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Pseudoscalar decay constants in staggered chiral perturbation theory

C. Aubin and C. Bernard
Washington University, St. Louis, Missouri 63130, USA
~Received 23 June 2003; published 28 October 2003!

In a continuation of an ongoing program, we use staggered chiral perturbation theory to calculate the
one-loop chiral logarithms and analytic terms in the pseudoscalar meson leptonic decay constantsf p

5
1 and f K

5
1.

We consider the partially quenched, ‘‘full QCD’’~with three dynamical flavors!, and quenched cases.

DOI: 10.1103/PhysRevD.68.074011 PACS number~s!: 12.39.Fe, 11.30.Rd, 12.38.Gc
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I. INTRODUCTION

Simulations with staggered@Kogut-Susskind~KS!# fermi-
ons are very fast relative to other available approaches, m
ing possible simulations of QCD that include the effe
of light sea quarks@1#. However, with currently practica
lattice spacings ~e.g., MILC simulations @2–6# at a
'0.09–0.13 fm) taste1 violations are not negligible. Thu
fits to such lattice data should take into account the ta
violating effects; indeed, if such effects are not taken in
account, the speed advantage of KS fermions may be o
by the size of the systematic errors. The taste-violating
fects can be calculated in a systematic way using stagg
chiral perturbation theory (SxPT).

In Ref. @7#, we formulate SxPT for the physical case o
multiple flavors. SxPT is then used to calculate the one-lo
chiral logarithms in the pion and kaon masses. Here,
continue the program of Ref.@7# and computef p

5
1 and f K

5
1,

the p1 and K1 leptonic decay constants for the Goldsto
mesons, to one loop. As we have laid most of the neces
groundwork already, we will merely state what is necess
for this present work and refer the reader to Ref.@7# for the
details common to both calculations. As in the calculation
the p1 and K1 masses, we perform our calculation usi
three dynamical KS flavors~each with four tastes!, which we
call the 41414 theory, and later adjust the result by ha
using a quark flow technique@7,9# to a 11111 theory
~three flavors each with a single taste!.

The outline of this paper is as follows: In Sec. II, we wri
down the SxPT Lagrangian for three dynamical flavors. W
then calculate, in Sec. III, the one-loop chiral logarithm
which contribute to the flavor-nonsinglet Goldstone mes
decay constant in the partially quenched case. Here we k
three dynamical flavors but add two additional quenched
vors as valence quarks, which in the general case have
tinct masses from the dynamical~sea! quarks. The transition
to a 11111 theory is then made. There are only a fe
differences in this procedure from that of Ref.@7#. We also
give the results in the fully quenched case. The full next-
leading order~NLO! results, including the analytic terms, a
presented in Sec. IV for various relevant cases. We conc

1We use@7,8# the term ‘‘taste’’ to denote the different KS specie
resulting from doubling, and ‘‘flavor’’ for the physicalu-d-s quan-
tum number.
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with some comments in Sec. V. The Appendix gives tech
cal details about the evaluation of the one-loop integrals
arise in Sec. III.

II. THE LEE-SHARPE LAGRANGIAN FOR 3 FLAVORS

The starting point for SxPT is the Lee-Sharpe Lagrangia
@10# generalized to multiple flavors. In Ref.@7# we examined
a generaln-flavor theory2 and later specialized ton53. Here
we take n53 from the beginning. For 3 KS flavors,S
5exp(iF/f) is a 12312 matrix, withF given by

F5S U p1 K1

p2 D K0

K2 K̄0 S
D , ~1!

whereU5(a51
16 UaTa ~and similarly forp1,K1, . . . ), with

Ta5$j5 ,i jm5 ,i jmn ,jm ,j I%. ~2!

We use the Euclidean gamma matricesjm , with jmn[jmjn

@m,n in Eq. ~2!#, jm5[jmj5, andj I[I is the 434 identity
matrix. The fieldS transforms underSU(12)L3SU(12)R as
S→LSR†. The component fields of the diagonal~flavor-
neutral! elements (Ua , Da , and Sa) are real; the other,
charged, fields (pa

1 , Ka
0 , etc.! are complex, so thatF is

Hermitian. The mass matrix is given by the 12312 matrix

M5S muI 0 0

0 mdI 0

0 0 msI
D . ~3!

Our ~Euclidean! Lagrangian is

L5
f 2

8
Tr~]mS]mS†!2

1

4
m f 2Tr~MS1MS†!

1
2m0

2

3
~UI1DI1SI !

