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Flux tube model for glueballs
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We calculate the mass spectra and decay widths of glueballs in the flux tube model. The glueball is assumed
to be a flux tube ring. The breathing and the rotational motions are investigated using the WKB approximation.
The calculated spectrum is consistent with those obtained by lattice QCD. The decay widths are also computed
using the Schwinger mechanism, and it is shown that they have rather large values.
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I. INTRODUCTION

It is widely believed that the strong interaction is d
scribed by quantum chromodynamics~QCD! @1#. It is, how-
ever, very difficult to solve QCD, so that several effecti
models have been devised to explain the physical prope
of many hadrons. The flux tube model@2#, or hadron string
model @3,4#, is one such model. According to this mode
mesons are made up of a quark and antiquark connected
color flux tube and baryons are described by a quark
diquark connected by the same flux tube. We showed
previous paper@5# that various excited states of the hadro
can be explained systematically using such a simple mo

On the other hand, recent lattice QCD simulations@6#
predict the existence of glueballs, which are composed
only gluons. It is the purpose of this paper to present
intuitive and analytic approach to glueballs using a flux tu
model. We assume that the glueball is a closed color
tube~flux tube ring!. Moreover, the flux tube that constitute
the ring is assumed to have the same properties as the
tube that constitutes a meson or a baryon. Consequently
model has no free parameter. We study the relativistic mo
of the closed string and obtain the mass spectrum of
glueballs. This simple picture has already been considere
several authors. In particular, Koma, Suganuma, and Tok@7#
studied the relativistic breathing motion analytically with t
use of the dual Ginzburg-Landau theory@8–10#. We study
not only the vibrational motion but also the rotational on
Moreover, the decay widths in@7# are also calculated by
taking into accountqq̄ pair production inside the flux tub
~Schwinger mechanism!.

This paper is organized as follows. In the next section,
flux tube model for the glueballs is formulated. Section III
devoted to calculation of the mass spectra and the de
widths of the glueballs. In Sec. IV, the numerical results
presented and some discussion is given.

II. A STRING MODEL OF GLUEBALLS

According to our flux tube model@5#, mesons~baryons!
are composed of a quarkq and an antiquarkq̄ ~diquarkqq!
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connected by a color flux tube. The color quantum numbe
q̄ is the same as that ofqq so that both flux tubes are iden
tical. This fact means the slope of the Regge trajectories
the mesons and baryons is universal.

Now let us consider a flux tube configuration that cor
sponds to a glueball state. Since it is a quarkless color sin
state, we assume that the flux tube forms a closed ci
~ring!. Under this assumption, we will construct a mat
ematical expression for the flux tube model of the glueb
Let us start with the Lagrangian of the MIT bag model a
plied to a toruslike bag@11#,

L5
1

2E ~H22E2!d3x2E Bd3x, ~1!

where E and H are the color electric and magnetic field
respectively and theB in the second term is the bag consta
We consider the breathing motion and the rotational mot
around a diameter of the ring; a closed string with varyi
radius r (t) rotates around thex axis with angular velocity
v5 u̇(t) as shown in Fig. 1. The volume integral in the righ

FIG. 1. A closed string with radiusr rotating around thex axis
with angular velocityv.
©2003 The American Physical Society07-1
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hand side of Eq.~1! can be rewritten in a coordinate syste
that rotates together with the ring. If the color flux in th
rotating coordinate is denoted byE0, we get H22E2

52E0
2. Then the Lagrangian is approximated by the li

integral,

L~r , ṙ ,v!52 R S 1

2
E0

21BDDS0A12v2 dl, ~2!

where the volume element of the flux tube with infinitesim
lengthdl is approximated byDS0A12v2 dl. DS0 means the
cross section of the flux tube in the rotational coordin
system. The velocityv of the line element is perpendicular t
the direction of the line element so that the factorA12v2

represents the Lorenz contraction. If the generalized coo
nates of the line element are written as those in Fig. 1,
squared velocity is given byv25 ṙ 21r 2v2 sin2 w. Conse-
quently, we obtain the following Lagrangian of the flux tub
ring:

L~r , ṙ ,v!52E
0

2p

arA12v2 dw, ~3!

where the constanta means the string tension given bya
[(E0

2/21B)DS0. Moreover, if we think of the pressure ba
ance on the flux tube, we getE0

2/25B @12#.
Now let us quantize the Lagrangian in order to calcul

the energy eigenvalues of the glueballs. The generalized
ordinates of our system are the radiusr of the flux tube ring
and the rotational angleu of the ring around thex axis. The
conjugate momenta are defined by

pr[
]L

] ṙ
5E arṙ

A12v2
dw[Hṙ , ~4!

pu[
]L

]v
5E ar3v sin2 w

A12v2
dw[Iv, ~5!

where pr and pu represent the radial momentum and t
angular momentum of the system. It will also be shown t
the quantitiesH and I introduced in the right-hand side co
respond to the energy and moment of inertia of the clo
string, respectively. The Hamiltonian is given by

H[ ṙ pr1vpu2L5E ar

A12v2
dw. ~6!

Canonical quantization leads to replacement of the m
menta by the following operators:

pr→ p̂52 i\
1

r

]

]r
r , ~7!

pu→ l̂ 52 i\
]

]u
. ~8!

Thus we have the Schro¨dinger equation with the energy e
genvalueE,
07400
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Ĥ~r ,p̂, l̂ !c~r ,u!5Ec~r ,u!, ~9!

and the normalization of the wave function is given by

E
0

`

drE
0

2p

du r 2uc~r ,u!u251. ~10!

If the wave function is rewritten as

c~r ,u!5
1

A2p
x~r !eil u/\ ~11!

and substituted into Eq.~9!, we get

Ĥ~r ,p̂,l !x~r !5Ex~r !. ~12!

Here l is an eigenvalue of the angular momentum, which
an even integer (l 50,2,4, . . . ) because of the boundary con
dition c(r ,u50)5c(r ,u52p).

III. THE EXCITED ENERGY AND THE DECAY WIDTH

We will try to solve the Schro¨dinger equation~12! and
calculate the energy spectrum and the decay width. In
case ofl 50, we notice thatv50 from Eq. ~5!. Then the
Schrödinger equation is reduced to

$ p̂21~2par !2%x~r !5E2x~r !. ~13!

It should be noted that this equation is nothing but the Sch¨-
dinger equation of a three-dimensional harmonic oscilla
Introducing a new functionr(r ) by x(r )[r(r )/r , we have
the Schro¨dinger equation for the one-dimensional harmon
oscillator, so that we obtain the familiar eigenvalues forE2,

E252pa\~2n11!, ~14!

where the quantum numbern is an odd integer (n
51,3,5, . . . ) from the boundary conditionr(0)50. This
result is identical to that obtained by Koma, Suganuma,
Toki @7#.

Next we consider the case ofl .0. In order to solve the
Schrödinger equation, we will extend the WKB approxima
tion @13# to the relativistic equation. The wave functionx(r )
is rewritten as

x~r !5A~r !eiS(r )/\, ~15!

where the amplitudeA(r ) and the phaseS(r ) are unknown
real functions. Substituting it into Eq.~12!, we get

Ĥ~r ,e2 iS/\p̂eiS/\,l !A~r !5EA~r !. ~16!

Here we expand the left-hand side of this equation with
spect to\. The lowest order equation leads to

H~r ,p,l !5E, ~17!

wherep stands fordS/dr. From this equation, we get th
phase functionS(r ) and the energy eigenvalueE. The next
order of\ gives
7-2
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1

2 S ]H

]p
p̂1 p̂

]H

]p DA~r !50, ~18!

where the operators on the left-hand side have been sym
trized because it should be Hermitian. With a simple cal
lation, this equation can be transformed into

d

dr S ]H

]p
r 2AD50. ~19!

