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Evaluation of two-loop self-energy basis integrals using differential equations
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| study the Feynman integrals needed to compute two-loop self-energy functions for general masses and
external momenta. A convenient basis for these functions consists of the four integrals obtained at the end of
Tarasov's recurrence relation algorithm. The basis functions are modified here to include one-loop and two-
loop counterterms to render them finite; this simplifies the presentation of results in practical applications. |
find the derivatives of these basis functions with respect to all squared-mass arguments, the renormalization
scale, and the external momentum invariant, and express the results algebraically in terms of the basis. This
allows all necessary two-loop self-energy integrals to be efficiently computed numerically using the differential
equation in the external momentum invariant. | also use the differential equations method to derive analytic
forms for various special cases, including a four-propagator integral with three distinct nonzero masses.
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[. INTRODUCTION Consider a generic two-loop integrd(s;x,y, ...),
which depends on the external momentum invariant
The comparison of data with the predictions of the stan- 5
dard model, and candidate extensions of it, requires the kind S=—p% 1D

of accuracy obtained from two-loop and even higher—ordeTusing either a Euclidean or a signature € ++) metrig

calculations. As a forward-looking example, if supersymme- d ; q F ial val
try proves to be correct then the CERN Large Hadron Col2Nd propagator squared maskgs, . . . . For Special values
f the arguments, it may be possible to complateanalyti-

lider will be able to measure the mass of the lightest neutra? i . . .

Higgs scalar boson to an accuracy of order 100 MeV, and gally In terms _Of polylogarlf[hm:ESO_] or Nielsen's ger_leral-
future linear collider will certainly do bettdt]. In contrast, Iized polylp?arlth;ns[fﬂ]. TQ!S requwfes[8] r:h?]t E[r;]ereihls no ;
even assuming perfect knowledge of all input parameters, th@ree-par icle cut o .e |§gr§m or whic € three cu
present theoretical uncertainty is probably at least 10 timeg1assesn;,m,,ms, the invariants for the total momentum

larger[2]. flowing across the cut, and the four quantities
The motivation for the present paper is to facilitate rou- . )
tine calculations of self-energies, and thus pole masses, for s—(myEmytm) (1.2

particles in any field theory. A key step in this process is the ] )
evaluation of the necessary two-loop integrals. It has becom@'® all non-zero. Many analytical results for various such
clear that analytical methods will only work in special cases SPecial cases have been worked [f#20]. There are also
so practical numerical methods are needed. In this paper,§xPansiong21-23 in large and small values of the external
will build on the many important advances that have beefnomentum invariant, and near the thresholds and pseudo-
made in this arefi3—49, with the goal of streamlining both thresholds[26—33. Integral representatior{84—-41 allow
computations and presentations of results for self-energiesfor systematic numerical evaluations. _ .
Tarasov[3] has provided a solution to the problem of N this paper | rely mstgad on the. d_lﬂ‘erentlal equation
reducing two-loop self-energy integrals to a minimal basismethod[42—48 for evaluating the basis integrals. The idea
such that any scalar integral can be represented as a ling§r {0 take advantage of the fact that the basis intedfals
combination of integrals of just four types, plus terms qua_satlsf)_/ a set of coupled first-order linear ordinary differential
dratic in one-loop integrals(Other useful reduction algo- €duations irs, of the form
rithms are presented i#] and[5].) Tarasov's algorithm re-
lies on the integration t_>y parts tec_:hniq[@ and fepe_ated SEFFE C,.Fi+C,. (1.3
use of recurrence relations involving integrals in different ds ] I
numbers of dimension/]. The two-loop scalar basis inte-
grals remaining after applying this algorithm have the to-Here C;; and C; are ratios of polynomials irs and the
pologies shown in Fig. 1. squared massedf we include only genuine two-loop func-
They are the three-propagator “sunrise” diagr&ma dia-  tions in the sef;, thenC; will also include terms linear and
gram T which is obtained from the sunrise diagram by dif- quadratic in the one-loop functions, which are known ana-
ferentiating with respect to one of the squared masses, latically and present no problemsThe values of the func-
four-propagator diagran, and the five-propagator “mas- tionsF; are known analytically es=0. So one can integrate
ter” [11] diagramM. the differential equations from the initial conditionssat 0
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FIG. 1. Feynman diagrams for the two-loop basis integrals.

to the desired value of using well-known numerical tech- p2e
niques such as Runge-Kutta. For the integrals of the type C=(1672) S=(2mu)* . (2.3
S, T,U, this has already been done and explained in detail in (2m)

[45—-48. Here, | will extend these results to include the mas- L . o
ter integralM, and present results f@&,T,U integrals in a The regularization scalp. is related to the renormalization

different basis which may be more convenient for some purScaleQ (in theMS scheme52], or theDR schem¢53] for
poses. supersymmetric theories, or in tHeR’ scheme[54] for
In order to find the differential equations érthat the basis ~ Softly broken supersymmetric theorjesy
integrals satisfy, | proceed by first calculating the derivatives
of the basis integrals with respect to their propagator 2_ —-v,2
! , Q°=4me "u“. (2.2
squared-mass arguments. Using Tarasov’s recurrence rela-

tions, these derivatives are expressed algebraically in termsygarithms of dimensionful quantities are always given in
of the basis functions, in the linear form: terms of

In X=In(X/Q?). (2.3

J

5522 KyijFj+ Ky 14 The loop integrals are functions of a common external mo-
mentum invariants as explained in the IntroductioriNote
that the sign convention is such that for a stable physical

Equations(1.3) in s will then follow by elementary dimen- Particle with massn, there is a pole a$:_m_2-? Throughout

sional analysis, using the known dependence of the bas_;gns papers should_ be taken to h.ave an |nf|n|te_5|mal positive

functions on the renormalization scale. The derivatives of thdmaginary part. Since all functions in any given equation

basis functions with respect to the squared masses are al§gve the sams, it will not be included explicitly in the list

useful in their own right, since each derivative adds an extr@f arguments. _ _

power of the corresponding propagator in the denominator. The one-loop self-energy integrdls5] are defined as:

This provides a simplified algebraic algorithm for computing

integrals with arbitrary powers of the propagators present in

the master integral topology. A(x)=Cf d%
The rest of this paper is organized as follows. Section Il

defines the basis integrals, and gives conventions and nota-

tions. Section Il presents the derivatives of the basis inte-

grals with respect to their squared-mass arguments. In Sec. _ d 1

IV, I give the differential equations is satisfied by the basis B(x,y)—Cf d k[k2+x][(k— 0)2+y]’ (2.9

functions. The numerical integration of the differential equa-

tions nears=0 relies on expansions for small which are  The two-loop integrals are defined as:

provided in Sec. V. Section VI presents some analytic ex-

pressions for the basis functions in special cases that are

useful both for comparison with the literature and for prac-

tical purposes. Section VII describes the numerical computa-

tion of the basis integrals, and gives two examples.

