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Precision of chiral-dispersive calculations ofpp scattering
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We calculate the combination 2a0
(0)25a0

(2) ~the Olsson sum rule! and the scattering lengths and effective
rangesa1 ,a2

(I ) and b1 ,b2
(I ) dispersively~with the Froissart-Gribov representation! using, at low energy, the

phase shifts forpp scattering obtained by Colangelo, Gasser, and Leutwyler~CGL! from the Roy equations
and chiral perturbation theory, plus experiment and Regge behavior at high energy, or directly, using the CGL
parameters fora’s andb’s. We find mismatch, both among the CGL phases themselves and with the results
obtained from the pion form factor. This reaches the level of several~2 to 5! standard deviations, and is
essentially independent of the details of the intermediate energy region (0.82<E<1.42 GeV) and, in some
cases, of the high energy behavior assumed. We discuss possible reasons for this mismatch, in particular in
connection with an alternate set of phase shifts.

DOI: 10.1103/PhysRevD.68.074005 PACS number~s!: 13.75.Lb, 11.55.Jy, 11.80.Et, 12.39.Fe
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I. INTRODUCTION

In two remarkable recent papers, Ananthanarayan, Co
gelo, Gasser and Leutwyler~ACGL! @1# and Colangelo, Gas
ser, and Leutwyler~CGL! @2# have used experimental infor
mation, analyticity and unitarity~in the form of the Roy
equations@3#! and, in CGL, chiral calculations to two loops
to construct what is presented as a very precisepp scattering
amplitude at low energy,E[s1/2<0.8 GeV.

There is little doubt that the small errors claimed by CG
at the level of very few percent, follow from the Roy-chir
analysis, plus chiral perturbation theory~with the assumption
of negligible higher order corrections!, given the input scat-
tering amplitude at high energy, say, forE*1.42 GeV. What
is, however, not so clear is that the input selected by AC
is unique, not even that it is the more physically accepta
one. The question then remains, what is the effect of cha
ing this high energy input in the low energypp amplitude.

In the present paper we address ourselves to the matt
the consistency of the CGLS matrix. To be precise, we
evaluate the following quantities: the combination ofS0, S2
scattering lengths 2a0

(0)25a0
(2) ~Olsson sum rule!; the scat-

tering lengtha1 and effective range@4# b1 in theP wave; and
the scattering lengths and effective rangesa2

(I ) ,b2
(I ) I 50, 2

for the D0,D2 waves. For thea1 ,b1 ,a2
(I ) ,b2

(I ) we use the
Froissart-Gribov representation@5#. This presents two advan
tages. First of all, it was not verified in ACGL or CGL
therefore, it provides a novel test of the CGL phase sh
Secondly, fora1 ,b1 , and, to a lesser extent, for thea2

(I ) , the
Froissart-Gribov representation is sensitive to the high
ergy scattering amplitude, precisely one of the features

*On leave of absence from the Departamento de Fı´sica Teo´rica II,
Facultad de C.C. Fı´sicas, Universidad Complutense de Madr
28040 Madrid, Spain.
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want to probe. We then compare what we find with the v
ues foras andbs given by CGL themselves. Fora1 ,b1 we
also compare the CGL evaluations with the results of a dir
fit of the P wave to the pion form factor, this last a full
independent test.

The result of our calculations~Sec. IV! is that the solution
of CGL is not consistent with the results from the fit to th
pion form factor or with itself~if assuming a reasonable hig
energy Regge behavior! and the mismatch occurs essentia
independently of the details of the intermediate ene
(0.82<s1/2<1.42 GeV) phase shifts we use, provided th
fit experiment~Sec. IV D!, and, in some cases, also of a
sumptions on the high energy (s1/2>1.42 GeV) behavior
~Sec. IV E!. For some of the quantities discussed above
disagreement reaches several~up to 5! standard deviations
For the a2

(I ) the more striking discrepancy occurs for th
combinationa0152/3@a2

(0)2a2
(2)#. This is because it corre

sponds to a combination of only isospin 1,2 in thes,u chan-
nels so the Froissat-Gribov integral is very accurate since
S0 wave, which is large and the one less well known, do
not contribute. The chiral perturbation theory calculation
this quantity has also small errors since~to one loop! it only
depends on one chiral Lagrangian constant,l̄ 2 , see below.
The mismatch is much less severe~below the 2s level! for
the ACGL results, the main reason being that their errors
at least three times as large as the CGL ones. We discu
Sec. V the reasons for the CGL mismatch, which may be
to the use by CGL of an irrealistic high energy part of t
scattering amplitude, which distorts their low energy (s1/2

,0.82 GeV) phase shifts beyond the very small errors
plied by their assumption of negligible higher chiral pertu
bative corrections.

Apart from these two sections, we present in Sec. II
Roy equations, in Sec. III the scattering amplitude we w
use~including in particular a detailed discussion of the hi
energy pieces! and finish the paper with a summary and co
clusions in Sec. VI.
©2003 The American Physical Society05-1
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II. THE ROY EQUATIONS

A. Dispersion relations

The analyticity properties of thepp scattering amplitude
F(s,t), imply that we can write a Cauchy representation
it, fixing t and allowings to be complex. Fors physical this
reads

ReF~s,t !5D~s,t !5
1

p
PPE

4Mp
2

`

ds8
As~s8,t !

s82s

1
1

p E
4Mp

2

`

ds8
Au~s8,t !

s82u
, A~s,t !5Im F~s,t !.

~1!

~PP denotes Cauchy’s principal part of the integral.!
Actually, and because, in some cases, theA(s,t) grow

linearly with s, Eq. ~1! is divergent. This is repaired by sub
tractions; that is to say, by writing the Cauchy representa
not for F itself, but forF(s,t)/(s2s1) wheres1 is a conve-
nient subtraction point, usually taken to coincide with
threshold. This introduces a function oft in the equations
@the value ofF(s,t) at s5s1]; we leave it to the reader to
rewrite our equations with the appropriate subtraction inc
porated.

Let us separate out the high energy contribution,s>sh
~we will fix sh later! to Eq. ~1!. We then have

D~s,t !5
1

p
PPE

4Mp
2

sh
ds8

As~s8,t !

s82s
1

1

p E
4Mp

2

sh
ds8

Au~s8,t !

s82u

1V~s,t;sh! ~2!

and

V~s,t;sh!5
1

p E
sh

`

ds8
As~s8,t !

s82s
1E

sh

`

ds8
Au~s8,t !

s82u
; ~3!

we are assumings,sh . Both D and theA may be written in
terms of the same set of phase shifts by expanding them@9#,
for fixed s channel isospinI, as

A~ I !~s,t !52
2s1/2

pk (
l 50

`

~2l 11!Pl~cosu!
1

cot2 d l
~ I !~s!11

,

~4!

D ~ I !~s,t !52
2s1/2

pk (
l 50

`

~2l 11!Pl~cosu!
cotd l

~ I !~s!

cot2 d l
~ I !~s!11

.

~5!

One of the factors 2 above occurs because of the identit
pions; we work in the limit of exact isospin invariance.

These equations provide constraints for the phase s
provided one knows~or has a reliable model! for the high
energy term,V(s,t;sh). They enforce analyticity ands↔u
crossing symmetry.
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B. The Roy equations

Equations~1!–~5! look rather cumbersome. Roy@3# re-
marked that they appear simpler if we project them into p
tial waves, integrating over physical (t<0) values of the
cosine of the scattering angle: one finds the Roy equatio

cotd l
~ I !~s!

cot2 d l
~ I !~s!11

5 (
l 850

` E
4Mp

2

sh
ds8Kll 8~s,s8!

1

cot2 d l 8
~ I !

~s8!11

1Vl~s;sh!. ~6!

Here the kernelsKll 8 are known and theVl are the projec-
tions of V.

Equation~6! is valid in the simplified case we are consi
ering here, i.e., without subtractions. If we had subtractio
the fixedt dispersion relations would acquire an extra term
functiong(t) @the value ofF(s1 ,t) at the subtraction point#.
This may be eliminated, using crossing symmetry, in favor
the S wave scattering lengths. Equation~6! would be modi-
fied accordingly.

Let us rewrite the Roy equations in the form

j5F~j,V! ~7!

wherej5$Im fl%l50
` stands for the set of imaginary parts

the partial waves, fors<sh , and F is the functional that
follows from Eq.~6!. We can define a mapping,

j8[F~j,V! ~8!

and then the solution of the Roy equations is a fixed poin
F.

The relations Eq.~7! are highly nonlinear integral and
matrix equations. Solutions are known to exist in some
vorable cases; in fact, Atkinson@11# proved, even before the
advent of Roy’s equations, that, for any arbitraryV(s,t;sh)
such that it is sufficiently smooth and decreasing at infin
one can obtain, by iterating Eq.~8!, a solution not only of the
Roy equations, but of the full Mandelstam representati
and compatible with inelastic unitarity for alls as well.
Therefore, the solutions to the Roy equations are ambigu
in an unknown function, and the matter of what is an acce
ableV becomes crucial. This is particularly so because f
fillment of the Roy equations does not guarantee full ana
ticity and crossing; and it may happen that a given solut
of the Roy equations is incompatible with other sum rules~as
is the case for the CGL solution!.

