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We calculate the combinationa” —5a{?) (the Olsson sum rujeand the scattering lengths and effective
rangesal,a(z') and bl,b(z') dispersively(with the Froissart-Gribov representatjonsing, at low energy, the
phase shifts forrm scattering obtained by Colangelo, Gasser, and Leutw@&L) from the Roy equations
and chiral perturbation theory, plus experiment and Regge behavior at high energy, or directly, using the CGL
parameters fom’s andb’s. We find mismatch, both among the CGL phases themselves and with the results
obtained from the pion form factor. This reaches the level of seu@rdb 5 standard deviations, and is
essentially independent of the details of the intermediate energy region(B:82.42 GeV) and, in some
cases, of the high energy behavior assumed. We discuss possible reasons for this mismatch, in particular in
connection with an alternate set of phase shifts.
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[. INTRODUCTION want to probe. We then compare what we find with the val-
ues foras andbs given by CGL themselves. Fay ,b; we
In two remarkable recent papers, Ananthanarayan, Colarlso compare the CGL evaluations with the results of a direct
gelo, Gasser and LeutwyléACGL) [1] and Colangelo, Gas- fit of the P wave to the pion form factor, this last a fully
ser, and LeutwylefCGL) [2] have used experimental infor- independent test. . . .
mation, analyticity and unitarityin the form of the Roy The result of our calculationSec. V) is that the solution

equationd3]) and, in CGL, chiral calculations to two loops, of CGL is not consistent with the results from the fit to the
: . . pion form factor or with itselfif assuming a reasonable high
to construct what is presented as a very preegisescattering

: Y energy Regge behavioand the mismatch occurs essentially
amphtudg aF low energ-=s""<0.8 GeV. . independently of the details of the intermediate energy
There is little doubt that the small errors claimed by CGL,(0 82<s'2<1.42 GeV) phase shifts we use, provided they

at the level of very few percent, follow from the Roy-chiral experiment(Sec. IV D), and, in some cases, also of as-
analysis, plus chiral perturbation thedwith the assumption sumptions on the high energys(?=1.42 GeV) behavior

of negligible higher order correctiopggiven the input scat- (sec. |vB. For some of the quantities discussed above the
tering amplitude at high energy, say, = 1.42 GeV. What  gisagreement reaches sevelap to 5 standard deviations.
is, however, not so clear is that the input selected by ACGlg,, e a(zl) the more striking discrepancy occurs for the
is unique, not even that it is the more physically acceptabl%ombinationa —2/3a®— a®]. This is because it corre-
one. The question then remains, what is the effect of Chan%'ponds to a c(gmbinatiozn of énl;} isospin 1,2 in e chan-

ing this high energy input in the low energyr amplitude. nels so the Froissat-Gribov integral is very accurate since the
In the present paper we address ourselves to the matter wave, which is large and the one less well known, does

the consistency of the CGIS matrix. To be precise, we ! - . :
evaluate the following quantities: the combinationSeF S2 not contribute. The chiral perturbation theory calculation for
94 ‘ ' this quantity has also small errors sin¢e one loop it only

scattering lengths %O)_Sag) (Olsson sum rull; the scat- depends on one chiral Lagrangian constant, see below.
tering lengtha, and effective rangp4] b in theP wave; and The mismatch is much less sevébeElow the 2r level) for

; : DR | —
the scattering lengths and effective r%?@é(i’bz 1=0,2 the ACGL results, the main reason being that their errors are
for the DOD2 waves. For thea;,b;,a;’,b;” we use the gt |east three times as large as the CGL ones. We discuss in
Froissart-Gribov representati¢]. This presents two advan- Sec. V the reasons for the CGL mismatch, which may be due
tages. First of all, it was not verified in ACGL or CGL; to the use by CGL of an irrealistic high energy part of the
therefore, it provides a novel test of the CGL phase shiftsscattering amplitude, which distorts their low energg}’q
Secondly, fora; ,b;, and, to a lesser extent, for t§’, the  <0.82 GeV) phase shifts beyond the very small errors im-
Froissart-Gribov representation is sensitive to the high enplied by their assumption of negligible higher chiral pertur-
ergy scattering amplitude, precisely one of the features weative corrections.
Apart from these two sections, we present in Sec. Il the
Roy equations, in Sec. lll the scattering amplitude we will

*On leave of absence from the Departamento de&ec&iTenica Il,  use(including in particular a detailed discussion of the high
Facultad de C.C. Bicas, Universidad Complutense de Madrid, energy piecesand finish the paper with a summary and con-
28040 Madrid, Spain. clusions in Sec. VI.
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Il. THE ROY EQUATIONS B. The Roy equations

A. Dispersion relations Equations(1)—(5) look rather cumbersome. Rdy] re-
marked that they appear simpler if we project them into par-
tial waves, integrating over physicat<0) values of the
cosine of the scattering angle: one finds the Roy equations

The analyticity properties of the- scattering amplitude,
F(s,t), imply that we can write a Cauchy representation for
it, fixing t and allowings to be complex. Fos physical this

reads (1) *
coté, ’(s) Sh 1
—— = ds'Ky/(s,s") —5—p———

1 (= AJsY) cof 8(s)+1 ZO amz (55" S8 sV(s)+1
REF(S,t)ZD(S,t)I —PP 2dS’W

™ Jamy +V,(S;Sh). (6)

n i ” ,Au,(s’,t)’ A(s,H)=ImF(s,1). Here the kernel&,;, are known and th&/, are the projec-
™ Jam? s'—u tions of V.

1 Equation(6) is valid in the simplified case we are consid-
@) ering here, i.e., without subtractions. If we had subtractions,
the fixedt dispersion relations would acquire an extra term, a
; functiong(t) [the value ofF(s;,t) at the subtraction poift
Actually, and because, in some cases, A(8,t) grow — ppig may be eliminated, using crossing symmetry, in favor of

linearly with s, Eq. (1) is divergent. This is repaired by sub- the Swave scattering lengths. Equatio) would be modi-
tractions; that is to say, by writing the Cauchy representatioqied accordingly.

not for F itself, but forF(s,t)/(s—s;) wheres; is a conve-
nient subtraction point, usually taken to coincide with a
threshold. This introduces a function bfin the equations E=D(&V) (7)
[the value ofF(s,t) at s=s;]; we leave it to the reader to
rewrite our equations with the appropriate subtraction incor¥

(PP denotes Cauchy’s principal part of the integral.

Let us rewrite the Roy equations in the form

hereé={Im f|};~, stands for the set of imaginary parts of

porated. the partial waves, fos<sy,, and ® is the functional that
Let us separate out the high energy contributise,s,  follows from Eq.(6). We can define a mapping,
(we will fix sy, laten to Eg.(1). We then have £=d(&V) ®
1 sh A(s',t) 1 (sh Ay(s',b) and then the solution of the Roy equations is a fixed point of
D(S,t)Z;PPJ' strw‘i‘;f 5 ’ﬁ D.
M Mz The relations Eq(7) are highly nonlinear integral and
+V(s,t;sp) (2) ~ matrix equations. Solutions are known to exist in some fa-

vorable cases; in fact, Atkinsdi1] proved, even before the
advent of Roy’s equations, that, for any arbitrafys,t;s;)
such that it is sufficiently smooth and decreasing at infinity,
AL(s' D) one can optain, by iterating E(B), a solution not only of the_
#; (3) Roy equations, but of the full Mandelstam representation,
S —u and compatible with inelastic unitarity for af as well.
Therefore, the solutions to the Roy equations are ambiguous
we are assuming<s;,. Both D and theA may be written in  in an unknown function, and the matter of what is an accept-
terms of the same set of phase shifts by expanding fligm ableV becomes crucial. This is particularly so because ful-
for fixed s channel isospin, as fillment of the Roy equations does not guarantee full analy-
ticity and crossing; and it may happen that a given solution
2gl2 * 1 of the Roy equations is incompatible with other sum rijies
Al(s,t)=2 — > (21+1)P,(cosb) is the case for the CGL solutipn
=0

