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On the precision of the theoretical predictions forpp scattering
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In a recent paper, Pela´ez and Yndura´in evaluate some of the low energy observables ofpp scattering and
obtain flat disagreement with our earlier results. The authors work with unsubtracted dispersion relations, so
that their results are very sensitive to the poorly known high energy behavior of the scattering amplitude. They
claim that the asymptotic representation we used is incorrect and propose an alternative one. We repeat their
calculations on the basis of the standard, subtracted fixed-t dispersion relations, using their asymptotics. The
outcome fully confirms our earlier findings. Moreover, we show that the Regge parametrization proposed by
these authors for the region above 1.4 GeV violates crossing symmetry: Their ansatz is not consistent with the
behavior observed at low energies.
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I. INTRODUCTION

We have demonstrated that the low energy propertie
the pp scattering amplitude can be predicted to a rema
able degree of accuracy@1,2# @in the following these paper
are referred to as Ananthanarayan-Colangelo-Gas
Leutwyler ~ACGL! and Colangelo-Gasser-Leutwyler~CGL!,
respectively#. In our opinion, this work represents a brea
through in a field that hitherto was subject to considera
uncertainties. The low energy properties of thepp scattering
amplitude play a central role in the analysis of many qu
tities of physical interest. As an example, we mention
magnetic moment of the muon, where the standard mo
prediction requires precise knowledge of the hadronic c
tributions to vacuum polarization. As these are dominated
two-pion intermediate states of angular momentum,51, the
P-wavepp phase shift is needed to high accuracy in ord
to analyze the data in a reliable manner@3,4#.

Our dispersive analysis, which is based on the Roy eq
tions @5#, was confirmed1 in Ref. @6#. In a recent paper, how
ever, Pela´ez and Yndura´in ~PY! @8# claim that this analysis is
deficient because the representation we are using to des
the behavior of the imaginary parts above 1.42 GeV is ‘
realistic.’’ They propose an alternative representation, ev
ate a few quantities of physical interest on that basis
obtain flat disagreement with our results. They conclude
our solution to the constraints imposed by analyticity, unit
ity and chiral symmetry is ‘‘spurious.’’ In the following, we
refer to this paper as PY and show that this claim and oth
contained therein are incorrect.

As a first step, we briefly outline our framework. Th
fixed-t dispersion relations of Roy represent the real parts
the scattering amplitude in terms of thes-channel imaginary

1This paper also compares our predictions for the values of
two subtraction constants with some of thepp phase shift analyse
and with the newKe4

data obtained by the E856 Collaboration
Brookhaven. While the result obtained in Ref.@6# for a0

0 is consis-
tent with the theoretical prediction, the one for the combinat
2a0

025a0
2 deviates from the value predicted in CGL by 1s. Further

work on this issue is reported in Ref.@7#.
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parts and two subtraction constants, which can be identi
with the two S-wave scattering lengths,a0

0 ,a0
2. The Roy

equations represent the partial wave projections of these
persion relations. Since the partial wave expansion of
imaginary parts converges in the large Lehman-Martin
lipse, it follows from first principles that the Roy equation
hold for 24Mp

2 ,s,60Mp
2 , i.e. up to a center of mass en

ergy of 1.08 GeV. We use these equations to determine
phases of theS and P waves on the interval 2Mp,As
,0.8 GeV. The calculation treats the imaginary parts ab
0.8 GeV as well as the two subtraction constants as exte
input.

As demonstrated in ACGL, the two subtraction consta
play the key role in the low energy analysis. The cent
observation in CGL is that the values of these two consta
can be predicted on the basis of chiral symmetry. Weinbe
low energy theorem@9# states that, to leading order in th
expansion in powers ofmu andmd , the scattering lengthsa0

0

anda0
2 are determined by the pion decay constant. The c

rections are known up to and including next-to-next-
leading order@10#. In CGL we have performed a new dete
mination of the relevant effective coupling constants, there
obtained sharp predictions fora0

0 ,a0
2 and then demonstrate

that the Roy equations pin down thepp scattering amplitude
throughout the low energy region, to within very small u
certainties.

The paper is organized as follows. We first discuss
difference between PY and CGL concerning the input u
for the imaginary parts in the region above 1.42 GeV.
Secs. III–V, we then repeat the calculations reported in C
for the input advocated by Pela´ez and Yndura´in, who did not
perform such an analysis, but claim that the results are s
sitive to the input used in the asymptotic region. As we w
demonstrate explicitly, this is not the case. We turn to
calculations they did perform only in the second part of t
paper, where we show that their Regge representation ca
be right because it violates crossing symmetry. Section
contains a summary of the present article as well as
conclusions.

II. ASYMPTOTICS

According to PY, the input used for the imaginary pa
above 1.42 GeV plays an important role in our analysis. T

e

©2003 The American Physical Society06-1



te
tia
o
n

an

o
r

h
—

. I
ol
tio

th

tr
ng
m
-
he
th
o
so

A
n
e
t
ti

s
g
s
ad
o
f
p
a

ac

b
re

li-

ca
th
.4

re
w

s
p

r

-

he
e
ob-
all
rtain-
op
, a
-
m

c-
is

af-
, it
low
ts
u-
for
the
at

un-
er

ds,
g as
PY.
the

re-
for
hat
re-
w-

g
tral

of
ese
ess
the
our

the

r the

CAPRINI et al. PHYSICAL REVIEW D 68, 074006 ~2003!
contradicts the findings in ACGL, where we demonstra
explicitly that the behavior at those energies is not essen
because the integrals occurring in the Roy equations c
verge rapidly. In particular, our explicit estimates for the se
sitivity of the threshold parameters to the input used at
above 0.8 GeV~see Table 4, columnD1 in ACGL! imply that
the uncertainties from this source are very small. In view
this, it is difficult to understand the claim of PY that ou
solutions are ‘‘distorted’’ because the input used forAs
.1.42 GeV is ‘‘irrealistic.’’

Admittedly, however, we did not perform a thoroug
study of the imaginary parts for energies above 1.42 GeV
for brevity we refer to this range as the asymptotic region
the interval from 1.42 to 2 GeV, we relied on phenomen
ogy, while above 2 GeV, we used a Regge representa
based on the work of Pennington and Protopopescu@11,12#.
In particular, we used their results for the residue of
Regge pole with the quantum numbers of ther meson, also
with regard to the uncertainties to be attached to this con
bution, and invoked a sum rule that follows from crossi
symmetry to estimate the magnitude of the Pomeron ter

According to Pela´ez and Yndura´in, phenomenology can
not be trusted up to 2 GeV. The authors construct what t
refer to as an ‘‘orthodox’’ Regge fit and then assume that
fit adequately approximates the imaginary parts down t
center of mass energy of 1.42 GeV. For ease of compari
the Regge representation of PY is described in Appendix
It differs significantly from ours. Moreover, in the regio
below 2 GeV, it differs from the phenomenological input w
used. Although we attached considerable uncertainties to
input of our calculation, these do not cover the asympto
representation proposed in PY.

Unfortunately, the authors do not offer a critical discu
sion of their representation, which looks similar to the Reg
fit proposed by Raritaet al. @13# in 1968, but the parameter
are assigned different values and a comparison is not m
For a review of the current knowledge about the structure
the Pomeron, we refer to@14#. Recent thorough analyses o
different classes of parametrizations of the asymptotic am
tudes and of the corresponding fits to the large body of av
able data are described in@15,16#. These indicate that the
leading terms can be determined rather well by applying f
torization to the experimentally well exploredNN and pN
scattering amplitudes, but the non-leading contributions
come more and more important as the energy is lowe
~see, e.g.,@16# for a critical discussion of the range of app
cability of different asymptotic formulas!. We do not con-
sider it plausible that the asymptotic representation of PY
be trusted to the precision claimed in that paper, where
uncertainties in the contributions from the region above 1
GeV are estimated at 10% to 15%.