By integrating this equation we obtain the amplitude fun
tion A(r ). The integration constant should be determined
the normalization condition of the wave function. Thus w
have obtained the wave function of the glueball.

First we calculate the exited spectra of the glueball. Th
are two constants of motion,

E5
4ar

A12~p/E!2
K1~k!, ~20!

l 5
4ar2

k
@K1~k!2K2~k!#, ~21!

whereK1(k) andK2(k) are the complete elliptic integrals o
the first and second kinds defined by

K1~k![E
0

p/2 1

A12k2 sin2 w
dw, ~22!

K2~k![E
0

p/2
A12k2 sin2 w dw. ~23!

Herek (0<k,1) is defined by

k[
rv

A12~p/E!2
. ~24!

If Eq. ~20! is squared, the energy is represented as

E25p2116a2r 2K1~k!2[p21V2. ~25!

TheV in the right-hand side means the scalar potential of
closed string and is written as

V~r ![4aK1~k!r 5
kl

r
14aK2~k!r . ~26!

It should be noted that the potential is not at all a line
function of r, becausek in this equation is a function ofr
through Eq.~21!. The excited spectra can be calculated us
the Bohr-Sommerfeld formula:

R p~r !dr5~2n11!2p\. ~27!

If Eq. ~25! is substituted into the left-hand side of this equ
tion, the energyE is determined (n51,3,5, . . . ).

Next let us discuss the decay widths of the glueballs.
this end, we must introduce a new interaction in our pres
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model. We assume that the pair creation ofqq̄ in the flux
tube leads to the decay of the closed string: string→qq̄→
many hadrons. This mechanism, which is called
Schwinger mechanism@14#, was used by us to calculate th
decay widths of mesons and baryons in Ref.@3#. The prob-
ability of pair production in a unit space-time volume in th
flux tube is given by

w5
a2

4p3 (
q

(
n51

`
1

n2
expS 2

npmq
2

a D , ~28!

wherea is the string tension and(q indicates a summation
over all quark flavors with massmq (q5u,d,s) @15–17#.
The probability of decay~pair production! in the time inter-
val dt is given by

dW5E ux~r !u2wV~r !r 2 dr dt, ~29!

whereV(r ) denotes the volume of the flux tube ring wit
radiusr and is given by

V~r !5DS0E
0

2p
A12v2r dw. ~30!

Substituting this equation into Eq.~28!, we obtain the decay
width

G[
dW

dt
5E

0

`

4br3A12S p

ED 2

K2~k!A2 dr. ~31!

The constantb5wDS0 defined in the right-hand side mean
the probability of the string breaking per unit length per u
time.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we will carry out numerical calculations
the mass spectra and the decay widths of glueballs. There
two parameters in our model: the string tensiona and the
string breaking probabilityb. It is assumed that the color flu
tube that constitutes a glueball is the same as the one
constitutes a meson. The reason is that the color flux fro
quark ~antiquark! is the narrowest one in the hadron worl
Thus the two parameters are taken to have the same valu
those used in our previous paper@5#, which reproduce the
string tension a50.15 GeV2 and the decay widthGr

5151 MeV.
Before carrying out the calculations, it is instructive

figure out the potentialV(r ) as a function ofr. From Eq.
~26!, the potentials with various angular momenta are dra
in Fig. 2. A repulsive core appears near the origin, due to
centrifugal potential. In contrast, the potential becomes lin
at larger distances. This behavior is natural and can be
derstood analytically as follows. Whenr→0, we note that
k→1 from Eq. ~21!. Then the potential is reduced to th
centrifugal one:E→Ap21( l /r )2'p1 l 2/(2pr2). On the
other hand, it approaches the linear potential at larger
tances, which is the confining potential:V(r )→2par.
7-3



p

is
h
e

e
en
n

e

e
ro
o

le

th
o

se
a
o

sily.
eri-
atio
nal
ir
atio
. 5.
n

te.