[K2+x]’ =4

S(x,y,z)= sz ddk

1
XJ ddq 2 2 2 ’
[k*+x][a*+y][(k+q—p)°+Z]
II. CONVENTIONS AND SETUP 2.6
The loop functions in this papers are defined by scalar
Euclidean momentum integrals regularized by dimensional ;
trg;iuctlon tod=4—2e dimensions. Let us define a loop fac- T(x,y,2)=— 55()(%2), 2.7
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1

U(x,y,z,u)zczf ddkf ddq

[K*+x][(k=p)>+y][q®+Z][(q+k—p)*+u]’

(2.9

1

M =C?| d% | q¢ .
boy.z.u0) J Jq[k2+x][qz+y][<k—|o>2+z][<<:|—|o>2+u][(k—q)2+v]

| find it convenient to introduce modified integrals in which

(2.9

S(x,y,2) is invariant under interchange of any two of

appropriate divergent parts have been subtracted. At oneqy, z.

loop order, define the finite anglindependent integrals:

AX) = lim[A(X)+x/e]=x(Inx—1), (2.10

e—0

B(x,y)=Ilim[B(x,y)— 1/e]

e—0
= jldtm[tx+(1—t)y—t(1—t)s]. (2.10)
0

At two loops, let

S(x,y,2) = im[S(x,y,2) — S{i(x,y,2) — SE)(x,y,2)],

e—0
(2.12
where
Siv(x.y,2)=(A(X)+A(y) +A(2)) /e, (.13
SEx,y,2)= (x+y+2)[26%+ (sl2—x—y—2)[2¢  (2.14

T(x,Y,2) is invariant undery/«z.

U(x,y,z,u) is invariant undez« u.

M(x,y,z,u,v) is invariant under the interchanges
(X,2)«(y,u), and K,y)«(z,u), and K,y)«(u,z).

This leads to many obvious permutations on formulas
given below, which will not be noted explicitly.

It is useful to define several related functions. The two-
loop vacuum integral is

I(X1y7z):S(X1y7z)|S=O' (22@
It is equal to (16r%)? times the integral (x,y,z) in [16] and
is precisely equal to the same function used2f]. In the
present paper, the analytical expression is reviewed in Sec.
VI and the recurrence relation for derivatives in Sec. V.

The integralT(x,y,z) has a logarithmic infrared diver-
gence ax—0. This divergence must cancel from physical
quantities, but as a book-keeping device it is useful to have a
version of the integral (0,x,y) with the infrared divergence
removed:

are the contributions from one-loop subdivergences and from

the remaining two-loop divergences, respectively. Also,

J
T(x,y,z)=—58(x,y,z). (2.15

Similarly, define

U(x,y,z,u)=lim[U(x,y,z,u)—U§(x,y) — U]

e—0
(2.19
where
UG,y =B(x,Y)/e, 2.17)
UR)=—1/2¢*+ 1/2¢ (2.18
and, since the master integral is free of divergences,
M(x,y,z,u,v)=limM(X,y,z,u,v). (2.19

e—0

Thus, the bold-faced letters,B,S, T,U represent the original
regularized integrals that diverge @&s>0, while the ordinary
lettersA,B,S,T,U,M are finite and independent efoy defi-

nition. Also, note that these integrals have various symme-

tries that are clear from the diagrams:

T(0x,y)=lim[T(8,x,y)+B(x,y)In 5].
6—0

(2.21

Finally, for future reference we note that the topoldgyn
Fig. 2 arises quite often.

When the vertical propagators are different, the result of
the diagram is just the difference of twé functions. How-
ever, when the vertical propagators have the same squared
massy, it is useful to define the corresponding integral

V(X,y,Z,u)=— iU(x,y,z,u).

3y (2.22

In Sec. llI, | will provide the formula expressing(x,y,z,u)
algebraically in terms of the other basis integrals.

FIG. 2. The two-loop Feynman diagram fd{x,y,z,u).
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To illustrate the usefulness of the above definitions, conthe solution$ for complexs=M?—iI’'M of the eigenvalue
sider the most general renormalizable theory of real scalagquation
fields ¢;, governed by the interaction Lagrangian

(s—m?)&;—1IT;;(s)=0, (2.29
1 UL NULL
L=—Smidi— iy 7 biddudn- one has:
(2.23
I (s)= 1Y(s)+ m&(s)+- - -,
2 il i P 1em? (16722 "
Here m?, Ak and AIk" are the tree-level renormalized & (2.25
masses and couplings. Then, defining the self-energy matrix :
functionIT;;(s) so that the pole masses and widMsl" are  with
1 . 1.
I{P(s) = SNTCAmE) — S NENCB(my m7), (2.26

1. 1.
HSf)(s)=—Ex'k“xlmpkamnpr(mﬁ,mzm,mﬁ,mg,mf)JrEx'kmwk“xmpmnpf[U(mﬁ,mfn,mg,mf)
2 "2 m2 m2 2 2 1 ikmy jknpy mpn 2 2 2 2 P
—U(mk,mn,mp,mr)]/[mm—mn]+5[)\ NTPNTPRU (i, miy,mi,mp) + (i) ]
1 ikmny jkmn 2 2 2 1 ikmy jnpy kmn 2 2 2 2
_E)\ A S(mkvmm!mn)+z)\ A A ‘B(mk!mm)B(mn!mp)

1. .
o+ NIETNEMAME) LA(MR) — A(mi) /[ mi— mi]+ SN KINKIAMPPA(mE) [B (i, mi)

1
—B(mZ,m3))/[m2—mZ]+ Z)\”km)\k”p)\m“p[l(mﬁ M2, ma)—1(m&, m;,m2)J/[mi—mg], (2.27)

in which the MS counterterms have been includedlote A=s%v+s[v(v—U—X—y—2)+(Xx—y)(z—U)]
that for degenerate masses, the functibwill appear, as

well as derivatives of the functions,B,l.) Of course, for H(Uux—yz)(utx—y=2)+tv(X=2)(y—u).

theories involving fermions and vectors, things are more (2.3D
complicated, but the basis functions as defined above tend to

neatly organize the counterterms, at least in mass- Ill. DERIVATIVES OF BASIS INTEGRALS WITH
independent renormalization schemes. RESPECT TO SQUARED-MASS ARGUMENTS

In the following, a prime on a squared-mass argument of
a function stands for a derivative with respect to that argu-
ment. This notation is particularly convenient when there ar
many derivatives or when some of the arguments are s

equal after differentiation. Thus, for example, have been implemented by Mertig and Scharf in the com-
puter algebra programarceR [49], which was used to de-

In this section, | present the results of taking derivatives

fnents. These can be obtained straightforwardly, if tediously,

3

f(x",x,y")=Ilim

Z—X

ax2ay f(x,z,y)]. (2.28 below for (the equivalents 9fthe S and T functions have
already been given if45].

Several kinematic shorthand notations used throughout———
this paper are:

self-energy and its derivatives are first evaluated onlysfaith an

Ayyr= x2+y?+ 22— 2xy—2xz-2yz, (2.29 infinitesimal positive imaginary part. That data is then used to con-
struct a Taylor series expansion for compkexThis is necessary
Daxy=S*—483(x+y+2) + [ 4(x+y+2)2+24,,,] because the imaginary part of the pole mass is negative, while the
5 standard conventiofas hergis that the infinitesimal imaginary part
—S[BAXYZH A(XFY +2) Ay + ALy, (2.30  of the physical-sheet s positive.