In the following, however, we take the asymptotic rep
sentation proposed in PY at face value. More precisely,
~i! replace our Regge parametrization by this one and~ii ! set
s05(0.8 GeV)2, s25(1.42 GeV)2. All other elements of the
calculation are taken over from CGL without any change,
that we can study the sensitivity of the result to the asym
totics. We solve the Roy equations between threshold ands0,
rely on phenomenological information about the imagina
07400
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parts on the interval froms0 to s2 and use the Regge repre
sentation of PY above that energy.

In PY, a further contribution is added, to account for t
enhancement in theI 51 imaginary part associated with th
r(1450). The corresponding contributions to the various
servables considered in PY are explicitly listed there. In
cases, these are smaller than our estimates for the unce
ties to be attached to our results. In the following, we dr
this term to simplify the calculations. Note also that in PY
parametrization for theD andF waves is used that is some
what different from those we rely on, which are taken fro
Refs.@17,18#.

III. LOW ENERGY THEOREM FOR a0
0 AND a0

2

The low energy structure is controlled by the two subtra
tion constants. The main question to ask, therefore,
whether the change in the asymptotics proposed in PY
fects the predictions for these two constants. In principle
does, because some of the corrections to Weinberg’s
energy theorem@9# involve integrals over the imaginary par
of the scattering amplitude that extend to infinity. As doc
mented in Table 1 of CGL, the uncertainties in the result
the S-wave scattering lengths are dominated by those in
effective coupling constants. The noise in the input used
and above 0.8 GeV affects the values ofa0

0 anda0
2 only at the

level of half a percent.
As mentioned above, however, our estimates for the

certainties in the asymptotic part of the input do not cov
the modification proposed in PY. To remain on firm groun
we have repeated the calculation described in CGL, usin
input above 1.42 GeV the parametrization proposed in
We have also reexamined the dispersive evaluation of
scalar radius. According to Ref.@19#, the behavior of the
T-matrix above 1.4 GeV does not significantly affect the
sult. As discussed below, the solution of the Roy equation
the S wave is not sensitive to the asymptotics, either, so t
the contribution from low energies, which dominates the
sult for the scalar radius, practically stays put. In the follo
ing, we use the estimate given in CGL,^r 2&s50.61
60.04 fm2. Concerning the predictions for the scatterin
lengths, the modification of the asymptotics shifts the cen
values by

da0
050.431023, da0

250.131023,

2da0
025da0

250.231023, ~1!

In Table I the result is compared with the predictions
CGL.2 Despite the fact that the error bars attached to th
predictions are very small, the above shifts amount to l
than 15% of the quoted uncertainties. We conclude that
values of the subtraction constants are not affected if

2We hope not to confuse the reader with the notation used in
tables: The numbers quoted under PY are not taken from Ref.@8#,
but are calculated by us, using the asymptotic representation fo
imaginary parts given there.
6-2
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asymptotics is replaced by the one of PY. This is of cen
importance, as it confirms the statement that an accurate
perimental determination of theS-wave scattering length
allows a crucial test of the theory.

IV. ROY EQUATIONS

In order to determine the effect of the change in the
ymptotics on the solutions of the Roy equations, we fix
scattering lengths as well as the phenomenological input
0.8 GeV,E,1.42 GeV at our central values, so that the
sult can be compared with our central solution. Above 1
GeV, we evaluate the imaginary parts with the Regge rep
sentation of PY. The essential elements of the calculation
described in the Appendixes B and C. The result ford0

0 is
shown in Fig. 1, where we compare the solution in Eq.~C2!
with the band of solutions obtained in CGL. The gra
shows that the low energy behavior ofd0

0 is not sensitive to
the input used in the region above 1.42 GeV—the distort
claimed in PY does not take place.

In PY the ‘‘possible cause of the distortion of the CG
solution’’ is discussed in some detail and a low energy
rametrization for the isoscalarSwave is proposed in suppo
of that discussion. The proposal is referred to as a ‘‘tenta
alternate solution’’ and is indicated by the dashed lines
Fig. 1. As can be seen from this plot, the proposal is inc

TABLE I. S wave scattering lengths. The numbers in the fi
column are taken from CGL. Those in the second column are
tained by replacing the asymptotics used there with the one
posed in PY.

CGL PY

a0
0 0.2206.005 0.221

a0
2 20.04446.0010 20.0443

2a0
025a0

2 0.6636.007 0.663

0.3 0.4 0.5 0.6 0.7 0.8

E(GeV)

0
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40
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80

100

δ 00 (d
eg

re
es

)

Hyams et al.
Protopopescu et al.
Estabrooks and Martin

FIG. 1. IsoscalarS wave. The shaded band is taken from Fig
of CGL. The full line in the middle of the band represents t
solution of the Roy equations obtained with the asymptotics of
For comparison, the representation proposed in Eq.~5.4a! of PY is
indicated by the dashed lines.
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sistent both with our asymptotics and with the one of PY
As a side remark, we note that on the interval on wh

we solve the Roy equations, the various phase shift anal
are not consistent with one another~see column 1 in Table 2
of ACGL!. For this reason, we did not make use of the d
on the S- and P-wave phase shifts below 0.8 GeV—an
analysis that relies on these is subject to large uncertain
In contrast to the overall phase of the scattering amplitu
which is notoriously difficult to measure, the phase diffe
enced1

12d0
0 shows up directly in the cross section and

therefore known quite accurately. Indeed, the values obta
at 0.8 GeV from the seven different phase shift analy
listed in ACGL ~which are due to Ochs@20#, Hyams et al.
@17#, Estabrooks and Martin@21#, Protopopescu et al.@22#,
Au et al.@23# and Bugg et al.@18#! yield perfectly consistent
results for this phase difference:d1

12d0
0526.6°62.8°.

While our Roy solutions agree with this experimental fa
~no wonder, we are using it in our input!, the ‘‘tentative
alternate solution’’ and the representation for theP wave
proposed in PY do not: These yieldd0

0591.9°62.6° and
d1

15109.0°60.6°, respectively. The corresponding pha
difference,d1

12d0
0517.1°62.6°, is in conflict with experi-

ment at the level of 2.5s. The discrepancy must be blame
on the tentative alternate solution—the uncertainties in
P-wave phase shift are small, because this phase is stro
constrained by the data on the form factor~indeed the value
in PY is in good agreement with our estimate,d1

15108.9°
62°).

Figure 2 demonstrates that theP-wave phase shift is no
sensitive to the asymptotics, either. In the exoticS wave
~isospin 2!, however, an effect does become visible. As c
be seen in Fig. 3, the modification of the asymptotic behav
reduces the value ofd0

2. At 0.8 GeV, the displacemen
reaches 1.4°. Although this is small compared to the exp
mental uncertainties, it does imply that—if the imagina
parts above 1.42 GeV are taken from PY—the phased0

2 runs
within our band of uncertainties only below 0.64 GeV.

t
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.
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FIG. 2. P wave. The shaded band is taken from Fig. 8 of CG
The full line is the solution of the Roy equations obtained with t
asymptotics of PY.
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V. THRESHOLD PARAMETERS

Next, we evaluate the change occurring in the result
the scattering lengths and effective ranges of the lowest
partial waves if our asymptotics is replaced by the one of
The evaluation is based on sum rules due to Wanders@24#,
which are particularly suitable here, because they are rap
convergent and thus not sensitive to the high energy beha
of the imaginary parts. The representation fora1

1, for in-
stance, reads3

a1
15

2a0
025a0

2

18Mp
2

1
Mp

2

36p2E4Mp
2

` ds

s2~s24Mp
2 !2

3$3~3s24Mp
2 !Im T1~s,0!2~s24Mp

2 !