he
ron

ing

tio

of
ote

of
atio

IWASAKI et al. PHYSICAL REVIEW D 68, 074007 ~2003!
The mass spectrum of the vibrational mode has a sim
form: the vibrational quantum number (n51,3,5,•) is pro-
portional to the squared mass from Eq.~14!. The relation
between the quantum number and the squared mass
analogue of the Regge trajectory of rotational motion. T
vibrational modes on the straight line correspond to thl
50 states that lie on the~Regge! parent and~many! daughter
trajectories with equal spacing.

On the other hand, the spectrum of the rotational mod
shown in Fig. 3. The horizontal axis is the angular mom
tum (L50,2,4, . . . ). Themass spectrum in Fig. 3 is draw
in the case ofn50 where the boundary condition atr 50
does not exist due to the centrifugal potential. We obtain
an almost straight line:M2}L. The Regge slopedL/dM2 is
smaller than that of the ordinary Regge trajectories of m
sons and baryons. This difference seems to originate f
the geometrical structure of the string. If the total length
the string is fixed, the moment of inertia of the ring is smal
than that of a sticklike string~meson and baryons!. On the
other hand, the energy of the string is proportional to
total length. Therefore the slope of the Regge trajectory
the glueball is smaller than that of ordinary hadrons.

The calculated decay widths are shown by the clo
circles in Fig. 4 and Fig. 5 for the vibrational and rotation
modes, respectively. They are considerably larger than th

FIG. 2. The potential for the breathing mode. TheL in the figure
denotes the angular momentum of the closed string.

FIG. 3. The mass spectrum of the rotational mode as a func
of the angular momentum.
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of ordinary hadrons, so that glueballs generally decay ea
This fact explains why no glueballs have been found exp
mentally. The triangles in the same figures represent the r
of the decay width to the mass. In the case of the vibratio
mode ~Fig. 4!, the decay widths are proportional to the
masses exactly as shown below. The constancy of the r
seems to hold also for the rotational mode, as seen in Fig

In the case ofl 50, the decay width has a simple relatio
to the excited energy. Noting thatK2(k50)5p/2 sincev
50, Eq. ~31! is transformed into

G5
4p2ab

E E
0

`

A2r 4 dr5
4p2ab

E
^r 2&. ~32!

The ^r 2& denotes the expectation value for the excited sta
Thus we have

G5
b

2a
E, ~33!

whereE is the energy of the corresponding excited state. T
relation can be understood as follows. The mass of a had
is proportional to its length. On the other hand, the break

n

FIG. 4. The decay width of the vibrational mode as a function
the vibrational quantum number. The triangles in the figure den
the ratio of the decay width to the mass.

FIG. 5. The decay width of the rotational mode as a function
the angular momentum. The triangles in the figure denote the r
of the decay width to the mass.
7-4
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probability is also proportional to the length because
cross section of the tube is the same for all hadrons~univer-
sality!. Therefore we obtain the linearityG}E.

Finally, we add some comments on the experimental d
@18#. There are some candidates:f 0(1500) andf 0(1710) for
the scalar glueball;f 2(2300) and f 2(2340) for the tensor
glueball. Unfortunately, the abundance ofq-q̄ meson states
in the 1–3 GeV region and the possibility of quarkonium
glueball mixing states still make it difficult to identify th
glueball states. On the other hand, the glueballs have b
‘‘found’’ on a lattice @19–25#. Here we refer to the result
obtained by lattice QCD simulation@6#, which are shown in
Table I. The first and secondJ50 states are expected to b
the breathing modes of the glueball. These values are co

TABLE I. Mass spectrum of the glueballs. They are calcula
by lattice QCD and by our model.

Lattice QCD~MeV! Our model~MeV!

01 1.7 1.68
02 2.5–2.8 2.57
21 2.4 2.69
tt.

