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Localization in lattice QCD
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In this paper, we examine the phase diagram of quenched QCD with two flavors of Wilson fermions,
proposing the following microscopic picture. The supercritical regions insideand outside the Aoki phase are
characterized by the existence of a density of near-zero modes of the~Hermitian! Wilson-Dirac operator, and
thus by a nonvanishing pion condensate. Inside the Aoki phase, this density is built up from extended near-zero
modes, while outside the Aoki phase there is a nonvanishing density of exponentially localized near-zero
modes, which occur in ‘‘exceptional’’ gauge-field configurations. Nevertheless, no Goldstone excitations ap-
pear outside the Aoki phase, and the existence of Goldstone excitations may therefore be used to define the
Aoki phase in both the quenched and unquenched theories. We show that the density of localized near-zero
modes gives rise to adivergentpion two-point function, thus providing an alternative mechanism for satisfying
the relevant Ward identity in the presence of a nonzero order parameter. This divergence occurs when we take
a ‘‘twisted’’ quark mass to zero, and we conclude that quenched QCD with Wilson fermions is well defined
only with a nonvanishing twisted mass. We show that this peculiar behavior of the near-zero-mode density is
special to the quenched theory by demonstrating that this density vanishes in the unquenched theory outside the
Aoki phase. We discuss the implications for domain-wall and overlap fermions constructed from a Wilson-
Dirac kernel. We argue that both methods work outside the Aoki phase, but fail inside because of problems
with locality and/or chiral symmetry, in both the quenched and unquenched theories.
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I. INTRODUCTION

Wilson fermions play a prominent role in lattice QCD@1#.
They ~and their improved versions! are widely used in nu-
merical calculations of hadronic quantities. In addition, th
are at the heart of the construction of lattice Dirac opera
with domain-wall@2,3# or overlap@4,5# fermions. All these
fermion methods based on the Wilson-Dirac operator p
serve all of the flavor symmetry, but not ordinary chiral sy
metry. For Wilson fermions, a tuning of the bare fermi
masses is needed to restore chiral symmetry in the c
tinuum limit, while domain-wall fermions~with infinite ex-
tent in the fifth dimension! and overlap fermions possess
modified version of chiral symmetry with essentially th
same algebraic properties as the chiral symmetry of the c
tinuum theory@6#. This lattice chiral symmetry reduces t
that of the continuum theory in the continuum limit.

In this paper, we will discuss the phase diagram in
gauge-coupling, quark-mass plane for two degenerate Wi
fermions, for both the quenched and unquenched theo
We will be interested in correlation functions construct
from the inverse of the two-flavor~Hermitian! Wilson-Dirac
operator, evaluated on an equilibrium ensemble of gau
field configurations. The difference between the quenc
and unquenched cases is that only in the unquenched
the fermion determinant~which is positive for two degener
ate flavors! will be part of the Boltzmann weight used t
generate the ensemble, whereas in the quenched cas
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Boltzmann weight is obtained from a local pure-gauge
tion. The quenched theory can be understood as a Euclid
path integral with two physical quarks, and two ‘‘ghos
~bosonic! quarks with the same mass, whose role it is
cancel the physical-quark determinant@7,8#.

Long ago, a conjecture was made for this phase diag
@9#, which is shown schematically in Fig. 1, whereg0 is the
bare coupling andm0 is the bare quark mass. We will b
concerned with the region28<am0<0 because only in tha
region can the Wilson-Dirac operator have any zero or ne
zero eigenvalues. Spontaneous symmetry breaking~SSB! oc-
curs as a consequence of a nonzero density of such m
@10#, and the interesting part of the phase diagram is t
confined to this region~the ‘‘supercritical’’ region!. The
usual continuum limit corresponds to the critical point
g050, am050. Other continuum limits are obtained for an
value ofam0 by takingg0→0, but generically all quarks sta
massive~i.e., have a mass of order of the cutoff!. Only at
2am050,2,4,6,8 do massless quarks show up in the c
tinuum limit, respectively, 2, 8, 12, 8, 2 of them~in our
two-flavor theory!. The number of quarks is determined b
the number of momenta~or ‘‘corners’’! in the Brillouin zone
where the free Wilson-Dirac operator has a zero.

According to this conjecture, in regionsA andC no SSB
takes place, while regionB, the Aoki phase, is defined by th
existence of a pionic condensate, which breaks parity
flavor symmetry.1 Let us briefly review the evidence for th

1Note that all chiral symmetries are explicitly broken at nonze
lattice spacing, and thus play no role in determining the phase
gram.
©2003 The American Physical Society01-1
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~unquenched! Aoki phase diagram. First, a simple heuris
argument suggests that a pionic condensate must exi
some part of the phase diagram@9#. Start with somem0>0
and examine what happens asm0 is decreased. For a nonze
lattice spacinga ~i.e., g0.0) there is no chiral symmetry
Instead of the continuum relationmp

2 }umqu ~heremp andmq

are, respectively, the pion and quark masses! we have that
mp

2 }m02m8, where the fact thatm85m8(g0) does not van-
ish is a consequence of the breaking of chiral symmetry
the lattice. Form0.m8 the pions are massive, becomin
massless at the critical linem05m8(g0). For m0,m8, mp

2

would go negative, signaling the breaking of a symmetry
pionic condensate forms in some direction in flavor spa
and the line m05m8(g0) determines the location of
second-order phase transition. The corresponding pion
comes massive again form0,m8, while the other two pions
become Goldstone bosons associated with the spontan
breaking of the SU~2! flavor symmetry~‘‘isospin’’ ! down to
a U~1! symmetry. Since the condensate is pionic, it bre
parity symmetry as well. Microscopically, the condens
arises from near-zero modes of the Wilson-Dirac opera
@10#, and can thus only occur in the region28,am0,0.

This argument does not provide much information on
detailed form of the Aoki phase. Additional analytical ev
dence comes from several sources. The location of the c
cal points along the lineg050 is obtained from weak-
coupling perturbation theory, which, however, gives
information on the existence of a condensate. The existe

FIG. 1. A representation of the phase diagram proposed by A
for two-flavor QCD with Wilson fermions and standard plaque
action. The solid lines mark phase transitions~all believed to be
continuous!. PhaseB is the Aoki phase, defined by the existence
a parity-and flavor-breaking pionic condensate. Its ‘‘trademark’’
the five ‘‘fingers’’ reaching to the critical points on theg050 axis.
PhasesA andC have no condensate. The lightly shaded area ma
the supercritical region where near-zero modes may occur. The
m050 and am0528, which define the boundaries of the supe
critical region, appear to have no special dynamical significan
the A phases extend on both sides of them. The quenched p
diagram is discussed in the main text. The darker shaded ar
roughly the area where domain-wall fermion simulations have b
carried out. The dashed line represents a possible trajectory
taking the continuum limit with domain-wall or overlap fermion
~see Sec. VII!.
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of a condensate was discussed in the context of the p
effective action in Refs.@11,12#. Reference@12# showed that,
if the Aoki phase extends all the way tog050, it does so as
indicated by the ‘‘finger’’ structure2 in Fig. 1, with the width
of these fingers proportional to (aLQCD)3, whereLQCD is
the QCD scale. In the strong-coupling limit, the location
the two critical points was first found in Ref.@14#, and the
nature of the phase with broken symmetry was clarified
Ref. @9#.

The phase diagram was studied numerically in b
quenched@15# and full @16# QCD. The numerical results pro
vide evidence that the five critical points atg050 are indeed
continuously connected to the ‘‘main body’’ of the Aok
phase at large coupling. In the quenched theory, evidence
all ten critical lines atg051 (b56.0) was found in the las
paper of Ref.@15#. In the present paper, in which we addre
the mechanism responsible for the existence of an A
phase, the detailed form of the phase diagram is not imp
tant. For the sake of argument, we will assume that the v
plausible situation depicted in Fig. 1 describes the act
phase diagram. For a discussion expressing some doubts
Ref. @17#.

A difficulty with the quenched simulations@15# is that
exceptional configurations were discarded. Exceptional c
figurations@18,19# will play an important role below. Keep
ing this subtlety in mind, no light excitations were found
the quenchedA and C phases, except close to the Aoki~B!
phase boundary~and, in particular, close to the five critica
points atg050).

While this picture appears to be rather satisfactory, th
exists some evidence that, in thequenchedcase, seems to
disagree with the diagram of Fig. 1. Numerical studies of
near-zero modes of the~Hermitian! Wilson-Dirac operator
indicate that, forg0.0, a nonzero density of near-zer
modesalways occurs in the quenched theory,anywherein
the supercritical region@20,21# ~namely, in regionsB andC,
and the supercritical part of regionA!. Through the Banks-
Casher relation, this would imply that the pionic condens
vanishes nowhere in this region, and SSB takes place ev
where, thus contradicting the phase structure sketched in
1. Moreover, one would be inclined to expect Goldstone
citations everywhere in the supercritical region, in whi
case Fig. 1 would be completely wrong for the quench
theory; it would not even serve as a guide to the long-ra
physics. We note, however, that this is in conflict with wh
is known from the numerical studies of Ref.@15# mentioned
above, as well as with an analytical study@22#, in which it is
argued that the effective-field theory analysis of Ref.@12# is
also valid for the quenched case.

Another clue comes from a study of a special class of z
modes by Berruto, Narayanan, and Neuberger~which we
will refer to as BNN hereafter! @23#. They showed that, for
choices ofm0 in the supercritical region, the Wilson-Dira
operator has exact zero modes for very smooth gauge fi
with one dislocation, which is contained in a small hype

2A similar phase diagram is known to exist in the Gross-Nev
model @9,13#.
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LOCALIZATION IN LATTICE QCD PHYSICAL REVIEW D 68, 074501 ~2003!
cube with a linear size of a few lattice spacings~later we give
a more precise description of their results!. These zero mode
are exponentially localized, and their existence character
these ‘‘BNN’’ gauge-field configurations as exceptional co
figurations. They further argued that in large volume o
would expect configurations with a ‘‘dilute gas’’ of such di
locations, because of their highly localized nature. This cl
of configurations could then contribute to a nonvanish
density of near-zero modes of the Wilson-Dirac operator
the quenched theory, where such configurations are not
pressed by the fermion determinant. This study thus le
analytical support to the numerical results reported in R
@20,21#.

In this paper, we will propose a resolution to this app
ently paradoxical situation. First, we prove that, if there is
nonvanishing density of exponentially localized near-z
modes, there exists a different mechanism for saturating
Ward identity involving the order parameter for SSB. T
orientation of an order parameter is determined by a sm
external ‘‘magnetic field,’’ here provided by a so-calle
twisted-mass term@9,24#. We argue that under the above c
cumstances, no Goldstone poles need appear, but instea
the two-point function of the would-be Goldstone-pion fie
divergesin the limit of vanishing twisted mass, even if th
momentumdoes notvanish.3 This divergence already occur
in finite volume, and we will argue that it persists in th
infinite-volume limit of the quenched theory.

We then invoke a concept from condensed-matter phy
in order to come up with a conjecture for the microsco
picture underlying the quenched phase diagram. The mot
tion is to understand what happens in the case that we ha
dense, rather than dilute, gas of dislocations. For this p
pose, we interpret the square of the Hermitian Wilson-Di
operator as the Hamiltonian of a five-dimensional theory, a
thus its ~positive! eigenvalues as energy eigenvalues. T
ensemble of gauge fields on which these eigenvalues
computed act as a random potential, and a nonzero mea
subset of these fields can be viewed as random distribut
of highly localized scattering centers. The eigenstates
scribe the possible states of a~four-plus-one-dimensional!
‘‘electron’’ in this background. Note that the fact that we a
concerned with the quenched theory here makes the sim
ity of this picture more compelling, because of the abse
of any feedback of the fermions on the gauge fields.

In general, there will exist a band of extended eigensta
above a certain energy, denotedlc

2, whereas eigenstates b
low this energy will be localized exponentially.4 While
attractive-potential scattering centers will tend to localize
electron as in a bound state of an isolated scattering cent
large-enough density of them will make it possible for t
electron to travel throughout the lattice by tunneling, w
the corresponding state becoming extended. The outc

3While completing this paper, we became aware of the fact th
similar observation has been made some time ago in conden
matter theory@25#.

4In a less detailed form, this physical picture has previously b
considered in Ref.@26#.
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will depend on the energy of the state and on the density
other properties of the scattering centers. The~average! lo-
calization range of the states will increase as the energ
increased towardslc

2, becoming infinite atlc
2, which in

condensed-matter physics is referred to as the ‘‘mobi
edge’’ @27# ~for reviews see Refs.@28–30#!.