3@2 ImT0~s,0!25 ImT2~s,0!#%. ~2!

The analogous sum rules for the effective ranges of thS
andP waves are listed in Appendix D. The numerical resu
of CGL are quoted in the first column of Table II, while tho
in the second column are obtained by repeating the calc
tion for the asymptotics proposed in PY. Note that the s
traction constants play a crucial role here. In fact,a1

1 is to-
tally dominated by the contribution from the first term on t
right-hand side of Eq.~2!, which accounts for 97% of the
numerical result. This is why the uncertainty in our pred
tion for a1

1 is so small. The subtractions ensure that the in
grals converge rapidly. For the asymptotics of PY, for
stance, the contributions from the region above 1.42 G
amount to less than 5% of the total, for all of the quantit
listed in Table II.

Repeating the exercise for theD andF waves, we obtain
the results listed on the left half of Table III. These indica

3We use the normalization conventions of Ref.@1#. Im TI(s,0)
denotes the imaginary part of the forward scattering amplitude w
s-channel isospinI.

0.3 0.4 0.5 0.6 0.7 0.8

E(GeV)

-20
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0
δ 02 (d

eg
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ACM (A) data
ACM (B) data
Losty et al. data

FIG. 3. ExoticSwave. The shaded band is taken from Fig. 9
CGL. The full line is the solution of the Roy equations obtain
with the asymptotics of PY.
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that the change in the asymptotics generates a some
larger effect, but the displacement stays below 5% also h
In the case ofa2

0, the shift corresponds to 1.5s, while for the
other quantities the prediction is not that sharp, so that
shift is only a fraction of our error bar. In summary, we no
that for none of the quantities considered in PY, the cha
in the asymptotics proposed in that paper generates a
placement by more than 1.5s.

There is an alternative method for evaluating the qua
ties listed in the table: Instead of working with the analog
the Wanders sum rules, we may invoke the Froissart-Gri
~FG! representation for the scattering lengths and effec
ranges. The difference between the two is discussed in s
detail in Appendix D. If the scattering amplitude were e
actly crossing symmetric, the two methods of calculati
would yield identical results. The numerical results obtain
with the FG representation for theP and D waves are dis-
cussed in Secs. VII and IX, respectively.

The entries in columns 1 and 3 show that, for our asym
totics, the two sets of numbers indeed agree within a frac
of a percent, indicating that our representation of the sca
ing amplitude does pass this test of crossing symmetry.
comparison of columns 2 and 4 indicates that the asymp
ics of PY generates a somewhat stronger violation of cro
ing symmetry, but the differences do not stick out of t
uncertainties that must be attached to the central va
listed. As will be discussed in Sec. IX, however, these d
ferences originate in the tiny contributions from th
asymptotic region and from the higher partial waves. In fa
the slight mismatch seen in the comparison of columns 2
4 implies that the asymptotics of PY is not consistent w
crossing symmetry.

VI. OLSSON SUM RULE

We now turn to the calculations described in PY and s
with the Olsson sum rule,

2a0
025a0

25O, ~3!

which relates a combination ofS-wave scattering lengths to
an integral over the imaginary part of the forward scatter
amplitude:

h

TABLE II. Wanders sum rules. The numbers in the first colum
are taken from Table 2 of CGL. Those in the second column
obtained by replacing the asymptotics used there with the one
posed in PY.

CGL PY Units

b0
0 0.2766.006 0.278 Mp

22

b0
2 20.8036.012 20.800 1021Mp

22

a1
1 0.3796.005 0.381 1021Mp

22

b1
1 0.5676.013 0.579 1022Mp

24

f

6-4
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TABLE III. Threshold parameters of theD andF waves. The left half of the table lists the results fou
with the analog of the Wanders sum rules, while the numbers on the right half are based on the Fr
Gribov representation discussed in Sec. IX. The results obtained with the asymptotics of CGL and of
listed separately. The first column is taken from Table 2 of CGL.

Wanders Froissart-Gribov
CGL PY CGL PY Units

a2
0 0.17560.003 0.180 0.176 0.180 1022Mp

24

b2
0 20.35560.014 20.347 20.359 20.353 1023Mp

26

a2
2 0.17060.013 0.177 0.172 0.182 1023Mp

24

b2
2 20.32660.012 20.327 20.329 20.319 1023Mp

26

a3
1 0.56060.019 0.562 0.560 0.565 1024Mp

26

b3
1 20.40260.018 20.409 20.404 20.407 1024Mp
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Mp

2

8p2E4Mp
2

`

ds

3
2 ImT0~s,0!13 ImT1~s,0!25 ImT2~s,0!

s~s24Mp
2 !

. ~4!

It is well known that this integral converges only slowly—
contrast to the subtracted dispersion integrals that und
the Roy equations or the sum rule for theP-wave scattering
length considered above, the contributions from
asymptotic region play a significant role here.

In ACGL, we evaluated the integral for arbitrary values
the S-wave scattering lengths. Inserting the predictions
tained on the basis of chiral symmetry in Eq.~11.2! of that
paper and accounting for the correlation betweena0

0 anda0
2

with Table 4 of CGL, we obtainOCGL50.66560.022. Since
this is in perfect agreement with our prediction for the sc
tering lengths, 2a0

025a0
250.66360.007, we conclude that

for our asymptotics, the Olsson sum rule is in equilibrium
Peláez and Yndura´in point out that if our asymptotics is

replaced by theirs, while the behavior below 0.82 GeV is
unchanged, the value of the integral is reduced toOPY
50.63560.014, so that the sum rule gets out of equilibriu
The low energy part of their calculation is examined in A
pendix E, where we essentially confirm their result. Us
their numbers for the contributions from the region abo
0.82 GeV, we find that the differenceD52a0

025a0
22O be-

tween the left- and right-hand sides of the sum rule beco
D50.02560.013, a discrepancy of about 2s ~see the de-
tailed discussion in Appendix E!.

The result implies that the following three statements
incompatible:~i! the behavior of the phases below 0.8 Ge
is correctly described by the figures shown above,~ii ! the
contributions above 0.8 GeV are correctly estimated in
~iii ! the theoretical prediction for 2a0

025a0
2 is valid. In PY,

the blame is put on~i!. The Roy equation analysis describe
in Sec. IV, however, shows that~i! can only fail if either~ii !
or ~iii ! or both are incorrect as well. Since the phenome
logical information leaves little room for modifications in th
interval from 0.8 to 1.4 GeV, we conclude that the asym
07400
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totics proposed in PY is in conflict with the theoretical pr
dictions for theS-wave scattering lengths.

VII. FROISSART-GRIBOV FORMULA FOR THE P WAVE

In this section, we consider the Froissart-Gribov formu

a1
15

1

144p2E4Mp
2

` ds

s2
$2 ImT0~s,4Mp

2 !13 ImT1~s,4Mp
2 !

25 ImT2~s,4Mp
2 !%, ~5!

which is used in PY to evaluate theP-wave scattering length
The main difference to the Wanders representation in Eq.~2!
is that the FG formula does not contain a subtraction te
and therefore converges more slowly: While in the abo
formula, the region above 1.42 GeV is responsible for m
than 20% of the total, only a fraction of a percent arises fr
there in the case of the Wanders sum rule. The contras
even more pronounced in the case ofb1

1, where the low
energy contributions nearly cancel, so that the result obtai
on the basis of the FG formula is dominated by those fr
high energies: For the asymptotics of PY, 98%~78%! of the
total come from the region above 1.42 GeV~2 GeV!. For this
reason, the values found on the basis of the FG represe
tion come with a large uncertainty. A numerical evaluation
of interest because it offers a test of the input used in
asymptotic region, but it does not add anything of sign
cance to our knowledge of the values ofa1

1 andb1
1. This is

why, in Table II, we did not list the numerical values o
tained in this way.

