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In this paper, we examine the phase diagram of quenched QCD with two flavors of Wilson fermions,
proposing the following microscopic picture. The supercritical regions insidkoutside the Aoki phase are
characterized by the existence of a density of near-zero modes @fiémmitian Wilson-Dirac operator, and
thus by a nonvanishing pion condensate. Inside the Aoki phase, this density is built up from extended near-zero
modes, while outside the Aoki phase there is a nonvanishing density of exponentially localized near-zero
modes, which occur in “exceptional” gauge-field configurations. Nevertheless, no Goldstone excitations ap-
pear outside the Aoki phase, and the existence of Goldstone excitations may therefore be used to define the
Aoki phase in both the quenched and unquenched theories. We show that the density of localized near-zero
modes gives rise to divergentpion two-point function, thus providing an alternative mechanism for satisfying
the relevant Ward identity in the presence of a nonzero order parameter. This divergence occurs when we take
a “twisted” quark mass to zero, and we conclude that quenched QCD with Wilson fermions is well defined
only with a nonvanishing twisted mass. We show that this peculiar behavior of the near-zero-mode density is
special to the quenched theory by demonstrating that this density vanishes in the unquenched theory outside the
Aoki phase. We discuss the implications for domain-wall and overlap fermions constructed from a Wilson-
Dirac kernel. We argue that both methods work outside the Aoki phase, but fail inside because of problems
with locality and/or chiral symmetry, in both the quenched and unquenched theories.
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I. INTRODUCTION Boltzmann weight is obtained from a local pure-gauge ac-
tion. The quenched theory can be understood as a Euclidean
Wilson fermions play a prominent role in lattice QCD!. path integral with two physical quarks, and two “ghost”
They (and their improved versionsre widely used in nu- (bosonig quarks with the same mass, whose role it is to
merical calculations of hadronic quantities. In addition, theycancel the physical-quark determin&it8].
are at the heart of the construction of lattice Dirac operators Long ago, a conjecture was made for this phase diagram
with domain-wall[2,3] or overlap[4,5] fermions. All these [9], which is shown schematically in Fig. 1, whegg is the
fermion methods based on the Wilson-Dirac operator prebare coupling andn, is the bare quark mass. We will be
serve all of the flavor symmetry, but not ordinary chiral sym-concerned with the region 8<amy<0 because only in that
metry. For Wilson fermions, a tuning of the bare fermionregion can the Wilson-Dirac operator have any zero or near-
masses is needed to restore chiral symmetry in the coreero eigenvalues. Spontaneous symmetry breal8&@ oc-
tinuum limit, while domain-wall fermiongwith infinite ex-  curs as a consequence of a nonzero density of such modes
tent in the fifth dimensionand overlap fermions possess a[10], and the interesting part of the phase diagram is thus
modified version of chiral symmetry with essentially the confined to this region(the “supercritical” region. The
same algebraic properties as the chiral symmetry of the conisual continuum limit corresponds to the critical point at
tinuum theory[6]. This lattice chiral symmetry reduces to g,=0, am,=0. Other continuum limits are obtained for any
that of the continuum theory in the continuum limit. value ofam, by takinggo— 0, but generically all quarks stay
In this paper, we will discuss the phase diagram in themassive(i.e., have a mass of order of the cujofOnly at
gauge-coupling, quark-mass plane for two degenerate Wilsor am,=0,2,4,6,8 do massless quarks show up in the con-
fermions, for both the quenched and unquenched theorieinuum limit, respectively, 2, 8, 12, 8, 2 of thefm our
We will be interested in correlation functions constructedtwo-flavor theory. The number of quarks is determined by
from the inverse of the two-flavdiHermitian) Wilson-Dirac  the number of momenté@r “corners”) in the Brillouin zone
operator, evaluated on an equilibrium ensemble of gaugewhere the free Wilson-Dirac operator has a zero.
field configurations. The difference between the quenched According to this conjecture, in regiomsand C no SSB
and unguenched cases is that only in the unquenched caggkes place, while regioB, the Aoki phase, is defined by the
the fermion determinar(which is positive for two degener- existence of a pionic condensate, which breaks parity and
ate flavorg will be part of the Boltzmann weight used to flavor symmetry: Let us briefly review the evidence for the
generate the ensemble, whereas in the quenched case the

INote that all chiral symmetries are explicitly broken at nonzero
*Email address: maarten@stars.sfsu.edu lattice spacing, and thus play no role in determining the phase dia-
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of a condensate was discussed in the context of the pion
effective action in Refd.11,12. Referenc¢12] showed that,

if the Aoki phase extends all the way tg=0, it does so as
indicated by the “finger” structurgin Fig. 1, with the width

of these fingers proportional tca(\QCD)3, where Aqcp IS

the QCD scale. In the strong-coupling limit, the location of
the two critical points was first found in Rdf14], and the
nature of the phase with broken symmetry was clarified in
Ref.[9].

The phase diagram was studied numerically in both
guenched15] and full[16] QCD. The numerical results pro-
vide evidence that the five critical pointsgf=0 are indeed
continuously connected to the “main body” of the Aoki
phase at large coupling. In the quenched theory, evidence for

FIG. 1. Arepresentation of the phase diagram proposed by Aokall ten critical lines agy=1 (8=6.0) was found in the last
for two-flavor QCD with Wilson fermions and standard plaquette paper of Ref[15]. In the present paper, in which we address
action. The solid lines mark phase transitigiadi believed to be the mechanism responsible for the existence of an Aoki
continuous. PhaseB is the Aoki phase, defined by the existence of phase, the detailed form of the phase diagram is not impor-
a parity-and flavor-breaking pionic condensate. Its “trademark” aretant. For the sake of argument, we will assume that the very
the five “fingers” reaching to the critical points on tlig=0 axis.  plausible situation depicted in Fig. 1 describes the actual
Phase#\ andC have no condensate. The lightly shaded area markphase diagram. For a discussion expressing some doubts, see
the supercritical region where near-zero modes may occur. The lineRef. [17].
mo=0 andamy=—8, which define the boundaries of the super- A difficulty with the quenched simulationgl5] is that
critical region, appear to have no special dynamical significancegyceptional configurations were discarded. Exceptional con-
the A phases extend on both sides of them. The quenched phasf@urations[l&lq will play an important role below. Keep-
diagram is discussed in the main text. The darker shaded area fﬁg this subtlety in mind, no light excitations were found in
roughly the area where domain-wall fermion simulations have beetghe quenched and C phases, except close to the AdE)

carried out. The dashed line represents a possible trajectory foﬂhase boundarfand, in particular, close to the five critical
taking the continuum limit with domain-wall or overlap fermions points atg,=0) ' '
0_ .

(see Sec. Vi While this picture appears to be rather satisfactory, there

] ) . . . . exists some evidence that, in tlggenchedcase, seems to
(unquenchedAoki phase diagram. First, a simple heuristic 4isagree with the diagram of Fig. 1. Numerical studies of the

argument suggests that a pionic condensate must exist fbar.zero modes of théHermitian Wilson-Dirac operator
some part of the phase diagrd8i. Start with somen,=0 jngicate that, forg,>0, a nonzero density of near-zero
anq examine whqt happensrag is de_creased_. For a nonzero modesalways occurs in the quenched theommnywherein
lattice spacinga (i.e., go=>0) therze is no chiral symmetry. he supercritical regiof20,21] (namely, in region® andC,
Instead of the continuum relationZ o |mg| (herem, andmy  and the supercritical part of regioh. Through the Banks-
are, respectively, the pion and quark magses have that Casher relation, this would imply that the pionic condensate
mZemo—m’, where the fact than’ =m’(g,) does notvan-  vanishes nowhere in this region, and SSB takes place every-
ish is a consequence of the breaking of chiral symmetry ofwhere, thus contradicting the phase structure sketched in Fig.
the lattice. Formy>m’ the pions are massive, becoming 1. Moreover, one would be inclined to expect Goldstone ex-
massless at the critical liney=m’(gy). For my<m’, mi citations everywhere in the supercritical region, in which
would go negative, signaling the breaking of a symmetry. Acase Fig. 1 would be completely wrong for the quenched
pionic condensate forms in some direction in flavor spacetheory; it would not even serve as a guide to the long-range
and the linemy=m’(g,) determines the location of a physics. We note, however, that this is in conflict with what
second-order phase transition. The corresponding pion bés known from the numerical studies of RE€L5] mentioned
comes massive again far,<<m’, while the other two pions above, as well as with an analytical styd@2], in which it is
become Goldstone bosons associated with the spontanecaigued that the effective-field theory analysis of R&f] is
breaking of the S(2) flavor symmetry(“isospin”) down to  also valid for the quenched case.
a U(1) symmetry. Since the condensate is pionic, it breaks Another clue comes from a study of a special class of zero
parity symmetry as well. Microscopically, the condensatemodes by Berruto, Narayanan, and Neuber@ehich we
arises from near-zero modes of the Wilson-Dirac operatowill refer to as BNN hereafter[23]. They showed that, for
[10], and can thus only occur in the regien8<<am,<0. choices ofm, in the supercritical region, the Wilson-Dirac
This argument does not provide much information on theoperator has exact zero modes for very smooth gauge fields
detailed form of the Aoki phase. Additional analytical evi- with one dislocation, which is contained in a small hyper-
dence comes from several sources. The location of the criti-
cal points along the linggy=0 is obtained from weak-
coupling perturbation theory, which, however, gives no 2A similar phase diagram is known to exist in the Gross-Neveu
information on the existence of a condensate. The existenaaodel[9,13].
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cube with a linear size of a few lattice spacirigger we give  will depend on the energy of the state and on the density and
a more precise description of their resulBhese zero modes other properties of the scattering centers. Taeerage lo-
are exponentially localized, and their existence characterizesalization range of the states will increase as the energy is
these “BNN”" gauge-field configurations as exceptional con-increased toward&ﬁ, becoming infinite at)\g, which in
figurations. They further argued that in large volume onecondensed-matter physics is referred to as the “mobility
would expect configurations with a “dilute gas” of such dis- edge”[27] (for reviews see Ref§28—30).
locations, because of their highly localized nature. This class The value of the mobility edge is a dynamical issue,
of configurations could then contribute to a nonvanishingwhich depends on the ensemble of gauge fields, and thus on
density of near-zero modes of the Wilson-Dirac operator foithe location in the phase diagram. We conjecture that the
the quenched theory, where such configurations are not sug:oki phase is precisely that region of the phase diagram in
pressed by the fermion determinant. This study thus lendwhich the mobility edge is equal to zero. Outside the Aoki
analytical support to the numerical results reported in Refsphase, it is larger than zero, and consequently, all near-zero
[20,21. modes are exponentially localized. When one moves closer
In this paper, we will propose a resolution to this appar-to the phase transition, the mobility edge comes down con-
ently paradoxical situation. First, we prove that, if there is atinuously, until it vanishes and the Aoki phase is entered.
nonvanishing density of exponentially localized near-zero We complete our discussion of the physical picture by
modes, there exists a different mechanism for saturating thivoking our results on the two different mechanisms by
Ward identity involving the order parameter for SSB. Thewhich the Ward identity can be saturated in the presence of a
orientation of an order parameter is determined by a smalhonzero condensate. When the mobility edge is zero, only
external “magnetic field,” here provided by a so-called extended near-zero modes contribute to the spectral density,
twisted-mass terrf9,24]. We argue that under the above cir- and the Ward identity predicts the existence of Goldstone
cumstances, no Goldstone poles need appear, but instead tiextitations that dominate the long-range physics of our
the two-point function of the would-be Goldstone-pion field theory; when the mobility edge is larger than zero, the con-
divergesin the limit of vanishing twisted mass, even if the densate(and, hence, the order parame¢té& produced by
momentumdoes notvanish® This divergence already occurs exponentially localized near-zero modes, the pion two-point
in finite volume, and we will argue that it persists in the function is diverging, and, we conjecture, no Goldstone ex-
infinite-volume limit of the quenched theory. citations occur. Thus the region with Goldstone bosons coin-
We then invoke a concept from condensed-matter physicsides with the region where the mobility edge is equal to
in order to come up with a conjecture for the microscopiczero, and the existence of Goldstone bosons can be used as a
picture underlying the quenched phase diagram. The motivadefinition of the Aoki phase in both unquenched and
tion is to understand what happens in the case that we haveggenched QCD.
dense, rather than dilute, gas of dislocations. For this pur- This picture of what the quenched phase diagram looks
pose, we interpret the square of the Hermitian Wilson-Diradike begs the question as to whether it is consistent with
operator as the Hamiltonian of a five-dimensional theory, andinquenched QCD. In the unquenched case, the Boltzmann
thus its (positive) eigenvalues as energy eigenvalues. Theweight is modified by the fermion determinant, which tends
ensemble of gauge fields on which these eigenvalues ate suppress the entropy of gauge-field configurations with
computed act as a random potential, and a nonzero measunear-zero modes. We show that the divergence in the pion
subset of these fields can be viewed as random distributiortavo-point function cannot occur in the unquenched case.
of highly localized scattering centers. The eigenstates defherefore, indeed no near-zero-mode density can build up
scribe the possible states of (four-plus-one-dimensional unless the resulting condensate is accompanied by Goldstone
“electron” in this background. Note that the fact that we are bosons(in which case we are inside the Aoki phasand
concerned with the quenched theory here makes the simpli@xponentially localized near-zero modes do not play the
ity of this picture more compelling, because of the absenceame role in unquenched QCD as in quenched QCD.
of any feedback of the fermions on the gauge fields. The scale of the typical localization length of the near-
In general, there will exist a band of extended eigenstatezero modes is set by the lattice spacing. The existence of a
above a certain energy, denomﬁi whereas eigenstates be- nonzero condensate outside the Aoki phase is thus a short-
low this energy will be localized exponentiaflywhile  distance artifact. One expeats long-range physicésuch as
attractive-potential scattering centers will tend to localize théhe existence of Goldstone excitatipras a consequence of
electron as in a bound state of an isolated scattering center,lecalized near-zero modes, unless their average localization
large-enough density of them will make it possible for thelength becomes so large that they behave collectively. Ac-
electron to travel throughout the lattice by tunneling, withcording to our conjecture, this happens precisely when the