21a2V, ~4!

where m is a constant with units of mass, Tr is the fu
12312 trace, andV5U1U8 is the taste-symmetry breakin

2Heren refers to the number of sea quarks.
©2003 The American Physical Society11-1
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potential. TheU term is given in Ref.@7#; it is not needed
explicitly here. ForU8, we have

2U85C2V

1

4 (
n

@Tr~jn
(3)S!Tr~jn

(3)S!1H.c.#

1C2A

1

4 (
n

@Tr~jn5
(3)S!Tr~j5n

(3)S!1H.c.#

1C5V

1

2 (
n

@Tr~jn
(3)S!Tr~jn

(3)S†!#

1C5A

1

2 (
n

@Tr~jn5
(3)S!Tr~j5n

(3)S†!#, ~5!

where thejB
(3) are block-diagonal 12312 matrices:

jB
(3)5S jB 0 0

0 jB 0

0 0 jB

D , ~6!

with jB the 434 objects, andBP$5,m,mn (m,n),m5,I %.
As seen in Ref.@7#, U8 generates two-point vertices a

O(a2) ~shown in Fig. 1! that mix flavor-neutral particles o
vector and axial tastes. In addition, flavor-neutral, tas
singlet particles are mixed by them0

2 term in Eq.~4!, which
results from the anomaly. In all three cases~taste vector,
axial vector, and singlet!, we have a term in the Lagrangia
of the form (d8/2)(U1D1S)2, where
ll

n

r

ng

07401
-

d85H a2dV8 taste vector

a2dA8 taste axial

4m0
2/3 taste singlet.

~7!

Expressions fordV8 anddA8 in terms of the coefficients ofU8
are given in Ref.@7#. These mixings require us to diagonaliz
the full mass matrix in each of the three channels. We w
the propagator for the vectors as

GV5G0,V1D V. ~8!

D V is the part of the taste-vector flavor-neutral propaga
that is disconnected at the quark level~i.e., Fig. 1 plus itera-
tions of intermediate sea quark loops!. Explicitly, we have
@7#

DVUV

(a)

u
u

d
d

(b)

-a2δ’V

-a2δ’V

FIG. 1. The two-point mixing vertex coming from theU8 term.
~a! corresponds to the chiral theory~we also have similarU-S and
D-S mixing terms!. ~b! shows the corresponding quark level di
gram. Here we only show the mixing among the taste vectors,
there are similar vertices among the axial tastes, as well as
singlet tastes~with a2dV8→4m0

2/3).
D MN
V 52a2dV8

~q21mUV

2 !~q21mDV

2 !~q21mSV

2 !

~q21mMV

2 !~q21mNV

2 !~q21mp
V
0

2
!~q21mhV

2 !~q21mh
V8

2
!
. ~9!
by

nt:

.’’
Here, mp
V
0

2
, mhV

2 and mh
V8

2
are the eigenvalues of the fu

mass-squared matrix~i.e., the poles ofGV). We emphasize
that Eq. ~9! remains valid in then53 partially quenched
case. The external mesonsM and N may be any flavor-
neutral states, made from either sea quarks or vale
quarks.

In the quenched caseD MN
V is simply

D MN
V,quench52a2dV8

1

~q21mMV

2 !~q21mNV

2 !
. ~10!

Equations~8!–~10! apply explicitly to the taste-vecto
channel; to get the result in the taste-axial~taste-singlet!
channel, just letV→A (V→I and a2dV8→4m0

2/3). In the
quenched case we cannot takem0→`, and must include
additionalh I8-dependent terms in the Lagrangian, resulti
in the replacementm0

2→m0
21aq2 in the singlet form of Eq.

~10! @7,12#.
ce

III. ONE LOOP DECAY CONSTANT FOR 4 ¿4¿4
DYNAMICAL FLAVORS

We calculate the pion3 decay constant in a partially
quenched theory. Full theory results are easily obtained
taking appropriate limits. There are three sea quarks (u, d
ands) and two valence quarks (x andy). The pion of inter-
est is theP5

1 , a Goldstone pion which is composed of anxȳ
pair of quarks.

The P5
1 decay constant is defined by the matrix eleme

^0u j
m5
P5

1

uP5
1~p!&52 i f P

5
1pm , ~11!

where j
m5
P5

1

is the axial current corresponding toP5
1 . With

this normalization,f p'131 MeV. In terms ofS, we can
write the axial current as

3We refer generically to any flavor-charged meson as a ‘‘pion
1-2
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j
m5
P5

1

5
2 i f 2

8
Tr@j5

(3)P P1
~]mSS†1S†]mS!#. ~12!

HereP P1
projects out the 434 block with appropriate fla-

vor: If we makex and y the last two flavors ofS, then

P i j
P1

5d i5d j 4, wherei , j are flavor indices.
At one loop, the decay constant has the form

f P
5
15 f S 11

1

16p2f 2
d f P

5
1D . ~13!

