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In a recent paper, Pada and Yndurim evaluate some of the low energy observablesraf scattering and
obtain flat disagreement with our earlier results. The authors work with unsubtracted dispersion relations, so
that their results are very sensitive to the poorly known high energy behavior of the scattering amplitude. They
claim that the asymptotic representation we used is incorrect and propose an alternative one. We repeat their
calculations on the basis of the standard, subtracted fix#spersion relations, using their asymptotics. The
outcome fully confirms our earlier findings. Moreover, we show that the Regge parametrization proposed by
these authors for the region above 1.4 GeV violates crossing symmetry: Their ansatz is not consistent with the
behavior observed at low energies.
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I. INTRODUCTION parts and two subtraction constants, which can be identified
with the two Swave scattering lengthsa),a3. The Roy
We have demonstrated that the low energy properties ofgquations represent the partial wave projections of these dis-
the 7 scattering amplitude can be predicted to a remark{persion relations. Since the partial wave expansion of the
able degree of accurady,?] [in the following these papers imaginary parts converges in the large Lehman-Martin el-
are referred to as Ananthanarayan-Colangelo-Gasselﬂpse' it follows from first principles that the Roy equations

hold for —4M2<s<60M2, i.e. up to a center of mass en-
Leutwyler (ACGL) and Colangelo-Gasser-Leutwylg@GL), m e ) .
respectively. In our opinion, this work represents a break- ergy of 1.08 GeV. We use these equations to determine the

through in a field that hitherto was subject to considerablé’hases of theS and P Waves on the_ mte_rval 2 ,< s
L i . < 0.8 GeV. The calculation treats the imaginary parts above
uncertainties. The low energy properties of the scattering

. ! . 0.8 GeV as well as the two subtraction constants as external
amplitude play a central role in the analysis of many quan-mput_
tities of physical interest. As an example, we mention the “Aq gemonstrated in ACGL, the two subtraction constants
magnetic moment of the muon, where the standard mod&}jay the key role in the low energy analysis. The central
prediction requires precise knowledge of the hadronic congpservation in CGL is that the values of these two constants
tributions to vacuum polarization. As these are dominated by:an pe predicted on the basis of chiral symmetry. Weinberg’s
two-pion intermediate states of angular momentuml, the  |ow energy theoreni9] states that, to leading order in the
P-wave w phase shift is needed to high accuracy in ordefexpansion in powers afi, andmy, the scattering Iengtrmg
to analyze the data in a reliable manh&y4]. anda3 are determined by the pion decay constant. The cor-

Our dispersive analysis, which is based on the Roy equaections are known up to and including next-to-next-to-
tions[5], was confirmetiin Ref.[6]. In a recent paper, how- |eading ordef10]. In CGL we have performed a new deter-
ever, Pelaz and Ynduria (PY) 8] claim that this analysis is mination of the relevant effective coupling constants, thereby
deficient because the representation we are using to describgtained sharp predictions faf,a3 and then demonstrated
the behavior of the imaginary parts above 1.42 GeV is “ir-that the Roy equations pin down ther scattering amplitude
realistic.” They propose an alternative representation, evaluthroughout the low energy region, to within very small un-
ate a few quantities of physical interest on that basis andertainties.
obtain flat disagreement with our results. They conclude that The paper is organized as follows. We first discuss the
our solution to the constraints imposed by analyticity, unitar-difference between PY and CGL concerning the input used
ity and chiral symmetry is “spurious.” In the following, we for the imaginary parts in the region above 1.42 GeV. In
refer to this paper as PY and show that this claim and other§ecs. IlI-V, we then repeat the calculations reported in CGL
contained therein are incorrect. for the input advocated by Pe&la and Yndurim, who did not

As a first step, we briefly outline our framework. The p_e.rform such an analys_is, but claim thgt the.results are sen-
fixed+ dispersion relations of Roy represent the real parts ofitive to the input used in the asymptotic region. As we will

the scattering amplitude in terms of teehannel imaginary demonstrate explicitly, this is not the case. We tumn to the
calculations they did perform only in the second part of the

paper, where we show that their Regge representation cannot
be right because it violates crossing symmetry. Section X

Tontains a summary of the present article as well as our

conclusions.

1This paper also compares our predictions for the values of th
two subtraction constants with some of ther phase shift analyses
and with the newK,, data obtained by the E856 Collaboration at

Brookhaven. While the result obtained in RE8] for aj is consis- Il. ASYMPTOTICS

tent with the theoretical prediction, the one for the combination

2a)— 5a3 deviates from the value predicted in CGL by 1Further According to PY, the input used for the imaginary parts
work on this issue is reported in R¢f]. above 1.42 GeV plays an important role in our analysis. This
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contradicts the findings in ACGL, where we demonstratedoarts on the interval frons, to s, and use the Regge repre-
explicitly that the behavior at those energies is not essentia§entation of PY above that energy.
because the integrals occurring in the Roy equations con- In PY, a further contribution is added, to account for the
verge rapidly. In particular, our explicit estimates for the sen-enhancement in the=1 imaginary part associated with the
sitivity of the threshold parameters to the input used at an@(1450). The corresponding contributions to the various ob-
above 0.8 Ge\(see Table 4, columf; in ACGL) imply that ~ servables considered in PY are explicitly listed there. In all
the uncertainties from this source are very small. In view ofcases, these are smaller than our estimates for the uncertain-
this, it is difficult to understand the claim of PY that our ties to be attached to our results. In the following, we drop
solutions are “distorted” because the input used fgs  this term to simplify the calculations. Note also that in PY, a
>1.42 GeV is “irrealistic.” parametrization for th® andF waves is used that is some-
Admittedly, however, we did not perform a thorough what different from those we rely on, which are taken from
study of the imaginary parts for energies above 1.42 GevV—Refs.[17,18.
for brevity we refer to this range as the asymptotic region. In

the interval from 1.42 to 2 GeV, we relied on phenomenol- lll. LOW ENERGY THEOREM FOR a3 AND a3
ogy, while above 2 GeV, we used a Regge representation .
based on the work of Pennington and Protopopéatyl2. The low energy structure is controlled by the two subtrac-

In particular, we used their results for the residue of thelion constants. The main question to ask, therefore, is
Regge pole with the quantum numbers of theneson, also whether the c_hgnge in the asymptotics proposed in PY af—
with regard to the uncertainties to be attached to this contrif€ts the predictions for these two constants. In principle, it
bution, and invoked a sum rule that follows from crossingd0€s, because some of the corrections to Weinberg's low
symmetry to estimate the magnitude of the Pomeron term. €N€rdy theorerfd] involve integrals over the imaginary parts
According to Pelaz and Ynduria, phenomenology can- of the sgatterlng amplitude that extend_ tc_) |nf|n|ty. As docu-
not be trusted up to 2 GeV. The authors construct what the ented in Table 1_of CGL, the uncertainties in the resu]t for
refer to as an “orthodox” Regge fit and then assume that thige Swave scattering lengths are dominated by those in the
fit adequately approximates the imaginary parts down to gffective coupling constants. The noise in thze input used at
center of mass energy of 1.42 GeV. For ease of compariso@Nd above 0.8 GeV affects the valuesafandag only at the
the Regge representation of PY is described in Appendix Alevel of half a percent. _
It differs significantly from ours. Moreover, in the region AS mentioned above, however, our estimates for the un-
below 2 GeV, it differs from the phenomenological input we Certainties in the asymptotic part of the input do not cover
used. Although we attached considerable uncertainties to tH&€ modification proposed in PY. To remain on firm grounds,

input of our calculation, these do not cover the asymptotidVe have repeated the calculation described in CGL, using as
representation proposed in PY. input above 1.42 GeV the parametrization proposed in PY.