and

1 (= A s',b) o
V(S,t;Sh):;J dS’W‘FJ ds’
Sh Sh

cof 8{(s)+1’
(4) lIl. THE SCATTERING AMPLITUDE

o > h At low energy, say?<0.82 GeV, the inelasticity inrm
2s cots(s) ing is k imentally to be negligible; it is f
DO(st)=2—— (21+1)P,(cosh) . scattering is known experimentally to be negligible; it is for
mk =0 cof 8{')(s)+1 these energies that the Roy equations Ef). are to be
(5)  solved. To do so we need as input the functibor, equiva-
lently, the imaginary part of the scattering amplitude for en-
One of the factors 2 above occurs because of the identity afrgies s¥?=0.82 GeV. In fact, for the Roy equations we
pions; we work in the limit of exact isospin invariance. need ImF(s;t) for s physical and physical,t<0. However,
These equations provide constraints for the phase shift®r other applications, we will require IF(st) up to the
provided one knowgor has a reliable modgfor the high  edge of the Martin-Lehmann ellipg&2], ts4Mf,; our dis-
energy termV(s,t;s,). They enforce analyticity and—u  cussion will also cover this case. We now proceed with a
crossing symmetry. discussion of the different waves and energy regions.
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A. The S and P waves for E below 0.82 GeV tané,(')(s)=k2' 1_4M§T/S{AII+ B:kz/Mi+C:k4/Mi
Because we want to test the solution of CGL for the S e 4M% —s,
matrix, we consider now the solution to the Roy equations, +Dik /Mﬁ}s_—su, 9

incorporating chiral perturbation theory to two loops, given
there. The low energy0,S2,P waves are written by these k=./s/4— Mzﬁ, and the values of the parameters, as given by
authors as CGL, EQq.(17.2, are

AS=0.220, B$=0.268, CJ=-0.0139, D3=-0.139/18, s0;=36.7M2
A= —0.444/10, BY=-0.857/10, C3=-0.221/16, DJ=-0.129/16, sp,=—21.6M2
A,;=0.379/10, B;=0.140/16, C,=-0.673/1¢, D;=0.163/10, s,;=30.72M2. (10)

These are the values of the phase shifts that we will use up to The solution depends on the value &f’(M2) we im-

the energyE=0.82 GeV. pose in the fit. In Eq(11) we took that following from the
To test dispersion relations, either in the form of the Ols-more recent measurements Kf,_ decay [14] 55,0)(Mﬁ)

son relation or the Froissart-Gribov representation, we need 41 5+3°. Another possibility is to average this with the

also the values of th&P waves at intermediate energies q|ger determinatioil4], thus imposing the valus{®(m2)

(0.82<E<1.42) and the values of thB,F waves below _ 433+ 2.3°: this we will discuss in Sec. VB.

1.42 GeV, that we take from experiment; higher waves are gq,tion Eq.(11) is, up tos¥?=0.84 GeV, similar to the

plrgsumably negligible. Moreover, we require Fifst) for  cg| one, Eqs(9) and(10): see Fig. 1. We will use the CGL
§7°>1.42 GeV. This last we will obtain from Regge theory go|ytion up to 0.82 GeV slightly above their nominal maxi-

in Sec. 11 D, we now turn to the intermediate energy regions.,,m ranges'?=0.80 GeV, and Eq(11) between 0.82 and
Before doing so, however, we want to emphasize that, iy gg Gev. '

the present paper, we do not deal with the matter of the For theS2 wave between 0.82 GeV and 1.42 GeV we use

consistency of the fits for th&P waves between 0.82 and e phase shift obtained by fitting experimental data and in-
1.42 GeV that we will give in the section, or of those for the cluding the requiremena(®=0.044+0.003V~* (this last
0 — Y . T

D,F waves. These fltéEqs.(ll)—(ZZ)] are merely Ia conve- ows from the analysis of COL
nient way to summarize the experimental data; our results

would change very little if we had instead used a spline

interpolation for the experimental phase shifts. We will dis- sz M2 s—s—s
cuss this further in Sec. IV D 1, where we will show that the cots?(s)=—— —”2[ Bo+B; Vs = Vs, ] ,
discrepancy will remain essentially unchanged provided we 2k s—27; Vs+so—s

demand a resemblance to the detHowing for a large un-

certainty in this intermediate region. 2 5
sg =1.45 GeV, x“/DOF=16.1(18-2),

B. The S, P waves between 0.82 and 1.42 GeV

For theSO wave in the region between the 0.82 GeV and Bo=—115+4, B;=-106x+3,

KK threshold we use the parametrization, obtained by fitting
experimental dat@l3] (as in[8]),

2,=139.57 MeV (fixed). (12
cotﬁ(o)(s)—SU2 Mz Mi—s +B Vs~ Vso=s
° 2k 3—%'\/'?7 Mzzf ° l\/§+ VSp—S This actually corresponds t@82)=—0.0457i 0.0074.
2 One can allowz, to vary by 8 MeV, and still be within & of
+B Vs—Vso—s (11) the minimum, but we will not do so here.
2 Js+so—s| |’ Then we have thd® wave between 0.82 GeV and 1.0
GeV. Here we fit the pion form factor, includirey e~ and r
S(l)/ZZZMK- x*/DOF=11.1(19-4), decay data. There are now two possibilities: the first one is

M,=806=21, B;=21.91+0.62, B;=20.29+1.55,

51(9)= e M2l By, Y2 VRS
B,=22.53-3.48, a¥'=(0.226-0.015M_%. COLO()= 73 (M= 9)| Bot By e = |
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FIG. 2. Fits to thd =0, Swave phase shift and inelasticity from
30 960 to 1350 MeV. Also shown are the data points from solution 1 of
Protopopescet al.[17] (black dot$ and some data of Grayet al.
[18] (open circles
a;=(38.6+1.2x10 M _ 3,
! ! 2

0z 04 06 08 10 (GeW) by=(4.47£0.29 X 10 °M >, (16)

FIG. 1. Thel =0, Swave phase shifts corresponding to EH{L) ) ) o .
(continuous lingand Colangelo, Gasser, and Leutwylgf (dashed e W|II_ consider b_oth poss_lbllltl_es, but the_ calculations _of
line). dispersive and Froissart-Gribov integrals will be made with

Eq. (15), for definiteness. If using Eq13) the differences
33/2: 1.05 GeV, )(Z/DOF:13, would be m|nutd:|.6]. . ]

We next turn to theSO, P waves in the higher energy

M,=772.3:0.5 MeV, Bo=1.060+0.005, Egions, but stillE<1.42 GeV. For theSO wave between
KK threshold, 0.992 GeV, and 1.42 GeV, we use a semi-
B;=0.24+0.06, empirical formula that fits reasonably well the existing data

[18,17 from s>=0.96 GeV to 1.50 GeV:
(0.82 Ge\ss'’<1.0 GeVj. (13

, o o (s=M2)(M7=s)|ky| s—4M
In particular, for the low energy parameters, this gives cotdy’(s)=cq M2Zs122 ; ka,
f 2
a,;=(40.6+1.3X10 M3,
o k2 kg M ,Z_S
b,=(4.18+0.43 X10 M5, (14) m=1-|Cgmt g5
This result is obtained from the fit to the pion form factor, (0.992<s'2<1.42 GeVJ, co,=1.36+0.05
with only statistical experimental errors taken into account, ’ '
performed in[15]. If we also take systematic normalization a7 _ "
errors into account, Eq13) is replaced by €1=6.7x0.15, ¢,=~17.6=07,
12 . \/g_ \/ﬁ Mx=496 MeV, M_,=0.802 GeV,
cot51(s)=W(Mp—s) Bop+Bi——F—1,
Vs+sg—s M;=1.32 GeV, M'=1.5 GeV. (17)
1/2__ _ . . . .
sy°=1.05 GeV, x?/DOF=1.1, Note that, for inelastic scattering, we define our parameters

so that, in general,
M,=773.5-0.85 MeV, By=1.071+0.007,

[ |
7" 1-7"

B,=0.18+0.05 Imfi(s)= +
! 1(9) 1+cof 8\"(s) 2

(18
(0.82 Ge\ss'?<1.0 GeVj (15

In the elastic regiony{"(s)= 1. The fit to the data following
and now from Eq.(17) is shown in Fig. 2.
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Finally, for theP wave between 1 GeV and 1.42 GeV, we
use an empirical formula, obtained adding a reson&wib
mass 1.45 Ge)/to a nonresonant background:

2
M?,T?
(s—M?)2+M? 12
p P

Imf,(s)= +BR

1

1+[N+1.1k,/s?)?
(1.0ss?<1.42 GeV,

=145 GeV, I'=0.31 GeV, A=26+0.2,

BR=0.25+0.05. (19
Note that the effect of the(1450 is very small, as will be
clear in our various evaluations below.