III. THE SCATTERING AMPLITUDE

At low energy, says1/2<0.82 GeV, the inelasticity inpp
scattering is known experimentally to be negligible; it is f
these energies that the Roy equations Eq.~7! are to be
solved. To do so we need as input the functionV or, equiva-
lently, the imaginary part of the scattering amplitude for e
ergies s1/2>0.82 GeV. In fact, for the Roy equations w
need ImF(s,t) for s physical andt physical,t<0. However,
for other applications, we will require ImF(s,t) up to the
edge of the Martin-Lehmann ellipse@12#, t<4Mp

2 ; our dis-
cussion will also cover this case. We now proceed with
discussion of the different waves and energy regio
5-2
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A. The S and P waves for E below 0.82 GeV

Because we want to test the solution of CGL for thepp S
matrix, we consider now the solution to the Roy equatio
incorporating chiral perturbation theory to two loops, giv
there. The low energyS0,S2,P waves are written by thes
authors as
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tand l
~ I !~s!5k2lA124Mp

2 /s$Al
I1Bl

Ik2/Mp
2 1Cl

Ik4/Mp
4

1Dl
Ik6/Mp

6 %
4Mp

2 2slI

s2slI
, ~9!

k5As/42Mp
2 , and the values of the parameters, as given

CGL, Eq. ~17.2!, are
A0
050.220, B0

050.268, C0
0520.0139, D0

0520.139/102, s00536.77Mp
2

A2
0520.444/10, B2

0520.857/10, C2
0520.221/102, D2

0520.129/103, s025221.62Mp
2

A150.379/10, B150.140/104, C1520.673/104, D150.163/107, s1530.72Mp
2 . ~10!
e

i-

se
in-

0

is
These are the values of the phase shifts that we will use u
the energyE50.82 GeV.

To test dispersion relations, either in the form of the O
son relation or the Froissart-Gribov representation, we n
also the values of theS,P waves at intermediate energie
(0.82<E<1.42) and the values of theD,F waves below
1.42 GeV, that we take from experiment; higher waves
presumably negligible. Moreover, we require ImF(s,t) for
s1/2>1.42 GeV. This last we will obtain from Regge theo
in Sec. III D, we now turn to the intermediate energy regio

Before doing so, however, we want to emphasize that
the present paper, we do not deal with the matter of
consistency of the fits for theS,P waves between 0.82 an
1.42 GeV that we will give in the section, or of those for t
D,F waves. These fits@Eqs. ~11!–~22!# are merely a conve
nient way to summarize the experimental data; our res
would change very little if we had instead used a spl
interpolation for the experimental phase shifts. We will d
cuss this further in Sec. IV D 1, where we will show that t
discrepancy will remain essentially unchanged provided
demand a resemblance to the data~allowing for a large un-
certainty! in this intermediate region.

B. The S, P waves between 0.82 and 1.42 GeV

For theS0 wave in the region between the 0.82 GeV a
K̄K threshold we use the parametrization, obtained by fitt
experimental data@13# ~as in @8#!,

cotd0
~0!~s!5

s1/2

2k

Mp
2

s2 1
2 Mp

2

Ms
22s

Ms
2 H B01B1

As2As02s

As1As02s

1B2FAs2As02s

As1As02s
G 2J , ~11!

s0
1/252MK , x2/DOF511.1/~1924!,

Ms5806621, B0521.9160.62, B1520.2961.55,

B2522.5363.48, a0
~0!5~0.22660.015!Mp

21.
to

-
d

e

.
in
e

ts
e
-

e

g

The solution depends on the value ofd0
(0)(MK

2 ) we im-
pose in the fit. In Eq.~11! we took that following from the
more recent measurements ofK2p decay @14# d0

(0)(MK
2 )

541.563°. Another possibility is to average this with th
older determination@14#, thus imposing the valued0

(0)(MK
2 )

543.362.3°; this we will discuss in Sec. V B.
Solution Eq.~11! is, up tos1/250.84 GeV, similar to the

CGL one, Eqs.~9! and~10!; see Fig. 1. We will use the CGL
solution up to 0.82 GeV slightly above their nominal max
mum range,s1/250.80 GeV, and Eq.~11! between 0.82 and
0.96 GeV.

For theS2 wave between 0.82 GeV and 1.42 GeV we u
the phase shift obtained by fitting experimental data and
cluding the requirementa0

(2)50.04460.003Mp
21 ~this last

follows from the analysis of CGL!:

cotd0
~2!~s!5

s1/2

2k

Mp
2

s22z2
2 H B01B1

As2As02s

As1As02s
J ,

s0
1/251.45 GeV, x2/DOF516.1/~1822!,

B05211564, B15210663,

z25139.57 MeV ~fixed!. ~12!

This actually corresponds toa0
(2)520.045760.0074.

One can allowz2 to vary by 8 MeV, and still be within 1s of
the minimum, but we will not do so here.

Then we have theP wave between 0.82 GeV and 1.
GeV. Here we fit the pion form factor, includinge1e2 andt
decay data. There are now two possibilities: the first one

cotd1~s!5
s1/2

2k3 ~M r
22s!H B01B1

As2As02s

As2As02s
J ,
5-3
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s0
1/251.05 GeV, x2/DOF51.3,

M r5772.360.5 MeV, B051.06060.005,

B150.2460.06,

~0.82 GeV<s1/2<1.0 GeV!. ~13!

In particular, for the low energy parameters, this gives

a15~40.661.3!31023Mp
23,

b15~4.1860.43!31023Mp
25. ~14!

This result is obtained from the fit to the pion form facto
with only statistical experimental errors taken into accou
performed in@15#. If we also take systematic normalizatio
errors into account, Eq.~13! is replaced by

cotd1~s!5
s1/2

2k3 ~M r
22s!H B01B1

As2As02s

As1As02s
J ,

s0
1/251.05 GeV, x2/DOF51.1,

M r5773.560.85 MeV, B051.07160.007,

B150.1860.05

~0.82 GeV<s1/2<1.0 GeV! ~15!

and now

0.2 0.4 0.6 0.8 1.0
s1/2

(GeV)

30

60

90

δ(0)
0

FIG. 1. TheI 50, S-wave phase shifts corresponding to Eq.~11!
~continuous line! and Colangelo, Gasser, and Leutwyler@2# ~dashed
line!.
07400
t,

a15~38.661.2!31023Mp
23,

b15~4.4760.29!31023Mp
25. ~16!

We will consider both possibilities, but the calculations
dispersive and Froissart-Gribov integrals will be made w
Eq. ~15!, for definiteness. If using Eq.~13! the differences
would be minute@16#.

We next turn to theS0, P waves in the higher energ
regions, but stillE<1.42 GeV. For theS0 wave between
K̄K threshold, 0.992 GeV, and 1.42 GeV, we use a se
empirical formula that fits reasonably well the existing da
@18,17# from s1/2>0.96 GeV to 1.50 GeV:

cotd0
~0!~s!5c0

~s2Ms
2 !~M f

22s!uk2u
M f

2s1/2k2
2 , k25

As24MK
2

2
,

h512S c1

k2

s1/21c2

k2
2

s D M 822s

s
,

~0.992<s1/2<1.42 GeV!, c051.3660.05,

c156.760.15, c25217.660.7,

MK5496 MeV, Ms50.802 GeV,

M f51.32 GeV, M 851.5 GeV. ~17!

Note that, for inelastic scattering, we define our parame
so that, in general,

Im f̂ 1
~ I !~s!5

h l
~ I !

11cot2 d l
~ I !~s!

1
12h l

~ I !

2
. ~18!

In the elastic region,h l
(I )(s)51. The fit to the data following

from Eq. ~17! is shown in Fig. 2.

1.0 1.1 1.2 1.3 GeV 

1.0 

η 

δ

 90 o

180 o

270 o

FIG. 2. Fits to theI 50, S-wave phase shift and inelasticity from
960 to 1350 MeV. Also shown are the data points from solution 1
Protopopescuet al. @17# ~black dots! and some data of Grayeret al.
@18# ~open circles!.
5-4
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Finally, for theP wave between 1 GeV and 1.42 GeV, w
use an empirical formula, obtained adding a resonance~with
mass 1.45 GeV! to a nonresonant background:

Im f̂ 1~s!5
1

11@l11.1k2 /s1/2#2 1BR
M r8

2 G2

~s2M r8
2

!21M r8
2 G2

~1.0<s1/2<1.42 GeV!,

M r851.45 GeV, G50.31 GeV, l52.660.2,

BR50.2560.05. ~19!

