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Confining QCD strings, Casimir scaling, and a Euclidean approach to high-energy scattering
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We compute the chromo-field distributions of static color dipoles in the fundamental and adjoint represen-
tation ofSU(Nc) in the loop-loop correlation model and find Casimir scaling in agreement with recent lattice
results. Our model combines perturbative gluon exchange with the non-perturbative stochastic vacuum model
which leads to confinement of the color charges in the dipole via a string of color fields. We compute the
energy stored in the confining string and use low-energy theorems to show consistency with the static quark-
antiquark potential. We generalize Meggiolaro’s analytic continuation from parton-parton to gauge-invariant
dipole-dipole scattering and obtain a Euclidean approach to high-energy scattering that allows us in principle
to calculateS-matrix elements directly in lattice simulations of QCD. We apply this approach and compute the
S-matrix element for high-energy dipole-dipole scattering with the presented Euclidean loop-loop correlation
model. The result confirms the analytic continuation of the gluon field strength correlator used in all earlier
applications of the stochastic vacuum model to high-energy scattering.
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I. INTRODUCTION

The structure of the QCD vacuum is responsible for co
confinement, spontaneous chiral symmetry breaking, and
namical mass generation@1#. Hadronic reactions are ex
pected to show further manifestations of a non-trivial QC
vacuum. It is indeed a key issue to unravel the effects
confinement and topologically non-trivial gauge field co
figurations ~such as instantons! on such reactions@2,3#.
Moreover, it would be a significant breakthrough to und
stand the size, behavior and growth of hadronic cross
tions with increasing c.m. energy from the QCD Lagrangi

Lattice QCD is the principal theoretical tool to study th
QCD vacuum from first principles. Numerical simulations
QCD on Euclidean lattices give strong evidence for co
confinement and spontaneous chiral symmetry breaking
describe dynamical mass generation from the QCD Lagra
ian @4–6#. However, since lattice QCD is limited to the Eu
clidean formulation of QCD, it cannot be applied
Minkowski space-time to simulate high-energy reactions
which particles are moving near the light cone. Furthermo
although lattice investigations have significantly enhan
our understanding of non-perturbative phenomena and
ticularly confinement, one can quote the concluding sente
of Greensite’s recent review@7#: ‘‘The confinement problem
is still open, and remains a major intellectual challenge
our field.’’ Here ~phenomenological! models that allow ana
lytic calculations are important as they provide valua
complementary insights.

In this work we introduce the Euclidean version of t
loop-loop correlation model~LLCM ! which has been devel
oped in Minkowski space-time to describe high-energy re
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tions of hadrons and photons@8# on the basis of a functiona
integral approach@9–13#. The central element in our ap
proach is the gauge-invariant Wegner-Wilson loop@14,15#:
The physical quantities considered are obtained from
vacuum expectation value~VEV! of one Wegner-Wilson
loop, ^Wr@C#&, and the correlation of two Wegner-Wilso
loops, ^Wr 1

@C1#Wr 2
@C2#&. Here r ( i ) indicates theSU(Nc)

representation of the Wegner-Wilson loops which we keep
general as possible. We expresŝWr@C#& and
^Wr 1

@C1#Wr 2
@C2#& in terms of the gauge-invariant biloca

gluon field strength correlator integrated over minimal s
faces by using the non-Abelian Stokes theorem@16# and a
matrix cumulant expansion@17# in the Gaussian approxima
tion. The latter approximation relies on the assumption o
Gaussian dominance in the correlations of gauge-invar
non-local gluon field strengths, i.e. the dominance of
bilocal correlator over higher ones, and is supported by
tice investigations@18#. In our model this Gaussian approx
mation leads directly to the Casimir scaling of the sta
quark-antiquark potential which forSU(3) has clearly been
confirmed on the lattice@19,20#. We decompose the gauge
invariant bilocal gluon field strength correlator into a pertu
bative and a non-perturbative component: The stocha
vacuum model~SVM! @21# is used for the non-perturbativ
low-frequency background field and perturbative gluon e
change for the additional high-frequency contributions. T
combination allows us to describe long and short dista
correlations in agreement with lattice calculations of t
gluon field strength correlator@18,22–24#. Moreover, it leads
to a static quark-antiquark potential with color Coulomb b
havior for small and confining linear rise for large sour
separations. We calculate the static quark-antiquark pote
with the LLCM parameters determined in fits to high-ener
scattering data@8# and find good agreement with lattice dat
We thus have one model that describes both static hadr
properties and high-energy reactions of hadrons and pho
in good agreement with experimental and lattice QCD da
©2003 The American Physical Society04-1
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SHOSHIet al. PHYSICAL REVIEW D 68, 074004 ~2003!
We apply the LLCM to compute the chromo-electr
fields generated by a static color dipole in the fundame
and adjoint representation ofSU(Nc). The non-perturbative
SVM component describes the formation of a color flux tu
that confines the two color sources in the dipole@25# while
the perturbative component leads to color Coulomb fie
We find Casimir scaling for both the perturbative and no
perturbative contributions to the chromo-electric fields ag
as a direct consequence of the Gaussian appoximation in
gluon field strengths. The mean squared radius of the con
ing QCD string is calculated as a function of the dipole si
Transverse and longitudinal energy density profiles are p
vided to study the interplay between perturbative and n
perturbative physics for different dipole sizes. The transit
from perturbative to string behavior is found at source se
rations of about 0.5 fm in agreement with the recent res
of Lüscher and Weisz@26#.

The low-energy theorems, known in lattice QCD
Michael sum rules@27#, relate the energy and action stored
the chromo-fields of a static color dipole to the correspo
ing ground state energy. The Michael sum rules, howe
are incomplete in their original form@27#. We present the
complete energy and action sum rules@28–30# in continuum
theory taking into account the contributions to the action s
rule found in@31# and the trace anomaly contribution to th
energy sum rule@28#. Using these low-energy theorems, w
compare the energy and action stored in the confining st
with the confining part of the static quark-antiquark pote
tial. This allows us to confirm consistency of the model
sults and to determine the values of the Callan-Symanzib
function and the strong couplingas at the renormalization
scale at which the non-perturbative SVM component
working. The values obtained forb andas are compared to
model independent QCD results for the Callan-Syman
function. Earlier investigations along these lines have b
incomplete since only the contribution from the traceless p
of the energy-momentum tensor has been considered in
energy sum rule.

To study the effect of the confining QCD string examin
in Euclidean space-time on high-energy reactions
Minkowski space-time, an analytic continuation from E
clidean to Minkowski space-time is needed. For investi
tions of high-energy reactions in our Euclidean model,
gauge-invariant bilocal gluon field strength correlator can
analytically continued from Euclidean to Minkowski spac
time. This analytic continuation has been introduced for
plications of the SVM to high-energy reactions@11–13# and
is used in our Minkowskian applications of the LLCM
@8,32–34#. Recently, an alternative analytic continuation f
parton-parton scattering has been established in the pertu
tive context by Meggiolaro@35#. This analytic continuation
has already been used to access high-energy scattering
the supergravity side of the AdS/CFT correspondence@36#,
which requires a positive definite metric in the definition
the minimal surface@37#, and to examine the effect of instan
tons on high-energy scattering@38#.

In this work we generalize Meggiolaro’s analytic contin
ation @35# from parton-parton to gauge-invariant dipol
07400
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dipole scattering such thatS-matrix elements for high-energ
reactions can be computed from configurations of Wegn
Wilson loops in Euclidean space-time and with Euclide
functional integrals. This shows how one can access h
energy reactions directly in lattice QCD. First attempts
this direction have already been carried out but only v
few signals could be extracted, while most of the data w
dominated by noise@39#. We apply this approach to comput
the scattering of dipoles at high-energy in the Euclide
LLCM. We recover exactly the result derived with the an
lytic continuation of the gluon field strength correlator@8#.
This confirms the analytic continuation used in all earl
applications of the stochastic vacuum model to high-ene
scattering@11–13,40–48# including the Minkowskian appli-
cations of the LLCM@8,32–34#. In fact, theS-matrix ele-
ment obtained has already been used as the basis for a
fied description of hadronic high-energy reactions@8#, to
study saturation effects in hadronic cross sections@8,32,34#,
and to investigate manifestations of the confining QC
string in high-energy reactions of photons and hadrons@33#.

The outline of the paper is as follows. In Sec. II th
LLCM is introduced in its Euclidean version and the gene
computations of̂ Wr@C#& and ^Wr 1

@C1#Wr 2
@C2#& are pre-

sented. Based on these evaluations, we compute the pote
of a static color dipole in Sec. III and the associated chrom
field distributions in Sec. IV with emphasis on Casimir sc
ing and the interplay between perturbative color Coulo
behavior and non-perturbative formation of the confini
QCD string. In Sec. V low-energy theorems are discus
and used to show consistency of the model results an
determine the values ofb andas at the renormalization scal
at which the non-perturbative SVM component is workin
In Sec. VI the Euclidean approach to high-energy scatter
is presented and applied to compute high-energy dip
dipole scattering in our Euclidean model. In the Appendix
we review the derivation of the non-Abelian Stokes theore
give parametrizations of the loops and the minimal surfac
and provide the detailed computations for the results in
main text.

II. THE LOOP-LOOP CORRELATION MODEL

In this section the vacuum expectation value of o
Wegner-Wilson loop and the correlation of two Wegne
Wilson loops are computed for arbitrary loop geometr
within a Gaussian approximation in the gluon field strengt
The results are applied in the following sections. We descr
our model for the QCD vacuum in which the stochas
vacuum model@21# is used for the non-perturbative low
frequency background field~long-distance correlations! and
perturbative gluon exchange for the additional hig
frequency contributions~short-distance correlations!.

A. Vacuum expectation value of one Wegner-Wilson loop

A crucial quantity in gauge theories is the Wegner-Wils
loop operator@14,15#

Wr@C#5Tr̃rP expF2 ig R
C
dZmG m

a ~Z!t r
aG . ~2.1!
4-2
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CONFINING QCD STRINGS, CASIMIR SCALING, AND . . . PHYSICAL REVIEW D68, 074004 ~2003!
Concentrating onSU(Nc) Wegner-Wilson loops, whereNc
is the number of colors, the subscriptr indicates a represen
tation of SU(Nc), Tr̃r5Trr(•••)/Tr 1r is the normalized
trace in the corresponding color space with unit element1r ,
g is the strong coupling, andGm(Z)5G m

a (Z)t r
a represents the

gluon field with theSU(Nc) group generators in the corre
sponding representation,t r

a , that demand the path orderin
indicated byP on the closed pathC in space-time. A distin-
guishing theoretical feature of the Wegner-Wilson loop is
invariance under local gauge transformations in color spa
Therefore, it is the basic object in lattice gauge theor
@4,14,15# and has been considered as the fundamental bu
ing block for a gauge theory in terms of gauge invaria
variables@49#. Phenomenologically, the Wegner-Wilson loo
represents the phase factor associated with the propagati
a very massive color source in the representationr of the
gauge groupSU(Nc).

To compute the expectation value of the Wegner-Wils
loop ~2.1! in the QCD vacuum

^Wr@C#&G5K Tr̃rP expF2 ig R
C
dZmG m

a ~Z!t r
aG L

G

,

~2.2!

we transform the line integral over the loopC into an integral
over the surfaceS with ]S5C by applying the non-Abelian
Stokes theorem@16#

^Wr@C#&G

5K Tr̃rPS expF2 i
g

2ES
dsmn~Z!G mn

a ~O,Z;CZO!t r
aG L

G

,

~2.3!

where PS indicates surface ordering andO is an arbitrary
reference point on the surfaceS. In Eq. ~2.3! the gluon field
strength tensor,Gmn(Z)5G mn

a (Z)t r
a , is parallel transported to

the reference pointO along the pathCZO ,

Gmn~O,Z;CZO!5F r~O,Z;CZO!Gmn~Z!F r~O,Z;CZO!21,

~2.4!

with the QCD Schwinger string

F r~O,Z;CZO!5P expF2 igE
CZO

dZmG m
a ~Z!t r

aG . ~2.5!

A more detailed explanation of the non-Abelian Stokes th
rem and the associated surface ordering is given in Appe
A.

The QCD vacuum expectation value^•••&G represents
functional integrals in which the functional integration ov
the fermion fields has already been carried out as indica
by the subscriptG @10#. The model we use for the evaluatio
of ^•••&G is based on the quenched approximation wh
does not allow string breaking through dynamical qua
antiquark production. So far, it is not clear how to introdu
dynamical quarks into this model. One suggestion is p
sented in Appendix A of Ref.@10#.
07400
s
e.
s
d-
t

of

n

-
ix

d

h
-

-

Due to the linearity of the functional integral,^Tr̃r•••&
5Tr̃r^•••&, we can write

^Wr@C#&G

5Tr̃r KPS expF2 i
g

2ES
dsmn~Z!G mn

a ~O,Z;CZO!t r
aG L

G

.

~2.6!

For the evaluation of Eq.~2.6!, a matrix cumulant expansion
is used as explained in@10# ~cf. also@17#!

KPSexpF2 i
g

2ES
ds~Z!G~O,Z;CZO!G L

G

5expF (
n51

`
1

n! S 2 i
g

2D nE ds~X1!•••ds~Xn!

