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Pseudoscalar decay constants in staggered chiral perturbation theory
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In a continuation of an ongoing program, we use staggered chiral perturbation theory to calculate the
one-loop chiral logarithms and analytic terms in the pseudoscalar meson leptonic decay ctbpéstantb‘ K¢
We consider the partially quenched, “full QCOWith three dynamical flavojsand quenched cases.
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[. INTRODUCTION with some comments in Sec. V. The Appendix gives techni-
cal details about the evaluation of the one-loop integrals that
Simulations with staggergdogut-SusskindKS)] fermi-  arise in Sec. Ill.

ons are very fast relative to other available approaches, mak-

ing possible simulations of QCD that include the effects |I. THE LEE-SHARPE LAGRANGIAN FOR 3 FLAVORS

of light sea quarkd1]. However, with currently practical . ) _ :
lattice spacings (e.g., MILC simulations [2-6] at a The startl_ng point for_gPT is the Lee-Sharpe Lagrang|an
~0.09-0.13 fm) tasteviolations are not negligible. Thus [10] generalized to multiple flavors. In.Re.[fZ] we examined
fits to such lattice data should take into account the taste> generah-flavor theory and later specialized o=3. Here

N o . .~ we taken=3 from the beginning. For 3 KS flavors,
violating effects; indeed, if such effects are not taken into_ exp(®/f) is a 12 12 matrix, with® given by

account, the speed advantage of KS fermions may be offset

by the size of the systematic errors. The taste-violating ef- U =t Kt

fects can be calculated in a systematic way using staggered B 0

chiral perturbation theory (gPT). o=| 7 D K| 1)
In Ref. [7], we formulate §PT for the physical case of K- KO S

multiple flavors. &PT is then used to calculate the one-loop

chiral logarithms in the pion and kaon masses. Here, wevhereU=31° U,T, (and similarly form*,K*, ...), with

continue the program of Reff7] and compute s ande5+,

the #* andK™ leptonic decay constants for the Goldstone Ta={&5.i&us5.18,,.6,0 .6} 2

mesons, to one loop. As we have laid most of the necessary

groundwork already, we will merely state what is necessaryVe use the Euclidean gamma matriggs with §,,=§,¢,
for this present work and refer the reader to Réf.for the [#<vinEq.(2)], §,5=¢§,&5, and§ =l is the 4x 4 identity
details common to both calculations. As in the calculation ofnatrix. The fieldS transforms unde8U(12), X SU(12) as
the #* and K™ masses, we perform our calculation using>—L=R". The component fields of the diagondlavor-
three dynamical KS flavor@ach with four tastéswhich we  neutra) elements {,, D,, and S,) are real; the other,
call the 4+ 4+4 theory, and later adjust the result by handcharged, fields £ , K2, etc) are complex, so tha® is
using a quark flow techniqug7,9] to a 1+1+1 theory Hermitian. The mass matrix is given by the>X 22 matrix
(three flavors each with a single taste

The outline of this paper is as follows: In Sec. Il, we write myl 0 0
down the &PT Lagrangian for three dynamical flavors. We B I o
- i . M My . €]
then calculate, in Sec. lll, the one-loop chiral logarithms
which contribute to the flavor-nonsinglet Goldstone meson 0 0 md

decay constant in the partially quenched case. Here we keep ) o
three dynamical flavors but add two additional quenched fla- OUr (Euclidean Lagrangian is

vors as valence quarks, which in the general case have dis- (2 1

tinct masses from the dynamidaea quarks. The transition L=—Trd.59 SH =2 uf2TrMS + M3 T

to a 1+1+1 theory is then made. There are only a few 8 (0u2 9,27 4t ( )
differences in this procedure from that of RET]. We also om2

give the results in the fully quenched case. The full next-to- + ﬂ(u +D,+5)%+a%V ()
leading ordefNLO) results, including the analytic terms, are 3 ! e ’

presented in Sec. IV for various relevant cases. We conclude
where u is a constant with units of mass, Tr is the full