Note that the effect of ther~1450! is very small, as will be
clear in our various evaluations below.

C. The D,F waves below 1.42 GeV

We take these waves as given~from threshold to 1.42
GeV! by the fits of @8#, with inelasticity added for theD0
wave and, for theF wave, including also the tail of ther3
resonance. Moreover, we have required~for compatibility
with the CGL analysis! that the corresponding scatterin
lengths agree within errors with those given in CGL; that
to say, we include the CGL values, weighted with their
rors, in the fits forD2, F ~for the D0 wave it is not neces
sary, as there are enough precise experimental data!. For the
D0 wave we thus write

cotd2
~0!~s!5

s1/2

2k5 ~M f 2
2s!Mp

2 H B01B1

As2As02s

As1As02s
J ,

s0
1/251.430 GeV,

M f 2
51270 MeV, B0523.760.7, B1522.962.7,

h512230.15
2@k/k~M f 2

2 !#10

11@k/k~M f 2

2 !#20. ~20!

The inelasticity on thef 2 is taken from the Particle Dat
Tables. Equation ~20! corresponds to a2

(0)5(15
63.5)31024 Mp

25 against CGL’s value (17.560.3)
31024 Mp

25. For theD2 wave@19#,

cotd2
~2!~s!5

s1/2

2k5

Mp
4 s

4~Mp
2 1D2!2s H B01B1

As2As02s

As1As02s
J ,

s0
1/251.43 GeV,

B05~2.3360.17!3103, B15~20.3960.75!3103,

D590611 MeV. ~21!

Now a2
(2)5(1.660.4)31024 Mp

25 @CGL’s value: (1.7
60.13)31024 Mp

25].
The D phases are depicted in Figs. 3 and 4.
07400
-

Finally, for the F wave we write a background plus
Breit-Wigner. The background is obtained fitting low energ
the resonance is ther3 with its properties taken from the
Particle Data Tables:

Im f̂ 3~s!5
1

11cot2 d3
1S k

k~M r3
! D 14

3BR
M r3

2 G2

~s2M r3

2 !21M r3

2 G2 , ~22!

cotd3~s!5
s1/2

2k7 Mp
6 H B01B1

As2As02s

As1As02s
J ,

s0
1/251.5 GeV,

M r3
51.69 GeV, G50.161 GeV, BR50.24,

B05~1.0760.03!3105, B15~1.3560.03!3105.

0.2 0.4 0.6 0.8 1.0 s1/2 (GeV)

10o

20o

30o

δ(0)
2

FIG. 3. Fits to theI 50, D-wave phase shift. Also shown are th
data points from solution 1 of Protopopescuet al. @17# ~black dots!
and some data of Estabrooks and Martin@18# ~open circles!.

0.2 0.4 0.6 0.8 1.0 s1/2 (GeV)

-5o

-2.5o

0o

δ(2)
2

FIG. 4. Fits to theI 52, D-wave phase shift. Also shown are th
data points of Lostyet al. ~open circles! and from solution A of
Hooglandet al. ~black dots! @20#.
5-5
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Here a35(7.060.8)31025 Mp
27; the value reported in

CGL is (5.660.2)31025 Mp
27.

D. High energy: The Regge picture

As we will discuss in Sec. V, the experimental phase s
analyses become unreliable as soon as the inelasticit
large; for pp scattering, this occurs at and aboveE
;1.4 GeV. Fortunately, Regge pole theory provides an in
for high energy scattering; we will now briefly describe tho
of its features that are of interest to us. Before starting w
the details, however, it is perhaps worthwhile to remark t
Regge theory is as much part of QCD as, say, chiral per
bation theory; in fact, Regge theory is probably of more g
eral validity than QCD. By using Regge formulas we a
thus not introducing extra assumptions. The only debata
point is when is Regge theory applicable; QCD only spe
fiess@L2, s@utu. Fortunately, factorization allows us to re
latepp to pN andNN cross sections. From this, and the fa
that Regge formulas and experimental cross sections forpp
scattering agree~within errors! around s1/251.4 GeV, as
shown in Figs. 6 and 8 below, we will conclude that Reg
formulas are applicable at and above these energies; sp
cally, we will use them aboveE51.42 GeV. We now turn to
a brief discussion of the details.

Consider the collision of two hadrons,A1B→A1B. Ac-
cording to Regge theory, the high energy scattering am
tude, at fixedt and larges, is governed by the exchange o
complex, composite objects~known asRegge poles! related
to the resonances that couple to thet channel. Thus, for isos
pin 1 in thet channel, high energy scattering is dominated
the exchange of a ‘‘Reggeized’’r resonance. If no quantum
number is exchanged, we say that the corresponding Re
pole is the vacuum, or a Pomeranchuk Regge pole; this n
is often shortened toPomeron. In a QCD picture, the
Pomeron~for example! will be associated with the exchang
of a gluon ladder between two partons in particlesA,B ~Fig.
5!. The corresponding formalism has been developed
Dokshitzer, Gribov, Lipatov, and other Russian physicists
the 1970s, and is related to the so-called Altarelli-Parisi,
DGLAP, mechanism in deep inelastic scattering@21#.

One of the useful properties of Regge theory isfactoriza-
tion @21#; it can be proved from general properties of Reg
theory@22#. Factorization states that, for example, the ima
nary part of the scattering amplitudeFA1B→A1B(s,t) can be
written as a product

Im FA1B→A1B~s,t ! .
s→`

t fixed

f A~ t ! f B~ t !~s/ ŝ!aR~ t !. ~23!

Here ŝ is a constant, usually taken to be 1 GeV2 ~we will do
so here!; the functionsf A , f B depend on the correspondin
particles~if we had external currents, also on their virtuality!,
but the power (s/ ŝ)aR(t) is universal and depends only on th
quantum numbers exchanged in channelt. The exponent
aR(t) is the Regge trajectory associated with the quant
numbers in channelt and, for smallt, may be considered
linear:
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aR~ t ! .
t;0

aR~0!1aR8 t. ~24!

For ther and Pomeron pole, fits to high energy proces
give

ar~0!50.5260.02, ar851.01 GeV22,

aP~0!51, aP8 50.1160.03 GeV22. ~25!

The Regge parameters taken here are essentially those i
global fit 1a of Raritaet al. @23#; for ar(0), however, we
take the value 0.5260.02 which is more consistent with re
cent determinations based on deep inelastic scattering@24#.
The results depend very little on this.

Let us consider the imaginary part of thepN or NN scat-
tering amplitudes~here byNN we also understandN̄N). We
have

Im FNN
~ I t!~s,t !.@ f N

~ I t!~ t !#2~s/ ŝ!aR~ t !,

Im FpN
~ I t!~s,t !. f p

~ I t!~ t ! f N
~ I t!~ t !~s/ ŝ!aR~ t !. ~26!

For I t51, R5r; for I t50, R5P ~the Pomeron!. There-
fore, using factorization, we find

Im Fpp
~ I t!~s,t !.@ f p

~ I t!~ t !#2~s/ ŝ!aR~ t !. ~27!

The functionsf i
(I t)(t) depend exponentially ont for small t

and may be written, approximately, as@25#

f i
~ I t50!

~ t !5s i~P!ebt,

pA

pB

FIG. 5. Cut Pomeron ladder exchanged between the partonpA

and pB in hadronsA,B. The emitted gluons will materialize into a
shower of particles. The cross section is proportional to the squ
of the cut ladder.
5-6
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f i
~ I t51!

~ t !5s i~r!
11ar~ t !

11ar~0!
@~111.48!ebt21.48#,

b5~2.3860.20! GeV22. ~28!

The exponentb appears to be the same for rho, Pomeron,
P8, within errors@23#.

From Eqs. ~26! and ~27! we can deduce the relation
among the cross sections

spp→all

spN→all
5

spN→all

sNN→all
,

and from these relations one can obtain the parameterssp in
Eq. ~28! in terms of the knownpN and NN cross sections
Using this, we can write explicit formulas forpp scattering
with exchange of isospinI t50 in the t channel

Im F ~ I t50!~s,t ! .
s→`

t fixed

H 110.24Aŝ

sJ sp~P!ebt~s/ ŝ!aP~0!1aP8 t,

~29!

and we have added empirically the subleading contribut
proportional toAŝ/s, of the so-calledP8 pole ~associated
with the f 2 resonance! that is necessary at the lowest ener
range~see Fig. 6!. For I t51,

Im Fpp→pp
~ I t51!

~s,t ! .
s→`

t fixed

Im F ~r!~s,t !1Im F ~Bk!~s,t !,

1.1 1.2 1.3 1.4 1.5
s1/2

(GeV)

1

2

3

σtot
(I t=0)(s)

FIG. 6. The average cross section1
3 @2sp0p11sp0p0#, which is

pure I t50, arbitrarily normalized. Broken line: experimental cro
section. Note that the bump here, as the larger bumps in Figs. 5
6, is due to the coincidence of two resonances,f 0(1270),f 2(1370),
mostly elastic, arounds1/2;1.3 GeV. Thick gray line: Regge for
mula Eq. ~29!. The thickness of the line covers the error in t
theoretical value of the Regge residue.
07400
d

n,

Im F ~r!~s,t !5sp~r!
11ar~ t !