075002-4
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For the one-loop self-energy integral, one has: 9
&—XS(x,y,z)= -T(x,Y,2). (3.2
9 1 For theT function, there are two distinct derivatives. First,
—B(x,y)= X—y—s)(B(x,y)—2
ox BO%Y) Asxy[( y—s)(B(x,y)—2) P 1
_ _ aT(X,y.Z): F[kasS(X-yyZ)+kaTlT(X,y,Z)
+(X+y—s)Inx—2yIny]. (3.) sxyz
T Koy T(Y,X,2) +KrysT(Z,X,Y) + Ky,
Derivatives of the sunrise functid®are trivial, in the sense @3
that they are already included in the basis: where the coefficient functions are
|
kyxs= — 283+ 6S%(X+y+2) +S[2A,,— 8(X3+ Y2+ Z%) |+ 2(X+y +2) Ay, + 32Xy Z (3.9
Krym1=2X(X—S)[ S = 28(X+y+2) + A,y ,+8yZ] (3.5

kry={5%12+ s3X[In x— 27/4) + S>X[In X(y Iny + zIn z— 3x— Ty — 72) + 51x/4+ 53(y + 2)/4]
+s{INX{2(z—x—y)y Iny+2(y—x—2)zInz+3x%+ 10x(y + 2) + 11(y?+ 2%) — 14y 7}
— 41x%/4— 10X(y + 2)/4+ 11y /6] + x In x{y In y[ (X — y)?+ 2z(x+y) — 322]
+zInZ[(X—2)2+ 2y(x+2) — 3y2]+x(9y2+ 922 — 26y z— x2) — 3xX(y +2) — 5(y+2)(y—2)%
+3X°[(x+y+2)°=4(y—2)* [} H{(x—>y) +H{(x-2)}, (3.9

andkqyts is obtained fromkt, by (x<y), andky, 13 is obtained fronky,; by (X< 2z). The symmetries of the preceding
expressions imply that

(92 2
X—S(X,Y,2) =y ——=S(X,Y,2), 3.
ﬁXZS( y:2) yayZS( y:2) (3.7

an identity which seems somewhat remarkable since it is not immediately obvious from the symmetries of the Feynman
diagram. Wherz=0, this simplifies to:

xS(x",y,00=yS(x,y",00=B(x,y). (3.8
The other derivative of th& function is given by
J 1
WT(XMZ): fm[kTysS(Xay'Z)‘*'kTyTlT(X,y,Z)‘f'kTyTzT(y,X,Z)"’kTyTsT(Z.X,y)+k'ry], (3.9
where
krys= — 48?4+ 8s(X+Yy—2) +122°—8z(x+Yy) —4(x—Y)? (3.10
kyym= —S>+5%(z+ 3y —X) + S(5x%+ 6xy— 3y?— 14xz+ 2y 7+ 2°) — 3x?(X+ 2) +(y — 2)*
+7x%y+ 7xZ%>—5xy?— 2xyz (3.11)
kryrs= —85°z+8szx+y)+82%(z—x—VY) (3.12

1— — — 11 — — N _
EIanny—ZIner— +5[(2Inx—3)zInz—3(x+z/2)Inx Iny+ (8x+ 6y + 2z)In x— 20x + Z]

3
s 2

kTy:

+5[(3X2+ XY+ 2xZ+ 3242)In X Iny+ 4z(X—y— ) In X In 2+ 2(10z— 4X)In 2+ 2(Z2— 3y? — 5x%— 4xy— 4xzZ
+2y2)In X+ 47x%/2+ 25xy/2+ 11xz— 692%/4] + (X2(y + 2) — X3 — 5Xy z+ X 22— Z%/2)In X In y + 22(y? + 2% — 3>
+2X(y+2) — 2y2)In X In 2+ Z(10x%— 10xy+ 4xz— 722)In 2+ 2(2x3— 3x2y + y3+ 7x%z+ 8xy z— 3y?z— 8X 2
+3yZ2—23)In x+ 9(xZ2— x3+ X2y — 3x2z— xy 2+ 323/2) | + (x> ), (3.13

075002-5
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andkryr, is obtained fronkyyr; by (x<y). For the special
case of a vanishing first argument, one finds

J— _
5T(0,x,y) =k7sS(0.x,y) + ki T(0X,y) + k71 T(X,0y)

+KrraT(y,0%) +kv (3.14
where
k7s=16y(y —x—S)/A%,,~4/Agy, (3.19
7= (X—y—5)/Agyy (3.16
K1 =8Xy(y —X—38)/AZ,— (+3X+y)/Agyy
(3.17
krro=8y[ —s?+sx—yx+y?J/AZ,, (3.189

2 - —
k= Ty[s[4x Inx(Iny—1)+(4y—8x)Iny+15x

SXy
—7y]+(x—y)[4xmx(3—my)+(8x+4y)my
— 20— 7y]]+[s(11/2= 2 Inx)+ 2y Iny(In x—3)
+(4x— 2y)mx—9x+ 13y 1/ Agyy- (3.19

The derivatives of thé&J functions are:

1
A [(x—y—s)U(X,y,z,u)+2zT(z,u,x)
SXy

a J—

&—XU(x,y,z,u)—
+2uT(u,X,z)+(3Xx—y+S)T(X,Z,u)
+45(x,z,u) —21(y,z,u) — 2(A(u) + A(X)

+A(2))+2(x+z+u)—s/2] (3.20

d 1
—U(x,y,z,u)=

2 Ayzu[(z—y—u)U(x,y,z,u)Jr(quz

—y)T(z,Xx,u)—2uT(u,x,z) +tu+y—z

+[(u+z—y)mz+2u(1—mu)+2y

PHYSICAL REVIEW D68, 075002 (2003

—2z]B(x,y)] (3.21)

17
WU(x,y,z,u) =kyuU(X,y,z,u) + Ky, T(X,Z,u)

+ kUTZT(UIX!Z) + kUTgT(Z,X,u)

+kyd S(x,z,u) — (A(X) +A(z) +A(u)

+1(y,z,u))2]+kygB(x,y)+ky  (3.22

where the coefficient functions in the last expression are
Kyu=(Y—=X=8)/Agyt+(y—z—u)/Ay,—1ly (3.23
Kut1=2X(S—X)/yAgyy (3.29
Kur2=U(S—X=Y)/yAgytu(y+z—u)/yAy,, (3.29
Kus=2(s—Xx—Yy)/yAg,, (3.26

kUB=[(y+z—u)umu+(y+u—z)zmz

+(u—2)2=y2]lyAy,, (3.27

ky=[—s?/4+s(z+u+5x/4+yl4)— (z+u+x)(x

+y)]/yAsxy+(u+z_y)/Ayzu (328)

andk 3 is related tok, by (z<~u). Some care is needed
in treating cases where the denominatyy,, threatens to
vanish. One finds by taking the limits that

Ux,0y,y)=T(y,y ,x)[2—=T(y',y,x)[2—B(0x)/2y
(3.29

U(x,y,y",0=[T(0x,y)—T(y,0%)—B(x,y)Iny]/2y
(3.30

U(x,y",y,0=—U(xy,y’,0+(2=Iny)B(x,y").
(3.3)

There are two types of derivatives of the master integral
function M. First,

Jd
5M(vaizvuiv):kMXUlU(Xizvuiv)—’_kMXUZU(yiuiziv)+kMXU3U(Z7X1y=U)+kMXU4U(u1yixiv)

1 1
+kst{S(x,u,v)+S(y.2.v)+ ;B(x,Z)B(y.U)— 5! (x,y,v)— EI(Z.u,v) +Kmxra1 T(X,U,0)

+Knx12 T(Y,2,0) + Kpxra T(Z,Y,0) + Kuxra T(U,X,0) + Kyys[ T(v,x,u) + T(v,Y,2) ]

+Kuxp1B(X,2) + Kyxg2B(Y,U) +Kyx (3.32
where the coefficient functions are
z
Kpxui= ——[S%+S(2v —x—y—z—u)+(x—2)(y—u)] (3.33
AsyA

075002-6
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Finally,

—M(X,Y,Z,u,0) =Ky,u1U(X,Z,u,0) + Ky,u2U(Y,U,2,0) + Ky,usU(2,X,Y,0) + KyyuaU (U, Y, X,0)