C. The D,F waves below 1.42 GeV

We take these waves as givéfmom threshold to 1.42
GeV) by the fits of[8], with inelasticity added for th®0
wave and, for thé= wave, including also the tail of thg;
resonance. Moreover, we have requirgdr compatibility
with the CGL analysis that the corresponding scattering

PHYSICAL REVIEW D 68, 074005 (2003

0]
%

30° 4

20° 4

10° -

1.0 s*?(Gev)

0.6

FIG. 3. Fits to thd =0, D-wave phase shift. Also shown are the
data points from solution 1 of Protopopesstual. [17] (black dot$
and some data of Estabrooks and Mafti8] (open circleg

Finally, for the F wave we write a background plus a
Breit-Wigner. The background is obtained fitting low energy;

lengths agree within errors with those given in CGL; that isthe resonance is thes with its properties taken from the
to say, we include the CGL values, weighted with their er-Particle Data Tables:

rors, in the fits forD2, F (for the DO wave it is not neces-
sary, as there are enough precise experimenta).dada the
DO wave we thus write

sl/2 s—/sp—S
cotdy”'()= o5 (Mr,~SIM B°+Blf+—Jo_]’
s+sy—s

sg?=1.430 GeV,
M¢,=1270 MeV, By=23.7+0.7, B;=22.9+27,

2[KIK(MZ) ]

ETRIGATE 2

n=1-2x0.15

The inelasticity on thd, is taken from the Particle Data
Tables. Equation (20) corresponds to ay)=(15
+3.5)X10 *M_° against CGLs value (17:50.3)

X104 M_°. For theD2 wave[19],
cot6<2)(s)=i/2—M:lTS B,+B —\/5_ 7S
2 2k° 4(MZ+A%)—s| % Tt s+ so—s)

sg?=1.43 Gev,

Bo=(2.33-0.17xX10°, B;=(—0.39+0.75 X 10°,

A=90+11 MeV. (21)
Now a{?)=(1.6+0.4)x10 % M_° [CGLs value: (1.7
+0.13)x10° 4 M ]

The D phases are depicted in Figs. 3 and 4.

. k 14
Imfs(s)= k(M ))
P3

1+ cot 5, +(
2 12
Mng

BR VIRV L
(s—Mps) +Mp3F

X (22)

12 s—sp—s
COty(s) = 5,7 M}, Bo+Bl\/\/:+—0],
S++Sp—S

ss?=1.5 GeV,

Mp3=1.69 GeV, I'=0.161 GeV, BR=0.24,

Bo=(1.07+0.03 X 10°, B;=(1.35+0.03 X 10°.

2
3%
0°

2.5

st? (GeV)

FIG. 4. Fits to thd =2, D-wave phase shift. Also shown are the
data points of Lostyet al. (open circleg and from solution A of
Hooglandet al. (black dot$ [20].
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Here a;=(7.0+0.8)x10"° M_"; the value reported in Pa

a0

CGL is (5.6:0.2)x10 > M_".

D. High energy: The Regge picture

As we will discuss in Sec. V, the experimental phase shift
analyses become unreliable as soon as the inelasticity is
large; for 7w scattering, this occurs at and aboe
~1.4 GeV. Fortunately, Regge pole theory provides an input
for high energy scattering; we will now briefly describe those
of its features that are of interest to us. Before starting with
the details, however, it is perhaps worthwhile to remark that .
Regge theory is as much part of QCD as, say, chiral pertur- .
bation theory; in fact, Regge theory is probably of more gen-
eral validity than QCD. By using Regge formulas we are
thus not introducing extra assumptions. The only debatable
point is when is Regge theory applicable; QCD only speci-
fiess> A2, s>|t|. Fortunately, factorization allows us to re-
late 7r7r to N andNN cross sections. From this, and the fact
that Regge formulas and experimental cross sectiongfor
scattering agredwithin error§ around s?=1.4 GeV, as P
shown in Figs. 6 and 8 below, we will conclude that Regge
formulas are applicable at and above these energies; specifi- FIG. 5. Cut Pomeron ladder exchanged between the papions
cally, we will use them abovE=1.42 GeV. We now turn to and pg in hadronsA,B. The emitted gluons will materialize into a
a brief discussion of the details. shower of particles. The cross section is proportional to the square

Consider the collision of two hadrons+B—A+B. Ac-  of the cut ladder.
cording to Regge theory, the high energy scattering ampli-
tude, at fixedt and larges, is governed by the exchange of ag(t) = ag(0)+ agt. (24
complex, composite object&nown asRegge polesrelated t=0
to the resonances that couple to trehannel. Thus, for isos-
pin 1 in thet channel, high energy scattering is dominated by

|

For the p and Pomeron pole, fits to high energy processes

the exchange of a “Reggeizeg resonance. If no quantum give

number is exchanged, we say that the corresponding Regge a ,(0)=0.52+0.02, «’'=1.01 GeV?2,

pole is the vacuum, or a Pomeranchuk Regge pole; this name P P

is often shortened tdPomeron In a QCD picture, the ap(0)=1, @p=0.11+0.03 GeV 2. (25)

Pomeron(for example will be associated with the exchange
of a gluon ladder between two partons in partio%B (Fig.  The Regge parameters taken here are essentially those in the
5). The corresponding formalism has been developed byjobal fit 1a of Raritaet al. [23]; for «,(0), however, we
Dokshitzer, Gribov, Lipatov, and other Russian physicists intake the value 0.520.02 which is more consistent with re-
the 1970s, and is related to the so-called Altarelli-Parisi, ogent determinations based on deep inelastic scatt¢zidg
DGLAP, mechanism in deep inelastic scatteri@d]. The results depend very little on this.

One of the useful properties of Regge theoryaistoriza- Let us consider the imaginary part of thé\ or NN scat-

tion [21]; it can be proved from general properties of Reggeeing amplitudeghere byNN we also understandN). We
theory[22]. Factorization states that, for example, the imagi-

have
nary part of the scattering amplituée, . g_, 5. g(S,t) can be
written as a product Im Fm(s,t):[fﬁ\:‘)(t)]z(slé)“R“),
IMF ;g asrp(Sit) = fa(t)fg(t)(s/8)® RV, (23
A+B A+B( )SHOc A( ) B( )( ) ( ) Im F(ﬂl_;\:(s,t):f;l_t>(t)fi\:t)(t)(sl’s)aR(t). (26)

t fixed

For I,=1, R=p; for I,=0, R=P (the Pomeron There-

Here$ is a constant, usually taken to be 1 GeWwe will do fore, using factorization, we find

so herg; the functionsf,,fz depend on the corresponding
particles(if we had e>(<t)erna| currents, also on their virtualjty
but the power ¢/8) *r") is universal and depends only on the . .
quanturg numf:)eZs exchanged in channzﬂ'he exp%nent The functlonsfi(.")(t) depend_ exponentially onfor small t
ag(t) is the Regge trajectory associated with the quantunfd may be written, approximately, 25]

numbers in channel and, for smallt, may be considered (=0« _ bt

linear: fit T (O=ai(P)e”,

mE s 0=[fP O R, (@7
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Tt () o's)
4 3]
3
2 -
2 -
PP R 1
1 .- G—
1 1 1 1 1
1.1 1.2 1.3 1.4 15 ,,
I I I | | si2 s (GeV)
1.1 1.2 1.3 1.4 15 (GeV)

FIG. 7. The cross sectiom!'t=, for isospin 1 in the channel,

FIG. 6. The average cross Secti§[’20ﬂ0ﬂ++gﬂ_0vg]y which is arbitrarily normalized. The dotted line is experiment; the short-
purel,=0, arbitrarily normalized. Broken line: experimental cross dashed line the rho exchange Regge theory. The long-dashed line is
section. Note that the bump here, as the larger bumps in Figs. 5 arffiptained by adding to this thg(1450 contribution. Finally, the
6, is due to the coincidence of two resonandgé1270) f,(1370),  thick gray line includes also the background Regge piece. The
mostly elastic, around*?~1.3 GeV. Thick gray line: Regge for- thickness of this line is equal to the error dordy to the rho Regge
mula Eq.(29). The thickness of the line covers the error in the residue(the total error for the full theoretical formula used in the
theoretical value of the Regge residue. text, that includes errors due p1450 and the background Regge

piece, is some 20% larger

1Y) =ai(p) 1re,t) [(1+1.48€"—1.48 1+a,(t)
' 14 a,(0) ' o IMFP(s,t)=0,(p) —L—~—[(1+1.48 P~ 1.48]
1+a,(0)
b=(2.38+0.20 GeV 2 (28 X (s18) O+ et
The exponenb appears to be the same for rho, Pomeron, and Bk 8\ 12 0
From Egs.(26) and (27) we can deduce the relations
among the cross sections We have added a backgrouriBk) contribution to the
isospin 1 amplitude; this should be considered purely empiri-
Ormoal  OxN_al cal and is adjusted so that the asymptotic formula joins

smoothly the experimental amplitude at low energy, within
errors; see Fig. 7.