There are two contributions tod f P
5
1, which we calld f P

5
1

Z

andd f P
5
1

current
. They are shown in Figs. 2 and 3, respective

The contributiond f P
5
1

Z
is merely wave function renormaliza

tion. We have

d f P
5
1

Z
5

1

2
dZP

5
1[2

16p2f 2

2

dS~p2!

dp2 . ~14!

The self-energyS(p2) has already been calculated in Re
@7#. The wave function renormalization arises only from t
vertex generated by the kinetic energy term in Eq.~4!, since
derivatives on the external lines are necessary to generap2

dependence in a tadpole diagram. The factor of 1/2 in
~14! is due to the fact that this diagram is multiplied byAZ
5A11dZ'11 1

2 dZ.
The contributiond f P

5
1

current
is the current correction. It arise

from the expansion of Eq.~12! to cubic order inF. Perform-
ing this expansion, it is easy to see that the wave func
and current correction terms are proportional to each ot
d f P

5
1

current
524d f P

5
1

Z
. This fact, noted also in@9#, is perhaps

(a) (b)

FIG. 2. The SxPT diagrams contributing to the pion decay co
stant, coming from wave-function renormalization. The box rep
sents the axial current.~a! is the connected piece, where the prop
gator in the loop contains no two-point vertex insertions.~b!
subsumes the graphs which have disconnected insertions withi
loop. The cross represents one or more insertions of thed8 vertex,
with d8 given in Eq.~7!.

(a) (b)

FIG. 3. Same as Fig. 2, but these contributions to the de
constant are from axial current corrections.
07401
.

q.

n
r:

not surprising, since the form of the axial current, Eq.~12!, is
determined through Noether’s theorem only by the kine
energy part of the Lagrangian. From Eq.~14!, we then have

d f P
5
15d f P

5
1

Z
1d f P

5
1

current
52 3

2 dZP
5
1. ~15!

Using intermediate expressions forS(p2) from @7#, the
one-loop result is

d f P
5
152

1

8E d4q

p2 F(Q,B S 1

q21mQB

2 D 1D XX
I 22D XY

I 1D YY
I

14D XX
V 18D XY

V 14D YY
V 14D XX

A 18D XY
A 14D YY

A G .

~16!

Here,Q runs over the six mesons formed from one valen
and one sea quark~i.e., the xu, xd, xs, yu, yd, and ys
mesons!. As before,B takes on the 16 values$5,m,mn(m
,n),m5,I %. We have already included the factor of 4 th
comes from summing over the degenerate vector and a
contributions in theD V andD A terms. Despite the fact tha
the only 4-point vertices contributing to this expression co
from the kinetic energy term, the result is more complica
than that for the mass renormalization@7# because there ar
no cancellations here~either accidental or required by sym
metry!.

The first term in Eq.~16! ~the sum overQ andB) comes
from the wave function renormalization and current corre
tion diagrams shown in Fig. 4~a!, which involve a single
virtual quark loop. The diagrams arise from the vertices
Fig. 5~a!, respectively, wherei is summed over the se
quarks only. In this case, the propagator in the loop mus
connected since the loop meson is not flavor neutral.

The vertices in Fig. 5~a! also produce diagrams with dis
connected loop propagators, Figs. 4~b! and 4~c!, when i 5y
@or i 5x in the y↔x version of Fig. 5~a!#. These diagrams
give rise to theDYY andDXX terms in Eq.~16!.

Finally, the vertices in Fig. 5~b! generate the diagrams i
Figs. 4~d! and 4~e!. The DXY terms in Eq.~16! come from
these diagrams. For more discussion of how to identify qu
flow diagrams with the SxPT contributions, see Ref.@7#.

We can write down the quenched result by~1! eliminating
the term summed overQ and B, which arises from virtual
quark loops@diagrams in Fig. 4~a!#, and ~2! replacing ofD
→D quenchfor D V, D A, andD I . These replacements elim
nate diagrams in Figs. 4~c! and 4~e!.

In the partially quenched case, when thex or y quark mass
is different from all sea quark masses, there are double p
in Eq. ~16! coming from theDXX or DYY terms. This is
different from the mass renormalization result, where dou
poles do not arise unlessmx5my and this mass is different
from all sea quark masses, a case we did not treat in deta
Ref. @7#. In order to write down explicit results for partia
quenching here, we must therefore expand on the notatio

-
-
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y
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Ref. @7#. Below we will use the notation defined in the Ap
pendix, where we explain the techniques we use to eval
the integrals.