Jdv

kquz: _U/A

v—Uu
I(MXU3: A + A zA
SX

[S(vX+vz+2XZz—yZ—UX)+(X—2)(UX—vX+VvZ—Y2)]

1
——[sv(v—X—Yy)—UvX+Uux?—uxy+2vXxy—vyz—xyz+y?z]
AXyUA

Knvxua= ﬁ[ZSU—UU-FUz—UX—UX-F uy—ovy—uvz+xz—yz|
Xyv

2
Kpmxs= A ZA[s(u Z—v)—UX+UX—UZ—vZ—XZ+2yZz+ 7]
SX

Kmxt1=XKuxg/2—Kuxus
Kmxt2=YKuxgd2— Kmxua
Kmxts=Zkuxd2— Kmxu1

Kmxta= UKyxd2— Knxuz

v
kMszzkaxs/2+A A[S(v X+y)+tu(X+y—v)+y(X—y—2z+v)]

Xyv

u— — _
Kmxg1= A Inu—Kuxualny+ (Kyxts—vkuxd2)Inv

2
——[sv(X+y—v)+Uuvx—ux?+uxy—2vxy+vyz+xyz—y?z]
AXyUA

2 — _ _
kMxBZZK(U+Z)_kMxU3|nX_kMxUllnZ+(kMxT5_UkMxSlz)|nU_ZkMxU4
2
ZA[s(vx UX—uz+3vz+3xz—2yz+ 722+ (x—2)2(u—v—2)]
SX
— — — — — 1
kMX=—kst(xInx+yIny+zInz+uInu+2vInv)/2+ﬂ(u+z+v—2y)

+

A [sv(x—y—v)+v(ux+uy—3xy—y2+2yz)+(y—u)(x—y)?]
Xyv

L1
2A6A

+x?(8v—3u—52)+ Z2(u+3v +2x+ 12y) — 4u?(x+2) + 4(v + z— U)Xy +6(2y — 2u—X)v Z

—Auvx—14uxz+4uyz+8zy>+ 37°].

1
+Kupo S(X,U,0)+S(Y,z,0)+ gB(x,z)B(y,u)— =l(xX,y,v)— (z u,v) | +Kku,tiT(X,U,0)

PHYSICAL REVIEW D 68, 075002 (2003

(3.39

(3.35

(3.39

(3.39

(3.39
(3.39

(3.40
(3.4)

(3.42

(3.43

(3.49

[s[4u(u+v+Yy)—8v2+3ux—3vx—4vy—uz—uvz—xz—6yz— 3z2]+8v?(x—2)

(3.495

+ kMUTZT(ylZiv) + kaT3T(Zly1U) + kaT4T(u!Xiv) + kMUTS[T(U ,X,U) +T(U !yiz)] + kaBlB(Xiz)

+Kyvye2B(Y,u) + Ky,
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where where in each case is summed ovef?, s, and the appro-
. priate x,y, ... . Section lll already gave the derivatives
Knou1= n[s(z_ u—v)+u?—uv+2ux with respect to the sqgart—;-d masses. The dgr|vat|v§s with re-
uz spect to the renormalization scale are easily obtained from

—uy+uvy—uz—yZ] (3.47  the definitions in Sec II:

- J
Knps= — 2/A (3.48 QA= X, 4.7)
KmoT1= —Kmpuz—X/A (3.49 7Q
KmoTs= — (s+v)/A+KkuyurtKmpuzt Kmpust Kmpua J
(3.50 Q*—B(xy)=1, (4.9
_ _ _ 9Q?
kaBlz(kaT5+U/A)|nU_kau4|n y_kauzIn U+2$/A
_ _ J
2Huour~ 2Kious (359 Q?—5S(x,Y,2)=A(X) +A(Y)
1T - - R
ka:K[xlnx+y|ny+zlnz+ulnu+20 Inv +A(Z)—x—y—2z+5/2, 4.9
—2(X+y+z+u)—5v+5s/2]—ky,Ts- (3.52 9
2 7 - _
Hereky,u2, KmyoT2: Kmypg2 @re each respectively related to Q Q2 Txy.2)==A00/x, (4.19
Kvouz, Kmot1s Kmosr BY (X,2) < (y,u). Similarly, ky,ys,
kuv,T3 are each related thy,u1, Kmpyt1 DY (X,y)<(z,u), 9 _
and kMuU41 kaT4 are I’e|a'[ed tO kaUl! kaTl by QZ_ZT(O,X,y):l_B(X,y), (41])
(x,y) = (u,2). 9Q
By repeatedly applying the identities in this section, one
may obtain the results for two-loop Feynman self-energy in- , 7
tegrals with arbitrary powers of propagators in the denomi- ~ Q°—=U(X,y,z,u)=1+B(x,y), (4.12
nator. An important example is that Eq&8.22 and (3.31) 9Q
can be used to find the integrel(x,y,z,u) defined in Eq.
: i P
(2.22 and corresponding to the topology shown in Fig. 2. Qza—QzM(X,y,Z,u,v)=0. 4.13

IV. DIFFERENTIAL EQUATIONS IN THE EXTERNAL
MOMENTUM INVARIANT s Now, combining Eqgs(3.1), (4.1), and(4.8), one finds

In this section, | present results for the derivatives of the
basis functions with respect ® These are most easily ob- Sd_B(X y)=
S )

1
[(S(X+Y)—(X—Y)?)B(X,y) +(s—X

t_ained by dimensional analysis, using the facts Ba8§, T, Agyy
T, U, andM have mass dimensions 0, 2, 0, 0, 0, and FY)AX) + (s+X—Y)A(Y) +S(X+y—5)].
respectively. Since the only dimensionful quantities on which
they depend ar@?, s, and the propagator masses, we have: (4.14
d B Similarly, combining Eqs(3.2), (4.2), and(4.9), one gets the
a=Q;sxy “@B(X’y)_o’ (4.2) result for the sunrise function
d d
QZZ a——3(X.y,2)=S(x.y,2), 4.2 S35 Y:2) =S(xy,2) +XT(x,y,2) +yT(y,x,2)
a= S, X,Y,2Z
d +2zT(z,x,y) —AX)—A(y) —A(2) +X+y+z
> a—T(x,y,2)=0, 4.3
@ Ja —s/2, (413
J_
> ag-r(o,x,y):o, (4.4  and, from Egs(3.3), (3.9), (4.3), and(4.10:
J d _
2 agu(x,y,z,u)zoi (45) Sd_ST(levz)_CTSS(X!yIZ)+CTTlT(X!yIZ)+CTT2T(y!X12)
p +crr3T(z,X,y) +Cq (4.1
g aa—a[sM(x,y,z,u,v)]zo, (4.6 Where
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Crs= szyz[53— S?(3X+Y+2) +(3x?—y?— 22— 2Xy— 2XZ+ 10y 2) + (Y +Z— X) Ay (4.17)
Crr1= szyz[53[2X+y+ z]— [ 6x%+ 3y?+37%+ 3xy+ 3xz+ 2y z] + s[ 6x°+ 3y®+ 37°
—5x%(y+2) = Ax(y?+2%) = 3yz(y +2) + 40Xy Z] + X(Y + 2= X) Ay~ AL ] (4.18
Crr2= DZXyZ[3S3+ $?(3z—7x—5Y) +S(5x2+y? = 722 — 6Xy+ 2xZ+ 14y2) + (Y + 2= X) Ay ] (4.19
cr= {s*[(Inx)/2—9/8]+ ][~y Inx Iny— (2y +5x/2)Inx+y Iny + 43x/8+ 21y/4]

sxyz

+ s y(x+3y+ z)mx my— 3yzmy Inz+ (3xy+ 9x2/2)ﬁx+ y(X—5y+ 112)my

— 75x2/8— 21xy/2+ 5y%/4— 69y /4] + S[y (X2 + 2Xy— 3y2— 10xz+ 2y z+ Z2)In X In y + 2y (X + 2y)In y In z
+(AX2y+ xy?+ 2y3— 2y22— 5xyz— 7x3/2)In X+ y(7y2— 5x2— 2xy+ 14xz— 22y z— 9z%)Iny