From Eq.(28) and the known cross sections faiN,NN
scattering we have

1
OnzN—all  ONN—all

and from these relations one can obtain the parametgia
Eqg. (28) in terms of the knownmN and NN cross sections.
Using this, we can write explicit formulas form scattering 0.(P)=3.0£0.3, o,(p)=0.84+0.10, (31
with exchange of isospihy=0 in thet channel
where the errors are obtained by considering the dispersion
s , of the values of the parameters [ig3], and increasing the
l+0.24\[§} o (P)e(s/8)*P O+ apt  resylt by 50%, which should cover amply the uncertainty on
the point where one joins experimental and asymptotic for-
(29 mulas (that here we have taken to be 1.42 G&$ well as
errors in the parameters we have taken fixed.
and we have added empirically the subleading contribution, !t iS important to note that the Regge parameters in the fit
proportional to \/%1 of the so-calledP’ pole (associated of Raritaet al. are obtained by global fit taN, NN, andNN
with the f, resonancethat is necessary at the lowest energydata for small momentum transfer and for c.m. kinetic ener-
range(see Fig. 6. Forl,=1, gies in the region between 1 GeV and 6 Geéapproxi-
mately, which is the region of interest for us here as the
contribution to the various integrals above this energy is neg-
(s:t) Sio Im F)(s,) +Im F (s, 1), ligible. The results of Raritat al. are still the best available
t fixed as indeed there are essentially no new data in that energy

ImF1=0(st) =
S—®

t fixed

Imp{t=

TT— TT
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Tt (9) the Regge regime with, at the same time, a large increase of
inelasticity and a smoothing of the total cross section accord-
ing to the behavior in Eq€29)—(31).
For #N,NN scattering this occurs as soon as one is be-
3 yond the region of elastic resonances; in f@s can be seen
g k in the cross section summaries in the Particle Data Tabkes
: soon as the kinetic energy or laboratory momentum is above
2 A 1 to 1.2 GeV. Forrr we thus expect the Regge description
to be valid for the corresponding energies, that is to say, for
) s'?=1.4 GeV. Indeed, around”’~1.4 GeV it is still pos-
1 } sible to calculate thers scattering amplitudes reliably from
______ -7 experimental phase shifts and indeed they agree, within a
10%, with the Regge expressions in ther cases; see Figs.
b 6 and 8. Moreover, the experimental inelasticity four
11 12 13 14  1is (Gev) around 1.4 GeV~20%, also agrees with the value of the
inelasticity measured at the same energies #df or NN
FIG. 8. The cross sections(#°#") (dashed ling o(#°7°%  scattering.
(dotted ling, and the Pomeron plud’ (continuous ling The thick For thel,=1 amplitude, and because it is a difference
gray bands are obtained including thre2 exchange contributions. between large amplitudes, the influence of resonances may
Their thickness corresponds only to the error of the Pomeron piecye expected to extend to higher energies. Indeed, we see in
Fig. 7 that agreement between experiment and the Regge
range. We have, on the other hand, verified that the crosgxpression(within errorg around 1.4 GeV requires adding
sections are compatible with the corresponding values age resonance(1450, as in Eq.(19). We will do so in our
given in the more recent editions of the Particle Data Tablescalculations. Thus, for ali- amplitudes we will assume the
We will treat the errors in the various Regge parameterRegge formuldeventually adding the(1450 contributior]
as uncorrelated. In fact, the leading Regge amplitudegy pe valid forst’%=1.42 GeV.
(Pomeron and rhoare uncorrelated; there is some correla-  As is clear from this minireview, the reliability of the
tion with, respectively, thé;=2 exchangesee belowand  Regge calculation of high energy pion-pion scattering cannot
the Bk piece for theé;=1 exchange, because they have beemyo beyond an accuracy ef10%, even for smalt. The de-
fixed by fitting the sum to the pion cross sections. Since thisjiations off simple Regge behavior are expected to be much
only affects subleading pieces this would only have a minutgarger for largelt|, because the counting rules of QCD imply
influence in the resultéin fact, they would slightly decrease 3 totally different behavior for fixed/s. This is one of the
the overall error due to the Regge contributiprend any-  problems involved in using, e.g., the Roy equations that re-
way the variations are substantially smaller than the 50%juire integration up to-t~s~1.7 Ge\?, where the Regge
increase in the errors of the Regge residues with which wejcture fails completely(we expect instead the Brodsky-
have made our evaluations. Farrar behaviora-ﬁxed COSGNS?S)' However, for forward dis-
For each individual process®w",7%7° we have to in- persion relations or the Froissart-Gribov representation we

corporate the amplitude for exchange of isosin2 in the il work only for t=0 or t=4M2 for which the largest
t channel, which would be due to the double rho exchange,griation. that ofebt is still small sincebX (t=4M2)

This cannot be obtained from factorization, sine or NN _5 19 g0 we expect no large error due to departure off
do not contain such amplitude. We use an empirical formulaﬁnearity [26] for the exponent in‘.('t)(t) or for the Regge
I

a trajectories,ag(t).
ImF"=2)(s,t)=Cpe "[Im F(")(S,t)]2<§)7 | “

IV. OLSSON'’S SUM RULE AND THE
C,=0.8+0.2, (32 FROISSART-GRIBOV CALCULATION
OF a, ,b;,af’ by
and we have obtained the const&@y by fitting the differ-

. A. The Olsson sum rule
ence between the experimental7® and 7%= total cross

sections as'?=1.42 GeV, and the Pomeron pI&s values; The Olsson sum rule is simply a forward dispersion rela-
see Fig. 8. tion for the amplitudeF ('t=2) with isospin 1 in thet channel,

The dependence of our results on FfY,ImF(=? js  evaluated at threshold. Expressifg:="(4MZ,0) in terms
very slight (for the second, with the exception of th§). of the scattering lengths, this reads

We now add a few words on the matter of when one may . Im F=1(s,0)
apply formulas like Eqs(29)—(32). From the QCD, DGLAP 230 _ 532 = Do, Do=3M j ds -
version of the Pomeron, we expect the following pattern to ~ ° 0 TJavz T s(s—4MY)
occur: in the regiont|<s, s>A2? (with A~0.3 GeV the (33
QCD parameterthe ladder exchange mechanism will start to

dominate the collisio®\+B. We then will have the onset of In terms of isospin in tha channel,
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FU=Y(s,t)=3F1s=0(s 1) + 1FUs=V(s,t) — 2F(Is=2)(s 1), Substituting in the right-hand side above t8& phases of
(34 CGL up to 0.82 GeV, the phaséas given in the parametri-
. zations of Sec. Il B for the same at intermediate energies
the FU'9 are normallzl?zd by (0.82<E<1.42 GeV), theD,F phases from Eqg20)—(22),
~ the tail of thep(1450 resonance between 1.42 and 1.6 GeV,
Im F(IS)(S't)IZWE,: (21+1)Py(cos6)Im fl( S)(S)' and thep pluspbackground Regge parameters of Sec. Il D we
(35)  find, for 2a{”—5a$ in units of M .,

CGL, direct CGL, dispersive
0.400+0.007 (CGL SP, s'?<0.82 GeV)
0.146+0.004 [Rest,s¥?<1.42 GeV(incl., D,F below 0.82 GeV]
0.073+0.010 (Reggep, s¥?=1.42 GeV)
0.010+0.003 (Regge, Bk;s'?=1.42 GeV)
0.005+0.001 p(1450, 1.42<s'?<1.6 GeV
0.663+0.007 0.635%0.014 (Total, dispersive (36)

By “direct” we mean the value of the corresponding sp wave in [2a{")— 5alP)] Jispersives.P CG" - making  this

quantity (in our case, ay”—5af”) as given in CGL. By  smaller and therefore nullifying to a large extent the im-
“dispersive” we understand that we have used the dispersivgrovement.

formula, Do in Eq. (33), to calculate the same quantity. The * what one has to do to solve this problem is to consider
“Rest” are the contributions of th®,F waves below 1.42. the diﬁerenceAzZago’—Sagz)—Do and vary here the pa-
GeV, plus theSP waves petvyeen 0.82 and 1.42 GeV. Of this rametersA B,C.D. Then we find the value
“Rest,” the largest contribution comes from tH20 andP
waves. A=0.027£0.011,

The error in the CGLSP piece below 0.82 GeV we ob-
tain by varying theA,B,C,D parameters in Eq$9) and(10)  that is to say, a 24 discrepancy.
according to the formulas given by ACQin their Appen- This procedure will also be followed for the Froissart-
dix). It is almost identical to the error given for the whole of Gribov sum rules, where the correlation in the CGL analysis
the direct quantity itself. We will discuss in some detail theis transmitted in part by the common chiral perturbation
discrepancy between the direct and dispersive determinationkeory parameterk;. We will discuss more about errors in
of this quantity 2\ —5a{?) as the situation for the othats ~ Secs. IVD and V A.
andb’s to be considered below will be very similar.