12X 12 trace, and’=U+U" is the taste-symmetry breaking
We use[7,8] the term “taste” to denote the different KS species
resulting from doubling, and “flavor” for the physical-d-s quan-
tum number. 2Heren refers to the number of sea quarks.
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potential. Thel/ term is given in Ref[7]; it is not needed a2
explicitly here. For{’, we have U XV D,
1 (a)
~U'=Cay7 > [Tr(EP3)Tr(EP3) +H.c] X
v ] %5, ;
1 3 3 u ) ( d
+Cong 2 [THETD)THESS) +H.e] b)

FIG. 1. The two-point mixing vertex coming from tié term.
(a) corresponds to the chiral theofye also have similatJ-S and
D-S mixing terms. (b) shows the corresponding quark level dia-
1 gram. Here we only show the mixing among the taste vectors, but
Z (3) 3y t O . X '
JrCSA2 EV: [Tr(&82) (&)%), ©) there are similar vertices among the axial tastes, as well as the
singlet tastegwith a26,,—4m3/3).

1
+Csvz 2 [THEPI)THEDEN)]

where thez®) are block-diagonal 1212 matrices: a5, taste vector
& 0 O 5'=4 a’s, taste axial 7)
=0 & 0|, 6) 4m3/3 taste singlet.
0 0 ¢ Expressions fos,, and 5, in terms of the coefficients af’
_ _ are given in Ref[7]. These mixings require us to diagonalize
with &g the 4X4 objects, andB e {5,u,uv (u<v),u5,}. the full mass matrix in each of the three channels. We write

As seen in Ref[7], ' generates two-point vertices at the propagator for the vectors as
O(a?) (shown in Fig. 1 that mix flavor-neutral particles of v
vector and axial tastes. In addition, flavor-neutral, taste- Gv=Goy+D". ®)
singlet particles are mixed by thej term in Eq.(4), which DV is the part of the taste-vector flavor-neutral propagator
results from the anomaly. In all three casgaste vector, that is disconnected at the quark leviet., Fig. 1 plus itera-
axial vector, and singlgtwe have a term in the Lagrangian tions of intermediate sea quark logp&xplicitly, we have
of the form (6'/2)(U+ D+ S)?, where [7]

(G?+mg ) (a?+mp )(g’+mg)

(0 My ) (07 + M ) (0P M7 o) (6% +m? ) (a%+m’,)

vV _ 2 ot

9

Here, mio, m2V and mf?, are the eigenvalues of the full IIl. ONE LOOP DECAY CONSTANT FOR 4 +4+4
\% \

o , DYNAMICAL FLAVORS
mass-squared matrifi.e., the poles ofG,). We emphasize

that Eq.(9) remains valid in then=3 partially quenched We calculate the piohdecay constant in a partially
case. The external mesomé and N may be any flavor- duenched theory. Full theory results are easily obtained by
neutral states, made from either sea quarks or valend@king appropriate limits. There are three sea quartksd(
quarks. ands) and two valence quarkx(andy). The pion of inter-
In the quenched Cag@}\’m is simply estis theP;,r , a Goldstone pion which is composed ofan
pair of quarks.

+ - . . .
D‘,\’,,'ﬁ,“e”C“: s The P; decay constant is defined by the matrix element:

(g2 +mfy )(g2+md )’

(10

.

(0lj 3|5 (p))=—ifp:P,, (1)
Equations(8)—(10) apply explicitly to the taste-vector N

channel; to get the result in the taste-axitdste-singlet wherejzg is the axial current corresponding R . With

channel, just leV—A (V—1 and a?8,—4mg/3). In the  this normalization,f,~131 MeV. In terms ofS, we can

guenched case we cannot takg—o, and must include \rite the axial current as

additional 7, -dependent terms in the Lagrangian, resulting

in the replacemenin3—m3+ aq? in the singlet form of Eq.