11ar~0!
@~111.48!ebt21.48#

3~s/ ŝ!ar~0!1ar8t,

Im FBk~s,t !5~0.460.1!S ŝ

sD
1/2

Im F ~r!~s,t !. ~30!

We have added a background~Bk! contribution to the
isospin 1 amplitude; this should be considered purely emp
cal and is adjusted so that the asymptotic formula jo
smoothly the experimental amplitude at low energy, with
errors; see Fig. 7.

From Eq.~28! and the known cross sections forpN,NN
scattering we have

sp~P!53.060.3, sp~r!50.8460.10, ~31!

where the errors are obtained by considering the disper
of the values of the parameters in@23#, and increasing the
result by 50%, which should cover amply the uncertainty
the point where one joins experimental and asymptotic f
mulas~that here we have taken to be 1.42 GeV! as well as
errors in the parameters we have taken fixed.

It is important to note that the Regge parameters in the
of Raritaet al.are obtained by global fit topN, NN, andN̄N
data for small momentum transfer and for c.m. kinetic en
gies in the region between 1 GeV and 6 GeV~approxi-
mately!, which is the region of interest for us here as t
contribution to the various integrals above this energy is n
ligible. The results of Raritaet al. are still the best available
as indeed there are essentially no new data in that en

nd

1.1 1.2 1.3 1.4 1.5
s1/2 (GeV)

1

2

3

σ(I t=1)(s)

FIG. 7. The cross sections (I t51), for isospin 1 in thet channel,
arbitrarily normalized. The dotted line is experiment; the sho
dashed line the rho exchange Regge theory. The long-dashed li
obtained by adding to this ther~1450! contribution. Finally, the
thick gray line includes also the background Regge piece.
thickness of this line is equal to the error dueonly to the rho Regge
residue~the total error for the full theoretical formula used in th
text, that includes errors due tor~1450! and the background Regg
piece, is some 20% larger!.
5-7
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range. We have, on the other hand, verified that the c
sections are compatible with the corresponding values
given in the more recent editions of the Particle Data Tab

We will treat the errors in the various Regge paramet
as uncorrelated. In fact, the leading Regge amplitu
~Pomeron and rho! are uncorrelated; there is some corre
tion with, respectively, theI t52 exchange~see below! and
the Bk piece for theI t51 exchange, because they have be
fixed by fitting the sum to the pion cross sections. Since
only affects subleading pieces this would only have a min
influence in the results~in fact, they would slightly decreas
the overall error due to the Regge contributions!, and any-
way the variations are substantially smaller than the 5
increase in the errors of the Regge residues with which
have made our evaluations.

For each individual processp0p1,p0p0, we have to in-
corporate the amplitude for exchange of isospinI t52 in the
t channel, which would be due to the double rho exchan
This cannot be obtained from factorization, sincepN or NN
do not contain such amplitude. We use an empirical form

Im F ~ I t52!~s,t !5C2e2bt@ Im F ~r!~s,t !#2S ŝ

sD ,

C250.860.2, ~32!

and we have obtained the constantC2 by fitting the differ-
ence between the experimentalp0p0 andp0p1 total cross
sections ats1/251.42 GeV, and the Pomeron plusP8 values;
see Fig. 8.

The dependence of our results on ImF(Bk),Im F(It52) is
very slight ~for the second, with the exception of theb2

(I )).
We now add a few words on the matter of when one m

apply formulas like Eqs.~29!–~32!. From the QCD, DGLAP
version of the Pomeron, we expect the following pattern
occur: in the regionutu!s, s@L2 ~with L;0.3 GeV the
QCD parameter! the ladder exchange mechanism will start
dominate the collisionA1B. We then will have the onset o

1.1 1.2 1.3 1.4 1.5
s1/2

(GeV)

1

2

3

σtot (s)

FIG. 8. The cross sectionss(p0p1) ~dashed line!, s(p0p0)
~dotted line!, and the Pomeron plusP8 ~continuous line!. The thick
gray bands are obtained including theI 52 exchange contributions
Their thickness corresponds only to the error of the Pomeron pi
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the Regge regime with, at the same time, a large increas
inelasticity and a smoothing of the total cross section acco
ing to the behavior in Eqs.~29!–~31!.

For pN,NN scattering this occurs as soon as one is
yond the region of elastic resonances; in fact~as can be seen
in the cross section summaries in the Particle Data Tables! as
soon as the kinetic energy or laboratory momentum is ab
1 to 1.2 GeV. Forpp we thus expect the Regge descriptio
to be valid for the corresponding energies, that is to say,
s1/2*1.4 GeV. Indeed, arounds1/2;1.4 GeV it is still pos-
sible to calculate thepp scattering amplitudes reliably from
experimental phase shifts and indeed they agree, with
10%, with the Regge expressions in thep0p cases; see Figs
6 and 8. Moreover, the experimental inelasticity forpp
around 1.4 GeV,;20%, also agrees with the value of th
inelasticity measured at the same energies forpN or NN
scattering.

For the I t51 amplitude, and because it is a differen
between large amplitudes, the influence of resonances
be expected to extend to higher energies. Indeed, we se
Fig. 7 that agreement between experiment and the Re
expression~within errors! around 1.4 GeV requires addin
the resonancer~1450!, as in Eq.~19!. We will do so in our
calculations. Thus, for allpp amplitudes we will assume th
Regge formula@eventually adding ther~1450! contribution#
to be valid fors1/2>1.42 GeV.

As is clear from this minireview, the reliability of the
Regge calculation of high energy pion-pion scattering can
go beyond an accuracy of;10%, even for smallt. The de-
viations off simple Regge behavior are expected to be m
larger for largeutu, because the counting rules of QCD imp
a totally different behavior for fixedt/s. This is one of the
problems involved in using, e.g., the Roy equations that
quire integration up to2t;s;1.7 GeV2, where the Regge
picture fails completely~we expect instead the Brodsky
Farrar behavior,sfixed cosu;s25). However, for forward dis-
persion relations or the Froissart-Gribov representation
will work only for t50 or t54Mp

2 for which the largest
variation, that of ebt, is still small, sinceb3(t54Mp

2 )
.0.19. So we expect no large error due to departure
linearity @26# for the exponent inf i

(I t)(t) or for the Regge
trajectories,aR(t).

IV. OLSSON’S SUM RULE AND THE
FROISSART-GRIBOV CALCULATION

OF a1 ,b1 ,a2
„I … ,b2

„I …

A. The Olsson sum rule

The Olsson sum rule is simply a forward dispersion re
tion for the amplitudeF (I t51) with isospin 1 in thet channel,
evaluated at threshold. ExpressingF (I t51)(4Mp

2 ,0) in terms
of the scattering lengths, this reads

2a0
~0!25a0

~2!5DO, DO53MpE
4Mp

2

`

ds
Im F ~ I t51!~s,0!

s~s24Mp
2 !

.

~33!

In terms of isospin in thes channel,

e.
5-8
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F ~ I t51!~s,t !5 1
3 F ~ I s50!~s,t !1 1

2 F ~ I s51!~s,t !2 5
6 F ~ I s52!~s,t !,

~34!

the F (I s) are normalized by

Im F ~ I s!~s,t !52
2s1/2

pk (
l

~2l 11!Pl~cosu!Im f̂ l
~ I s!

~s!.

~35!
g
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Substituting in the right-hand side above theS,P phases of
CGL up to 0.82 GeV, the phases~as given in the parametri
zations of Sec. III B! for the same at intermediate energi
(0.82<E<1.42 GeV), theD,F phases from Eqs.~20!–~22!,
the tail of ther~1450! resonance between 1.42 and 1.6 Ge
and ther plus background Regge parameters of Sec. III D
find, for 2a0

(0)25a0
(2) in units of Mp ,
CGL, direct CGL, dispersive

0.40060.007 ~CGL S,P, s1/2<0.82 GeV)
0.14660.004 @Rest,s1/2<1.42 GeV~incl., D,F below 0.82 GeV!#
0.07360.010 ~Regge,r, s1/2>1.42 GeV)
0.01060.003 ~Regge, Bk;s1/2>1.42 GeV)
0.00560.001 r~1450!, 1.42<s1/2<1.6 GeV

0.66360.007 0.63560.014 ~Total, dispersive!. ~36!
-

der
-

rt-
sis
on
n

n-

ex-
By ‘‘direct’’ we mean the value of the correspondin
quantity ~in our case, 2a0

(0)25a0
(2)) as given in CGL. By

‘‘dispersive’’ we understand that we have used the dispers
formula,DO in Eq. ~33!, to calculate the same quantity. Th
‘‘Rest’’ are the contributions of theD,F waves below 1.42
GeV, plus theS,P waves between 0.82 and 1.42 GeV. Of th
‘‘Rest,’’ the largest contribution comes from theD0 andP
waves.