As both representations fora1
1 are exact, the difference

amounts to a sum rule, which the imaginary parts of
scattering amplitude must obey. Indeed, the integrand of
above representation is very similar to the one occurring
the Olsson sum rule~4! and the dominating contribution to
the difference between the two representations is prop
tional to this sum rule. The remainder involves the sum r
derived in Appendix C of ACGL. As shown there, the a
sence of a Pomeron contribution to theI t51 amplitude and
6-5
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crossing symmetry imply that the integral4

S~ t ![E
4Mp

2

` ds f~s,t !

s1t24Mp
2

f ~s,t !5
2 Im T̄0~s,t !13 Im T̄1~s,t !25 Im T̄2~s,t !

12s

2
~s22Mp

2 ! Im T1~s,0!

s~s24Mp
2 !~s2t !

~6!

must vanish in the entire region where the fixed-t dispersion
relations are valid. Crossing symmetry does not impos
constraint on the imaginary parts of theS-waves—indeed,
these drop out on the right-hand side of Eq.~6!. Hence the
sum ruleS(t)50 relates a family of integrals over the imag
nary part of theP wave to the higher partial waves. Th
difference between the Froissart-Gribov and Wanders re
sentations fora1

1 may be written as a linear combination
the Olsson sum rule and the value ofS(t) at t54Mp

2 :

a1
1uFG2a1

1uW52
1

18Mp
2 ~2a0

025a0
22O!1

Mp
2

3p2
S~4Mp

2 !.

~7!

There is an analogous formula also forb1
1 :

b1
1uFG2b1

1uW5
1

3p2

]

]t
$tS~ t !%u t→4M

p
2 . ~8!

Note that this relation involves the derivative with respect
t, because the FG representation forb1

1 contains the imagi-
nary part as well as the first derivative thereof~see Appendix
D!.

The difference between the FG and W representations
a1

1 andb1
1 reflects the fact that the former is derived from

unsubtracted dispersion relation, while the latter is based
the standard, subtracted form. If we wish, we may just
well apply the FG projection to the standard form of t
fixed-t dispersion relations. The procedure leads to a rep
sentation that also holds for theSwaves. In fact, the resulting
formulas forb0

0, b0
2, a1

1 and b1
1 coincide with the Wanders

sum rules. In this sense, the difference between the Frois
Gribov and Wanders representations for the quantities c
sidered above exclusively concerns the manner in which
contributions from the subtractions are dealt with. For
threshold parameters of the higher waves, on the other h
the subtractions do not make any difference.

4The barred quantities stand for ImT̄I(s,t)5$Im TI(s,t)
2Im TI(s,0)%/t. For spacelike values oft, the denominators1t
24Mp

2 develops a zero in the range of integration, but one rea
checks that the numeratorf (s,t) vanishes there, on account o
crossing symmetry with respect tos↔u. The same remark applie
to the apparent singularity generated by the denominators82u0,
which occurs in the fixed-t dispersion relation~D2!.
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In the units of Table II, the numerical evaluation of th
integrals yields

a1
1uFG.0.37 b1

1uFG.0.37 ~CGL!,

a1
1uFG.0.36 b1

1uFG.0.56 ~PY!. ~9!

The second line confirms the central values given in P
a1

1uFG50.37160.013, b1
1uFG50.59960.088 ~the term ‘‘di-

rect’’ used in that paper refers to the results obtained on
basis of the Wanders sum rules!.

The above numbers show that, irrespective of
asymptotic input used, the estimates obtained fora1

1 on the
basis of the FG formula are in reasonable agreement with
much more precise result found with the Wanders sum r
~see Table II!. The number extracted from the FG represe
tation for b1

1, however, is reasonably close to the truth on
for the asymptotics of PY.

As mentioned above, the FG integral forb1
1 is dominated

by the contributions from high energies. More precisely,
Regge term with the quantum numbers of ther is relevant,
for which we are using a parametrization of the for
br(t)sa01a1t. For the integrals discussed in CGL, the unc
tainty in the contribution from this term is governed by th
one in the residuebr(t), but this is not the case here: Sinc
the FG integral forb1

1 converges only very slowly, it is very
sensitive also to the parameters that describe the trajec
While the values a05 1

2 2a1Mp
2 .0.49, a15 1

2 (M r
2

2Mp
2 )21.0.87 GeV22 used in CGL are determined byM r

and Mp , those in PY,a050.5260.02, a151.01 GeV22,
are based on fits to cross sections. In the case of the Wan
representation forb1

1, the change occurring if the trajector
used in CGL is replaced by the one in PY is small compa
to the error in our result,b1

150.56760.013, but in the case
of the Froissart-Gribov representation, the operation sh
the outcome from 0.37 to 0.45 (a050.50) or 0.53 (a0
50.54). Furthermore, the uncertainty attached to the Re
residue in CGL affects the result at the level of60.06. Note
also that the FG representation involves a derivative w
respect tot, so that not only the slopea1 of the trajectory
enters, but also the slope of the residuebr(t). Both of these
quantities are poorly known.

We conclude that the FG value forb1
1 obtained with our

asymptotics is subject to a large uncertainty, because it
pends on minute details of the Regge representation:
discrepancy with the value found in CGL is in the noise. W
repeat that the issue does not touch our prediction forb1

1, for
two reasons:~i! That prediction relies on the rapidly conve
gent representation of Wanders, where the entire reg
above 2 GeV contributes less than 2% of the total.~ii ! The
Wanders sum rule forb1

1 does not involve derivatives with
respect tot.

VIII. VALUES OF a1
1 AND b1

1 FROM e¿eÀ AND t DATA

The data on the pion form factor can be used to arrive
an independent determination of theP-wave parameters. As
pointed out in PY, the numbers forb1

1 obtained from fits

y

6-6
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based on the method of de Troco´niz and Yndura´in @25# dis-
agree with our prediction at the 4s level.

The partial wave parametrization used in Ref.@25# is of
inverse amplitude type:

t1
1~s!5H 4

M r
22s

s24Mp
2 ~B01B1z!2 iA12

4Mp
2

s J 21

,

z5
As2As12s

As1As12s
. ~10!

On the interval 4Mp
2 ,s,s1, the square roots are real, s

that the expression obeys elastic unitarity. ForB150, the
formula reduces tor-meson dominance. Ats5s1, the term
B1z develops a branch cut that mimics contributions fro
inelastic channels. In PY, the value ofAs1 is fixed at 1.05
GeV, while M r , B0 and B1 are treated as free paramete
Two of these specify the mass and the width of ther, while
the third describes the behavior near threshold, which is g
erned by the scattering lengtha1

1. The authors use the abov
representation to evaluate the Omne`s factor, which accounts
for the branch cut singularity generated by the final st
interaction. The remaining singularities, in particular also
branch cuts associated with inelastic channels, are pa
etrized in terms of a polynomial in a conformal variable th
is adapted to the analytic structure of the form factor. T
authors then make a fit to thee1e2 andt data for energies
below 0.96 GeV and come up with remarkably accurate v
ues for the parametersM r , B0 and B1. The corresponding
result for the phase at 0.8 GeV isd1

15109.0°60.6°, while
for scattering length and effective range, the threshold
pansion of the above formula yieldsa1

15(38.661.2)
31023 and b1

15(4.4760.29)31023, respectively. Table II
shows that the result fora1

1 is consistent with our prediction
but the one forb1

1 is not. It is evident from this table that th
discrepancy cannot be blamed on the input used in
asymptotic region.