Before performing the momentum integrals, we no
make the transition from the 41414 case to the 11111
case. This is easily accomplished since we have already
termined the separate contributions from diagrams in Fig
with various numbers of sea quark loops. Those diagra
with a connected propagator in the loop, Fig. 4~a!, have a

(a)

(c)

(d)

(e)

(b)

FIG. 4. The quark level diagrams that contribute to the one-lo
pion decay constant. The box represents an insertion of the
current. The diagrams on the left correspond to the wave func
renormalization while those on the right correspond to the cur
corrections.
07401
te

e-
4
s

single sea quark loop and simply must be divided by 4.
The remaining diagrams have the same form as th

treated in Ref.@7#, so we just briefly review the procedure
Diagrams~b! and ~d! in Fig. 4 have no sea quark loops an
are unaffected by the transition to the 11111 case. These
diagrams have a single factor ofd8 coming from the overall
coefficient of the disconnected propagatorD in Eq. ~9!. Each
sea quark loop added on to diagrams~b! and~d!, as in~c! and
~e!, comes with an additional factor ofd8. Therefore, we
must merely make the replacementd8→d8/4 in all but the
overall factors ofd8. This is easily accomplished by lettin
d8→d8/4 in the computation of the full mass eigenstat
@i.e., mp

V
0

2
, mhV

2 and mh
V8

2
in Eq. ~9!#, but not in the overall

coefficient ofD.
After making the transition to the 11111 case, taking

the m0→` limit ~with mh
I8

2
;m0

2), and using Eqs.~A1!–

~A10! to perform the momentum integrals, we have

p
ial
n

nt

(a)

(b)

x

x

y

y xy

x

y

y

y ii

y y

yy

x

x x

x

x x

yy

y yii

FIG. 5. The quark level diagrams for 2→2 meson scattering
which contribute tof P

5
1. The indicesi and j represent arbitrary

quark flavors. There are two additional diagrams~not shown!,
which are like those in~a! but have the roles ofx and y inter-
changed. The box stands for the axial current.
d f P
5
1→2

1

32 (
Q,B

,~mQB

2 !1
1

6 S RXI

[3,3]~$M XI

(1)%!,̃~mXI

2 !1RYI

[3,3]~$M YI

(1)%!,̃~mYI

2 !1(
j I

D j I ,XI

[3,3] ~$M XI

(1)%!,~mj I

2 !

1(
j I

D j I ,YI

[3,3] ~$M YI

(1)%!,~mj I

2 !22(
j I

Rj I

[4,3]~$M I
(2)%!,~mj I

2 ! D 1
1

2
a2dV8 FRXV

[4,3]~$M XV

(3)%!,̃~mXV

2 !

1RYV

[4,3]~$M YV

(3)%!,̃~mYV

2 !1(
j V

D j V ,XV

[4,3] ~$M XV

(3)%!,~mj V

2 !1(
j V

D j V ,YV

[4,3] ~$M YV

(3)%!,~mj V

2 !

12(
j V

Rj V

[5,3]~$M V
(4)%!,~mj V

2 !G1@V→A#, ~17!
1-4
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whereQ and B have the same meaning as in Eq.~16!, the
chiral logarithms,(m2) are defined in Eqs.~A13! and~A15!
for infinite and finite spatial volume, respectively, and theRs
and Ds are residues defined in Eqs.~A3! and ~A6!. The
arrow signifies that we are only keeping the chiral logarith
terms in this expression. We have defined the sets of ma
in the residues:

$M Z
(1)%[$mp0,mh ,mZ%,

$M (2)%[$mp0,mh ,mX ,mY%,

$M Z
(3)%[$mp0,mh ,mh8 ,mZ%,

$M (4)%[$mp0,mh ,mh8 ,mX ,mY%, ~18!

whereZ can be eitherX or Y, and we show the taste labe
explicitly in Eq. ~17!. We do not include the numerato
masses in the argument of the residues, as they are the
for each case:

$m%5$mU ,mD ,mS%, ~19!

with appropriate taste subscripts. The sums overj I , j V , and
j A run over the set of masses included as the argument o
residues in each sum.
s
si

e

on

io
-

ar

-

h

07401
es

me

he

The values ofmp0
2 , mh

2 andmh8
2 in each taste channel in

Eq. ~17! are the eigenvalues of the full mass matrix

S mU
2 1d8/4 d8/4 d8/4

d8/4 mD
2 1d8/4 d8/4

d8/4 d8/4 mS
21d8/4

D , ~20!

whered8 is given by Eq.~7!, the massesmU
2 , mD

2 , mS
2 have

an implicit taste label (V, A, or I ) depending on the channe
and them0

2→` limit should be taken in the singlet channe
The explicit expressions for these eigenvalues are not illu
nating in general, but they are given formu5md ~the 211
case! in Ref. @7#.

In writing down Eq. ~17!, we have assumedmX
2ÞmY

2 .
When mX

25mY
2 some of the residues of sets$M (2)% and

$M (4)% blow up, so the limit must be taken carefully. Alte
natively, one can simply return to Eq.~16!, take the limit
trivially, and perform the integrations again.