the corresponding state becoming extended. The outconigobility edge comes down to zero, and, just as in un-
quenched QCD, only extended near-zero modes contribute to

the spectral density. Therefore, an effective-Lagrangian

3while completing this paper, we became aware of the fact that &nalysis in terms of the long-range effective degrees of free-
similar observation has been made some time ago in condense6Om, as carried out in the unquenched dds&, should also

matter theory{25]. make sense in the quenched case. Both inside and close to
“4In a less detailed form, this physical picture has previously beerthe boundaries of the Aoki phase, the effective Lagrangian
considered in Ref.26]. should provide a valid description of the long-range physics.
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Indeed, such an analysis has been carried out in the quenchederlap fermions in Sec. VI, and finally summarize our con-
theory[22], and leads to conclusions very similar to thoseclusions in Sec. VII. In Appendix A we review Anderson’s
obtained in the unquenched case. definition of localization as thépartia) absence of diffusion

Thus far, our results deal with the case of QCD with Wil- [27], and its relation to our definition in Sec. IV. Some tech-
son fermions. However, there are important consequences fical details are relegated to Appendix B.
lattice QCD with domain-wall or overlap fermions con-
structed from the Wilson-Dirac operator. In short, we claim [l. TWISTED-MASS QCD, THE WARD IDENTITY,
that domain-wall and overlap fermions can only be uset AND THE AOKI CONDENSATE
outsidethe Aoki phase. For domain-wall fermions, the Her-
mitian Wilson-Dirac operator is closely related (the loga-
rithm of) the transfer matrix that hops the fermions in the 1/ —(W+amp) c
fifth dimension. A density of near-zero modes of the Hermit- D(mg)= — T ,
ian Wilson-Dirac operator implies the existence of long- a -C —(W+amy)
range correlations in the fifth direction. This threatens the 1
decoupling of the left-handed and the right-handed quarks _ = A _ -t
that live on opposite ends of the five-dimensional world, and, =3 % O R
hence, the restoration of chiral symmetry in the limit on an (2.1
infinite fifth dimension.

The crucial issue is the value of the mobility edge of the
Wilson-Dirac operator. Well outside the Aoki phase the near-
zero modes are all exponentially localized, with a scale set
by the lattice spacing. As a result, their contribution to ob-in which o,=(4,i), whereoy are the three Pauli matrices,
servables vanishes when the four-dimensional separation &nd each entry is @22 matrix. The Hermitian Wilson-Dirac
set by a physical scalevithout having to tune any param- operator isH(mg) = ysD(mg), with ys=diag (1, 1, —1,
eten. As for extended modes of this operator, they cannot-1). The theory is symmetric under the replacemant,
mediate long-range correlations in the fifth dimension, and— —(8+am,) because of the fact that fam,=—4 the
thus they do not obstruct the recovery of chiral symmetryWwilson-Dirac operator only contains nearest-neighbor cou-
either. In contrast, inside the Aoki phase the near-zero modgslings, thus allowing for a U(1)symmetry[18].
are extended, and they mediate long-range correlatioal in  We defineHq(m) as the operatoH(mg) with all Uy,
five directions. This strongly suggests that inside the Aoki=1. This corresponds to the limg=0 in the phase diagram.
phase the resulting four-dimensional effective theory either ighe spectrum of Hé(mo) covers a closed interval
completely nonlocal, or, at best, contains long-range degreg$)\°. (m,)}2, A8 (M) 12, with 0<%, (mg)<A\? . (mg)<ce.
of freec_iom Q|ﬁerent from the deswed ones. .Th|.s phys.lcal)\i)nin is determined by minimizing
picture is valid for any value of the lattice spacing in the fifth
dimensionas, and thus the same conclusion applies to over-

The definition of the Wilson-Dirac operator is

1
Wiy=40y~ 5 2 [ iuyUsut 8- yUll,
“

lap fermions which corresponds to the special aase 0. a’Hj(p;mg)=2>, sirf(ap,)

This paper is organized as follows. We define our theory, a
introduce the twisted quark mass, and derive the relevant 2
Ward identity in Sec. Il, where we also briefly review the + EM: [1—cogap,)]+amy| (2.2

relation between the condensate and the near-zero-mode den-

sity. In Sec. Il we derive a spectral representation for thegyer the Brillouin zone. Keeping three components of the
pion two-point function. We observe that in the supercritical\, o mentum fixed. it is easy to see thit%l—%(p'mo) is linear
quenched theory this two-point function always diverges i, e cosine of the fourth component, and thus minimized
finite volume, in the limit .of a vanlshllng twisted mass. We \uhen this cosine equals. It follows that at a minimum all
thus provide an alternative mechanism for saturating the, components of the momenta have to be equal to 8, or

Ward identity in the p.resenc'e.of a nonvanishing condensat%nd thus thaIaZHS(p;mo) is the minimum overk of (2k
In Sec. IV,_ we start with defining localized near-zero mode_s+amo)2’ in which k is the number of momentum compo-
more precisely. We show that a nonzero density of them will ) 0 .

dominate the divergence of the pion two-point function in nenct_s equal tar. We thus find thah p,=min|my—mg|, where
large volume, and, likely, will produce the divergence in the@{0 'S ON€ of the values 6;2, —4, —6, and—8. We see that
infinite-volume limit as well. We then give a qualitative but *min IS generically of order H, except wherm, is close to
detailed discussion of the mobility edge, and its role in de-On€ of _these critical points. These crltl_cal points co_rrespond
termining which way the Ward identity is satisfied. This O the tips of the Aoki “fingers” on the lin@,=0 in Fig. 1.
leads to a comprehensive picture of the quenched phase dijar these critical points the theory yields 1, 4, 6, 4, and 1
gram, and in particular of the distinction of the supercriticallight quarks per Wilson fermion, respectively. All eigen-
regions inside and outside the Aoki phase. In Sec. V wenodes ofHg(m) are plane waves, and thus extend over the
discuss briefly how the picture changes if we reintroduce th&hole volume. Note that the spectrum Hify(m,) is con-
fermion determinant, i.e., if we unquench the theory. We thertained in two disjunct intervals, —Ap.,—\yin] and
discuss the implications of our analysis for domain-wall and A2, A\2..J, separated by a ga(if A2;,#0).

074501-4



LOCALIZATION IN LATTICE QCD PHYSICAL REVIEW D 68, 074501 (2003

Returning to the interacting theory, we consider for whichwhere the backward lattice derivative is defined dff (x)
values ofm, the operatoH(mg), or equivalentlyD(mg), =[f(x)—f(x—u)]/a and the corresponding vector current
can have zero eigenvalues. Wriy(mg) =A+iB, with A s
and B Hermitian, and consider an eigenmod®V = (A

+iB)¥=\¥. We then have tha¥ T(A—iB)=¥'\*, and I 0=3[P) 71 (¥, + DU, (X) (X + )
thus 2PTAW = (A +\*)¥ T, It follows that A can only _
vanish if WTAW¥ vanishes. Sincé=— (W+am), this can +(x+ )74 (v, ~ DU (0] (2.7

only happen if—8<amy=<0, because the spectrum ¥f is . ) o . i

confined to the intervdl0, 8]. The supercritical regiofi.e., ~ While the notation(--) indicates an integration over both

the region where zero modes may existthus the region in fermion and gauge fields, we note that the Ward identity is
which —8=<am,=0, and we will restrict ourselves to that also valid if we integrate over the fermion fields only. Taking

region for the rest of this paper. O(y)=m_(y) and defining
In the supercritical region “exceptional” configurations _
may, and do, occur. Exceptional configurations are defined Ty =(m () 7-(y)),
by the condition thaD(mg) has an eigenmod# , with an e
exactly real eigenvalua, [18,19. For such configurations Luxy) =3, () 7-(y)), 28

we have thatH(mgy+ )V = vysD(my+Ay) ¥ =0. Hence, a

configuration is exceptional iffl has an exact zero mode for

somemy. BNN configurations(see Sec. IY are a special Sy

kind of exceptional configurations. T Ly +2ml(x,y) = —7 (m3(Y))- 2.9
We will be interested in a two-flavor theory constructed

with this Wilson-Dirac operator, with a fermion Lagrangian Defining

we arrive at the Ward identity

L=y(D(Mg) —imyyss)¢h . b
_ T(p)=+ 2 PV r(xy), (2.10
=" (H(mg) —imy73) ¢, (2.3 Xy

wherey’ = ys is a field redefinition with Jacobian one. The @nd similarlyI",(p), the Fourier-transformed Ward identity
(eight-componentfield ¢ transforms in the fundamental rep- 'S

resentation of isospin S8). We added a symmetry-breaking

term proportional tan, pointing in ther; direction, where =3 (1-e T (p)+2mT(p)=(m3). (2.1
7 is another set of Pauli matrices acting in isospin space. au

This symmetry-breaking term, which breaks both isospin and o

parity, and thus has the quantum numbers of one of thdhe pionic condensate

pions, allows us to probe the existence of an Aoki phase, in

which this pion field develops a vacuum expectation value. (ma)=(a%V) D> (ma(y)) (2.12
We will assume the standard plaquette action for the gauge y

field, unless otherwise noted. Integrating over the fermion ) ) )
fields yields the fermionic partition function can be calculated by first calculating the expectation value of

m3(y) in a fixed gauge fielddenoted by---);) from Z,

ze=IT Op+imp—imp)=]] (\2+m?), (2.9

d m
4 —_7-1 ~ 7 _ 1
a2 (ma=Z G Ze=22 (7 s (213

where the product is over the eigenvalugsof H(m,), of
which there is a finite number on a finite-volume lattice. and then averaging this over the gauge field, to obtain
Note that Zx depends on the gauge-field configuration
through the eigenvalues, .

The relevant Ward identity is obtained by performing a
local flavor transformation

m;
A2+m:’

(=2 drp0n) (214

o o wherep(\) is the spectral density defined below. In the limit
Sr(X)=ia(X)Tp(X), O h(X)=—1a(X)p(X)T, m;—0, we obtain
(2.9
(m3)=2mp(0), (2.19

the Banks-Casher relatidi 0] for the case at hand.
We define the spectral density from the cumulative den-
sity

in which 7. =(r1%i7,)/2. With 7. (X) =i (X) ys7= )(X)
andm3(X) = iE(x) vs73(X), we find for any operato® that
i5,
P 00(y) + 2y () OY))= (5, 0(y),
(2.6 N(x)=< > I*Pn(x>|2>, (2.19

An=A
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whereW (x) is the eigenfunction associated with the eigen-either H(mg) would have to have a symmetry in this fixed

value\,,, gauge-field background, or there is an accidental degeneracy.
Both types of degeneracy disappear under a generic small
H(mo) ¥ =AW, (217 deformation of the gauge field.