3Kn~X1 ,•••,Xn!G , ~2.7!

where space-time indices are suppressed to simplify n
tion. The cumulantsKn consist of expectation values of o
dered products of the non-commuting matric
G(O,Z;CZO). The leading matrix cumulants are

K1~X!5^G~O,X;CX!&G , ~2.8!

K2~X1 ,X2!5^PS@G~O,X1 ;CX1
!G~O,X2 ;CX2

!#&G

2
1

2
@^G~O,X1 ;CX1

!&G^G~O,X2 ;CX2
!&G

1~1↔2!#. ~2.9!

Since the vacuum does not prefer a specific color direct
K1 vanishes andK2 becomes

K2~X1 ,X2!5^PS@G~O,X1 ;CX1
!G~O,X2 ;CX2

!#&G .
~2.10!

Now, we approximate the functional integral associated w
the expectation valueŝ•••&G as a Gaussian integral in th
parallel transported gluon field strength~2.4!. This Gaussian
approximation is supported by lattice investigations@18# that
show a dominance of the bilocal gauge-invariant gluon fi
strength correlator over higher-point non-local correlato
As a consequence of the Gaussian approximation, the cu
lants factorize into two-point field correlators such that
higher cumulants,Kn with n.2, vanish.1 Thus, ^Wr@C#&G
can be expressed in terms ofK2:

1We are going to use the cumulant expansion in the Gaus
approximation also for perturbative gluon exchange. Here certa
the higher cumulants are non-zero.
4-3
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^Wr@C#&G5Tr̃rexpF2
g2

8 E
S
dsmn~X1!E

S
dsrs~X2!

3^PS@G mn
a ~O,X1 ;CX1O!t r

a

3G rs
b ~O,X2 ;CX2O!t r

b#&GG . ~2.11!

Due to the color neutrality of the vacuum, the gaug
invariant bilocal gluon field strength correlator contains ad
function in color space,

K g2

4p2
@G mn

a ~O,X1 ;CX1O!G rs
b ~O,X2 ;CX2O!#L

G

5:
1

4
dabFmnrs~X1 ,X2 ,O;CX1O ,CX2O! ~2.12!

which makes the surface orderingPS in Eq. ~2.11! irrelevant.
The tensorFmnrs will be specified in Sec. II C. With Eq
~2.12! and the quadratic Casimir operatorC2(r ),

t r
at r

a5t r
25C2~r !1r , ~2.13!

Eq. ~2.11! reads

^Wr@C#&G5Tr̃rexpF2
C2~r !

2
xSS1r G5expF2

C2~r !

2
xSSG ,
~2.14!

where

xSSª
p2

4 E
S
dsmn~X1!E

S
dsrs~X2!Fmnrs

3~X1 ,X2 ,O;CX1O ,CX2O!. ~2.15!

In this rather general result~2.14! obtained directly from the
color neutrality of the QCD vacuum and the Gaussian
proximation in the gluon field strengths, the more detai
aspects of the QCD vacuum and the geometry of the con
ered Wegner-Wilson loop are encoded in the functionxSS
which is computed in Appendix C for a rectangular loop.

In explicit computations we use forS the minimal surface,
which is the planar surface spanned by the loop (C5]S) that
leads most naturally to Wilson’s area law@21#. Of course, the
results should not depend on the choice of the surface. In
model the perturbative and non-perturbative non-confin
components satisfy this requirement. The non-perturba
confining component inFmnrs depends on the choice of th
surface due to the Gaussian approximation and the as
ated truncation of the cumulant expansion. Since the mini
surface leads to a static quark-antiquark potential that i
good agreement with lattice data~see Sec. III!, we think that
the minimal surface reduces the contribution from high
cumulants. Within bosonic string theory, our minimal surfa
represents the world-sheet of a rigid string: Our model d
not describe fluctuations or excitations of the string and t
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cannot reproduce the Lu¨scher term which has recently bee
confirmed by Lu¨scher and Weisz@26#.

B. The loop-loop correlation function

The computation of the loop-loop correlation functio
^Wr 1

@C1#Wr 2
@C2#&G starts again with the application of th

non-Abelian Stokes theorem@16# which allows us to trans-
form the line integrals over the loopsC1,2 into integrals over
surfacesS1,2 with ]S1,25C1,2:

^Wr 1
@C1#Wr 2

@C2#&G

5K Tr̃r 1
PSexpF2 i

g

2ES1

dsmn~X1!

3G mn
a ~O1 ,X1 ;CX1O1

!t r 1

a G
3Tr̃r 2

PSexpF2 i
g

2ES2

dsrs~X2!

3G rs
b ~O2 ,X2 ;CX2O2

!t r 2

b G L
G

~2.16!

whereO1 andO2 are the reference points on the surfacesS1
and S2, respectively, that enter through the non-Abeli
Stokes theorem. In order to ensure gauge invariance in
model, the gluon field strengths associated with the lo
must be compared atone reference pointO. Due to this
physical constraint, the surfacesS1 and S2 are required to
touch at a common reference pointO15O25O.

To treat the product of the two traces in Eq.~2.16!, we
transfer the approach of Berger and Nachtmann@45# ~cf. also
@8#! to Euclidean space-time. Accordingly, the product of t
two traces, Tr˜

r 1
(•••)Tr̃r 2

(•••), overSU(Nc) matrices in the

r 1 and r 2 representations, respectively, is interpreted as
trace Tr̃r 1^ r 2

(•••)ªTrr 1^ r 2
(•••)/Trr 1^ r 2

(1r 1^ r 2
) that acts in

the tensor product space built from ther 1 andr 2 representa-
tions,

^Wr 1
@C1#Wr 2

@C2#&G

5K Tr̃r 1^ r 2H FPSexpS 2 i
g

2ES1

dsmn~X1!

3G mn
a ~O,X1 ;CX1O!t r 1

a D ^ 1r 2G
3F 1r 1

^ PSexpS 2 i
g

2ES2

dsrs~X2!

3G rs
b ~O,X2 ;CX2O!t r 2

b D G J L
G

. ~2.17!

With the identities

exp~ t r 1

a ! ^ 1r 2
5exp~ t r 1

a
^ 1r 2

!, ~2.18!
4-4
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1r 1
^ exp~ t r 2

a !5exp~1r 1
^ t r 2

a !, ~2.19!

the tensor products can be shifted into the exponents. U
the matrix multiplication relations in the tensor produ
space

~ t r 1

a
^ 1r 2

!~ t r 1

b
^ 1r 2

!5t r 1

a tr 1

b
^ 1r 2

,

~ t r 1

a
^ 1r 2

!~1r 1
^ t r 2

b !5t r 1

a
^ t r 2

b , ~2.20!

and the vanishing of the commutator

@ t r 1

a
^ 1r 2

,1r 1
^ t r 2

b #50, ~2.21!

the two exponentials in Eq.~2.17! commute and can be writ
ten as one exponential

^W@C1#W@C2#&G

5K Tr̃r 1^ r 2
PSexpF2 i

g

2ES
dsmn~X!Ĝmn~O,X;CXO!G L

G

~2.22!

with the following gluon field strength tensor acting in th
tensor product space:
07400
ng

Ĝmn~O,X;CXO!ªH G mn
a ~O,X;CXO!~ t r 1

a
^ 1r 2

! for XPS1 ,

G mn
a ~O,X;CXO!~1r 1

^ t r 2

a ! for XPS2 .

~2.23!

In Eq. ~2.22! the surface integrals overS1 andS2 are written
as one integral over the combined surfaceS5S11S2 so that
the right-hand side~RHS! of Eq. ~2.22! becomes very similar
to the RHS of Eq.~2.3!. This allows us to proceed analo
gously to the computation of^Wr@C#&G in the previous sec-
tion. After exploiting the linearity of the functional integra
the matrix cumulant expansion is applied, which holds
Ĝmn(O,X;CXO) as well. Then, with the color neutrality o
the vacuum and by imposing the Gaussian approxima
now in the color components of the gluon field streng
tensor,2 only then52 term of the matrix cumulant expansio
survives, which leads to

^Wr 1
@C1#Wr 2

@C2#&G

5Tr̃r 1^ r 2
expF2

g2

8 E
S
dsmn~X1!E

S
dsrs~X2!

3^PS@ Ĝmn~O,X1 ;CX1O!Ĝrs~O,X2 ;CX2O!#&GG .
~2.24!

Using definition~2.23! and relations~2.20!, we now redivide
the exponent in Eq.~2.24! into integrals of the ordinary par
allel transported gluon field strengths over the separate
facesS1 andS2:
n

^Wr 1
@C1#Wr 2

@C2#&G5Tr̃r 1^ r 2
expF2

g2

8 E
S1

dsmn~X1!E
S2

dsrs~X2!PS@^G mn
a ~O,X1 ;CX1O!G rs

b ~O,X2 ;CX2O!&G~ t r 1

a
^ t r 2

b !#

2
g2

8 E
S2

dsmn~X1!E
S1

dsrs~X2!PS@^G mn
a ~O,X1 ;CX1O!G rs

b ~O,X2 ;CX2O!&G~ t r 1

a
^ t r 2

b !#

2
g2

8 E
S1

dsmn~X1!E
S1

dsrs~X2!PS@^G mn
a ~O,X1 ;CX1O!G rs

b ~O,X2 ;CX2O!&G~ t r 1

a tr 1

b
^ 1r 2

!#

2
g2

8 E
S2

dsmn~X1!E
S2

dsrs~X2!PS@^G mn
a ~O,X1 ;CX1O!G rs

b ~O,X2 ;CX2O!&G~1r 1
^ t r 2

a tr 2

b !#G . ~2.25!

Here the surface orderingPS is again irrelevant due to the color neutrality of the vacuum~2.12!, and Eq.~2.25! becomes

2Note that the Gaussian approximation on the level of the color components of the gluon field strength tensor~component factorization!
differs from the one on the level of the gluon field strength tensor~matrix factorization! used to computêWr@C#& in the original version of
the SVM@21#. Nevertheless, with the additional ordering rule@25# explained in detail in Sec. 2.4 of@50#, a modified component factorizatio
is obtained that leads to the same area law as the matrix factorization.
4-5
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^Wr 1
@C1#Wr 2

@C2#&G

5Tr̃r 1^ r 2
expF2

xS1S2
1xS2S1

2
~ t r 1

a
^ t r 2

a !

2
xS1S1

2
~ t r 1

a tr 1

a
^ 1r 2

!2
xS2S2

2
~1r 1

^ t r 2

a tr 2

a !G .

~2.26!

with

xSiSj
ª

p2

4 E
Si

dsmn~X1!E
Sj

dsrs~X2!

3Fmnrs~X1 ,X2 ,O;CX1O ,CX2O!. ~2.27!

The symmetries in the tensor structure ofFmnrs @see Eqs.
~2.42!, ~2.44!, and ~2.48!# lead to xS1S2

5xS2S1
. With the

quadratic Casimir operator~2.13! our final Euclidean resul
for generalSU(Nc) representationsr 1 and r 2 becomes3

^Wr 1
@C1#Wr 2

@C2#&G

5Tr̃r 1^ r 2
expF2xS1S2

~ t r 1

a
^ t r 2

a !

2S C2~r 1!

2
xS1S1

1
C2~r 2!

2
xS2S2D 1r 1^ r 2G

~2.28!

where1r 1^ r 2
ª1r 1

^ 1r 2
. After specifying the representation

r 1 and r 2, the tensor productt r 1^ r 2
ªt r 1

a
^ t r 2

a can be ex-

pressed as a sum of projection operators Pi with the property
Pi t r 1^ r 2

5l iPi

t r 1^ r 2
5( l iPi with l i5

Tr̃r 1^ r 2
~Pi t r 1^ r 2

!

Tr̃r 1^ r 2
~Pi !

,

~2.29!

which corresponds to the decomposition of the tensor pr
uct space into irreducible representations.

For two Wegner-Wilson loops in the fundamental rep
sentation ofSU(Nc), r 15r 25Nc , which could describe the
trajectories of two quark-antiquark pairs, the decomposit
~2.29! becomes trivial:

tNc

a
^ tNc

a 5
Nc21

2Nc
Ps2

Nc11

2Nc
Pa , ~2.30!

with the projection operators

~Ps!(a1a2)(b1b2)5
1

2
~da1b1

da2b2
1da1b2

da2b1
!, ~2.31!

3Note that the EuclideanxSiSi
Þ0 in contrast toxSiSi

50 for
Minkowskian light-like loopsCi considered in the original versio
of the Berger-Nachtmann approach@8,45#.
07400
d-

-

n

~Pa!(a1a2)(b1b2)5
1

2
~da1b1

da2b2
2da1b2

da2b1
!, ~2.32!

which decompose the direct product space of two fundam
tal SU(Nc) representations into the irreducible represen
tions

Nc^ Nc5~Nc11!Nc/2% Nc~Nc21!/2. ~2.33!

With TrNc^ Nc
1Nc^ Nc

5Nc
2 and the projector properties

Ps,a
2 5Ps,a , TrNc^ Nc

Ps5~Nc11!Nc/2, and

TrNc^ Nc
Pa5~Nc21!Nc/2, ~2.34!

we find for the loop-loop correlation function with bot
loops in the fundamentalSU(Nc) representation

^WNc
@C1#WNc

@C2#&G5expF2
C2~Nc!

