!1u~22 ln u!2s/4#…. ~4.26!

The equivalent of this result was obtained earlier in@46#.
For the master integralM, I find from Eqs.~3.32!, ~3.46!, ~4.6!, and~4.13! that:
075002-9
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d

ds
@sM~x,y,z,u,v !#5s@cMU1U~x,z,u,v !1cMU2U~y,u,z,v !1cMU3U~z,x,y,v !1cMU4U~u,y,x,v !#1cMSFS~x,u,v !

1S~y,z,v !1
s

2
B~x,z!B~y,u!2

1

2
I ~x,y,v !2

1

2
I ~z,u,v !G1cMT1T~x,u,v !1cMT2T~y,z,v !

1cMT3T~z,y,v !1cMT4T~u,x,v !1cMT5@T~v,x,u!1T~v,y,z!#1cMB1B~x,z!1cMB2B~y,u!1cM

~4.27!
op

a
n
n
h

ons
re
of

or-
where the coefficient functions are

cMU15
z

DsxzD
@s~y2x2v !1x212ux2vx2xy1vz2xz

2yz# ~4.28!

cMS52v/D22~cMU11cMU21cMU31cMU4!
~4.29!

cMT15x~v1z2u!/D1xcMS/222xcMU12~x1z!cMU3
~4.30!

cMT55sv/D1vcMS/2 ~4.31!

cMB15sv~ ln v22!/D1scMU4~22 ln y!1scMU2~22 ln u!
~4.32!

cM5@~x2y!~u2z!2~3s1x1y1z1u!v/2#/D

1cMS@2v1x1y1z1u2v ln v2~x ln x1y ln y

1z ln z1u ln u!/2#1@~3x1z!cMU11~3y

1u!cMU21~3z1x!cMU31~3u1y!cMU4#/2.

~4.33!

Here, the coefficient functionscMU2 , cMT2 , cMB2 are each
respectively related tocMU1 , cMT1 , cMB1 by (x,z)↔(y,u).
Similarly, cMU3 , cMT3 are each related tocMU1 , cMT1 by
(x,y)↔(z,u), andcMU4 , cMT4 are related tocMU1 , cMT1 by
(x,y)↔(u,z).

V. EXPANSIONS FOR SMALL s

It is often useful to have expressions for the two-lo
integral functions expanded for smalls. This provides the
necessary initial data for integrating the differential equ
tions numerically starting froms50. The expansions, give
in terms of the analytically calculable vacuum functio
I (x,y,z), can be obtained by trying power series forms in t
differential equations of the previous section.

For example, for the one-loop function, one finds:
07500
-

e

B~x,y!5
A~y!2A~x!

x2y
1

s

2~x2y!3
@x22y212xy ln~y/x!#

1
s2

6~x2y!5
@~x2y!~x21y2110xy!16xy~x

1y!ln~y/x!#1•••, ~5.1!

B~x,x!52 ln x1
s

6x
1

s2

60x2
1•••. ~5.2!

For the two-loop functions, the most compact expressi
involve derivatives of the vacuum integral. It is therefo
useful to have a recurrence relation for taking derivatives
the vacuum functionI (x,y,z):

I ~x8,y,z!5
1

Dxyz
@~x2y2z!I ~x,y,z!

1~x2y1z!A~x!A~y!/x

1~x1y2z!A~x!A~z!/x22A~y!A~z!

1~y1z2x!@A~x!1A~y!1A~z!#

1x22~y1z!2#, ~5.3!

I ~x8,x,0!52~ ln x21!2/2, ~5.4!

I ~x8,0,0!52~ ln x21!2/22z~2!. ~5.5!

These follow immediately from the analysis in@16#. The
function I (x,y,z) obeys

xI~x8,y,z!1yI~x,y8,z!1zI~x,y,z8!

5I ~x,y,z!2A~x!2A~y!2A~z!1x1y1z,

~5.6!

xI~x9,y,z!5yI~x,y9,z!. ~5.7!

These identities make the presentation of the following f
mulas quite non-unique.

For the expansion of the sunrise integral, one finds
2-10
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S~x,y,z!5I ~x,y,z!1sF x

2
I ~x9,y,z!2

1

8G
1s2F x

6
I ~x-,y,z!1

x2

12
I ~x-8,y,z!G1•••,

~5.8!