+(57%32— 7x?y — 13xy?— 37y*+ 25xy 7+ 181y?2) /4] + A, Ly (Y — X — 2)InxIny+yzinyInz

+(x2=xy— Y2+ y2)In X+ 3y(X—y—2)Iny — 2x2— Xy+ 5y2+ 4y Z]} + (y> 2) (4.20

andcrrs is_obtained fronty1, by the interchangey(—z). The equivalents of Eq$4.15 and(4.16 were found earlier in45].
For theT function, | find from Eqs(3.14), (4.4), and (4.1,

sdis?(o,x,y) =T (0X,Y) + Crr T(X,0) + o T(Y,0X) + C7sS(0X,Y) + T (4.21)

where
crr=[S(X+Y) = (X—Y)2]/Agyy (4.22
Crr1=X(3S+X+9y)/ A gy BXY[S(5X+Y) — (x—y)2)/AZ,, (4.23
Crs=2(S+X+Y)/ Ayt 325XyIAZ,, (4.24

1 _ _ _
cr= —— [~ 958+ s’x(Inx+21/4 + s*X[ — 3y Inx Iny + (11y — 5X)In X+ 5x/4— 69y/4]

SXy
+sX4xyInxIny+ (7x2—22xy— 9y?)In x— 37x%/4+ 181xy/4]
+ (x—y)zx[ymxmy— 3(x+ y)mx+ 5x+4y]]+ (x<y), (4.295

andcTy, is obtained froncy, by x> y.
The differential equation for the) function, obtained from Eq$3.20), (3.21), (3.22, (4.5), and(4.12), is

sdESU(x,y,z,u)z Al ([s(x+y)—(x—y)Z]U(x,y,z,u)+x(y—x—33)T(x,u,z)+(y—x—s)[28(x,z,u)+uT(u,x,z)
sxXy
+zT(z,x,u)—I (y,z,u)+x(2—mx)+z(2—mz)+u(2—ﬁu)—s/4]). (4.26

The equivalent of this result was obtained earlief46].
For the master integraM, | find from Eqs.(3.32, (3.46), (4.6), and(4.13 that:
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d
d—s[sM(x,y,z,u,v)]=s[cMUlU(x,z,u,v)+cMUZU(y,u,z,v)JrcMU3U(z,x,y,v)+CMU4U(u,y,x,v)]+cMS S(x,u,v)

S 1 1
+S(y,z,v)+ EB(X,Z)B(y,U)— fl (X,y,v)— El(z,u,v) +epmi T Uv) + eyt T(Y,Z,v)

+Cut3T(Z,Y,0) +Cyra T(U,X,0) +Cyrs[ T(v,X,U) + T(v,Y,2) ]+ Cmp1B(X,2) + Cyp2B(Y,U) +Cy

where the coefficient functions are

z
Cpu1= m[s(y—x—v)+x2+ 2UX—UX—XY+vZ—XZ
SX

-yz] (4.28
Cms=2v/A=2(Cyu1tCymuztCymust Cymua)
(4.29
CMT:L:X(U+Z_U)/A+XCM5/2_2XCMUl_(X+Z)CMu3
(4.30
CMT5:SU/A+UCM5/2 (43])

Cusi=Sv(INv—2)/A+Sscyua(2—INYy)+Scyua(2—Inu)
(4.32
cn=[(x—y)(U=2)—(3s+x+y+z+u)v/2]/A
+cyd2v+x+y+z+u—v Ev—(xmx+ymy
+zInz+ulnu)/2]+[(3x+2)Cyur + (3y

+U)Cpquz2t (3z+X)Cyust (Buty)Cpuall2.

(4.33

Here, the coefficient functionsyy2, Cut2, Cmp2 are each
respectively related toyy1, Cymt1s Cvet DY (X,2) < (y,u).
Similarly, cyus, Cuts are each related toyy1, Cut1 by
(X,y) > (z,u), andcyyas, Cyts are related ta@y,y1, Cyre DY

(x,y) = (u,2).

V. EXPANSIONS FOR SMALL s

It is often useful to have expressions for the two-loop
integral functions expanded for small This provides the

(4.27

_AWZA) s

B(x,y) =y Z(X_y)s[xz—y2+2xy|n(y/x)]
S2
+W[(x—y)(x2+y2+10xy)+6xy(x
+y)In(y )]+, (5.2
B(X,X) I_+S+Sz+ (5.2)
X,X)=—INX+—+——7+--- .
’ 6X  60x?

For the two-loop functions, the most compact expressions
involve derivatives of the vacuum integral. It is therefore
useful to have a recurrence relation for taking derivatives of

the vacuum function(x,y,z):

1
AXyz[(x—y—Z)l(x,y,Z)

+(X—=y+2)A(X)A(y)/x
+(X+y—2)A(X)A(z)/x—2A(y)A(2)

I(x",y,2)=

H(y+z=X)[AX) +A(Y) +A(2)]

+x%—(y+2)?], (5.3
1(x",x,0)= — (Inx—1)%/2, (5.4)
I(x",0,00=—(Inx—1)2/2—¢(2). (5.5

These follow immediately from the analysis [i6]. The
function(x,y,z) obeys
xI(x",y,2)+yl(x,y',z2)+zl(x,y,z")
=1(x,y,2) —A(X) —A(Y) —A(Z) + Xty +7z,
(5.6

necessary initial data for integrating the differential equa-

tions numerically starting frors=0. The expansions, given
in terms of the analytically calculable vacuum function
I(x,y,z), can be obtained by trying power series forms in theThese identities make the presentation of the following for-

differential equations of the previous section.
For example, for the one-loop function, one finds:

xI(x"y,2)=yl(x,y",2). (5.7

mulas quite non-unique.
For the expansion of the sunrise integral, one finds
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X 1 1 X
S(x,y,2)=1(x,y,z)+s El(x”,y,z)— §} T(x,y,2)=—1(x"y,z)+s| — EI (x"y,z)— EI (X"y,2)
+ 2 XI m + X2| "r + + 2 1| " X| "i
S5y + 5l (" y.2) [+ Sl -5 X"y, 2= 51" y.2)
(5.8 X2
o _ 1_2| (X”m,y,Z) 4. , (51(»
S(0.x,x)=1(0x,x)+s[ — (Inx)/2— 1/8] + s%/36x>
. (5.9 T(X,0%) = (1—InX)2/2+ S/4x+ SHT2X%+ - - - (5.11)

Taking the derivative with respect toyields The infrared-safd function has the expansion

T(0x,y)= [(X+Y)(0X,Y) +2A(X)A(Y) — 2XA(X) — 2y A(Y) + (X+Y)?]

(x—y)?