2
~xS1S1

1xS2S2
!G

3S Nc11

2Nc
expF2

Nc21

2Nc
xS1S2G

1
Nc21

2Nc
expFNc11

2Nc
xS1S2G D

~2.35!

where

C2~Nc!5
Nc

221

2Nc
. ~2.36!

For one Wegner-Wilson loop in the fundamental and o
in the adjoint representation ofSU(Nc), r 15Nc and r 2

5Nc
221, which is needed in Sec. IV to investigate th

chromo-field distributions around color sources in the adjo
representation, the decomposition~2.29! reads

tNc

a
^ tN

c
221

a
52

Nc

2
P11

1

2
P22

1

2
P3 ~2.37!

with the projection operators4 P1 , P2, and P3 that decompose
the direct product space of one fundamental and one ad
representation ofSU(Nc) into the irreducible representation

Nc^ Nc
2215Nc%

1

2
Nc~Nc21!~Nc12!

%
1

2
Nc~Nc11!~Nc22!, ~2.38!

4The explicit form of the projection operators P1 , P2, and P3 can
be found in@51# but note that we use the Gell-Mann~conventional!
normalization of the gluons. The eigenvalues,l i , of the projection
operators in Eq.~2.37! can be evaluated conveniently with the com
puter programCOLOUR @52#.
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which reduces forNc53 to the well-knownSU(3) decom-
position

3^ 853% 15% 6̄. ~2.39!

With TrNc^ N
c
2211Nc^ N

c
2215Nc(Nc

221) and projector proper

ties analogous to Eq.~2.34!, we obtain the loop-loop corre
lation function for one loop in the fundamental and one
the adjoint representation ofSU(Nc):

^WNc
@C1#WN

c
221@C2#&G

5expF2S C2~Nc!

2
xS1S1

1
C2~Nc

221!

2
xS2S2

D G
3S 1

Nc
221

expFNc

2
xS1S2G1

Nc12

2~Nc11!
expF2

1

2
xS1S2G

1
Nc22

2~Nc21!
expF1

2
xS1S2G D ~2.40!

where

C2~Nc
221!5Nc . ~2.41!

Note that our expressions for the loop-loop correlat
function~2.29! and, more specifically, Eqs.~2.35! and~2.40!,
are rather general results—as is our result for the VEV of
Wegner-Wilson loop ~2.14!—obtained directly from the
color neutrality of the QCD vacuum and the Gaussian
proximation in the gluon field strengths. The loop geo
etries, which characterize the problem under investigat
are again encoded in the functionsxSiSj

, where also more
detailed aspects of the QCD vacuum enter in terms
Fmnrs , i.e., the gauge-invariant bilocal gluon field streng
correlator~2.12!.

For the explicit computations ofxS1S2
presented in Ap-

pendix C, one has to specify surfacesS1,2 with the restriction
]S1,25C1,2 according to the non-Abelian Stokes theore
We choose forS1,2 minimal surfacesthat are built from the
plane areas spanned by the corresponding loopsC1,2 and the
infinitesimally thin tube which connects the two surfacesS1
andS2. This is in line with our surface choice in application
of the LLCM to high-energy reactions@8,32–34#. The thin
tube allows us to compare the field strengths in surfaceS1
with the field strengths in surfaceS2.

Due to the Gaussian approximation and the associ
truncation of the cumulant expansion, the non-perturba
confining contribution to the loop-loop correlation functio
depends on the surface choice. For example, our results
the chromo-field distributions of color dipoles obtained w
the minimal surfaces differquantitativelyfrom the ones ob-
tained with the pyramid mantle choice for the surfaces@25#
even if the same parameters are used. Thequalitative main
features of the non-perturbative SVM component~such as
confinement via flux tube formation!, however, emerge very
similarly in both scenarios. From a comparison of the sta
07400
e

-
-
n,

f

.

ed
e

for

c

quark-antiquark potential to the energy stored in the chrom
electric fields presented in Sec. V, we infer that the minim
surfaces are more compatible with the Gaussian approxi
tion. Indeed, the application of low-energy theorems in S
V will show that the minimal surfaces are important for th
consistency between the results for the VEV of one lo
^Wr@C#&, and the loop-loop correlation function
^Wr 1

@C1#Wr 2
@C2#&. In addition, the simplicity of the mini-

mal surfaces gives definitive advantages in analytical co
putations. For example, it has allowed us to represent
confining string as an integral over stringless dipoles wit
given dipole number density@33#.

In applications of the model to high-energy scatteri
@8,32–34# the surfaces are interpreted as the world-sheet
the confining QCD strings in line with the picture obtaine
for the static dipole potential from the VEV of one loop. Th
minimal surfaces are the most natural choice to examine
scattering of two rigid strings without any fluctuations
excitations. Our model does not choose the surface dyna
cally and, thus, cannot describe string flips between two n
perturbative color dipoles. Recently, new developments
ward a dynamical surface choice and a theory for
dynamics of the confining strings have been reported@53#.

C. Perturbative and non-perturbative QCD components

We decompose the gauge-invariant bilocal gluon fi
strength correlator~2.12!—as in the Minkowskian version o
our model@8#—into a perturbative~P! and non-perturbative
~NP! component:

Fmnrs5Fmnrs
P 1Fmnrs

NP , ~2.42!

whereFmnrs
NP gives the low-frequency background field co

tribution modeled by the non-perturbative stochastic vacu
model @21# andFmnrs

P the additional high-frequency contri
bution described by perturbative gluon exchange. This co
bination allows us to describe long and short distance co
lations in agreement with lattice calculations of the glu
field strength correlator@18,22–24#. Moreover, this two com-
ponent ansatz leads to the static quark-antiquark pote
with color Coulomb behavior for small and confining line
rise for large source separations in good agreement with
tice data as shown in Sec. III. Note that in addition to o
two component ansatz an ongoing effort to reconcile
non-perturbative SVM with perturbative gluon exchange h
led to complementary methods@53–55#.

We compute the perturbative correlatorFmnrs
P from the

Euclidean gluon propagator in the Feynman–’t Hooft gau

^G m
a ~X1!G n

b~X2!&5E d4K

~2p!4

dabdmn

K21mG
2

e2 iK (X12X2),

~2.43!

where we introduce an effective gluon mass ofmG5mr

50.77 GeV to limit the range of the perturbative interacti
in the infrared~IR! region. This IR cutoff for the perturbative
component is important in applications of our model to hig
energy scattering@8#. Its value has been chosen such that
4-7
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unintegrated gluon distribution for transverse momenta
low ukW'u'1 GeV is dominated by non-perturbative physi
@33#. Of course, the parametermG is also important for the
interplay between the perturbative and non-perturba
components in the presented Euclidean applications. Fur
more, our value formG gives the ‘‘perturbative glueball’’
~GB! generated by our perturbative component a finite m
of MGB

P 52mG51.54 GeV, which is larger than that of it
non-perturbative counterpart discussed below. This ens
that long-range correlations are dominated by n
perturbative physics.

In leading order in the strong couplingg, the resulting
bilocal gluon field strength correlator is gauge invariant
ready without the parallel transport to a common refere
point so thatFmnrs

P depends only on the differenceZ5X1

2X2:

Fmnrs
P ~Z!5

g2

p2

1

2 F ]

]Zn
~Zsdmr2Zrdms!

1
]

]Zm
~Zrdns2Zsdnr!GDP~Z2!

52
g2

p2E d4K

~2p!4
e2 iKZ@KnKsdmr2KnKrdms

1KmKrdns2KmKsdnr#D̃P8 ~K2! ~2.44!

with the perturbative correlation function

DP~Z2!5
mG

2

2p2Z2
K2~mGuZu!, ~2.45!

D̃P8 ~K2!ª
d

dK2E d4ZeiKZDP~Z2!

52
1

K21mG
2

. ~2.46!
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The perturbative gluon field strength correlator has also b
considered at next-to-leading order, where the dependenc
the correlator on both the renormalization scale and
renormalization scheme becomes explicit and an additio
tensor structure arises together with a path dependence o
correlator@56#. However, cancellations of contributions from
this additional tensor structure have been shown@55#. We
refer to Sec. 3.3 of Ref.@50# for a more detailed discussio
of this issue.

We describe the perturbative correlations in our pheno
enological applications only with the leading tensor struct
~2.44! and take into account radiative corrections by repl
ing the constant couplingg2 with the running coupling

g2~Z2!54pas~Z2!5
48p2

~3322Nf !ln@~Z221M2!/LQCD
2 #

~2.47!

in the final step of the computation of thex function, where
the Euclidean distanceuZu over which the correlation occur
provides the renormalization scale. In Eq.~2.47! Nf denotes
the number of dynamical quark flavors, which is set toNf
50 in agreement with the quenched approximation,LQCD
50.25 GeV, andM allows us to freezeg2 for uZu→`. Re-
lying on low-energy theorems, we freeze the running co
pling at the value g2510.2 ([as50.81), i.e. M
50.488 GeV, at which our non-perturbative results for t
confining potential and the total flux tube energy of a sta
quark-antiquark pair coincide~see Sec. V!.

The tensor structure~2.44! together with the perturbative
correlation function ~2.45! or ~2.46! leads to the color
Yukawa potential~which reduces formG50 to the color
Coulomb potential! as shown in Sec. III. The perturbativ
contribution thus dominates the full potential at small qua
antiquark separations.

If the path connecting the pointsX1 andX2 is a straight
line, the non-perturbative correlatorFmnrs

NP also depends only
on the differenceZ5X12X2. Then, the most general form
of the correlator that respects translational, Lorentz, and
ity invariance reads@21#
Fmnrs
NP ~Z!5Fmnrs

NPc ~Z!1Fmnrs
NPnc~Z!

5
1

3~Nc
221!

G2H k~dmrdns2dmsdnr!D~Z2!1~12k!
1

2 F ]

]Zn
~Zsdmr2Zrdms!1

]

]Zm
~Zrdns2Zsdnr!GD1~Z2!J

5
1

3~Nc
221!

G2E d4K

~2p!4
e2 iKZ$k~dmrdns2dmsdnr!D̃~K2!

2~12k!@KnKsdmr2KnKrdms1KmKrdns2KmKsdnr#D̃18~K2!%, ~2.48!
4-8
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where

D̃18~K2!ª
d

dK2E d4ZD1~Z2!eiKZ. ~2.49!

In all previous applications of the SVM, this form, depen
ing only on Z5X12X2, has been used. New lattice resu
on the path dependence of the correlator@57# show a domi-
nance of the shortest path. This result is effectively incor
rated in the model since the straight paths dominate in
averaging over all paths.

Let us emphasize that the non-perturbative correla
~2.48! is a sum of the two different tensor structures,Fmnrs

NPnc

andFmnrs
NPc , with characteristic behavior: The tensor structu

Fmnrs
NPnc is characteristic for Abelian gauge theories, exhib

the same tensor structure as the perturbative correlator~2.44!
and does not lead to confinement@21#. In contrast, the tenso
structureFmnrs

NPc can occur only in non-Abelian gauge the
ries and Abelian gauge theories with monopoles and lead
confinement@21#. Therefore, we call the tensor structu
multiplied by (12k) non-confining~nc! and the one multi-
plied by k confining (c).

The non-perturbative correlator~2.48! involves the gluon
condensateG2ª^(g2/4p2)G mn

a (0)G mn
a (0)& @58#, the weight

parameterk, and the correlation lengtha which enters
through the non-perturbative correlation functionsD andD1.
While the perturbative correlation functionDP given in Eq.
~2.45! is computed from the gluon propagator~with a finite
effective gluon mass!, the non-perturbative correlation func
tions D and D1 can be studied rigorously in lattice QC
investigations@18,22–24#. In addition, the non-perturbativ
correlation functions are constrained by the following phy
cal considerations.~i! The correlations at large distance
should decrease exponentially so that the interaction rang
determined by the glueball mass.~ii ! Toward small distances
the non-perturbative correlation functions must sati
D(0)5D1(0)51 in order to ensure the correct relation b
tween the VEV of infinitesimal plaquettes and the gluon co
densateG2. ~iii ! The correlation functions must stay positiv
at all distances to be compatible with a spectral represe
tion @59#.

We adopt for our calculations a simple exponential cor
lation function

D~Z2!5D1~Z2!5exp~2uZu/a!, ~2.50!

which is consistent with the physical constraints discus
and has been successfully tested in fits to lattice data of
gluon field strength correlator@18,24#. The exponential cor-
relation function stays positive for all Euclidean distanceZ
and is compatible with a spectral representation of the co
lation function@59#. This is a conceptual improvement sinc
the correlation function that has been used in several ea
applications of the SVM becomes negative at large distan
@12,25,31,40–46#.

With the exponential correlation function~2.50! fits to the
lattice data of the gluon field strength correlator down
distances of 0.4 fm give the following values for the para
eters of the non-perturbative correlator@24#: G2
07400
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50.173 GeV4, k50.746, anda50.219 fm. We have opti-
mized these parameters in a fit to high-energy scatte
data5 @8#:

a50.302 fm, k50.74, G250.074 GeV4.
~2.51!