The value of the mobility edge is a dynamical issu
which depends on the ensemble of gauge fields, and thu
the location in the phase diagram. We conjecture that
Aoki phase is precisely that region of the phase diagram
which the mobility edge is equal to zero. Outside the Ao
phase, it is larger than zero, and consequently, all near-
modes are exponentially localized. When one moves clo
to the phase transition, the mobility edge comes down c
tinuously, until it vanishes and the Aoki phase is entered

We complete our discussion of the physical picture
invoking our results on the two different mechanisms
which the Ward identity can be saturated in the presence
nonzero condensate. When the mobility edge is zero, o
extended near-zero modes contribute to the spectral den
and the Ward identity predicts the existence of Goldsto
excitations that dominate the long-range physics of
theory; when the mobility edge is larger than zero, the c
densate~and, hence, the order parameter! is produced by
exponentially localized near-zero modes, the pion two-po
function is diverging, and, we conjecture, no Goldstone
citations occur. Thus the region with Goldstone bosons co
cides with the region where the mobility edge is equal
zero, and the existence of Goldstone bosons can be used
definition of the Aoki phase in both unquenched an
quenched QCD.

This picture of what the quenched phase diagram lo
like begs the question as to whether it is consistent w
unquenched QCD. In the unquenched case, the Boltzm
weight is modified by the fermion determinant, which ten
to suppress the entropy of gauge-field configurations w
near-zero modes. We show that the divergence in the p
two-point function cannot occur in the unquenched ca
Therefore, indeed no near-zero-mode density can build
unless the resulting condensate is accompanied by Golds
bosons~in which case we are inside the Aoki phase!, and
exponentially localized near-zero modes do not play
same role in unquenched QCD as in quenched QCD.

The scale of the typical localization length of the nea
zero modes is set by the lattice spacing. The existence
nonzero condensate outside the Aoki phase is thus a s
distance artifact. One expectsno long-range physics~such as
the existence of Goldstone excitations! as a consequence o
localized near-zero modes, unless their average localiza
length becomes so large that they behave collectively.
cording to our conjecture, this happens precisely when
mobility edge comes down to zero, and, just as in u
quenched QCD, only extended near-zero modes contribu
the spectral density. Therefore, an effective-Lagrang
analysis in terms of the long-range effective degrees of fr
dom, as carried out in the unquenched case@12#, should also
make sense in the quenched case. Both inside and clos
the boundaries of the Aoki phase, the effective Lagrang
should provide a valid description of the long-range physi
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M. GOLTERMAN AND Y. SHAMIR PHYSICAL REVIEW D 68, 074501 ~2003!
Indeed, such an analysis has been carried out in the quen
theory @22#, and leads to conclusions very similar to tho
obtained in the unquenched case.

Thus far, our results deal with the case of QCD with W
son fermions. However, there are important consequence
lattice QCD with domain-wall or overlap fermions con
structed from the Wilson-Dirac operator. In short, we cla
that domain-wall and overlap fermions can only be usedwell
outsidethe Aoki phase. For domain-wall fermions, the He
mitian Wilson-Dirac operator is closely related to~the loga-
rithm of! the transfer matrix that hops the fermions in t
fifth dimension. A density of near-zero modes of the Herm
ian Wilson-Dirac operator implies the existence of lon
range correlations in the fifth direction. This threatens
decoupling of the left-handed and the right-handed qua
that live on opposite ends of the five-dimensional world, a
hence, the restoration of chiral symmetry in the limit on
infinite fifth dimension.

The crucial issue is the value of the mobility edge of t
Wilson-Dirac operator. Well outside the Aoki phase the ne
zero modes are all exponentially localized, with a scale
by the lattice spacing. As a result, their contribution to o
servables vanishes when the four-dimensional separatio
set by a physical scale~without having to tune any param
eter!. As for extended modes of this operator, they can
mediate long-range correlations in the fifth dimension, a
thus they do not obstruct the recovery of chiral symme
either. In contrast, inside the Aoki phase the near-zero mo
are extended, and they mediate long-range correlations iall
five directions. This strongly suggests that inside the A
phase the resulting four-dimensional effective theory eithe
completely nonlocal, or, at best, contains long-range deg
of freedom different from the desired ones. This physi
picture is valid for any value of the lattice spacing in the fif
dimensiona5 , and thus the same conclusion applies to ov
lap fermions which corresponds to the special casea5→0.

This paper is organized as follows. We define our theo
introduce the twisted quark mass, and derive the relev
Ward identity in Sec. II, where we also briefly review th
relation between the condensate and the near-zero-mode
sity. In Sec. III we derive a spectral representation for
pion two-point function. We observe that in the supercritic
quenched theory this two-point function always diverges
finite volume, in the limit of a vanishing twisted mass. W
thus provide an alternative mechanism for saturating
Ward identity in the presence of a nonvanishing condens
In Sec. IV, we start with defining localized near-zero mod
more precisely. We show that a nonzero density of them
dominate the divergence of the pion two-point function
large volume, and, likely, will produce the divergence in t
infinite-volume limit as well. We then give a qualitative b
detailed discussion of the mobility edge, and its role in d
termining which way the Ward identity is satisfied. Th
leads to a comprehensive picture of the quenched phase
gram, and in particular of the distinction of the supercritic
regions inside and outside the Aoki phase. In Sec. V
discuss briefly how the picture changes if we reintroduce
fermion determinant, i.e., if we unquench the theory. We th
discuss the implications of our analysis for domain-wall a
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overlap fermions in Sec. VI, and finally summarize our co
clusions in Sec. VII. In Appendix A we review Anderson
definition of localization as the~partial! absence of diffusion
@27#, and its relation to our definition in Sec. IV. Some tec
nical details are relegated to Appendix B.

II. TWISTED-MASS QCD, THE WARD IDENTITY,
AND THE AOKI CONDENSATE

The definition of the Wilson-Dirac operator is

D~m0!5
1

a S 2~W1am0! C

2C† 2~W1am0!
D ,

Cxy5
1

2 (
m

@dx1m̂,yUxm2dx2m̂,yUym
† #sm ,

~2.1!

Wxy54dxy2
1

2 (
m

@dx1m̂,yUxm1dx2m̂,yUym
† #,

in which sm5(sW ,i ), wheresk are the three Pauli matrices
and each entry is a 232 matrix. The Hermitian Wilson-Dirac
operator isH(m0)5g5D(m0), with g55diag ~1, 1, 21,
21!. The theory is symmetric under the replacementam0
→2(81am0) because of the fact that foram0524 the
Wilson-Dirac operator only contains nearest-neighbor c
plings, thus allowing for a U(1)e symmetry@18#.

We defineH0(m0) as the operatorH(m0) with all Uxm
51. This corresponds to the lineg050 in the phase diagram
The spectrum of H0

2(m0) covers a closed interva
$@lmin

0 (m0)#
2, @lmax

0 (m0)#
2%, with 0<lmin

0 (m0),lmax
0 (m0),`.

lmin
0 is determined by minimizing

a2H0
2~p;m0!5(

m
sin2~apm!

1S (
m

@12cos~apm!#1am0D 2

~2.2!

over the Brillouin zone. Keeping three components of t
momentum fixed, it is easy to see thata2H0

2(p;m0) is linear
in the cosine of the fourth component, and thus minimiz
when this cosine equals61. It follows that at a minimum all
four components of the momenta have to be equal to 0 op,
and thus thata2H0

2(p;m0) is the minimum overk of (2k
1am0)2, in which k is the number of momentum compo
nents equal top. We thus find thatlmin

0 5minum02m0
cu, where

am0
c is one of the values 0,22, 24, 26, and28. We see that

lmin
0 is generically of order 1/a, except whenm0 is close to

one of these critical points. These critical points correspo
to the tips of the Aoki ‘‘fingers’’ on the lineg050 in Fig. 1.
Near these critical points the theory yields 1, 4, 6, 4, an
light quarks per Wilson fermion, respectively. All eigen
modes ofH0

2(m0) are plane waves, and thus extend over
whole volume. Note that the spectrum ofH0(m0) is con-
tained in two disjunct intervals,@2lmax

0 ,2lmin
0 # and

@lmin
0 ,lmax

0 #, separated by a gap~if lmin
0 Þ0).
1-4
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Returning to the interacting theory, we consider for whi
values ofm0 the operatorH(m0), or equivalentlyD(m0),
can have zero eigenvalues. WriteD(m0)5A1 iB, with A
and B Hermitian, and consider an eigenmodeDC5(A
1 iB)C5lC. We then have thatC†(A2 iB)5C†l* , and
thus 2C†AC5(l1l* )C†C. It follows that l can only
vanish if C†AC vanishes. SinceA52(W1am0), this can
only happen if28<am0<0, because the spectrum ofW is
confined to the interval@0, 8#. The supercritical region~i.e.,
the region where zero modes may exist! is thus the region in
which 28<am0<0, and we will restrict ourselves to tha
region for the rest of this paper.

In the supercritical region ‘‘exceptional’’ configuration
may, and do, occur. Exceptional configurations are defi
by the condition thatD(m0) has an eigenmodeC0 with an
exactly real eigenvaluel0 @18,19#. For such configurations
we have thatH(m01l0)C5g5D(m01l0)C50. Hence, a
configuration is exceptional iffH has an exact zero mode fo
somem0 . BNN configurations~see Sec. IV! are a special
kind of exceptional configurations.

We will be interested in a two-flavor theory construct
with this Wilson-Dirac operator, with a fermion Lagrangia

L5c̄„D~m0!2 im1g5t3…c

5c̄8„H~m0!2 im1t3…c, ~2.3!

wherec̄85c̄g5 is a field redefinition with Jacobian one. Th
~eight-component! field c transforms in the fundamental rep
resentation of isospin SU~2!. We added a symmetry-breakin
term proportional tom1 pointing in thet3 direction, where
tk is another set of Pauli matrices acting in isospin spa
This symmetry-breaking term, which breaks both isospin a
parity, and thus has the quantum numbers of one of
pions, allows us to probe the existence of an Aoki phase
which this pion field develops a vacuum expectation val
We will assume the standard plaquette action for the ga
field, unless otherwise noted. Integrating over the ferm
fields yields the fermionic partition function

ZF5)
n

~ln1 im1!~ln2 im1!5)
n

~ln
21m1

2!, ~2.4!

where the product is over the eigenvaluesln of H(m0), of
which there is a finite number on a finite-volume lattic
Note that ZF depends on the gauge-field configurati
through the eigenvaluesln .

The relevant Ward identity is obtained by performing
local flavor transformation

d1c~x!5 ia~x!t1c~x!, d1c̄~x!52 ia~x!c̄~x!t1 ,
~2.5!

in which t65(t16 i t2)/2. With p6(x)5 i c̄(x)g5t6c(x)
andp3(x)5 i c̄(x)g5t3c(x), we find for any operatorO that

]m* ^Jm
1~x!O~y!&12m1^p1~x!O~y!&5

idxy

a4 ^d1O~y!&,

~2.6!
07450
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where the backward lattice derivative is defined by]m* f (x)
5@ f (x)2 f (x2m̂)#/a and the corresponding vector curre
is

Jm
1~x!5 1

2 @c̄~x!t1~gm11!Um~x!c~x1m̂ !

1c̄~x1m̂ !t1~gm21!Um
† ~x!c~x!#. ~2.7!

While the notation^¯& indicates an integration over bot
fermion and gauge fields, we note that the Ward identity
also valid if we integrate over the fermion fields only. Takin
O(y)5p2(y) and defining

G~x,y!5^p1~x!p2~y!&,

Gm~x,y!5^Jm
1~x!p2~y!&, ~2.8!

we arrive at the Ward identity

]m* Gm~x,y!12m1G~x,y!5
dxy

a4 ^p3~y!&. ~2.9!

Defining

G̃~p!5
a8

V (
xy

eip~y2x!G~x,y!, ~2.10!

and similarlyG̃m(p), the Fourier-transformed Ward identit
is

1

a (
m

~12e2 iapm!G̃m~p!12m1G̃~p!5^p3&. ~2.11!

The pionic condensate

^p3&5~a4/V!(
y

^p3~y!& ~2.12!

can be calculated by first calculating the expectation value
p3(y) in a fixed gauge field~denoted bŷ ¯&U) from ZF ,

a4(
y

^p3~y!&U5ZF
21 ]

]m1
ZF52(

n

m1

ln
21m1

2 , ~2.13!

and then averaging this over the gauge field, to obtain

^p3&52E dl r~l!
m1

l21m1
2 , ~2.14!

wherer~l! is the spectral density defined below. In the lim
m1→0, we obtain

^p3&52pr~0!, ~2.15!

the Banks-Casher relation@10# for the case at hand.
We define the spectral density from the cumulative d

sity

N~l!5K ( uCn~x!u2L , ~2.16!

ln<l

1-5
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whereCn(x) is the eigenfunction associated with the eige
valueln ,

H~m0!Cn5lnCn , ~2.17!

and with normalizationa4(xuCn(x)u251. Because of the
gauge-field average in Eq.~2.16! the right-hand side is actu
ally independent ofx. The spectral densityr~l! is

r~l!5dN/dl5V21K (
n

d~l2ln!L . ~2.18!

All these results are valid in finite-volume QCD, in both th
quenched and unquenched cases. They remain true i
infinite-volume limit is taken, but of course this limit may o
may not commute with the limitm1→0. It is well known
that in unquenched QCD these limits do not commute i
phase with SSB; the order parameter^p3& in the m150
theory vanishes in finite volume, but does not vanish if
thermodynamic limit is taken before the limitm1→0. We
will return to this point in Sec. V.