In the quenched case, we drop the first term in Eq.~16!
~with the sum overQ andB) since it comes from diagram
with a sea quark loop. In the remaining expression, we m
the replacementD→D quench.

Writing out the residues explicitly, and using the resu
from the Appendix, we obtain
d f P
5
1

quench→
m0

2

6 F ,̃~mXI

2 !1 ,̃~mYI

2 !22
,~mXI

2 !2,~mYI

2 !

mYI

2 2mXI

2 G1
a

6 F ,~mXI

2 !2mXI

2 ,̃~mXI

2 !1,~mYI

2 !2mYI

2 ,̃~mYI

2 !

12
mXI

2 ,~mXI

2 !2mYI

2 ,~mYI

2 !

mYI

2 2mXI

2 G1
1

2
a2dV8F ,̃~mXV

2 !1 ,̃~mYV

2 !12
,~mXV

2 !2,~mYV

2 !

mYV

2 2mXV

2 G1@V→A#. ~21!
f

ib-
so

re

of

nly
ian
-

,

Carefully taking the limitmy→mx @or returning to Eq.~16!
and taking the limit trivially#, we see that the singlet term
vanish but the vector and axial terms do not. This is con
tent with the known result@9,12# in the symmetry~con-
tinuum! limit that there are no chiral logarithms in th
quenched pion decay constant with degenerate masses.

IV. FINAL NLO RESULTS

For the complete expression for the NLO pion decay c
stant, we need the ‘‘O(p4)’’ analytic terms in addition to the
chiral logarithms calculated above. Ours is a joint expans
in a2 and the quark massm, so we are looking for the ana
lytic contributions arising from terms ofO(m2,ma2,a4) in
the chiral Lagrangian. Examples of such terms
Tr(]mS]mS†)Tr(MS1MS†) @O(m2)#, a2VTr(]mS]mS†)
@O(ma2)#, and (a2V)2 @O(a4)#. There will also be chiral
representatives of thoseO(a2) operators in the effective con
tinuum QCD action~‘‘Symanzik action’’! that have no rep-
resentatives at lowest order—such operators comprise w
s-

-

n

e

at

Lee and Sharpe@10# call S6
FF(B) . Chiral representatives o

S6
FF(B) operators have two derivatives@10# and therefore are

O(ma2).
The only terms in the chiral Lagrangian that can contr

ute to the decay constant are those with derivatives,
O(a4) terms are not relevant here. Similarly, the ‘‘m’’ in
O(ma2) terms must come from two derivatives. Therefo
such terms just make a NLO contribution tof P

5
1 of the form

Fa2f , whereF is a constant formed out of the coefficients
the relevant Lagrangian terms.F would of course depend on
the taste of the decaying particle, but we are considering o
Goldstone particles here. Finally, the terms in the Lagrang
that areO(m2) are just the NLO ones familiar from con
tinuum xPT @13#.

A. Full and partially quenched NLO results

Using the definitions ofLi in Ref. @13#, we thus get from
Eqs.~17! and ~13!, in the 11111 partially quenched case
1-5
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f P
5
1

1-loop,11111
5 f H 11

1

16p2f 2 F2
1

32 (
Q,B

,~mQB

2 !1
1

6 S RXI

[3,3]~$M XI

(1)%!,̃~mXI

2 !1RYI

[3,3]~$M YI

(1)%!,̃~mYI

2 !

1(
j I

D j I ,XI

[3,3] ~$M XI

(1)%!,~mj I

2 !1(
j I

D j I ,YI

[3,3] ~$M YI

(1)%!,~mj I

2 !22(
j I

Rj I

[4,3]~$M I
(2)%!,~mj I

2 ! D
1

1

2
a2dV8 S RXV

[4,3]~$M XV

(3)%!,̃~mXV

2 !1RYV

[4,3]~$M YV

(3)%!,̃~mYV

2 !1(
j V

D j V ,XV

[4,3] ~$M XV

(3)%!,~mj V

2 !

1(
j V

D j V ,YV

[4,3] ~$M YV

(3)%!,~mj V

2 !12(
j V

Rj V

[5,3]~$M V
(4)%!,~mj V

2 ! D 1~V→A!G1
16m

f 2
~mu1md1ms!L4

1
8m

f 2
~mx1my!L51a2FJ . ~22!

Definitions here are the same as in Eq.~17!. We have checked that this result reduces to that of Sharpe and Shoresh@11# in the
continuum~symmetry! limit. Using Eq.~A8!, it is not hard to show that changes here in the chiral scaleL can be absorbed into
the parametersL4 , L5 andF, as expected.