The error in the CGLS,P piece below 0.82 GeV we ob
tain by varying theA,B,C,D parameters in Eqs.~9! and ~10!
according to the formulas given by ACGL~in their Appen-
dix!. It is almost identical to the error given for the whole
the direct quantity itself. We will discuss in some detail t
discrepancy between the direct and dispersive determina
of this quantity 2a0

(0)25a0
(2) as the situation for the othera’s

andb’s to be considered below will be very similar.
The reason the analysis of the discrepancy is not strai

forward is that both determinations are strongly correlat
as they both depend on the same parameters. The direc
termination is obtained from the parametersA,B,C,D in CGL
@as given in Eq.~3.1! here#, which describe in particular the
S waves. So we should really write

@2a0
~0!25a0

~2!#A,B,C,D
‘‘direct’’ .

The integrals in the dispersive determination contain the c
tributions of theS,P waves up to 0.82 GeV, which are give
by the sameA,B,C,D, so one also has

@2a0
~0!25a0

~2!#A,B,C,D
‘‘dispersive,S,P CGL’’ .

Now, it is clear that if we try to change the parametersA,B,
C,D in the direct determination to, for example, decrease
value ofa0

(0) to bring this closer to the dispersive value, t
same change in theA,B,C,D will affect the integral over the
e

ns

t-
,

de-

n-

e

S0 wave in @2a0
(0)25a0

(2)#A,B,C,D
‘‘dispersive,S,P CG’’ , making this

smaller and therefore nullifying to a large extent the im
provement.

What one has to do to solve this problem is to consi
the differenceD52a0

(0)25a0
(2)2DO and vary here the pa

rametersA,B,C,D. Then we find the value

D50.02760.011,

that is to say, a 2.5s discrepancy.
This procedure will also be followed for the Froissa

Gribov sum rules, where the correlation in the CGL analy
is transmitted in part by the common chiral perturbati
theory parametersl̄ i . We will discuss more about errors i
Secs. IV D and V A.

B. The Froissart-Gribov representation: a1 ,b1

By projecting the dispersion relation Eq.~1! ~or a deriva-
tive with respect tot of it! over thel th partial wave in thet
channel, att54Mp

2 , one finds the Froissart-Gribov represe
tation

al5
ApG~ l 11!

4Mp~ l 13/2!
E

4Mp
2

`

ds
Im F~s,4Mp

2 !

sl 11 ,

bl5
ApG~ l 11!

2Mp~ l 13/2!
E

4Mp
2

`

dsH 4 ImFcosu8 ~s,4Mp
2 !

~s24Mp
2 !sl 11

2
~ l 11!Im F~s,4Mp

2 !

sl 12 J , ~37!

Im Fcosu8 [(]/] cosus)Im F. For amplitudes with fixed isospin
in the t channel, an extra factor 2~due to identity of particles!
has to be added to the left-hand side; so we have, for
ample,
5-9
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2al
~ I 51!5

ApG~ l 11!

4MpG~ l 13/2!
E

4Mp
2

`

ds
Im F ~ I t51!~s,4Mp

2 !

sl 11 . ~38!

With the same type of calculation as for the Olsson sum rule, and with the same definitions, we now find, in u
10233Mp

23,
a1 ,CGL, direct CGL, Froissart-Gribov TY~St.! TY (St.1Sys.)

18.560.2 ~CGL S,P, s1/2<0.82 GeV)
9.160.3 ~Rest,s1/2<1.42 GeV)
8.161.1 ~Regge,r!
1.060.3 ~Regge, Bk!
0.360.1, r~1450!

37.960.5 37.161.3 ~Total, Froissart-Gribov! 40.661.4 38.661.2. ~39!

Here, and forb1 , we profit from the existence of an independent determination of theP wave parameters, using the pion for
factor data both in the timelike and in the spacelike regions@15# denoted by TY. From this we have chosen two values: fr
the fit taking into account only the statistical errors in the various data sets~St.!, as in Eq.~13! here; or taking also into accoun
the systematic normalization errors (St.1Sys.), as in Eq.~15!.

The distance between the direct evaluation and the one with the Froissart-Gribov calculation is now 0.6s, and there is also
acceptable overlap with the TY (St.1Sys.) figure.

For the quantityb1 we have, in units of 10233Mp
25,

b1 ,CGL, direct CGL, Froissart-Gribov TY~St.! TY (St.1Sys.)

20.9260.05 ~CGL S,P, s1/2<0.82 GeV)
1.0260.04 ~Rest,s1/2<1.42 GeV)
5.3360.86 ~Regge,r!
0.5560.16 ~Regge, Bk!
0.0160.0, r~1450!

5.6760.13 5.9960.88 ~Total, Froissart-Gribov! 4.1860.43 4.4760.29. ~40!

Here the Regge contribution is particularly important because the lower energy pieces cancel almost completely. The
labeled TY, as before, refer to what one obtains from the fit to the pion form factor. We remark that this last is a very
determination in that it is obtained by fitting some 210 points from several independent experiments, is independen
energy assumptions and it covers spacelike as well as timelike momenta: thus, the values of the threshold param
obtained byinterpolation, notoriously more stable than extrapolations.

There is no inconsistency between the direct and Froissart-Gribov numbers for the CGL calculation, but they are
large by almost 4s compared to even the more favorable value, TY (St.1Sys.), following from the pion form factor.

C. The Froissart-Gribov representation: a2
„I … ,b2

„I … ; IÄ0,2

We first calculate the two combinations of scattering lengthsa015 2
3 @a2

(0)2a2
(2)# and a005

2
3 @a2

(0)12a2
(2)#. They corre-

spond to thes-channel amplitudes

Fp0p15 1
2 F ~ I s51!1 1

2 F ~ I s52!, Fp0p05 1
3 F ~ I s50!1 2

3 F ~ I s52!. ~41!

The only important difference with the cases in the previous section is that the dominant high energy part is given now
Pomeranchuk trajectory~instead of the rho! and its importance is small because the integrals converge faster. We find, in
of 10243Mp

25,
a01 ,CGL, direct CGL, Froissart-Gribov

8.4360.09 ~CGL S,P, s1/2<0.82 GeV)
1.8460.05 ~Rest,s1/2<1.42 GeV)
0.6860.07 ~Regge,I t50)
20.0660.02 ~Regge,I t52)
0.0460.01, @r~1450!#

10.5360.10 10.9460.13 ~Total, Froissart-Gribov!. ~42!
074005-10
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In finding the error of the direct value, (10.5360.10)31024Mp
25, it is important to take into account the strong correlatio

of the errors of thea2
(0) ,a2

(2) . To do this, we use Eq.~14.4! in ACGL to calculate directly the quantitya01 . The difference
between the direct and Froissart-Gribov values, with correlations taken into account, as we did in the case of the Ols
rule, is now

0.4160.09,

so that the discrepancy reaches the 4s level.
In the same units, 10243Mp

25, we have
a00,CGL, direct CGL, Froissart-Gribov

11.7360.32 @CGL S,P, s1/2<0.82 GeV]
1.9160.04 ~Rest,s1/2<1.42 GeV)
0.6860.07 ~Regge,I t50)
0.1260.04 ~Regge,I t52)

13.9460.32 14.4460.33 ~Total, Froissart-Gribov!. ~43!

We have also taken into account the correlationsà la ACGL to evaluate the error of the direct number. The difference betw
direct and Froissart-Gribov~F.-G.! values for CGL are, with correlations taken into account, of

0.4960.09,

i.e., a 5s discrepancy.
Finally, we present the results forb015 2

3 @b2
(0)2b2

(2)# andb005
2
3 @b2

(0)12b2
(2)#, both in units of 10243Mp

27:
b01 ,CGL, direct CGL, Froissart-Gribov

20.33160.015~CGL S, P, s1/2<0.82 GeV)
0.0460.00 ~Rest,s1/2<1.42 GeV)
0.1260.02 ~Regge,I t50)
20.0560.02 ~Regge,I t52)

20.18960.016 20.23360.036~Total, Froissart-Gribov!. ~44!

The contribution of the resonancer~1450! is now negligible. For the difference between the direct and Froissart-Gribov r
we have

0.04460.026,

that is to say, almost a 2s discrepancy. Forb00,
b00,CGL, direct CGL, Froissart-Gribov

26.9060.22 ~CGL S, s1/2<0.82 GeV)
0.0760.01 ~Rest,s1/2<1.42 GeV)
0.1260.02 ~Regge,I t50)
0.1060.05 ~Regge,I t52)

26.7260.22 26.6260.23 ~Total, Froissart-Gribov!. ~45!
e
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For b00 the direct result and the one following from th
Froissart-Gribov representation differ by 2s:

0.1060.05.