S~0,x,x!5I ~0,x,x!1s@2~ ln x!/221/8#1s2/36x2

1•••. ~5.9!

Taking the derivative with respect tox yields
07500
T~x,y,z!52I ~x8,y,z!1sF2
1

2
I ~x9,y,z!2

x

2
I ~x-,y,z!G

1s2F2
1

6
I ~x-,y,z!2

x

3
I ~x-8,y,z!

2
x2

12
I ~x-9,y,z!G1•••, ~5.10!

T~x,0,x!5~12 ln x!2/21s/4x1s2/72x21•••. ~5.11!

The infrared-safeT̄ function has the expansion
T̄~0,x,y!5
1

~x2y!2
@~x1y!I ~0,x,y!12A~x!A~y!22xA~x!22yA~y!1~x1y!2#

1
s

2~x2y!4
@4xyI~0,x,y!1~x1y!$2A~x!A~y!1~x23y!A~x!1~y23x!A~y!14xy%#

1
s2

12~x2y!6
@24xy~x1y!I ~0,x,y!112~x1y!2A~x!A~y!1~2x3120x2y242xy2228y3!A~x!

1~2y3120y2x242yx2228x3!A~y!23~x41y4!18xy~x21y2!186x2y2#1•••, ~5.12!

T̄~0,x,x!52
1

2
ln2x2 ln x2

3

2
1

s

36x
@6 ln x11#1

s2

900x2
@15ln x219#1•••. ~5.13!

For theU integral,

U~x,y,z,u!5
1

y2x
@ I ~x,z,u!2I ~y,z,u!#1sF x

~y2x!3
„I ~x,z,u!2I ~y,z,u!…1

x

~y2x!2
I ~x8,z,u!1

x

2~y2x!
I ~x9,z,u!G

1s2Fx~x1y!

~y2x!5
„I ~x,z,u!2I ~y,z,u!…1

x~x1y!

~y2x!4
I ~x8,z,u!1

x~x1y!

2~y2x!3
I ~x9,z,u!1

x~x1y!

6~y2x!2
I ~x-,z,u!

1
x2

12~y2x!
I ~x-8,z,u!G1•••, ~5.14!

U~x,x,z,u!52I ~x8,z,u!1sF2
x

6
I ~x-,z,u!G1s2F2

x

24
I ~x-8,z,u!2

x2

60
I ~x-9,z,u!G1•••. ~5.15!

For the master integral,

M ~x,y,z,u,v !5
1

~x2z!~y2u!
@ I ~x,y,v !2I ~x,u,v !2I ~z,y,v !1I ~z,u,v !#1

s

4~y2u!2~x2z!2
FH F4u14z2x2y22v

1
4x~y2u!

x2z
1

4y~x2z!

y2u G@ I ~x,y,v !2I ~x,u,v !#1~u2y!I ~x,u,v !1v~x1y2v !~x1y!I ~x,y,v9!1v~uv

1vx22xy22uz12yz2u22x2!I ~x,u,v9!12xy~x1y!I ~x8,y8,v !22xu~x1u!I ~x8,u8,v !1x~v2x

23y!I ~x8,y,v !1y~v2y23x!I ~x,y8,v !1x~x14y2u2v !I ~x8,u,v !1u~u14z2x2v !I ~x,u8,v !J
1$~x,y!↔~z,u!%G1•••, ~5.16!
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M ~x,y,x,u,v !5
1

y2u
@ I ~x8,y,v !2I ~x8,u,v !#1sF2

u1y

24xyu
1

u1y

2~y2u!3
@ I ~x8,y,v !2I ~x8,u,v !#2

1

2~y2u!2
@uI~x8,u8,v !

1yI~x8,y8,v !#1
~u1y!

24yu~y2u!
@u~x1u2v !I ~x9,u8,v !2y~x1y2v !I ~x9,y8,v !1~v12u2x!I ~x9,u,v !

2~v12y2x!I ~x9,y,v !#2
x

12yu
@uI~x-,u,v !1yI~x-,y,v !#G1•••, ~5.17!

M ~x,y,x,y,v !5I ~x8,y8,v !1
s

24xy
@516vI ~v9,x,y!12v~4v2x2y!I ~v-,x,y!1v2~v2x2y!I ~v-8,x,y!#1•••. ~5.18!
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In theories with massless vector bosons, special cases
M (x,y,x,0,x) can arise, in which denominators implicit i
the previous expressions threaten to vanish. However, th
cases are easily obtained from the preceding, by noting
e.g.uI(x,y,u8) vanishes asu→0, sinceI (x,y,u8) diverges
only logarithmically in that limit.