. e 5 In a finite volume on the lattice, the sums oveandk in
and W']E.h Inormahzatl_ona EXW”E]X)'._hl'hBecal.Jse.Of the Eqg. (3.1 are finite, and the integration over gauge fields is
gauge-fie d average in EQ2.19 the rig r and_5|de Is actu- absolutely convergent because we integrate over a compact
ally independent ok. The spectral density(r) is group. This implies that we may interchange the sums and
the integral, and consider separately the contribution for each
p()\)=dN/d)\=V‘1< > 5()\—)\n)>. (2.19 nandktoI'(x,y), which is
n

All these results are valid in finite-volume QCD, in both the J ’DL{B(Z,[)\IIE(X)\]IK(X) I k(y)\lfﬂ(y)
quenched and unquenched cases. They remain true if th N im; —imy
infinite-volume limit is taken, but of course this limit may or (3 2
may not commute with the limitn;—0. It is well known
that in unquenched QCD these limits do not commute in )
phase with SSB: the order paramefers) in the my=0 q‘mlte even in the limitm;— 0. This is because the denomi

theory vanishes in finite volume, but does not vanish if the. nators,+im; and A, ~im, become singular on different
o ' - ith imension oneof th -fiel
thermodynamic limit is taken before the limih;—0. We subspacegwith codimension oneof the gauge-field space,

will return to this point in Sec. V. and theim; terms in the denominators provide aa pre-
. P . s 2 2 - scription for how to integrate around the poles\g&=0 or
For any givermy we will denote by\ i, (\a0 the mini-

. ; 5 . N¢=0. Therefore, in the limim;—0 only terms withn=k
mum (maximun) elgenvalqe_OH (mo) over the gauge-field can make a nonzero contribution to the produogl™(x,y):
space. These values are finite, because of the facHtfrag)
connects a given site only to a finite number of neighboring
sites, and because the gauge group is compact; éfog) lim m;I'(x,y)= lim J’ DUB(U)
is uniformly bounded. The cumulative densit{\), defined m;—0 m;—0
by the spectrum oH(mg), is monotonously nondecreasing
on the interval — \ jax.Amaxl- Using the results of Ref23], X 2 | WL (x)] |\Ifn(y)|2
we will argue below thah ;=0 for any &>amy,>—8 and
that, in the quenched theorg(\)>0 for any — A<\ (3.3
<Amax- We will first consider a finite voluméSec. Il)) and
then the infinite-volume limi(Sec. V). Outside the super- Of course, the fact that we keep the volume finite is a key
critical region, i.e., foramy>0 or amy<—8, one has\,;;, €lement of this argument. For the Fourier transform of

For n#k (and thus genericalljx,#\,), expression3.2) is

+m

>0, andp(X)=0 for — Nmin<A<Apmin- I'(x,y), EQ.(2.10, this result translates into
2
Ill. SPECTRAL REPRESENTATION OF THE PION lim m,T(p)= im 2 [ pys wS | n(p)|
TWO-POINT FUNCTION my—0 ! my—0 V v AA+m: ]

We are now ready to establish one of the key results.
Using the spectral representation for the quark propagators, it H (p):azlz ¥ (X)|Ze—ipx. (3.4)
is straightforward to derive that, in a finite volume, " X "

1 Equation (3.3) has a dramatic consequence for quenched
_ T
F(x,y)—f DUB(Z’{)E W) W(X) 7 Netim; QCD. We may introduce the density correlation function
XULY Y o(y) @) ROyN= [ DUBaHS [WL0PIE PN,
1
: _ (3.9
The two propagators on the right-hand side correspond to the
“up” and the “down” quarks, respectively. Each sum runs with which Eq.(3.3) can be written as
over the eigenstates of tlisingle-flavoy Hermitian Wilson-
Dirac operatoH(mg). In full QCD the Boltzmann weight is . o . 1
B=Zr exp(—S,), whereS; is the gauge action, and the fer- n!'TO mll“(x,y)—”!lrfo dAR(X.y;N) N2+ mi
mionic partition function Z¢ is given in Eq. (2.4). In ' !
quenched QCDB=exp(—S). =7R(X,y;0). (3.9
For a generic gauge field, the eigenvalue spectrum of
H(mg) is nondegenerate: ik,=\, then ¥ (x)=V(x). It is clear that R(X,y;\) is independent ofm, in the

Gauge-field configurations for which this is not true form aquenched theory becaud#l() is. Also, if we choosem,
subset of the configuration space with measure zero, becauasywhere inside the supercritical region, the existence of
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BNN-like zero modeimplies that there is no spectral gap A. Localized modes and the divergence of the pion

around\ =0, and, in particular, that exact zero modes occur two-point function

on a nonempty subspace of codimension one. As a result, on a finite lattice of spacing and(large linear sizel (in

R(x,y;8)>0 for any =\ max<N<Apax, because, apart from g| four directions, a normalized eigenstat ,(x) is expo-

the o function, the integrand in Ed3.5) is strictly positive.  nentially localized, provided there exists a positive constant

Hence, we find a i, divergence inl’(x,y), c;=0(1), alattice sitex® (which depends on¥,), and
somel with a<|<L such that

R(xy;0 x—x°
Py =T o) 3.7 |qfn<x)|2sf_jexp(_' | '),

4.9

Thelocalization range(or localization lengthl , is the mini-
Moreover, if R(x,y;0)>0, also p(0)>0 and, from Eq. Malvalue oﬂ for which tzhg bouqd4.1) holds. qu Fiefinite—
(2.15), (m3)>0 for the same reasons, and we find that we"€sS, the d'Sta”gB—W is defined by the minimum of
can have SSB in dinite volume in the quenched thedty. =ulX.—Y.tn,L|" over all integersn,, . Our intention is to
Equation(3.7) shows that the quenched theory in the superestablish a lower bound oki(p) in terms of the density of
critical region is singular in the limitn;— 0, and it provides localized near-zero modes and, for this purpose, we ¢ake
an alternative mechanism for saturating the Ward identityto be independent df and L. Also, the restriction td ,<I
Eq. (2.9. With this alternative mechanism, no Goldstone ex-<L means that we consider only localized modes whose
citations need to appear in the quenched theory, even in tHUPPort(of roughly orderl?), and size|W,|*~ 1/} inside
presence of SSB. this_ support, are basically independent pf the volume. This

The fact that these results are so simple is related to th@€finition may exclude some modes which would be expo-
fact that, in the finite-volume quenched theory, the existenc@€ntially localized according to some other reasonable defi-
of both the condensate and theni/divergence in the pion Pltlon, but the class we are considering here will be sufficient
two-point function is a kinematical effect, which depends Or our purpose. I .
only on the supercriticality ofny and the strict positivity of We begin with establishing bounds (p) in Eq. (3.4),
the (m,;-independentquenched measure. The magnitudes of o~ 1202 2
(m3)>0 andR(x,y;0) depend on the dynamics, and, as it 1= Colnp™<[Hn(P)|"<1. 4.2
will turn out, on whether we are inside or outside the Aoki
phase.

To conclude this section, we note that one can repeat th
entire analysis assuming a different @Uorientation of the
flavor- and parity-symmetry breaking term in Lagrangian
(2.3). The orientations of both the pionic condensate and thef\hat [with x° the “center” of the localized eigenstate of Eq
divergent term in the pion two-point function follow the ori- n '
entation of this symmetry-breaking term, just as in the Casé4'1)]
of conventional SSB. In the next section, we will address the
dynamics of the quenched theory, and in the section after thag<1 — Re[e‘pxan(p)] = 2a42 sinz[p(x—xﬂ)/2]|\lfn(x)|2
the differences with the unquenched theory. X

Here c,occq is another numerical constant which we will
define below. The upper bound is trivial, while the lower
found just expresses the fact that one cannot resolve the
structure of a localized mode with localization rarigeising
momentap<<1/l,,. The lower bound is established by noting

4
Cl 0 v 0
gil 2 DZ(X_Xn)Ze [x=xpl/1q
IV. LOCALIZATION AND SPONTANEOUS SYMMETRY x

BREAKING IN THE QUENCHED THEORY

_C(l |2 2<2|2 2 (43)
In a given finite volume, all eigenmodes bf(m;) are 2 PT=hb '
localized for the trivial reason that their support is compact.
In particular, all near-zero modes contribute to the1di-  Inequalities(4.1) and|sin(a)|<a were used. The dimension-
vergence we found in the previous sectifidere we define a less quantity
near-zero eigenvalue as an eigenvalue with an absolute value
of orderm,, for a given(smal) m,.] However, as we will a* B
o - ; C)=c, 7>, 2%

now demonstrate, quantitatively the finite-volume divergence L4 <
comes from exponentially localized near-zero modes. We 2, =%, Nl

postpone the discussion of what happens in the infinite- ] ) L o

fact thatC(l) is finite for| — o is a consequence of choosing
the bound on|¥,(x)|? with the prefactorc, /14, with ¢,
5Eor a more detailed account of BNN's work. see Sec. IV. independent of. This is important for deriving a nontrivial

SFor the unquenched theory, see Sec. V. lower bound or‘f(p). It thus follows that

>
— 3J>|m

(4.9
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co=max-,{C(1)} (4.5  (4.7.In a sense, we will be proposing the simplest possible
picture of what determines the phase diagram, while requir-

is a finite numerical constant of the same ordecasSince  ing consistency with the Ward identit2.11). While we al-
|Rd:éngHn(p)]|$|Hn(p)|i inequality (4.2) follows. ready summarized our conjecture for the phase diagram in
We now use this bound to derive a lower boundit(p) the Introduction, we present a more detailed discussion in

in Eq. (3.4), for m;—0. Choosing some fixed we split the this subsection.

eigenstates oH(mg) into two classes: those which are ex- A key element is the observation made by BNN in Ref,
genst .0 ; L [23], that in the supercritical region there will be a density of
ponentially localized according to our definition of Eg.1)

with localization ranad.<|. and the rest. Keeping only the NEarZero modes. We will therefore start with elaborating on
former. we obtain gensl, ' ping only this observation. As already alluded to in the Introduction, it
’ will lead us to borrow the concept of the “mobility edge”

m 1—c I2p2 from condensed-matter physics as the crucial ingredient in
myI(p)= Vl DUBU) D, _2%_+o(ml)_ determini_ng the quenched phas_e diagram:
=l Aptmi Following BNN, we begin with an infinite-volume con-

(4.6)  figuration containing a single dislocation. We pick a lattice
gauge field which is equal to the classical vacuuth, (
=1) everywhere, except for the links of aif hypercube
containing the origin. These links can take any value. The
square of the Wilson-Dirac operator can be written as

Since in this sum we only keep terms for whikh=l, this
may be expressed more simply as

miT (p)=mp(0)(1—c,l?p?)+O(my). (4.7
. . . o HZ(mg) =Hg(mo) +V, 4.8
Here p;(\) is the density of exponentially localized eigen-

states[according to our definitiori4.1)] with eigenvalue\ where Ho(my) is the free operator. The potentidl is sup-

and I(_)calizatiqn range_less than or equal.tq _ ported on an i+2)* hypercube. The “Hamiltonian”
This result is of key importance. It establishes that if thereHz(mo) is a discretized, semipositive Schiinger operator

is a nonzero density of near-zero modes which are exponefsy, 5 ‘finite-range potential, with a continuum threshold at
tially localized within a certain rangk the pion two-point (\O

2 H H 0 2
function diverges am;—0 in any finite volume, for all mo- <(r;‘:8) Qz(c;eSggéttgr'mAllst;gzns\t;:ﬁz ::ct)r;exu?t)h: g
mentap below (roughly) the inverse localization range. As % -ring ’ 5 .
we will argue in Sec. IV B, the analysis of R¢R23] allows “<_()‘"?i“) i the;: exist, are bound states 6f*(mo) with
us to establish the same result in the infinite-volume limit, 2iNding energy
provided the mobility edge does not vanigtndmy is in the
supercritical region This provides an alternative mechanism
for saturating the Ward identity, E¢R.11), in the presence of .
a nonvanishing pion condensdtes). It also shows that the Qf course, bound-state wave fu_nctlons decrease exponen-
guenched theory in infinite volume is not well defined fortlally ?‘fvay from _the hypercube, with a decay rate determined
m; =0, at least as long as the mobility edge does not vanisip_y E,b - In partlcular,o azzero mode hds=0, and thus a

A comment is in order on the range of momenta for whichPinding energyE,=(\mip)" _

our result is valid, because of the fact that in a finite volume FOr single-dislocation configurations, BNN proved that
the momenta are discrete, and thus cannot be chosen ar§® problem of finding a zero mode in larder infinite)
trarily small. First, we observe that for a localized near-zerg/0lume can be reduced to a corresponding eigenvalue prob-
mode, the scale of the typical localization rarigs set by Iem.on the small hypercube. Solving the latter problem nu-
the inverse mobility edgex; . (This will be explained in Merically BNN then found that, for—1>am,>—7
more detail in the following subsectioms long as we are (Foughly), the links of a hypercube as small asan always
not close to the Aoki phase, this is of order one in latticeP® chosen such th&i(mo) has an eigenvalue equadr nu-
units. With the smallest lattice momenta being of ordér, 1/ Merically extremely closeto zero. This means that, for that

we may choose the volume large enough thgl/L)2<1, range ofmg, zero modes exist for any vqur_ne down .t6. 2
Moreover, these zero modes are exponentially localizsd

so that nonzero momenta indeed exist for which the right- . ) -
hand side of Eq(4.7) is positive. long asmy is not _equal_to one of its critical valugdVe note
that BNN configurations are examples of exceptional

configurations.