However, one cannot take this or the discrepancy forb01 as
seriously as in the previous cases. This is so because o
large~relative! size of the contribution of theI t52 exchange
piece, proportional to the derivative with respect tot of an
expression we have obtained purely empirically by fitting
t50.
07400
the

t

D. How significant are the discrepancies?

In the present section we investigate whether the inc
sistencies we have found can be eliminated~or to what ex-
tent they can be made less severe! by altering the non-CGL
part of the dispersive, or Froissart-Gribov calculations. W
will do so in two steps. First, we will consider what happe
if we alter the pieces labeled ‘‘Rest’’ in Eqs.~36!–~45!; then
we will address the question of what can be done at h
energy (s1/2>1.42 GeV).

1. The region between 0.82 and 1.42 GeV

We start with the first question that we discuss in de
for the Olsson sum rule since the results for the Froiss
5-11
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Gribov calculations are very similar. We then consider
following set of drastic modifications of our calculations: F
the S0 wave, and 0.82<E<0.992 GeV we may replace Eq
~11! by the CGL parametrization, Eqs.~9! and ~10!. For the
S0 wave and 0.992<E<1.42 GeV, where it is poorly
known, we allowd0

(0) to vary between the two extreme va
ues p and 3p/2. For theS2 wave, we multiply by 3 the
errors given in Eq.~12!. For the P wave, and 1<E
<1.42 GeV, we change the elasticity of ther~1450! reso-
nance by 50%~up and down!. For theD0 wave, that sup-
plies the more important contribution to ‘‘Rest,’’ we consid
the effect of taking thef 2(1270) resonance to be purely ela
tic, or 30% inelastic. The remaining contributions to ‘‘Res
are so small that we need not worry about them.

The alterations just discussed are rather extreme; ne
theless, their effects are of no relevance. They produce
following extra errors~we give the central value of each ter
as well!:

S0, 0.82<s1/2<0.992 GeV: 0.02620.006
10.0 ,

S0, 0.992<s1/2<1.42 GeV: 0.01820.013
10.005,

S2, 0.82<s1/2<1.42 GeV: 20.02260.004,

P, 1.0<s1/2<1.42 GeV: 0.02460.005,

D0, s1/2<1.42 GeV: 0.05560.001.

Including these increased errors we get that, for the Ols
sum rule, the result for the ‘‘Rest’’ changes according to

Rest: 0.14560.004→0.14520.016
0.009 ,

and, for the whole dispersive result, we now get

Total: 0.63160.013→0.63120.019
10.015,

i.e., practically no change at all in the upper error bar. T
mismatch of the Olsson sum rule merely gets reduced f
2.5- to 2s.

2. The high energy region, s1Õ2Ð1.42 GeV

Once we have verified that the inconsistencies betw
the CGL direct and dispersive calculations of low ener
parameters cannot be due to the contributions of the inter
diate energy region, we turn to the high energy (s1/2>1.42)
piece. Then, we relax the condition of factorization for ther
and Pomeron Regge residues~but we do not change the oth
ers!. We treat them now as free parameters, describing
effectivescattering amplitude, to see under which conditio
one can reconcile the direct and Froissart-Gribov~or disper-
sive! evaluations for the scattering lengths and effect
range, in the CGL-like analysis. Starting with the isospin
case, we thus write
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Im Feff
~r!~s,t ! .

s→`
t fixed

lsp~r!
11ar~ t !

11ar~0!
@~111.48!ebt21.48#

3~s/ ŝ!ar~0!1ar8t,

that is to say, we modulate ther amplitude in Eq.~30! by the
constantl. We then fixsp(r)50.85, and treatl as a free
parameter. We then find that overlap between the direct
dispersive determinations for the quantity 2a0

(0)25a0
(2) in-

volved in the Olsson sum rule would requirel51.4, which
is well outside expectations and, moreover, this spoils
overlap fora1 ,b1 , which become inconsistent at the 2 to 2
s level.

For thea2
(I ) the situation is even more transparent. Co

sider, for example the quantitya00, Eq. ~43!. Integrating
only to 0.82, with the CGL phases, we find 11.73, which
the bulk of the result. Even if the errors of what we ca
‘‘Rest’’ were underestimated by a factor 3, and this ‘‘Res
would be 1.79~instead of 1.91!, adding it one would get a
least 13.5260.33 for the contribution below 1.42 GeV. Th
direct result, with the CGL values of theal

I , is 13.94. To get
agreement, one would require the high energy,E.1.42
~Regge! estimate to be wrong by a factor 2, very difficult t
believe. And it would be no good: the same Pomeron t
contributes toa00 contributes toa01 and to theb01 ,b00.
The disagreement would be shifted to theb01 ,b00, which
would then be wrong by about 4s, anda01 would still be
wrong by almost 2s. As for the proverbial square peg in th
round hole, trying to fit a corner only makes others wors
more sharply.

V. DISCUSSION OF THE ACGL AND CGL ANALYSES

A. Possible cause of the distortion of the CGL solution

In this section we try to ascertain the reasons for
troubles that seem to afflict the CGL analysis. This is p
ticularly important because, although ACGL or CGL did n
verify the Froissart-Gribov relations, theydid check relations
similar to the Olsson sum rule. It follows that the reasons
the discrepancies must be due to the high energy input. H
you have two regions: between 0.82 and 1.42 GeV~more or
less! the inelasticity is low, and, as we have shown, one c
trust the experimental phase shifts. Even if they have syst
atic errors, these will likely not be large and they will ju
produce a slight fluctuation of the solution of the Roy equ
tions, as we have shown explicitly in Sec. IV D 1 that
occurs for our evaluations.

The difficult region, however, is fors1/2 above 1.42 GeV.
Between 1.42 and 2 GeV, CGL presumably use the ph
shifts of @18# and, above 2 GeV, a Regge-type formula. W
start the discussion with the region 1.42<s1/2<2 GeV. Here
inelasticity is very high, and the phase shifts and inelastic
parameters cannot be determined reliably, at the level of
curacy required@27#. Of course, you can always give num
bers that fit the experimentally observed moments in peri
eral two-pion production; but so will other, in some cas
very different values ofds andhs. In the energy region 1.4
5-12
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<s1/2<2 GeV, the phase shifts and inelasticities all ste
from a single set of experiments and are likely to disag
with reality by much more than their nominal errors. In fa
this can be seen to occur for the S wave even at lower
ergy: as soon as theK̄K channel opens, the Cern-Munic
phase shifts@18# disagree violently with the Berkeley@17#
ones. This emphasizes the dangers of relying on a si
experiment for the phase shifts, as one has to do alread
s1/2>1.2 GeV.

It is not difficult to see how different phases may gi
similar results, for the elastic cross section. For exam
consider theelasticpp cross section, in theP wave: in both
cases~Cern-Munich and Particle Data Tables results! it is
small. In the Cern-Munich one, because sin2 d1 is small; in
the other becauseh is small. Unfortunately, theimaginary
parts of the inelastic amplitudes are very different; contr
to the Cern-Munich results, in the PDG case it would
large, at least around the resonances, because of the c
bution of the inelastic channels. The converse~i.e., overesti-
mate of the total cross section! may, of course, also happen
In fact, the cases mentioned are just examples of an amb
ity ~over and above that due to experimental errors! proved
to exist quite generally in@29#, and which is likely to be
large as soon as you have important inelastic channels o

Now, CGL ~following Pennington@30#! take the Cern-
Munich phase shifts, that probably contain large and
known systematic errors, and impose sum rules@e.g., the
sum rules~B.6,7!, ~C.2! in ACGL#, following from low en-
ergy crossing symmetry, to fix the Regge parameters at
ergies E.2 GeV. Not surprisingly, CGL~and Pennington
@31#! get irrealistic Regge parameters~as realized by CGL
themselves!; for example, ACGL and CGL get a Pomero
with a width of the diffraction peak which iss independent,
and twice the standard value~at low s!, and a residue much
smaller than what factorization implies. In fact, we will sho
in the Appendix explicit calculations of two sum rules@in
particular of the sum rule~B.7!, one of the crossing sum
rules that Pennington and ACGL use# which are perfectly
satisfied by a standard Regge amplitude, with factoriza
for the rho and Pomeron trajectories, provided one u
Regge asymptotics froms1/251.42 GeV.

According to CGL this deviation from conventiona
Reggeistics is not important because the influence of the
energy region (s1/2>1.42 GeV) into their low energy (s1/2

<0.82 GeV) phase shifts is very slight. However, and as
have shown in the present paper, inconsistencies show u
soon as one considers sum rules—like the Froissart-Gr
sum rules—that are sensitive to the high energy behavio
the amplitudes.