(10) [7,12. 3We refer generically to any flavor-charged meson as a “pion.”
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not surprising, since the form of the axial current, Ex®), is
determined through Noether’s theorem only by the kinetic
energy part of the Lagrangian. From Ed4), we then have

_ ogZ current_ 3
(a) (b) 5fp;r— 5fP§+5fP§ = —§5Zp;r. (15)

FIG. 2. The &PT diagrams contributing to the pion decay con-

. - . . 2
stant, coming from wave-function renormalization. The box repre- USINg intermediate expressions fai(p?) from [7], the

sents the axial currenta) is the connected piece, where the propa- ©N€-10op result is
gator in the loop contains no two-point vertex insertiofis)

subsumes the graphs which have disconnected insertions within the 1 d4q 1
loop. The cross represents one or more insertions obtheertex, Sfpr=— _f — - "’Dlxx_ 2D|XY+DIYY
with 8’ given in Eq.(7). 5 8) #2|QB\q +mg,
pr —if? B3)pP* Foxt v v v A A A
jrs= g T &P (9,227+279,%)]. (12 +4D yy+ 8Dy + 4Dy +4DLy+8DL+ 4Dy |-
Pt i i ; (16
HereP™ projects out the X4 block with appropriate fla-
vor: If we makex andy the last two flavors ofx, then
PP = 8,56,4, Wherei,j are flavor indices Here,Q runs over the six mesons formed from one valence
ij ’ ’ . .
At one loop, the decay constant has the form and one sea quark.e., thexu, xd, xs, yu, yd, andys

mesong. As before,B takes on the 16 values,u, uv(u
1 <v),u5]}. We have already included the factor of 4 that
1+ —5fp+)_ (13 comes from summing over the degenerate vector and axial
2f2 s contributions in theDV and D terms. Despite the fact that
the only 4-point vertices contributing to this expression come
There are two contributions téfp+, which we calI5ff,+ from the kinetic energy term, the result is more complicated
current o ° > than that for the mass renormalizatipf] because there are
and 5f, . They are shown in Figs. 2 and 3, respectively.\, cancellations heréeither accidental or required by sym-
The contribution&ffﬁ is merely wave function renormaliza- Metry.
5 The first term in Eq(16) (the sum oveQ andB) comes
from the wave function renormalization and current correc-
262 2 tion diagrams shown in Fig.(d), which involve a single
16m°f* d2 (p%) (14) virtual quark loop. The diagrams arise from the vertices in
2 dp® Fig. 5a), respectively, wherd is summed over the sea
quarks only. In this case, the propagator in the loop must be
The self-energys (p?) has already been calculated in Ref. connected since the loop meson is not flavor neutral.
[7]. The wave function renormalization arises only from the  The vertices in Fig. &) also produce diagrams with dis-
vertex generated by the kinetic energy term in B, since  connected loop propagators, Figgb¥and 4c), wheni=y
derivatives on the external lines are necessary to gengfate [or i =x in the y—x version of Fig. %a)]. These diagrams
dependence in a tadpole diagram. The factor of 1/2 in Eqgive rise to theDyy and Dyy terms in Eq.(16).
(14) is due to the fact that this diagram is multiplied ki Finally, the vertices in Fig. ) generate the diagrams in
=\J1+0Z~1+36Z. Figs. 4d) and 4e). The Dyy terms in Eq.(16) come from
The contributionst™™is the current correction. It arises these diagrams. For more discussion of how to identify quark
Ps flow diagrams with the $PT contributions, see Ref7].

fpg:f

tion. We have

of

N

z
O0Zp+
Ps Pg

from the expansion of Eq12) to cubic order in®. Perform- We can write down the quenched result(ay eliminating
ing this expansion, it is easy to see that the wave functioqh

q i tion t tional t h othen e term summed ove® and B, which arises from virtual
Z?CW::eL:tr_ren cofrection terms are proportional to €ach o erquark loops[diagrams in Fig. @a)], and(2) replacing ofD