It is not implausible that, by allowing for larger disloca-
tions, exponentially localized zero modes would be found

We are now at a point where we wish to collect all thethroughout virtually the entire supercritical intervat-@my
available results, and use them to construct a conjecture for —8. One does expect that, to get a zero eigenmode closer
the quenched phase diagram. The goal is to combine th® a boundary point of the supercritical interval, the gauge
numerical[20,21] as well as the analyticgP3] evidence that
basically everywhere in the supercritical region the density————
of near-zero modes does not vanigiready in finite vol- ’Even though we expect BNN configurations to amount to only a
ume with the inequality for the pion two-point function, Eq. tiny subset of all exceptional configurations.

—Ep=E—(\,,)%<0. 4.9

B. Spontaneous symmetry breaking
without Goldstone excitations
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field would have to differ from the classical vacuum over pothesis states that, when disorder is introduced in an or-
bigger hypercubes. In this paper, we will assume that this islered system, the conduction-band structure of the ordered
the case, i.e., for angm; strictly inside the interva(—8, 0), system is replaced by a number of alternating energy inter-
BNN-like zero modes will be found. vals, each containing eithéexponentially localized or ex-
Before continuing, let us comment on the nature of typicattended eigenstates. In particular, no energy exists for which
zero modes, and the configurations supporting them. An exhere are both localized and extended eigensfaté® en-
act zero mode oH?(mo) is also a zero mode d(mg). A ergy separating an interval with localized modes from one
one varies the lattice gauge field, a zero eigenvalue generjgith extended modes is referred to as a mobility edge.
cally corresponds to a zero-level crossing, because with Wil- - |nyyitively, a mobility edge arises as follows. Let us first
son fermions there is no chiral symmetry that might protect 4 1o a situation with “controlled” disorder consisting of
zero eigenvalue from moving away from zero. In other, gjjyte gas of BNN dislocations. As already mentioned, for
words, iftd(7)={U,,(r); is a family of gauge-field configu- 5 yery small density of dislocations, all bound states with

rations that depend smoothly anand if there is an eigen- E. =0 2 . . .
7 . p=0(1/a®) [see Eq.(4.9)] will be exponentially localized
value Xy, such thath,(4(0))=0 then, typically,\(@(7)) near a single dislocation. As the density of dislocations is

e edcteased hre s an nreased probabily it an “lcton;
that any finite-volume configuration supporting(@tx.ponen- snuated_ initially in a boqnd stqte of a given dlslocatlon_, will
tially localized exact zero mode has some open nei hbor-tunnel nto a .nea}rby d|slc_>cat|on. When the probability o

y i X . P 9 tunnel a certain distance times the average number of avail-
hood, in the gauge-field space, with a spectrum of near-zergy, .~ yiq | ations within this distance has becadd) for
modes. Also, in a finite volume, the subspace of configura-

tions that support an exact zero mode has codimension ons2™e giverk, the electron will be able to travel infinitely far
pport. . . g - S'y tunneling from dislocation to dislocation, regardless of
Our next step is to consider configurations containing

very small density of BNN-like dislocations. The disloca-%he details of the dislocation that produced the original bound

. X tate. In other words, the eigenstate with eigenvéuee-
tions are small, surrounded by the classical vacuum, an§

. 7 ) R omes extended.
(still, on averagg far apart. This is a “controlled” form of For a single dislocation, any eigenstate Witk (0, )2
disorder The origin of disorder is twofold: the positions of d 9 dallyv. | - any €ig I "(‘ji”)
the dislocations are chosen at rand@me can speak about a etcays dexpr)]onen 1ally. . ncreasmd@ tmean|§ as ngeg-rtec?lh-
dilute gas of dislocations also the links that define each rate anth' teﬂce’ ?r; |ncr$:she_ héut;me Ing pr(l':) ad'éjyf'. ¢ IS
dislocation are chosen at random. A unique limiting valuemﬁ"’msh ad clgens "’fl Z‘.c’ |W' fighebecome e)é ence hlrs
limy_-- V() of the potential in Eq(4.8) no longer exists, When the density of dislocations Is increase Nfis the

because dislocations may be found arbitrarily far from thegMobility edge, the range 9E<\¢ will consist ofzexpoqen—
origin. tially localized eigenstates, while the range=\¢ consists

As long as the gas of dislocations is dilute, we can stiljof extended ones. For a very small density of dislocations the
identify all dislocations separately from the surroundingmobility edge will be close toX7,,)? while for larger den-
vacuum, simply by inspection. So, let us focus on one dislosities it will move further away from this value. If, for in-
cation, and assume that in isolatiGire., with no other dis- stance, we allow only dislocations generating an attractive
locations anywhepe it has an exact zero mode. Since the potential in Eq.(4.8), the mobility edge will clearly be lower
other dislocations are far apart, they will have a negligiblethan (%)%
effect on this zero mode. This is easily seen by invoking a We note that there may exist more than one mobility edge
variational argument. Using the eigenfunction of the zeroat a given location in the phase diagram. For instance, if the
mode of the isolated dislocation as a trial wave function, theHamiltonian is bounded from above, one expects another
expectation value oH?(m,) on this trial state will receive mobility edge to occurabovewhich other localized eigen-
contributions only from the other distant dislocations. If thestates exist. In our case, we expect a second mobility edge
mean distance between dislocationsRs the expectation like this, because the eigenvalue spectrum of the free Hamil-
value of H2(my) will be of order e 2” where y~\2, R tonian,H3(my) in Eq.(2.2), also has a maximum eigenvalue
ThereforeH?(m) must have an eigenstate with an exponen{\J,,,)2. In this paper, we will be concerned with the lowest-
tially small eigenvalu€E~ e~ 2" which closely resembles the lying mobility edge, and in particular, the question of
original zero mode. We may now vary the gauge field at thewvhether it vanishes or not.
dislocation such that the eigenvalue under consideration var- Now consider the hypothetical situation that, for a certain
ies as well. As long aRR is large enough(compared to gauge-field configuration, both extended and localized eigen-
1I\3,), e 27 is small enough that this gauge-field variation states of the Hamiltoniahi?(my) occur at the same energy
will vary the eigenvalue over an interval that includes zero.E. If we then calculate the eigenstates on a typical small

The situation changes qualitatively if the density of dislo-fluctuation of this gauge field, the extended and localized
cations is large, and also will be different for configurationsstates will mix, and all new eigenstates will be extended. The
generated in a typical Monte Carlo simulation. In order toonly possible exception is when all eigenstates of the original
describe this situation, it will be useful to introduce the gauge field were localized. A “typical” configuration thus
mobility-edge hypothes[27]. The mobility edge is well de-
fined only in infinite volume, and we will thus assume the
volume to be infinite for the following discussion. The hy- 8we are not aware of any proof of this—widely used—assertion.
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has either only extended or only localized eigenstates at points on thegy=0 axis, it is reasonable to expect that the
given E. Since typical configurationén this senspdeter-  mobility edge will also vanish in the vicinity of those points
mine the properties of an ensemble, it follows that the valudor go>0, thus opening up the fingerlike structure of region
of a mobility edge separating localized and extended eigerB in Fig. 1. In a region where the mobility edge vanishes, the
states is associated with an equilibrium ensemble, and thudensity of near-zero modes will be due to extended near-zero
with a point (mg,go) in the phase diagram. Another way of modes, and one expects long-range behavior, in particular
arriving at the same conclusion is to note that in the thermo&Goldstone excitations. We thus conjecture that, in quenched
dynamic limit, one equilibrium configuration suffices to de- QCD, the Aoki phase—which is defined as the phase in
termine the equilibrium properties of the theory, and thus isvhich Goldstone excitations exist—coincides with the re-
typical. For our purposes, it will be useful to characterizegion of the phase diagram where the mobility edge vanishes.
each point &my,go) in the phase diagram by the value of The near-zero mode density, and thus the valuém, is
the lowest mobility edge oH?(mg). (In the rest of this due to extended eigenstates. Outside the Aoki plase
paper, we will refer to this mobility edge as “the” mobility inside the supercritical regignthe mobility edge is larger
edge) The mobility-edge hypothesis will be at the heart of than zero, and the density is due to exponentially localized
our conjecture for the phase diagram of quenched QCD. near-zero modes. Because of this nonvanishing density, the
Before we get to this conjecture, let us briefly commentmechanism derived in the previous subsection will kick in,
on the average localization range as a functionEofFor  and the pion two-point function will diverge fan;—0 for
energies at which only localized states exist, one expects temall-enough momenta.

be able to define an average localization raﬁgé_(E)_ This Extended states should not contribute to thejldiver-

average localization range should then grow if the en&gy 9ence in the infinite-volume limit. The number of extended

approaches the mobility edge, and diverge at and beyond tHéates grows like the volumé, whereas the contribution to

edge, where only extended eigenstates exist. Eq. (3.3 of each extended state drops lik&/4/ This yields
Based on BNN's results we expect that anywhere insidé@ contribution of order ¥, which vanishes forV—co.

the supercritical region there will be a nonzero density ofTherefore, we expect no by divergence of the pion two-

near-zero modes. If the mobility edge is zero this expectatiofoint function inside the Aoki phase; theniy divergence

is fulfilled by assumption. If the mobility edge is larger than characterizes regio@ (and the supercritical part of regiagx)

zero, then, for any Bamy>—8 and go,>0, there is a Of the phase diagram. It follows that, whilers) is not a

(small, buj finite probability per unit volume that any given useful order parameter for detecting the Aoki phase, the resi-

Monte Carlo configuration will contain a ball witta largé  due of a 1, divergence il (p) (for small-enough momen-

radius R, inside which the configuration will resemble the tum) is a useful order parameter in this sense. There is even

classical vacuum, apart from a single BNN dislocation wella local order parameter associated with this divergence:

inside that ball. Using the same variational argument as in

the dilute-gas case, the exact BNN zero mode associated &(x)= lim miI'(x,x)= lim my(m (X)7_(X)).

with the dislocation implies the existence of an eigenstate m;—0 m;—0

with eigenvaluee‘27<)\§, well below the mobility edge. (4.10

This eigenstate decays exponentially both inside and outside, . =~

of the classical-vacuum ball. By invoking small deforma-d.?hIS follows from¢(x) = (1V)Z,I'(p), bound(4.7), and the

tions of this configuration, the existence of a density of ex-Positivity of T'(p) for all p.. _

ponentially localized near-zero modes follots. We believe that essentially the same conjecture holds for
We now formulate our main conjecture about the phasé/nquenchedQCD. The only difference is that in the un-

diagram of quenched QCD with two Wilson fermions. Nearduenched case, the spectral dengity) (and thus the order

the linegy=0, we expect the mobility edge to be very close paramete)rvanishes outside the Aoki phase, because of the
to (\%,)2. In particular, with §2,)2 it will vanish at the ~ SUPPression of the localized near-zero modes by the fermion

determinantcf. Sec. \J. Therefore, also the 1, divergence

rin the pion two-point function will not occur in the un-
uenched case. These phenomena are quenched artifacts, but
he existence and role of the mobility edge are not. To sum-
c{narize, the qualitative features of the phase diagram in Fig. 1
are valid in both quenched and unquenched QCD. The mo-
bility edge\ ; is zero in regiorB, and nonzero outside of this
region, where exponentially localized modes witA<\2

critical “end” points go=0, amy=0, —2, —4, —6, —8. As

0o is increased and the typical gauge-field configuration i
an equilibrium ensemble becomes less smooth, the mobilit
edge will move away from)(?nin)z, and, in parts of the phase
diagram, it may vanish. Since it vanishes at the critical en

%A zero-level crossing in the spectrum Efm,) changes the in-

dex of the overlap operator. This index was advocated as a definEXist. In regionsC and in the supercritical part of regiods
tion of the topological charge on the lattif,5]. However, stan- the spectrum of localized modes extends down to zero, with

dard arguments imply that the topological charge density scales likEe only differenzce thap(\)>0 for \?=0 in the quenched
1/\V in large volume, and, thus, vanishes ¥6r (see, e.g., Ref. theory, and fol“>0 in the unquenched theory.