Unfortunately, the authors do not offer a critical discus-We have also reexamined the dispersive evaluation of the

sion of their representation, which looks similar to the Reggescalar radius. According to Ref19], the behavior of the

fit proposed by Raritet al.[13] in 1968, but the parameters 1-Matrix above 1.4 GeV does not significantly affect the re-
are assigned different values and a comparison is not madgult. As discussed below, the solution of the Roy equation for
For a review of the current knowledge about the structure ofh® Swave is not sensitive to the asymptotics, either, so that
the Pomeron, we refer fd4]. Recent thorough analyses of the contribution from _Iow energies, which dominates the re-
different classes of parametrizations of the asymptotic ampliSult for the scalar radius, practically stays put. In the follow-
tudes and of the corresponding fits to the large body of availl"d, we use the estimate given in CGls?)s=0.61
able data are described [45,16. These indicate that the *0.04 ff. Concerning the predictions for the scattering
|eading terms can be determined rather well by app|y|ng facl.engths, the modification of the asymptotics shifts the central
torization to the experimentally well explorédN and wN  Values by

scattering amplitudes, but the non-leading contributions be-

come more and more important as the energy is lowered 5ag=0.4x10"3, 5a§=0.1x10"?,
(see, e.g.[16] for a critical discussion of the range of appli-
cability of different asymptotic formulasWe do not con- 2§a8—55a3=0.2>< 1073, (1)

sider it plausible that the asymptotic representation of PY can

be trusted to the precision claimed in that paper, where then Table | the result is compared with the predictions of

uncertainties in the contributions from the region above 1.42-GL .2 Despite the fact that the error bars attached to these

GeV are estimated at 10% to 15%. predictions are very small, the above shifts amount to less
In the following, however, we take the asymptotic repre-than 15% of the quoted uncertainties. We conclude that the

sentation proposed in PY at face value. More precisely, w&alues of the subtraction constants are not affected if our

(i) replace our Regge parametrization by this one @ndet

So=(0.8 GeVY, s,=(1.42 GeVY. All other elements of the

calculation are taken over from CGL without any change, so 2we hope not to confuse the reader with the notation used in the

that we can study the sensitivity of the result to the asymptables: The numbers quoted under PY are not taken from[BEf.

totics. We solve the Roy equations between thresholdsgnd  but are calculated by us, using the asymptotic representation for the

rely on phenomenological information about the imaginaryimaginary parts given there.
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TABLE I. S wave scattering lengths. The numbers in the first w25—7—+ +——F+—7F+—+—+—+F—+—F+—F— 11—

column are taken from CGL. Those in the second column are ob-
° Hyams et al.
] Protopopescu et al.

tained by replacing the asymptotics used there with the one pro- r
posed in PY. 1001

L

CGL PY I
’g 75 -
ag 0.220+.005 0.221 e I ]
a3 —0.0444+.0010 —0.0443 EA ]
2a)—5a3 0.663+.007 0.663 5o 5

L

1

asymptotics is replaced by the one of PY. This is of central 25
importance, as it confirms the statement that an accurate ex-
perimental determination of th&wave scattering lengths
allows a crucial test of the theory.

L

6 0.65 0.7 0.75 0.8
E(GeV)

IV. ROY EQUATIONS FIG. 2. P wave. The shaded band is taken from Fig. 8 of CGL.

In order to determine the effect of the change in the asThe full line is the solution of the Roy equations obtained with the
ymptotics on the solutions of the Roy equations, we fix theasymptotics of PY.
scattering lengths as well as the phenomenological input for
0.8 Ge\wE<1.42 GeV at our central values, so that the re-gjstent both with our asymptotics and with the one of PY.
sult can be compared with our central solution. Above 1.42  Ag 3 side remark, we note that on the interval on which

GeV, we evaluate the imaginary parts with the Regge reprege solve the Roy equations, the various phase shift analyses
sentation of PY. The essential elements of the calculation ara not consistent with one anottsee column 1 in Table 2

described in the Appendixes B and C. The result £@ris
shown in Fig. 1, where we compare the solution in EZR)
with the band of solutions obtained in CGL. The graph
shows that the low energy behavioréﬁ is not sensitive to
the input used in the region above 1.42 Ge

of ACGL). For this reason, we did not make use of the data
on the S and P-wave phase shifts below 0.8 GeV—any
analysis that relies on these is subject to large uncertainties.
X . In contrast to the overall phase of the scattering amplitude,
: _ V—the d'Stort'OQ/vhich is notoriously difficult to measure, the phase differ-
claimed in PY does not take place. ence 61— 63 shows up directly in the cross section and is

In PY the “possible cause of the distortion of the CGL . .
B . . therefore known quite accurately. Indeed, the values obtained
solution” is discussed in some detail and a low energy pa-

o . . . at 0.8 GeV from the seven different phase shift analyses
rametrization for the isoscal&wave is proposed in support

of that discussion. The proposal is referred to as a “tentativIIStGd in ACGL (which are due to OchE20], Hyams et al.

alternate solution” and is indicated by the dashed lines ir‘ilﬂ’ Estabrooks and Martif@1], Protopopescu et af22],

. . L Au et al.[23] and Bugg et al[18]) yield perfectly consistent
Fig. 1. As can be seen from this plot, the proposal is mconresuItS for this phase difference,si_agzzeﬁ% 2.8°.

100 ‘ While our Roy sqution; agree with t.his experimentgl fact
s (no wonder, we are using it in our inputthe “tentative
alternate solution” and the representation for tRewave
proposed in PY do not: These yiel&ﬁ=91.9°i 2.6° and
5%=109.0°i0.6°, respectively. The corresponding phase
difference, 87— 65=17.1°+2.6°, is in conflict with experi-

T T T

Hyams et al.
Protopopescu et al.
Estabrooks and Marti

80

T

L ]

7 60 i )

%, 1 ment at the level of 2&. The discrepancy must be blamed
g il on the tentative alternate solution—the uncertainties in the
S 40 - P-wave phase shift are small, because this phase is strongly

constrained by the data on the form factmdeed the value

in PY is in good agreement with our estima@},z 108.9°

| +2°).

1 Figure 2 demonstrates that tRewave phase shift is not

L sensitive to the asymptotics, either. In the exdiiavave

03 04 09 06 o7 08 (isospin 2, however, an effect does become visible. As can
E(GeV) be seen in Fig. 3, the maodification of the asymptotic behavior

FIG. 1. Isoscalas wave. The shaded band is taken from Fig. 7 'éduces the value 0By, At 0.8 GeV, the displacement
of CGL. The full line in the middle of the band represents the "é@ches 1.4°. Although this is small compared to the experi-
solution of the Roy equations obtained with the asymptotics of Pymental uncertainties, it does imply that—if the imaginary
For comparison, the representation proposed in(§4a of PY is  parts above 1.42 GeV are taken from PY—the phseuns
indicated by the dashed lines. within our band of uncertainties only below 0.64 GeV.