In the 211 case (mu5md[m,) with no other degeneracies, there is some simplification becausemp0
2

5mU
2 5mD

2 in each
taste channel. We obtain

f P
5
1

1-loop,211
5 f H 11

1

16p2f 2 F2
1

32 (
Q,B

,~mQB

2 !1
1

6 S RXI

[2,2]~$M XI

(5)%!,̃~mXI

2 !1RYI

[2,2]~$M YI

(5)%!,̃~mYI

2 !

1(
j I

D j I ,XI

[2,2] ~$M XI

(5)%!,~mj I

2 !1(
j I

D j I ,YI

[2,2] ~$M YI

(5)%!,~mj I

2 !22(
j I

Rj I

[3,2]~$M I
(6)%!,~mj I

2 ! D
1

1

2
a2dV8 S RXV

[3,2]~$M XV

(7)%!,̃~mXV

2 !1RYV

[3,2]~$M YV

(7)%!,̃~mYV

2 !1(
j V

D j V ,XV

[3,2] ~$M XV

(7)%!,~mj V

2 !

1(
j V

D j V ,YV

[3,2] ~$M YV

(7)%!,~mj V

2 !12(
j V

Rj V

[4,2]~$M V
(8)%!,~mj V

2 ! D 1~V→A!G
1

16m

f 2
~2m,1ms!L41

8m

f 2
~mx1my!L51a2FJ , ~23!
are-

st
with definitions the same as in Eq.~17!, except that now the
denominator masses in the residues are

$M Z
(5)%[$mh ,mZ%,

$M (6)%[$mh ,mX ,mY%,

$M Z
(7)%[$mh ,mh8 ,mZ%,

$M (8)%[$mh ,mh8 ,mX ,mY%, ~24!

where Z can again be eitherX or Y, and a taste label is
implicit. The numerator masses in the residues of Eq.~23!
07401
are not shown explicitly. They are always

$m%5$mU ,mS%, ~25!

with the taste label again implicit.
Various cases of interest can be obtained either by c

fully taking limits in Eq. ~22! or ~23! or by taking the limits
in Eq. ~16! and redoing the momentum integration. We fir
consider the ‘‘full QCD’’ case of ‘‘real’’ pions and kaons. By
settingmx5mu andmy5md , but keepingmuÞmd , we get
after a bit of algebra
1-6
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f p
5
1

1-loop,11111
5 f H 11

1

16p2f 2 F2
1

32 (
Q,B

,~mQB

2 !1
~mUI

2 2mDI

2 !2

6 (
j I

Rj I

[4,1]~$M I
(2)%;$mSI

2 %!,~mj I

2 !

1
1

2
a2dV8 S (

j V

~mUV

2 1mDV

2 22mj V

2 !2Rj V

[5,1]~$M V
(4)%;$mSV

2 %!,~mj V

2 ! D 1~V→A!G1
16m

f 2
~mu1md1ms!L4

1
8m

f 2
~mu1md!L51a2FJ , ~26!

where the sets$M (2)% and$M (4)% are given in Eq.~18! ~with X→U andY→D), j I and j V run over all masses in$M I
2% and

$M V
4%, respectively, andQP$U,D,p1,p2,K1,K0%. Note that there are no double pole terms here, due to cancellations

disconnected flavor-neutral propagator. The charged kaon result can be obtained from Eq.~26! by making the replacement
d↔s andD↔S wherever they appear explicitly~as well as in the definitions of the mass sets$M I

2% and$M V
4% and in the sum

over Q, where we now haveQP$U,S,K1,K2,p1,K̄0%).
The full theory pion result simplifies even more in the 211 case, when the up and down quark masses are equal.

writing the residues explicitly, we obtain

f p
5
1

1-loop,211
5 f H 11

1

16p2f 2 F2
1

16 (
B

@2,~mp
B
0

2
!1,~mK

B
1

2
!#12a2dV8S mSV

2 2mhV

2

~mp
V
0

2
2mhV

2 !~mh
V8

2
2mhV

2 !
,~mhV

2 !

1

mSV

2 2mh
V8

2

~mp
V
0

2
2mh

V8
2

!~mhV

2 2mh
V8

2
!

,~mh
V8

2
!1

mSV

2 2mp
V
0

2

~mhV

2 2mp
V
0

2
!~mh

V8
2

2mp
V
0

2
!

,~mp
V
0

2
!D 1~V→A!G

1
16m

f 2
~2m,1ms!L41

16m

f 2
m,L51a2FJ . ~27!

Similarly, the 211 result for the full kaon is

f K
5
1

1-loop,211
5 f H 11

1

16p2f 2 F2
1

32 (
B

@2,~mp
B
0

2
!13,~mK

B
1

2
!1,~mSB

2 !#1
1

4
,~mp

I
0

2
!2

3

4
,~mh I

2 !1
1

2
,~mSI

2 !