[31]). Therefore, topological considerations do not explain a non- ~ Clearly, our picture of the phase diagram proposed here is
zero density of near-zero modes in the infinite volume limit. Thisa conjecture, and we have no proof that it is correct. We

situation reflects the inherent ambiguity in trying to identify small emphasize that it appears to be the simplest possible way one
dislocations as instantons or as anti-instantons. can understand the phase diagram, given the available ana-
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lytical and numerical evidence. We will end this section with - 2 (=
a more quantitative, but still heuristic, argument as to why lim 2m11“(p)~7f d|j DUBU) Y, S(\y)
Goldstone excitationsnly occur in the phase with vanishing m;—0 0 "
mobility edge. 1

We will assume that outside the Aoki phase, the near- X (1 _ln)(l"rp—2|2)2

zero-mode densityp(0) is entirely due to localized zero
modes captured by our bound, Edg.1). Moreover, we will o 1
assume that, for practical purposes, a maximum localization =27rf dlp/(0) m———=7>. (4.19
length |, exists for the near-zero modes. He’r‘l’cp|max(0) 0 (1+p71%)

=p(0), and, using both the lower and upper bounds in Eqcompining this with Eqs(2.1) and (2.15 we obtain the

(4.2, estimate
R N @ 212+ p24
7p(0)(1—Calfap?)=< lim myI'(p)=mp(0). S(p?)~27 | dlp/(0) ==z, (4.15
m;—0 0 (l+p I )
(4.11

showing again thfﬂ(p) has no massless pole. We note that
the integral ovel should be convergent becaudg,(0)/dl
should be strongly suppressed for laige

This completes our discussion of the quenched phase dia-
gram. In the remainder of this paper, we will expand on the

Writing T ,(p) =ip,2(p?), it then follows from the Ward
identity, Eq.(2.11), that

2(0)=27-rp(0)0(lr2na>), (4.12 differences between the quenched and unquenched cases,
and explore the consequences for domain-wall and overlap
_ fermions.
leading to the conclusion thdt, (p) does not have a mass-
less pole. V. UNQUENCHED QCD

The most drastic assumption we make here is that there is
a finitel .. This is rather unlikely, even if it is reasonable to  In this section we only review well-known facts about
expect that the probability to find a near-zero mode with aunquenched QCD. The only reason we include this brief re-
very large localization range at some point well outside theview is to point out that none of the surprising results we
Aoki phase is very small. In order to argue that also in thisobtained in the previous section for quenched QCD are in
case no Goldstone poles occur outside the Aoki phaseonflict with the standard lore in the unquenched theory.
clearly one needs a better estimatd&f,(p)| than that pro-
vided by the bounds given in E¢4.2). While it is a very A. Vanishing of the condensate in finite volume and
hard problem to come up with a better estimate, we will use absence of localized near-zero modes
an ansatzfor a better estimate to show how an improved
argument might work. Let us assume that,(p)| can be
estimated by

We start with a review of the proof that the finite-volume
condensate is zero in unquenched QCD. Summing the Ward
identity (2.9) over space-time, the total-derivative term drops
out, and we obtain

|Hn(p)|~ pa<l. (4.13

1+p?7’ 2mya’S, (., ()7 (y))=(ms). (5.1

This is not unreasonable for momenta<l/a. For very |n a finite volume, the correlation function of the product of
small momenta, one expects only the long-distance featureghy (finite) number of fermion(and link operators is
of the near-zero modes, i.e., the exponential tail in@dl),  bounded. The left-hand side of E¢5.1) is therefore the
to determine the Fourier transform ¢¥(x)|?, and thus  product ofm; with a bounded function, hence it vanishes for
| H,(p)| would have to look something like this. The precise m;—0. It follows that the condensate vanishes. This is the
form is not important; the crucial properties of thissatzare  familiar result that there is no spontaneous symmetry break-
that it is bounded for arbitrary,, and that it is consistent ing in a finite volume.
with the fact that{+,(0)|=1, as follows from the fact that In order to prove boundedness, consider first the unnor-
V¥, (x) is normalized to 1. malized expectation value of any observable made of a prod-
If p(0) is completely due to localized near-zero modes, weuct of (link and) fermion fields. Because of the Berezin in-
may write p(0)= fgdlp/(0) with p/(\)=dp;(\)/dl, and tegration rules for Grassmann variables, the Wick contraction
Eq. (3.4 as of the fermion fields leads to a function which is analytic in
the parameters of the fermion actiony andm; . Integrating
also over the(compact link variables of the gauge field
Recall thatp,(\) is the density of localized eigenstates with leaves an unnormalized expectation value which again is an
localization range less thdn analytic function of these variables, including for,=0.
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Similarly the partition functionZ is strictly positive for a
two-flavor theory with Wilson fermiongfor g,>0), and
againZ ™! is bounded for a bounded range of valuesTgf

PHYSICAL REVIEW D 68, 074501 (2003

The quenched theory is not unitary, and théllé&a
Lehmann representation for the pion two-point function in-
voked above is not valid. Apparently, nothing stops the pion

and m; which includesm;=0. Hence normalized expecta- two-point function from developing a iy, divergence.
tion values are bounded as well. In contrast, in quenched
QCD the fermion determinant is missing, and a fermionic
observable may diverge if the Wilson-Dirac operator has
near-zero modes. This is what happens in the case of the pion
two-point function.

It follows, through the Banks-Casher relation, thdD)
=0. Since B<p,(0)=<p(0), one hagp,(0)=0 for any finite
volume. While, of course, the infinite volume is subind  thereoj as a kernel.
does not commute with the limih,—0), we believe that for Domain-wall fermions are five-dimensional Wilson fermi-
any finitel, p;(0) will remain zero in the infinite-volume ©NS, in which only hopping terms in the four physical direc-
limit, becausep,(0) reflects short-distance physics. Also, if tions couple to four-dimensional link variables, which them-
inequality (4.7) remains valid in the infinite-volume limit on Selves are independent of the fifth coordinfeg]. In the
the one hand, and unquenched QCD does not havena 1/ Most common version, the fifth dimension is restricted to a
divergence on the other hand, cleasly0) must remain zero finite interval of lengthasNs, whereas and N, are, respec-
in that limit. The fact that a b, divergence indeed cannot tively, the lattice spacing and number of sites in the fifth
occur in unquenched QCD is explained in the following sec-direction. Free boundary conditions are employed on either

VI. IMPLICATIONS FOR DOMAIN-WALL
AND OVERLAP FERMIONS

The most common constructions of lattice Dirac operators
with domain-wall or overlap fermions employ the Wilson-
Dirac operator discussed in this pager improved versions

tion.

B. The Goldstone theorem

side(in the limit of a vanishing physical quark mas the

limit Ng—o, massless four-dimensional fermions appear
which are bound to the two boundaries. If the left-handed
component of this massless fermion is bound to one bound-

Here we rederive the Goldstone theorem in the Euclidea@ry, the right-handed component is bound to the other one.

path-integral context in infinite volumor a review see Ref.
[32]). For simplicity, we do this in the continuum; nothing

Forgy—0, precisely one such massless fermion appgsas
five-dimensional fermion fieldif the domain-wall height

relevant changes on the lattice. As in the previous section olvl=—mg is chosen such that Oa’'M<2 where a’

aim is to show that thé€Fourier-transformedpion two-point
function T'(p) is bounded in a neighborhood of;=0 but

=maxXa,as} [33]. This means thaing has to be supercritical.
The overlap-Dirac operator is defined [&§

now for p#0 (and without assuming that the condensate

necessarily vanishesWe may then again conclude that, for

p#0, 2m;T (p)—0 for m;—0. Taking this limit, the Ward
identity (2.12) yields (dropping terms of ordeap)

ip,I,.(p)=(m3), p#O0. (5.2

If the condensate is nonzefoe., if SSB takes plage this
implies the existence of a massless Goldstone pcﬁgl(rp).
To prove the boundedness B{p) for p+0, we invoke

the Kdlén-Lehmann representation. A one-particle contribu-

tion to T'(p) must be of the formF|?/(p?+M?) whereM is
the particle’s mass anH is a form factor which is nonzero
on shell p?=—M?2). For any nonzero Euclidean momen-
tum,

(5.3

The right-hand side of inequalit§s.3) provides a bound for

the contribution of any one-particle excitation tmi(p),

implying that it vanishes in the limitn;— 0 for p#0. This is
true also if the particle’s mass vanishes in the same liast
in the case of a Goldstone bogoihe contributions of mul-

A H(mo)

aDgy=1-v5Ys, Yszma (6.1

with H(mg) the Hermitian Wilson-Dirac operator. Notice
that “yéz 1. For this operator to describe one massless flavor
in the continuum limit, one needs to choose &my> — 2.

Because of the fact th&t(mg) plays a crucial role in the
construction of domain-wall/overlap fermions, it is natural to
expect that the phase diagram of QCD with Wilson fermions
has important implications for properties of domain-wall/
overlap fermions. The most important dynamical issue is
whether the mobility edge i&lose t9 zero or not. In this
section, we will argue that in order to retain locality in lattice
QCD with overlap fermions, the parameters of the lattice
theory must be chosen well outside the Aoki phase. For
domain-wall fermions the situation is equivalent: only well
outside the Aoki phase will chiral symmetry be restored ex-
ponentially fast with increasindg. In addition, only in that
case will the four-dimensional effective theamwyhich is de-
scribed by a generalized overlap operator, the details of
which depend oras) be local in the limitNg—o°.

In the quenched case, we may say that lattice QCD with
domain-wall/overlap fermions is inside or outside the Aoki
phase if the “underlying” theory with the Wilson-Dirac op-
eratorH(mg) is. One may think of the phase diagram as that

tiparticle states will be less infrared singular, and should alsf a theory withN; quenched domain-wall/overlap flavors

vanish. In summary, in unquenched QCDnd (p) van-
ishes in the thermodynamical limit fqr+ 0.

and two quenched Wilson flavors. Of course, this changes
nothing in the correlation functions of the domain-wall/
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overlap quarks. What it means is that, also in the domainedecay rate is in principle governed by the smalleigfand

wall/overlap case, we define the quenched Aoki phase by the)| . we expect this situation to apply inside ph&én Fig.
existence of a Goldstone pole in the appropriate correlation ell outside the Aoki phase. In fact, if we assume, as at
func“on Constructed from the inVerse Of the Wilson-DiraCthe end of Sec. IV B’ that the near-zero modes have a finite

operatorH(mo) [cf. Eq. (2.8)], using the same value ®fi,  maximal localization length,,, outside the Aoki phase, our
as in the kernel of the domain-wall/overlap operator, and thgypothesis is simple to prove.

same Boltzmann weight. According to our conjecture, this * First, however, let us consider the corresponding situation
corresponds to the region in parameter space in which th@ith domain-wall fermions. The relevant Ward ident[t§]

mobility edge ofH(m,) vanishes. . ~for the study of the finiteNg chiral symmetry breaking with
In the unquenched case, the only thing that changes is thgomain-wall fermions is, fox#y,

Boltzmann weight used to generate the ensemble of gauge-
field configurations on which the domain-wall or overlap op-
erator is computedf: For any given ensemble, the mobility
edge of the Wilson-Dirac kernél(m,) should have a well-
defined value. We may thus still define the Aoki phase as thaYE' a - . . .

region in parameter space in which the mobility edge of eref’\g is the domaln-wgll partially-conserved axial cqrrent
H(my) vanishes. Conversely, if the mobility edge does notandJs is the corresponding pseudoscalar quark derisity
vanish, we will say that we are outside the Aoki phase for théabel flavor generatojsmy is the quark massls, is a pseu-
unquenched theory. doscalar density located midway between the boundaries of

Let us start with locality of the overlap operator. The the five-dimensional bulk. The term containing this density
overlap operatobD,(x,y) can not have a finite rand®5],  represents the chiral symmetry breaking at firfitg other
and thus is not strictly local for a finite lattice spacing. How- than the expected breaking coming from an explicit quark
ever, Hernadez, Jansen, and &cher proved that the overlap mMass. For chiral symmetry to be restored, it should vanish in
is local in the sense thdD,,(x,y)| decays exponentially theNs—oe limit for nonsinglet axial currentgin the case of
with the distancéx—y|, provided the gauge field obeys an the axial U1) current this term gives rise to the anomaly in
admissibility conditior{36]. The effect of this condition is to  the continuum limit]
secure ar@(l/a) gap in the Spectrum d-ﬂ(mo) (except very In order to Study chiral Symmetry restoration, it is useful
close to the critical values of). They, furthermore, gener- to consider the transfer matrik(M,as) which hops in the
alized this result to the case thd{m,) has an isolated zero fifth direction, from one four-dimensional “time” slice to the
mode inside an otherwise empty spectral gap by showing€xt [3,4]. For every eigenmodeV, of T(M,as) with
that such a mode is necessarily exponentially localized. Th&Positive’) eigenvaluew,, we letg,=min{w, o, }. Hence,
rate of the exponential decay of the overlap operator in thes8<d,<1. In the second-quantizettansfer matrix, the re-
cases is of order one in lattice units. placement ofw,, by g, reflects normal ordering. For the free

The problem is that, for realistic simulations, it is imprac- theory the transfer matrix has a gag;,=<q, for all eigen-
tical to impose an admissibility condition on the gauge fieldsmodes, whergy<1. We refer togg as the band edge of the
If instead one uses one of the commonly used local gaugkee transfer matrix(As an example, in the special case
actions to generate an equilibrium ensembtmg) will whereaM=ag/a=1, one hasgy=1/2.) In the interacting
have (localized eigenmodes with very small eigenvalues, theory, we define the mobility edge of the transfer matrix as
and these eigenvalues will not be isolated in the sense of Refi.=maxd;,}, where the maximum is taken over the extended
[36]. In fact, since the number of localized modes grows inmodes only. Below, we will also speak of the “Hamiltonian”
proportion to the volume, in the infinite-volume limit the H(—M,a5)=—log[T(M,as)]/as. This Hamiltonian has a
eigenvalues of the localized modes will form a dense set, andand edge—log(qp)/as in the free theory, and a mobility
no eigenvalue will be isolated. This is most clear in theedge\ ;= —log(g.)/as in the interacting theoryIn the limit
quenched case, whepg0) is always nonzero in the super- a;—0 one recovers the familiar Wilson-Dirac operator:
critical region. H(—M,0)=H(—M), and\/ reduces to\,.]