20
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TABLE II. Wanders sum rules. The numbers in the first column
are taken from Table 2 of CGL. Those in the second column are
obtained by replacing the asymptotics used there with the one pro-

o

e ACM (A) data
= ACM (B) data

-20

5 [ ¢ Losty et al. dat: B pOSQd in PY.
o f ] CGL PY Units
5 °r ] by 0.276+.006 0.278 M2
= [ ] b3 —0.803*.012 —0.800 10m ;2
o b aj 0.379+.005 0.381 10 '™ 2
. 1 b1 0.567+.013 0.579 102m*

A R R R R that the change in the asymptotics generates a somewhat
03 04 05 06 o7 %8 Jarger effect, but the displacement stays below 5% also here.
In the case o0&, the shift corresponds to 15 while for the

FIG. 3. ExoticSwave. The shaded band is taken from Fig. 9 of Other quantities the prediction is not that sharp, so that the
CGL. The full line is the solution of the Roy equations obtained shift is only a fraction of our error bar. In summary, we note

E(GeV)

with the asymptotics of PY. that for none of the quantities considered in PY, the change
in the asymptotics proposed in that paper generates a dis-
V. THRESHOLD PARAMETERS placement by more than Ia5

Next, we evaluate the change occurring in the result for. There is an alternative method for evaluating the quanti-

the scattering lengths and effective ranges of the lowest fefies listed in the table: Instead of working with the analog of

partial waves if our asymptotics is replaced by the one of Pythe Wanders sum rules, we may invoke the Froissart-Gribov
The evaluation is based on sum rules due to Wanf#k (FG) representation for the scattering lengths and effective

which are particularly suitable here, because they are rapidi{"9€s- The difference between the two is discussed in some
tail in Appendix D. If the scattering amplitude were ex-

convergent and thus not sensitive to the high energy behavi . , i
actly crossing symmetric, the two methods of calculation

of the imaginary parts. The representation &g, for in- R . . X
stance rea%s yp P i would yield identical results. The numerical results obtained

' with the FG representation for tHe and D waves are dis-
cussed in Secs. VIl and IX, respectively.

2ad-5a3 M2 (= ds =S
al=""0 0 ™ J The entries in columns 1 and 3 show that, for our asymp-
Yo1sM2 36m2)am2 s2(s—aM2)? totics, the two sets of numbers indeed agree within a fraction
of a percent, indicating that our representation of the scatter-
><{3(33—4Mi)|m Tl(s,O)—(s—4MfT) ing amplitude does pass this test of crossing symmetry. The
comparison of columns 2 and 4 indicates that the asymptot-
X[21ImT%s,00-5ImT?(s,00]}. (2)  ics of PY generates a somewhat stronger violation of cross-

ing symmetry, but the differences do not stick out of the

The analogous sum rules for the effective ranges ofhe uncertainties that must be attached to the central values
andP waves are listed in Appendix D. The numerical results|isted. As will be discussed in Sec. IX, however, these dif-
of CGL are quoted in the first column of Table I, while those ferences originate in the tiny contributions from the
in the second column are obtained by repeating the calculaasymptotic region and from the higher partial waves. In fact,
tion for the asymptotics proposed in PY. Note that the subthe slight mismatch seen in the comparison of columns 2 and
traction constants play a crucial role here. In fagtis to- 4 implies that the asymptotics of PY is not consistent with
tally dominated by the contribution from the first term on the crossing symmetry.
right-hand side of Eq(2), which accounts for 97% of the
numerical result. This is why the uncertainty in our predic-
tion for a} is so small. The subtractions ensure that the inte- VI]. OLSSON SUM RULE
grals converge rapidly. For the asymptotics of PY, for in- i . )
stance, the contributions from the region above 1.42 GeV _We now turn to the calculations described in PY and start
amount to less than 5% of the total, for all of the quantitiesVith the Olsson sum rule,

listed in Table II.
Repeating the exercise for tizand F waves, we obtain o 5
the results listed on the left half of Table Ill. These indicate 2a5—5a5=0, (©)

SWe use the normalization conventions of REf]. ImT'(s,0)  Which relates a combination &wave scattering lengths to
denotes the imaginary part of the forward scattering amplitude witfn integral over the imaginary part of the forward scattering
s-channel isospin. amplitude:
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TABLE lll. Threshold parameters of the andF waves. The left half of the table lists the results found
with the analog of the Wanders sum rules, while the numbers on the right half are based on the Froissart-
Gribov representation discussed in Sec. IX. The results obtained with the asymptotics of CGL and of PY are
listed separately. The first column is taken from Table 2 of CGL.

Wanders Froissart-Gribov
CGL PY CGL PY Units
ad 0.175+0.003 0.180 0.176 0.180 102M;4
b3 —0.355+0.014 —0.347 —0.359 —0.353 103m_°
a3 0.170+0.013 0.177 0.172 0.182 103M;4
b3 —0.326-0.012 -0.327 -0.329 -0.319 1073m_°¢
a3 0.560+0.019 0.562 0.560 0.565 107 *M°
b3 —0.402£0.018 —0.409 —0.404 —0.407 10 “m 8
M2 o totics proposed in PY is in conflict with the theoretical pre-
0] il ds dictions for theS'wave scattering lengths.

T a2 ]2
8mcJ)am?

y 21mT9s,00+3 ImT%(s,00—5 ImTZ(s,0) @ VIl. FROISSART-GRIBOV FORMULA FOR THE P WAVE

2 . . . . .
S(s—4M7) In this section, we consider the Froissart-Gribov formula

It is well known that this integral converges only slowly—in 1 1 © ds 0 ) 1 5
contrast to the subtracted dispersion integrals that underlie al:mf‘”wz g{z ImT(s,4M7) +3 ImT7(s,4M7)
the Roy equations or the sum rule for tRevave scattering i
length considered above, the contributions from the —5ImT%(s,4M2)}, (5)
asymptotic region play a significant role here. i
In ACGL, we evaluated the integral for arbitrary values of
the Swave scattering lengths. Inserting the predictions obwhich is used in PY to evaluate tfewave scattering length.
tained on the basis of chiral symmetry in E41.2 of that  The main difference to the Wanders representation in(Bq.
paper and accounting for the correlation betwe§randa? s that the FG formula does not contain a subtraction term
with Table 4 of CGL, we obtail®cg =0.665-0.022. Since and therefore converges more slowly: While in the above
this is in perfect agreement with our prediction for the scatformula, the region above 1.42 GeV is responsible for more
tering lengths, 38—5a§:O.663t 0.007, we conclude that, than 20% of the total, only a fraction of a percent arises from
for our asymptotics, the Olsson sum rule is in equilibrium. there in the case of the Wanders sum rule. The contrast is
Pelaz and Yndura point out that if our asymptotics is even more pronounced in the caseh:}f, where the low
replaced by theirs, while the behavior below 0.82 GeV is leftenergy contributions nearly cancel, so that the result obtained
unchanged, the value of the integral is reducedOQp, on the basis of the FG formula is dominated by those from
=0.635+0.014, so that the sum rule gets out of equilibrium. high energies: For the asymptotics of PY, 98%8%) of the
The low energy part of their calculation is examined in Ap-total come from the region above 1.42 G&/GeV). For this
pendix E, where we essentially confirm their result. Usingreason, the values found on the basis of the FG representa-
their numbers for the contributions from the region abovetion come with a large uncertainty. A numerical evaluation is
0.82 GeV, we find that the differende=2a3—5a3— 0 be-  of interest because it offers a test of the input used in the
tween the left- and right-hand sides of the sum rule becomegsymptotic region, but it does not add anything of signifi-
A=0.025+0.013, a discrepancy of abouir2(see the de- cance to our knowledge of the valuesalf andb;. This is
tailed discussion in Appendix)E why, in Table Il, we did not list the numerical values ob-
The result implies that the following three statements ardained in this way.
incompatible:(i) the behavior of the phases below 0.8 GeV  As both representations far; are exact, the difference
is correctly described by the figures shown abafiig,the  amounts to a sum rule, which the imaginary parts of the
contributions above 0.8 GeV are correctly estimated in PYscattering amplitude must obey. Indeed, the integrand of the
(iii ) the theoretical prediction for&—5aj is valid. In PY,  above representation is very similar to the one occurring in
the blame is put offi). The Roy equation analysis described the Olsson sum rulé4) and the dominating contribution to
in Sec. IV, however, shows théb can only fail if either(ii) the difference between the two representations is propor-
or (ii) or both are incorrect as well. Since the phenomenotional to this sum rule. The remainder involves the sum rule
logical information leaves little room for modifications in the derived in Appendix C of ACGL. As shown there, the ab-
interval from 0.8 to 1.4 GeV, we conclude that the asymp-sence of a Pomeron contribution to thes1 amplitude and
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crossing symmetry imply that the intedftal In the units of Table II, the numerical evaluation of the
integrals yields