We use these optimized parameters~2.51! throughout this
work. They lead to a static quark-antiquark potential tha
in good agreement with lattice data~see Sec. III! and, in
particular, give a QCD string tension~3.12! of s3
50.22 GeV2[1.12 GeV/fm which is consistent with hadro
spectroscopy@62#, Regge theory@63#, and lattice QCD in-
vestigations@64#. Moreover, the non-perturbative compone
with a50.302 fm generates a ‘‘non-perturbative glueba
with a mass ofMGB

NP52/a51.31 GeV which is smaller than
MGB

P 51.54 GeV and thus governs the long-range corre
tions as expected. We thus have one model that descr
both static hadronic properties and high-energy reaction
hadrons and photons in good agreement with experime
and lattice QCD data.

At this point, we would like to comment on the mod
parameters and the accuracy of the results. Although th
are strong hints for the choice of the integration surface
physical constraints on the non-perturbative correlation fu
tions, we have no criteria from first principles that fix the
model ingredients unambigiously. Therefore, we ha
checked different integration surfaces and different n
perturbative correlation functions: While the analytic res
for the string tension changes, the general picture~e.g. the
confining linear rise of the static dipole potential and fl
tube formation! is reproduced by readjusting the paramet
a, k, andG2. Therefore, the model parameters are meani
ful only within about 20% accuracy, which estimates po
sible errors incurred by chosing a certain combination
integration surfaces and correlation functions. In Table I
show different sets of parameters used together with diffe
surfaces and different correlation functions in applications
the SVM to high-energy scattering. The table documents
stability of the SVM parameters within 20%. However, aft
the Gaussian approximation~or truncation of the cumulan
expansion! and the specification of the integration surfa
and the correlation functions, the quantitative results dep
sensitively on some of the model parameters. To achiev
good fit to high-energy cross sections@8#, a fine tuning ofa
andG2 is necessary.

Finally, we should discuss the pragmatic treatment
renormalization of the perturbative component~2.44! that
dominates the small distance correlations. Only the low

5Since we describe both lattice QCD data obtained in
quenched approximation and high-energy scattering data take
the presence of light quarks, our value for the gluon condens
G250.074 GeV4, interpolates betweenG250.173 GeV4 found in
quenched lattice QCD investigations@22,24# and G250.024
60.011 GeV4 found in phenomenology@58,60# and full lattice
QCD investigations@23,24#. It is known that the effect of light
quarks reduces the value ofG2 substantially@61#.
4-9
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TABLE I. Different sets of parameters used together with different surfaces and different corre
functions in applications of the SVM to high-energy scattering.

Reference @12# @41# @43# @8#

a(fm) 0.350 0.346 0.346 0.302
G2 (GeV4) 0.0605 0.0631 0.0631 0.074
k 0.74 0.74 0.74 0.74
mG(GeV) — — 0.571 0.77
Integration surface pyramid pyramid pyramid minimal
Correlation function Bessel Bessel Bessel exponential
Perturbative component no no yes yes
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order result is adopted in which the strong coupling is p
moted to a 1-loop effective running coupling. The ma
renormalization of the considered heavy quarks and a
quarks is also taken into account by subtracting the s
energy of the sources in the computation of the static co
dipole potential. Although phenomenologically success
one needs to refine the treatment of renormalization, for
ample, by explicitly taking into account counterterms for t
cusps and by introducing a factorization scale in order to
the model on a more solid basis. We defer this task to fut
work and turn now to the phenomenological performance
our pragmatic approach.

III. THE STATIC COLOR DIPOLE POTENTIAL

In this section the QCD potential of static color dipoles
the fundamental and adjoint representation ofSU(Nc) is
computed in our model. Color Coulomb behavior is fou
for small dipole sizes and the confining linear rise for lar
dipole sizes. Casimir scaling is obtained in agreement w
lattice QCD investigations.

The static color dipole—two static color sources se
rated by a distanceR in a net color singlet state—is describe
by a Wegner-Wilson loopWr@C# with a rectangular pathC
of spatial extensionR and temporal extensionT→` wherer
indicates theSU(Nc) representation of the sources cons
ered. Figure 1 illustrates a static color dipole in the fund
mental representationr 5Nc . The potential of the static colo
dipole is obtained from the VEV of the correspondin
Wegner-Wilson loop@15,65#

FIG. 1. A static color dipole of sizeR in the fundamental rep-
resentation. The rectangular pathC of spatial extensionR and tem-
poral extensionT indicates the world-line of the dipole describe
the Wegner-Wilson loopWNc

@C#. The shaded area bounded by t
loop C5]S represents the minimal surfaceS used to compute the
static dipole potential.
07400
-
s
ti-
f-
r

l,
x-

t
re
f

h

-

-
-

Vr~R!52 lim
T→`

1

T
ln^Wr@C#&pot, ~3.1!

where ‘‘pot’’ indicates the subtraction of the self-energy
the color sources. This subtraction corresponds to the m
renormalization of the heavy color sources as discus
above. The static quark-antiquark potentialVNc

is obtained

from a loop in the fundamental representation (r 5Nc) and
the potential of a static gluino pairVN

c
221 from a loop in the

adjoint representation (r 5Nc
221).

With our result for̂ Wr@C#&, Eq.~2.14!, obtained with the
Gaussian approximation in the gluon field strength, the st
potential reads

Vr~R!5
C2~r !

2
lim

T→`

1

T
xSSpot ~3.2!

with the self-energy subtracted, i.e.xSSpotªxSS2xSSself
~see Appendix C!. According to the structure of the gluo
field strength correlator, Eqs.~2.12! and~2.42!, there are per-
turbative~P! and non-perturbative~NP! contributions to the
static potential:

Vr~R!5
C2~r !

2
lim

T→`

1

T
$xSS pot

P 1~xSS pot
NPnc 1xSS pot

NPc !%,

~3.3!

where the explicit form of thex functions is given in Eqs.
~C9!, ~C28!, and~C37!.

The perturbative contribution to the static potential d
scribes the color Yukawa potential~which reduces to the
color Coulomb potential@66# for mG50)

Vr
P~R!52C2~r !

g2~R!

4pR
exp@2mGR#. ~3.4!

Here we have used the result forxSSpot
P given in Eq.~C37!

and the perturbative correlation function

DP8
(3)~ZW 2!ªE d4K

~2p!3
eiKZD̃P8

(3)~K2!d~K4!

52
exp@2mGuZW u#

4puZW u
~3.5!
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which is obtained from the massive gluon propagator~2.43!.
As shown below, the perturbative contribution dominates
static potential for small dipole sizesR.

The non-perturbative contributions to the static potent
the non-confiningcomponent~nc! and theconfiningcompo-
nent (c), read

Vr
NPnc~R!5C2~r !

p2G2~12k!

3~Nc
221!

D18
(3)~R2!, ~3.6!

Vr
NPc~R!5C2~r !

p2G2k

3~Nc
221!

3E
0

R

dr~R2r!D (3)~r2!, ~3.7!

where we have used the results forxSSpot
NPnc and xSSpot

NPc

5xSS
NPc given respectively in Eqs.~C28! and ~C9! obtained

with the minimal surface, i.e. the planar surface bounded
the loop as indicated by the shaded area in Fig. 1. With
exponential correlation function~2.50!, the correlation func-
tions in Eqs.~3.6! and ~3.7! read

D18
(3)~ZW 2!ªE d4K

~2p!3
eiKZD̃18

(3)~K2!d~K4!

52auZW u2K2@ uZW u/a#, ~3.8!

D (3)~ZW 2!ªE d4K

~2p!3
eiKZD̃~K2!d~K4!

52uZW uK1@ uZW u/a#. ~3.9!

For large dipole sizes,R*0.5 fm, the non-confining contri
bution ~3.6! vanishes exponentially while the confining co
tribution ~3.7!—as anticipated—leads to confinement@21#,
i.e. the confining linear increase,

Vr
NPc~R!uR*0.5 fm5s rR1const. ~3.10!

Thus, the QCD string tension is given by the confining SV
component@21#: For a color dipole in theSU(Nc) represen-
tation r, it reads

s r5C2~r !
p3G2k

48 E
0

`

dZ2D~Z2!5C2~r !
p3kG2a2

24
,

~3.11!

where the exponential correlation function~2.50! is used in
the final step. Since the string tension can be computed f
first principles within lattice QCD@64#, relation ~3.11! puts
an important constraint on the three parameters of the n
perturbative QCD vacuuma, G2, andk. With the values for
a, G2, andk given in Eq.~2.51!, which are used throughou
this work, one obtains for the string tension of theSU(3)
quark-antiquark potential (r 53) a reasonable value of

s350.22 GeV2[1.12 GeV/fm. ~3.12!
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The staticSU(Nc53) quark-antiquark potentialVNc
(R)

5V3(R) is shown as a function of the quark-antiquark sep
ration R in Fig. 2, where the solid, dotted, and dashed lin
indicate the full static potential and its perturbative and no
perturbative contributions, respectively. For small qua
antiquark separationsR&0.5 fm, the perturbative contribu
tion dominates giving rise to the well-known color Coulom
behavior. For medium and large quark-antiquark separat
R*0.5 fm, the non-perturbative contribution dominates a
leads to the confining linear rise of the static potential. T
transition from perturbative to string behavior takes place
source separations of about 0.5 fm in agreement with
recent results of Lu¨scher and Weisz@26#. This supports our
value for the gluon massmG5mr50.77 GeV which is im-
portant only aroundR'0.4 fm, i.e. for the interplay betwee
perturbative and non-perturbative physics. ForR&0.3 fm
and R*0.5 fm, the effect of the gluon mass, introduced
an IR regulator in our perturbative component, is negligib
String breaking is expected to stop the linear increase foR
*1 fm where lattice investigations show deviations from t
linear rise in full QCD@67,64#. As our model is working in
the quenched approximation, string breaking through
namical quark-antiquark production is excluded.

As can be seen from Eq.~3.2!, the static potential shows
Casimir scaling which emerges in our approach as a tri
consequence of the Gaussian approximation used to trun
the cumulant expansion~2.7!. Indeed, the Casimir scaling
hypothesis@68# has been verified to high accuracy forSU(3)
on the lattice@19,20# ~see also Fig. 3!. These lattice results

FIG. 2. The static SU(Nc53) quark-antiquark potentia
VNc

(R)5V3(R) as a function of the quark-antiquark separationR.
The solid, dotted, and dashed lines indicate the full static poten
and its perturbative and non-perturbative contributions, resp
tively. For small quark-antiquark separations,R&0.5 fm, the per-
turbative contribution dominates and gives rise to the well-kno
color Coulomb behavior at small distances. For medium and la
quark-antiquark separations,R*0.5 fm, the non-perturbative con
tribution dominates and leads to the confining linear rise of
static potential. As our model is working in the quenched appro
mation, string breaking cannot be described, which is expecte
stop the linear increase forR*1 fm @67,64#.
4-11
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SHOSHIet al. PHYSICAL REVIEW D 68, 074004 ~2003!
have been interpreted as a strong hint toward Gaussian d
nance in the QCD vacuum and thus as evidence for a st
suppression of higher cumulant contributions@69,70#. In
contrast to our model, the instanton model can describe
ther Casimir scaling@70# nor the linear rise of the confining
potential@71#.

Figure 3 shows the staticSU(Nc53) potential for funda-
mental sourcesVNc

(R)5V3(R) ~solid line! and adjoint

sourcesVN
c
221(R)5V8(R) ~dashed line! as a function of the

dipole sizeR in comparison toSU(3) lattice data@20,64#.
The model results are in good agreement with the lat
data. In particular, the obtained Casimir scaling behavio
strongly supported bySU(3) lattice data@19,20#. This, how-
ever, points also to a shortcoming of our model: From E
~3.2! and Fig. 3 it is clear that string breaking is describ
neither for fundamental nor for adjoint dipoles in our mod
which indicates that not only dynamical fermions~quenched
approximation! but also some gluon dynamics are missin

An extension of the model that allows one to descr
color screening remains a major challenge. Without suc
modification, our model unfortunately cannot contribute
the recent discussion on the scaling behavior ofk-string ten-
sionssk , i.e. the tensions of strings connecting sources w
N-ality k>1. A source ofN-ality k<Nc/2 is defined as a
source in the representation constructed from the ten
product of quarks—objects transforming under the fun
mental representation—and antiquarks—objects transfo
ing under the conjugated representation—wherek is the
number of quarks minus the number of antiquarks mod
Nc ; see e.g.@72#. For SU(Nc) with Nc>4, k strings are
particularly interesting since in addition to the fundamen
(k51) string other strings also exist that are stable aga
color screening. Based on lattice results forNc54,5,6
@72,73#, the present debate is whether the correspond

FIG. 3. The staticSU(Nc53) potential of color dipoles in the
fundamental representationV3(R) ~solid line! and adjoint represen
tation V8(R) ~dashed line! as a function of the dipole sizeR in
comparison toSU(3) lattice data forb56.0, 6.2, and 6.4@20,64#.
The model results are in good agreement with the lattice data.
particularly holds for the obtained Casimir scaling behavior.
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string tensions show Casimir scaling behaviorsk}k(Nc
2k), the sine law behaviorsk}sin(pk/Nc) predicted from
M-theory approaches to QCD@74#, or simply the behavior of
k non-interacting fundamental stringssk5ksNc

. Physical
explanations of the lattice results obtained are discussed
example, in the center vortex confinement mechanism@7,75#.