At this point we invoke our physical picture of the phase  Since the transfer matrix has a gap in the free theory, the
diagram. For anyg,>0, the band edgal;, [of the free  four-dimensional massless fermions at the boundaries are ex-
Hamiltonian Ho(mg)] gets replaced by the mobility edge ponentially bound to their respective boundaries. If we take
A . We hypothesize that, as long &g>0, the conclusion of N¢—c at fixedM andas, we find an exponentially decreas-
Ref.[36] still holds: if all near-zero modes are exponentially ing overlap between théifth-coordinate wave functions of
localized with a finite average localization lendththenys  the light-quark modes tied to the boundaries and the “mid-
(and thusD ) decays exponentially. As we argue below, theway” pseudoscalar densit§z, . Hence chiral symmetry gets

restored exponentially ilNg. With gauge fields obeying an

THAL(X)IR(Y)) = 2mq<J§‘<x>J§<y>>+2<J§;‘q<x>~12<y>(>6-3 )

"Note that the fermion determinant used for generating the
gauge-field configurations may correspond to any type of lattice ?For a certain range dfl andas the transfer matrix may have
fermion. If the sea quarks and the valence quarks are not comingeal but negative eigenvalues; in this case the entire analysis can be
from the same fermion action, one is dealing with a partially carried out in terms of the transfer-matrix squafevidedNs is a
quenched theorj34]. multiple of four.
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admissibility condition, the situation remains the same, bemodes are massless: this situation corresponds to a different
cause the transfer matrix still has a gap. Also, with com{hase of the theory. The limNs—c now involves infinitely
monly used local gauge actions, a similar behavior has beemany unphysical, light four-dimensional fiel@srising from
demonstrated in weak-coupling perturbation thel@¥,38|. both the five-dimensional domain-wall and the pseudofer-
Nonperturbatively, one can prove that, for ey, a zero Mion fields, and we have every reason to worry that the
mode of the Wilson kernel is also an eigenstate with eigenlimiting theory is not what we want it to be. This is true for
value one of the transfer matrii(M,as)W,=¥, if and ~ @nyas, and thus also in the overlap limat— 0.
only if H(—M)W,=0 [3,4]. This implies thatH(—M) and We now present a more detailed argument as to yvhy the
H(—M,as) have a similar spectrum of near-zero modes. poverlap operator should be local well outside the Aoki phase.
near-zéro mode ofH(—M,as) causes long-range correla- We will assume, as we did at the end of Sec. IV B, that at a
tions in thes direction. This means that in realistic simula- 91V€n point well outside the Aoki phase there exists a finite
tions with commonly used gauge actions, configurations willaximum localization length for the near-zero modes of
occur for which the last term in E@6.2) may be large, thus 1 (Mo). In fact, to avoid technical complications, it is con-
“threatening” the chiral symmetry of domain-wall fermions Venient to make a slightly stronger assumption, namely, that
even in the largeN, limit. This danger is again brought out 'f A¢>0 is the mobility edge, then all eigenstates with
most clearly in the quenched case, where a nonzero densify M c/2<A<\c/2 have a bounded localization length

of near-zero modes always occurs for the above specified ' max<>- AS before, this assumption is not unreasonable
range ofM. because the average localization length diverges only for

However, we hypothesize that, in analogy with the over-A.”"A¢. and the probability for arbitrarily large localization
lap case, there is a fundamental difference between the effel@ndths is expected to vanish rapidgnd uniformly for any

of exponentially localized near-zero modes and that of ext\|<Ac/2. By simply replacingH(mo) by H(—Mas), the
tended ones. If all near-zero modesttf— M, as) are expo- Pelow argument may also be applied to tg—ce limit of

i . ; 3
nentially localized with an average localization lengjthwe dor\?vaelr;);veil! Emr:g;inng. that the overlap oper is local
expect their contribution to the symmetry-breaking term in.f n Iog(]:al \X/e I'? P operalny,
Eq. (6.2 to decay exponentially as a function of tfaur- T ys s ' Spli

dimensionalseparatiorjx—y|. If the scale ofl is set by the e e
(four-dimensionallattice spacing, this decay will resemble a Y5=7Ys T V5, (6.3
contribution from excitations with mass of the order of the

cutoff. When the lattice spacing is small enough, even afyherey; is the projection ofys onto the subspace spanned

finite N this contribution will vanish for largéx—y| rela-  py eigenstates with eigenvalja|<\./2. On the basis of
tive to the other two terms in E@6.2), whose long-distance eigenmodes oH(my), ¥ can be represented as
behavior is determined by physicalmass. All other contri- e

butions to the symmetry-breaking term will not be sup-
pressed with the four-dimensional separation, but they will 35 (x,y)=a’ (%) i\PT(y) (6.4)
vanish exponentially withN,. 7510 |xng’xc/z TN M '
Similar conclusions apply to the locality of the effective
four-dimensional lattice Dirac operator in tidy—oo limit
[39]. This is a generalized overlap operator constructed b
making the replacemeit(—M)—H(—M,as) in Eq. (6.1).
Because of the similar zero-mode structureH{f—M) and 0 0
H(—M,a5), we expect the effective Dirac operator to be . - 4 1 |X=Xnl + [y =Xl
local (in the exponential sensevell outside the Aoki phase, %5 (xy)[<c.a | %\ 2 E B 21, :
as in the case of the overlap discussed above. noe (6.5
For both domain-wall and overlap fermions, these argu-

ments. break down if the near-zero modes are extgnded cHerforming the ensemble average as in previous sedisees
even if 11 becomes of the same order as the numerical valy particular Eqs(3.6) and (4.14)] we find

ues of the physical masses in a particular simulation. This

latter situation is expected close to the Aoki phase, bechuse o A2

will increase going towards the phase transition and become <|3/5<(x,y)|)scla4f d|j ‘ dhp (MK (|x=y]|/l),
infinite at the phase transition. The domain-wall formalism a —Af2

gives a clear indication on what may go wrong inside the (6.6)
Aoki phase. When the mobility edge of the Wilson kernel

H(—M) [or, more generally, oH(—M,as)] is zero, there where

are massless excitations everywhenaside the five-

dimensional bulk. Normally, the contribution of tineassive

bulk modes is canceled by Pauli-Villat@seudofermion BFor small a; one can also use Borici's kerne[40]
fields. But there is absolutely no guarantee that that cancel,;D(—M)[2—asD(—M)] ! that gives rise to the same general-
lation will persist when the bulk fermion and pseudofermionized overlap operator ad$(—M,as).

Assuming that all modes with\ | <\ /2 satisfy inequality
3(4.1) one has
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We now turn to domain-wall fermions with finitdg. A
K(|X—Y|/|):|_4J dxge ¥l +ly=xol/(2h) useful measure of chiral symmetry breaking is the so-called
residual massn,.s[41], which is essentially the ratio of the
XY e yian two correlators on the right-hand side of §.2). Denoting
= e : (6.7 the (Euclidean time coordinate byr, we define

The last approximate equality holds for—y|>1, where the

integral is dominated by localized modes supported inside a

tube of radiud around the straight line connectixgandy.

We now invoke the assumption thit<I ., for all —\./2

<A<\ /2. The “worst-case scenario” is that theéntegral

in Eq. (6.6) will be dominated byl <I .. In this case we where for convenience we have switched to flavor-changing

2x(Jiq(%,7)35 (0,0)
Sx(J2 (%,135(6,0))

Myed 7,Ng) = (6.11

find the bound densities.[In terms of the “isospin” symmetry of the two
flavors occurring in these densities, thesuperscripts cor-
(175 (xy))y=exd —[x—yl/(2lna) ], (6.8)  respond to the operators. of Eq. (2.5).]

] . The study ofm,s consists of two steps. First, using the
where constants and power corrections have been ignoregiansfer matrix formalism of Ref3] we derive expressions

Hence¥s is local. for the correlators in a fixed gauge-field background. For the
The operatofys lives in the orthogonal subspace, whose numerator in Eq(6.11) this step is outlined in Appendix B.
projection operator i~ (X,y)=d,,—P-(X,y). Here Next we have to carry out the integration over the gauge

field. In general this is quite complicated, and so we will
_ a4 Ty — (22 restrict ourselves to two relatively simple cases. Observin
P<(xy)=a Mngw n()Wa(y)=(¥s) 6.9 that 7is a measure of the four-dirzensi(?nal separation in qu
(6.1, we will discuss ther dependence for fixeN>1 and
is the projector on the eigenstates with| <\ /2. Bound the Ny dependence for fixefir>a. As before, well inside
(6.5 evidently applies tdP_(x,y) as well. ThereforéP_ is  theC phase we expect the mobility edgetdf— M ,as) to be
local, and, hence, alsp-. is local. Proceeding exactly as in a quantity of order one in lattice units. Fer=0(a) and

Ref. [36], we write Ng>1, m,swill be dominated by the exponentially localized
. . near-zero modes, whereas fdg=0(1) and|7|>a it will
¥s =H(mg)[H(mg)| P (6.10  pe dominated by the extended states close to the mobility

. . . L . . edge.
(Strictly speaking, the right-hand side is defined via its mode  The ¢rycial observation is that, as explained earlier, the
expansion. The expansion of (the eigenvalues of 5 and antiquark operators of the pseudoscalar density

H(mg)| ! in terms of Legendr lynomials may now s . . . .

! (M) terms o . ege>d e polynomials may now be J5 (0,0) live on the two boundaries of the fifth dimension,

invoked, and the locality of; follows. h g2 is | d mid b h bound
Let us discuss some implications of this result. In prin-W.erelaS]E’q(g?(’T) IS oc::tel midway tﬁtvﬁee&t et';wo .Orl;n i

ciple one can envisage two extreme situationslmgx@\gl aries. in a diagrammatic fanguage, the fermiantiiermio

then th localit < and P b lected. Th at the boundary must be connected by a fermion line to the

| enl_ ?_ nonlocall yfot?’f an : = mfa”ybe neg ecea 'b t(; “midway” antifermion (fermion). In Eq. (B1), these two fer-

Oca.'ﬁa 'on range o ,ﬁ overfap witl be govErne Y ™€mion lines come from the one-particle sector of the second-

mobility edgeh, and will be of orden. . In other words, quantized transfer matrix that adtis/2 times on the fermion

in the absence of an admissibility constraing, plays the  (or antifermion at the boundary. The contribution of each
role of the lower bound on the spectrum #f(mo). The  mode to a fermion line involves a factor of
opposite extreme is tha;na)g>7\c_1, where we expect the lo- N (6 O)qNs/Z\I,T()-( 7), or its Hermitian conjugate.
calization range of the 0\_/erlap to coincide Wl.max.' nFo,r |7-|n2a tnhe, dénominator in Eq(6.17) will contain

In our argument, we did not attempt to maintain the SaM&hort-distance contributions which are of no interest to us. In
level of rigor as in Ref[36]. The advantage of our more

heuristic argument is that it deals with the more realistic casthis case it is simpler to consider the numerator alone. As-
arg ! Eé‘uming some fixed>1, the contribution of all extended
of a densityof localized near-zero modes where the methods