N dsf(s,t) . .
S(t)ZLMf, —s+t—4|v|f, ailrg=0.37 bij|re=0.37 (CGL),

21ImTOo(s,t)+3 ImTX(s,t)—5 ImT2(s,t) ajlrc=0.36 bilrc=0.56 (PY). ©)
12s The second line confirms the central values given in PY:
(s—2M2) Im TX(s.0) ajlpe= 0.371:+0.013, b}|rc=0.599*+0.088 (the term “di-
_ m ' (6) rect” used in that paper refers to the results obtained on the
s(s—4Mf,)(s—t) basis of the Wanders sum rules
The above numbers show that, irrespective of the
must vanish in the entire region where the fixedispersion  asymptotic input used, the estimates obtainedafpon the
relations are valid. Crossing symmetry does not impose @asis of the FG formula are in reasonable agreement with the
constraint on the imaginary parts of ti#waves—indeed, much more precise result found with the Wanders sum rule
these drop out on the right-hand side of £6). Hence the (see Table ). The number extracted from the FG represen-

sum ruleS(t) =0 relates a family of integrals over the imagi- tation for bl, however, is reasonably close to the truth only
nary part of theP wave to the higher partial waves. The for the asymptotics of PY.

difference between the Froissart-Gribov and Wanders repre- ag mentioned above, the FG integral tmi‘ is dominated

sentations fora} may be written as a linear combination of by the contributions from high energies. More precisely, the
the Olsson sum rule and the valueSt) att=4M?: Regge term with the quantum numbers of fhés relevant,
M2 for Whic+h \t/ve are using a parametrization of the form
- t)s*o™ @1, For the integrals discussed in CGL, the uncer-
(2a—-5a5-0)+ QSMMET)' t[;?gti/ in the contribution E;Jrom this term is governed by the
(7) one in the residugs ,(t), but this is not the case here: Since
the FG integral forbi converges only very slowly, it is very
There is an analogous formula also foj: sensitive also to the parameters that describe the trajectory.
While the values ap=3—a;M2=0.49, a;=3(M?
1 N d —M2)"1=0.87 GeV 2 used in CGL are determined by,
balre— bﬂW:ﬁ E{ts(t)}h—»wi' (®) and M _, those in PY,aq=0.52+0.02, a;=1.01GeV ?,
are based on fits to cross sections. In the case of the Wanders
Note that this relation involves the derivative with respect torepresentation foby, the change occurring if the trajectory
t, because the FG representation Iidrcontains the imagi- used in CGL is replaced by the one in PY is small compared
nary part as well as the first derivative therésée Appendix to the error in our resulth;=0.567+0.013, but in the case
D). of the Froissart-Gribov representation, the operation shifts
The difference between the FG and W representations fdhe outcome from 0.37 to 0.4%(=0.50) or 0.53 &,
al andb! reflects the fact that the former is derived from an =0.54). Furthermore, the uncertainty attached to the Regge
unsubtracted dispersion relation, while the latter is based of¢sidue in CGL affects the result at the level-00.06. Note
the standard, subtracted form. If we wish, we may just agiso that the FG representation involves a derivative with
well apply the FG projection to the standard form of therespect tot, so that not only the slope; of the trajectory
fixed+t dispersion relations. The procedure leads to a repreenters, but also the slope of the resigjgt). Both of these
sentation that also holds for tiSavaves. In fact, the resulting duantities are poorly known.
formulas forbo, b2, ai and bi coincide with the Wanders We conclude that the FG value fb% obtained with our
sum rules. In this sense, the difference between the Froissa@Symptotics is subject to a large uncertainty, because it de-
Gribov and Wanders representations for the quantities corends on minute details of the Regge representation: The
sidered above exclusively concerns the manner in which théiscrepancy with the value found in CGL is in the noise. We
contributions from the subtractions are dealt with. For thefepeat that the issue does not touch our predictiotfofor
threshold parameters of the higher waves, on the other hantiyo reasons(i) That prediction relies on the rapidly conver-

the subtractions do not make any difference. gent representation of Wanders, where the entire region
above 2 GeV contributes less than 2% of the tdfia). The

Wanders sum rule fob] does not involve derivatives with

“The barred quantites stand for M(s,t)={ImT'(s,t)  respecttd.
—ImT'(s,0)}/t. For spacelike values df the denominatos+t
74Mi develops a zero in the range of integration, but one readily vI|iI. VALUES OF ai AND bi EROM ete~ AND 7+ DATA
checks that the numeratdi(s,t) vanishes there, on account of
crossing symmetry with respect $s-u. The same remark applies ~ The data on the pion form factor can be used to arrive at
to the apparent singularity generated by the denomingiteru, an independent determination of tRewave parameters. As

which occurs in the fixed-dispersion relatiogD2). pointed out in PY, the numbers fdri obtained from fits

f(s,t)=

aﬂFe— aﬂw: - W
aa
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based on the method of de Tratp and Ynduran [25] dis- Incidentally, one may also attempt to solve the Roy equa-

agree with our prediction at theddlevel. tions using the parametrization in E4.0). The result is the
The partial wave parametrization used in Re5] is of  same: Three parameters do not suffice to obtain solutions

inverse amplitude type: that obey the Roy equation for the wave, but with the

above extension, the problem disappears. We conclude that
the claimed 4 discrepancy is a property of the model used
, to parametrize th@-wave phase shift and does not occur if
one allows for the number of degrees of freedom necessary
to trust the representation, not only fat, but also forb?.
. Vs— VS1—S (10) In connection with the contribution from hadronic
Js+s—s vacuum polarization to the magnetic moment of the muon,
we are currently performing an analysis of the form factor

On the interval M2<s<s,, the square roots are real, so that is very similar to the one in Rdf25]. The main differ-
that the expression obeys elastic unitarity. Byr=0, the  €Nce is that we do not invoke a parametrization in terms of a
formula reduces tp-meson dominance. Ag=s,, the term modified Breit-Wigner formula to describe the behavior of
B,z develops a branch cut that mimics contributions fromth€ P wave in the low energy region, but instead rely on the
inelastic channels. In PY, the value ¢&; is fixed at 1.05 CCL phase shiff4]. We obtain a perfect description of the
GeV, while M, B, and B, are treated as free parameters_avallable experimental information about the form factor in

Two of these Specify the mass and the width of ghavhile this way, including the data in the spacelike region, and we

the third describes the behavior near threshold, which is gO\}JaVe checked that this also holds if we restrict our analysis to
. ' the data sets used j25]. By construction, our parametriza-

erned by the scattering Iengﬂi. The authors use the above tion of the form factor keens the low ener aramem}rs

representation to evaluate the Orarfactor, which accounts P gy p

for the branch cut singularity generated by the final statndbs fixed at the CGLvaIu_es. This F:onﬂrms_ the conclusion
interaction. The remaining singularities, in particular also the¢€ached above: The experimental information on the form

branch cuts associated with inelastic channels, are pararf‘wa-lCtor does not allow a model-independent determination of

etrized in terms of a polynomial in a conformal variable that@ and bi at the level of accuracy claimed in PY.