For any givenm0 we will denote bylmin
2 (lmax

2 ) the mini-
mum ~maximum! eigenvalue ofH2(m0) over the gauge-field
space. These values are finite, because of the fact thatH(m0)
connects a given site only to a finite number of neighbor
sites, and because the gauge group is compact; henceH(m0)
is uniformly bounded. The cumulative densityN~l!, defined
by the spectrum ofH(m0), is monotonously nondecreasin
on the interval@2lmax,lmax#. Using the results of Ref.@23#,
we will argue below thatlmin50 for any 0.am0.28 and
that, in the quenched theory,r(l).0 for any 2lmax,l
,lmax. We will first consider a finite volume~Sec. III! and
then the infinite-volume limit~Sec. IV!. Outside the super
critical region, i.e., foram0.0 or am0,28, one haslmin
.0, andr(l)50 for 2lmin,l,lmin .

III. SPECTRAL REPRESENTATION OF THE PION
TWO-POINT FUNCTION

We are now ready to establish one of the key resu
Using the spectral representation for the quark propagato
is straightforward to derive that, in a finite volume,

G~x,y!5E DUB~U!(
kn

Cn
†~x!Ck~x!

1

lk1 im1

3Ck
†~y!Cn~y!

1

ln2 im1
. ~3.1!

The two propagators on the right-hand side correspond to
‘‘up’’ and the ‘‘down’’ quarks, respectively. Each sum run
over the eigenstates of the~single-flavor! Hermitian Wilson-
Dirac operatorH(m0). In full QCD the Boltzmann weight is
B5ZF exp(2Sg), whereSg is the gauge action, and the fe
mionic partition function ZF is given in Eq. ~2.4!. In
quenched QCD,B5exp(2Sg).

For a generic gauge field, the eigenvalue spectrum
H(m0) is nondegenerate: ifln5lk then Cn(x)5Ck(x).
Gauge-field configurations for which this is not true form
subset of the configuration space with measure zero, bec
07450
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either H(m0) would have to have a symmetry in this fixe
gauge-field background, or there is an accidental degene
Both types of degeneracy disappear under a generic s
deformation of the gauge field.

In a finite volume on the lattice, the sums overn andk in
Eq. ~3.1! are finite, and the integration over gauge fields
absolutely convergent because we integrate over a com
group. This implies that we may interchange the sums
the integral, and consider separately the contribution for e
n andk to G(x,y), which is

E DUB~U!Cn
†~x!Ck~x!

1

lk1 im1
Ck

†~y!Cn~y!
1

ln2 im1
.

~3.2!

For nÞk ~and thus genericallylnÞlk), expression~3.2! is
finite, even in the limitm1→0. This is because the denom
natorsln1 im1 and lk2 im1 become singular on differen
subspaces~with codimension one! of the gauge-field space
and theim1 terms in the denominators provide ani e pre-
scription for how to integrate around the poles atln50 or
lk50. Therefore, in the limitm1→0 only terms withn5k
can make a nonzero contribution to the productm1G(x,y):

lim
m1→0

m1G~x,y!5 lim
m1→0

E DUB~U!

3(
n

uCn~x!u2uCn~y!u2
m1

ln
21m1

2 .

~3.3!

Of course, the fact that we keep the volume finite is a k
element of this argument. For the Fourier transform
G(x,y), Eq. ~2.10!, this result translates into

lim
m1→0

m1G̃~p!5 lim
m1→0

m1

V E DUB~U!(
n

uHn~p!u2

ln
21m1

2 ,

Hn~p!5a4(
x

uCn~x!u2e2 ipx. ~3.4!

Equation ~3.3! has a dramatic consequence for quench
QCD. We may introduce the density correlation function

R~x,y;l!5E DUB~U!(
n

uCn~x!u2uCn~y!u2d~l2ln!

~3.5!

with which Eq.~3.3! can be written as

lim
m1→0

m1G~x,y!5 lim
m1→0

E dlR~x,y;l!
m1

l21m1
2

5pR~x,y;0!. ~3.6!

It is clear that R(x,y;l) is independent ofm1 in the
quenched theory becauseB~U! is. Also, if we choosem0
anywhere inside the supercritical region, the existence
1-6
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LOCALIZATION IN LATTICE QCD PHYSICAL REVIEW D 68, 074501 ~2003!
BNN-like zero modes5 implies that there is no spectral ga
aroundl50, and, in particular, that exact zero modes oc
on a nonempty subspace of codimension one. As a re
R(x,y;l).0 for any2lmax,l,lmax, because, apart from
the d function, the integrand in Eq.~3.5! is strictly positive.
Hence, we find a 1/m1 divergence inG(x,y),

G~x,y!5
pR~x,y;0!

m1
1O~1!. ~3.7!

Moreover, if R(x,y;0).0, also r(0).0 and, from Eq.
~2.15!, ^p3&.0 for the same reasons, and we find that
can have SSB in afinite volume in the quenched theory6

Equation~3.7! shows that the quenched theory in the sup
critical region is singular in the limitm1→0, and it provides
an alternative mechanism for saturating the Ward iden
Eq. ~2.9!. With this alternative mechanism, no Goldstone e
citations need to appear in the quenched theory, even in
presence of SSB.

The fact that these results are so simple is related to
fact that, in the finite-volume quenched theory, the existe
of both the condensate and the 1/m1 divergence in the pion
two-point function is a kinematical effect, which depen
only on the supercriticality ofm0 and the strict positivity of
the (m1-independent! quenched measure. The magnitudes
^p3&.0 andR(x,y;0) depend on the dynamics, and, as
will turn out, on whether we are inside or outside the Ao
phase.

To conclude this section, we note that one can repeat
entire analysis assuming a different SU~2! orientation of the
flavor- and parity-symmetry breaking term in Lagrangi
~2.3!. The orientations of both the pionic condensate and
divergent term in the pion two-point function follow the or
entation of this symmetry-breaking term, just as in the c
of conventional SSB. In the next section, we will address
dynamics of the quenched theory, and in the section after
the differences with the unquenched theory.

IV. LOCALIZATION AND SPONTANEOUS SYMMETRY
BREAKING IN THE QUENCHED THEORY

In a given finite volume, all eigenmodes ofH(m0) are
localized for the trivial reason that their support is compa
In particular, all near-zero modes contribute to the 1/m1 di-
vergence we found in the previous section.@Here we define a
near-zero eigenvalue as an eigenvalue with an absolute v
of orderm1 , for a given~small! m1 .] However, as we will
now demonstrate, quantitatively the finite-volume divergen
comes from exponentially localized near-zero modes.
postpone the discussion of what happens in the infin
volume limit to the second part of this section.

5For a more detailed account of BNN’s work, see Sec. IV.
6For the unquenched theory, see Sec. V.
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A. Localized modes and the divergence of the pion
two-point function

On a finite lattice of spacinga and~large! linear sizeL ~in
all four directions!, a normalized eigenstateCn(x) is expo-
nentially localized, provided there exists a positive const
c15O(1), a lattice site xn

0 ~which depends onCn), and
somel with a< l !L such that

uCn~x!u2<
c1

l 4 expS 2
ux2xn

0u
l D . ~4.1!

The localization range~or localization length! l n is the mini-
mal value ofl for which the bound~4.1! holds. For definite-
ness, the distanceux2yu2 is defined by the minimum of
(muxm2ym1nmLu2 over all integersnm . Our intention is to
establish a lower bound onG̃(p) in terms of the density of
localized near-zero modes and, for this purpose, we takec1
to be independent ofl and L. Also, the restriction tol n< l
!L means that we consider only localized modes wh
support ~of roughly orderl n

4), and sizeuCnu2;1/l n
4 inside

this support, are basically independent of the volume. T
definition may exclude some modes which would be ex
nentially localized according to some other reasonable d
nition, but the class we are considering here will be suffici
for our purpose.

We begin with establishing bounds onHn(p) in Eq. ~3.4!,

12c2l n
2p2<uHn~p!u2<1. ~4.2!

Here c2}c1 is another numerical constant which we w
define below. The upper bound is trivial, while the low
bound just expresses the fact that one cannot resolve
structure of a localized mode with localization rangel n using
momentap!1/l n . The lower bound is established by notin
that @with xn

0 the ‘‘center’’ of the localized eigenstate of Eq
~4.1!#

0<12Re@eipxn
0Hn~p!#52a4(

x
sin2@p~x2xn

0!/2#uCn~x!u2

<
c1

2

a4

l n
4 (

x
p2~x2xn

0!2e2ux2xn
0u/ l n

5
C~ l n!

2
l n
2p2<

c2

2
l n
2p2. ~4.3!

Inequalities~4.1! andusin(a)u<a were used. The dimension
less quantity

C~ l !5c1

a4

l 4 (
x

z2e2uzuU
zm5xm / l

~4.4!

is a continuous function ofl and finite in the limitl→`. The
fact thatC( l ) is finite for l→` is a consequence of choosin
the bound onuCn(x)u2 with the prefactorc1 / l 4, with c1
independent ofl. This is important for deriving a nontrivia
lower bound onG̃(p). It thus follows that
1-7
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M. GOLTERMAN AND Y. SHAMIR PHYSICAL REVIEW D 68, 074501 ~2003!
c2[maxl>a$C~ l !% ~4.5!

is a finite numerical constant of the same order asc1 . Since

uRe@eipxn
0Hn(p)#u<uHn(p)u, inequality~4.2! follows.

We now use this bound to derive a lower bound onG̃(p)
in Eq. ~3.4!, for m1→0. Choosing some fixedl, we split the
eigenstates ofH(m0) into two classes: those which are e
ponentially localized according to our definition of Eq.~4.1!
with localization rangel n< l , and the rest. Keeping only th
former, we obtain

m1G̃~p!>
m1

V E DUB~U! (
l n< l

12c2l n
2p2

ln
21m1

2 1O~m1!.

~4.6!

Since in this sum we only keep terms for whichl n< l , this
may be expressed more simply as

m1G̃~p!>pr l~0!~12c2l 2p2!1O~m1!. ~4.7!

Here r l(l) is the density of exponentially localized eige
states@according to our definition~4.1!# with eigenvaluel
and localization range less than or equal tol.

This result is of key importance. It establishes that if the
is a nonzero density of near-zero modes which are expo
tially localized within a certain rangel, the pion two-point
function diverges asm1→0 in any finite volume, for all mo-
mentap below ~roughly! the inverse localization range. A
we will argue in Sec. IV B, the analysis of Ref.@23# allows
us to establish the same result in the infinite-volume lim
provided the mobility edge does not vanish~andm0 is in the
supercritical region!. This provides an alternative mechanis
for saturating the Ward identity, Eq.~2.11!, in the presence o
a nonvanishing pion condensate^p3&. It also shows that the
quenched theory in infinite volume is not well defined f
m150, at least as long as the mobility edge does not van

A comment is in order on the range of momenta for wh
our result is valid, because of the fact that in a finite volu
the momenta are discrete, and thus cannot be chosen
trarily small. First, we observe that for a localized near-z
mode, the scale of the typical localization rangel is set by
the inverse mobility edge,lc

21. ~This will be explained in
more detail in the following subsection.! As long as we are
not close to the Aoki phase, this is of order one in latt
units. With the smallest lattice momenta being of order 1L,
we may choose the volume large enough thatc2( l /L)2!1,
so that nonzero momenta indeed exist for which the rig
hand side of Eq.~4.7! is positive.

B. Spontaneous symmetry breaking
without Goldstone excitations

We are now at a point where we wish to collect all t
available results, and use them to construct a conjecture
the quenched phase diagram. The goal is to combine
numerical@20,21# as well as the analytical@23# evidence that
basically everywhere in the supercritical region the den
of near-zero modes does not vanish~already in finite vol-
ume! with the inequality for the pion two-point function, Eq
07450
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~4.7!. In a sense, we will be proposing the simplest possi
picture of what determines the phase diagram, while req
ing consistency with the Ward identity~2.11!. While we al-
ready summarized our conjecture for the phase diagram
the Introduction, we present a more detailed discussion
this subsection.

A key element is the observation made by BNN in R
@23#, that in the supercritical region there will be a density
near-zero modes. We will therefore start with elaborating
this observation. As already alluded to in the Introduction
will lead us to borrow the concept of the ‘‘mobility edge
from condensed-matter physics as the crucial ingredien
determining the quenched phase diagram.

Following BNN, we begin with an infinite-volume con
figuration containing a single dislocation. We pick a latti
gauge field which is equal to the classical vacuum (Uxm
5I ) everywhere, except for the links of ann4 hypercube
containing the origin. These links can take any value. T
square of the Wilson-Dirac operator can be written as

H2~m0!5H0
2~m0!1V, ~4.8!

whereH0(m0) is the free operator. The potentialV is sup-
ported on an (n12)4 hypercube. The ‘‘Hamiltonian’’
H2(m0) is a discretized, semipositive Schro¨dinger operator
with a finite-range potential, with a continuum threshold
(lmin

0 )2 ~cf. Sec. II!. All eigenstates with (lmin
0 )2,E

,(lmax
0 )2 are scattering states, while those with 0<E

,(lmin
0 )2, if they exist, are bound states ofH2(m0) with

‘‘binding energy’’

2Eb[E2~lmin
0 !2,0. ~4.9!