IV. CHROMO-FIELD DISTRIBUTIONS OF COLOR
DIPOLES

In this section we compute the chromo-electric fields g
erated by a static color dipole in the fundamental and adjo
representation ofSU(Nc). We find formation of a color flux
tube that confines the two color sources in the dipole. T
confining string is analyzed quantitatively. Its mean squa
radius is calculated and transverse and longitudinal ene
density profiles are provided. The interplay between per
bative and non-perturbative contributions to the chromo-fi
distributions is investigated and exact Casimir scaling
found for both contributions.

As already explained in Sec. III, the static color dipole
two static color sources separated by a distanceR in a net
color singlet state—is described by a Wegner-Wilson lo
Wr@C# with a rectangular pathC of spatial extensionR and
temporal extensionT→` ~cf. Fig. 1! wherer indicates the
SU(Nc) representation of the sources considered. A sec
small quadratic loop or plaquette in the fundamental rep
sentation placed at the space-time pointX with side length
RP→0 and oriented along theab axes,

PNc

ab~X!5Tr̃Nc
expF2 ig R

CP

dZmG m
a ~Z!tNc

a G
512RP

4 g2

4Nc
G ab

a ~X!G ab
a ~X!1O~RP

6 !, ~4.1!

is needed—as a ‘‘Hall probe’’—to calculate the chromo-fie
distributions at the space-time pointX caused by the static
sources@76,77#

DGr ab
2 ~X!ªK g2

4p2
G ab

a ~X!G ab
a ~X!L

Wr [C]

2K g2

4p2
G ab

a ~X!G ab
a ~X!L

vac

~4.2!

52 lim
RP→0

1

RP
4

Nc

p2
F ^Wr@C#PNc

ab~X!&

^Wr@C#&

2^PNc

ab~X!&G ~4.3!

with no summation overa and b in Eqs. ~4.1!, ~4.2!, and
~4.3!. In definition ~4.2! ^•••&Wr [C] indicates the VEV in the

presence of the static color dipole while^•••&vac indicates
the VEV in the absence of any color sources. Depending
the plaquette orientation indicated bya andb, one obtains

is
4-12
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from Eq. ~4.3! the squared components of the chrom
electric and chromo-magnetic fields at the space-time p
X:

DGr ab
2 ~X!5

g2

4p2 S 0 Bz
2 By

2 Ex
2

Bz
2 0 Bx

2 Ey
2

By
2 Bx

2 0 Ez
2

Ex
2 Ey

2 Ez
2 0

D ~X!, ~4.4!

i.e. space-time plaquettes (ab5 i4) measure chromo-electri
fields and space-space plaquettes (ab5 i j ) chromo-
magnetic fields. As shown in Fig. 4, we place the static co
sources on theX1 axis at (X156R/2,0,0,X4) and use the
following notation plausible from symmetry arguments:

Ei
25Ex

2 , E'
2 5Ey

25Ez
2 , Bi

25Bx
2 , B'

2 5By
25Bz

2 .

~4.5!

Figure 4 illustrates also the plaquettePNc

14(X) at X

5(X1 ,X2,0,0) needed to computeEi
2(X). Due to symmetry

arguments, the complete information on the chromo-fi
distributions is obtained from plaquettes in ‘‘transvers
spaceX5(X1 ,X2,0,0) with four different orientations,ab
514,24,13,23@cf. Eq. ~4.5!#.

The energy and action density distributions around a st
color dipole in theSU(Nc) representationr are given by the
squared chromo-field distributions

« r~X!5
1

2
@2EW 2~X!1BW 2~X!#, ~4.6!

FIG. 4. The plaquette-loop geometry needed to compute
squared chromo-electric fieldEi

2(X) generated by a static color d
pole in the fundamentalSU(Nc) representation (r 5Nc). The rect-
angular pathC indicates the world-line of the static dipole describ
the Wegner-Wilson loopWNc

@C#. The square with side lengthRP

illustrates the plaquettePNc

14(X). The shaded areas represent t
minimal surfaces used in our computation of the chromo-field d
tributions. The thin tube allows us to compare the gluon fi
strengths in surfaceSP with the gluon field strengths in surfaceSW .
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sr~X!52
1

2
@EW 2~X!1BW 2~X!# ~4.7!

with signs according to Euclidean space-time conventio
Low-energy theorems that relate the energy and action st
in the chromo-fields of the static color dipole to the corr
sponding ground state energy are discussed in the next
tion.

For the chromo-field distributions of a static color dipo
in the fundamental representation ofSU(Nc), i.e. a static
quark-antiquark pair, we obtain with our results for the VE
of one loop~2.14! and the correlation of two loops in th
fundamental representation~2.35!

DGNc ab
2 ~X!52 lim

RP→0

1

RP
4

Nc

p2
expF2

C2~Nc!

2
xSPSPG

3S Nc11

2Nc
expF2

Nc21

2Nc
xSPSWG

1
Nc21

2Nc
expFNc11

2Nc
xSPSWG21D ~4.8!

wherexSiSj
is defined in Eq.~2.27!. The subscriptsP andW

indicate surface integrations to be performed over the s
faces spanned by the plaquette and the Wegner-Wilson l
respectively. Choosing the surfaces—as illustrated by
shaded areas in Fig. 4—to be the minimal surfaces conne
by an infinitesimal thin tube~which gives no contribution to
the integrals! it is clear thatxSPSP

}RP
4 andxSPSW

}RP
2 . Be-

ing interested in the chromo-fields at the space-time poinX,
the extension of the quadratic plaquette is taken to be infi
tesimally small,RP→0, so that one can expand the expone
tial functions and keep only the term of lowest order inRP

DGNc ab
2 ~X!52C2~Nc! lim

RP→0

1

RP
4

1

4p2
xSPSW

2 . ~4.9!

This result—obtained with the matrix cumulant expansion
a very straightforward way—agrees exactly with the res
derived in@25# with the expansion method. Indeed, the e
pansion method agrees for smallx functions with the matrix
cumulant expansion~Berger-Nachtmann approach! used in
this work but breaks down for largex functions, where the
matrix cumulant expansion is still applicable.

The chromo-field distributions of a static color dipole
the adjoint representation ofSU(Nc), i.e. a static gluino pair,
are computed analogously. Using our result~2.40! for the
correlation of one loop in the fundamental representat
~plaquette! with one loop in the adjoint representation~static
sources!, one obtains

e

-

4-13
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DGN
c
221 ab

2
~X!52 lim

RP→0

1

RP
4

Nc

p2
expF2

C2~Nc!

2
xSPSPG

3S 1

Nc
221

expFNc

2
xSPSWG

1
Nc12

2~Nc11!
expF2

1

2
xSPSWG

1
Nc22

2~Nc21!
expF1

2
xSPSWG21D ~4.10!

which reduces—as explained for sources in the fundame
representation—to

DGN
c
221 ab

2
~X!52C2~Nc

221! lim
RP→0

1

RP
4

1

4p2
xSPSW

2 .

~4.11!

Thus, the squared chromo-electric fields of an adjoint dip
differ from those of a fundamental dipole only in the eige
value of the corresponding quadratic Casimir opera
C2(r ). In fact, Casimir scaling of the chromo-field distribu
tions holds for dipoles in any representationr of SU(Nc) in
our model. As can be seen with the low-energy theore
discussed below, this is in line with the Casimir scaling
the static dipole potential found in the previous section.
addition to lattice investigations that show Casimir scaling
the static dipole potential to high accuracy inSU(3) @19,20#,
Casimir scaling of the chromo-field distributions has be
considered on the lattice as well but only forSU(2) @78#.
Here only slight deviations from the Casimir scaling hypo
esis have been found which were interpreted as hints tow
adjoint quark screening.

In our model the shape of the field distributions arou
the color dipole is identical for allSU(Nc) representationsr
and given byxSPSW

2 . This again illustrates the shortcoming

our model discussed in the previous section. Working in
quenched approximation, one expects a difference betw
fundamental and adjoint dipoles: string breaking cannot
cur in fundamental dipoles as dynamical quark-antiqu
production is excluded but should be present for adjoint
poles because of gluonic vacuum polarization. Compar
Eq. ~4.9! with Eq. ~4.11! it is clear that this difference is no
described in our model. In fact, as shown in Sec. III, str
breaking is described neither for fundamental nor for adjo
dipoles. Interestingly, even on the lattice there has been
striking evidence for adjoint quark screening in quench
QCD @79#. It is even conjectured that the Wegner-Wilso
loop operator is not suited to studies of string breaking@80#.

In the LLCM there are perturbative~P! and non-
perturbative~NP! contributions to the chromo-electric field
according to the structure of the gluon field strength c
relator, Eqs.~2.12! and ~2.42!,
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DGr ab
2 ~X!52C2~r ! lim

RP→0

1

RP
4

1

p2
„@xSPSW

P ~X!#ab
2

1$@xSPSW

NPnc~X!#ab1@xSPSW

NPc ~X!#ab%2
….

~4.12!

Interference of perturbative and non-perturbative correlati
is not considered to be in line with the applications of o
model to high-energy scattering@8,32–34# with separate
hard ~perturbative! and soft~non-perturbative! Pomeron ex-
changes. The interferences do not change the qualitative
ture. Slight modifications occur in regions where fields ori
nating from perturbative and non-perturbative correlatio
are of similar size. For thex functions in Eq.~4.12! we give
directly in the following the final results obtained with th
minimal surfaces shown in Fig. 4. Details of their derivati
can be found in Appendix C.

The perturbative contribution~P! described by massive
gluon exchange leads, of course, to the well-known co
Yukawa field which reduces to the color Coulomb field f
mG50. It contributes only to the chromo-electric fields,Ei

2

5Ex
2 (ab514) andE'

2 5Ey
25Ez

2 (ab524), and reads ex-
plicitly for X5(X1 ,X2,0,0)

@xSPSW

P ~X!#1452
RP

2

2 E
2`

`

dt$~X12R/2!g2~Z1A
2 !DP~Z1A

2 !

2~X11R/2!g2~Z1C
2 !DP~Z1C

2 !%, ~4.13!

@xSPSW

P ~X!#2452
RP

2

2 E
2`

`

dtX2$g
2~Z1A

2 !DP~Z1A
2 !

2g2~Z1C
2 !DP~Z1C

2 !% ~4.14!

with the perturbative correlation function~2.45!, the running
coupling ~2.47!, and

Z1A
2 5S X12

R

2 D 2

1X2
21t2 and

Z1C
2 5S X11

R

2 D 2

1X2
21t2. ~4.15!

The non-confining non-perturbative contribution~NP nc!
has the same structure as the perturbative contribution—
expected from the identical tensor structure—but differs,
course, in the prefactors and the correlation function,D1

ÞDp . Its contributions to the chromo-electric fieldsEi
2

5Ex
2 (ab514) and E'

2 5Ey
25Ez

2 (ab524) read for X
5(X1 ,X2,0,0)

@xSPSW

NPnc~X!#1452
RP

2p2G2~12k!

6~Nc
221!

3E
2`

`

dt$~X12R/2!D1~Z1A
2 !

2~X11R/2!D1~Z1C
2 !%, ~4.16!
4-14
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@xSPSW

NPnc~X!#2452
RP

2p2G2~12k!

6~Nc
221!

E
2`

`

dtX2$D1~Z1A
2 !

2D1~Z1C
2 !% ~4.17!

with the exponential correlation function~2.50! andZ1A
2 and

Z1C
2 as given in Eq.~4.15!.

The confining non-perturbative contribution~NP c! has a
different structure that leads to confinement and flux-tu
formation. It gives contributions only to the chromo-elect
field Ei

25Ex
2 (ab514) which read forX5(X1 ,X2,0,0)

@xSPSW

NPc ~X!#145RP
2R

p2G2k

3~Nc
221!

E
0

1

drD (3)~Z'
W 2!,

~4.18!

with the correlation function given in Eq.~3.9! as derived
from the exponential correlation function~2.50!, and

ZW'
2 5@X11~1/22r!R#21X2

2 . ~4.19!

In our model there are no contributions to the chrom
magnetic fields, i.e. the static color charges do not affect
magnetic background field

Bi
25Bx

250 and B'
2 5By

25Bz
250, ~4.20!

which can be seen from the corresponding plaquette-l
geometries as pointed out in Appendix C. Thus, the ene
and action densities are identical in our approach and c
pletely determined by the squared chromo-electric fields

« r~X!5sr~X!52
1

2
EW 2~X!. ~4.21!

This picture is in agreement with other effective theories
confinement such as the ’t Hooft–Mandelstam picture@81#
or dual QCD@82# and, indeed, a relation between the du
Abelian Higgs model and the SVM has been establis
@83#. In contrast, lattice investigations work at scales
which the chromo-electric and chromo-magnetic fields are
similar magnitude@30,84–86#. Indeed, these simulation
have been performed inSU(Nc52) at bare couplingsg0

2

down tob054/g0
252.74 corresponding to a minimum lattic

cutoff of 0.04 fm, which determines also the minimum si
of the plaquette used in the measurements of the color fie
Interestingly, as shown in Figs. 13 and 14 of@84#, the action
density slightly decreases by decreasing the lattice spa
from 0.08 fm (b052.5) to 0.05 fm (b052.635). In our
model the vanishing of the chromo-magnetic fields de
mines the value of the Callan-Symanzikb function at the
renormalization scale at which our non-perturbative com
nent is working. This is shown as a result of low-ener
theorems in the next section.