From the previous analysis it thus follows that CGL sta
in the Roy equations, from aV with incorrect Regge behav
ior and dubious phase shifts above 1.42 GeV. Let us call
V ~Wrong R!. CGL run this through the Roy equations E
~8! and find a solution,j~Wrong R!. Now, this solution is not
horrendous because experimental low energy data, c
perturbation theory and crossing sum rules force you to h
the errors in Regge parameters and cross sections com
sating, to a certain extent, in what regards their low ene
effects.
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Indeed, the independence on the low energy partial wa
on the high energy amplitudes used is approximately true
the ACGL results, where the mismatch that occurs if us
the correct Regge asymptotics stays below the 2s level.
However, for the CGL results, the use of chiral perturbat
theory~with neglect of higher order corrections! has the dual
effect of highly correlating the various low energy param
eters and excessively decreasing the errors. Thus, for
ample, the value for the quantitya10 that follows from the
Froissart-Gribov representation, 10.9460.13 ~in units of
1024Mp

25) is displaced 4s from the value following directly
from the parameters of CGL, 10.5360.10. Now,a10 is di-
rectly related to the chiral constantl̄ 2 , a105@ l̄ 2

227/20#/720p3f p
4 Mp . Hence a variation ofa10 implies a

corresponding variation ofl̄ 2 that destabilizes all the quant
ties that depend on it in a chiral perturbative analysis;
particular, the low energySandP waves. As we have shown
in the present paper, inconsistencies show up in the C
scattering amplitude~with standard Regge parameters! as
soon as one considers sum rules that, like the Froiss
Gribov or Olsson ones, are sensitive to the high energy
havior. What the inconsistencies found in the previous s
tion show is that the distortion is several times larger than
nominal CGL error bars.

B. A tentative alternate solution

In support of the idea that the effects discussed in
previous section are indeed the cause of the mismatche
the CGLS matrix, we have calculated the Olsson sum ru
and the quantitiesal , b1 using now, fors1/2<0.82 GeV, the
results of the fit, wave by wave, reported in Sec. 7.6 of@8#.
For the waveS0 we take now the fit obtained imposing th
valued0

(0)(MK
2 )543.362.3°, and with only three paramete

@32#; we then have

cotd0
~0!~s!5

s1/2

2k

Mp
2

s2 1
2 Mp

2

Ms
22s

Ms
2 H B01B1

As2As02s

As1As02s
J ,

B0521.04, B156.62, Ms5782624 MeV,

x2

DOF
5

15.7

1923
, a0

~0!5~0.23060.010!,

d0
~0!~MK!541.0°62.1°. ~46!

The errors of theBi are strongly correlated; uncorrelate
errors are obtained if replacing theBi by the parametersx,y
with
5-13



.

ifi-

m
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B05y2x, B156.6222.59x. ~47!

Then,

y521.0460.75, x5062.4. ~48!

The solution is shown, compared to the CGL phase, in Fig
We then integrate Eqs.~46!, ~47!, and ~48! up to E

50.82 GeV and with Eq.~23! from the 0.82s to the K̄K
s

s

e

s
a

In
fi

07400
9.

threshold. ForS2,P we take the same fits as before, spec
cally, Eqs.~12! and ~15!.

We find the following results, in units ofMp :
Olsson direct dispersive

0.69160.042 0.65960.020 ~49!

@here ‘‘direct’’ means that we take the values following fro
the fits in Eq.~12! and Eqs.~46!–~48!#. Moreover, and also
in units of Mp ,
a1 direct ~TY, St.! direct ~TY, St.1Sys.) Froissart-Gribov

(40.661.4)31023 (38.661.2)31023 (37.961.4)31023 ~50!

and
b1 direct ~TY, St.! direct ~TY, St.1Sys.) Froissart-Gribov

(4.1860.43)31023 (4.4760.29)31023 (5.6960.96)31023. ~51!
g-
sis

on

sis-
t of
that
sts

t is
GL

r
t
nd
The tag ‘‘direct’’ now refers to the values of@15#, with only
statistical errors~St! or including also systematic error
(St.1Sys.). Thus, we find agreement at the 1s level in all
three cases, fora1 , b1 , with the TY (St.1Sys.) solution.
With the same parameters we find, for theD waves, and with
the help of the Froissart-Gribov representation, the value

a015~10.6060.17!31024Mp
25,

a005~14.9960.68!31024Mp
25 ~52!

and

b015~20.17060.083!31024Mp
27,

b005~26.9160.47!31024Mp
27. ~53!

This is compatible with what we found for thea2
(I ) by a

direct fit to the experimental data in Sec. III C within th
rather large errors of these last values.

The large error, and the separation in the central value
the Olsson sum rule, Eq.~49!, is due to the fact that the dat
do not fix with sufficient accuracy thea0

(2) scattering length,
which provides most of the error in the direct number.
fact, as is known, one can use the Olsson sum rule to re
the parameters of theS2 wave; if we do so, fixing all other
parameters to their central values~within errors! and include
the Olsson sum rule in the fit to theS2 wave we find

cotd0
~2!~s!5

s1/2

2k

Mp
2

s22z2
2 H B01B1

As2As02s

As1As02s
J ,

s0
1/251.45 GeV, x2/DOF517.2/~1922!,

B05211862.5, B15210562.5,
in

ne

z25139.57 MeV ~fixed!. ~54!

Then one hasa0
(2)520.042860.0022 and Eq.~49! becomes

Olsson direct dispersive

0.67160.023 0.66360.018. ~55!

The rest of the relations Eqs.~50!–~53! improve slightly, and
the D wave scattering lengths also change a little:

a1538.061.231023Mp
23, b155.6460.9631023Mp

25,

a015~10.5160.15!31024Mp
25,

a005~14.8960.65!31024Mp
25. ~56!

It should be noted that the error here fora01 is at the edge of
the region of credibility, as indeed it is of the order of ma
nitude of electromagnetic corrections which the analy
does not take into account. This value ofa01 implies, at one
loop level, a very precise value for the chiral perturbati
theory parameter@33# l̄ 2 of

l̄ 255.9760.07.

Of course the agreement in Eqs.~49!, ~50!, ~51! and~55!
is not enough to guarantee that the new solution is con
tent; to prove that, one would have to check the whole se
dispersion relations and crossing constraints, something
will be the subject of a separate paper. But it clearly sugge
that the CGL solution fails to pass the tests because i
distorted. This can also be inferred by comparing the C
solution for theS2 wave with Eq.~12! as in Fig. 10, where
we show the CGL and Eq.~12! together. While both fit the
data below 0.82 GeV@Eq. ~12! gives actually a slightly bette
fit even there#, the distortion of the CGL solution above tha
energy is suggestive. A similar pattern is found in Figs. 1 a
5-14
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9. This very much suggests that the CGL fit is a forced
biased by a reflection of a faulty high energy scattering a
plitude.

VI. SUMMARY AND CONCLUSIONS

We have checked a number of tests of the low ene
(s1/2<0.82 GeV) S0, S2, andP wave phase shifts given in
@2# by Colangelo, Gasser, and Leutwyler, based on two-lo
chiral perturbation theory plus the Roy equations with a c
tain high energy (s1/2>1.42 GeV) input. We have show
that, if we used the values for this high energy piece t
follow from Regge theory, then the Olsson sum rule and

0.2 0.4 0.6 0.8 1.0
s1/2

(GeV)

30

60

90

δ(0)
0

FIG. 9. The I 50, S-wave phase shifts corresponding to Eq
~46!–~48! ~continuous line! and Colangelo, Gasser, and Leutwyl
@2# ~dashed line!. Some experimental points are also shown.

0.2 0.4 0.6 0.8 1.0 1.2

s1/2 (GeV)

-20o

-10o

0o

δ(2)
0

FIG. 10. TheI 52, S-wave phase shifts corresponding to E
~3.3! ~continuous line! and Colangelo, Gasser, and Leutwyler@2#
~dashed line!. Also shown are the data points of Lostyet al. ~open
circles! and from solution A of Hooglandet al. ~black dots! @20#.
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combinations of scattering lengthsa015 2
3 @a2

(0)2a2
(2)#, a00

5 2
3 @a2

(0)12a2
(2)# show mismatch by as much as 4;5s. We

have discussed in detail why we think that the discrepanc
inherent to thelow energy(s1/2<0.82 GeV) CGL phases
Thus, in Sec. IV D 1 we have shown that even rather dra
alterations of the middle energy region, 0.82<s1/2<1.42 do
not alter the inconsistencies.

With respect to the higher energy region (s1/2

>1.42 GeV), the situation is such that, if one tries to mod
the Regge piece to fit the Olsson sum rule~say! then not only
the alteration~40% to 100%! is much more than what on
can reasonably expect, but the lack of consistency is shi
to a1 ,b1 . A similar phenomenon—in fact, even mor
pronounced—occurs witha01 anda00. This we discussed in
detail in Sec. IV D 2, where it is clear that the mismatch
due to the low energy CGL input. Moreover, the value of t
quantity b1 remains displaced by 4s from what one gets
from a fit to the pion form factor.