The problem with the above determination ofb1
1 is that it

depends on the specific form of the parametrization used
the phase. To explicitly demonstrate this model depende
it suffices to allow for additional terms in the conform
polynomial, replacingB01B1z by B01B1z1B2z21B3z3.
For simplicity, let us fixa1

1 as well asb1
1 at the central values

obtained in CGL. We can choose the remaining three par
eters in such a way that the phase stays close to the
specified in Eq.~3.5! of PY. With M r5773.6 GeV, B0
51.073, B150.214, B2520.039, B3520.267, for in-
stance, the scattering length as well as the effective ra
agree with the central values in CGL and the phase stays
within the uncertainty band that follows from the errors
tached to the parameters in PY~despite the fact that thes
cannot be taken literally—above 0.82 GeV, the correspo
ing uncertainty in the phase is less than half a degree!. Since
the available experimental information does not stron
constrain the behavior of the form factor in the thresh
region, it is not possible to distinguish the two represen
tions for the phase shift on phenomenological grounds.
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Incidentally, one may also attempt to solve the Roy eq
tions using the parametrization in Eq.~10!. The result is the
same: Three parameters do not suffice to obtain solut
that obey the Roy equation for theP wave, but with the
above extension, the problem disappears. We conclude
the claimed 4s discrepancy is a property of the model us
to parametrize theP-wave phase shift and does not occur
one allows for the number of degrees of freedom neces
to trust the representation, not only fora1

1, but also forb1
1.

In connection with the contribution from hadron
vacuum polarization to the magnetic moment of the mu
we are currently performing an analysis of the form fac
that is very similar to the one in Ref.@25#. The main differ-
ence is that we do not invoke a parametrization in terms o
modified Breit-Wigner formula to describe the behavior
the P wave in the low energy region, but instead rely on t
CGL phase shift@4#. We obtain a perfect description of th
available experimental information about the form factor
this way, including the data in the spacelike region, and
have checked that this also holds if we restrict our analysi
the data sets used in@25#. By construction, our parametriza
tion of the form factor keeps the low energy parametersa1

1

andb1
1 fixed at the CGL values. This confirms the conclusi

reached above: The experimental information on the fo
factor does not allow a model-independent determination
a1

1 andb1
1 at the level of accuracy claimed in PY.

IX. FROISSART-GRIBOV FORMULA FOR THE D WAVES

Finally, we comment on the estimates for the thresh
parameters of theD waves given in PY. Using the Froissar
Gribov representation in Eq.~D8!, the authors arrive at val
ues for the combinationsa015 2

3 (a2
02a2

2) and a005
2
3 (a2

0

12a2
2) that differ from those obtained with the results

CGL by about 4%. They then argue that the two evaluatio
are correlated and come up with the conclusion that, if
correlations are accounted for, this difference amounts t
discrepancy of 4s in the case ofa01 and 5s in the case of
a00.

The main observation concerning the comparison is tha
does not allow one to draw any conclusions about theS and
P waves because the contributions from these waves
identical in the two evaluations.5 When the correlations are
accounted for, these contributions drop out in the comp
son. For this reason, the differences discussed in PY betw
the ‘‘CGL direct’’ and their own calculation of theD-wave
threshold parameters do not involve any of the results
CGL. Even if the discrepancies obtained in PY could
taken at face value, the only conclusion we could draw fr
these is that the Regge representation proposed in PY di
from the one used in CGL—but this is evidentab initio. The

5An explicit expression for the differenceDa2
05a2

0uFG2a2
0uW is

given in Appendix D. For all of the quantities listed in Table III, th
contributions from theS and P waves to the Froissart-Gribov an
Wanders representations are identical. This also holds for th,
54 scattering lengths, but not for the corresponding effect
ranges, nor for the threshold parameters belonging to,.4.
6-7
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situation for the Olsson sum rule and theP-wave threshold
parameters is different: In those cases, the contributions f
theSandP waves do not drop out, so that the CGL analy
does enter the comparison.

Moreover, for theD-wave threshold parameters, PY d
not refer to~and we are not aware of! a determination that is
independent of the sum rules. If this were available, o
could use it, together with the assumption that the asymp
ics of PY is correct, to draw conclusions about the size of
contributions from the low-energy region and to deci
whether the results obtained in CGL are consistent with th
conclusions. This is the logic the authors follow with th
Olsson sum rule, where they can use the low-energy th
rem, and with theP-wave threshold parameters, where P
claim that fits to the data on the form factor allow one
determinea1

1 andb1
1 more reliably than with the sum rule~in

Sec. VIII we explained why this is not the case!. For the
D-wave threshold parameters, however, an analogous c
is not made. Hence the comparison of the results obtaine
inserting the two different representations for the asympt
region and for the higher partial waves in the integrals for
threshold parameters cannot possibly lead to conclusions
go beyond the fact that those two representations are di
ent.

The FG integral converges almost as rapidly as the W
ders representation—the region above 1.42 GeV only c
tributes a small fraction of the total. For this reason, Table
also lists the results obtained with the Froissart-Gribov r
resentation. The requirement that the two different expr
sions for theD and F waves must lead to the same res
amounts to a set of sum rules, which exclusively involve
imaginary parts of the higher partial waves. The prototype
this category of sum rules is the one in Eq.~B.7! of ACGL.
Since a crossing symmetric scattering amplitude autom
cally obeys these relations, they amount to a test of cros
symmetry. The sum rules require the contributions from
region below 1.42 GeV to be in balance with those fro
higher energies. Since the low energy part is dominated
the experimentally well determined isoscalarD wave, the
sum rules amount to a test of the representation for
imaginary parts used in the asymptotic region~which contain
I t50 contributions from the Pomeron andf poles, as well as
poorly known terms withI t52). In application to PY, this
test does not involve anything beyond the parametrizati
proposed in that reference for the partial waves with,>2
and for the asymptotic region. For the central values of
parameters, the difference between the results obtained
the Froissart-Gribov and Wanders representations beco
~in the normalization used for theD waves in PY: scattering
lengths in units of 1024Mp

24 , effective ranges in units o
1024Mp

26):

Da01
PY 520.11, Da00

PY50.03, Db01
PY 520.13,

Db00
PY50.09. ~11!

These numbers show that—for the parametrizations p
posed in PY—the two representations do not lead to
same result, so that there is an inherent uncertainty in
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values obtained for the D-wave threshold parameters. In f
with the exception ofa00, the above numbers are all large
than the uncertainties quoted in PY for the discrepancy
tween ‘‘CGL direct’’ and their own evaluation. Evidently
those uncertainties are underestimated. In terms of the e
attached to the comparison of the values obtained forb01 ,
for instance, their asymptotics violates crossing symmetr
the level of 5s. In other words, their Regge parametrizatio
is not in equilibrium with the low energy structure: The va
ous terms from the asymptotic region roughly cancel, so t
almost nothing is left to compensate the contribution fro
the f2(1275), which dominates the low energy part of t
integral.

The problem does not occur with our asymptotics,
which the sum rules hold to a remarkable degree of accur
with the central values of our parameters we get

Da01
CGL520.006, Da00

CGL520.009,

Db01
CGL520.007, Db00

CGL520.03.

In PY, it is stated that the discrepancies obtained with
Froissart-Gribov formula for the effective ranges cannot
taken as seriously as those for the scattering lengths bec
the result is sensitive to thet dependence of theI t52 ex-
change piece. The violation of crossing symmetry, howev
also shows up in the scattering lengths: For the parametr
tion proposed in PY, the net asymptotic contribution
Da01 , for instance, is also much too small to keep the te
from the f 2(1275) in balance, while forDa00, it is much too
large.

Note that the sum rules receive contributions exclusiv
from ~a! the Regge representation and~b! the low energy
parametrization used for the higher partial waves. Both
these contributions are small in comparison to the net re
for the threshold parameters because that result is domin
by the contributions from theS andP waves. For the test o
crossing symmetry, however, this comparison is of no s
nificance because theSandP waves do not contribute at all
What counts is whether or not~a! is in equilibrium with~b!.