In Fig. 5 the energy density distributionsg2«3(X1 ,X2
5X3) generated by a color dipole in the fundamen
SU(Nc53) representation (r 53) are shown for quark-
antiquark separations ofR50.1,0.5,1 and 1.5 fm. With in-
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creasing dipole sizeR, one sees explicitly the formation o
the flux tube which represents the confining QCD string.

The longitudinal and transverse energy density profi
generated by a color dipole in the fundamental representa
(r 53) of SU(Nc53) are shown for quark-antiquark sep
rations~dipole sizes! of R50.1,0.5,1 and 1.5 fm in Figs. 6
and 7. The perturbative and non-perturbative contributio
are given by the dotted and dashed lines, respectively,
the sum of both in the solid lines. The open and filled circ
indicate the quark and antiquark positions. As can be s
from Eqs. ~4.3! and ~4.4!, we cannot compute the energ
density separately but only the productg2« r(X). Neverthe-
less, a comparison of the total energy stored in chrom
electric fields to the ground state energy of the color dip
via low-energy theorems yieldsg2510.2 ([as50.81) for
the non-perturbative SVM component as shown in the n
section.

In Figs. 6 and 7 the formation of the confining string~flux
tube! with increasing source separationsR can again be seen
explicitly: For small dipoles,R50.1 fm, perturbative phys-
ics dominates and non-perturbative correlations are ne
gible. For large dipoles,R*1 fm, the non-perturbative cor
relations lead to formation of a narrow flux tube whic
dominates the chromo-electric fields between the co
sources.

Figure 8 shows the evolution of the transverse width~up-
per plot! and height~lower plot! of the flux tube in the cen-
tral region of the Wegner-Wilson loop as a function of t
dipole sizeR where perturbative and non-perturbative co
tributions are given by the dotted and dashed lines, resp
tively, and the sum of both in the solid lines. The width
the flux tube is best described by the root mean squared~ms!
radius

Rms5AE dX'X'
3 g2« r~X150,X'!

E dX'X'g2« r~X150,X'!

, ~4.22!

which is universal for dipoles in allSU(Nc) representations
r as the Casimir factors divide out. The height of the fl
tube is given by the energy density in the center of the c
sidered dipole,g2« r(X50). For large source separation
R*1 fm, both the width and height of the flux tube in th
central region of the Wegner-Wilson loop are governed co
pletely by non-perturbative physics and saturate for a fun
mentalSU(3) dipole (r 5Nc53) at reasonable values of

Rms
R→`'0.55 fm and

«3
R→`~X50!'1 GeV/fm3 with g2510.2. ~4.23!

Note that the qualitative features of the non-perturbat
SVM component do not depend on the specific choice for
parameters, surfaces, and correlation functions and hav
ready been discussed with the pyramid mantle choice of
surface and different correlation functions in the first inve
tigation of flux-tube formation in the SVM@25#. The quan-
titative results, however, are sensitive to the parameter
4-15
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FIG. 5. Energy density distributionsg2«3(X1 ,X25X3) generated by a color dipole in the fundamentalSU(3) representation (r 53)
for quark-antiquark separations ofR50.1, 0.5, 1 and 1.5 fm. Flux-tube formation leads to the confining QCD string with increasing d
sizeR.
a
a

th
t

-
si
op
ne

on
a-

w
rg
ol

s

the

of

um

lds

the
red
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presented above with the LLCM parameters, the minim
surfaces, and the exponential correlation function.

V. LOW-ENERGY THEOREMS

In this section we use low-energy theorems to test
consistency of the non-perturbative SVM component and
determine the value of the Callan-Symanzikb function and
as5g2/(4p) at the renormalization scale at which this com
ponent is working. The energy and action sum rules con
ered allow us to confirm the consistency of our loop-lo
correlation result with the result obtained for the VEV of o
loop. Finally, we compare our results forb andas to model
independent QCD results for the Callan-Symanzikb func-
tion.

Many low-energy theorems have been derived in c
tinuum theory by Novikov, Shifman, Vainshtein, and Z
kharov @61# and in lattice gauge theory by Michael@27#.
Here we consider the energy and action sum rules—kno
in lattice QCD as Michael sum rules—that relate the ene
and action stored in the chromo-fields of a static color dip
to the corresponding ground state energy@15,65#

Er~R!52 lim
T→`

1

T
ln^Wr@C#&. ~5.1!
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In their original form@27#, however, the Michael sum rule
are incomplete@28,31#. In particular, significant contribu-
tions to the energy sum rule from the trace anomaly of
energy-momentum tensor have been found@28# that modify
the naively expected relation in line with the importance
the trace anomaly found for hadron masses@87#. Taking all
these contributions into account, the energy and action s
rule read respectively@28–30#

Er~R!5E d3X« r~X!2
1

2

b~g!

g E d3Xsr~X!, ~5.2!

Er~R!1R
]Er~R!

]R
52

2b~g!

g E d3Xsr~X!, ~5.3!

where the Callan-Symanzik function is denoted byb(g)
5m]g/]m with the renormalization scalem.

Inserting Eq.~5.3! into Eq. ~5.2!, we find the following
relation between the total energy stored in the chromo-fie
Er

tot(R) and the ground state energyEr(R):

Er
tot~R!ªE d3X« r~X!5

1

4 S 3Er~R!2R
]Er~R!

]R D .

~5.4!

The difference from the naive classical expectation that
full ground state energy of the static color sources is sto
4-16
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in the chromo-fields is due to the trace anomaly contribut
@28# described by the second term on the RHS of Eq.~5.2!.
Indeed, for the Coulomb potential, obtained in tree-level p
turbation theory, the action sum rule~5.3! shows explicitly

FIG. 6. Longitudinal energy density profilesg2«3(X1 ,X25X3

50) generated by a color dipole in the fundamentalSU(3) repre-
sentation (r 53) for quark-antiquark separations ofR50.1, 0.5, 1
and 1.5 fm. The dotted and dashed lines give the perturbative
non-perturbative contributions, respectively, and the solid lines
sum of both. The open and filled circles indicate the quark a
antiquark positions. For small dipoles,R50.1 fm, perturbative
physics dominates and non-perturbative correlations are neglig
For large dipoles,R*1 fm, the formation the confining string~flux
tube! can be seen which dominates the chromo-electric fields
tween the color sources.
07400
n

r-

that the trace anomaly contribution vanishes on the class
level as expected.

With the low energy theorems~5.3! and~5.4! the ratio of
the integrated squared chromo-magnetic to the integra
squared chromo-electric field distributions can be derived

nd
e
d

le.

e-

FIG. 7. Transverse energy density profilesg2«3(X2 ,X15X3

50) generated by a color dipole in the fundamentalSU(3) repre-
sentation (r 53) for quark-antiquark separations ofR50.1, 0.5, 1
and 1.5 fm. The dotted and dashed lines give the perturbative
non-perturbative contributions, respectively, and the solid lines
sum of both. The filled circles indicate the positions of the co
sources. For small dipoles,R50.1 fm, perturbative physics domi
nates and non-perturbative correlations are negligible. For large
poles,R*1 fm, the formation the confining string~flux tube! can
be seen which dominates the chromo-electric fields between
color sources.
Q~R!ª
E d3XBW 2~X!

E d3XEW 2~X!

5
@213b~g!/g#Er~R!1@22b~g!/g#R]Er~R!/]R

@223b~g!/g#Er~R!1@21b~g!/g#R]Er~R!/]R
. ~5.5!
4-17
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This ratio can be used, for example, to determine n
perturbatively the Callan-Symanzikb(g) function. For
SU(Nc52) lattice investigations along these lines have
ready been performed@30,86,88,89#.6

In the largeR region, the static color dipole potential ca
be approximated by the linear potentialVr(R)5s rR
5Er(R)2Eself with string tensions r in the considered rep
resentationr. In this approximation, the ratio~5.5! becomes
the simple form

Q~R!uVr (R)5srR
5

21b~g!/g

22b~g!/g
. ~5.6!

Since the non-perturbative SVM component of our mo
describes the confining linear potential for large source se
rationsR, we can use Eq.~5.6! together with the vanishing o
the chromo-magnetic fields~4.20! to determine the value o
the Callan-Symanzikb function at the scalemNP at which
the non-perturbative component is working:

b~g!

g U
m5mNP

522. ~5.7!

6In @84# theb function was determined similarly based on a hig
statistics study of chromo-field distributions inSU(Nc52) but un-
fortunately without taking the trace anomaly contribution into a
count.

FIG. 8. Root mean squared radiusRms of the flux tube and
energy density in the center of a fundamentalSU(3) dipole
g2«3(X50) as a function of the dipole sizeR. Perturbative and
non-perturbative contributions are given respectively in the do
and dashed lines and the sum of both in the solid lines. For largR,
both the width and height of the flux tube in the central region
governed completely by non-perturbative physics and saturate
spectively atRms

R→`'0.55 fm and«3
R→`(X50)'1 GeV/fm3. The

latter value is extracted with the resultg2510.2 deduced from low-
energy theorems in the next section.
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Here one should emphasize that this value is strictly va
only at asymptotically large values ofR, while perturbative
correlations must be taken into account to extend this inv
tigation to smaller values ofR.

Concentrating on the confining non-perturbative comp
nent ~NPc! we now use Eq.~5.4! to determine the value o
as5g2/(4p) at which the non-perturbative SVM compone
is working. The RHS of Eq.~5.4! is obtained directly from
the confining contribution to the static potentialEr

NPc(R)
5Vr

NPc(R) given in Eq.~3.7! in Sec. III. The left-hand side
of Eq. ~5.4!, however, involves a division by thea priori
unknown value ofg2 after integratingg2« r(X) for the
chromo-electric field of the confining non-perturbative co
ponent~4.18!. As discussed in the previous section, we ca
not compute the energy density separately but only the p
uct g2« r(X). Adjusting the value ofg2 such that Eq.~5.4! is
exactly satisfied for source separations ofR51.5 fm, we
find that the non-perturbative component is working at
scalemNP at which

g2~mNP!510.2[as~mNP!50.81. ~5.8!

As already mentioned in Sec. II C, we use this value a
practical asymptotic limit for the simple one-loop couplin
~2.47! used in our perturbative component. Note that ear
SVM investigations along these lines found a smaller va
of as(mNP)50.57 with the pyramid mantle choice for th
surface@25,31# but were incomplete since only the contrib
tion from the traceless part of the energy-momentum ten
was considered in the energy sum rule.

In Fig. 9 we show the total energy stored in the chrom
field distributions around a static color dipole in the fund
mental (r 53) and adjoint (r 58) representations ofSU(3)
from the confining non-perturbative SVM componen

-

d

e
e-

FIG. 9. The total energy stored in the chromo-field distributio
around a static color dipole of sizeR in the fundamental (r 53) and
adjoint (r 58) representation ofSU(3) from the confining non-
perturbative SVM component,E3,8

tot NPc(R), for as50.81 ~solid
lines! compared with the relation to the corresponding ground s
energy~dashed lines! given by the low-energy theorem~5.4!. Good
consistency is found even down to very small values ofR.
4-18
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E3,8
totNPc(R), for as50.81 ~solid lines! as a function of the

dipole sizeR. Comparing this total energy, which appears
the LHS of Eq.~5.4!, with the corresponding RHS of Eq
~5.4! ~dashed lines!, we find good consistency even down
very small values ofR. This is a nontrivial and importan
result as it confirms the consistency of our loop-loop cor
lation result—needed to compute the chromo-electric field
with the result obtained for the VEV of one loop—needed
compute the static potentialVr

NPc(R). Moreover, it shows
that the minimal surfaces ensure the consistency of our n
perturbative component. The good consistency found for
pyramid mantle choice of the surface relies on the naiv
expected energy sum rule@25,31# in which the contribution
from the traceless part of the energy-momentum tensor is
taken into account.

Let us discuss the values ofb/g andg2 at the renormal-
ization scalemNP—given respectively in Eqs.~5.7! and
~5.8!—in comparison with the perturbative expansion@90#
and lattice computations@91# of the Callan-Symanzik func
tion in pure SU(Nc53) gauge theory. We obtained Eq
~5.7! and ~5.8! such that the renormalization scalesmNP ap-
pearing in the two equations should be in good agreem
Consideringb/g as a functiong2, one thus can compare ou
combination with the perturbative expansion@90#. This com-
parison shows that our result is close to the curve obtai
on the two-loop level in perturbation theory. In contrast, t
non-perturbative lattice results for theb function of Lüscher
et al. @91# are in good agreement with the perturbative thr
loop result computed in the modified minimal subtracti
(MS) scheme@92#. However, it must be stressed that in t
lattice investigation the considered values of the runn
coupling g2 stay below 3.5 while our comparison requir
values up tog2(mNP)510.2. Thus, relying on a large ex
trapolation of the model independent QCD results, our co
parison provides at best an orientation. For a meanin
consistency check, we have to map out the Callan-Syma
function at smaller values ofR, where also perturbative cor
relations must be taken into account and thus refinemen
our treatment of renormalization are needed. The low-ene
theorems will provide crucial criteria for the success of su
improvements.