Of course, bound-state wave functions decrease expo
tially away from the hypercube, with a decay rate determin
by Eb

21. In particular, a zero mode hasE50, and thus a
binding energyEb5(lmin

0 )2.
For single-dislocation configurations, BNN proved th

the problem of finding a zero mode in large~or infinite!
volume can be reduced to a corresponding eigenvalue p
lem on the small hypercube. Solving the latter problem n
merically BNN then found that, for21.am0.27
~roughly!, the links of a hypercube as small as 24 can always
be chosen such thatH(m0) has an eigenvalue equal~or nu-
merically extremely close! to zero. This means that, for tha
range ofm0 , zero modes exist for any volume down to 24.
Moreover, these zero modes are exponentially localized~as
long asm0 is not equal to one of its critical values!. We note
that BNN configurations are examples of exception
configurations.7

It is not implausible that, by allowing for larger disloca
tions, exponentially localized zero modes would be fou
throughout virtually the entire supercritical interval 0.am0
.28. One does expect that, to get a zero eigenmode cl
to a boundary point of the supercritical interval, the gau

7Even though we expect BNN configurations to amount to onl
tiny subset of all exceptional configurations.
1-8
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field would have to differ from the classical vacuum ov
bigger hypercubes. In this paper, we will assume that thi
the case, i.e., for anyam0 strictly inside the interval~28, 0!,
BNN-like zero modes will be found.

Before continuing, let us comment on the nature of typi
zero modes, and the configurations supporting them. An
act zero mode ofH2(m0) is also a zero mode ofH(m0). As
one varies the lattice gauge field, a zero eigenvalue gen
cally corresponds to a zero-level crossing, because with W
son fermions there is no chiral symmetry that might protec
zero eigenvalue from moving away from zero. In oth
words, ifU(t)[$Uxm(t)% is a family of gauge-field configu
rations that depend smoothly ont, and if there is an eigen
value ln such thatln„U(0)…50 then, typically,ln„U(t)…
changes sign att50. This is true for~almost! all exceptional
configurations which support exact zero modes. It impl
that any finite-volume configuration supporting an~exponen-
tially localized! exact zero mode has some open neighb
hood, in the gauge-field space, with a spectrum of near-z
modes. Also, in a finite volume, the subspace of configu
tions that support an exact zero mode has codimension

Our next step is to consider configurations containing
very small density of BNN-like dislocations. The disloc
tions are small, surrounded by the classical vacuum,
~still, on average! far apart. This is a ‘‘controlled’’ form of
disorder. The origin of disorder is twofold: the positions o
the dislocations are chosen at random~one can speak about
dilute gas of dislocations!; also the links that define eac
dislocation are chosen at random. A unique limiting va
limuxu→` V(x) of the potential in Eq.~4.8! no longer exists,
because dislocations may be found arbitrarily far from
origin.

As long as the gas of dislocations is dilute, we can s
identify all dislocations separately from the surroundi
vacuum, simply by inspection. So, let us focus on one dis
cation, and assume that in isolation~i.e., with no other dis-
locations anywhere!, it has an exact zero mode. Since t
other dislocations are far apart, they will have a negligi
effect on this zero mode. This is easily seen by invoking
variational argument. Using the eigenfunction of the ze
mode of the isolated dislocation as a trial wave function,
expectation value ofH2(m0) on this trial state will receive
contributions only from the other distant dislocations. If t
mean distance between dislocations isR, the expectation
value of H2(m0) will be of order e22g where g;lmin

0 R.
ThereforeH2(m0) must have an eigenstate with an expone
tially small eigenvalueE;e22g which closely resembles th
original zero mode. We may now vary the gauge field at
dislocation such that the eigenvalue under consideration
ies as well. As long asR is large enough~compared to
1/lmin

0 ), e22g is small enough that this gauge-field variatio
will vary the eigenvalue over an interval that includes ze

The situation changes qualitatively if the density of dis
cations is large, and also will be different for configuratio
generated in a typical Monte Carlo simulation. In order
describe this situation, it will be useful to introduce th
mobility-edge hypothesis@27#. The mobility edge is well de-
fined only in infinite volume, and we will thus assume t
volume to be infinite for the following discussion. The h
07450
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pothesis states that, when disorder is introduced in an
dered system, the conduction-band structure of the orde
system is replaced by a number of alternating energy in
vals, each containing either~exponentially! localized or ex-
tended eigenstates. In particular, no energy exists for wh
there are both localized and extended eigenstates.8 The en-
ergy separating an interval with localized modes from o
with extended modes is referred to as a mobility edge.

Intuitively, a mobility edge arises as follows. Let us fir
return to a situation with ‘‘controlled’’ disorder consisting o
a dilute gas of BNN dislocations. As already mentioned,
a very small density of dislocations, all bound states w
Eb5O(1/a2) @see Eq.~4.9!# will be exponentially localized
near a single dislocation. As the density of dislocations
increased there is an increased probability that an ‘‘electro
situated initially in a bound state of a given dislocation, w
tunnel into a nearby dislocation. When the probability
tunnel a certain distance times the average number of a
able dislocations within this distance has becomeO(1) for
some givenE, the electron will be able to travel infinitely fa
by tunneling from dislocation to dislocation, regardless
the details of the dislocation that produced the original bou
state. In other words, the eigenstate with eigenvalueE be-
comes extended.

For a single dislocation, any eigenstate withE,(lmin
0 )2

decays exponentially. IncreasingE means a slower deca
rate and, hence, an increased tunneling probability. T
means that eigenstates with higherE become extended firs
when the density of dislocations is increased. Iflc

2 is the
mobility edge, the range 0<E<lc

2 will consist of exponen-
tially localized eigenstates, while the rangeE>lc

2 consists
of extended ones. For a very small density of dislocations
mobility edge will be close to (lmin

0 )2, while for larger den-
sities it will move further away from this value. If, for in
stance, we allow only dislocations generating an attrac
potential in Eq.~4.8!, the mobility edge will clearly be lower
than (lmin

0 )2.
We note that there may exist more than one mobility ed

at a given location in the phase diagram. For instance, if
Hamiltonian is bounded from above, one expects anot
mobility edge to occur,abovewhich other localized eigen
states exist. In our case, we expect a second mobility e
like this, because the eigenvalue spectrum of the free Ha
tonian,H0

2(m0) in Eq. ~2.2!, also has a maximum eigenvalu
(lmax

0 )2. In this paper, we will be concerned with the lowes
lying mobility edge, and in particular, the question
whether it vanishes or not.

Now consider the hypothetical situation that, for a certa
gauge-field configuration, both extended and localized eig
states of the HamiltonianH2(m0) occur at the same energ
E. If we then calculate the eigenstates on a typical sm
fluctuation of this gauge field, the extended and localiz
states will mix, and all new eigenstates will be extended. T
only possible exception is when all eigenstates of the orig
gauge field were localized. A ‘‘typical’’ configuration thu

8We are not aware of any proof of this—widely used—asserti
1-9
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has either only extended or only localized eigenstates
given E. Since typical configurations~in this sense! deter-
mine the properties of an ensemble, it follows that the va
of a mobility edge separating localized and extended eig
states is associated with an equilibrium ensemble, and
with a point (m0 ,g0) in the phase diagram. Another way o
arriving at the same conclusion is to note that in the therm
dynamic limit, one equilibrium configuration suffices to d
termine the equilibrium properties of the theory, and thus
typical. For our purposes, it will be useful to character
each point (am0 ,g0) in the phase diagram by the value
the lowest mobility edge ofH2(m0). ~In the rest of this
paper, we will refer to this mobility edge as ‘‘the’’ mobility
edge.! The mobility-edge hypothesis will be at the heart
our conjecture for the phase diagram of quenched QCD.

Before we get to this conjecture, let us briefly comme
on the average localization range as a function ofE. For
energies at which only localized states exist, one expect
be able to define an average localization rangel̄ 5 l̄ (E). This
average localization range should then grow if the energE
approaches the mobility edge, and diverge at and beyond
edge, where only extended eigenstates exist.

Based on BNN’s results we expect that anywhere ins
the supercritical region there will be a nonzero density
near-zero modes. If the mobility edge is zero this expecta
is fulfilled by assumption. If the mobility edge is larger tha
zero, then, for any 0.am0.28 and g0.0, there is a
~small, but! finite probability per unit volume that any give
Monte Carlo configuration will contain a ball with~a large!
radius R, inside which the configuration will resemble th
classical vacuum, apart from a single BNN dislocation w
inside that ball. Using the same variational argument as
the dilute-gas case, the exact BNN zero mode associ
with the dislocation implies the existence of an eigenst
with eigenvaluee22g!lc

2, well below the mobility edge.
This eigenstate decays exponentially both inside and out
of the classical-vacuum ball. By invoking small deform
tions of this configuration, the existence of a density of e
ponentially localized near-zero modes follows.9

We now formulate our main conjecture about the ph
diagram of quenched QCD with two Wilson fermions. Ne
the lineg050, we expect the mobility edge to be very clo
to (lmin

0 )2. In particular, with (lmin
0 )2, it will vanish at the

critical ‘‘end’’ points g050, am050, 22, 24, 26, 28. As
g0 is increased and the typical gauge-field configuration
an equilibrium ensemble becomes less smooth, the mob
edge will move away from (lmin

0 )2, and, in parts of the phas
diagram, it may vanish. Since it vanishes at the critical e

9A zero-level crossing in the spectrum ofH(m0) changes the in-
dex of the overlap operator. This index was advocated as a de
tion of the topological charge on the lattice@4,5#. However, stan-
dard arguments imply that the topological charge density scales
1/AV in large volume, and, thus, vanishes forV→` ~see, e.g., Ref.
@31#!. Therefore, topological considerations do not explain a n
zero density of near-zero modes in the infinite volume limit. T
situation reflects the inherent ambiguity in trying to identify sm
dislocations as instantons or as anti-instantons.
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points on theg050 axis, it is reasonable to expect that th
mobility edge will also vanish in the vicinity of those poin
for g0.0, thus opening up the fingerlike structure of regi
B in Fig. 1. In a region where the mobility edge vanishes,
density of near-zero modes will be due to extended near-z
modes, and one expects long-range behavior, in partic
Goldstone excitations. We thus conjecture that, in quenc
QCD, the Aoki phase—which is defined as the phase
which Goldstone excitations exist—coincides with the
gion of the phase diagram where the mobility edge vanish
The near-zero mode density, and thus the value of^p3&, is
due to extended eigenstates. Outside the Aoki phase~but
inside the supercritical region!, the mobility edge is larger
than zero, and the density is due to exponentially localiz
near-zero modes. Because of this nonvanishing density,
mechanism derived in the previous subsection will kick
and the pion two-point function will diverge form1→0 for
small-enough momenta.

Extended states should not contribute to the 1/m1 diver-
gence in the infinite-volume limit. The number of extend
states grows like the volumeV, whereas the contribution to
Eq. ~3.3! of each extended state drops like 1/V2. This yields
a contribution of order 1/V, which vanishes forV→`.
Therefore, we expect no 1/m1 divergence of the pion two-
point function inside the Aoki phase; the 1/m1 divergence
characterizes regionC ~and the supercritical part of regionA!
of the phase diagram. It follows that, whilêp3& is not a
useful order parameter for detecting the Aoki phase, the r
due of a 1/m1 divergence inG̃(p) ~for small-enough momen
tum! is a useful order parameter in this sense. There is e
a local order parameter associated with this divergence:

j~x!5 lim
m1→0

m1G~x,x!5 lim
m1→0

m1^p1~x!p2~x!&.

~4.10!

This follows fromj(x)5(1/V)(pG̃(p), bound~4.7!, and the
positivity of G̃(p) for all p.

We believe that essentially the same conjecture holds
unquenchedQCD. The only difference is that in the un
quenched case, the spectral densityr~0! ~and thus the order
parameter! vanishes outside the Aoki phase, because of
suppression of the localized near-zero modes by the ferm
determinant~cf. Sec. V!. Therefore, also the 1/m1 divergence
in the pion two-point function will not occur in the un
quenched case. These phenomena are quenched artifact
the existence and role of the mobility edge are not. To su
marize, the qualitative features of the phase diagram in Fi
are valid in both quenched and unquenched QCD. The
bility edgelc is zero in regionB, and nonzero outside of thi
region, where exponentially localized modes withl2,lc

2

exist. In regionsC and in the supercritical part of regionsA
the spectrum of localized modes extends down to zero, w
the only difference thatr(l).0 for l2>0 in the quenched
theory, and forl2.0 in the unquenched theory.