We conclude that, while the asymptotics used in CGL
consistent with crossing symmetry, the one proposed in P
not. The violation is too large for the comparison with CG
to be meaningful at the level of accuracy claimed in PY.

X. SUMMARY AND CONCLUSIONS

The low energy analysis of thepp scattering amplitude
described in CGL relies on input for the imaginary par
which are partly taken from experiment, partly from Reg
theory. In the present paper we have investigated the se
tivity of the results to the input used in the asymptotic r
gion. The investigation is motivated by a recent paper
Peláez and Yndura´in, who advise the reader not to trust th
results of CGL because, in their opinion, the input used
the asymptotics is wrong.

The Regge representation of CGL is based on the wor
Pennington and Protopopescu@11# and is indeed quite differ-
ent from the one proposed in PY. The main result of t
6-8
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analysis described in the first part of the present pape
that—as far as the low energy behavior of the scatter
amplitude is concerned—this difference does not matter.
input used for the imaginary parts above 1.42 GeV may
replaced by the one advocated in PY. The outcome for
threshold parameters of the leading partial waves rem
almost the same:

The predictions for theS-wave scattering lengths are pra
tically untouched. Expressed in terms of the uncertainty
timates given in CGL, the changes amount to less t
0.15s. This is of crucial importance because the result i
plies that the subtraction constants in the fixed-t dispersion
relations stay put—the subtraction constants are the esse
parameters in the low energy domain.

Neither the effective ranges of theSwaves nor the thresh
old parameters of theP wave are sensitive to the input use
in the asymptotic region. The effects seen in the higher p
tial waves are somewhat larger, but the only case where
placing the asymptotics of CGL by the one of PY produce
change that exceeds our error estimates is the isos
D-wave scattering lengtha2

0, where the displacemen
amounts to 1.5s.

The Roy equations imply that the low energy behavior
the isoscalarS wave and theP wave remains practically un
affected by the change in the asymptotics~see Figs. 1 and 2!.
The exoticS wave ~isospin 2! is more sensitive, but even i
that case, we find that the phase shift at 0.8 GeV is displa
by only 1.4° ~see Fig. 3!. As witnessed by the fact that th
changes ina0

2 andb0
2 are minute, the behavior in the thres

old region essentially stays put also for this partial wave
The calculation confirms the stability of our results wi

respect to the uncertainties in the asymptotic region. Eve
the representation proposed in PY is assumed to be clos
the truth than the one of Pennington and Protopopescu
we rely on, the predictions for the threshold parameters
main essentially the same. We conclude that the statem
made by Pela´ez and Yndura´in about the precision of chiral
dispersive calculations ofpp scattering are incorrect.

In the second part of the present article, we have ex
ined the calculations described in PY. The main points
notice here are as follows:~i! these do not shed any light o
the values of the threshold parameters and~ii ! the Regge
parametrization proposed in PY cannot be valid within
uncertainties quoted for the parameters because it viol
crossing symmetry. Our asymptotic representation does
have this problem.

In the case of the Olsson sum rule or the Froissart-Gri
representation fora1

1, the integrals only converge slowly, s
that the result is sensitive to the uncertainties in the ima
nary parts above 1.4 GeV. In effect, the calculation yield
crude estimate for the combination 2a0

025a0
2 of subtraction

constants. The comparison with the very precise predic
obtained in Ref.@2# shows that the asymptotic representati
proposed in PY brings the Olsson sum rule out of equi
rium, while the one used in CGL passes the test very w
We conclude that the Regge representation proposed in P
not consistent with the prediction of standard chiral pert
bation theory for 2a0

025a0
2.
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In the case ofb1
1, the Froissart-Gribov formula converge

only very slowly, so that the result is sensitive to the beh
ior of the imaginary parts at very high energies, in mark
contrast to the integrals considered in CGL, where energ
above 3 GeV barely contribute. For the central parame
values of the asymptotic representation used in CGL, the
integral for b1

1 comes out too small. The result, howeve
very strongly depends on details of the parametrization u
for the Regge term with the quantum numbers of ther, so
that there is no discrepancy to speak of.

In PY, the method of Ref.@25# is used to arrive at an
independent determination ofa1

1 andb1
1, based on thee1e2

andt data. While the result fora1
1 is in good agreement with

our prediction, the value forb1
1 is not. We show that the

uncertainties attached to this method are underestimated.
data on the form factor are perfectly consistent with our p
dictions, not only fora1

1, but also forb1
1.

The Froissart-Gribov representation for the threshold
rameters of theD waves converges about equally well as t
Wanders representation used in CGL—in either case, the
energy region dominates. In PY, the difference between th
two types of representation is used to test our results for
low energy region. Actually, however, the contributions fro
theSandP waves are identical in the two cases: A change
these waves shifts our results by exactly the same amoun
theirs. Even if the discrepancies obtained in PY could
taken at face value, the only conclusion we could draw fr
the comparison of the numbers for the threshold parame
of the D waves is that the asymptotic representation p
posed in PY differs from the one used in CGL—but this
evidentab initio.

The asymptotics proposed in PY violates crossing sy
metry rather strongly, while for the one used in CGL, t
violations are in the noise. In the case ofb01 , for instance,
the representation of PY implies a violation of crossing sy
metry that is more than twice as large as the discrepa
with our result that the authors are claiming. This shows t
~i! their Regge representation cannot be valid down to 1
GeV and~ii ! the uncertainties are underestimated, parti
larly those attached to the discrepancies obtained when c
paring their results with ours.

There is no doubt that the representation used in CGL
the asymptotic region, as well as the one for the low ene
contributions from theD andF waves could be improved. In
particular, thet dependence of the imaginary parts is poo
known at high energies. An improved representation co
be found by exploiting the various sum rules discussed in
present paper and comparing the result to what can be
tracted from the experimental information about the behav
at high energies by invoking factorization. A better know
edge of the imaginary parts in the region above 0.8 GeV is
interest, for instance, in connection with the standard mo
prediction for the magnetic moment of the muon: Our inve
tigation of the pion form factor@4# relies on an extension o
the Roy equation analysis to higher energies, where the
certainties in the asymptotic region are not entirely neg
gible. Concerning the behavior in the threshold region, ho
6-9
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ever, we do not expect this investigation to add much to w
is known already.
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APPENDIX A: ASYMPTOTIC REPRESENTATION OF PY

In the notation of ACGL, the Regge representation use
PY for the imaginary parts above 1.42 GeV reads

Im T0~s,t !5 1
3 f 0~s,t !1 f 1~s,t !1 5

3 f 2~s,t !1~ t↔u!,

Im T1~s,t !5 1
3 f 0~s,t !1 1

2 f 1~s,t !2 5
6 f 2~s,t !2~ t↔u!,

Im T2~s,t !5 1
3 f 0~s,t !2 1

2 f 1~s,t !1 1
6 f 2~s,t !1~ t↔u!.

~A1!

The functions occurring here are given by

f 0~s,t !5nsP$11k1~ ŝ/s!1/2%ebt~s/ ŝ!aP(t),

f 1~s,t !5n$11k2~ ŝ/s!1/2% f ~s,t !,

f 2~s,t !5nk4f ~s,t !2~ ŝ/s!,

f ~s,t !5sr

11ar~ t !

11ar~0!
$~11k3!ebt2k3%~s/ ŝ!ar(t),

aP~ t !511aP
1 t, ar~ t !5ar

01ar
1t. ~A2!

The factorn54p2 accounts for the difference in normaliza
tion. The scale is fixed atŝ51 GeV2 and the various param
eters are assigned the values

aP
1 50.1160.03 GeV22, ar

050.5260.02,

ar
151.01 GeV22,

sP53.060.3, sr50.8560.10,

b52.3860.20 GeV22,

k150.24, k250.460.1, k351.48,

k450.860.2. ~A3!