VI. ANALYTICAL RESULTS

As noted in the Introduction, for favorable mass and m
mentum configurations the basis integrals can be, and
many cases have been@9–20#, computed analytically. The
results fors50 were given in the previous section. I will no
consider other special values ofs in this section; they do no
typically arise in mass-independent~as opposed to on-shel!
renormalization schemes. The remaining cases involve v
ishing squared masses, which arise in theories with unbro
gauge symmetries, and as approximations to theories
large mass hierarchies. Results for these cases can be
tained by analytically integrating the differential equatio
presented in Sec. IV, with the initial conditions of Sec.
taking due care with the branch cuts. In this section, I w
review results obtained in this manner, most of which ha
already been derived by dispersion relation and other m
ods.

To compactify the notation, define the quantities

tabc5
a1b2c1Dabc

1/2

2a
, r abc5

a1b2c2Dabc
1/2

2a
.

~6.1!

They obey

tabc5
1

12tbca
512

1

tcab
512r acb5

1

r bac
5

r cba

r cba21
.

~6.2!

These are exactly the changes of variables that occu
dilogarithm functional identities@50#, making the presenta
tion of formulas below highly non-unique. To resolve bran
cuts in the following consistent with the standard conve
tions for polylogarithms@50#, it is crucial thats is always
given an infinitesimal positive imaginary part.
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For the one-loop formulas, the well-known result is:

B~x,y!522r sxyln x2tsyxln y1~Dsxy
1/2 /s!ln~ txys!,

~6.3!

B~0,x!522 ln x1~x/s21!ln~12s/x!, ~6.4!

B~0,0!522 ln~2s!. ~6.5!

The two-loop vacuum integral is given b
@10,15,16,18,20,22,45#

I ~x,y,z!5
1

2
@~x2y2z!ln y ln z1~y2z2x!ln x ln z

1~z2x2y!ln x ln y#12~x ln x1y ln y1z ln z!

2
5

2
~x1y1z!1Dxyz

1/2 FLi2~r xyz!1Li2~r xzy!

2 ln~r xyz!ln~r xzy!1
1

2
ln~y/x!ln~z/x!2z~2!G

~6.6!

when x.y,z, and otherwise by the appropriate symme
permutation of the arguments. Some special limits are

I ~0,x,y!5~x2y!@Li2~y/x!2 ln~x2y!ln~x/y!1~ ln x!2/2

2z~2!#1x ln x~22 ln y!12y ln y25~x1y!/2,

~6.7!

I ~0,x,x!5x@2 ln2x14ln x25#, ~6.8!

I ~0,0,x!5x@2~ ln x!2/212 ln x25/22z~2!#. ~6.9!

When the masses are all very small, the two-loop ba
integrals defined in this paper are
2-12
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S~0,0,0!5
13s

8
2

s

2
ln~2s!, ~6.10!

T̄~0,0,0!52
1

2
@ ln~2s!21#2, ~6.11!

U~0,0,0,0!5
1

2
@ ln~2s!23#211, ~6.12!

M ~0,0,0,0,0!526z~3!/s. ~6.13!

This should provide a useful quick comparison betwe
other conventions and the ones used here.

For theSandT functions with one vanishing mass and t
others arbitrary, one finds@18#:

S~0,x,y!5~y2x!@Li2~ txsy!1Li2~r xsy!#

2y~12x/s!ln~ txys!ln~r xys!

1@~x1y1s!Dsxy
1/2 /4s#@ ln~ txys!2 ln~r xys!#

1~y2x!@ ln x#2/22y ln x ln y1~2x2s/4!ln x

1~2y2s/4!ln y1@~y22x2!/4s# ln~x/y!22x

22y113s/8, ~6.14!
07500
n

T~x,0,y!5Li2~ txsy!1Li2~r xsy!1 ln~r xys!@y ln~r yxs!

1Dsxy
1/2 #/s1r syxln~y/x!1

1

2
@ ln x21#221.

~6.15!