is adapted to the analytic structure of the form factor. The

authors then make a fit to the€'e” and = data for energies  IX. FROISSART-GRIBOV FORMULA FOR THE D WAVES
below 0.96 GeV and come up with remarkably accurate val-

ues for the parameteid ,, B, and B;. The correspondin . . ; .
P pr 0 ! P g parameters of th® waves given in PY. Using the Froissart-

result for the phase at 0.8 GeV &=109.0°+0.6°, while ! o .
for scattering length and effective range, the threshold exg';rIbOV representation in E4DS), the authors arrive at val-

P _2.,0_ 2 _2.,0
pansion of the above formula yielda}=(38.6+1.2) liezs ﬁort:‘hf (;:.?fmb:(natlo:l:m— sb(taz' ZZ) ?Edtsoo 3(?t2 ¢
X102 and b= (4.47+0.29)x 10" 3, respectively. Table I a;) that differ from those obtained wi € results o

1. . : - CGL by about 4%. They then argue that the two evaluations
shows that the result far; is consistent with our prediction,

but th fobl | It ident f his table that th are correlated and come up with the conclusion that, if the
ut the one fo; Is not. It Is evident from this table that the ., a|ations are accounted for, this difference amounts to a

discrepancy cannot be blamed on the input used in th@jscrepancy of 4 in the case ofy, and 5 in the case of
asymptotic region. ago-
The problem with the above determinationtzifis that it The main observation concerning the comparison is that it
depends on the specific form of the parametrization used fQfjpes not allow one to draw any conclusions aboutSkad
the phase. To explicitly demonstrate this model dependencey ywayes because the contributions from these waves are
it suffices to allow for additional terms in the conformal jgentical in the two evaluatiorfsWhen the correlations are
polynomial, rep'""C'”Ql'?’olJr B,z by Bo+B12+Bp2°+BsZ".  accounted for, these contributions drop out in the compari-
For simplicity, let us fixa; as well ash; at the central values  son. For this reason, the differences discussed in PY between
obtained in CGL. We can choose the remaining three paramne “CGL direct” and their own calculation of th®-wave
eters in such a way that the phase stays close to the oRRreshold parameters do not involve any of the results of
specified in Eq.(3.5 of PY. With M,=773.6 GeV,B;,  CGL. Even if the discrepancies obtained in PY could be
=1.073, B;=0.214, B,=—0.039, B3=—0.267, for in-  taken at face value, the only conclusion we could draw from
stance, the scattering length as well as the effective ranggese is that the Regge representation proposed in PY differs

agree with the central values in CGL and the phase stays weffom the one used in CGL—but this is evideati initio. The
within the uncertainty band that follows from the errors at-

tached to the parameters in R¥espite the fact that these
cannot be taken literally—above 0.82 GeV, the correspond- 5an explicit expression for the differenc&al=al|re—ady is
ing uncertainty in the phase is less than half a degi®iece  given in Appendix D. For all of the quantities listed in Table 11l the

the available experimental information does not stronglycontributions from thes and P waves to the Froissart-Gribov and
constrain the behavior of the form factor in the thresholdwanders representations are identical. This also holds for¢the

region, it is not possible to distinguish the two representa=4 scattering lengths, but not for the corresponding effective
tions for the phase shift on phenomenological grounds. ranges, nor for the threshold parameters belonging>ta.

L 4Mﬁ—s - 1 aM?2 -t
= R J,— — —
ti(s) s—4MfT( 0 12)—1i s

Finally, we comment on the estimates for the threshold
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situation for the Olsson sum rule and tRewave threshold values obtained for the D-wave threshold parameters. In fact,
parameters is different: In those cases, the contributions fromwith the exception ofyg, the above numbers are all larger
the SandP waves do not drop out, so that the CGL analysisthan the uncertainties quoted in PY for the discrepancy be-
does enter the comparison. tween “CGL direct” and their own evaluation. Evidently,
Moreover, for theD-wave threshold parameters, PY do those uncertainties are underestimated. In terms of the error
not refer to(and we are not aware Jo& determination that is attached to the comparison of the values obtainedar,
independent of the sum rules. If this were available, ondor instance, their asymptotics violates crossing symmetry at
could use it, together with the assumption that the asymptothe level of 5. In other words, their Regge parametrization
ics of PY is correct, to draw conclusions about the size of thes not in equilibrium with the low energy structure: The vari-
contributions from the low-energy region and to decideous terms from the asymptotic region roughly cancel, so that
whether the results obtained in CGL are consistent with thosalmost nothing is left to compensate the contribution from
conclusions. This is the logic the authors follow with thethe f,(1275), which dominates the low energy part of the
Olsson sum rule, where they can use the low-energy thedntegral.
rem, and with theP-wave threshold parameters, where PY  The problem does not occur with our asymptotics, for
claim that fits to the data on the form factor allow one towhich the sum rules hold to a remarkable degree of accuracy:
determineai andb% more reliably than with the sum rul@@  with the central values of our parameters we get
Sec. VIII we explained why this is not the casé&or the

D-wave threshold parameters, however, an analogous claim Aaf®=-0.006, AaSg=—0.009,
is not made. Hence the comparison of the results obtained by
inserting the two different representations for the asymptotic AbSC=-0.007, AbSS = —0.03.

region and for the higher partial waves in the integrals for the

threshold parameters cannot possibly lead to conclusions that |n py, it is stated that the discrepancies obtained with the

go beyond the fact that those two representations are diffefrojissart-Gribov formula for the effective ranges cannot be

ent. taken as seriously as those for the scattering lengths because
The FG integral converges almost as rapidly as the Wange result is sensitive to thedependence of the=2 ex-

ders representation—the region above 1.42 GeV only conchange piece. The violation of crossing symmetry, however,

tributes a small fraction of the total. For this reason, Table Illjsg shows up in the scattering lengths: For the parametriza-

also lists the results obtained with the Froissart-Gribov reptjgn proposed in PY, the net asymptotic contribution to

resentation. The requirement that the two different expresp g, , for instance, is also much too small to keep the term

sions for theD and F waves must. lead to the same result from thef,(1275) in balance, while foAag, it is much too
amounts to a set of sum rules, which exclusively involve thggge.

imaginary parts of the higher partial waves. The prototype of Note that the sum rules receive contributions exclusively
this category of sum rules is the one in EB.7) of ACGL.  from (a) the Regge representation afi) the low energy
Since a crossing symmetric scattering amplitude automatinarametrization used for the higher partial waves. Both of
cally obeys these relations, they amount to a test of crossingyese contributions are small in comparison to the net result
symmetry. The sum rules require the contributions from thgoy the threshold parameters because that result is dominated
region below 1.42 GeV to be in balance with those frompy the contributions from th& and P waves. For the test of
higher energies. Since the low energy part is dominated b)frossing symmetry, however, this comparison is of no sig-
the experimentally well determined isoscalarwave, the pificance because trf®andP waves do not contribute at all.
sum rules amount to a test of the representation for thynat counts is whether or néa) is in equilibrium with (b).
imaginary parts used in the asymptotic regiaich contain We conclude that, while the asymptotics used in CGL is
It=0 contributions from the Pomeron afigoles, as well as  consistent with crossing symmetry, the one proposed in PY is
poorly known terms withl=2). In application to PY, this ot The violation is too large for the comparison with CGL

test does not involve anything beyond the parametrizationgy be meaningful at the level of accuracy claimed in PY.
proposed in that reference for the partial waves with2

and for the asymptotic region. For the central values of the
parameters, the difference between the results obtained from
the Froissart-Gribov and Wanders representations becomes The low energy analysis of the scattering amplitude