+ 2()(:/)4[4xyl(0,x,y)+(x+y){2A(x)A(y)+(x—3y)A(x)+(y_3X)A(y)+4Xy}]

2
+

. )6[24xy(x+y)l (0,y)+ 12(x+y)2A(X)A(Y) + (2x3+ 20x%y — 42xy> — 28y>) A(X)
X=y

+(2y3+20y°x— 42y x> — 283) A(y) — 3(x*+ y*) + 8xy(x?+ y?) + 86x%y?] + - - -, (5.12

2

— 1—, — 3 s —
T(O,x,x)=—§In x—Inx——+@[6lnx+ 1]+

5 [15Inx—19]+ - - -. (5.13

900x?
For theU integral,

U(x,y,z,u)=%[l(x,z,U)—l(y,z,U)]ﬂLs (y_xx)3(l(x,z,U)—l(y,Z.u))+ (y_x)zl(X’,z,u)JrZ(y_x)l(X”,z,U)
X(X+y) X(X+y) X(X+Y) X(X+Yy)
+g? ((x,z,u)—=I(y,z,u))+ I(x",z,u)+ I(x",z,u)+ 1(x",z,u)
(y—x)° (y—x)* 2(y—x)° 6(y—x)°
X2
+ 12(y—x)|(x JZU) [ 4 (5.19
X X x2
U(x,x,z,u)=—1(x",z,u)+s —gl(x’”,z,u) +&? —ﬁl(x””,z,u)—6—Ol(x””’,z,u) +. (5.195

For the master integral,

M(X,Y,Z,u,v)=

)[I(x,y,v)—I(x,u,v)—l(z,y,v)+I(z,u,v)]+

m 4u+4z—x—y—2v

4(y—u)?(x—2z)?
L Aymw | Ay(x-2)
X—z y—u

[1(x,y,v)—=1(x,u,v) ]+ (u=y) I (X,u,v) +v(X+y—v)(X+y)I(X,y,v")+v(Uv

+uX—2Xy—2uz+2yz—u?—x2)1(x,u,0”) + 2xy(x+y) I (X",y",v) — 2xu(x+u)l (x",u’,v) +x(v — X

—3y)|(x’,y,v)+y(v—y—3x)|(X,y’,v)+x(x+4y—u—v)|(x’,u,v)+u(u+4z—x—v)|(X,u',v))

Hxy) = (Zup+

(5.1
075002-11
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— 1 ! ! +y u+y ! ! 1 ! !
M(x,y,x,u,v)—y_—u[l(x Yao)— (X uv)]+s _24XVU+2(y—u)3[I(X Y,0)— (X ,u,v)]—m[ul(x ,u',v)
+yl(x",y",v)]+ ﬂ[u(wu—v)l(x” u'v)—yx+y—uv)l(X",y",v)+(v+2u—x)1(X",u,v)
y Y 24yu(y—u) u, y y Y WU,
X
—(v+2y—x)|(x”,y,u)]—m[uI(x”’,u,v)+y|(x”’,y,v)] +... (5.1
M(X,Y,X,y,v)=1(x",y",v)+ %[5+6v|(v”,x,y)+2v(4v—x—y)l(v”',x,y)+v2(v—x—y)l(v””,x,y)]+--~. (5.18

In theories with massless vector bosons, special cases like For the one-loop formulas, the well-known result is:
M(x,y,x,0X) can arise, in which denominators implicit in
the previous expressions threaten to vanish. However, those

—9_ ny_ n 1/2
cases are easily obtained from the preceding, by noting that B(X.Y)=2= TN X—tsydny+(Ag/s)In(tyys).

e.g.ul(x,y,u’) vanishes asi—0, sincel(x,y,u’) diverges 63
only logarithmically in that limit. B
B(Ox)=2—Inx+(x/s—1)In(1—-s/x), (6.4
VI. ANALYTICAL RESULTS
As noted in the Introduction, for favorable mass and mo- B(0,0=2—In(—s). (6.5

mentum configurations the basis integrals can be, and in

many cases have be¢8-20, computed analytically. The  The two-loop vacuum integral is given by
results fors=0 were given in the previous section. I will not 110,15 16,18,20,22,45

consider other special values ®in this section; they do not
typically arise in mass-independefas opposed to on-shgll
renormalization schemes. The remaining cases involve vany
ishing squared masses, which arise in theories with unbroken
gauge symmetries, and as approximations to theories with

(x,y,2)= %[(x—y—z)myszr(y—z—x)Esz

large mass hierarchies. Results for these cases can be ob- +(z=x=y)InxIny]+2(xInx+ylIny+zinz)
tained by analytically integrating the differential equations 5

presented in Sec. IV, with the initial conditions of Sec. V, — —(x+y+z)+A%,2z{ Lin(Fyyo) + Lia(ryzy)
taking due care with the branch cuts. In this section, | will 2

review results obtained in this manner, most of which have

) ; : X 1
2I£ady been derived by dispersion relation and other meth- =In(ryy)IN(rezy) + Eln(y/x)ln(z/x)—g(Z)
To compactify the notation, define the quantities (6.6)
atb—c+ A;’bzc a+ b—c—A}i’,fc when x>y,z, and otherwise by the appropriate symmetry
tabc:T! rabc:T' permutation of the arguments. Some special limits are
(6.
=(x— i “In(x— +(Inx)2
They obey 1(0X,y)=(x y)[LIZ(i/X) lnix y)ln(i/y) (Inx)</2
—4(2)]+XxInx(2=Iny)+ 2y Iny—5(x+Yy)/2,
1 1 1 I cba
t = :1——:1—r = . (6'7)
abe 1-tpca teap ach Mbac Fcba—1

1(0x,X)=X[ — In’x+ 4Inx—5], (6.8
These are exactly the changes of variables that occur in
dilogarithm functional identitie$50], making the presenta-

tion of formulas below highly non-unique. To resolve branch !(0,0X)=x[—(In X)?12+2Inx—5/2={(2)]. (6.9

cuts in the following consistent with the standard conven-

tions for polylogarithmdg50], it is crucial thats is always When the masses are all very small, the two-loop basis
given an infinitesimal positive imaginary part. integrals defined in this paper are
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135 s— T(x,0)y) =Lis(tysy) + Lia(rysy) +In(r In(r
S(O,O,O)Z?—Em(—S), (61@ ( Y) 2( xsy) 2( xsy) ( xys)[y ( yxs)
1 —
. +ASANsHrsyn(y/x)+ 5lin x—1]%-1.
T/ e TA )12
1 — 5 Here | have deliberately chosen a presentation that does not
U(0,0,0,0=5[In(—s)—3]°+1, (6.12  make manifeétthe symmetry undex—y. This makes the
formulas slightly smaller, and also eases the taking of the
M(0,0,0,0,0=—6(3)/s. (6.13  limit y—0:
This should provide a useful quick comparison between . .
other conventions and the ones used here. S(0,0x)= —xLi,(s/x)—x(Inx)2/2+ (2x—s/2)In x
For theSandT functions with one vanishing mass and the .
others arbitrary, one findd.8J: +[(x*—s%)/2s]In(1—s/x) +13s/8—[2+{(2)]x,
. . 6.1
S(0X,Y) = (Y= X)[ Liz(tesy) + Lin(T )] (619

—Y(1=x/s)In(t,ydIN(ryys)

0 Tnyv)2/9_1In _ _
+[(x+y+s)A§ﬁ(2/4s][ln(txys)—In(rxys)] T(x,0,0)=Liy(s/x)+ (Inx)/2—Inx+ (1—x/s)In(1—s/X)

_ _ — —1/2+{(2). (6.17
+(y—x)[Inx]?2—yInxIny+ (2x—s/4)In x «
+(2v—s/D)InV+T(v2=x2)/4s]In(x/V) — 2x The analytical expression for theintegral evidently can-
(2y iny+[(y Jas]in(xy) not be obtained from those f@&,T. By integrating the dif-
—2y+13s/8, (6.14 ferential equatiori4.22), | find