VI. EUCLIDEAN APPROACH TO HIGH-ENERGY
SCATTERING

In this section we present a Euclidean approach to h
energy reactions of color dipoles in the eikonal approxim
tion. After a short review of the functional integral approa
to high-energy dipole-dipole scattering in Minkowski spac
time, we generalize the analytic continuation introduced
Meggiolaro @35# from parton-parton scattering to dipole
dipole scattering. This shows how one can access h
energy reactions directly in lattice QCD. We apply this a
proach to compute the scattering of dipoles in t
fundamental and adjoint representation ofSU(Nc) at high-
energy in the Euclidean LLCM. The result shows the cons
tency with the analytic continuation of the gluon fie
strength correlator used in all earlier applications of the SV
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and LLCM to high-energy scattering. Finally, we comme
on the QCD van der Waals potential which appears in
limiting case of two static color dipoles.

In Minkowski space-time, high-energy reactions of col
dipoles in the eikonal approximation have be
considered—as basis for hadron-hadron, photon-hadron,
photon-photon reactions—in the functional integral approa
to high-energy collisions developed originally for parto
parton scattering@9,10# and then extended to gauge-invaria
dipole-dipole scattering @11–13#. The corresponding
T-matrix element for the elastic scattering of two color d
poles at transverse momentum transferqW' (t52qW'

2) and
c.m. energy squareds reads

Tr 1r 2

M ~s,t,z1 ,rW1' ,z2 ,rW2'!

52isE d2b'eiqW'bW'@12Sr 1r 2

M ~s,bW' ,z1 ,rW1' ,z2 ,rW2'!#

~6.1!

with the S-matrix element (M refers to Minkowski space-
time!

Sr 1r 2

M ~s,bW' ,z1 ,rW1' ,z2 ,rW2'!5 lim
T→`

^Wr 1
@C1#Wr 2

@C2#&M

^Wr 1
@C1#&M^Wr 2

@C2#&M
.

~6.2!

The color dipoles are considered in theSU(Nc) representa-
tion r i and have transverse size and orientationrW i' . The
longitudinal momentum fraction carried by the quark of d
pole i is zi . @Here and in the following we use several tim
the term quark generically for color sources in an arbita
SU(Nc) representation.# The impact parameter between th
dipoles is@44#

bW'5rW1q1~12z1!rW1'2rW2q2~12z2!rW2'5rW1 c.m.2rW2 c.m. ,

~6.3!

whererW iq (rW i q̄) is the transverse position of the quark~anti-
quark!, rW i'5rW i q̄2rW iq , and rW ic.m.5zirW iq1(12zi)rW i q̄ is the
center of light-cone momenta. Figure 10 illustrates the~a!
space-time and~b! transverse arrangement of the dipole
The dipole trajectoriesCi are described as straight lines. Th
is a good approximation as long as the kinematical assu
tion behind the eikonal approximation,s@2t, holds which
allows us to neglect the change of the dipole velocitiesv i
5pi /m in the scattering process, wherepi is the momentum
andm the mass of the considered dipole. Moreover, the pa
Ci are considered light-like7 in line with the high-energy
limit, m2!s→`. For the hyperbolic angle or rapidity ga
between the dipole trajectoriesg5(v1•v2)—which is the

7In fact, exactly light-like trajectories (g→`) are considered in
most applications of the functional integral approach to high-ene
collisions @8,11–13,32–34,40–47#. A detailed investigation of the
more general case of finite rapidityg can be found in@47#.
4-19
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central quantity in the analytic continuation discussed be
and also defined throughs54m2cosh2(g/2)—the high-
energy limit implies

lim
m2!s→`

g' ln~s/m2!→`. ~6.4!

The QCD VEV’s^ . . . &M in the S-matrix element~6.2! rep-
resent Minkowskian functional integrals@10# in which—as
in the Euclidean case discussed above—the functional i
gration over the fermion fields has already been carried

The Euclidean approach to the described elastic scatte
of dipoles in the eikonal approximation is based on Meg
olaro’s analytic continuation of the high-energy parto
parton scattering amplitude@35#. Meggiolaro’s analytic con-
tinuation has been derived in the functional integral appro
to high-energy collisions@9,10# in which parton-parton scat

FIG. 10. High-energy dipole-dipole scattering in the eikonal a
proximation represented by Wegner-Wilson loops in the fundam
tal representation ofSU(Nc): ~a! space-time and~b! transverse ar-
rangement of the Wegner-Wilson loops. The shaded areas repr
the strings extending from the quark to the antiquark path in e
color dipole. The thin tube allows us to compare the field streng
in surfaceS1 with the field strengths in surfaceS2. The impact

parameterbW' connects the centers of light-cone momenta of
dipoles.
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w

e-
t.

ng
-
-

h

tering is described in terms of Wegner-Wilson lines: T
Minkowskian amplitude,gM(g,T,t), given by the expecta-
tion value of two Wegner-Wilson lines, forming an hype
bolic angleg in Minkowski space-time, and the Euclidea
‘‘amplitude,’’ gE(Q,T,t), given by the expectation value o
two Wegner-Wilson lines, forming an angleQP@0,p# in Eu-
clidean space-time, are connected by the following anal
continuation in the angular variables and the temporal ex
sion T, which is needed as an IR regulator in the case
Wegner-Wilson lines:

gE~Q,T,t !5gM~g→ iQ,T→2 iT,t !, ~6.5!

gM~g,T,t !5gE~Q→2 ig,T→ iT,t !. ~6.6!

Generalizing this relation togauge-invariantdipole-dipole
scattering described in terms of Wegner-Wilson loops, the
divergence known from the case of Wegner-Wilson lin
vanishes and no finite IR regulatorT is necessary. Thus, th
MinkowskianS-matrix element~6.2!, given by the expecta-
tion values of two Wegner-Wilson loops, forming a hype
bolic angleg in Minkowski space-time, can be compute
from the Euclidean ‘‘S-matrix element’’

Sr 1r 2

E ~Q,bW' ,z1 ,rW1' ,z2 ,rW2'!5 lim
T→`

^Wr 1
@C1#Wr 2

@C2#&E

^Wr 1
@C1#&E^Wr 2

@C2#&E

~6.7!

given by the expectation values of two Wegner-Wilson loo
forming an angleQP@0,p# in Euclidean space-time, via a
analytic continuation in the angular variable

Sr 1r 2

M ~g' ln@s/m2#,bW' ,z1 ,rW1' ,z2 ,rW2'!

5Sr 1r 2

E ~Q→2 ig,bW' ,z1 ,rW1' ,z2 ,rW2'!, ~6.8!

whereE indicates Euclidean space-time and the QCD VEV
^•••&E represent Euclidean functional integrals that a
equivalent to the ones denoted by^•••&G in the preceding
sections, i.e. in which the functional integration over the f
mion fields has already been carried out.

The angleQ is best illustrated in the relation of the Eu
clideanS-matrix element~6.7! to the van der Waals potentia
between two static dipoles,Vr 1r 2

(Q50,bW ,z1 ,rW1 ,z2 ,rW2), dis-
cussed at the end of this section,

Sr 1r 2

E ~Q,bW' ,z1 ,rW1' ,z2 ,rW2'!

5 lim
T→`

exp@2TVr 1r 2
~Q,bW' ,z1 ,rW1' ,z2 ,rW2'!#.

~6.9!

Figure 11 shows the loop-loop geometry necessary to c
puteSr 1r 2

E (QÞ0, . . . ) and how it isobtained by generalizing

the geometry relevant for the computation of the poten
between two static dipoles (Q50): While the potential be-
tween two static dipoles is computed from two loops alo
parallel ‘‘temporal’’ unit vectors,t15t25(0,0,0,1), the Eu-
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clideanS-matrix element~6.7! involves the tilting of one of
the two loops, e.g. the tilting oft1 by the angleQ toward the
X3 axis, t15(0,0,2sinQ,cosQ). The ‘‘temporal’’ unit vec-
tors t i are also discussed in Appendix B together with a
other illustration of the tilting angleQ.

Since the EuclideanS-matrix element~6.7! involves only
configurations of Wegner-Wilson loops in Euclidean spa
time and Euclidean functional integrals, it can be compu
directly on a Euclidean lattice. With Eq.~6.7! evaluated nu-
merically for many different values ofQP@0,p#, one needs
to find the function that describes the angular depende
obtained. If this function is analytic inQ, the analytic con-
tinuation Q→2 ig leads immediately to the desire
Minkowskian S-matrix element~6.2!. An obvious difficulty
in this proposal is the breaking of rotational invariance
the lattice. Moreover, first attempts in the direction describ
have shown that the signal size for Eq.~6.7! decreases sig
nificantly with increasingQ so that it is already covered fo
small values ofQ by the statistical fluctuations@39#. At
present, it is not clear how to overcome these technical
ficulties but the stakes are high: Once precise results
available, the analytic continuation~6.8! could allow us to
access hadronic high-energy reactions directly in lat
QCD, i.e. within a non-perturbative description of QCD fro
first principles.

More generally, the presented gauge-invariant anal
continuation~6.8! makes any approach limited to a Eucli
ean formulation of the theory applicable for investigations
high-energy reactions. Indeed, Meggiolaro’s approach ha
ready been used to access high-energy scattering from
supergravity side of the AdS/CFT correspondence@36#,
which requires a positive definite metric in the definition

FIG. 11. The loop-loop geometry necessary to comp
Sr 1r 2

E (QÞ0, . . . ) illustrated as a generalization of the geometry r
evant for the computation of the van der Waals potential betw
two static dipoles (Q50). While the potential between two stat
dipoles is computed from two loops along parallel ‘‘temporal’’ un
vectors,t15t25(0,0,0,1), the EuclideanS-matrix element~6.7! in-
volves the tilting of one of the two loops, e.g. the tilting oft1 by the
angleQ toward theX3 axis, t15(0,0,2sinQ,cosQ).
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the minimal surface@37#, and to examine the effect of instan
tons on high-energy scattering@38#.

Let us now perform the analytic continuation explicitly
our Euclidean model. For the scattering of two color dipo
in the fundamental representation ofSU(Nc), the Euclidean
S-matrix element becomes with the VEV’s~2.14! and~2.35!

SDD
E ~Q,bW' ,z1 ,rW1' ,z2 ,rW2'!

ªSNcNc

E ~Q,bW' ,z1 ,rW1' ,z2 ,rW2'!

5 lim
T→`

S Nc11

2Nc
expF2

Nc21

2Nc
xS1S2G

1
Nc21

2Nc
expFNc11

2Nc
xS1S2G D , ~6.10!

wherexSiSj
, defined in Eq.~2.27!, decomposes into a pertur

bative ~P! and non-perturbative (NP) component according
to our decomposition of the gluon field strength correla
~2.42!:

xS1S2
5xS1S2

P 1xS1S2

NP 5xS1S2

P 1~xS1S2

NPnc1xS1S2

NPc!.

~6.11!

In the limit T15T25T→` and for QP@0,p#, the compo-
nents read

xS1S2

P 5cotQxP, xS1S2

NPnc5cotQxNPnc, xSiSj

NPc5cotQxNPc

~6.12!

with

xP5@g2DP8
(2)~ urW1q2rW2q̄u!1g2DP8

(2)~ urW1q̄2rW2qu!

2g2DP8
(2)~ urW1q2rW2qu!2g2DP8

(2)~ urW1q̄2rW2q̄u!#,

~6.13!

xNPnc5
p2G2~12k!

3~Nc
221!

@D18
(2)~ urW1q2rW2q̄u!

1D18
(2)~ urW1q̄2rW2qu!2D18

(2)~ urW1q2rW2qu!

2D18
(2)~ urW1q̄2rW2q̄u!#, ~6.14!

xNPc5
p2G2k

3~Nc
221!

~rW1•rW2!E
0

1

dv1E
0

1

dv2

3D (2)~ urW1q1v1rW1'2rW2q2v2rW2'u! ~6.15!

as derived explicitly in Appendix C with the minimal su
faces illustrated in Fig. 11. In Eq.~6.13! the shorthand nota
tion g2DP8

(2)(uZ'
W u)5g2(uZ'

W u)DP8
(2)(uZ'

W u) is used with

g2(uZ'
W u) again understood as the running coupling~2.47!.

The transverse Euclidean correlation functions

e
-
n
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Dx
(2)~ZW 2!ªE d4K

~2p!2
eiKZD̃x~K2!d~K3!d~K4!

~6.16!

are obtained from the~massive! gluon propagator~2.43! and
the exponential correlation function~2.50!

DP8
(2)~ZW'

2 !5
1

2p
K0~mGuZW'u!, ~6.17!

D18
(2)~ZW'

2 !5pa4S 313
uZW'u

a
1

uZW'u2

a2 D expS 2
uZW'u

a
D ,

~6.18!

D (2)~ZW'
2 !52pa2S 11

uZW'u
a

D expS 2
uZW'u

a
D .

~6.19!