Here I have deliberately chosen a presentation that does
make manifest2 the symmetry underx↔y. This makes the
formulas slightly smaller, and also eases the taking of
limit y→0:

S~0,0,x!52xLi2~s/x!2x~ ln x!2/21~2x2s/2!ln x

1@~x22s2!/2s# ln~12s/x!113s/82@21z~2!#x,

~6.16!

T~x,0,0!5Li2~s/x!1~ ln x!2/22 ln x1~12x/s!ln~12s/x!

21/21z~2!. ~6.17!

The analytical expression for theT̄ integral evidently can-
not be obtained from those forS,T. By integrating the dif-
ferential equation~4.21!, I find
ceding
T̄~0,x,y!5~122tsxy!Li2~ txsy!1~122r sxy!Li2~r xsy!1~2Dsxy
1/2 /s!Li2~2xrxys/Dsxy

1/2 !1
Dsxy

1/2

s
@$ ln~xtxys/Dsxy

1/2 !12 ln~r xys!%
2

1~12 ln y!ln~r xys!12 ln~y/x!ln~Dsxy
1/2 /x!1$5ln x ln y23 ln2x22 ln2y1 ln~x/y!%/212z~2!#

1@~s2x22Dsxy
1/2 !/s# ln2~r xys!1~12x/s!ln~x/y!ln~r xys!1~12 ln x!@~x/s2y/s!ln~x/y!2~12 ln y!#/2, ~6.18!

T̄~0,0,x!52Li2~s/x!2~ ln x!2/21 ln x1~12x/s!ln~12s/x!$12 ln x2 ln~12s/x!%21/22z~2!. ~6.19!

Useful cases for theU andV integrals that arise in unbroken gauge theories are compactly written in terms of the pre
integrals:

U~x,y,y,0!52T~y,0,x!1~22 ln y!B~x,y!11, ~6.20!

V~x,y,y,0!5
1

2y
@ T̄~0,x,y!2T~y,0,x!2 ln yB~x,y!#1~ ln y22!B~x,y8!. ~6.21!

The last integral was obtained using Eq.~3.31! and the definition~2.22!. Equivalent results were found in@12#.
Some other special limits of theU integral that can be quickly obtained using the differential equation method are:

U~x,0,0,0!5Li2~s/x!1~12x/s!ln~12s/x!@ ln x231 ln~12s/x!#1~ ln x!2/223 ln x111/21z~2!, ~6.22!

U~0,x,0,0!5~12x/s!$Li2~s/x!1@ ln~2s!22# ln~12s/x!%2 ln~2s!1~ ln x22!2/217/21z~2!, ~6.23!

U~0,0,0,x!52~11x/s!Li2~s/x!2~ ln x!2/222 ln x1~ ln x21!ln~2s!22~12x/s!ln~12s/x!111/22z~2!. ~6.24!

Equivalent results were obtained in@17#.
By integrating the differential equation~4.26! with the first argument vanishing, I find:

2Of course, the manifest symmetry underx↔y can be restored using dilogarithm identities.
2-13



STEPHEN P. MARTIN PHYSICAL REVIEW D68, 075002 ~2003!
U~0,z,x,y!5~y2x!@Li2~ txsy!1Li2~r xsy!#/z2~y/s!ln~ txys!ln~r xys!1~12z/s!$~ tzxy21/2!†Li2~12txysr yxz!

1Li2~12r xysr yxz!2Li2~ tyzx!2Li2~ txzy!2 ln~ txyz!ln~12s/z!2h~ txyz,r yxs!ln~12txysr yxz!

2h~ txyz,tyxs!ln~12r xysr yxz!2h~ txyz,1/txyz!@ ln~ tyzx!1 ln~ txzy!#‡1~r zxy21/2!†Li2~12txystyxz!

1Li2~12r xystyxz!2Li2~r yzx!2Li2~r xzy!2 ln~r xyz!ln~12s/z!2h~r xyz,r yxs!ln~12txystyxz!