. 2_ Ng/2
of Ref. [36] are inapplicable. Our analysis is only semireal-Modes has died out, because, for they}’ =q.° <1.we
zero probability to encounter an exponentially localizedmodes ofH(—M,as), of which the near-zero modes domi-
near-zero eigenmode with an arbitrarily large localizationnate forNs>1. Following closely the overlap case, E¢.1)
length (in a large enough volumeln practice, however, we allows us to put a bound oI‘I’n(0,0)\PE(i, 7). A similar
expect that our assumption of the existence of a finite, nobound applies to the contribution of the second fermion line.
too largel . Will be valid for most simulations. Of course, The product of the two bounds gives rise to the same expo-
the most important question in any given simulation is hownential factor as on the right-hand side of E§.5), except

the scale of the typical localization length as well as the sizehat the factor of inside the exponent is missing. As before,
of the mobility edge compares quantitatively to the scale ofve now assume the existence of a maximal localization
the physics one is trying to compute. length for the near-zero modes, arriving at
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R are O(1/a). Fluctuations of the gauge field allow low-
> (J54(X,7)J5 (0,0))~exp( — 7]/l mag), Ns>1. momentum modes to couple to these lattice-scale modes,
X (6.12 with an amplitude that can be naturally expanded in powers
of (ap)?. Equation(6.14) is obtained by keeping only the
The evident analogy with Eq6.8) is not surprising. leading term in this expansion. For all other terms, the 1/
Finally, we consider théNg dependence fofr|>a. Re-  singularity of the(free) propagator is wiped out, and so their
turning tom,s, now all the exponentially localized modes effect is negligible for large space-time separations.

may be neglected. We expect tmag will be dominated by Nonperturbatively, we may envisage a similar factoriza-
the extended modes of the transfer matrix with eigenvaluegon of the domain-wall fermion propagator fpt|>a (in a

close to the mobility edge. The anticipated result is fixed gauge Again, the extended states close to the mobility
edge of the transfer matrix will mediate tlsepropagation.

mres~QSS, |7|>a. (6.13  Again these extended states will be controlled by the lattice

scale, and it is reasonable that their coupling to low-

This reflects a cancellation of thedependence between the momentum external states will have a universal value. Turn-
numerator and the denominator in E@.11), for large  ing to the correlators of the gauge-invariant pseudoscalar
separationsfor numerical evidence supporting this, see Ref.densities, a factorizable form of tHéxed-gauge domain-
[41]). We are unable to derive this result analytically. We will wall fermion propagator, as in Eq6.14), implies that the
give a heuristic argument, based on an analogy with pertusommonr dependence of the numerator and the denominator
bation theory, which supports this result. of Eq. (6.11) is exp(—|7im,). The result is Eq(6.13.1°

In perturbation theory, this result is obtained as follows
[38]. When the quark mass is zero, the one-loop domain-wall
fermion propagator has, near each boundary, a factorizable VIl. CONCLUSIONS
form. Assuming for definiteness that the right-handed quark
resides near the= 0 boundary, the propagator in the vicinity
of this boundary is

Let us summarize our conclusions and make some addi-
tional comments. We start with what we learned about the
quenched phase diagram.
G(x,Y:S,8')~x(s)PRG(X,y) x (s). (6.14) In finite volume, we argued that_t_he Aoki condensate is
nonzero everywhere in the supercritical region of the phase
HerePr=2(1+ vs), X, yare the usual four-dimensional co- diagram, and that the pion two-point function always has a
ordinates, ands, s’ are coordinates in the fifth dimension. 1/m; divergence. This b, divergence arises mainly from
The Separatiohx—yl is assumed to be |arge Compared to theexponentially localized near-zero modes. If the restricted
lattice scale(but small enough for weak-coupling perturba- spectral density,(0) is nonzero for some localization length
tion theory to be applicableG(x,y) is the effective quark |, then the momentum-space pion two-point functidp)
propagator whose tree-level Fourier transform ig fér  exhibits the I, divergence for all momenta up tp?l?
small p, and which, at higher orders, contains the familiar~1. Because of this divergence, clearly the finite-volume
logarithmic self-energy corrections of a massless quark. Thquenched theory is only well defined with a nonvanishing
s-coordinate wave functio(s) carries no Dirac indices. twisted massn; .
For an optimally choserM as a function ofgy, the Extending this to infinite volume, we argued moreover
(tadpole-improveg tree-level wave functioryo(s) is com-  that if all near-zero modes are localized, the condensate is

pletely confined to the boundary layer-0. Fors=1, the  approximately equal to ligy _o2m;T'(p), and the difference

wave function arises from a short-dlsztance, one-loop AUaanishes withp?. This implies that there are no Goldstone
tum effect. Explicitly, x(s)= xo(S) + 9oxquanunkS) Where o citations.
Xo(8)= 850 and Xquantur(S) ~ o UP t0 @ power correction. Adopting the mobility-edge hypothesis we arrive at the
This form of xquanwr(S) gives rise to Eq(6.13, with ¢ following physical picture. In the supercritical quenched
—0o- 1(43”'06 do is the band edge of the free transfer theory the pionic condensate is always nonzero. Goldstone
matrix,” the shape of the leading-ordgganwr(S) depends  poles exist, however, only in part of the supercritical region
on the free domain-wall fermion action only. In higher orders\yhich, by definition, is the quenched Aoki phase. Inside the
one  expects xquanunkS) ~[dof(90)]° where f(go)=1  Aoki phase the mobility edge vanishes, all the near-zero
+0(g5), wheref(go) depends on the gauge action 900.  modes are extended, and the pion two-point function has no
Restoring the momentum dependence, s$heoordinate  1/m, divergence, because the contribution of extended
wave functiony(s;p) is universal in the sense that correc- modes to this divergence goes to zero in the infinite-volume
tions to x(s) = x(s;0) vanish like @&p)?. The physical rea- limit. Outside the Aoki phase the mobility edge is larger than
son is that the propagation in the fifth direction is dominatedzero, and all the near-zero modes are exponentially localized.
by a small region in the Brillouin zone surrounding the criti-
cal momenta that saturate the band eggeThese momenta
15For the DBW2 gauge action at quenchad'~2 GeV it was
found thatq.~0.6 [42]. This is very close to the valug,=0.5
¥n Ref.[38], the band edge of the free transfer matrix was de-found in one-loop perturbation theof@8]. Therefore, in this case
notedq; (and notqg). both higher-order effects and nonperturbative effects are small.
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There are no Goldstone poles, and the Ward ide#t9) is  In the limit m;—0, a configuration supporting an exponen-
saturated instead by theni{ divergence of the pion two- tially localized zero mode is completely suppressed in full
point function. QCD. In this argument, it is important that the difference
We can, in fact, completely characterize the quenchedetween the two configurations is confined to a small region.
phase diagram using two local order parameters. For thH all the near-zero modes are extended, a local change in the
SU(2) orientation of the twisted-mass term in the action, Eg.configuration will have only an infinitesimal effect on any
(2.3, one order parameter is the usual condengatg) one of the eigenvalues, and the entropy may be large enough
=2mp(0). Theother is¢, defined in Eq(4.10, which mea- to overcome the suppression factor due to the fermion deter-
sures the size of the m divergence in the pion two-point minant. Thus, the extended modes may still build up a con-
function. In the quenched theorfirs)#0, and SU2) is densate, despite the suppression by the fermion determinant.
spontaneously broken, in the entire supercritical region. On the basis of our analysis, we argued that the domain-
Hence the linesn,=0 andam,= —8 are phase boundaries wall an(il6 ove_zrlap formulations work _o_nIy |nS|o_Ie the C
in the quenched theory. Inside the supercritical region wéNase€s). ” Inside those phases the mobility edge is nonzero,
have a phase with Goldstone bosdtise Aoki phasg and and _aII the near-zero modes of the Wilson kernel are expo-
phases with no Goldstone bosoftse C phases, and the nenthlly Iocallzeq. The (_)verlap should be local, and, for
supercritical parts of the regions, which form separate domain-wall fermions, chiral symmetry should be recovered

phases in the quenched theprJhe order parameter for hav- exponentially with the size of the fifth dimension. Also, the
ing no Goldstone excitations i§>0 effective four-dimensional overlap operator emerging in the

In continuum, infinite-volume, quenched chiral perturba-NS_’m limit (which in thea5—>0_ limit cpmudes V.V'th the
. L — standard overlap constructed with a Wilson-fermion kernel
tion theory it is known that the usual condensége)) de-

T ) v . should be local. Inside the Aoki phase one encounters infi-
velops a logfn), or m™° with § small, divergence in the limit

; o . nitely many light unphysical modes, which contribute to the
m—0 [8,43]. In the continuum limit of the lattice theory |oqarithm of the partition function with opposite signs. The
chiral symmetry is restored, and the Aoki condensate can bSverIap operator corresponds to the special easeO0. It is

rotated back to the usual condensetee, for example, Ref. 5.4 15 imagine how either formulation could remain valid
[12]). Turning this argument around, one expects am@¥( | nder these circumstancks.

divergence of the Aoki condensate inside the Aoki phase in" |1 is worth commenting on the role of the gauge action in
the continuum limit, withO(am) corrections due to @ NoN- his respect. In particular, let us discuss how precisely an
zero lattice spacing. As explained above, we expect m 1/ 5qmjssibility condition[36] would change the picture. An
divergence of the pion two-point function inside the Aoki gqmissibility condition means that all the plaquette variables

phase in the infinite-volume limit. are constrained to be closer to one than some&1. The
In unquenched QCD we do not have any new results. W%pectrum ofH2(m) then has a lower bound)\E]in)z—52

did verify that,only in unquenched QCD can one prove that[againx%in refers to the free HamiltoniaH o(mg)], where 8

the pion two-point functior’(p) is bounded. In finite vol- s getermined in terms of. This prevents the existence of
ume.thls is always true, while in infinite volume this is true near-zero modes Wh@nﬂ]in>6, but not when)\?nin<5. The
provided p#0. Thus, our new results for the quenched

h d di £ th Ik ; tor th supercritical region will now be defined as that region in
theory do not contradict any of the well-known facts for the hich 1 (m;,) has zero modes when restricted to gauge fields
unquenched case.

o satisfying the admissibility condition. This new supercritical
The main differences between unquenched and quenchg gion consists of fivédisconnectedvertical strips in the

QCD are as follows. Inside the Aoki phase, the differences)asq giagram, each of which is located near one of the five

are accounted for by the chiral Lagrangian, and the quenchegyico| yajyes ofmg. Inside each of those supercritical strips
theory is known to have enhanced chiral logarithms. Outside, .« should still be an Aoki phase

the Aoki phase, both unquenched and quenched QCD have It is clear that, in principle, an admissibility condition

exponentially localized near-zero modes; in the 'nf'n'te'guarantees the locality of tHerdinary or generalizacbver-

vqume.Iimit, zero is. not an isolated. eigenvalue of anylap, and the exponential recovery witl, of the domain-
gauge-field configuration drawn according to the BoltzmanqNa”,S chiral symmetry, form, not close to a critical value.

weight. However, in the quenched theg{0)+0, whereas However, imposing an admissibility condition in numerical

in the full theory p(0)=0. Heurlstlcally_, t_h|_s can be under- simulations is prohibitively expensive. Very similar results
stood as follows. Let us compare two infinite-volume gauge-

field configurations, which differ only inside a small region
whose raghus 19(1) in IaFtlce u_nlts. Assume that, inside th.ls 1%0ne quark field per one lattice-fermion field is obtained by tak-
small region, each configuration supports an exponentially

| lized i ith blv diff : | In th ng the continuum limit inside the C phase that borders on the
ocalized mode, with possibly different eigenvalues. In the; ..\ 4 —2<am,<0 on theg,=0 axis (whereM = —m, is the

quenched thegry, these. two configurations can have similgfomain.wall height, and providesb<1 [33]). A possible trajectory
Boltzmann weights; but in the unquenched two-flavor theoryso taking the continuum limit is indicated by the dashed line in Fig.
each localized mode will contribute to the Boltzmann weight;

of the corresponding configuratidand, hence, to the spec-  17ror other work pointing at difficulties at strong coupling, see
tral density a factor ofA?+m7 [cf. Eq.(2.4)]. Therefore the  Ref.[44]. For related work on the phase structure of overlap fermi-
configuration with the smaller eigenvalue will be suppressedons with a small hopping parameter, see R&8].
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can however be achieved by modifying the lattice gaugedoki phase?® In contrast, the IwasaKi7] and DBW2[42]
and/or fermion action, such that the density of the localizedesults exhibit a clean exponential falloff for all valueshaf
near-zero modes d¢f(m,) decreases for a fixed value of the where data are available. This implies that the effect of ex-
lattice spacing. The density of near-zero modes was studiggonentially localized near-zero modes vanishes within nu-
directly and indirectly in numerous publications; for recentmerical accuracy. In these cases the density of near-zero
reviews see Ref[46]. In an approximation where all the modes should be very small, and their average localization
exponentially localized modes are neglected, the mobilityength should be of order one in lattice units; hence one is
edge turns into a gap, which can be studied in perturbatiopvell outside the Aoki phase.