The reason the analysis of the discrepancy is not straight- B. The Froissart-Gribov representation: a, ,b;
forward is that both determinations are strongly correlated,
as they both depend on the same parameters. The direct d[
termination is obtained from the parameté&B,C,D in CGL
[as given in Eq(3.1) herd, which describe in particular the

_By projecting the dispersion relation E@.) (or a deriva-
ive with respect td of it) over thelth partial wave in the
channel, at=4M2, one finds the Froissart-Gribov represen-

Swaves. So we should really write tation
o oo varect _ NAr(+1) (= ImF(s4M2)

[2a0 —530 ]A,B,C,D' al_4|\/|77(|+3/2) M2 S g1 )
The integrals in the dispersive determination contain the con- JalT(+1) (= 41mF.__(s,4M2)
tributions of theSP waves up to 0.82 GeV, which are given = oM (15372 | s sl s
by the sameA,B,C,D, so one also has a( ) Jam2 (s—4M7)s

. ,, (14+1)ImF(s,4M2)
[2af?)~ Saf? e esP oot R @7

Now, it is clear that if we try to change the paramet&B,  ImF/ ,=(d/dcosf)imF. For amplitudes with fixed isospin

C,D in the direct determination to, for example, decrease thén thet channel, an extra factor(@ue to identity of particles
value ofago) to bring this closer to the dispersive value, the has to be added to the left-hand side; so we have, for ex-
same change in th&,B,C,D will affect the integral over the ample,
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ioy LA+ Jw ImF(=Y(s,4M2)

28 =IM T+ 3 2 AR ' (38)

With the same type of calculation as for the Olsson sum rule, and with the same definitions, we now find, in units of
107 3x M3,
a;,CGL, direct CGL, Froissart-Gribov TY(St) TY (St.+Sys.)

18.5+0.2 (CGL SP, s*?<0.82 GeV)
9.1+ 0.3 (Rest,s'?<1.42 GeV)
8.1+ 1.1 (Regge,p)
1.0=0.3 (Regge, Bk
0.3+0.1, p(1450
37.90.5 37.1+ 1.3 (Total, Froissart-Griboy 40.6+1.4 38.6-1.2. (39

Here, and fob,, we profit from the existence of an independent determination dPtvave parameters, using the pion form
factor data both in the timelike and in the spacelike reg{di8 denoted by TY. From this we have chosen two values: from
the fit taking into account only the statistical errors in the various datgSeksas in Eq.(13) here; or taking also into account
the systematic normalization errors (88ys.), as in Eq(15).

The distance between the direct evaluation and the one with the Froissart-Gribov calculation is smoan@.there is also
acceptable overlap with the TY (StSys.) figure.

For the quantityb, we have, in units of 10°xXM_>,
b,,CGL, direct CGL, Froissart-Gribov TY(St) TY (St.+Sys.)

—0.92+0.05(CGL SP, s2<0.82 GeV)
1.02+0.04 (Rest,s'?<1.42 GeV)
5.33+0.86 (Regge,p)
0.55+0.16 (Regge, Bk
0.01+0.0, p(1450
5.67+0.13 5.99-0.88 (Total, Froissart-Griboy 4.18+0.43 4.470.29. (40)

Here the Regge contribution is particularly important because the lower energy pieces cancel almost completely. The numbers
labeled TY, as before, refer to what one obtains from the fit to the pion form factor. We remark that this last is a very robust
determination in that it is obtained by fitting some 210 points from several independent experiments, is independent of high
energy assumptions and it covers spacelike as well as timelike momenta: thus, the values of the threshold parameters are
obtained byinterpolation notoriously more stable than extrapolations.

There is no inconsistency between the direct and Froissart-Gribov numbers for the CGL calculation, but they are both too
large by almost & compared to even the more favorable value, TY {Sys.), following from the pion form factor.

C. The Froissart-Gribov representation: a8’ ,b$’ ; 1=0,2

We first calculate the two combinations of scattering lengths=2[a”—a$?] and ag=2[al?+2a$?]. They corre-
spond to thes-channel amplitudes

Foop+=3FUs D4+ 2F0s72 F o o=3F(s=0 4 ZF(s=2), (41)

The only important difference with the cases in the previous section is that the dominant high energy part is given now by the
Pomeranchuk trajectorynstead of the rhpand its importance is small because the integrals converge faster. We find, in units
of 1074xXM_°,

ay4 ,CGL, direct CGL, Froissart-Gribov

8.43+0.09 (CGL SP, s'?<0.82 GeV)
1.84+0.05 (Rest,s*?<1.42 GeV)
0.68+0.07 (Regge,l;=0)
—0.06+0.02 (Regge,|;=2)
0.04+0.01,[p(1450]
10.53+0.10 10.94-0.13 (Total, Froissart-Gribok (42)
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In finding the error of the direct value, (10.58.10)X 10*4M;5, it is important to take into account the strong correlations

of the errors of tha{® ,a{?). To do this, we use Eq14.4 in ACGL to calculate directly the quantitgy, . The difference

between the direct and Froissart-Gribov values, with correlations taken into account, as we did in the case of the Olsson sum
rule, is now

0.41+0.09,
so that the discrepancy reaches theldvel.
In the same units, I0'X M _°, we have
ago,CGL, direct CGL, Froissart-Gribov

11.73+0.32[CGL SP, s¥?<0.82 GeV]
1.91+0.04 (Rest,s¥?<1.42 GeV)
0.68+0.07 (Regge,l;=0)
0.12+0.04 (Regge|l;=2)
13.94+0.32 14.44- 0.33 (Total, Froissart-Gribox (43

We have also taken into account the correlatiaria ACGL to evaluate the error of the direct number. The difference between
direct and Froissart-Gribo{F.-G) values for CGL are, with correlations taken into account, of

0.49+0.09,

i.e., a r discrepancy.
Finally, we present the results fop, = 2[b”—b{?)] andbgy=2[b{”+ 2b{?], both in units of 104xXM_":
by, ,CGL, direct CGL, Froissart-Gribov

—0.331+0.015(CGL S, P, s*?<0.82 GeV)
0.04+0.00 (Rest,s?<1.42 GeV)
0.12+0.02 (Regge,l;=0)
—0.05+0.02 (Regge,|;=2)
—0.189+0.016 —0.233+0.036(Total, Froissart-Gribox (44)

The contribution of the resonang€l450 is now negligible. For the difference between the direct and Froissart-Gribov result
we have

0.044+0.026,

that is to say, almost ac2discrepancy. Fobg,
byo, CGL, direct CGL, Froissart-Gribov

—6.90+0.22 (CGL S s'?<0.82 GeV)
0.07+0.01 (Rest,s*?<1.42 GeV)
0.12+0.02 (Regge,l;=0)
0.10+0.05(Regge,l;=2)