It should be borne in mind that we are talking here ab
disagreements at the level of a few percent; so, if one
prepared to shift the central values of CGL by up to 2s, and
double their errors, the inconsistencies disappear. Thi
what happens, for example, in the analysys of ACGL, wh
the errors are from 3 to 10 times larger than those in CG
Nevertheless, at the level of precision claimed by CGL,
disagreements are real. We have argued that they are p
ably due to an irrealistic high energy (s1/2>1.42 GeV) input,
which distorts the low energy phase shifts. In support of t
we have shown that a direct fit to data, including fully an
lyticity constraints, for theP,S0,S2 waves~in the case of the
last, requiring also consistency of the Olsson sum rule
decrease its errors! plus a high energy input given by ortho
dox Regge theory, produces a different set of compatible
energy phase shifts and high energy scattering amplitu
This set is formed by the phase shifts given in Eq.~15!, Eqs.
~46!–~48! and Eq.~54!, and is in fact similar to that of CGL
but is slightly displaced and its errors are slightly larger;
for example, the quantityd0

(0)(MK
2 )2d0

(2)(MK
2 ), important

for kaon decays, changes according to

d0
~0!~MK

2 !2d0
~2!~MK

2 !547.761.5° ~CGL!

→48.462.1° ~our solution!.

A fact that should be mentioned here is that Descoteset al.
@34# have, in a recent article, found a solution whose cen
values differ from that of CGL by almost 2~CGL! standard
deviations and in fact point in the direction of our tentati
alternate solution here. In particular, they have, in units
Mp ,

a0
~0!50.22860.012,

a0
~2!520.038260.0038 ~Descoteset al.!.

Their errors are also more like what we have in our altern
solution. Note, however, that whether or not the altern
solutions turn out to be consistent has nothing to do with

.
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consistency of the CGL solution: this last fails independen
of the failure or success of the novel one.

Analyticity determines the real part of the scattering a
plitude in terms of its imaginary part. However, to get t
real part you need to know the imaginary part up to infin
Now, if the imaginary part is wrong at high energy and y
the dispersion relation~or Roy equations! are satisfied, it
necessarily follows that one must have made a compensa
error in the low energy imaginary part. In other words: y
have fallen into a spurious solution. The fact that the solut
is spurious should be manifest as soon as one devises a
that gives adifferentweight to high and low energy piece
this is exactly what we do in our paper, for the CGL solutio
with the help of the Froissart-Gribov representations.

Note added in proof. After this article was sent to the
publisher, a preprint appeared~see Ref.@36#! in which some
of the conclusions~but not the calculations! of our work are
contested. We do not think it necessary to alter our pape
account of the work of Capriniet al.; we plan to present a
discussion of it in a separate article.
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APPENDIX

In this appendix we discuss briefly the reason for the
orthodox Reggeistics chosen in ACGL, CGL, following Pe
nington @30#, inasmuch as it has a bearing on our subj
matter here. These authors set up crossing sum rules@Eqs.
~B7!, ~C2! in ACGL#, which relate high and low energy, an
conclude that they are satisfied only if, in particular, t
Pomeron residue is about 1/3 of the value implied by fac
ization.

Contrarily to the conclusion of ACGL, however, we wi
show by explicit calculation of a typical sum rule that, if on
assumes orthodox Regge behavior froms1/2>1.42 GeV, the
low energy phase shifts are perfectly compatible with
value of the Regge residues implied by factorization. T
will cinch the proof that, as discussed in Sec. V A, t
Reggeistics of ACGL are very likely due to compensation
the unrealistic phase shifts used between 1.42<s1/2

<2 GeV.
Specifically, we will consider the sum rule~B7! in ACGL;

since it is independent of theSandP waves, it constitutes an
independent test of the Regge structure. It may be writte

J[E
4Mp

2

`

dsH 4 ImF8~0!~s,0!210 ImF8~2!~s,0!

s2~s24Mp
2 !2

26~3s24mp
2 !

Im F8~1!~s,0!2Im F ~1!~s,0!

s2~s24Mp
2 !3 J 50.

~A1!
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HereF8(I )(s,t)5]F (I )(s,t)/] cosu, and the indexI refers to
isospin in thes channel.

We will separateJ into a low energy and a high energ
piece:

J5Jl.e.1hh.e., Jl.e.5E
4Mp

2

sh
ds..., Jh.e.5E

sh

`

ds... .

The low energy piece,Jl.e., only contains contributions o
wavesD and higher. Since these waves are only known w
~relatively! large errors@35#, it is ~generally speaking! very
dangerous to draw conclusions about the high energy i
gral, Jh.e., from the experimental value of the low energ
piece,Jl.e.. Nevertheless, we will show that, if we choos
sh51.422 GeV2, then we find perfect consistency, within e
rors. In this calculation we will first neglect the contribution
of exchange ofI 52 and of the background to rho exchang
both of dubious status and substantially smaller than
Pomeron and rho exchange pieces, but we keep theP8. Us-
ing the parametrizations of Sec. III C for theD,F waves we
find, in units ofMp

26,

Jl.e.~D waves!51.22231024,

Jl.e.~F wave!520.07631024

so that, including the errors,

Jl.e.5~1.1560.05!31024. ~A2!

For the high energy piece, expanding in amplitudes w
definite isospin in thet channel, and with the numbers in Se
III D for the Pomeron and rho contributions, we get

Jh.e.~Pomeron!521.09331024,

Jh.e.~r!50.03431024,

i.e.,

Jh.e.5~21.0660.17!31024. ~A3!

Thus, we have cancellation between Eqs.~A2! and ~A3!,
within errors: there is no reason to justify departure off t
expected Regge behavior.

To finish this appendix, we comment a little on theP8 and
on the inclusion of theI t52 contribution. Because the hig
energy part of the sum rule Eq.~A1! is mostly given by the
t derivative of the even isospin amplitudes, a more prec
evaluation than the one carried here would require that
replace theP8 contribution of Eq.~29! by a more accurate
formula. Unfortunately, the characteristics of this Regge p
are poorly known; see@23#. If we take for the theP8 trajec-
tory a formula like that of ther, then Eq.~A3! is replaced by

Jh.e.~with corrected P8!5~21.260.2!31024.

Including also theI t52 contribution, as given in Eq.~32!,
we would find
5-16
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Jh.e.~with corrected P8, and including I t52!

5~20.560.3!31024. ~A4!

This still cancels the low energy piece, Eq.~A2!, but only at
the 2s level. This discrepancy cannot be taken seriou
because of the uncertainties in theP8 trajectory and becaus
the t slope in formula Eq.~32! is little more than guesswork

The second sum rule is obtained by profiting from t
threshold behavior to write an unsubtracted forward disp
sion relation for the quantityF (I s51)(s,0)/(s24Mp

2 ). This
gives the relation

6Mp

p
a15

1

p E
Mp

2

`

ds
Im F ~ I s51!~s,0!

~s24Mp
2 !2

1
1

p (
I

C1I
~su!E

Mp
2

`

ds
Im F ~ I !~s,0!

s2 , ~A5!

which is known at times as the~second! Olsson sum rule.
The indexI refers to isospin in thes channel andC1I

(su) are
the s2u crossing matrix elements. Cancellinga1 with the
Froissart-Gribov expression for this quantity and substitut
the C1I

(su) , we find the result

I[E
Mp

2

`

ds
Im F ~ I t51!~s,0!2Im F ~ I t51!~s,0!

s2

2E
Mp

2

`

ds
8Mp

2 @s22Mp
2 #

s2~s24Mp
2 !2 Im F ~ I s51!~s,0![I 11I 250.

~A6!

The contributions of theS waves cancel in Eq.~A6!, so
only the P,D and F waves contribute~as usual, we neglec
it.

la

n

07400
,

r-

g

wavesG and higher!. At high energy,I 2 contributes little
since the corresponding integral converges rapidly: mos
the high energy contribution comes from the first term, dom
nated by rho exchange. We will use units so thatMp51 and
obtain the following results:

I ~ low energy, P wave!5~22.8060.31!31022,

I ~ low energy, D01D2 waves!5~0.5660.03!31022,

I ~ low energy, F wave!5~0.0160.00!31022,

I ~high energy,r!5~2.4160.37!31022,

I ~high energy,I 50!52~0.1760.02!31022,

I ~high energy,I 52!52~0.0260.01!31022.

By ‘‘low energy’’ we understand the contributions from
energies below 1.42 GeV, where we use phase shifts
inelasticities to calculate the scattering amplitudes, a
‘‘high energy’’ is above 1.42 GeV, where a Regge descript
is employed. The final result for the sum rule is

I 5~0.01660.37!31022,

i.e., complete cancellation of low and high energy contrib
tions.

The remarkable fulfillment of these sum rules show t
incorrectness of the assertions found in ACGL, CGL: bo
for Pomeron and rho, standard Regge behavior forpp scat-
tering is perfectly consistent with crossing symmetry p
vided one imposes it systematically for energies above 1
GeV.
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