Clearly, our picture of the phase diagram proposed her
a conjecture, and we have no proof that it is correct.
emphasize that it appears to be the simplest possible way
can understand the phase diagram, given the available
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LOCALIZATION IN LATTICE QCD PHYSICAL REVIEW D 68, 074501 ~2003!
lytical and numerical evidence. We will end this section w
a more quantitative, but still heuristic, argument as to w
Goldstone excitationsonly occur in the phase with vanishin
mobility edge.

We will assume that outside the Aoki phase, the ne
zero-mode densityr~0! is entirely due to localized zero
modes captured by our bound, Eq.~4.1!. Moreover, we will
assume that, for practical purposes, a maximum localiza
length l max exists for the near-zero modes. Hence10 r l max

(0)

5r(0), and, using both the lower and upper bounds in
~4.2!,

pr~0!~12c2l max
2 p2!< lim

m1→0
m1G̃~p!<pr~0!.

~4.11!

Writing G̃m(p)5 ipmS(p2), it then follows from the Ward
identity, Eq.~2.11!, that

S~0!52pr~0!O~ l max
2 !, ~4.12!

leading to the conclusion thatG̃m(p) does not have a mass
less pole.

The most drastic assumption we make here is that the
a finite l max. This is rather unlikely, even if it is reasonable
expect that the probability to find a near-zero mode with
very large localization range at some point well outside
Aoki phase is very small. In order to argue that also in t
case no Goldstone poles occur outside the Aoki pha
clearly one needs a better estimate ofuHn(p)u than that pro-
vided by the bounds given in Eq.~4.2!. While it is a very
hard problem to come up with a better estimate, we will u
an ansatzfor a better estimate to show how an improv
argument might work. Let us assume thatuHn(p)u can be
estimated by

uHn~p!u;
1

11p2l n
2 , pa!1. ~4.13!

This is not unreasonable for momentap!1/a. For very
small momenta, one expects only the long-distance feat
of the near-zero modes, i.e., the exponential tail in Eq.~4.1!,
to determine the Fourier transform ofuCn(x)u2, and thus
uHn(p)u would have to look something like this. The preci
form is not important; the crucial properties of thisansatzare
that it is bounded for arbitraryl n , and that it is consisten
with the fact thatuHn(0)u51, as follows from the fact tha
Cn(x) is normalized to 1.

If r~0! is completely due to localized near-zero modes,
may write r(0)5*0

`dlr l8(0) with r l8(l)5dr l(l)/dl, and
Eq. ~3.4! as

10Recall thatr l(l) is the density of localized eigenstates wi
localization range less thanl.
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lim
m1→0

2m1G̃~p!;
2p

V E
0

`

dlE DUB~U!(
n

d~ln!

3d~ l 2 l n!
1

~11p2l 2!2

52pE
0

`

dlr l8~0!
1

~11p2l 2!2 . ~4.14!

Combining this with Eqs.~2.11! and ~2.15! we obtain the
estimate

S~p2!;2pE
0

`

dlr l8~0!
2l 21p2l 4

~11p2l 2!2 , ~4.15!

showing again thatG̃m(p) has no massless pole. We note th
the integral overl should be convergent becausedr l(0)/dl
should be strongly suppressed for largel.

This completes our discussion of the quenched phase
gram. In the remainder of this paper, we will expand on
differences between the quenched and unquenched c
and explore the consequences for domain-wall and ove
fermions.

V. UNQUENCHED QCD

In this section we only review well-known facts abo
unquenched QCD. The only reason we include this brief
view is to point out that none of the surprising results w
obtained in the previous section for quenched QCD are
conflict with the standard lore in the unquenched theory.

A. Vanishing of the condensate in finite volume and
absence of localized near-zero modes

We start with a review of the proof that the finite-volum
condensate is zero in unquenched QCD. Summing the W
identity ~2.9! over space-time, the total-derivative term dro
out, and we obtain

2m1a4(
x

^p1~x!p2~y!&5^p3&. ~5.1!

In a finite volume, the correlation function of the product
any ~finite! number of fermion ~and link! operators is
bounded. The left-hand side of Eq.~5.1! is therefore the
product ofm1 with a bounded function, hence it vanishes f
m1→0. It follows that the condensate vanishes. This is
familiar result that there is no spontaneous symmetry bre
ing in a finite volume.

In order to prove boundedness, consider first the unn
malized expectation value of any observable made of a p
uct of ~link and! fermion fields. Because of the Berezin in
tegration rules for Grassmann variables, the Wick contrac
of the fermion fields leads to a function which is analytic
the parameters of the fermion actionm0 andm1 . Integrating
also over the~compact! link variables of the gauge field
leaves an unnormalized expectation value which again is
analytic function of these variables, including form150.
1-11
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Similarly the partition functionZ is strictly positive for a
two-flavor theory with Wilson fermions~for g0.0), and
againZ21 is bounded for a bounded range of values ofm0
and m1 which includesm150. Hence normalized expecta
tion values are bounded as well. In contrast, in quenc
QCD the fermion determinant is missing, and a fermio
observable may diverge if the Wilson-Dirac operator h
near-zero modes. This is what happens in the case of the
two-point function.

It follows, through the Banks-Casher relation, thatr(0)
50. Since 0<r l(0)<r(0), one hasr l(0)50 for any finite
volume. While, of course, the infinite volume is subtle~and
does not commute with the limitm1→0), we believe that for
any finite l, r l(0) will remain zero in the infinite-volume
limit, becauser l(0) reflects short-distance physics. Also,
inequality~4.7! remains valid in the infinite-volume limit on
the one hand, and unquenched QCD does not have am1
divergence on the other hand, clearlyr l(0) must remain zero
in that limit. The fact that a 1/m1 divergence indeed canno
occur in unquenched QCD is explained in the following s
tion.

B. The Goldstone theorem

Here we rederive the Goldstone theorem in the Euclid
path-integral context in infinite volume~for a review see Ref.
@32#!. For simplicity, we do this in the continuum; nothin
relevant changes on the lattice. As in the previous section
aim is to show that the~Fourier-transformed! pion two-point
function G̃(p) is bounded in a neighborhood ofm150 but
now for pÞ0 ~and without assuming that the condens
necessarily vanishes!. We may then again conclude that, f
pÞ0, 2m1G̃(p)→0 for m1→0. Taking this limit, the Ward
identity ~2.11! yields ~dropping terms of orderap!

ipmG̃m~p!5^p3&, pÞ0. ~5.2!

If the condensate is nonzero~i.e., if SSB takes place!, this
implies the existence of a massless Goldstone pole inG̃m(p).

To prove the boundedness ofG̃(p) for pÞ0, we invoke
the Källén-Lehmann representation. A one-particle contrib
tion to G̃(p) must be of the formuFu2/(p21M2) whereM is
the particle’s mass andF is a form factor which is nonzero
on shell (p252M2). For any nonzero Euclidean mome
tum,

m1

p21M2 <
m1

p2 , pÞ0. ~5.3!

The right-hand side of inequality~5.3! provides a bound for
the contribution of any one-particle excitation to 2m1G̃(p),
implying that it vanishes in the limitm1→0 for pÞ0. This is
true also if the particle’s mass vanishes in the same limit~as
in the case of a Goldstone boson!. The contributions of mul-
tiparticle states will be less infrared singular, and should a
vanish. In summary, in unquenched QCD, 2m1G̃(p) van-
ishes in the thermodynamical limit forpÞ0.
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The quenched theory is not unitary, and the Ka¨llén-
Lehmann representation for the pion two-point function
voked above is not valid. Apparently, nothing stops the p
two-point function from developing a 1/m1 divergence.

VI. IMPLICATIONS FOR DOMAIN-WALL
AND OVERLAP FERMIONS

The most common constructions of lattice Dirac operat
with domain-wall or overlap fermions employ the Wilson
Dirac operator discussed in this paper~or improved versions
thereof! as a kernel.

Domain-wall fermions are five-dimensional Wilson ferm
ons, in which only hopping terms in the four physical dire
tions couple to four-dimensional link variables, which them
selves are independent of the fifth coordinate@2,3#. In the
most common version, the fifth dimension is restricted to
finite interval of lengtha5Ns , wherea5 andNs are, respec-
tively, the lattice spacing and number of sites in the fi
direction. Free boundary conditions are employed on eit
side~in the limit of a vanishing physical quark mass!. In the
limit Ns→`, massless four-dimensional fermions appe
which are bound to the two boundaries. If the left-hand
component of this massless fermion is bound to one bou
ary, the right-handed component is bound to the other o
For g0→0, precisely one such massless fermion appears~per
five-dimensional fermion field! if the domain-wall height
M52m0 is chosen such that 0,a8M,2 where a8
5max$a,a5% @33#. This means thatm0 has to be supercritical

The overlap-Dirac operator is defined as@5#

aDov512g5ĝ5 , ĝ5[
H~m0!

uH~m0!u
, ~6.1!

with H(m0) the Hermitian Wilson-Dirac operator. Notic
that ĝ5

251. For this operator to describe one massless fla
in the continuum limit, one needs to choose 0.am0.22.

Because of the fact thatH(m0) plays a crucial role in the
construction of domain-wall/overlap fermions, it is natural
expect that the phase diagram of QCD with Wilson fermio
has important implications for properties of domain-wa
overlap fermions. The most important dynamical issue
whether the mobility edge is~close to! zero or not. In this
section, we will argue that in order to retain locality in lattic
QCD with overlap fermions, the parameters of the latt
theory must be chosen well outside the Aoki phase.
domain-wall fermions the situation is equivalent: only we
outside the Aoki phase will chiral symmetry be restored e
ponentially fast with increasingNs . In addition, only in that
case will the four-dimensional effective theory~which is de-
scribed by a generalized overlap operator, the details
which depend ona5) be local in the limitNs→`.

In the quenched case, we may say that lattice QCD w
domain-wall/overlap fermions is inside or outside the Ao
phase if the ‘‘underlying’’ theory with the Wilson-Dirac op
eratorH(m0) is. One may think of the phase diagram as th
of a theory withNf quenched domain-wall/overlap flavor
and two quenched Wilson flavors. Of course, this chang
nothing in the correlation functions of the domain-wa
1-12
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overlap quarks. What it means is that, also in the doma
wall/overlap case, we define the quenched Aoki phase by
existence of a Goldstone pole in the appropriate correla
function constructed from the inverse of the Wilson-Dir
operatorH(m0) @cf. Eq. ~2.8!#, using the same value ofm0
as in the kernel of the domain-wall/overlap operator, and
same Boltzmann weight. According to our conjecture, t
corresponds to the region in parameter space in which
mobility edge ofH(m0) vanishes.

In the unquenched case, the only thing that changes is
Boltzmann weight used to generate the ensemble of ga
field configurations on which the domain-wall or overlap o
erator is computed.11 For any given ensemble, the mobilit
edge of the Wilson-Dirac kernelH(m0) should have a well-
defined value. We may thus still define the Aoki phase as
region in parameter space in which the mobility edge
H(m0) vanishes. Conversely, if the mobility edge does n
vanish, we will say that we are outside the Aoki phase for
unquenched theory.

Let us start with locality of the overlap operator. Th
overlap operatorDov(x,y) can not have a finite range@35#,
and thus is not strictly local for a finite lattice spacing. Ho
ever, Herna´ndez, Jansen, and Lu¨scher proved that the overla
is local in the sense thatuDov(x,y)u decays exponentially
with the distanceux2yu, provided the gauge field obeys a
admissibility condition@36#. The effect of this condition is to
secure anO(1/a) gap in the spectrum ofH(m0) ~except very
close to the critical values ofm0). They, furthermore, gener
alized this result to the case thatH(m0) has an isolated zero
mode inside an otherwise empty spectral gap by show
that such a mode is necessarily exponentially localized.
rate of the exponential decay of the overlap operator in th
cases is of order one in lattice units.

The problem is that, for realistic simulations, it is impra
tical to impose an admissibility condition on the gauge fiel
If instead one uses one of the commonly used local ga
actions to generate an equilibrium ensemble,H(m0) will
have ~localized! eigenmodes with very small eigenvalue
and these eigenvalues will not be isolated in the sense of
@36#. In fact, since the number of localized modes grows
proportion to the volume, in the infinite-volume limit th
eigenvalues of the localized modes will form a dense set,
no eigenvalue will be isolated. This is most clear in t
quenched case, wherer~0! is always nonzero in the supe
critical region.

At this point we invoke our physical picture of the pha
diagram. For anyg0.0, the band edgelmin

0 @of the free
Hamiltonian H0(m0)] gets replaced by the mobility edg
lc . We hypothesize that, as long aslc.0, the conclusion of
Ref. @36# still holds: if all near-zero modes are exponentia
localized with a finite average localization lengthl̄ , thenĝ5
~and thusDov) decays exponentially. As we argue below, t

11Note that the fermion determinant used for generating
gauge-field configurations may correspond to any type of lat
fermion. If the sea quarks and the valence quarks are not com
from the same fermion action, one is dealing with a partia
quenched theory@34#.
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decay rate is in principle governed by the smaller oflc and
1/l̄ . We expect this situation to apply inside phaseC in Fig.
1, well outside the Aoki phase. In fact, if we assume, as
the end of Sec. IV B, that the near-zero modes have a fi
maximal localization lengthl max outside the Aoki phase, ou
hypothesis is simple to prove.