—6.72+0.22 —6.62+0.23(Total, Froissart-Griboy (45
T
For by the direct result and the one following from the D. How significant are the discrepancies?
Froissart-Gribov representation differ byo2 In the present section we investigate whether the incon-

sistencies we have found can be eliminatedto what ex-
tent they can be made less seydrg altering the non-CGL
0.10+0.05. part of the dispersive, or Froissart-Gribov calculations. We
will do so in two steps. First, we will consider what happens
if we alter the pieces labeled “Rest” in Eq&6)—(45); then
However, one cannot take this or the discrepancybfar as  we will address the question of what can be done at high
seriously as in the previous cases. This is so because of thmergy 6%2=1.42 GeV).
large (relative) size of the contribution of thg=2 exchange

piece, proportional to the derivative with respectttof an 1. The region between 0.82 and 1.42 GeV
expression we have obtained purely empirically by fitting at We start with the first question that we discuss in detail
t=0. for the Olsson sum rule since the results for the Froissart-
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Gribov calculations are very similar. We then consider the 1+a,(t)

following set of drastic modifications of our calculations: For IMF%(s,t) = Ao ,(p) Wp(())[(lﬂL 1.48€'—1.4g]
the SO wave, and 0.82 E<0.992 GeV we may replace Eq. ol P

(11) by the CGL parametrization, Eq) and(10). For the )

S0 wave and 0.992E<1.42 GeV, where it is poorly X (s/8) %O+ apt

known, we allows{” to vary between the two extreme val-

ues 7 and 3r/2. For theS2 wave, we multiply by 3 the thatis to say, we modulate treamplitude in Eq(30) by the
errors given in Eq.(12). For the P wave, and ¥E  constant\. We then fixo,(p) =0.85, and treah as a free
<1.42 GeV, we change the elasticity of thél450 reso-  parameter. We then find that overlap between the direct and
nance by 50%up and down For theDO wave, that sup- dispersive determinations for the quantita{® —5a(? in-
plies the more important contribution to “Rest,” we consider yo|yed in the Olsson sum rule would requixe= 1.4, which
the effect of taking thé,(1270) resonance to be purely elas- ig \ell outside expectations and, moreover, this spoils the

are so small that we need not worry about them. o level.

The alterations just discussed are rather extreme; never- £ thea( the situation is even more transparent. Con-
theless, their effects are of no relevance. They produce thﬁder for e>2<amp|e the quantitsiy, Eq. (43). Integrating
following extra errorgwe give the central value of each term only t0 0.82. with the CGL phas(()aos' we find 11.73. which is

as wel): the bulk of the result. Even if the errors of what we call
“Rest” were underestimated by a factor 3, and this “Rest”

S0, 0.82<sY?<0.992 GeV: 0.02655, would be 1.79(instead of 1.9}, adding it one would get at
least 13.52-0.33 for the contribution below 1.42 GeV. The
SO, 0.992<s2<1.42 GeV: 0.01839%, direct result, with the CGL values of treg , is 13.94. To get

agreement, one would require the high enerBy;1.42
(Regge estimate to be wrong by a factor 2, very difficult to
believe. And it would be no good: the same Pomeron that
contributes toag, contributes toag, and to thebg, ,bgg.

S2, 0.82<s2<1.42 GeV: —0.022+0.004,

P, 1.0<s'?<1.42 GeV: 0.0240.005, The disagreement would be shifted to thg, ,byy, which
would then be wrong by abouto4 anday . would still be
DO s2<142 GeV: 0.05%0.001 wrong by almost &. As for the proverbial square peg in the

round hole, trying to fit a corner only makes others worsen

. ) more sharply.
Including these increased errors we get that, for the Olsson

sum rule, the result for the “Rest” changes according to
V. DISCUSSION OF THE ACGL AND CGL ANALYSES

Rest: 0.145 0.004-0.1489%, A. Possible cause of the distortion of the CGL solution
_ _ In this section we try to ascertain the reasons for the
and, for the whole dispersive result, we now get troubles that seem to afflict the CGL analysis. This is par-
ticularly important because, although ACGL or CGL did not
Total: 0.6310.013-0.631 0015 verify the Froissart-Gribov relations, thelyjd check relations

similar to the Olsson sum rule. It follows that the reasons for
i.e., practically no change at all in the upper error bar. Thethe df:screpan0|es_mu§tbbe due tg t8h2e h'%h en;rgy Input. Here
mismatch of the Olsson sum rule merely gets reduced fro ou have two regions: etween 0.82 and 1.42 Geidre or
2510 %, es9 the melas'tlcny is low, and,.as we haye shown, one can
trust the experimental phase shifts. Even if they have system-
atic errors, these will likely not be large and they will just
produce a slight fluctuation of the solution of the Roy equa-
Once we have verified that the inconsistencies betweetions, as we have shown explicitly in Sec. IVD1 that it
the CGL direct and dispersive calculations of low energyoccurs for our evaluations.
parameters cannot be due to the contributions of the interme- The difficult region, however, is fos2 above 1.42 GeV.
diate energy region, we turn to the high energf/4=1.42) Between 1.42 and 2 GeV, CGL presumably use the phase
piece. Then, we relax the condition of factorization for the shifts of [18] and, above 2 GeV, a Regge-type formula. We
and Pomeron Regge residugsit we do not change the oth- start the discussion with the region 148Y><2 GeV. Here
ers. We treat them now as free parameters, describing amelasticity is very high, and the phase shifts and inelasticity
effectivescattering amplitude, to see under which conditiongparameters cannot be determined reliably, at the level of ac-
one can reconcile the direct and Froissart-Gribavdisper-  curacy required27]. Of course, you can always give num-
sive) evaluations for the scattering lengths and effectivebers that fit the experimentally observed moments in periph-
range, in the CGL-like analysis. Starting with the isospin leral two-pion production; but so will other, in some cases
case, we thus write very different values offss and#s. In the energy region 1.4

2. The high energy region, ¥=1.42 GeV
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<s'?<2 GeV, the phase shifts and inelasticities all stem Indeed, the independence on the low energy partial waves
from a single set of experiments and are likely to disagre®n the high energy amplitudes used is approximately true for
with reality by much more than their nominal errors. In fact, the ACGL results, where the mismatch that occurs if using
this can be seen to occur for the S wave even at lower erthe correct Regge asymptotics stays below tle |@vel.
ergy: as soon as thiKK channel opens, the Cern-Munich However, for the CGL results, the use of chiral perturbation
phase shift§ 18] disagree violently with the Berkelepfl7]  theory(with neglect of higher order correctionisas the dual
ones. This emphasizes the dangers of relying on a singleffect of highly correlating the various low energy param-
experiment for the phase shifts, as one has to do already festers and excessively decreasing the errors. Thus, for ex-
s2=1.2 GeV. ample, the value for the quantity, o that follows from the
It is not difficult to see how different phases may give Froissart-Gribov representation, 10:9@.13 (in units of
similar results, for the elastic cross section. For exampleqg-4) - 5) is displaced & from the value following directly

consider theelastic 7 cross section, in the wave: in both ¢y the parameters of CGL, 10.59.10. Now,a, ¢ is di-
cases(Cern-Munich and Particle Data Tables resultsis -
rectly related to the chiral constant,, a.o=[l,

small. In the Cern-Munich one, because?sinis small; in 4 T
the other because is small. Unfortunately, thémaginary —27/20/7207°f2M .. Hence a variation o, implies a
parts of the inelastic amplitudes are very different; contrarycorresponding variation df, that destabilizes all the quanti-
to the Cern-Munich results, in the PDG case it would beties that depend on it in a chiral perturbative analysis; in
large, at least around the resonances, because of the conf@rticular, the low energandP waves. As we have shown
bution of the inelastic channels. The convefise., overesti- in the present paper, inconsistencies show up in the CGL
mate of the total cross sectipmay, of course, also happen. scattering amplitudgwith standard Regge parametews
In fact, the cases mentioned are just examples of an ambig§o0n as one considers sum rules that, like the Froissart-
ity (over and above that due to experimental ebrmved Gribov or Olsson ones, are sensitive to the hlgh energy be-
to exist quite generally if29], and which is likely to be havior. What the inconsistencies found in the previous sec-
|arge as soon as you have important inelastic channels opetfi\(_)n show is that the distortion is several times Iarger than the
Now, CGL (following Pennington[30]) take the Cern- nominal CGL error bars.
Munich phase shifts, that probably contain large and un-
known systematic errors, and impose sum ryles., the
sum rules(B.6,7), (C.2) in ACGL], following from low en-
ergy crossing symmetry, to fix the Regge parameters at en-
ergiesE>2 GeV. Not surprisingly, CGL(and Pennington
[31]) get irrealistic Regge parametefas realized by CGL
themselveg for example, ACGL and CGL get a Pomeron
with a width of the diffraction peak which isindependent,
and twice the standard val@at low s), and a residue much
smaller than what factorization implies. In fact, we will show
in the Appendix explicit calculations of two sum rulgs
particular of the sum ruléB.7), one of the crossing sum
rules that Pennington and ACGL dsehich are perfectly
satisfied by a standard Regge amplitude, with factorization