2h~r xyz,tyxs!ln~12r xystyxz!2h~r xyz,1/r xyz!@ ln~r yzx!1 ln~r xzy!#‡1~ ln x1 ln y24!ln~12s/z!/2

1@ ln~r xys!21#2/41@ ln~ txys!21#2/42 ln2~x/y!/42 ln~x/y!/2%2I ~x,y,z!/z1~Dsxy
1/2 /2s!@ ln~ txys!2 ln~r xys!#

2~y/z!ln x ln y1~2x/z21/2!ln x1~2y/z21/2!ln y1@~y2x!/2s# ln~x/y!15~z2x2y!/2z1z/2s

1@~y2x!/2z# ln2x, ~6.25!
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where the function

h~a,b!5 ln~ab!2 ln~a!2 ln~b! ~6.26!

is employed to properly treat the branch cuts. As far a
know, this is the first analytical computation of a two-loo
self-energy diagram with generics and three distinct non
zero masses. I have checked it numerically using the me
of the next section.

Broadhurst has computed@11# the master integral for the
special limits needed in unbroken gauge theories:

M ~x,x,y,y,0!5@F3
1~ txys!1F3

1~ tyxs!24F3
1~Ax/ytxys!

24F3
2~Ax/ytxys!26z~3!#/s, ~6.27!

M ~x,x,0,0,0!5@F3
1
„x/~x2s!…26z~3!#/s,

~6.28!

where

F3
1~z!56Li3~z!24 ln~z!Li2~z!2 ln~12z!ln2~z!,

~6.29!

F3
2~z!56Li3~2z!24 ln~z!Li2~2z!2 ln~11z!ln2~z!.

~6.30!

Another special case is@11#

M ~x,0,0,0,0!5@F3
1
„x/~x2s!…2F3

1
„s/~s2x!…26z~3!#/2s.

~6.31!

I have checked that these results are satisfied by the di
ential equation~4.27!, using the other analytical result
above. @Straightforward integration of Eq.~4.27! provides
more complicated expressions, not given here, which
then evidently related to the above by some trilogarit
identities. The equivalence was checked numerically.#

Some other special cases that have been computed i
literature will be omitted here for brevity. Reference@11#
also found M (x,0,x,0,x), while Ref. @17# obtained the
equivalent of U(x,y,0,0) and M (x,0,y,0,0) and
M (0,0,0,0,x), and Ref. @19# has M (x,0,0,x,0),
M (x,0,0,0,x), M (x,x,x,0,0), andM (x,x,x,x,0).
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VII. NUMERICAL EVALUATION BY DIFFERENTIAL
EQUATIONS

A method for using the differential equations ins to nu-
merically compute basis integrals has been formulated
Caffo, Czyz, Laporta, and Remiddi in@45–48#. We can now
apply the same strategy to compute the values of all of
basis integrals, using the differential equations worked ou
Sec. IV.

Consider a master integralM (x,y,z,u,v) that occurs in a
self-energy function. Typically, one will also need some
all of the basis integrals that arise from removing one
more propagators. These can all be obtained simultaneo
by solving the system of coupled first-order ordinary diffe
ential equations in the 15 dependent quantities

M ~x,y,z,u,v !, U~x,z,u,v !, U~y,u,z,v !,

U~z,x,y,v !, U~u,y,x,v !, T~x,u,v !, T~y,z,v !,

T~z,y,v !, T~u,x,v !, T~v,x,u!, T~v,y,z!,

S~x,u,v !, S~y,z,v !, B~x,z!, B~y,u!, ~7.1!

with x,y,z,u,v fixed ands as the independent variable. Th
relevant differential equations in addition to Eq.~4.27! are
Eqs.~4.14!, ~4.15!, ~4.16!, ~4.26!, and others obtained by ob
vious permutations. Since theB functions are known analyti-
cally, one need not treat them as among the dependent
ables, but it is probably more economical in terms
computer processing time to do so. Other than the term
volving B(x,z)B(y,u) in the differential equation for the
master integralM (x,y,z,u,v), the system of equations i
linear.

Standard computer numerical methods~for example,
Runge-Kutta, or improvements thereof! are used to evolve
the differential equations froms50 to the desireds. Since
the physical-sheets is always taken to have an infinitesim
real imaginary part, and branch cuts lie along the reals axis,
one should take the contour of integration to lie in the upp
half complex plane. Reference@48# suggests using a rectan
gular contour going from 0 toih to s1 ih to s1 i«, whereh
is chosen large enough to stay away from singularities on
2-14
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real s axis. Independence of the choice ofh, and more gen-
erally on the choice of contour in the upper half-plane, p
vides a useful check on the numerical convergence.