First, however, let us consider the corresponding situa
with domain-wall fermions. The relevant Ward identity@3#
for the study of the finite-Ns chiral symmetry breaking with
domain-wall fermions is, forxÞy,

]m* ^Am
a ~x!J5

b~y!&52mq^J5
a~x!J5

b~y!&12^J5q
a ~x!J5

b~y!&.
~6.2!

HereAm
a is the domain-wall partially-conserved axial curre

andJ5
b is the corresponding pseudoscalar quark density~a,b

label flavor generators!; mq is the quark mass.J5q
a is a pseu-

doscalar density located midway between the boundarie
the five-dimensional bulk. The term containing this dens
represents the chiral symmetry breaking at finiteNs other
than the expected breaking coming from an explicit qu
mass. For chiral symmetry to be restored, it should vanis
theNs→` limit for nonsinglet axial currents.@In the case of
the axial U~1! current this term gives rise to the anomaly
the continuum limit.#

In order to study chiral symmetry restoration, it is use
to consider the transfer matrixT(M ,a5) which hops in the
fifth direction, from one four-dimensional ‘‘time’’ slice to the
next @3,4#. For every eigenmodeCn of T(M ,a5) with
~positive12! eigenvaluevn , we letqn5min$vn ,vn

21%. Hence,
0,qn<1. In the second-quantizedtransfer matrix, the re-
placement ofvn by qn reflects normal ordering. For the fre
theory the transfer matrix has a gap:qn<q0 for all eigen-
modes, whereq0,1. We refer toq0 as the band edge of th
free transfer matrix.~As an example, in the special cas
where aM5a5 /a51, one hasq051/2.) In the interacting
theory, we define the mobility edge of the transfer matrix
qc5max$qn%, where the maximum is taken over the extend
modes only. Below, we will also speak of the ‘‘Hamiltonian
H(2M ,a5)[2 log@T(M,a5)#/a5. This Hamiltonian has a
band edge2 log(q0)/a5 in the free theory, and a mobility
edgelc852 log(qc)/a5 in the interacting theory.@In the limit
a5→0 one recovers the familiar Wilson-Dirac operato
H(2M ,0)5H(2M ), andlc8 reduces tolc .]

Since the transfer matrix has a gap in the free theory,
four-dimensional massless fermions at the boundaries are
ponentially bound to their respective boundaries. If we ta
Ns→` at fixedM anda5 , we find an exponentially decreas
ing overlap between the~fifth-coordinate! wave functions of
the light-quark modes tied to the boundaries and the ‘‘m
way’’ pseudoscalar densityJ5q

a . Hence chiral symmetry get
restored exponentially inNs . With gauge fields obeying an

e
e
ng

12For a certain range ofM and a5 the transfer matrix may have
real but negative eigenvalues; in this case the entire analysis ca
carried out in terms of the transfer-matrix squared~providedNs is a
multiple of four!.
1-13
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admissibility condition, the situation remains the same,
cause the transfer matrix still has a gap. Also, with co
monly used local gauge actions, a similar behavior has b
demonstrated in weak-coupling perturbation theory@37,38#.

Nonperturbatively, one can prove that, for anya5 , a zero
mode of the Wilson kernel is also an eigenstate with eig
value one of the transfer matrix:T(M ,a5)Cn5Cn if and
only if H(2M )Cn50 @3,4#. This implies thatH(2M ) and
H(2M ,a5) have a similar spectrum of near-zero modes
near-zero mode ofH(2M ,a5) causes long-range correla
tions in thes direction. This means that in realistic simul
tions with commonly used gauge actions, configurations w
occur for which the last term in Eq.~6.2! may be large, thus
‘‘threatening’’ the chiral symmetry of domain-wall fermion
even in the large-Ns limit. This danger is again brought ou
most clearly in the quenched case, where a nonzero de
of near-zero modes always occurs for the above spec
range ofM.

However, we hypothesize that, in analogy with the ov
lap case, there is a fundamental difference between the e
of exponentially localized near-zero modes and that of
tended ones. If all near-zero modes ofH(2M ,a5) are expo-
nentially localized with an average localization lengthl̄ , we
expect their contribution to the symmetry-breaking term
Eq. ~6.2! to decay exponentially as a function of thefour-

dimensionalseparationux2yu. If the scale ofl̄ is set by the
~four-dimensional! lattice spacing, this decay will resemble
contribution from excitations with mass of the order of t
cutoff. When the lattice spacing is small enough, even
finite Ns this contribution will vanish for largeux2yu rela-
tive to the other two terms in Eq.~6.2!, whose long-distance
behavior is determined by aphysicalmass. All other contri-
butions to the symmetry-breaking term will not be su
pressed with the four-dimensional separation, but they
vanish exponentially withNs .

Similar conclusions apply to the locality of the effectiv
four-dimensional lattice Dirac operator in theNs→` limit
@39#. This is a generalized overlap operator constructed
making the replacementH(2M )→H(2M ,a5) in Eq. ~6.1!.
Because of the similar zero-mode structure ofH(2M ) and
H(2M ,a5), we expect the effective Dirac operator to b
local ~in the exponential sense! well outside the Aoki phase
as in the case of the overlap discussed above.

For both domain-wall and overlap fermions, these ar
ments break down if the near-zero modes are extende
even if 1/l̄ becomes of the same order as the numerical
ues of the physical masses in a particular simulation. T
latter situation is expected close to the Aoki phase, becaul̄
will increase going towards the phase transition and beco
infinite at the phase transition. The domain-wall formalis
gives a clear indication on what may go wrong inside
Aoki phase. When the mobility edge of the Wilson kern
H(2M ) @or, more generally, ofH(2M ,a5)] is zero, there
are massless excitations everywhereinside the five-
dimensional bulk. Normally, the contribution of themassive
bulk modes is canceled by Pauli-Villars~pseudofermion!
fields. But there is absolutely no guarantee that that can
lation will persist when the bulk fermion and pseudofermi
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modes are massless: this situation corresponds to a diffe
phase of the theory. The limitNs→` now involves infinitely
many unphysical, light four-dimensional fields~arising from
both the five-dimensional domain-wall and the pseudof
mion fields!, and we have every reason to worry that t
limiting theory is not what we want it to be. This is true fo
any a5 , and thus also in the overlap limita5→0.

We now present a more detailed argument as to why
overlap operator should be local well outside the Aoki pha
We will assume, as we did at the end of Sec. IV B, that a
given point well outside the Aoki phase there exists a fin
maximum localization length for the near-zero modes
H(m0). In fact, to avoid technical complications, it is con
venient to make a slightly stronger assumption, namely,
if lc.0 is the mobility edge, then all eigenstates wi
2lc/2,l,lc/2 have a bounded localization lengthl
< l max,`. As before, this assumption is not unreasona
because the average localization length diverges only
ulu↗lc , and the probability for arbitrarily large localizatio
lengths is expected to vanish rapidly~and uniformly! for any
ulu,lc/2. By simply replacingH(m0) by H(2M ,a5), the
below argument may also be applied to theNs→` limit of
domain-wall fermions.13

We begin by noting that the overlap operatorDov is local
if ĝ5 is local. We split

ĝ55ĝ5
,1ĝ5

. , ~6.3!

whereĝ5
, is the projection ofĝ5 onto the subspace spanne

by eigenstates with eigenvalueulu,lc/2. On the basis of
eigenmodes ofH(m0), ĝ5

, can be represented as

ĝ5
,~x,y!5a4 (

ulnu,lc/2
Cn~x!

ln

ulnu
Cn

†~y!. ~6.4!

Assuming that all modes withulu,lc/2 satisfy inequality
~4.1! one has

uĝ5
,~x,y!u<c1a4 (

ulnu,lc/2

1

l n
4 expS 2

ux2xn
0u1uy2xn

0u
2l n

D .

~6.5!

Performing the ensemble average as in previous sections@see
in particular Eqs.~3.6! and ~4.14!# we find

^uĝ5
,~x,y!u&<c1a4E

a

`

dlE
2lc/2

lc/2

dlr l8~l!K~ ux2yu/ l !,

~6.6!

where

13For small a5 one can also use Borici’s kernel@40#
g5D(2M )@22a5D(2M )#21 that gives rise to the same genera
ized overlap operator asH(2M ,a5).
1-14
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LOCALIZATION IN LATTICE QCD PHYSICAL REVIEW D 68, 074501 ~2003!
K~ ux2yu/ l !5 l 24E d4x0e~ ux2x0u1uy2x0u!/~2l !

'
ux2yu

l
e2ux2yu/~2l !. ~6.7!

The last approximate equality holds forux2yu@ l , where the
integral is dominated by localized modes supported insid
tube of radiusl around the straight line connectingx andy.
We now invoke the assumption thatl n< l max for all 2lc/2
,ln,lc/2. The ‘‘worst-case scenario’’ is that thel integral
in Eq. ~6.6! will be dominated byl & l max. In this case we
find the bound

^uĝ5
,~x,y!u&&exp@2ux2yu/~2l max!#, ~6.8!

where constants and power corrections have been igno
Henceĝ5

, is local.
The operatorĝ5

. lives in the orthogonal subspace, who
projection operator isP.(x,y)[dx,y2P,(x,y). Here

P,~x,y!5a4 (
ulnu,lc/2

Cn~x!Cn
†~y!5~ ĝ5

,!2 ~6.9!

is the projector on the eigenstates withulu,lc/2. Bound
~6.5! evidently applies toP,(x,y) as well. ThereforeP, is
local, and, hence, alsoP. is local. Proceeding exactly as i
Ref. @36#, we write

ĝ5
.5H~m0!uH~m0!u21P. . ~6.10!

~Strictly speaking, the right-hand side is defined via its mo
expansion.! The expansion of ~the eigenvalues of!
uH(m0)u21 in terms of Legendre polynomials may now b
invoked, and the locality ofĝ5

. follows.
Let us discuss some implications of this result. In pr

ciple one can envisage two extreme situations. Ifl max!lc
21

then the nonlocality ofĝ5
, and P. may be neglected. The

localization range of the overlap will be governed by t
mobility edgelc , and will be of orderlc

21. In other words,
in the absence of an admissibility constraint,lc

2 plays the
role of the lower bound on the spectrum ofH2(m0). The
opposite extreme is thatl max@lc

21, where we expect the lo
calization range of the overlap to coincide withl max.

In our argument, we did not attempt to maintain the sa
level of rigor as in Ref.@36#. The advantage of our mor
heuristic argument is that it deals with the more realistic c
of a densityof localized near-zero modes where the metho
of Ref. @36# are inapplicable. Our analysis is only semire
istic because, in principle, there will be a very tiny, but no
zero probability to encounter an exponentially localiz
near-zero eigenmode with an arbitrarily large localizat
length ~in a large enough volume!. In practice, however, we
expect that our assumption of the existence of a finite,
too largel max will be valid for most simulations. Of course
the most important question in any given simulation is h
the scale of the typical localization length as well as the s
of the mobility edge compares quantitatively to the scale
the physics one is trying to compute.
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We now turn to domain-wall fermions with finiteNs . A
useful measure of chiral symmetry breaking is the so-ca
residual massmres @41#, which is essentially the ratio of the
two correlators on the right-hand side of Eq.~6.2!. Denoting
the ~Euclidean! time coordinate byt, we define

mres~t,Ns!5
(xW^J5q

1 ~xW ,t!J5
2~0W ,0!&

(xW^J5
1~xW ,t!J5

2~0W ,0!&
, ~6.11!

where for convenience we have switched to flavor-chang
densities.@In terms of the ‘‘isospin’’ symmetry of the two
flavors occurring in these densities, the6 superscripts cor-
respond to the operatorst6 of Eq. ~2.5!.#

The study ofmres consists of two steps. First, using th
transfer matrix formalism of Ref.@3# we derive expressions
for the correlators in a fixed gauge-field background. For
numerator in Eq.~6.11! this step is outlined in Appendix B
Next we have to carry out the integration over the gau
field. In general this is quite complicated, and so we w
restrict ourselves to two relatively simple cases. Observ
that t is a measure of the four-dimensional separation in
~6.11!, we will discuss thet dependence for fixedNs@1 and
the Ns dependence for fixedutu@a. As before, well inside
theC phase we expect the mobility edge ofH(2M ,a5) to be
a quantity of order one in lattice units. Fort5O(a) and
Ns@1, mres will be dominated by the exponentially localize
near-zero modes, whereas forNs5O(1) and utu@a it will
be dominated by the extended states close to the mob
edge.