1/2
SXy

T(0X,Y) = (1= 2toxy)Lia(txsy) + (1= 20 5 Lin(Fxsy) + (2A53/)Lio(— Xyl AZE) + = Z[{IN(Xteys/ AZE) +2 In(r g9}

+(1=InyY)IN(rryd +2 IN(y/x)IN(AZ2/x) +{5In x Iny — 3 In?— 2 In%y + In(x/y) }/2+ 2¢(2)]
+[(5=x—2A2)/S]IN%(1 ) + (1= x/S)IN(X/y)IN(F 5y + (1= INX)[ (x/s—y/s)In(xly) — (1—Iny)]/2, (6.18

T(0,0%)= —Lin(s/x) = (INX)2/2+Inx+ (1= x/s)In(1—s/x){1—Inx—In(1—s/X)} — 1/2— £(2). (6.19

Useful cases for the) andV integrals that arise in unbroken gauge theories are compactly written in terms of the preceding
integrals:

U(X,Y,y,00= —T(y,0X) +(2—Iny)B(x,y) +1, (6.20
1 _ _
VXY, y.0= 2 [T(0Xy) = T(y.0%) = InyB(xy) ]+ (Iny=2)Bxy"). (6.21)

The last integral was obtained using Eg§.31) and the definition(2.22). Equivalent results were found [12].
Some other special limits of thd integral that can be quickly obtained using the differential equation method are:

U(x,0,0,0 = Lio(s/x) + (1= x/s)In(1—s/x)[INx—3+In(1—s/x) ]+ (INX)2/2— 3 Inx+ 11/2+ {(2), (6.22
U(0x,0,0)=(1—x/s){Li(s/x)+[In(—s) = 2]IN(1—s/x)} —In(— ) + (In x— 2)2/2+ 712+ {(2), (6.23
U(0,0,0x) = — (1+X/s)Lin(s/x) — (INx)2/2— 2 Inx+ (In x— 1)In( =) — 2(1— x/s)In(1—s/x) + 11/2— £(2). (6.24)

Equivalent results were obtained [ih7].
By integrating the differential equatio@.26 with the first argument vanishing, | find:

20f course, the manifest symmetry undery can be restored using dilogarithm identities.
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U(0.2,X,y) = (Y= X)[ Lia(tysy) + Lio(rxs) 12— (¥/S)IN(tyy ) IN(F yye) + (1= 2/ S){ (trxy— V2[Lin( 1~ tyyd yxo)
+Lio(1 =T yyd yxo) = Lia(tyz) = Lia(txzy) —IN(txy) IN(1=8/2) = 9(tyyz, M yxd IN(L = teyd yx2)
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where the function

n(a,b)=In(ab)—In(a)—In(b) (6.26

(6.2

VIl. NUMERICAL EVALUATION BY DIFFERENTIAL
EQUATIONS

A method for using the differential equations srto nu-

is employed to properly treat the branch cuts. As far as merically compute basis integrals has been formulated by
know, this is the first analytical computation of a two-loop Caffo, Czyz, Laporta, and Remiddi [#5—48. We can now

self-energy diagram with gener&and three distinct non-

apply the same strategy to compute the values of all of the

zero masses. | have checked it numerically using the methdegsis integrals, using the differential equations worked out in

of the next section.

Broadhurst has computgdl] the master integral for the

special limits needed in unbroken gauge theories:

M(X,X,Y,Y,0)=[F3 (txys) + F3 (tyxd —4F 3 (VX/yteys)

—4F 5 (VWXIyt,yd—64(3)1Is,  (6.27)
M(x,%,0,0,0 =[F3 (x/(x—s))—6{(3)]/s,
(6.28

where

F4(2)=6Liz(2)— 4 In(2)Liy(z)—In(1—2)In?*(2),
(6.29

F3(2)=6Lis(—2)— 4 In(z)Lis(—2)—In(1+2)In?(2).
(6.30

Another special case [41]

M(x,0,0,0,0 =[F3 (x/(x—s))—F3 (s/(s—x))—6{(3)]/2s.
(6.32

Sec. IV.

Consider a master integr® (x,y,z,u,v) that occurs in a
self-energy function. Typically, one will also need some or
all of the basis integrals that arise from removing one or
more propagators. These can all be obtained simultaneously
by solving the system of coupled first-order ordinary differ-
ential equations in the 15 dependent quantities

M(x,y,z,u,v), U(x,z,u,v), U(y,u,z,v),
U(z,x,y,v), U(uy,x,v), T(x,u,v), T(y,z,v),
T(z,y,v), T(u,x,v), T(v,x,u), T(v,y,2),

S(x,u,v), S(y,z,v), B(x,2), B(y,u), (7.2

with x,y,z,u,v fixed ands as the independent variable. The
relevant differential equations in addition to E¢.27) are
Eqs(4.14), (4.15), (4.16), (4.26), and others obtained by ob-
vious permutations. Since tliefunctions are known analyti-
cally, one need not treat them as among the dependent vari-
ables, but it is probably more economical in terms of
computer processing time to do so. Other than the term in-

I have checked that these results are satisfied by the differolving B(x,z)B(y,u) in the differential equation for the
ential equation(4.27), using the other analytical results master integraM(x,y,z,u,v), the system of equations is

above.[Straightforward integration of Eq4.27) provides

linear.

more complicated expressions, not given here, which are Standard computer numerical method®r example,
then evidently related to the above by some trilogarithmRunge-Kutta, or improvements thergafre used to evolve

identities. The equivalence was checked numeridally.

the differential equations frore=0 to the desired. Since

Some other special cases that have been computed in thige physical-sheet is always taken to have an infinitesimal

literature will be omitted here for brevity. Referenfgl]
also found M(x,0x,0x), while Ref. [17] obtained the
equivalent of U(x,y,0,0) and M(x,0y,0,0) and
M(0,0,0,0x), and Ref. [19] bhas M(x,0,0x,0),
M(x,0,0,0x), M(x,x,X,0,0), andM(x,X,x,x,0).

real imaginary part, and branch cuts lie along the saatis,

one should take the contour of integration to lie in the upper-
half complex plane. Referen¢d8] suggests using a rectan-
gular contour going from 0 téh to s+ih to s+ie, whereh

is chosen large enough to stay away from singularities on the
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FIG. 3. The master integra¥l(1,2,3,4,5), as a function o FIG. 4. The master integrall (1,0,0,1,1) as a function af The

The heavier line is the real part, and the lighter is the imaginanheavier line is the real part, and the lighter is the imaginary part.
part.