Py ——45ff,5+. This fact, noted also ifi9], is perhaps _ pavenchtqr DV DA andD!. These replacements elimi-
nate diagrams in Figs.(d) and 4e).
In the partially quenched case, when ther y quark mass
is different from all sea quark masses, there are double poles
in Eq. (16) coming from theDyy or Dyy terms. This is
different from the mass renormalization result, where double
@ (b) poles do not arise unless,=m, and this mass is different
from all sea quark masses, a case we did not treat in detail in
FIG. 3. Same as Fig. 2, but these contributions to the decafRef. [7]. In order to write down explicit results for partial
constant are from axial current corrections. quenching here, we must therefore expand on the notation of
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—
(a) g @
0O |
y O X X

- \/

(b)
@

||

(C) x 1 Ix

(b)

FIG. 5. The quark level diagrams for-22 meson scattering
which contribute tofp;. The indicesi and | represent arbitrary
quark flavors. There are two additional diagraimot shown,
which are like those ina) but have the roles ok andy inter-
changed. The box stands for the axial current.

single sea quark loop and simply must be divided by 4.
The remaining diagrams have the same form as those
(e) treated in Ref[7], so we just briefly review the procedure.
) ) Diagrams(b) and(d) in Fig. 4 have no sea quark loops and
_ FIG. 4. The quark level diagrams that contrl_bute t_o the one-loo_pjre unaffected by the transition to the-1+1 case. These
pion decay co_nstant. The box represents an insertion of the a.X'aiagrams have a single factor 6f coming from the overall
current. The diagrams on the left correspond to the wave function _ . .
renormalization while those on the right correspond to the <:urren{:oe‘cﬂC'ent of the dlsconnecte.d propagaiom Eq. (9)' Each
sea quark loop added on to diagrafbsand(d), as in(c) and
(e), comes with an additional factor af’. Therefore, we

corrections.
Ref. [7]. Below we will use the notation defined in the Ap- Must merely make the replacemefit— 6'/4 in all but the

pendix, where we explain the techniques we use to evaluaverall factors ofé”. This is easily accomplished by letting
the integrals. 6'—6'/4 in the computation of the full mass eigenstates

Before performing the momentum integrals, we nowli.e., mio, m2V and mi, in Eq. (9)], but not in the overall
\% \%

. 7
make the transition from the44+4 case to the +1+1 coefficient of D.

case. This is easily accomplished since we have already de- After making the transition to the €1+ 1 case, taking
termined the separate contributions from diagrams in Fig. - . 2 2 . ’

with various numbers of sea quark loops. Those diagram e Mg—e limit (with mn{NmO)’ and using Eqs(Al)-
with a connected propagator in the loop, Figa)4 have a (A10) to perform the momentum integrals, we have

1 1 ~ ~
8tp; == 35 24 (M) + 5| RETAMINTmE) + REIEMPHT(mE) + 2 DPX (MEPhe(m))
) |

1
+J,E DE?‘?JI<{M(Y1,>}>€<mi>—2jE RISIqMPhemd) | + 528,
| |

RGIAMENTmMT )
+REAME(md ) + 12 DI ((MPe(m? )+ 12 DI, (M) e(m?)
v %

+22 REIGMPHem? ) | +[V—A], 17)
Iv
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whereQ and B have the same meaning as in Eg6), the The values ofnZ,, m? andm’, in each taste channel in

chiral logarithmst (m?) are defined in EqYA13) and(A15)  Eq.(17) are the eigenvalues of the full mass matrix
for infinite and finite spatial volume, respectively, and Re

and Ds are residues defined in Eq#3) and (A6). The mg+ &' 14 6’14 6’14
arrow signifies that we are only keeping the chiral logarithm / 2, o /
terms ingthis expression. We h)élve dpefir?ed the sets o% masses o'l4 mp+5'/4 o'l4 ' (20
in the residues: o'l4 8’14 mi+5'/4
(MPy={m,o,m,,mz}, whered’ is given by Eq.(7), the massem?, m3, m3 have
an implicit taste labelV, A, orl) depending on the channel,
{M@}={m_o,m, my,my}, and them3— o limit should be taken in the singlet channel.
. The explicit expressions for these eigenvalues are not illumi-
{(MPh={m_om,,m, ,mg, nating in general, but they are given for,=my (the 2+1
case in Ref.[7].
{M®y={m_o,m, . m, ,my,my}, (18) In writing down Eq.(17), we have assumeth?#m3.