The crucial observation is that, as explained earlier,
quark and antiquark operators of the pseudoscalar den
J5

2(0W ,0) live on the two boundaries of the fifth dimensio
whereasJ5q

1 (xW ,t) is located midway between the two boun
aries. In a diagrammatic language, the fermion~antifermion!
at the boundary must be connected by a fermion line to
‘‘midway’’ antifermion ~fermion!. In Eq. ~B1!, these two fer-
mion lines come from the one-particle sector of the seco
quantized transfer matrix that actsNs/2 times on the fermion
~or antifermion! at the boundary. The contribution of eac
mode to a fermion line involves a factor o
Cn(0W ,0)qn

Ns/2Cn
†(xW ,t), or its Hermitian conjugate.

For utu*a the denominator in Eq.~6.11! will contain
short-distance contributions which are of no interest to us
this case it is simpler to consider the numerator alone.
suming some fixedNs@1, the contribution of all extended
modes has died out, because, for them,qn

Ns/2&qc
Ns/2!1. We

are left with the contribution of the exponentially localize
modes ofH(2M ,a5), of which the near-zero modes dom
nate forNs@1. Following closely the overlap case, Eq.~4.1!
allows us to put a bound onCn(0W ,0)Cn

†(xW ,t). A similar
bound applies to the contribution of the second fermion li
The product of the two bounds gives rise to the same ex
nential factor as on the right-hand side of Eq.~6.5!, except
that the factor of12 inside the exponent is missing. As befor
we now assume the existence of a maximal localizat
length for the near-zero modes, arriving at
1-15
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M. GOLTERMAN AND Y. SHAMIR PHYSICAL REVIEW D 68, 074501 ~2003!
(
xW

^J5q
1 ~xW ,t!J5

2~0W ,0!&'exp~2utu/ l max!, Ns@1.

~6.12!

The evident analogy with Eq.~6.8! is not surprising.
Finally, we consider theNs dependence forutu@a. Re-

turning to mres, now all the exponentially localized mode
may be neglected. We expect thatmres will be dominated by
the extended modes of the transfer matrix with eigenval
close to the mobility edge. The anticipated result is

mres;qc
Ns, utu@a. ~6.13!

This reflects a cancellation of thet dependence between th
numerator and the denominator in Eq.~6.11!, for large t
separations~for numerical evidence supporting this, see R
@41#!. We are unable to derive this result analytically. We w
give a heuristic argument, based on an analogy with per
bation theory, which supports this result.

In perturbation theory, this result is obtained as follo
@38#. When the quark mass is zero, the one-loop domain-w
fermion propagator has, near each boundary, a factoriz
form. Assuming for definiteness that the right-handed qu
resides near thes50 boundary, the propagator in the vicinit
of this boundary is

G~x,y;s,s8!'x~s!PRG~x,y!x†~s8!. ~6.14!

HerePR5 1
2 (11g5), x, y are the usual four-dimensional co

ordinates, ands, s8 are coordinates in the fifth dimension
The separationux2yu is assumed to be large compared to t
lattice scale~but small enough for weak-coupling perturb
tion theory to be applicable!. G(x,y) is the effective quark
propagator whose tree-level Fourier transform is 1/p” for
small p, and which, at higher orders, contains the famil
logarithmic self-energy corrections of a massless quark.
s-coordinate wave functionx(s) carries no Dirac indices.

For an optimally chosenM as a function ofg0 , the
~tadpole-improved! tree-level wave functionx0(s) is com-
pletely confined to the boundary layers50. For s>1, the
wave function arises from a short-distance, one-loop qu
tum effect. Explicitly, x(s)5x0(s)1g0

2xquantum(s) where
x0(s)5ds,0 and xquantum(s);q0

s up to a power correction
This form of xquantum(s) gives rise to Eq.~6.13!, with qc
→q0 . „Since q0 is the band edge of the free transf
matrix,14 the shape of the leading-orderxquantum(s) depends
on the free domain-wall fermion action only. In higher orde
one expects xquantum(s);@q0f (g0)#s where f (g0)51
1O(g0

2), where f (g0) depends on the gauge action too.…

Restoring the momentum dependence, thes-coordinate
wave functionx(s;p) is universal in the sense that corre
tions tox(s)5x(s;0) vanish like (ap)2. The physical rea-
son is that the propagation in the fifth direction is domina
by a small region in the Brillouin zone surrounding the cri
cal momenta that saturate the band edgeq0 . These momenta

14In Ref. @38#, the band edge of the free transfer matrix was d
notedq1 ~and notq0).
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are O(1/a). Fluctuations of the gauge field allow low
momentum modes to couple to these lattice-scale mo
with an amplitude that can be naturally expanded in pow
of (ap)2. Equation~6.14! is obtained by keeping only the
leading term in this expansion. For all other terms, the 1p”
singularity of the~free! propagator is wiped out, and so the
effect is negligible for large space-time separations.

Nonperturbatively, we may envisage a similar factoriz
tion of the domain-wall fermion propagator forutu@a ~in a
fixed gauge!. Again, the extended states close to the mobi
edge of the transfer matrix will mediate thes propagation.
Again these extended states will be controlled by the lat
scale, and it is reasonable that their coupling to lo
momentum external states will have a universal value. Tu
ing to the correlators of the gauge-invariant pseudosc
densities, a factorizable form of the~fixed-gauge! domain-
wall fermion propagator, as in Eq.~6.14!, implies that the
commont dependence of the numerator and the denomin
of Eq. ~6.11! is exp(2utump). The result is Eq.~6.13!.15

VII. CONCLUSIONS

Let us summarize our conclusions and make some a
tional comments. We start with what we learned about
quenched phase diagram.

In finite volume, we argued that the Aoki condensate
nonzero everywhere in the supercritical region of the ph
diagram, and that the pion two-point function always ha
1/m1 divergence. This 1/m1 divergence arises mainly from
exponentially localized near-zero modes. If the restric
spectral densityr l(0) is nonzero for some localization lengt
l, then the momentum-space pion two-point functionG̃(p)
exhibits the 1/m1 divergence for all momenta up top2l 2

;1. Because of this divergence, clearly the finite-volum
quenched theory is only well defined with a nonvanishi
twisted massm1 .

Extending this to infinite volume, we argued moreov
that if all near-zero modes are localized, the condensat
approximately equal to limm1→02m1G̃(p), and the difference

vanishes withp2. This implies that there are no Goldston
excitations.

Adopting the mobility-edge hypothesis we arrive at t
following physical picture. In the supercritical quenche
theory the pionic condensate is always nonzero. Goldst
poles exist, however, only in part of the supercritical regi
which, by definition, is the quenched Aoki phase. Inside
Aoki phase the mobility edge vanishes, all the near-z
modes are extended, and the pion two-point function has
1/m1 divergence, because the contribution of extend
modes to this divergence goes to zero in the infinite-volu
limit. Outside the Aoki phase the mobility edge is larger th
zero, and all the near-zero modes are exponentially locali

-

15For the DBW2 gauge action at quencheda21;2 GeV it was
found thatqc;0.6 @42#. This is very close to the valueq050.5
found in one-loop perturbation theory@38#. Therefore, in this case
both higher-order effects and nonperturbative effects are small
1-16
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LOCALIZATION IN LATTICE QCD PHYSICAL REVIEW D 68, 074501 ~2003!
There are no Goldstone poles, and the Ward identity~2.9! is
saturated instead by the 1/m1 divergence of the pion two
point function.

We can, in fact, completely characterize the quenc
phase diagram using two local order parameters. For
SU~2! orientation of the twisted-mass term in the action, E
~2.3!, one order parameter is the usual condensate^p3&
52pr(0). Theother isj, defined in Eq.~4.10!, which mea-
sures the size of the 1/m1 divergence in the pion two-poin
function. In the quenched theorŷp3&Þ0, and SU~2! is
spontaneously broken, in the entire supercritical regi
Hence the linesm050 andam0528 are phase boundarie
in the quenched theory. Inside the supercritical region
have a phase with Goldstone bosons~the Aoki phase!, and
phases with no Goldstone bosons~the C phases, and the
supercritical parts of theA regions, which form separat
phases in the quenched theory!. The order parameter for hav
ing no Goldstone excitations isj.0.

In continuum, infinite-volume, quenched chiral perturb
tion theory it is known that the usual condensate^c̄c& de-
velops a log(m), or m2d with d small, divergence in the limit
m→0 @8,43#. In the continuum limit of the lattice theory
chiral symmetry is restored, and the Aoki condensate can
rotated back to the usual condensate~see, for example, Ref
@12#!. Turning this argument around, one expects a log(m1)
divergence of the Aoki condensate inside the Aoki phase
the continuum limit, withO(am1) corrections due to a non
zero lattice spacing. As explained above, we expect no 1m1
divergence of the pion two-point function inside the Ao
phase in the infinite-volume limit.

In unquenched QCD we do not have any new results.
did verify that,only in unquenched QCD can one prove th
the pion two-point functionG̃(p) is bounded. In finite vol-
ume this is always true, while in infinite volume this is tru
provided pÞ0. Thus, our new results for the quench
theory do not contradict any of the well-known facts for t
unquenched case.

The main differences between unquenched and quen
QCD are as follows. Inside the Aoki phase, the differen
are accounted for by the chiral Lagrangian, and the quenc
theory is known to have enhanced chiral logarithms. Outs
the Aoki phase, both unquenched and quenched QCD h
exponentially localized near-zero modes; in the infini
volume limit, zero is not an isolated eigenvalue of a
gauge-field configuration drawn according to the Boltzma
weight. However, in the quenched theoryr(0)Þ0, whereas
in the full theoryr(0)50. Heuristically, this can be under
stood as follows. Let us compare two infinite-volume gau
field configurations, which differ only inside a small regio
whose radius isO(1) in lattice units. Assume that, inside th
small region, each configuration supports an exponenti
localized mode, with possibly different eigenvalues. In t
quenched theory, these two configurations can have sim
Boltzmann weights; but in the unquenched two-flavor theo
each localized mode will contribute to the Boltzmann weig
of the corresponding configuration~and, hence, to the spec
tral density! a factor ofl21m1

2 @cf. Eq. ~2.4!#. Therefore the
configuration with the smaller eigenvalue will be suppress
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In the limit m1→0, a configuration supporting an expone
tially localized zero mode is completely suppressed in f
QCD. In this argument, it is important that the differen
between the two configurations is confined to a small regi
If all the near-zero modes are extended, a local change in
configuration will have only an infinitesimal effect on an
one of the eigenvalues, and the entropy may be large eno
to overcome the suppression factor due to the fermion de
minant. Thus, the extended modes may still build up a c
densate, despite the suppression by the fermion determin

On the basis of our analysis, we argued that the dom
wall and overlap formulations work only inside the
phase~s!.16 Inside those phases the mobility edge is nonze
and all the near-zero modes of the Wilson kernel are ex
nentially localized. The overlap should be local, and,
domain-wall fermions, chiral symmetry should be recover
exponentially with the size of the fifth dimension. Also, th
effective four-dimensional overlap operator emerging in
Ns→` limit ~which in thea5→0 limit coincides with the
standard overlap constructed with a Wilson-fermion kern!
should be local. Inside the Aoki phase one encounters i
nitely many light unphysical modes, which contribute to t
logarithm of the partition function with opposite signs. Th
overlap operator corresponds to the special casea5→0. It is
hard to imagine how either formulation could remain va
under these circumstances.17

It is worth commenting on the role of the gauge action
this respect. In particular, let us discuss how precisely
admissibility condition@36# would change the picture. An
admissibility condition means that all the plaquette variab
are constrained to be closer to one than some 0,e!1. The
spectrum ofH2(m0) then has a lower bound (lmin

0 )22d2

@againlmin
0 refers to the free HamiltonianH0(m0)], whered

is determined in terms ofe. This prevents the existence o
near-zero modes whenlmin

0 .d, but not whenlmin
0 ,d. The

supercritical region will now be defined as that region
which H(m0) has zero modes when restricted to gauge fie
satisfying the admissibility condition. This new supercritic
region consists of five~disconnected! vertical strips in the
phase diagram, each of which is located near one of the
critical values ofm0 . Inside each of those supercritical strip
there should still be an Aoki phase.

It is clear that, in principle, an admissibility conditio
guarantees the locality of the~ordinary or generalized! over-
lap, and the exponential recovery withNs of the domain-
wall’s chiral symmetry, form0 not close to a critical value
However, imposing an admissibility condition in numeric
simulations is prohibitively expensive. Very similar resu

16One quark field per one lattice-fermion field is obtained by ta
ing the continuum limit inside the C phase that borders on
interval 22,am0,0 on theg050 axis ~whereM52m0 is the
domain-wall height, and provideda5<1 @33#!. A possible trajectory
for taking the continuum limit is indicated by the dashed line in F
1.