The value ofsP corresponds to an asymptotic cross sect
of nsP/3ŝ.15 mb.
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APPENDIX B: DRIVING TERMS FOR ASYMPTOTICS
OF PY

The contributions to the Roy equations that arise from
imaginary parts of the higher partial waves (,>2) and from
the high energy end of the dispersion integrals are referre
as driving terms. We evaluate the former as described
detail in ACGL, except that the integrals are now cut off
1.42 GeV. Concerning the latter, we merely have to repl
the Regge representation used in ACGL by the one of
and take the lower limit of the integral over the energy
1.42 GeV instead of 2 GeV. The result is well approximat
by polynomials inq25 1

4 (s24Mp
2 ):

d0
0~s!PY50.16q215.5q426.6q617.5q8,

d1
1~s!PY50.0011q210.52q410.13q611.1q8,

d0
2~s!PY50.074q212.7q427.0q618.8q8,

~B1!

whereq is taken in GeV units. The corresponding Roy equ
tions are obtained by inserting these expressions in E
~5.1!, ~5.2! of ACGL, with s05(0.8 GeV)2, s2
5(1.42 GeV)2.

APPENDIX C: ROY SOLUTION FOR ASYMPTOTICS
OF PY

In order to study the effect of the change in the asym
totics on the solutions of the Roy equations, we fix the s
traction constants ata0

050.22, a0
2520.0444 and use ou

central values for the phenomenological input below 1
GeV, which are characterized byd0

0(s0)582.0°, d1
1(s0)

5108.9°. We describe the phases with a parametrizatio
the form

tand,
I 5A12

4Mp
2

s
q2,$A

I
,1B

I
,q21C

I
,q41D

I
,q6%

3S 4Mp
2 2s

I
,

s2s
I
,

D . ~C1!

Using the driving terms in Eq.~B1!, we then obtain the fol-
lowing solution of the Roy equations~here, all quantities are
given in units ofMp):

A0
05.220, A1

15.38031021, A0
252.0444,

B0
05.269, B1

15.14431023, B0
252.93631021,

C0
052.13731021, C1

152.71931024,

C0
252.11931021,
6-10
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D0
052.14631022, D1

152.11731025,

D0
25.41531023,

s0
0536.73, s1

1530.70, s0
2528.84. ~C2!

APPENDIX D: REPRESENTATIONS
FOR THE THRESHOLD PARAMETERS

1. Subtractions

As discussed in the text, the subtractions play a cen
role in the low energy analysis. The fixed-t dispersion rela-
tions are needed in order to derive the various represe
tions for the threshold parameters used in the text. We
write these relations down explicitly.

If the subtractions are ignored, the fixed-t dispersion re-
lations are very simple:

TW ~s,t !5E
4Mp

2

`

ds8H Im TW ~s8,t !

~s82s!
1

Csu•Im TW ~s8,t !

~s82u!
J ,

~D1!

where TW (s,t)5$TW 0(s,t),TW 1(s,t),TW 2(s,t)% is the vector
formed with the threes-channel isospin components andCsu
is the 333 crossing matrix relevant fors↔u. The disper-
sion integral diverges, however. In order to remove the
vergent piece, a subtraction term of the formcW0(t)1scW1(t) is
needed. As shown by Roy@5#, crossing symmetry implies
that the subtraction functionscW0(t) andcW1(t) are fully deter-
mined by the imaginary parts of the forward scattering a
plitude, except for two constants. The dispersion relati
then take the form

TW ~s,t !5~4Mp
2 !21~s11tCst1uCsu!•TW ~4Mp

2 ,0!

1E
4Mp

2

`

ds8g2~s,t,s8!•Im TW ~s8,0!

1E
4Mp

2

`

ds8g3~s,t,s8!•Im TW ~s8,t !. ~D2!

The first term is fixed by theS-wave scattering lengths:

TW ~4Mp
2 ,0!532p~a0

0,0,a0
2!.

The quantitiesg2 andg3 are built with the crossing matrice
Cst , Ctu andCsu :

g2~s,t,s8!52
t

ps8~s824Mp
2 !

~uCst1sCstCtu!

3S 1

s82t
1

Csu

s82u0
D ,
07400
al

ta-
st

i-

-
s

g3~s,t,s8!52
su

ps8~s82u0!
S 1

s82s
1

Csu

s82u
D ,

~D3!

with u54Mp
2 2s2t and u054Mp

2 2t. One readily checks
that the difference between the right-hand sides of Eqs.~D1!
and ~D2! is linear ins.

The scattering amplitude is invariant under the cross
operations s↔t, s↔u and t↔u: TW (s,t)5Ctu•TW (s,u)
5Cst•TW (t,s)5Csu•TW (u,t). These relations impose con
straints on the imaginary part of the amplitude, which can
expressed in the form of sum rules@26–28#. In particular,
inserting the dispersion relation~D2! on the two sides of the
equation

TW ~s,t !5Cst•TW ~ t,s!, ~D4!

one obtains an entire family of such sum rules. Note that
relation S(t)50, which we made use of in Sec. VII, wa
considered long ago and was exploited to study thet depen-
dence of the residue of the Regge pole with the quan
numbers of ther @28#. For a detailed discussion, we refer
@12#.

2. Wanders representation

The threshold parameters are the coefficients occurrin
the expansion of the scattering amplitude around the p
s54Mp

2 , t50. Setting

s54~Mp
2 1q2!, t522q2~12z!. ~D5!

and performing the expansion in powers ofq in the inte-
grands on the right-hand side of the dispersion relation~D2!,
we arrive at the Wanders sum rules:

b0
05

1

3Mp
2 ~2a0

025a0
2!1

Mp
2

6p2E4Mp
2

` dsB0
0~s!

s2~s24Mp
2 !2

2b~a0
0!2

b0
252

1

6Mp
2 ~2a0

025a0
2!1

Mp
2

12p2E4Mp
2

` dsB0
2~s!

s2~s24Mp
2 !2

2b~a0
2!2

a1
15

2a0
025a0

2

18Mp
2

1
Mp

2

36p2E4Mp
2

` dsA1
1~s!

s2~s24Mp
2 !2

b1
15

1

36p2E4Mp
2

` dsB1
1~s!

s3~s24Mp
2 !3

. ~D6!

The integrands are given by

B0
0~s!54~s2Mp

2 !Im T0~s,0!1~s24Mp
2 !$23 ImT1~s,0!

15 ImT2~s,0!%2b0~s!,
6-11
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B0
2~s!5~s24Mp

2 !$2 ImT0~s,0!13 ImT1~s,0!%

1~7s24Mp
2 !Im T2~s,0!2b2~s!,

A1
1~s!53~3s24Mp

2 !Im T1~s,0!1~s24Mp
2 !

3$22 ImT0~s,0!15 ImT2~s,0!%,

B1
1~s!53~3s3212Mp

2 s2148Mp
4 s264Mp

6 !Im T1~s,0!

1~s24Mp
2 !3$22 ImT0~s,0!15 ImT2~s,0!%.

For theS-wave effective ranges, the expansion can be in
changed with the integration only after removing the thre
old singularity. This can be done by supplementing the in
grand with a total derivative, which gives rise to extra ter
in the expressions forb0

0 andb0
2:

b0~s!5
48p

Mp
2 ~a0

0!2h~s!u~sc2s!,

b2~s!5
96p

Mp
2 ~a0

2!2h~s!u~sc2s!,

b5
8

pEsc

` ds

s2~s24Mp
2 !2

h~s!,

h~s!5~s22Mp
2 !As~s24Mp

2 !,

By construction, the result is independent ofsc .
The corresponding representations for the threshold

rameters of the higher waves are obtained in the sa
manner—we are referring to all of these as Wanders re
sentations. The one for theD-wave scattering lengths, fo
instance, takes the form

a2
05

1

90p2E4Mp
2

` dsA2
0~s!

s3~s24Mp
2 !2

1
Mp

2

45p2E4Mp
2

dsȦ2
0~s!

s2~s24Mp
2 !2

a2
25

1

180p2E4Mp
2

` dsA2
2~s!

s3~s24Mp
2 !2

1
Mp

2

90p2E4Mp
2

dsȦ2
2~s!

s2~s24Mp
2 !2

. ~D7!