When m4=m? some of the residues of sefs\t ®} and
{ M1 blow up, so the limit must be taken carefully. Alter-
Hlaetively, one can simply return to E¢L6), take the limit
trivially, and perform the integrations again.

In the quenched case, we drop the first term in @6)

{u}={my,mp,mg}, (190 (with the sum ovelQ andB) since it comes from diagrams
with a sea quark loop. In the remaining expression, we make

with appropriate taste subscripts. The sums gyefjy, and  the replacemerib— D 9ueh
ja run over the set of masses included as the argument of the Writing out the residues explicitly, and using the results

whereZ can be eitheiX or Y, and we show the taste labels

explicitly in Eqg. (17). We do not include the numerator

masses in the argument of the residues, as they are the sa
for each case:

residues in each sum. from the Appendix, we obtain
2 e(mi)—e(mg)
My | ~ ~ X Y (2% ~ ~
5fg“f”°L€° UmME) +T(m7) —2——————| + | ((m§) —mE T(m% )+ €(mf) —m§ T(m3)
5 mY|_mX|
mg €(mg)—mg e(mi)| 1 B _ e(my )—€(mg )
+2 —— +za?8)| t(m2 )+ E¢(m? )+2 +[V—A]. (21)
m2 —m 2 v v m2 —m2
Y| X Yy Xv

Carefully taking the limitm,— m, [or returning to Eq(16) Lee and Sharp¢lQ] call SEF(B). Chiral representatives of

and taking the limit trivially}, we see that the singlet terms SEF(B) operators have two derivativg$0] and therefore are

vanish but the vector and axial terms do not. This is consisy(mg?).

tent with the known resul{9,12] in the symmetry(con- The only terms in the chiral Lagrangian that can contrib-

tinuum) limit that there are no chiral logarithms in the to o the decay constant are those with derivatives, so

guenched pion decay constant with degenerate masses. O(a%) terms are not relevant here. Similarly, then™ in

O(ma?) terms must come from two derivatives. Therefore

IV. FINAL NLO RESULTS such terms just make a NLO contributionftp; of the form

For the complete expression for the NLO pion decay Con_Fa2f, whereF is a constant formed out of the coefficients of

stant, we need the®(p?)” analytic terms in addition to the (he relévant Lagrangian terms.would of course depend on
chiral logarithms calculated above. Ours is a joint expansiofl€ taste of the decaying particle, but we are considering only

in a2 and the quark mass, so we are looking for the ana- Goldstone particles here. Finally, the terms in the Lagrangian
lytic contributions arising from terms ab(m? ma?,a) in that areO(m?) are just the NLO ones familiar from con-

the chiral Lagrangian. Examples of such terms ardinuumxPT[13].
(9,2, 3N Tr(ME+ M) [O(m?)], a®VTr(d,29,57)

[O(ma?)], and @%V)? [O(a*)]. There will also be chiral
representatives of thog®(a?) operators in the effective con-
tinuum QCD action(*Symanzik action”) that have no rep- Using the definitions of; in Ref.[13], we thus get from
resentatives at lowest order—such operators comprise wh&gs.(17) and(13), in the 1+ 1+ 1 partially quenched case,

A. Full and partially quenched NLO results
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fl13100p 1+1+1 f[ 1+

1 1 )
167212 [ ~ 3.2 (M) + 5| RETAMEN )+ REZAMENT(m?)

+ 2 DRRAMEN )+ 2 DRI AMP () -2, R[”]({M.(Z)})e(mﬁ))

1.,

REI(MEMT(mE )+ REIEMPHT(mE )+ JE DI*3 ((MPhem?)