B. A tentative alternate solution

In support of the idea that the effects discussed in the
previous section are indeed the cause of the mismatches in
the CGL S matrix, we have calculated the Olsson sum rule
and the quantities, , b; using now, fors><0.82 GeV, the
results of the fit, wave by wave, reported in Sec. 7.68)f

For the waveSO we take now the fit obtained imposing the
value 5{(M2)=43.3+2.3°, and with only three parameters
[32]; we then have

2 2
for the rho and Pomeron trajectories, provided one uses ot5<°)(s)—31/2 M7 oS \/— VSp—S
Regge asymptotics from?=1.42 GeV. 2k 5—1m2 M2 \/_+ Jso—s

According to CGL this deviation from conventional
Reggeistics is not important because the influence of the high
energy region §>=1.42 GeV) into their low energys{’?
<0.82 GeV) _phase shifts is very sl_lght. Howev_er, and as we B,=21.04, B,=6.62, M, =782*24 MeV,
have shown in the present paper, inconsistencies show up as
soon as one considers sum rules—like the Froissart-Gribov
sum rules—that are sensitive to the high energy behavior of
the amplitudes. X2 15.7
From the previous analysis it thus follows that CGL start, =
in the Roy equations, from ¥ with incorrect Regge behav- DOF 19-3
ior and dubious phase shifts above 1.42 GeV. Let us call this
V (Wrong R. CGL run this through the Roy equations Eq.
(8) and find a solution&(Wrong R. Now, this solution is not 8§ (My)=41.0°+2.1°. (46)
horrendous because experimental low energy data, chiral
perturbation theory and crossing sum rules force you to have
the errors in Regge parameters and cross sections compen-The errors of théB; are strongly correlated; uncorrelated
sating, to a certain extent, in what regards their low energerrors are obtained if replacing tii&s by the parametersy
effects. with

al”’=(0.230+0.010,
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Bo=y—X, B;=6.62—2.5%. (47 threshold. FoiS2,P we take the same fits as before, specifi-
cally, Egs.(12) and(15).
Then, We find the following results, in units d¥l .:
Olsson direct dispersive
y=21.04-0.75, x=0x2.4. (48)
0.691+0.042 0.65%0.020 (49

The solution is shown, compared to the CGL phase, in Fig. Shere “direct” means that we take the values following from
We then integrate Eqs(46), (47), and (48) up t0 E  {ne fits in Eq.(12) and Eqs(46)—(48)]. Moreover, and also
=0.82 GeV and with Eq(23) from the 0.83 to the KK in units of M,

a; direct(TY, St. direct(TY, St.+Sys.) Froissart-Gribov
(40.6+1.4)x10 3 (38.61.2)x10 3 (37.9-1.4)x10 3 (50)
and
b, direct(TY, St) direct (TY, St.+ Sys.) Froissart-Gribov
(4.18+0.43)x10 3 (4.47+0.29)x10 3 (5.69+0.96)x 10 3. (51)
|
The tag “direct” now refers to the values ¢15], with only z,=139.57 MeV (fixed). (54)

statistical errors(St) or including also systematic errors
(St.+Sys.). Thus, we find agreement at the level in all  Then one haa{®)= —0.0428+0.0022 and Eq(49) becomes

three cases, foa;, b;, with the TY (St+Sys.) solution. Olsson direct dispersive
With the same parameters we find, for Devaves, and with
the help of the Froissart-Gribov representation, the values 0.671+0.023 0.663-0.018. (55

The rest of the relations Eg&0)—(53) improve slightly, and

_ —4p1—5
3+=(10.6050.1X10""M %, the D wave scattering lengths also change a little:

80o=(14.99-0.69 X 10" *M . ° (52 a,=38.0:1.2x10°3M_3%  b;=5.64+0.96x 10 3M_°,
and ap+ = (10.510.15 X 1074M 5,
by, =(~0.170-0.083 X 10 *M 7, ago=(14.89+ 0.65 X 10" *M _5. (56)
boo=(—6.91+0.47)x 10 *M " (53 It should be noted that the error here &gy, is at the edge of

the region of credibility, as indeed it is of the order of mag-
This is compatible with what we found for th&’) by a  nitude of electromagnetic corrections which the analysis
direct fit to the experimental data in Sec. Il C within the does not take into account. This valueagf, implies, at one
rather large errors of these last values. loop level, a very precise value for the chiral perturbation

The large error, and the separation in the central values itheory parametef33] |, of

the Olsson sum rule, E§49), is due to the fact that the data
do not fix with sufficient accuracy mgz) scattering length, |_2:5_97i 0.07.
which provides most of the error in the direct number. In
fact, as is known, one can use the Olsson sum rule to refine Of course the agreement in Ed49), (50), (51) and(55)
the parameters of th82 wave; if we do so, fixing all other is not enough to guarantee that the new solution is consis-
parameters to their central valuggithin errorg and include  tent; to prove that, one would have to check the whole set of

the Olsson sum rule in the fit to tt&2 wave we find dispersion relations and crossing constraints, something that
will be the subject of a separate paper. But it clearly suggests
stz M2 Js—/so—s that the CGL solution fails to pass the tests because it is
COt582)(S)= 2K s—272 0o+ B , distorted. This can also be inferred by comparing the CGL
STeh Vs+so—s solution for theS2 wave with Eq.(12) as in Fig. 10, where
" ) we show the CGL and Eq12) together. While both fit the
Sp =1.45GeV, x°/DOF=17.2(19-2), data below 0.82 GeVEq. (12) gives actually a slightly better
fit even theré the distortion of the CGL solution above that
Bo=—118+25, B;=-105*+2.5, energy is suggestive. A similar pattern is found in Figs. 1 and
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combinations of scattering lengtlag , = 2[a{®’—a{?], ag,
=2[a?+2a{?)] show mismatch by as much as-&c. We
have discussed in detail why we think that the discrepancy is
inherent to thelow energy(s*?<0.82 GeV) CGL phases.
Thus, in Sec. IV D 1 we have shown that even rather drastic
alterations of the middle energy region, 0s88><1.42 do

not alter the inconsistencies.

With respect to the higher energy regions'¢
=1.42 GeV), the situation is such that, if one tries to modify
the Regge piece to fit the Olsson sum r{day) then not only
the alteration(40% to 100% is much more than what one
can reasonably expect, but the lack of consistency is shifted
to a;,b;. A similar phenomenon—in fact, even more
pronounced—occurs withy, andagg. This we discussed in
detail in Sec. IVD 2, where it is clear that the mismatch is
due to the low energy CGL input. Moreover, the value of the
quantity b; remains displaced byo4from what one gets
from a fit to the pion form factor.

It should be borne in mind that we are talking here about
disagreements at the level of a few percent; so, if one is
prepared to shift the central values of CGL by up tg and

| 2 double their errors, the inconsistencies disappear. This is
0.2 0.4 0.6 0.8 1.0 (GeV) what happens, for example, in the analysys of ACGL, where
the errors are from 3 to 10 times larger than those in CGL.
FIG. 9. Thel=0, Swave phase shifts corresponding to Egs. Nevertheless, at the level of precision claimed by CGL, the
(46)—(48) (continuous ling and Colangelo, Gasser, and Leutwyler disagreements are real. We have argued that they are prob-
[2] (dashed ling Some experimental points are also shown. ably due to an irrealistic high energg'?=1.42 GeV) input,
which distorts the low energy phase shifts. In support of this
9. This very much suggests that the CGL fit is a forced fitwe have shown that a direct fit to data, including fully ana-
biased by a reflection of a faulty high energy scattering amiyticity constraints, for thé?,S0,S2 waves(in the case of the
plitude. last, requiring also consistency of the Olsson sum rule to
decrease its errorplus a high energy input given by ortho-
dox Regge theory, produces a different set of compatible low
energy phase shifts and high energy scattering amplitude.
We have checked a number of tests of the low energylhis set is formed by the phase shifts given in Bdp), Egs.
(s¥?<0.82 GeV) S0, S2, andP wave phase shifts given in (46)—(48) and Eq.(54), and is in fact similar to that of CGL,
[2] by Colangelo, Gasser, and Leutwyler, based on two-looput is slightly displaced and its errors are slightly larger; so,
chiral perturbation theory plus the Roy equations with a cerfor example, the quantity$®(M2)— &2 (M2), important
tain high energy §2>1.42 GeV) input. We have shown for kaon decays, changes according to
that, if we used the values for this high energy piece that

0
&%

90

60 4

30

VI. SUMMARY AND CONCLUSIONS

follow from Regge theory, then the Olsson sum rule and the S (M2)— 6P (M%)=47.7+1.5° (CGL)
53 —48.4+2.1° (our solution.
0°
A fact that should be mentioned here is that Descetes.
[34] have, in a recent article, found a solution whose central
-10°+ values differ from that of CGL by almost(@GL) standard
deviations and in fact point in the direction of our tentative
” alternate solution here. In particular, they have, in units of
-20°
M.,
‘ a’’=0.228+0.012,
0.2 1.2
12
(e al®’=—0.0382+0.0038 (Descoteset al).