1
1

2
a2dV8S ~mSV

2 1mp
V
0

2
22mhV

2 !2

~mp
V
0

2
2mhV

2 !~mSV

2 2mhV

2 !~mh
V8

2
2mhV

2 !
,~mhV

2 !1

~mSV

2 1mp
V
0

2
22mh

V8
2

!2

~mp
V
0

2
2mh

V8
2

!~mSV

2 2mh
V8

2
!~mhV

2 2mh
V8

2
!

,~mh
V8

2
!

1

mSV

2 2mp
V
0

2

~mhV

2 2mp
V
0

2
!~mh

V8
2

2mp
V
0

2
!

,~mp
V
0

2
!1

mp
V
0

2
2mSV

2

~mhV

2 2mSV

2 !~mh
V8

2
2mSV

2 !
,~mSV

2 !D 1~V→A!G
1

16m

f 2
~2m,1ms!L41

8m

f 2
(m,1m2)L51a2FJ . ~28!
qs the
Here we have used the fact thatmh I

2 5 2
3 mSI

2 1 1
3 mp

I
0

2
in the

211 case to simplify the result. It is easy to check that E
~27! and ~28! reduce to the standard answers@13# in the a2

→0 limit, where all tastes are degenerate.
07401
.

B. Quenched NLO results

In the fully quenched case, we only need to consider
two casesmxÞmy andmx5my .

For the quenched ‘‘kaon’’ case (mxÞmy) we obtain
1-7



C. AUBIN AND C. BERNARD PHYSICAL REVIEW D68, 074011 ~2003!
f K
5
1

1-loop,quench
5 f H 11

1

16p2f 2 Fm0
2

6 S ,̃~mXI

2 !1 ,̃~mYI

2 !22
,~mXI

2 !2,~mYI

2 !

mYI

2 2mXI

2 D 1
a

6 S ,~mXI

2 !2mXI

2 ,̃~mXI

2 !1,~mYI

2 !2mYI

2 ,̃~mYI

2 !

12
mXI

2 ,~mXI

2 !2mYI

2 ,~mYI

2 !

mYI

2 2mXI

2 D 1
1

2
a2dV8 S ,̃~mXV

2 !1 ,̃~mYV

2 !12
,~mXV

2 !2,~mYV

2 !

mYV

2 2mXV

2 D 1~V→A!G
1

8m

f 2
~mx1my!L581a2F8J . ~29!
wi
n
in-
y

he
ta

k
e
.
r

r
e

ly
he
m

i

pe

e
s

pa-

ons

or
the
2-

of

s:
The analytic terms in the quenched case are marked
primes to indicate that they may have different values tha
the full theory. Also, note that there is no analytic term
volving the sea quarks in the quenched case, as they pla
role here. In the continuum limit, Eq.~29! reproduces the
known quenched result@12#.

Taking the degenerate limit (my5mx) in the quenched
case, we obtain for the quenched ‘‘pion’’

f p
5
1

1-loop,quench
5 f H 11

1

16p2f 2
@2a2dV8 ,̃~mXV

2 !

12a2dA8 ,̃~mXA

2 !#1
16m

f 2
mxL581a2F8J .

~30!

This is consistent with the fact that in the isospin limit, t
continuum quenched pion decay constant does not con
chiral logarithms.

V. REMARKS AND CONCLUSIONS

The most general result we have is for then53 partially
quenched case (11111) with all valence and sea quar
masses different, Eq.~22!. Other interesting cases can b
obtained from Eq.~22! by taking appropriate mass limits
The results most relevant to current MILC simulations a
those with mu5md[ml ~the 211 case!; these and othe
important limits are presented explicitly in Sec. IV A. Th
results in the quenched case are given separately
Sec. IV B, in Eqs.~29! and ~30!.

The explicit results in Sec. IV often appear daunting
complex. However, the intricacies arise primarily from t
momentum integration, which produces chiral logarith
with complicated residues from each of the many poles
the disconnected flavor neutral propagator, Eq.~9!. The re-
sult before integration, Eq.~16!, is actually quite simple, and
the reader may prefer to start with that expression and
form the integration himself in specific cases of interest.

In the partially quenched case, double poles arise h
even when the valence masses are non-degenerate, ju
they do in the continuum@11,15#. It is interesting that these
double poles appear in the explicitlyO(a2) terms~taste vec-
tor or axial channels, proportional todV8 or dA8 ) as well as in
07401
th
in

no

in

e

in

s
n

r-

re
t as

the continuum-like taste-singlet channel.
Using the SxPT results presented here and in@7#, it seems

possible to fit existing lattice data and extract physical
rameters@e.g., f p , f K , ms , (mu1md)/2,Li ] with rather
small discretization errors@16#. The next steps would be to
extend the current approach to describe heavy-light mes
@17# and baryons.
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APPENDIX

In this appendix, we go through the technical details
calculating the integrals found in Eq.~16!. For the terms only
containing single poles, this was done in Ref.@7#, so here we
focus on the terms which contain double poles.