At the start of the contour ats50, the appearance ofs on
the left-hand sides of the differential equations requires
the initial data for derivatives of the basis functions w
respect tos are provided, along with the initial values.~Al-
ternatively, one can start the running at a point very sligh
displaced froms50.! These are obtained from the expa
sions in Sec. V. I find that it is often better to ru
sM(x,y,z,u,v) rather than the master integral itself. Th
method is always very fast and arbitrarily accurate, exc
sometimes whens is equal or extremely close to one of th
thresholds where the denominators in the differential eq
tions vanish. Even these cases can be efficiently comp
without performing special analytical expansions around
thresholds, as will be explained below.

I have implemented this method in a computer program
order to test the method, and for use in future applicatio
When doing so, it is useful to note that all quantities oth
than s remain constant in the course of a Runge-Kutta r
tine. Therefore, although the coefficients of various pow
of s in the numerators and denominators of the coeffici
functions are mildly complicated functions ofx,y,z,u,v,
they only need to be computed once. Comparison with s
cific numerical examples for the master integral in Ref.@40#
and the sunrise integrals in@47# yields agreement. Note tha
the first of these comparisons is actually a test of the eq
tions and the method for all of the basis functions, not j
the master integralM, since any error in any of the bas
functions would feed into a discrepancy for the master in
gral.

As an example, I consider the master integral and its s
ordinates for the caseQ51, x51, y52, z53, u54, and
v55. The result for the master integralM (1,2,3,4,5) as a
function of s is shown in Fig. 3.

Although the dependence ons near the two-particle
thresholdss5(11A3)2'7.464 and (A212)2'11.657 is
sharp, these points@and the three-particle thresholds (112
1A5)2'27.416 and (A21A31A5)2'28.970] did not

0 5 10 15 20 25 30
s

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

M
(1

,2
,3

,4
,5

)

FIG. 3. The master integralM (1,2,3,4,5), as a function ofs.
The heavier line is the real part, and the lighter is the imagin
part.
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present any numerical problems. The value of the ma
integral at s50 is @ I (1,2,5)2I (1,4,5)2I (2,3,5)
1I (3,4,5)#/4'0.28889224. The asymptotic limit in whic
Eq. ~6.13! is reasonably accurate is very far to the right of t
end of the graph. Values for all of the basis integrals as
510 found from the simultaneous numerical solution to t
differential equations are:

M ~1,2,3,4,5!50.7183353510.39016220i

U~1,3,4,5!524.8569530622.12756034i

U~3,1,2,5!523.9926362021.79951451i

U~2,4,3,5!523.08641797

U~4,2,1,5!522.23235894

S~1,4,5!529.56660679

T~4,1,5!520.03036018

T~5,1,4!50.51591658

T~1,4,5!523.01221172

S~5,2,3!527.67047979

T~5,2,3!50.44677524

T~2,3,5!521.69451693

T~3,2,5!520.78612788

B~1,3!50.7793038411.53905980i

B~2,4!520.05151328. ~7.2!

As a second test case, consider the master inte
M (x,0,0,x,x), which occurs in QED and QCD. This cas
does not satisfy the criterion for solvability in terms of ge
eralized polylogarithms mentioned in the Introduction, bu
simple integral representation has been worked out in@11#.
Following the method adopted here, the full system of d
ferential equations simplifies to:

y

0 0.5 1 1.5 2 2.5 3
s

-1

0

1

2

3

4

5

6

M
(1

,0
,0

,1
,1

)

FIG. 4. The master integralM (1,0,0,1,1) as a function ofs. The
heavier line is the real part, and the lighter is the imaginary par
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s
d

ds
B~0,x!5

x

s2x
@B~0,x!1 ln x212s/x#, ~7.3!

s
d

ds
S~0,0,x!5xT~x,0,0!1S~0,0,x!2x ln x12x2s/2, ~7.4!

s
d

ds
S~x,x,x!53xT~x,x,x!1S~x,x,x!23x ln x16x2s/2, ~7.5!

s
d

ds
T̄~0,0,x!5

1

~s2x!2
@x~s2x!T̄~0,0,x!1x~3s1x!T~x,0,0!12~s1x!S~0,0,x!

1x~s23x!ln x15x213sx/429s2/4#, ~7.6!

s
d

ds
T~x,0,0!5

1

s2x
@2xT~x,0,0!12S~0,0,x!1~s22x!ln x14x29s/4#, ~7.7!

s
d

ds
T~x,x,x!5

1

~s2x!~s29x!
@2x~5s29x!T~x,x,x!12~s23x!S~x,x,x!