(in the normalization used for the waves in PY: scattering described in CGL relies on input for the imaginary parts,
lengths in units of 10*M_*, effective ranges in units of which are partly taken from experiment, partly from Regge

X. SUMMARY AND CONCLUSIONS

10 %M .°): theory. In the present paper we have investigated the sensi-
tivity of the results to the input used in the asymptotic re-
AafY=-0.11, Aaf§=0.03, Abg}=-0.13, gion. The investigation is motivated by a recent paper of
Pelaez and Yndurim, who advise the reader not to trust the
Abgg=0.09. (11 results of CGL because, in their opinion, the input used for

the asymptotics is wrong.
These numbers show that—for the parametrizations pro- The Regge representation of CGL is based on the work of
posed in PY—the two representations do not lead to théennington and Protopopeddd] and is indeed quite differ-
same result, so that there is an inherent uncertainty in thent from the one proposed in PY. The main result of the
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analysis described in the first part of the present paper is In the case ob?, the Froissart-Gribov formula converges
that—as far as the low energy behavior of the scatteringnly very slowly, so that the result is sensitive to the behav-
amplitude is concerned—this difference does not matter. Thir of the imaginary parts at very high energies, in marked
input used for the imaginary parts above 1.42 GeV may beontrast to the integrals considered in CGL, where energies
replaced by the one advocated in PY. The outcome for thabove 3 GeV barely contribute. For the central parameter
threshold parameters of the leading partial waves remaingalues of the asymptotic representation used in CGL, the FG
almost the same: integral for b} comes out too small. The result, however,
The predictions for th&wave scattering lengths are prac- very strongly depends on details of the parametrization used

tically untouched. Expressed in terms of the uncertainty eSfor the Regge term with the quantum numbers of pheso
timates given in CGL, the changes amount to less thamhat there is no discrepancy to speak of.

0.1%. This is of crucial importance because the result im- |n PY, the method of Ref[25] is used to arrive at an
plies that the subtraction constants in the fixedispersion  independent determination af andb}, based on the e~
relations stay put—the subtraction constants are the essentiglq - data. While the result foai is in good agreement with
parNanjitershm t?fe low energy d?mlg:\q/. he thregpy. OUF Prediction, the value fob} is not. We show that the
either the effective ranges of thewaves nor the thresh- - rainties attached to this method are underestimated. The

pld parameters .Of thE.’ wave are sensitive t‘? the mput used data on the form factor are perfectly consistent with our pre-
in the asymptotic region. The effects seen in the higher Parictions. not only foral, but also forb?
) 1 1-

tial waves are somewhat larger, but the only case where re- . . .
. . The Froissart-Gribov representation for the threshold pa-
placing the asymptotics of CGL by the one of PY produces a
: . . rameters of th® waves converges about equally well as the
change that exceeds our error estimates is the isoscalgr, ) . ]
D tteri lenatha®  wh the disol A anders representation used in CGL—in either case, the low
wave scattering lengtha,, where the displacemen energy region dominates. In PY, the difference between these

amounts to 1. . . . two types of representation is used to test our results for the
The Roy equations imply that the low energy behavior ofI ; Lo
ow energy region. Actually, however, the contributions from

the isoscalaswave and thé> wave remains practically un- the SandP waves are identical in the two cases: A change in

affected by the change in the asymptotisse Figs. 1 and)2 these waves shifts our results by exactly the same amount as

The exoticS wave (isospin 2 is more sensitive, but even in ; it the di . btained i d b
that case, we find that the phase shift at 0.8 GeV is displacelf€i's- Even if the discrepancies obtained in PY could be

by only 1.4° (see Fig. 3 As witnessed by the fact that the taken at faqe value, the only conclusion we could draw from
changes ira2 andb? are minute, the behavior in the thresh- the comparison qf the numbers for thg threshold parameters
old region essentially stays put also for this partial wave. ©f the D waves is that the asymptotic representation pro-
The calculation confirms the stability of our results with PSed in PY differs from the one used in CGL—but this is
respect to the uncertainties in the asymptotic region. Even igvidentab initio.
the representation proposed in PY is assumed to be closer to The asymptotics proposed in PY violates crossing sym-
the truth than the one of Pennington and Protopopescu thagetry rather strongly, while for the one used in CGL, the
we rely on, the predictions for the threshold parameters reviolations are in the noise. In the caselgf, , for instance,
main essentially the same. We conclude that the statemerifde representation of PY implies a violation of crossing sym-
made by P€lez and Ynduria about the precision of chiral- metry that is more than twice as large as the discrepancy
dispersive calculations of 7 scattering are incorrect. with our result that the authors are claiming. This shows that
In the second part of the present article, we have examd) their Regge representation cannot be valid down to 1.42
ined the calculations described in PY. The main points taGeV and(ii) the uncertainties are underestimated, particu-
notice here are as followsi) these do not shed any light on |arly those attached to the discrepancies obtained when com-
the values of the threshold parameters dingd the Regge paring their results with ours.
parametrization proposed in PY cannot be valid within the  There is no doubt that the representation used in CGL for
uncertainties quoted for the parameters because it violatefe asymptotic region, as well as the one for the low energy
crossing symmetry. Our asymptotic representation does n@pntributions from thé andF waves could be improved. In
have this problem. particular, thet dependence of the imaginary parts is poorly
In the case of the Olsson sum rule or the Froissart-Griboknown at high energies. An improved representation could
representation foay, the integrals only converge slowly, S0 be found by exploiting the various sum rules discussed in the
that the result is sensitive to the uncertainties in the imagipresent paper and comparing the result to what can be ex-
nary parts above 1.4 GeV. In effect, the calculation yields aracted from the experimental information about the behavior
crude estimate for the combinatiorm@-5aj of subtraction  at high energies by invoking factorization. A better knowl-
constants. The comparison with the very precise predictioedge of the imaginary parts in the region above 0.8 GeV is of
obtained in Ref[2] shows that the asymptotic representationinterest, for instance, in connection with the standard model
proposed in PY brings the Olsson sum rule out of equilib-prediction for the magnetic moment of the muon: Our inves-
rium, while the one used in CGL passes the test very welltigation of the pion form factof4] relies on an extension of
We conclude that the Regge representation proposed in PY ke Roy equation analysis to higher energies, where the un-
not consistent with the prediction of standard chiral perturcertainties in the asymptotic region are not entirely negli-
bation theory for 38—5a§. gible. Concerning the behavior in the threshold region, how-
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ever, we do not expect this investigation to add much to what APPENDIX B: DRIVING TERMS FOR ASYMPTOTICS
is known already. OF PY

The contributions to the Roy equations that arise from the
imaginary parts of the higher partial waves%2) and from

We thank Joséel@z and Paco Yndiim for sending us the high energy end of the dispersion integrals are referred to
their manuscript prior to publication. The present work wasas driving terms. We evaluate the former as described in
carried out while one of uéH.L.) stayed at DESY Zeuthen. detail in ACGL, except that the integrals are now cut off at
He thanks Fred Jegerlehner for a very pleasant stay. This-42 GeV. Concerning the latter, we merely have to replace
work was supported by the Humboldt Foundation, by thethe Regge representation used in ACGL by the one of PY
Swiss National Science Foundation, by SCORESntract 7 and take the lower limit of the integral over the energy at
IP 62607 and by RTN, BBW Contract No. 01.0357 and EC 1.42 GeV instead of 2 GeV. The result is well approximated
Contract HPRN—CT2002—0031EURIDICE). by polynomials ing?= ;(s—4M?):
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APPENDIX A: ASYMPTOTIC REPRESENTATION OF PY d3(s)py="0.1692+5.59*— 6.60°+ 7.50°,