+2 DI (M EMe(m? >+2E REIAM P EM? )|+ (V= A) |+ - (my+mg+mo)L
Jv
8u 5
+f—2(mx+my)L5+a Fr. (22)

Definitions here are the same as in ELj). We have checked that this result reduces to that of Sharpe and Shbtgshthe
continuum(symmetry limit. Using Eq.(A8), it is not hard to show that changes here in the chiral skadan be absorbed into
the parameterk,, Ls andF, as expected.

In the 2+ 1 case (nh,=my=m,) with no other degeneracies, there is some simplification becmlj]r&e mf,z m% in each
taste channel. We obtain

1 1 ~ ~
fo f[ {— 32 & (Mo + 5| RGIAMEPHTME) + REAGMPHT(mY,)

16w2f2

+2 DFRAMPDe(mE) + 2 DEJAMPHe(m) — 2 RE?'ZI({MSS’M(mi))
h h

+ ;a 8| RRAEMONT(mE ) +REAGM DY (mE )+2 D3 ({MPhe(m? )
+2 DA (M Phe(m? )+22 REA(MPHem?) +(v_>A)}
+1fiz',u(2m(+ms)L4+ Ejc—'l:(mx+my)L5+a2F}, (23

with definitions the same as in E(L7), except that now the are not shown explicitly. They are always
denominator masses in the residues are

{M (zs)}E{mn:mz}a {u}t={my,mg}, (25

MO =Im  m,,my}, . o
{ J={my my,my} with the taste label again implicit.

{M m}z{m m,, ,m;} Various cases of interest can be obtained either by care-
‘ e fully taking limits in Eq.(22) or (23) or by taking the limits
{(M®)={m,m,, ,my,ms}, (24)  in Eq. (16) and redoing the momentum integration. We first

consider the “full QCD” case of “real” pions and kaons. By
where Z can again be eitheX or Y, and a taste label is settingm,=m, andm,=mgy, but keepingm,#my, we get
implicit. The numerator masses in the residues of @8) after a bit of algebra
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freoP ol = —32 €(m2 )+ME RIA((M P {m2})e(m?)
™ 167212 3248 e 6 T P
1. 2 2 2 \2p[5,1] (AN f 2 2 16u
+5a%s, IZV (mg +mp —2m? ZRIEUEMPY{mE Hem? ) | +(V—A) g (M mgtmoLy

8
+f—’:(mu+md)L5+a2FJ, (26)

where the setsM ) and{ M )} are given in Eq(18) (with X—U andY—D), j, andjy run over all masses ibM 2} and
{M}, respectively, an@ e {U,D, 7", 7~ ,K" K°. Note that there are no double pole terms here, due to cancellations in the
disconnected flavor-neutral propagator. The charged kaon result can be obtained fr(#6) by. making the replacements
d< s andD+« Swherever they appear explicitlgs well as in the definitions of the mass Setd ,2} and{M (‘,} and in the sum
over Q, where we now hav® e {U,S,K* K™, 7" ,K%).

The full theory pion result simplifies even more in the-2 case, when the up and down quark masses are equal. After
writing the residues explicitly, we obtain

1—Ioop,2+1_f 14— | - = 2 [2€(m2 )+€(m2 )]+2a25/ mé\,_mfiv g(mz )
71'5+ 16’7T2f2 16 B Wg KE+§ v (mzo—m2 )(m2,_m2 K
Ty Y; Ny v
2 2 2 2
bty | vy
m”, m_o -
2 2.2 _ 2 2 _m2o(m?, —m? B
(mﬁ—m%xmw—m%) y (mw—mﬁﬂm%—mﬁ) v
16, 16,
+f_;“(2me+ms)|_4+ f—;umeLs—i-a?F , (27)