22sx ln2x1~s225sx118x2!ln x236x2167sx/429s2/4#, ~7.8!

s
d

ds
U~x,0,x,x!5

1

~s2x!2
@x~s2x!U~x,0,x,x!2x~5s13x!T~x,x,x!22~s1x!S~x,x,x!

1~s1x!x~7ln x2 ln2x211!1s~s1x!/4#, ~7.9!

s
d

ds
U~0,x,x,0!5

1

s2x
@xU~0,x,x,0!2xT~x,0,0!22S~0,0,x!1x~5ln x2 ln2x27!1s/4#, ~7.10!

d

ds
@sM~x,0,0,x,x!#5

1

~s2x!2
@~s13x!T~x,x,x!1~s1x!T~x,0,0!12S~x,x,x!12S~0,0,x!

1sB~0,x!21~2 ln x24!sB~0,x!12x~ ln x23!223s/2#. ~7.11!
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The value of the master integral obtained forx51 and as a
function of s is shown in Fig. 4.

In this example, it turns out that there are numerical pr
lems, but only extremely close to the double threshold as
5x51, where it is known that@11#

M ~1,0,0,1,1!5p2ln 223z~3!/2'5.03800311.
~7.12!

In mass-independent renormalization schemes, this is no
issue since the tree-level mass appearing as the argume
the function is not exactly the same as the pole mass w
one will need to evaluate the self-energy. In on-shell ty
schemes, one could find the threshold value analytically,
one can also use the following general procedure to
threshold values with high accuracy. Near each thresholds0,
the loop functions have expansions of the form

F~s!5F~s0!1r @a11b1ln r 1c1ln2r #1r 2@a21b2ln r

1c2ln2r #1••• ~7.13!

where r 512s/s0. Now one can use the Runge-Kut
method to evaluate the loop functions at, say, several po
07500
-
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t of
re
e
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ts

s5s06nd ~for small integersn), and then simply solve for
the coefficients in the expansion, in particularF(s0). In the
present example, I find that choosingd51024, where there
are definitely no numerical problems, andn51,2,3,4 is good
enough to obtain the threshold values fors5x5Q51 to
better than 9 significant digits. The results are:

B~0,1!52.00000000

S~0,0,1!523.66486813

T~1,0,0!52.78986813

T̄~0,0,1!523.78986813

U~0,1,1,0!52.21013187

M ~1,0,0,1,1!55.03800311

S~1,1,1!524.37500000

T~1,1,1!520.50000000

U~1,0,1,1!521.07973627. ~7.14!
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Of these, the first six are checked using the analytic formu
~6.4!, ~6.16!, ~6.17!, ~6.19!, ~6.20!, and~7.12!, while the next
two can now be seen ‘‘experimentally’’ to have the analytic
valuesS(1,1,1)5235/8 andT(1,1,1)521/2 at threshold.

To be extra safe, a computer code can be configure
always trap the threshold and pseudo-threshold cases
evaluation in this manner. This is easy to do in an automa
way, since the potentially dangerous points are alw
known in advance as the roots of the denominators of
differential equations or from inspection of the Feynman d
grams.

VIII. OUTLOOK

In this paper I have studied the properties of a minim
basis of integral functions for two-loop self energies. The
results include a complete set of formulas allowing for th
automated numerical computation using differential eq
tions, following the same strategy as was put forward
@45–48#. It might be useful to review some of the advantag
of this method:
ce
V.

e
ei

ys
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The basis integrals can be computed for any values o
masses ands, to arbitrary accuracy.

All of the necessary basis integrals are obtained simu
neously in a single numerical computation.

Branch cuts are automatically dealt with correctly
choosing a contour in the upper-half complexs plane.

Simple checks on the numerical accuracy follow fro
changing the choice of contour.

The Tarasov recurrence relation algorithm@3,49# can be
used to reduce any two-loop self-energy to linear combi
tions of these functions, with coefficients depending on
masses and couplings of the theory. Recently, I have u
this basis and the methods of computation described her
obtain the leading two-loop momentum-dependent corr
tions to the neutral Higgs boson masses in minimal sup
symmetry in a mass-independent renormalization sche
That result will appear soon.
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