FIG. 10. Thel=2, Swave phase shifts corresponding to Eq.
(3.3 (continuous ling and Colangelo, Gasser, and Leutwyléi Their errors are also more like what we have in our alternate
(dashed ling Also shown are the data points of Lostyal. (open  solution. Note, however, that whether or not the alternate
circles and from solution A of Hooglanét al. (black dot$ [20]. solutions turn out to be consistent has nothing to do with the

074005-15



J. R. PELAEZ AND F. J. YNDURAIN PHYSICAL REVIEW D 68, 074005 (2003

consistency of the CGL solution: this last fails independentlyHereF’ () (s,t)=gF()(s,t)/d cosé, and the index refers to
of the failure or success of the novel one. isospin in thes channel.
Analyticity determines the real part of the scattering am-  We will separate] into a low energy and a high energy
plitude in terms of its imaginary part. However, to get the pjece:
real part you need to know the imaginary part up to infinity.
Now, if the imaginary part is wrong at high energy and yet
the dispersion relatiofor Roy equationsare satisfied, it J=JjetNpe., J|_e_=f 5
necessarily follows that one must have made a compensating AM
error in the low energy imaginary part. In other words: you . ) o
have fallen into a spurious solution. The fact that the solution' "€ low energy pieceJ,, only contains contributions of
is spurious should be manifest as soon as one devises a t&4vesD and higher. Since these waves are only known with
that gives adifferentweight to high and low energy pieces: (relatively) large errord35], it is (generally speakingvery
this is exactly what we do in our paper, for the CGL solution,dangerous to draw conclusions about the high energy inte-
with the help of the Froissart-Gribov representations. gral, J, ., from the experimental value of the low energy
Note added in proofAfter this article was sent to the piece,J,... Nevertheless, we will show that, if we choose
publisher, a preprint appearésee Ref[36]) in which some s,=1.42 Ge\?, then we find perfect consistency, within er-
of the conclusiongbut not the calculationsof our work are  rors. In this calculation we will first neglect the contributions
contested. We do not think it_n_ecessary to alter our paper ogf exchange of =2 and of the background to rho exchange,
account of the work of Capriret al; we plan to present a hoth of dubious status and substantially smaller than the
discussion of it in a separate article. Pomeron and rho exchange pieces, but we keefPtheJs-
ing the parametrizations of Sec. Ill C for tiieF waves we
find, in units ofM;G,

Sh

ds..., Jh_e_zf ds....
Sh
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For the high energy piece, expanding in amplitudes with

definite isospin in thé channel, and with the numbers in Sec.
In this appendix we discuss briefly the reason for the und!l D for the Pomeron and rho contributions, we get

orthodox Reggeistics chosen in ACGL, CGL, following Pen-

APPENDIX

nington [30], inasmuch as it has a bearing on our subject Jh.e(Pomeron=—1.093x 10" %,
matter here. These authors set up crossing sum [H&es.
(B7), (C2) in ACGL], which relate high and low energy, and Jhe(p)=0.034x10 4,

conclude that they are satisfied only if, in particular, the
Pomeron residue is about 1/3 of the value implied by factori.e.,
ization.
Contrarily to the conclusion of ACGL, however, we will Jhe=(—1.06-0.17x 10 4. (A3)
show by explicit calculation of a typical sum rule that, if one

assumes orthodox Regge behavior freti=1.42 GeV, the Thus, we have cancellation between E@s2) and (A3),

low energy phase shifts are perfectly compatible with theyithin errors: there is no reason to justify departure off the
value of the Regge residues implied by factorization. Th'sexpected Regge behavior.

will cinch the proof that, as discussed in Sec. VA, the
Reggeistics of ACGL are very likely due to compensation of
the unrealistic phase shifts used between %4
=2 GeV.

Specifically, we will consider the sum ru(87) in ACGL;
since it is independent of ti@andP waves, it constitutes an
independent test of the Regge structure. It may be written a%

To finish this appendix, we comment a little on tAéand
on the inclusion of thé;=2 contribution. Because the high
energy part of the sum rule E¢AL) is mostly given by the
t derivative of the even isospin amplitudes, a more precise
evaluation than the one carried here would require that we
place theP’ contribution of Eq.(29) by a more accurate
rmula. Unfortunately, the characteristics of this Regge pole

° 4 1mF'9(s,00—10ImF’?(s,0) are poorly known; sef23]. If we take for the theP’ trajec-
J= LMzd 2(s—4MZ2)? tory a formula like that of the, then Eq.(A3) is replaced by
ImF’V(s,0)— Im FV(s,0) Jhe(with correctedP’)=(—1.2+0.2)x 10" 4.
—6(3s—4m?2) 5 3 =
” s°(s—4M?)

Including also thel;=2 contribution, as given in Eq32),
(A1) we would find
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Jhe(with corrected P’, and includingl;=2)

=(-0.5+0.3)x10™ % (Ad)

This still cancels the low energy piece, E42), but only at
the 2o level. This discrepancy cannot be taken seriously
because of the uncertainties in tRé trajectory and because
thet slope in formula Eq(32) is little more than guesswork.
The second sum rule is obtained by profiting from the

threshold behavior to write an unsubtracted forward disper-

sion relation for the quantitf's=1)(s,0)/(s—4M?2). This
gives the relation

lfxd
WMiS

1 = ImF"(s,0)
_ (sw) - 7
+ 7T2|" Cl'ufoTds 2 ,  (Ab)

ImFUs=Y(s,0)

(s—4M?2)?

6M

o

aa
a

which is known at times as thesecond Olsson sum rule.
The index! refers to isospin in the channel andC{S¥ are
the s—u crossing matrix elements. Cancellizg with the

PHYSICAL REVIEW D 68, 074005 (2003

wavesG and highe). At high energy,l, contributes little
since the corresponding integral converges rapidly: most of
the high energy contribution comes from the first term, domi-
nated by rho exchange. We will use units so thigi=1 and
obtain the following results:

I(low energy, P wave)=(—2.80+0.31) X 102,
I(low energy, DO+D2 wave$=(0.56+0.03 x 10 2,
I(low energy, F wave =(0.01+0.00 X 102,
I (high energyp)=(2.41+0.37)x 10 2,

I (high energy,=0)=—(0.17+0.02 X102,

I (high energyl,=2)=—(0.02+0.01)x 10 2.

By “low energy” we understand the contributions from
energies below 1.42 GeV, where we use phase shifts and
inelasticities to calculate the scattering amplitudes, and

Froissart-Gribov expression for this quantity and substituting Nigh energy” is above 1.42 GeV, where a Regge description

the C{S¥

IEszds
jmzd

The contributions of thés waves cancel in EqA6), so
only the P,D and F waves contributgas usual, we neglect

, we find the result

ImF!=Y(s,00— ImF't=1(s,0)
SZ

8M2[s—2M?]

————————-ImFUs=Y(s,00=1,+1,=0.
S52(3—4M77)2 mF=H(s,0=1+,

(AB)

Is employed. The final result for the sum rule is
| =(0.016+0.37)x10 2,

i.e., complete cancellation of low and high energy contribu-
tions.

The remarkable fulfilment of these sum rules show the
incorrectness of the assertions found in ACGL, CGL: both
for Pomeron and rho, standard Regge behaviorfarscat-
tering is perfectly consistent with crossing symmetry pro-
vided one imposes it systematically for energies above 1.42
GeV.
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