In this case, the integrands

A2
0~s!53~s214Mp

2 s216Mp
4 !Im T1~s,0!

1~s24Mp
2 !2$Im T0~s,0!15 ImT2~s,0!%,

Ȧ2
0~s!54~s2Mp

2 !Im Ṫ0~s,0!1~s24Mp
2 !

3$23 Im Ṫ1~s,0!15 Im Ṫ2~s,0!%,
07400
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A2
2~s!523~s214Mp

2 s216Mp
4 !Im T1~s,0!

1~s24Mp
2 !2$2 ImT0~s,0!1Im T2~s,0!%,

Ȧ2
2~s!5~s24Mp

2 !$2 Im Ṫ0~s,0!13 Im Ṫ1~s,0!%

1~7s24Mp
2 !Im Ṫ2~s,0!,

involve the first derivative of the scattering amplitude wi
respect tot,

Ṫ,
I ~s,t ![

]

]t
T,

I ~s,t !.

We do not list the analogous expressions for theD-wave
effective ranges or for theF-wave scattering length. Thes
are obtained with the same algorithm and involve up to t
derivatives.

3. Froissart-Gribov representation

The crossing relation~D4! connects the properties of th
amplitude in the vicinity of threshold to those in the vicini
of the points50, t54Mp

2 . The Froissart-Gribov represen
tation of the threshold parameters may be obtained by ins
ing the unsubtracted dispersion relation~D1! in Eq. ~D4! and
expanding the result arounds54Mp

2 , t50. Instead of the
Wanders sum rules, we now obtain

a,
I 5

2,,!

16p2~2,11!!!
E

4Mp
2

`

ds
Im T(I )~s,4Mp

2 !

s,11
,

b,
I 5

2,,!

8p2~2,11!!!
E

4Mp
2

`

ds

3
2s Im Ṫ(I )~s,4Mp

2 !2~,11!Im T(I )~s,4Mp
2 !

s,12
.

~D8!

The quantitiesT(0)(s,t), T(1)(s,t) and T(2)(s,t) represent
the t-channel isospin components of the scattering amplitu

T(I )~s,t !5(
I 8

Cst
II 8TI 8~s,t ! ~D9!

and Ṫ(I )(s,t) stands for the derivative ofT(I )(s,t) with re-
spect tot.

In view of the occurrence of subtractions, the represen
tion holds in this form only for,>1. In order to arrive at a
representation that also holds for theS waves, it suffices to
insert in Eq.~D4! the subtracted version~D2! of the disper-
sion relation rather than the unsubtracted one. The subt
tions are linear ins. After crossing, they become linear int
and thus drop out in all waves exceptS and P. So the ex-
pressions for the threshold parameters remain the same
,>2. On the other hand, the term containing the funct
g3(s,t,s8) in Eq. ~D3! is proportional tosu. After crossing,
this becomestu54q4(12z2). So, the term does not contrib
6-12
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ute to the scattering lengths or effective ranges of theSandP
waves. Hence the resulting representation for these ex
sively contains the imaginary parts in the forward directio
In fact, the representation forb0

0, b0
2, a1

1, b1
1 that obtains in

this manner is identical with the Wanders sum rules in E
~D6!. The exercise shows that the lowest terms in the thre
old expansion of the subtracted fixed-t dispersion relations
automatically respect crossing symmetry.

4. Sum rule related toa2
0

As mentioned in the text, the contributions from theSand
P waves to the FG and W representations of theD- and
F-wave threshold parameters are identical. ForDa2

05a2
0uFG

2a2
0uW , for instance, the explicit expression reads

Da2
05

16

45p (
,

~2,11!E
4Mp

2

` ds

s3 H P̄,~zs!$Im t,
0~s!

13 Im t,
1~s!15 Im t,

2~s!%

2
2Mp

2 s

~s24Mp
2 !3

$k,
0~s!Im t,

0~s!1k,
1~s!Im t,

1~s!

1k,
2~s!Im t,

2~s!%J ,

zs5
s14Mp

2

s24Mp
2

, P̄,~z!5H P,~z!21, , even,

P,~z!2z, , odd,

k,
0~s!54,~,11!~s2Mp

2 !,

k,
1~s!523~,21!~,12!~s24Mp

2 !,

k,
2~s!55,~,11!~s24Mp

2 !.

In the notation used here, the sum extends over all value
,, but Imt,

0(s) and Imt,
2(s) are different from zero only if,

is even, while Imt
1
,(s) vanishes unless, is odd. The for-

mula explicitly demonstrates that theS andP waves do not
contribute to the sum ruleDa2

050: The coefficientsP̄,(z)
andk,

I (s) vanish for,50 and,51.

APPENDIX E: NUMERICS FOR THE OLSSON SUM RULE

In PY, the contributions to the Olsson integral arisi
from the imaginary parts of theS and P waves below 0.82
GeV are estimated at 0.40060.007. The central value is in
yle

07400
lu-
.

.
h-

of

good agreement with what is obtained with the central so
tion in Eq. ~17.2! of CGL: OSP(E,0.82 GeV)50.401 ~no
wonder: it is calculated from this solution, except that
extrapolation for the interval from 0.80 to 0.82 GeV
made!. If we instead use the Roy solution relevant for t
asymptotics of PY, which is specified in Eq.~C2!, we obtain
OSP(E,0.82 GeV)50.404. The comparison demonstrat
that the low energy behavior of the integrand in the Olss
sum rule is not sensitive to the asymptotics. Concerning
error bar to be attached to the central value, we note that
uncertainties in the low energy theorems for theS-wave scat-
tering lengths generate an error of60.005, while those in
the phases at the matching point affect the result by60.007.
The noise in the experimental input used in the region fr
0.8 to 1.42 GeV also generates some uncertainty in the
solutions. We investigate this effect by comparing the res
found for the different phase shift analyses shown in Fig
of ACGL. The error from this source is small—we estima
it at 60.002. Finally, we take the difference between t
central solutions belonging to the asymptotics of ACGL a
PY as an estimate of the uncertainties from the region ab
1.42 GeV. The net result then reads

OSP~E,0.82 GeV!50.40460.00560.00760.00260.003.
~E1!

This adds up to 0.40460.009, in good agreement with th
value 0.40060.007 obtained in PY. Adding the various term
listed in Eq.~4.3! of PY, we obtain

OPY50.63860.015. ~E2!

So, the change in the asymptotics proposed in PY ind
pulls the Olsson integral down, by about 0.029, and th
tends to bring the sum rule out of equilibrium.

The left-hand side of the Olsson sum rule is determin
by theS-wave scattering lengths. These also enter the ab
calculation of the right-hand side: The first error in Eq.~E1!
reflects the uncertainties due to this source. The remain
terms on the right-hand side of this equation as well as
contributions fromE.0.82 GeV are independent ofa0

0 ,a0
2,

so that the net uncertainty in the difference between the
sides of the Olsson sum rule cannot be smaller than the
rors that remain if the uncertainty on the left as well as
first error in Eq.~E1! are dropped. Indeed, the two term
mentioned nearly cancel: Varying theS-wave scattering
lengths in the error ellipse given in CGL, the quantityD
[2a0

225a0
22O only varies by60.002. Adding the other

sources of uncertainty, we obtainD50.02560.013 and thus
confirm the resultD50.02760.011 quoted in PY.
Eur.
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