V.
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tent with those obtained in our model. The firstJ52 state is
the glueball state by the rotational motion and the energ
slightly smaller than that obtained in our model. This may
due to the assumption that the shape of the ring is alw
circular. A centrifugal force would deform the shape so th
the ring would become elliptic. If this effect is taken int
account, the moment of inertia of the ring becomes large
the excitation energy is lowered.

In conclusion, we have developed a flux tube model
glueballs as well as mesons and baryons. The glueba
described by a flux tube ring~closed string!, which is char-
acterized by two parameters, the string tension and the st
breaking parameter. They are the same as those in the ca
mesons and baryons. The mass spectra calculated by
model are consistent with those of lattice QCD. The dec
widths are several hundreds of MeV. These values are ra
large, and it is desirable to compute the decay widths defi
tively by lattice QCD@23–25#.

ACKNOWLEDGMENTS

We would like to thank the Nuclear Theory Group at K
chi University for helpful discussions. In particular, w
would like to thank Yuma Harada for his help with the n
merical calculations in the early stages of this work.

d

d

cl.

ett.

B

@1# F. Wilczek, Annu. Rev. Nucl. Part. Sci.32, 177 ~1982!.
@2# N. Isgur and J. Paton, Phys. Lett.124B, 247 ~1983!.
@3# A.B. Migdal, S.B. Khokhlachev, and V.Yu. Borue, Phys. Le

B 228, 167 ~1989!.
@4# A.B. Migdal, Nucl. Phys.A518, 358 ~1990!.
@5# M. Iwasaki and F. Takagi, Phys. Rev. D59, 094024~1999!.
@6# C. Morningstar and M. Peardon, Phys. Rev. D60, 034509

~1999!.
@7# Y. Koma, H. Suganuma, and H. Toki, Phys. Rev. D60, 074024

~1999!.
@8# T. Suzuki, Prog. Theor. Phys.80, 929 ~1988!.
@9# S. Maedan and T. Suzuki, Prog. Theor. Phys.81, 229 ~1989!.

@10# H. Suganuma, S. Sasaki, and H. Toki, Nucl. Phys.B435, 207
~1995!.

@11# A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, and
Weisskopf, Phys. Rev. D9, 3471~1974!.

@12# K. Johnson and C.B. Thorn, Phys. Rev. D13, 1934~1976!.
@13# A.B. Migdal and V.P. Krainov,Approximation Methods in

Quantum Mechanics~W.A. Benjamin, New York, 1969!.
@14# J. Schwinger, Phys. Rev.82, 664 ~1951!.
@15# E.G. Gurvich, Phys. Lett.87B, 386 ~1979!.
@16# A. Casher, H. Neuberger, and S. Nussinov, Phys. Rev. D20,

179 ~1979!.
@17# N.K. Glendenning and T. Matsui, Phys. Rev. D28, 2890

~1983!.
@18# Particle Data Group, K. Hagiwaraet al., Phys. Rev. D66,

010001~2002!.
@19# G. Bali, K. Schilling, A. Hulsebos, A. Irving, C. Michael, an

P. Stephenson, Phys. Lett. B309, 378 ~1993!.
@20# H. Chen, J. Sexton, A. Vaccarino, and D. Weingarten, Nu

Phys. B~Proc. Suppl.! 34, 357 ~1994!.
@21# J. Sexton, A. Vaccarino, and D. Weingarten, Phys. Rev. L

75, 4563~1995!.
@22# J. Sexton, A. Vaccarino, and D. Weingarten, Nucl. Phys.

~Proc. Suppl.! 47, 128 ~1996!.
@23# M. Boglione and M.R. Pennington, Phys. Rev. Lett.79, 1998

~1997!.
@24# J. Cao, T. Huang, and H. Wu, Phys. Rev. D57, 4154~1998!.
@25# C. Morningstar and M. Peardon, Phys. Rev. D56, 4043

~1997!.
7-5