present any numerical problems. The value of the master
real s axis. Independence of the choicefpfand more gen- jntegral  at s=0 is [1(1,2,5)-1(1,4,5)-1(2,3,5)
erally on the choice of contour in the upper half-plane, pro- (3 4,5))/4~0.28889224. The asymptotic limit in which
vides a useful check on the numerical convergence. Eq.(6.13 is reasonably accurate is very far to the right of the
At the start of the contour &=0, the appearance 8fon  eng of the graph. Values for all of the basis integrals at

the initial data for derivatives of the basis functions with gifferential equations are:

respect tos are provided, along with the initial value@Al-

ternatively, one can start the running at a point very slightly M(1,2,3,4,5=0.71833535-0.39016220
displaced froms=0.) These are obtained from the expan- B .
sions in Sec. V. | find that it is often better to run U(1,3:4,9=—4.85695306 2.12756034

sM(x,y,z,u,v) rather than the master integral itself. The U(3,1,2,5=—3.99263626- 1.79951451
method is always very fast and arbitrarily accurate, except

sometimes whew is equal or extremely close to one of the u(2,4,3,5=—-3.08641797

thresholds where the denominators in the differential equa-

tions vanish. Even these cases can be efficiently computed U(4,2,1,9=—2.23235894

without performing special analytical expansions around the

thresholds, as will be explained below. S(1,4,5=—9.56660679

| have implemented this method in a computer program in T(4,1,5=—0.03036018
order to test the method, and for use in future applications.
When doing so, it is useful to note that all quantities other T(5,1,4=0.51591658
thans remain constant in the course of a Runge-Kutta rou-
tine. Therefore, although the coefficients of various powers T(1,4,59=-3.01221172

of s in the numerators and denominators of the coefficient

functions are mildly complicated functions ofy,z,u,v, S(5,2,9)=~7.67047979

they only need to be computed once. Comparison with spe- T(5,2,3=0.44677524
cific numerical examples for the master integral in Ré0)]

and the sunrise integrals JA47] yields agreement. Note that T(2,3,5=—-1.69451693
the first of these comparisons is actually a test of the equa-

tions and the method for all of the basis functions, not just T(3,2,5=-0.78612788

the master integraM, since any error in any of the basis
functions would feed into a discrepancy for the master inte-
gral. _ , _ B(2,4) = —0.05151328. (7.2
As an example, | consider the master integral and its sub-
ordinates for the casQ=1, x=1, y=2, z=3, u=4, and As a second test case, consider the master integral
v=>5. The result for the master integrié(1,2,3,4,5) as a M(x,0,0x,x), which occurs in QED and QCD. This case
function of sis shown in Fig. 3. does not satisfy the criterion for solvability in terms of gen-
Although the dependence os near the two-particle eralized polylogarithms mentioned in the Introduction, but a
thresholdss=(1+ /3)>~7.464 and (/2+2)?~11.657 is simple integral representation has been worked o(tLij.
sharp, these pointsand the three-particle thresholds+2 Following the method adopted here, the full system of dif-
+.5)2~27.416 and (2+3+.5)?~28.970] did not ferential equations simplifies to:

B(1,3)=0.77930384- 1.5390598D
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d X —
sd—SB(O,x)= S_—X[B(O,x)+ln x—1—s/x], (7.3
sdiSS(o,ox):xT(x,o,O)+S(o,ox)—xﬁx+ 2x—s/2, (7.4
s%S(x,x,x)szT(x,x,x)JrS(x,x,x)—3xmx+ 6x—s/2, (7.9
d— _
s—T(0,0x)= [X(s—X)T(0,0x)+Xx(3s+Xx)T(x,0,0)+2(s+x)S(0,0x)
ds (s—x)2
+x(s—3x)INx+5x2+ 3sx/4— 9s%/4], (7.6)
sdisT(x,0,0) = %[ZXT(X,0,0) +2S(0,0x)+(s— 2x)mx+4x— 9s/4], (7.7
d
sd—ST(x,x,x)z m[ZX(SS— 9X) T(X,X,X) +2(5s— 3X)S(X,X,X)
— 2sxIn%x+ (52— 5sx+ 18x2)In x— 36x%+ 675 X/4— 952/4], (7.9
siU(x,O,x,x)z [X(s—x)U(X,0X,X) —X(55+ 3X) T(X,X,X) — 2(S+ X) S(X,X,X)
ds (s—x)?
+(s+X)X(7InX—In2x— 11) + s(s+X)/4], (7.9
d 1 — =
Sd—SU(O,x,x,O)= S_—X[XU(O,X,X,O)—XT(X,O,O)—28(0,0x)+x(5|n x—In?x—7)+s/4], (7.10

dis[s M(x,0,0x,x)]= [(s+3X)T(X,X,X)+(s+Xx)T(x,0,0)+2S(x,X,x) +2S(0,0%)

(s—x)?

+5B(0X)2+ (2 Inx—4)sB(0x) + 2x(In x— 3)%—3s/2]. (7.10)

The value of the master integral obtained for 1 and as a s=sy*=nd (for small integersn), and then simply solve for

function of sis shown in Fig. 4. the coefficients in the expansion, in particuk&(sy). In the
In this example, it turns out that there are numerical probpresent example, 1 find that choosiag: 10~ *, where there

lems, but only extremely close to the double threshold at are definitely no numerical problems, ane 1,2,3,4 is good

=x=1, where it is known thaft11] enough to obtain the threshold values ®rx=Q=1 to
M(1,0,0,1,9 = 72In 2— 3¢(3)/2~5.03800311. better than 9 significant digits. The results are:
(7.12 B(0,1) = 2.00000000
In mass-independent renormalization schemes, this is not an S(0,0,1) = —3.66486813
issue since the tree-level mass appearing as the argument of
the function is not exactly the same as the pole mass where T(1,0,00=2.78986813
one will need to evaluate the self-energy. In on-shell type .
schemes, one could find the threshold value analytically, but T(0,0,1)=—3.78986813
one can also use the following general procedure to find
threshold values with high accuracy. Near each thresggld U(0,1,1,0=2.21013187

the loop functions have expansions of the form
P P M(1,0,0,1,3=5.03800311
F(s)=F(sp)+r[a;+binr+c n’r]+r¥a,+bynr
S(1,1,1) = —4.37500000
+c,In?r ]+ - - (7.13
T(1,1,1)=—0.50000000
where r=1-s/s,. Now one can use the Runge-Kutta
method to evaluate the loop functions at, say, several points U(1,0,1,2=-1.07973627. (7.14
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Of these, the first six are checked using the analytic formulas The basis integrals can be computed for any values of all
(6.4), (6.16), (6.17), (6.19, (6.20, and(7.12, while the next masses ang, to arbitrary accuracy.
two can now be seen “experimentally” to have the analytical ~ All of the necessary basis integrals are obtained simulta-
valuesS(1,1,1)= —35/8 andT(1,1,1)= — 1/2 at threshold. ~ neously in a single numerical computation.

To be extra safe, a computer code can be configured to Branch cuts are automatically dealt with correctly by
always trap the threshold and pseudo-threshold cases f6h00sing a contour in the upper-half compkeglane.
evaluation in this manner. This is easy to do in an automated Simple checks on the numerical accuracy follow from

way, since the potentially dangerous points are alway§hanging the choice of contour. _
known in advance as the roots of the denominators of the The Tarasov recurrence relation aIgontfﬁB}AQ] can be.
differential equations or from inspection of the Feynman dia-used to reduce any two-loop self-energy to linear combina-
grams. tions of these func_tlons, with coefficients depending on the
masses and couplings of the theory. Recently, | have used
this basis and the methods of computation described here to
Viil. OUTLOOK obtain the leading two-loop momentum-dependent correc-
In this paper | have studied the properties of a minimaltions to the neutral Higgs boson masses in minimal super-

basis of integral functions for two-loop self energies. Thes ymmetry in a mass-independent renormalization scheme.

results include a complete set of formulas allowing for their hat result will appear soon.
automated numerical computation using differential equa-
tions, following the same strategy as was put forward in
[45-48. It might be useful to review some of the advantages This work was supported by the National Science Foun-
of this method: dation under Grant No. 0140129.
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