Similarly, the 2+ 1 result for the full kaon is

1 1 3 1
1-loop,2+1_ - 2 2 2 = 2N_ % 2 — 2
T = s 35 2 [20(m70)+3E(my )+ E(ME) ]+ 7 £(mio) = 7 £(mi7 ) +5£(m§)
(M2 +mPo—2m?2 )2 (Mg +m?o—2m°,)?
+ e i e(m2 )+ i ¢(m?,)
5 \% 2 2 2 2 2 2 7 2 2 2 2 2 2 /
2 (mws—m,lv)(msv—mnv)(mn\,/—m,lv) v (mws—mn\,/)(msv—mn\,/)(mnv—mn\,/) K
2 2 2 2
mg —m m-o—m
v €(mPo)+ il em) | +(VoA)
2 2 2 _ 2 0 2 _ . 2 2 2 Sv
(mnv mwg)(m”\,/ mﬂs) v (mnv msv)(m”\,/ mSV)
16u 8u )
+f—2(2m€+mS)L4+ f—z(me+m2)L5+a Fr. (28

Here we have used the fact thaﬁ|=§m§|+%mio in the B. Quenched NLO results
|

2+1 case to simplify the result. It is easy to check that Egs. In the fully quenched case, we only need to consider the
(27) and (28) reduce to the standard answét8)] in the a® two casesn,#m, andm,=m, .

—0 limit, where all tastes are degenerate. For the quenched “kaon” caser(,# m,) we obtain
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2

1-loop, quench Mo~ 5. =~ o €(m§|)—€(m$l) @ 2 2%, 2 2 2%, 2
fK5+ L f W 5 €(mx|)+€(mY|)—2W +€ f(mxl)—mxlf(mxl)+€(mYl)—mYI€(mYI)
| |
mg ((mg)—m? e(m2)) g ~ . €(mg )= €(mg)
+2 CE + 58| T(mg ) +(my )+ 2—————— | +(V—A)
mYI - mXI mYV_ mXV
8,bL ! 2
g (Mebmy)Lg+a®F’ . (29

The analytic terms in the quenched case are marked witthe continuum-like taste-singlet channel.

primes to indicate that they may have different values than in Using the PT results presented here and 7, it seems

the full theory. Also, note that there is no analytic term in- possible to fit existing lattice data and extract physical pa-

volving the sea quarks in the quenched case, as they play mameters[e.g., f., fx, ms, (my,+my)/2,L;] with rather

role here. In the continuum limit, Eq29) reproduces the small discretization errorgl6]. The next steps would be to

known quenched resuli2]. extend the current approach to describe heavy-light mesons
Taking the degenerate limitn{,=m,) in the quenched [17] and baryons.

case, we obtain for the quenched “pion”
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(30) APPENDIX

This is consistent with the fact that in the isospin limit, the  In this appendix, we go through the technical details of

continuum quenched pion decay constant does not contafgRlculating the integrals found in EGL6). For the terms only
chiral logarithms. containing single poles, this was done in Ré&f, so here we

focus on the terms which contain double poles.

V. REMARKS AND CONCLUSIONS Consider first an integrand of the form

The most general result we have is for the 3 partially K _
guenched case (11+1) with all valence and sea quark 3[[1 (Q°+ua)
masses different, Eq22). Other interesting cases can be TR Amb{uh) = — , (A1)
obtained from Eq.{22) by taking appropriate mass limits. 1—[ (o2+m?)
The results most relevant to current MILC simulations are =1 q i
those withm,=myg=m, (the 2+1 case; these and other
important limits are presented explicitly in Sec. IV A. The where{m} and{u} are the sets of massés,,m,, ... ,m,}
results in the quenched case are given separately ifnd {u;,u,, ....u, respectively, As long as>k and
Sec. IV B, in Egs(29) and(30). there are no mass degeneracies in the denomirtbf! can