In the notation of ACGL, the Regge representation used in
PY for the imaginary parts above 1.42 GeV reads d}(s)py=0.00112+0.527*+ 0.13°+ 1.19°,

IMTO(s,t)=1fq(s,t)+ F1(S,t)+ 2fo(s,t)+ (tU),
(SOZFhSUFRSD TS0 T o) d2(S)py=0.07442+2.7q*— 7.00°+ 8.89°,

IMTY(s,t)=Lfo(s,t)+ 2 4(5,t)— 2fo(5,t) — (tsul), (B1)

whereq is taken in GeV units. The corresponding Roy equa-

ImT?(s,t)=3fo(s,) = zfa(s,t) +5Fa(s,) +(t—u). tions are obtained by inserting these expressions in Egs.
(A1) (5.1, (5.2 of ACGL, with s,=(0.8GeVy, s,
The functions occurring here are given by =(1.42 GeVy.
fo(S,t):nO'p{1+kl(é/S)llz}ebt(Slg)aP(t), APPENDIX C: ROY SOLOUFTIPOYN FOR ASYMPTOTICS
fi(s,t)=n{1+ky(s/s)Y2f(s,1), In order to study the effect of the change in the asymp-

totics on the solutions of the Roy equations, we fix the sub-
traction constants aa=0.22, a3=—0.0444 and use our
central values for the phenomenological input below 1.42
GeV, which are characterized byd(so)=82.0°, 61(so)

fo(s,t)=nk,f(s,t)3(s/s),

1+a,(t)

f(st)=o 1+ ks)ePt— kol (s/8) %, =108.9°. We describe the phases with a parametrization of
( ) p1+ap(0) {( 3) 3}( ) the form
ap(t)=1+ a%,t, ap(t)=ag+ alﬁt. (A2) aM?2
tand, = \/1- —q?{A'¢+B'¢q?+C'¢q*+D'¢q°
The factorn=42 accounts for the difference in normaliza- ¢ S avt d q a’

tion. The scale is fixed a=1 Ge\? and the various param-

eters are assigned the values

X

4Mi—§€)
— . (C1)

S— s'(%

ap=0.11+0.03 GeV? a9=0.52+0.02,
Using the driving terms in EqB1), we then obtain the fol-
“;: 1.01 GeV?, Iqwing. solu'tion of the Roy equatior{kere, all quantities are
given in units ofM ):
0p=3.0+0.3, 0,=0.85+-0.10,
AJ=.220, A]=.380x 10!, A3=—.0444,
b=2.38+0.20 GeV 2,

ki=0.24, k,=0.4+0.1, ky=1.48, Bg=.269, By=.144x10°°, Bf=-.936x10 ",

k,=0.8+0.2. (A3) Co=-.137x10"%, C}=-.719x10*%,

The value ofop corresponds to an asymptotic cross section )
of Nnop/3s=15 mb. C3=-.119x10"1,
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DJ=-.146x10"2, D}=-.117x10°, su 1 o
g3(S,t,S')=— ’ , , ’
ws'(s'—ug) \s'—s s'—u
D3=.415x< 103, (D3)
0 1 2 with u=4M2—s—t andug=4M2—t. One readily checks
$9=36.73, s;=30.70, sj=—8.84. C2 g 0= Mz ,
0 ! 0 €2 that the difference between the right-hand sides of Hoi$)
and(D2) is linear ins.
APPENDIX D: REPRESENTATIONS The scattering amplitude is invariant under the crossing
FOR THE THRESHOLD PARAMETERS operations s—t, s—u and t—u: T(s,t)=Cy,- T(S,U)
1. Subtractions zcst-f(t,s)zcsu-f(u,t). These relations impose con-

a§traints on the imaginary part of the amplitude, which can be
expressed in the form of sum rulg86—29. In particular,
ér]serting the dispersion relatiqid2) on the two sides of the
quation

As discussed in the text, the subtractions play a centr
role in the low energy analysis. The fixéddispersion rela-
tions are needed in order to derive the various represent
tions for the threshold parameters used in the text. We first
write these relations down explicitly. . R

If the subtractions are ignored, the fixedlispersion re- T(s,)=Csp T(t,5), (D4)

lations are very simple: . ) )
one obtains an entire family of such sum rules. Note that the

relation S(t) =0, which we made use of in Sec. VII, was
considered long ago and was exploited to studytttepen-

- o ImT(s',t) C.,ImT(s',t
T(s,t):f ds’{ ( )+ U (s

am2 (s'—s) (s'—u) ’ dence of the residue of the Regge pole with the quantum
(D1)  numbers of the [28]. For a detailed discussion, we refer to
[12].

where T(s,t)={T°(s,t),TX(s,t),T%(s,t)} is the vector
formed with the threes-channel isospin components a@d, 2. Wanders representation

is the 3x3 crossing matrix relevant fos< u. The disper- - Lo
o : . The threshold parameters are the coefficients occurring in
sion integral diverges, however. In order to remove the di-

’ ) - - _ the expansion of the scattering amplitude around the point
vergent piece, a subtraction term of the fatpit) +sci(t) is  —4pm2 t=0. Setting
needed. As shown by Rojb], crossing symmetry implies m
that the subtraction functiorg(t) andc,(t) are fully deter- s=4(M2+q?), t=—20%(1-2). (D5)
mined by the imaginary parts of the forward scattering am-
plitude, except for two constants. The dispersion relationsnd performing the expansion in powers afin the inte-

then take the form grands on the right-hand side of the dispersion relati®®),
we arrive at the Wanders sum rules:
7 _ 2\-1 = 2
= + + .
T(s,t)=(4M%) " *(s1+tCq+uCsy) - T(4MZ,0) oo ) ) M2 (- dsE(s) .
bo= —(2a,—5a5) + —; - B(ay)
3m2 672J)am? s2(s—4M?2)2

+ f ,ds'gy(s,t,s')-ImT(s',0)
4Mﬂ_

2

M2 foo dsBi(s)

1272 ) am? 2(s—4M2)?

1
* 2_ _ 0_ a2
+f ,ds'ga(s,t,8") - ImT(s',1). (D2) bo= 6|\/|2(2a0 5ap) +
4M ™

- p(ad)?

The first term is fixed by th&wave scattering lengths:

, 2ag-5a; M3 Jw dsAl(s)
. = +
T(4M7,0)=32m(a;,025). BT T2 36r2)amz 2(s—am2)?

The quantitiegy, andgs; are built with the crossing matrices
Cq, Cyy andCq,: ol 1 fw dsBl(s)

1 362 am? $3(s—4M2)3
ga(s,t,s')=— m(ucst+scstctu) The integrands are given by
X( 1 . Cey BY(s)=4(s—M2)ImT%(s,0)+ (s—4M?2){—3 Im T'(s,0)
s'—t s'—ug) +5ImT?(s,00}—B%s),
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B3(s)=(s—4M2){2ImT%s,0)+ 3 ImT%(s,0)}
+(7s—4M2)ImT?(s,0)— B2(s),

Al(s)=3(3s—4M2)Im T%(s,0)+ (s—4M2)
x{=21mT%s,00+5ImT?(s,0)},

Bl(s)=3(3s°—12M25%+ 48M*s—64M®)Im T(s,0)
+(s—4M2)3(—21ImT%s,0)+ 5 ImT%(s,0)}.