17For other work pointing at difficulties at strong coupling, s
Ref. @44#. For related work on the phase structure of overlap ferm
ons with a small hopping parameter, see Ref.@45#.
1-17
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M. GOLTERMAN AND Y. SHAMIR PHYSICAL REVIEW D 68, 074501 ~2003!
can however be achieved by modifying the lattice gau
and/or fermion action, such that the density of the localiz
near-zero modes ofH(m0) decreases for a fixed value of th
lattice spacing. The density of near-zero modes was stu
directly and indirectly in numerous publications; for rece
reviews see Ref.@46#. In an approximation where all th
exponentially localized modes are neglected, the mob
edge turns into a gap, which can be studied in perturba
theory @38# ~see also Ref.@26#!. Nonperturbatively, numeri-
cal results with the Iwasaki@47# and DBW2@42# gauge ac-
tions show a dramatic depletion of near-zero modes. T
likely corresponds to larger values for the mobility edge
fixed lattice spacing. If we would replace the vertical axis
Fig. 1 by the lattice spacing~in physical units!, this would
amount to a recess of the Aoki-phase boundaries tow
largera, i.e., to enlargedC phases.

We have studied the PCAC~partially-conserved axial cur
rent! relation for domain-wall fermions, Eq.~6.2!. The re-
sidual mass defined in Eq.~6.11! directly provides informa-
tion on the rate of chiral symmetry restoration as a funct
of Ns . We argued that, by monitoring the anomalous term
the domain-wall PCAC relation, one can determinetwo cru-
cial features of the ‘‘Hamiltonian’’H(2M ,a5) that controls
the propagation in thes direction: the mobility edgelc8
~equivalentlyqc), cf. Eq. ~6.13!, and ~in effect! the average
localization lengthl̄ of the near-zero modes, cf. Eq.~6.12!.
These results may be combined as

mres;
e2utu/ l̃

f ~t!
1cqc

Ns, ~7.1!

where c is a constant.~Here we have traded the maxim
localization lengthl max of the near-zero modes, assumed
Sec. VI, by an average localization lengthl̄ .) The function
f (t) contains thet dependence of the domain-wall’s pio
two-point function in the denominator in Eq.~6.11!.18 This
result should be valid providedNs@1 and/orutu@a.

The residual mass has been extensively studied
domain-wall fermion simulations which according to our te
minology correspond to the rangeutu@a.19 As a function of
Ns , the results for the Wilson gauge action at quenchedb
56.0 and optimally chosenM @41# are characterized by
rapid initial drop ofmres. However, for larger values ofNs
the falloff slows down, and eventuallymres settles at a non-
zero value. Therefore, the first term on the right-hand side
Eq. ~7.1! is non-negligible in these simulations. According
our physical picture, this suggests that both the density
near-zero modes and their average localization length ma
relatively large; hence, in this case, one is very close to

18As explained in Sec. VI, forutu*a Eq. ~7.1! is not directly
amenable to numerical tests because of the unknown short-dis
effects in the pion two-point function; it may be advantageous
study to numerator of Eq.~6.11! directly, cf. Eq.~6.12!.

19The simulations often show a nice plateaumres(t,Ns)
'mres(Ns) for a wide range oft.
07450
e
d

ed
t

y
n

is
t

ds

n
n

in

f

of
be
e

Aoki phase.20 In contrast, the Iwasaki@47# and DBW2@42#
results exhibit a clean exponential falloff for all values ofNs

where data are available. This implies that the effect of
ponentially localized near-zero modes vanishes within
merical accuracy. In these cases the density of near-
modes should be very small, and their average localiza
length should be of order one in lattice units; hence one
well outside the Aoki phase.

The HamiltonianH(2M ,a5) also serves as a kernel o
the generalized overlap operator obtained in theNs→`

limit, and lc8 and l̄ are the two quantities which control th
locality of this operator. The small but nonzero value ofmres,
found using the Wilson gauge action at quenchedb56.0
when bothNs and the separation are large, suggests tha
this case the localization scale of the limiting operator mig
not be sufficiently small compared to the physical scale
the simulation. In contrast, the Iwasaki and DBW2 resu
imply a highly localized effective four-dimensional operato

When overlap fermions are employed, as with doma
wall fermions, it is necessary to verify whether locality of th
overlap operator is obtained and whether the localizat
scale is small compared to the physical length scale. T
should become a routine practice in any overlap simulati

The picture for the phase diagram of QCD with Wilso
fermions we painted in this paper is for a good part conj
tural. In particular, we did not prove the hypothesis about
mobility edge presented in Sec. IV B. In addition, some
our more rigorous arguments are based on the assump
that, in the regions where the mobility edge does not van
a maximum localization lengthl max exists. However, we
would like to emphasize again that our conjecture appear
be the simplest possible way in which we can understand
collected evidence about the quenched and unquenc
phase diagrams, incorporating both numerical@15,16,20,21#
and analytical@9,23,11,12,22# results.

In order to test our proposal for the phase diagram
would be interesting to study the Ward identity~2.9! numeri-
cally, in particular in the quenched two-flavor theory. T
second term on the left-hand side should show the 1/m1 di-
vergence already in finite volume. A comparison with t
pionic condensate will test whether or not the 1/m1 diver-
gence saturates the Ward identity for very small momenta
study of the dependence of all terms in the Ward identity
the volume should make it possible to see in which region
the phase diagram Goldstone excitations occur in
infinite-volume limit. Obviously, such a numerical study w
have to include a twisted mass@24#, and no~exceptional!
configurations should be discarded. Numerical studies ca
extended to study localization lengths of near-zero mode
well as nonzero modes outside the Aoki phase, once the
cation of the various regions in Fig. 1 has been establish

ce
o

20We believe that the first exploratory finite-temperature doma
wall simulations@48# were in fact carried out inside the Aoki phas
which would explain the poor chiral symmetry observed even
relatively largeNs . This is why in Fig. 1 we have drawn the regio
where domain-wall simulations have been tried such that it parti
overlaps with the Aoki phase.
1-18
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The localization length of nonzero modes would yield info
mation on the value of the mobility edge.@As explained ear-
lier, similar information may be obtained from~quenched!
domain-wall fermion simulations.# Similar studies can also
be done in the unquenched theory, but in that case the s
tral density of the localized modes will depend in a mo
complicated manner on the randomness of the gauge
because of the back-reaction through the fermion dete
nant. It is interesting that the quenched theory provide
conceptually simpler arena to test the validity of our conj
ture.
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APPENDIX A

In this appendix, we consider the issue of localizati
from a somewhat different angle. Instead of using our cr
rion for localization of individual eigenmodes, Eq.~4.1!, we
use Anderson’s criterion of~partial! absence of diffusion
@27#. The argument reviewed here is originally due to R
@49#, see also Ref.@28#.

In the language of condensed matter, the Hermit
Wilson-Dirac operator H5H(m0) is a ‘‘tight-binding’’
Hamiltonian. This means that the ‘‘electrons’’ can reside o
on the sites of a regular lattice. This Hamiltonian lives
four space dimensions, with coordinatesx or y, and deter-
mines the evolution of the system in a~fifth, continuous!
time dimension, with coordinates. We will assume that the
electron encounters a random potential on each lattice
defined by some probability distribution. Since there is
back-reaction of the electrons on the random potential,
situation corresponds to the quenched approximation
QCD, where of course the gauge fields provide the rand
potential. We introduce the advanced Green funct
G(x,y;s) and its Fourier transformG(x,y;l)

G~x,y;s!5u~s!(
n

Cn~x!Cn
†~y!e2 ilns,

G~x,y;l!5(
n

Cn~x!Cn
†~y!~l2ln!21, ~A1!

which solve the equations

~ i ]/]s2H !G~x,y;s!5 id4~x2y!d~s!,
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~l2H!G~x,y;l!5d4~x2y!. ~A2!

To carry out the Fourier transform,l has to be in the uppe
half plane, whereas taking it in the lower half plane cor
sponds toG(x,y;l) being the transform of the retarde
Green function.

We now adopt the point of view that the electron is pa
tially localized if there is a nonzero probability for the ele
tron to be found at a specific locationy after an arbitrarily
long time, given that it started out at some other locationx.
This probability is given bŷ uG(x,y;s)u2& for s→`, where
^¯& denotes the statistical average over the random pote
at each lattice site~or, in the QCD case, at each lattice link!.
The idea is that this nonzero probability arises from localiz
states, whereas the probability to escape to infinity com
from extended states. Obviously, in a finite volume there
no clear distinction between these two probabilities, but o
may study the dependence of^uG(x,y;s)u2& for s→` on the
volume. If it stays nonzero in the infinite-volume limit, w
have~partial! localization.

Following Ref.@49#, we may express the limiting value o
^uG(x,y;s)u2& in terms of ensemble averages of the Four
transformG(x,y;l):

lim
s→`

^uG~x,y;s!u2&5 lim
h→0

hE
0

`

dse2hs^uG~x,y;s!u2&

~A3!

5 lim
h→0

K (
k,n

Cn~x!Cn
†~y!Ck~y!

3Ck
†~x!

h

h1 i ~ln2lk!
L ~A4!

5 lim
h→0

h

2p E dl^G~x,y;l1 ih/2!

3G~y,x;l2 ih/2!&. ~A5!

Equality ~A3! follows after a partial integration~after which
the limit h→0 can be taken!; the other two follow from
elementary integrations. These equations are valid in fi
volume, and we will assume that these are valid in infin
volume as well.

We observe that the integrand on the right-hand side
Eq. ~A5! corresponds precisely to Eq.~3.1!, i.e., the pion
two-point function, forl50 and identifyingh/25m1 . With
the Anderson criterion for localization, we immediately co
clude that thel integral of the two-point function has a 1/h
divergence provided lims→`^uG(x,y;s)u2&.0. In finite vol-
ume this is always the case; whereas in infinite volume,
is the case if the electron is~partially! localized.

Anderson localization implies that, by definition, th
probability for the electronnot to escape to infinity, given by
lims→`^uG(x,y;s)u2&, is nonzero, and thus that

^G~x,y;l1 ih!G~y,x;l2 ih!&}h21, h→0 ~A6!
1-19
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for a range ofl ~note that this correlation function is pos
tive!. It follows that localization for a givenl may bedefined
as the existence of this divergence@49#. This coincides with
our analysis based on the mobility-edge hypothesis: if
mobility edgelc.0, all modes withl,lc contribute to the
1/m1 ~or 1/h! divergence, and thus the right-hand side of E
~A5! does not vanish, leading to a nonzero probability for
electron not to diffuse.

In reality, it may not be easy to measure the limiting val
of ^uG(x,y;s)u2& experimentally, because all the electron
states are filled up to the Fermi energy. The nature of
eigenstates close to the Fermi energy determine the ma
scopic properties~at sufficiently low temperature!. A disor-
dered system is an insulator~zero electric conductivity! if the
electronic states at the Fermi energy are localized, where
metallic behavior~nonzero conductivity! is observed if the
electronic states at the Fermi energy are extended. Ametal-
insulator phase transition occurs when a mobility ed
reaches the Fermi energy. The Aoki phase transition is in
sense a special kind of a metal-insulator transition. Fo
discussion employing these concepts in the context of
chiral phase transition in continuum QCD, see Ref.@50#.

Finally, we mention that the concept of an effective L
grangian for the long-range degrees of freedom, which
used to study the phase diagram of lattice QCD@12,22#, is
also widely used in condensed-matter disordered syste
see Refs.@29,30#, and references therein.

APPENDIX B

Using the operator formalism and the notation of Ref.@3#,
the numerator in Eq.~6.11! is a sum of four positive terms
07450
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For a fixed gauge field~and in an arbitrary normalization!
one of these terms is

^08uĉ↓~0W ,0!T̂Ns/2ĉ↓
†~xW ,t!ĉ↑~xW ,t!T̂Ns/2ĉ↑

†~0W ,0!u08&. ~B1!

HereT̂ is the second-quantized transfer matrix.ĉ† and ĉ are
fermion creation and annihilation operators. The up a
down arrows represent two different flavors. Spin indic
have been suppressed. The stateu08& is a reference state
annihilated by all theĉ’s. It encodes the boundary condition
in the fifth dimension.~For notational simplicity we have
given the result when the quark mass is zero; all argume
generalize to the case of a nonzero mass, as well as to
other three terms that we do not show.!

The composite operatorĉ↓
†(xW ,t) ĉ↑(xW ,t) belongs to the

pseudoscalar densityJ5q
1 (xW ,t) located in the middle of the

five-dimensional bulk. Therefore, to be reached from one
the boundaries, one has to actNs/2 times with the transfer
matrix ~we assume thatNs is even!. If an admissibility con-
dition is imposed, the~first-quantized! transfer matrix
T(M ,a5) has a gap~i.e., there are no eigenvalues in som
open neighborhood of one!. In the limit Ns→`, T̂Ns/2 be-
comes proportional to the ground-state projectoru0H&^0Hu.
@The ground stateu0H& of T̂ is obtained by filling the Dirac
sea of states that correspond to all eigenvaluesvn.1 of
T(M ,a5).] In this case expression~B1! is proportional to
^0Huĉ↓

†(xW ,t) ĉ↑(xW ,t)u0H&, which is in fact identically zero,
because the~in general nonzero! statesĉ↑u0H& and ĉ↓u0H&
have different flavors and, hence, are orthogonal. Thus,
numerator in Eq.~6.11! vanishes and chiral symmetry is re
covered~exponentially! in the limit Ns→`. The case of re-
alistic gauge actions is discussed in Sec. VI.
H.

ys.
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