The explicit results in Sec. IV often appear dauntingly pe written as the sum of simple poles times their residues:
complex. However, the intricacies arise primarily from the

momentum integration, which produces chiral logarithms n R[n,k]({m}.{lu})
with complicated residues from each of the many poles in I[n,kl({m};{ﬂ})zg J '
the disconnected flavor neutral propagator, E. The re- =1
sult before integration, Eq16), is actually quite simple, and
the reader may prefer to start with that expression and pewhere
form the integration himself in specific cases of interest.
In the partially quenched case, double poles arise here
even when the valence masses are non-degenerate, just as H (p

L (A2)

q%+ m;

k
1 (u2-mf)
they do in the continuurfil1,15. It is interesting that these R][n'k]({m};{u})z S (A3)
double poles appear in the explicitty(a?) terms(taste vec- H (m2—m?)
4L | ]

tor or axial channels, proportional &, or §,) as well as in i
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If there is a double pole, the residues are modified. We n 1, n=k
need consider only the case of one double pole; let it occur at Z DK = 0 1
g?=—m2. We then have =1 » =KL
k n
5 2 S (DInKm2) - RInK
E!;[l (q +1u'a) =1 B4 ] €
T me{mp;{uh= 0 n k
(@+m) I (g?+m?) m5+2 m -2 ra =k

=1 _ = =

K -1, n=k+1,

I1 (a?+pud) 0, n=k+2.

__ d a=1 (A8)
| & L., o _ _ _ _
H (q°+mjp) These identities are easily obtained by expanding both sides
=1 of Eq. (A2) or (A5) for large g°.
(A4) When performing the explicit evaluation, the following
integrals are needed:
Here the product overincludes?, i.e., 1={<n. We now
expand the quantity inside of the derivative as a sum of d*q 1
single poles and take the derivative of the resulting expres- Il—f T 5 M), (A9)
(2m)* g°+m 167

sion. The result is

(0K £ .- I EJ dq ¢
[nk(m€ {m}; {ﬂ})_w 2 (277)4 q2_|_mz
(g=+mp) , ,
o DI Imb{ud) =f T (), (A10)
+2 Z—M, (A5) (2m)* 1672
=1 (q +mj)
with IgEJ (2m)* (g2 +m?)2
d o
Df(mbi{uh = SRM(mk{uh.  (A6) = 167T2€(m2) (ALD)
4
Note thatD{" takes on a simple form foy+ ¢: =f d*q q
1 2m) (P+m?)?

DI {mp {uh) =R H({my i {uh) (j#6), (A7) 1
=T, -mM*Ty— ——[¢(m*)—m*(m?)],  (A12)
where {m}' is just the set{m} with m, repeated:{m}’ 16m
={m,....mg.m, ... my}. For j=¢, DIVM becomes
quite complicated, witim+ k terms due to the differentiation.
We emphasize that these formulas are needed solely for per-

where we have defined the chiral logarithm functions

2

forming the momentum integrals explicitly in the partially 2 o M o
guenched case. In full QCD, there are no double poles. ¢(m7y=min A2 (infinite volums, (A13)
We now collect some identities satisfied by the residues:
" 1, n=k+1 ~ m? o
2 RINK Z ! ™ n= {(m?)=—|In P+1 (infinite volume,
= ! 0, n=k+2,
(A14)
n k X . .
2_ 2 — K with A the chiral scale. We use the arrow in E489)—

n ,21 M a; par N=ktl (A12) and elsewhere to indicate that we are only keeping the
> R][n k]mf: 1 P chiral logarithm terms. If the system is in a finiteut large
=1 o n=K+ spatial volumeL®, the following modifications are required

0, n=k+ 3, [14]:

074011-9
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¢(m?)=m?| In I—; 51(mL)) (finite spatial volumg,
(A15)
m2
’E(mz)z—( In PH) + 85(mL)
(finite spatial volumg, (A16)

PHYSICAL REVIEW D68, 074011 (2003

where
4 Ky(]r|mL)
S (mL)= — —_ (A17)
mL 2% Ir]
Ss(mL)=22 Ko([rlmL), (A18)

r+0

with Ky andK; the Bessel functions of imaginary argument.
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