For theSwave effective ranges, the expansion can be inter-
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A%(s)=—3(s>+4M2s—16M*%)Im T(s,0)
+(s—4M2)2{2 ImT°(s,0)+ Im T?(s,0)},
A%(s)=(s—4M?2){2 ImT%(s,00+3 ImT(s,0)}
+(7s—4M2)ImT?(s,0),

involve the first derivative of the scattering amplitude with
respect td,

-l =i I
Te(st)= mTe(s,t).

changed with the integration only after removing the thresh- ) )
old singularity. This can be done by supplementing the inteVVe do not list the analogous expressions for Mevave
grand with a total derivative, which gives rise to extra termseffective ranges or for th&-wave scattering length. These

in the expressions fdn3 andb:

487
B°(s)= W(a(%)zh(s) 0(sc—S),

ko

96
BY(s)= M—f(a(%)?h(s) B(sc—S),

w

8 (= ds h
mJs, s?(s—4M2)?

h(s)=(s—2M?2)/s(s—4M?),

By construction, the result is independentspf

B= (s),

The corresponding representations for the threshold pa-
rameters of the higher waves are obtained in the same
manner—we are referring to all of these as Wanders repre-
sentations. The one for thB-wave scattering lengths, for

instance, takes the form

- 0 2 ‘A0
20— 1 f dsAy(s) N Mﬁf dsAs(s)
9072 am? $*(s—4M2)2 4572 )am? s?2(s—4M2)?

, 1 Joc dsA(s)
a:
21802 ) am2 $3(s—4M?2)2

M? f dsAy(s)
+ .
9072 ) am2 s%(s—4M2)?

(D7)

In this case, the integrands
AY(s)=3(s>+4M2s—16M*)Im T(s,0)
+(s—4M2)2{ImT%(s,0)+5 ImT?(s,0)},
AY(s)=4(s—M2)ImT%(s,0) + (s—4M2)

X{—31mT(s,0)+5 ImT?(s,0)},

are obtained with the same algorithm and involve up to two
derivatives.

3. Froissart-Gribov representation

The crossing relatioD4) connects the properties of the
amplitude in the vicinity of threshold to those in the vicinity
of the points=0, t=4M2. The Froissart-Gribov represen-
tation of the threshold parameters may be obtained by insert-
ing the unsubtracted dispersion relati@1) in Eq. (D4) and
expanding the result arounzd=4MfT, t=0. Instead of the
Wanders sum rules, we now obtain

, 2041 fw ImT"(s,4M2)
Q=——F———— S————
T 16m2(20+ 1)1 Jam2 sttt

| 24¢! “
b =—J ds
Cgm220+ 1)1 Jam?

2sIm TN (s,4M2) — (£ +1)ImTM(s,4M2)
X S€+2 )

(DY)

The quantitiesT(O)(s,t), T®)(s,t) and T(®)(s,t) represent
thet-channel isospin components of the scattering amplitude,

TO(s,)=>, cl/TV(s,1) (D9)
I!

and T()(s,t) stands for the derivative 6f")(s,t) with re-
spect tot.

In view of the occurrence of subtractions, the representa-
tion holds in this form only fo=1. In order to arrive at a
representation that also holds for tBavaves, it suffices to
insert in Eq.(D4) the subtracted versiofD2) of the disper-
sion relation rather than the unsubtracted one. The subtrac-
tions are linear irs. After crossing, they become linear in
and thus drop out in all waves exceptand P. So the ex-
pressions for the threshold parameters remain the same for
£=2. On the other hand, the term containing the function
gs(s,t,8") in Eq. (D3) is proportional tosu. After crossing,
this becomesu=4q*(1—z%). So, the term does not contrib-
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ute to the scattering lengths or effective ranges of3hadP  good agreement with what is obtained with the central solu-
waves. Hence the resulting representation for these excldion in Eq. (17.2 of CGL: OgE<0.82 GeV)=0.401 (no
sively contains the imaginary parts in the forward direction.wonder: it is calculated from this solution, except that an
In fact, the representation fd, b2, al, b} that obtains in  extrapolation for the interval from 0.80 to 0.82 GeV is
this manner is identical with the Wanders sum rules in Eqmadg. If we instead use the Roy solution relevant for the
(D6). The exercise shows that the lowest terms in the threshesymptotics of PY, which is specified in E2), we obtain

old expansion of the subtracted fixediispersion relations OsdE<0.82 GeV)=0.404. The comparison demonstrates

automatically respect crossing symmetry. that the low energy behavior of the integrand in the Olsson
sum rule is not sensitive to the asymptotics. Concerning the
4. sum rule related toad error bar to be attached to the central value, we note that the

uncertainties in the low energy theorems for $iave scat-
tering lengths generate an error %f0.005, while those in
the phases at the matching point affect the result-ly007.
The noise in the experimental input used in the region from

As mentioned in the text, the contributions from ®&and
P waves to the FG and W representations of e and
F-wave threshold parameters are identical. Bab=a|rg

—aj|w, for instance, the explicit expression reads 0.8 to 1.42 GeV also generates some uncertainty in the Roy
solutions. We investigate this effect by comparing the results

found for the different phase shift analyses shown in Fig. 3

Aap= 457 2 2€+1)I | Pe(zo{Imt(s of ACGL. The error from this source is small—we estimate

it at £0.002. Finally, we take the difference between the

+3 Imte(s)+5 Imte(s)} central solutions belonging to the asymptotics of ACGL and
PY as an estimate of the uncertainties from the region above

2M?2s 1.42 GeV. The net result then reads

—{Ke(s)lmtg(s)ﬂtKe(s)lmte(s)
(5=4M7)° OsHE<0.82 GeVf=0.404+0.005-0.007+0.002+ 0.003.

(ED
+x2(s)Imt%(s)} ¢, , _ ,
Ke(S)Imty( )}] This adds up to 0.4040.009, in good agreement with the
value 0.406:0.007 obtained in PY. Adding the various terms

s+4aM2 {P{{(Z)_l, ¢ even, listed in Eq.(4.3 of PY, we obtain
zZ=——, Z)=
*s—am2’ ¢ Pi(2)~2z ¢ odd, Opy=0.638+0.015. (E2)
Kg(s)=4€(€+1)(s—MfT), So, the change in the asymptotics proposed in PY indeed
pulls the Olsson integral down, by about 0.029, and thus
kF(S)=—3(£—1)(£+2)(s—4M?2), tends to bring the sum rule out of equilibrium.
The left-hand side of the Olsson sum rule is determined
K?(S) =50(€+ 1)(5—4M,27). by the Swave scattering lengths. These also enter the above

calculation of the right-hand side: The first error in EG1)
In the notat|on used here the sum extends over all values @&flects the uncertainties due to this source. The remaining
¢, but Imt9(s) and ImtZ(s) are different from zero only if  terms on the right-hand side of this equation as well as the
is even, while Int'¢(s) vanishes unlesé is odd. The for-  contributions fromE>0.82 GeV are independent af a3,
mula explicitly demonstrates that tiS&and P waves do not  so that the net uncertainty in the difference between the two
contribute to the sum rulda=0: The coefficientsP,(z) ~ Sides of the Olsson sum rule cannot be smaller than the er-
and K'f(s) vanish for¢=0 andf=1. rors that remain if the uncertainty on the left as well as the
first error in Eq.(E1) are dropped. Indeed, the two terms
mentioned nearly cancel: Varying th&wave scattering
lengths in the error ellipse given in CGL, the quantity
In PY, the contributions to the Olsson integral arising=2a5—5a3—O only varies by=0.002. Adding the other
from the imaginary parts of th8 and P waves below 0.82 sources of uncertainty, we obtal= 0.025+0.013 and thus
GeV are estimated at 0.46®.007. The central value is in confirm the resuld =0.027+0.011 quoted in PY.
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