Consider first an integrand of the form

I [n,k]~$m%;$m%![

)
a51

k

~q21ma
2!

)
j 51

n

~q21mj
2!

, ~A1!

where$m% and$m% are the sets of masses$m1 ,m2 , . . . ,mn%
and $m1 ,m2 , . . . ,mk%, respectively, As long asn.k and
there are no mass degeneracies in the denominator,I @n,k# can
be written as the sum of simple poles times their residue

I [n,k]~$m%;$m%!5(
j 51

n Rj
[n,k]~$m%;$m%!

q21mj
2

, ~A2!

where

Rj
[n,k]~$m%;$m%![

)
a51

k

~ma
22mj

2!

)
iÞ j

~mi
22mj

2!

. ~A3!
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If there is a double pole, the residues are modified.
need consider only the case of one double pole; let it occu
q252m,

2 . We then have

I dp
[n,k]~m, ;$m%;$m%![

)
a51

k

~q21ma
2!

~q21m,
2!)

j 51

n

~q21mj
2!

52
d

dm,
2 S )

a51

k

~q21ma
2!

)
j 51

n

~q21mj
2!
D .

~A4!

Here the product overj includes,, i.e., 1<,<n. We now
expand the quantity inside of the derivative as a sum
single poles and take the derivative of the resulting exp
sion. The result is

I dp
[n,k]~m, ;$m%;$m%!5

R,
[n,k]~$m%;$m%!

~q21m,
2!2

1(
j 51

n D j ,,
[n,k]~$m%;$m%!

~q21mj
2!

, ~A5!

with

D j ,,
[n,k]~$m%;$m%![2

d

dm,
2

Rj
[n,k]~$m%;$m%!. ~A6!

Note thatD j ,,
[n,k] takes on a simple form forj Þ,:

D j ,,
[n,k]~$m%;$m%!5Rj

[n11,k]~$m%8;$m%! ~ j Þ, !, ~A7!

where $m%8 is just the set$m% with m, repeated:$m%8
5$m1 , . . . ,m, ,m, , . . . ,mn%. For j 5,, D j ,,

[n,k] becomes
quite complicated, withn1k terms due to the differentiation
We emphasize that these formulas are needed solely for
forming the momentum integrals explicitly in the partial
quenched case. In full QCD, there are no double poles.

We now collect some identities satisfied by the residu

(
j 51

n

Rj
[n,k]5H 1, n5k11

0, n>k12,

(
j 51

n

Rj
[n,k]mj

255 (
j 51

n

mj
22 (

a51

k

ma
2 , n5k11

21, n5k12

0, n>k13,
07401
e
at

f
s-

er-

:

(
j 51

n

D j ,,
[n,k]5H 1, n5k

0, n>k11,

(
j 51

n

~D j ,,
[n,k]mj

2!2R,
[n,k]

55 m,
21(

j 51

n

mj
22 (

a51

k

ma
2 , n5k,

21, n5k11,

0, n>k12.
~A8!

These identities are easily obtained by expanding both s
of Eq. ~A2! or ~A5! for largeq2.

When performing the explicit evaluation, the followin
integrals are needed:

I1[E d4q

~2p!4

1

q21m2
→ 1

16p2
,~m2!, ~A9!

I2[E d4q

~2p!4

q2

q21m2

5E d4q

~2p!4
2m2I1→

2m2

16p2
,~m2!, ~A10!

I3[E d4q

~2p!4

1

~q21m2!2

52
]

]m2
I 1→

1

16p2
,̃~m2!, ~A11!

I4[E d4q

~2p!4

q2

~q21m2!2

5I12m2I 3→
1

16p2
@,~m2!2m2,̃~m2!#, ~A12!

where we have defined the chiral logarithm functions

,~m2![m2ln
m2

L2
~ infinite volume!, ~A13!

,̃~m2![2S ln
m2

L2
11D ~ infinite volume!,

~A14!

with L the chiral scale. We use the arrow in Eqs.~A9!–
~A12! and elsewhere to indicate that we are only keeping
chiral logarithm terms. If the system is in a finite~but large!
spatial volumeL3, the following modifications are require
@14#:
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,~m2![m2S ln
m2

L2
1d1~mL!D ~finite spatial volume!,

~A15!

,̃~m2![2S ln
m2

L2
11D 1d3~mL!

~finite spatial volume!, ~A16!
,

07401
where

d1~mL!5
4

mL (
rWÞ0

K1~ urWumL!

urWu
, ~A17!

d3~mL!52(
rWÞ0

K0~ urWumL!, ~A18!

with K0 andK1 the Bessel functions of imaginary argumen
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