theory[38] (see also Ref26]). Nonperturbatively, numeri- The HamiltonianH(—M,as) also serves as a kernel of
cal results with the Iwasai7] and DBW2[42] gauge ac- the generalized overlap operator obtained in tg—o
tions show a dramatic depletion of near-zero modes. Thigyit ang \. and| are the two quantities which control the
likely corresponds to larger values for the mobility edge atlocality of this operator. The small but nonzero valuemg

fixed lattice spacing. If we would replace the vertical axis infound using the Wilson gauge action at quenctﬁed6?(,)

Fig. 1 ?3; the lattice spfaf[:r:ngz pkhysr']cm utr)thS. t(;ns_ Wogld Oig]hen bothNg and the separation are large, suggests that in
amount 10 a recess ot the Aoki-phase boundanes owarGys case the localization scale of the limiting operator might

largera, i.e., to enlarged phases. . .
ey i . . not be sufficiently small compared to the physical scale of
We have studied the PCA@artially-conserved axial cur- the simulation. In contrast, the lwasaki and DBW?2 results

rend relation for domain-wall fermions, Eq6.2). The re- . : ; . . .
; ' . . : : imply a highly localized effective four-dimensional operator.
sidual mass defined in E¢6.11) directly provides informa- F\)/\>/hen gveyrlap fermions are employed, as with Fc)jomain-

tion on the rate of chiral symmetry restoration as a functhr\Na” fermions, it is necessary to verify whether locality of the

of Ng. We argued that, by monitoring the anomalous term in ; - o
. ! . . overlap operator is obtained and whether the localization
the domain-wall PCAC relation, one can determiwe cru- P op

: . o scale is small compared to the physical length scale. This
cial features 9f thg Hamll'FomgnH(— M.as) fchat contro’Is should become a routine practice in any overlap simulation!
the propagatlon in thes direction: t'he mobility edgex The picture for the phase diagram of QCD with Wilson
(equivalentlyqc), cf. Eq.(6.13, and(in effec the average  fermions we painted in this paper is for a good part conjec-
localization lengthl of the near-zero modes, cf. E@.12.  tural. In particular, we did not prove the hypothesis about the
These results may be combined as mobility edge presented in Sec. IVB. In addition, some of
our more rigorous arguments are based on the assumption
that, in the regions where the mobility edge does not vanish,
a maximum localization length,,,, exists. However, we
would like to emphasize again that our conjecture appears to
be the simplest possible way in which we can understand the
, . collected evidence about the quenched and unquenched
where c is a constant(Here we have traded the maximal phase diagrams, incorporating both numer(da,16,20,21
localization lengthl . Of the near-zero nlodes, assumed ingng analytica[9,23,11,12,2Presults.

Sec. VI, by an average localization lendth The function In order to test our proposal for the phase diagram, it
f(7) contains ther dependence of the domain-wall’s pion would be interesting to study the Ward identi;9) numeri-
two-point function in the denominator in E¢6.11."® This  cally, in particular in the quenched two-flavor theory. The
result should be valid provided>1 and/or|7|>a. second term on the left-hand side should show thme, Hi-

The residual mass has been extensively studied iwergence already in finite volume. A comparison with the
domain-wall fermion simulations which according to our ter- pionic condensate will test whether or not theni/diver-
minology correspond to the range>a.'° As a function of gence saturates the Ward identity for very small momenta. A
Ns, the results for the Wilson gauge action at quencfed study of the dependence of all terms in the Ward identity on
=6.0 and optimally choseM [41] are characterized by a the volume should make it possible to see in which region of
rapid initial drop ofm,.s. However, for larger values dfly,  the phase diagram Goldstone excitations occur in the
the falloff slows down, and eventualiy,. settles at a non- infinite-volume limit. Obviously, such a numerical study will
zero value. Therefore, the first term on the right-hand side ohave to include a twisted ma$24], and no(exceptional
Eq. (7.1 is non-negligible in these simulations. According to configurations should be discarded. Numerical studies can be
our physical picture, this suggests that both the density oéxtended to study localization lengths of near-zero modes as
near-zero modes and their average localization length may beell as nonzero modes outside the Aoki phase, once the lo-
relatively large; hence, in this case, one is very close to theation of the various regions in Fig. 1 has been established.

el
N
Myes™ W + cq. 5, (7.1

8As explained in Sec. VI, fotr]=a Eq. (7.1 is not directly 2O0we believe that the first exploratory finite-temperature domain-
amenable to numerical tests because of the unknown short-distaneell simulationg 48] were in fact carried out inside the Aoki phase,
effects in the pion two-point function; it may be advantageous towhich would explain the poor chiral symmetry observed even at

study to numerator of Eq6.11) directly, cf. Eq.(6.12. relatively largeNs . This is why in Fig. 1 we have drawn the region
°The simulations often show a nice plateam,.{7,N) where domain-wall simulations have been tried such that it partially
~m{N;) for a wide range ofr. overlaps with the Aoki phase.
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The localization length of nonzero modes would yield infor- (N=H)G(X,y:\)=8*(x—y). (A2)
mation on the value of the mobility edgéAs explained ear-

lier, similar information may be obtained frofiquenchedl  To carry out the Fourier transform, has to be in the upper
domain-wall fermion Simulation}S.Sim”ar studies can also half p|ane, whereas tak|ng it in the lower half p|ane corre-
be done in the unquenched theory, but in that case the spegponds toG(x,y;\) being the transform of the retarded
tral density of the localized modes will depend in a moreGgreen function.
complicated manner on the randomness of the gauge field e now adopt the point of view that the electron is par-
because of the back-reaction through the fermion determijaly |ocalized if there is a nonzero probability for the elec-
nant. It is interesting that the quenched theory provides gon to be found at a specific locatignafter an arbitrarily
conceptually simpler arena to test the validity of our conjecqgng time, given that it started out at some other location
ture. This probability is given by(|G(x,y;s)|?) for s—o, where
(---) denotes the statistical average over the random potential
ACKNOWLEDGMENTS at each lattice sitéor, in the QCD case, at each lattice ljnk
. . . The idea is that this nonzero probability arises from localized
The topics of this work were addressed in the RIKEN 105 \whereas the probabiﬁty to esZape to infinity comes

BNL Reseqrch Center vr\]/orksho% ?3 Fermkiﬁn Frontiers ir‘Eom extended states. Obviously, in a finite volume there is
Vector Lattice Gauge Theories held Brookhaven National,, qjear gistinction between these two probabilities, but one

Lab., and more recently in the program Lattice QCD andmay study the dependence @€(x,y;s)|2) for s— on the

Hadron Phenomenology held at the Institute for I\“JClear\/olume. If it stays nonzero in the infinite-volume limit, we

Theory at the University of Washington, Seattle. We thankhave(partiab localization

the participants for extensive discussions which motivated Following Ref.[49], we may express the limiting value of

this work. Y.S. also thanks Amnon Aharony, Ora Entin- Q) (2 i i
. . . g X,Y;S in terms of ensemble averages of the Fourier
Wohlman, and Ben Svetitsky for discussions. This researc |agr(13f())/m?|g(>x yiN): g

is supported by the Israel Science Foundation under grant
222/02-1. M.G. is supported in part by the U.S. Department

of Energy. lim {|G(x,y;s)|?)= lim nf dse "(|G(x,y;s)|?)
S—® n—0 0
APPENDIX A (A3)
In this appendix, we consider the issue of localization
from a somewhat different angle. Instead of using our crite- = lim < 2 \Ifn(x)\lfﬁ(y)\lfk(y)
rion for localization of individual eigenmodes, E@.1), we =0\ kin
use Anderson’s criterion ofpartia) absence of diffusion
[27]. The argument reviewed here is originally due to Ref. X W (%) +> (Ad)
[49], see also Ref.28]. n+i(Nn=Ny)
In the language of condensed matter, the Hermitian
Wilson-Dirac operatorH=H(mg) is a “tight-binding” 7 )
Hamiltonian. This means that the “electrons” can reside only = lim >— [ d\(G(x.y; N +i7/2)
on the sites of a regular lattice. This Hamiltonian lives in 70
four space dimensions, with coordinatesr y, and deter- X Gy, XA —i75/2)). (A5)

mines the evolution of the system in (&fth, continuou$
time dimension, with coordinate We V\."" assume that_ the . Equality (A3) follows after a partial integratioafter which
electron encounters a random potential on each lattice sit

defined b bability distributi Si th s e limit »—0 can be taken the other two follow from
efined by some probabiiity distribution. since there 1S noeIementary integrations. These equations are valid in finite

back-reaction of the electrons on the random potential, thi?olume and we will assume that these are valid in infinite
situation corresponds to the quenched approximation Ovolume,as well

QCD, where of course the gauge fields provide the random We observe that the integrand on the right-hand side of

potential. We introduce the advanced Green functionEq. (A5) corresponds precisely to E¢3.1), i.e., the pion
G(x.y:s) and its Fourier transforrg(x,y;)) two-point function, for =0 and identifyingn/2=m, . With
the Anderson criterion for localization, we immediately con-
G(x,y;s)= 9(3)2 lpn(x)\lrg(y)e_i)‘nsy clude that thex integral of the two-point function has a7/
n divergence provided lig,.(|G(x,y;s)|?)>0. In finite vol-
ume this is always the case; whereas in infinite volume, this
is the case if the electron {partially) localized.

Y — t -1
g(x,y,)\)—; Wa()Wa(y) (A =Kn) "7, (A1) Anderson localization implies that, by definition, the
probability for the electromot to escape to infinity, given by
which solve the equations lims_..(|G(x,y;s)|?), is nonzero, and thus that
(i9las—H)G(x,y;s)=i8*(x—y) (), (GG YN+imGly, N =in)xyt, 7—0 (A6)
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for a range of\ (note that this correlation function is posi- For a fixed gauge fieldand in an arbitrary normalizatipn
tive). It follows that localization for a giveR may bedefined  one of these terms is

as the existence of this divergenei]. This coincides with
our analysis based on the mobility-edge hypothesis: if the

mobility edge\ ;> 0, all modes withh <\ . contribute to the -~ . ~ N
Y edgec c HereT is the second-quantized transfer matfik.and¢ are

1/my (or 1/7) divergence, and thus the right-hand side of Eq'fermion creation and annihilation operators. The up and

(A5) does not va_nlsh, leading to a nonzero probability for thedown arrows represent two different flavors. Spin indices
electron not to diffuse.

| lity. it ‘b ¢ the limiti | have been suppressed. The stfié) is a reference state
nreall y ! 2may not be easy to measure e IMiNg Valu€, o yjpjjated by all thé&’s. It encodes the boundary conditions
of (|G(x,y;s)|?) experimentally, because all the electronic i the fifth dimension.(For notational simplicity we have

states are filled up to the Fermi energy. The nature of thgjyen the result when the quark mass is zero; all arguments
eigenstates close to the Fermi energy determine the macrgeaneralize to the case of a nonzero mass, as well as to the

(0']€,(0,00 TN (%, 7)&,(%,7) TN%1(0,0)[0"). (BY)

scopic propertiegat sufficiently low temperatujeA disor-
dered system is an insulat@ero electric conductivityif the

other three terms that we do not shpw.
The composite operatoﬂ(i,r)éT(i, 7) belongs to the

electronic states at the Fermi energy are localized, whereas@eydoscalar densitygq(i, 7) located in the middle of the

metallic behavior(nonzero conductivityis observed if the

electronic states at the Fermi energy are extendetetal-

five-dimensional bulk. Therefore, to be reached from one of
the boundaries, one has to dt{/2 times with the transfer

insulator phase transition occurs when a mobility edgematrix (we assume thal is even. If an admissibility con-
reaches the Fermi energy. The Aoki phase transition is in thigition is imposed, the(first-quantizedl transfer matrix
sense a SpeCIa| kind of a metal-insulator transition. For a’(M,as) has a gar(i_e_, there are no eigenvalues in some

discussion employing these concepts in the context of th

chiral phase transition in continuum QCD, see RB)].

Finally, we mention that the concept of an effective La-
grangian for the long-range degrees of freedom, which i

used to study the phase diagram of lattice QMR,22, is

Bpen neighborhood of oheln the limit Ng— o, TNs2 pe-

comes proportional to the ground-state projed@y)(0y|.

{The ground stat¢0,,) of T is obtained by filling the Dirac

sea of states that correspond to all eigenvalwgs 1 of

also widely used in condensed-matter disordered system3{M,as).] In this case expressio(B1) is proportional to

see Refs[29,30], and references therein.

APPENDIX B

Using the operator formalism and the notation of R&f,

the numerator in Eq(6.11) is a sum of four positive terms.

<0H|<‘:I(>?,7-)6T(>?,7)|OH>, which is in fact identically zero,
because théin general nonzejostatest;|0) and ¢;|0y)
have different flavors and, hence, are orthogonal. Thus, the
numerator in Eq(6.11) vanishes and chiral symmetry is re-
covered(exponentially in the limit Ng—co. The case of re-
alistic gauge actions is discussed in Sec. VI.
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