With the full Q dependence exposed in Eq.~6.12!, the ana-
lytic continuation~6.8! reads

xS1S2
5cotQx →

Q→2 ig

cot~2 ig!x →
s→`

ix
~6.20!

and leads to the desired MinkowskianS-matrix element for
elastic dipole-dipole~DD! scattering in the high-energy limi
in which the dipoles move on the light cone:

lim
s→`

SDD
M ~s,bW' ,z1 ,rW1' ,z2 ,rW2'!

ª lim
s→`

SNcNc

M ~s,bW' ,z1 ,rW1' ,z2 ,rW2'!

5SDD
E ~cotQ→ i ,bW' ,z1 ,rW1' ,z2 ,rW2'!

5 lim
T→`

S Nc11

2Nc
expF2 i

Nc21

2Nc
xG

1
Nc21

2Nc
expF i

Nc11

2Nc
xG D ~6.21!

where x5xP1xNPnc1xNPc with Eqs. ~6.13!, ~6.14!, and
~6.15!.

It is striking that exactly the same result was obtained8 in
@8# with the alternative analytic continuation introduced f
applications of the SVM to high-energy reactions@11–13#. In
this complementary approach the gauge-invariant bilo
gluon field strength correlator is analytically continued fro
Euclidean to Minkowskian space-time by the substitut

8To see this identity, recall that̂W@C#&51 for light-like loops
and consider in Ref.@8# the result~2.30! for the loop-loop correla-
tion function~2.3! together with thex function ~2.40! and its com-
ponents given in~2.49!, ~2.54!, and ~2.57! with the transverse
Minkowskian correlation functions~2.50!, ~2.55!, and~2.58!. ~Note
that all these equation numbers refer to Ref.@8#.!
07400
al

dmr→2gmr and the analytic continuation of the Euclidea
correlation functions to real timeDx

E(Z2)→Dx
M(z2). In the

subsequent steps, one finds^W@C#&M51 due to the light-
likeness of the loops and the longitudinal correlations can
integrated out̂ Wr 1

@C1#Wr 2
@C2#&M5 f (s,bW' , . . . ). One is

left with exactly the Euclidean correlations in transver
space that have been obtained above. This confirms the
lytic continuation used in the earlier LLCM investigations
Minkowski space-time@8,32–34# and in all earlier SVM ap-
plications to high-energy scattering@11–13,40–48#.

In the limit of smallx functions,uxPu!1 anduxNPu!1,
Eq. ~6.21! reduces to

lim
s→`

SDD
M ~s,bW' ,z1 ,rW1' ,z2 ,rW2'!

'11
Nc

221

8Nc
2

x2511
C2~Nc!

4Nc
x2. ~6.22!

The perturbative correlations, (xP)2, describe the well-
known two-gluon exchange contribution@93,94# to dipole-
dipole scattering, which is, of course, an important succe
ful cross-check of the presented Euclidean approach to h
energy scattering. The non-perturbative correlations, (xNP)2,
describe the corresponding non-perturbative two-point in
actions that contain contributions of the confining QC
string to dipole-dipole scattering. We analyzed these str
contributions systematically as manifestations of confi
ment in high-energy scattering reactions in our previo
work @33#.

From the small-x limit, one sees that the fullS-matrix
element~6.21! describes multiple gluonic interactions. In
deed, the higher order terms in the expansion of the ex
nential functions ensure the fundamentalS-matrix unitarity
condition in impact parameter space as discussed in@8,45#.

Concerning the energy dependence, theS-matrix element
~6.21! leads to energy-independent cross sections in con
diction to the experimental observation. Although disa
pointing from the phenomenological point of view, this is n
surprising since our approach does not describe the exp
gluon radiation needed for a non-trivial energy dependen
However, based on theS-matrix element~6.21!, a phenom-
enological energy dependence can be constructed that al
a unified description of high-energy hadron-hadron, phot
hadron, and photon-photon reactions and an investigatio
saturation effects in hadronic cross sections manifesting
S-matrix unitarity @8,32,34#. This, of course, can only be a
intermediate step. For a more fundamental understandin
hadronic high-energy reactions in our model, gluon radiat
and quantum evolution have to be implemented explicitly

Although the scattering of two color dipoles in the fund
mental representation ofSU(Nc) is, of course, the most rel
evant case, we can derive immediately also the Minkowsk
S-matrix element for the scattering of a fundamental~D! and
an adjoint dipole~‘‘glueball’’ GB) in the Euclidean LLCM.
Using Eq.~2.40! and proceeding otherwise as above, we fi
in the high-energy limit
4-22
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lim
s→`

SDGB
M ~s,bW ,z1 ,rW1 ,z2 ,rW2!

ª lim
s→`

SNc N
c
221

M
~Q,bW ,z1 ,rW1 ,z2 ,rW2!

5 lim
T→`

S 1

Nc
221

expF i
Nc

2
xG1

Nc12

2~Nc11!
expF2 i

1

2
xG

1
Nc22

2~Nc21!
expF i

1

2
xG D , ~6.23!

where x5xP1xNPnc1xNPc with Eqs. ~6.13!, ~6.14!, and
~6.15!.

Finally, we would like to comment on the van der Waa
interaction of two color dipoles, which is, as already me
tioned, related to the EuclideanS-matrix element in the lim-
iting case ofQ50 as can be seen from Eq.~6.9!: The QCD
van der Waals potential between two static dipoles can
expressed in terms of Wegner-Wilson loops@95,96#

Vr 1r 2
~Q50,bW ,z151/2,rW1 ,z251/2,rW2!

52 lim
T→`

1

T
ln

^Wr 1
@C1#Wr 2

@C2#&

^Wr 1
@C1#&^Wr 2

@C2#&
. ~6.24!

In this limit (Q50) intermediate octet states and their lim
ited lifetime become important as is well known from pe
turbative computations of the QCD van der Waals poten
between two static color dipoles@95–97#: Working with
static dipoles, i.e. infinitely heavy color sources, there is
energy degeneracy between the intermediate octet state
the initial ~final! singlet states that leads for perturbative tw
gluon exchange to a linear divergence inT asT→`. This IR
divergence can be lifted by manually introducing an ene
gap between the singlet ground state and the excited o
state and thus a limit on the lifetime of the intermediate oc
state@95–97#.

In the perturbative limit ofg2→0 andT large but finite,
i.e. xP!1, the perturbative component of our model d
scribes the two-gluon exchange contribution to the van
Waals potential which is plagued by this IR divergence d
to the static limit. In the more general case ofg2 finite and
T→`, which is applicable also for the non-perturbati
component of our model, one cannot use the small-x limit
and multiple gluonic interactions become important. He
our perturbative component describes multiple gluon
changes that reduce to an effective one-gluon exchange
tribution to the van der Waals potential whose interact
range (}1/mG) contradicts the common expectations. I
deed, it is also in contradiction to our results for the glueb
mass MGB which determines the interaction rang
(}1/MGB) between two color dipoles for large dipole sep
rations. As already mentioned in Sec. II C, we find for t
perturbative component,MGB

P 52mG , i.e. half of the inter-
action range of one-gluon exchange, by computing the ex
nential decay of the correlation of two small quadratic loo
Pr i

ab for large Euclidean timest→`,
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MGBª2 lim
t→`

1

t
ln

^Pr 1

ab~0!Pr 2

ab~t!&

^Pr 1

ab~0!&^Pr 2

ab~t!&
. ~6.25!

Note that we find for the non-perturbative component,MGB
NP

52/a, which is smaller thanMGB
P 52mG with the LLCM

parameters and thus governs the long range correlation
the LLCM.

Thus, for a meaningful investigation of the QCD van d
Waals forces within our model, one has to go beyond
static limit in order to describe the limited lifetime of th
intermediate octet states appropriately. This we postpone
future work since the focus in this work is on high-ener
scattering where the gluons are always exchanged with
short time interval due to the light-likeness of the scatte
particles and the finite correlation lengths. Nevertheless,
ing beyond the static limit in the dipole-dipole potenti
means going beyond the eikonal approximation in hig
energy scattering and it is, of course, of utmost importanc
see how such generalizations alter our results.

VII. CONCLUSION

We have introduced the Euclidean version of the loo
loop correlation model@8# in which the QCD vacuum is
described by perturbative gluon exchange and the n
perturbative stochastic vacuum model@21#. This combina-
tion leads to a static quark-antiquark potential with co
Coulomb behavior for small and confining linear rise f
large source separations in good agreement with lattice Q
results. We have computed in the LLCM the vacuum exp
tation value of one Wegner-Wilson loop,^Wr@C#&, and the
correlation of two Wegner-Wilson loops
^Wr 1

@C1#Wr 2
@C2#&, for arbitrary loop geometries and gen

eral representationsr ( i ) of SU(Nc). Specifying the loop ge-
ometries, these results allow us to compute the static qu
antiquark potential, the glueball mass, the chromo-fi
distributions of static color dipoles, the QCD van der Wa
potential between two static color dipoles, and theS-matrix
element for high-energy dipole-dipole scattering.

We have applied the LLCM to compute the potential a
the chromo-electric fields of a static color dipole in the fu
damental and adjoint representation ofSU(Nc). The forma-
tion of a confining color flux tube is described by the no
perturbative SVM correlations@25# and the color Coulomb
field is obtained from perturbative gluon exchange. We ha
found Casimir scaling for both the perturbative and no
perturbative contributions to the chromo-electric fields
agreement with recent lattice data@20#. String breaking is
described neither for sources in the fundamental represe
tion nor for sources in the adjoint representation, which
dicates that in our approach not only dynamical fermio
~quenched approximation! are missing but also some gluo
dynamics. Transverse and longitudinal energy density p
files have been provided. For small dipoles,R50.1 fm, per-
turbative physics dominates and non-perturbative corr
tions are negligible. For large dipoles,R*1 fm, the non-
perturbative confining string dominates the chromo-elec
fields between the color sources. The transition from per
4-23
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bative to string behavior takes place at source separation
about 0.5 fm in agreement with the recent results of Lu¨scher
and Weisz@26#. The root mean squared radiusRms of the
confining string and the energy density in the center o
fundamentalSU(3) dipole «3(X50) are governed com
pletely by non-perturbative physics for largeR and saturate
as R increases at Rms

R→`'0.55 fm and «3
R→`(X50)

'1 GeV/fm3.
We have presented the low-energy theorems@28–30#,

known in lattice QCD as Michael sum rules@27#, in their
complete form in continuum theory taking into account t
important contributions found in@28,31# that are missing in
the original formulation@27#. We have used the complet
theorems to compare the energy and action stored in
confining string with the confining part of the static quar
antiquark potential. The comparison shows consistency
the model results and indicates that the non-perturba
SVM component is working at the renormalization scale
which b(g)/g522 andas50.81. Earlier SVM investiga-
tions along these lines have found a different value ofas
50.57 with the pyramid mantle choice for the surfa
@25,31# but were incomplete since only the contribution fro
the traceless part of the energy-momentum tensor has
considered in the energy sum.

A Euclidean approach to high-energy dipole-dipole sc
tering has been established by generalizing Meggiola
analytic continuation@35# from parton-parton scattering t
gauge-invariant dipole-dipole scattering. The generali
analytic continuation allows us to deriveS-matrix elements
for high-energy reactions from configurations of Wegn
Wilson loops in Euclidean space-time with Euclidean fun
tional integrals. It thus shows how one can access h
energy reactions directly in lattice QCD. First attempts
this direction have already been carried out but only v
few signals could be extracted, while most of the data w
dominated by noise@39#. We applied this approach to com
pute in the Euclidean LLCM the scattering of dipoles
high-energy. The result derived in the Minkowskian versi
of the LLCM @8# has been exactly recovered including t
well-known two-gluon exchange contribution to dipol
dipole scattering@93,94#. This confirms the analytic continu
ation of the gluon field strength correlator used in all ear
applications of the SVM to high-energy scattering@11–
13,40–48#.

The S-matrix element obtained in our approach has
ready been used to investigate manifestations of the con
ing QCD string in high-energy reactions of photons and h
rons @33# but leads to energy-independent cross section
contradiction to the experimental observation@8#. The miss-
ing energy dependence is disappointing but not surpris
since our approach does not describe explicit gluon radia
needed for a non-trivial energy dependence. In our previ
work we have introduced a phenomenological energy dep
dence into theS-matrix element that allows a unified descri
tion of hadron-hadron, photon-hadron, and photon-pho
reactions and respects theS-matrix unitarity condition in im-
pact parameter space@8,32,34#. However, for a more funda
mental understanding of hadronic high-energy reactions
our model, one faces the highly ambitious task to implem
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gluon radiation and quantum evolution explicitly.
More generally, the presented Euclidean approach

high-energy scattering makes any method limited to a
clidean formulation of the theory applicable for investig
tions of high-energy reactions. Here encouraging new res
have been obtained with instantons@38# and within the AdS/
CFT correspondence@36# and it will be interesting to see
precise results from the lattice. A promising complement
Euclidean approach has been proposed in@98# where the
structure functions of deep inelastic scattering at sm
Bjorken x are related to an effective Euclidean field theo
Here one hopes that the limitx→0 corresponds to critica
behavior in the effective theory. The aim is again to provi
a framework in which structure functions can be calcula
from first principles using genuine non-perturbative metho
such as lattice computations. In another recent attempt,
energy dependence of the proton structure function has b
related successfully to critical properties of an effective n
light-cone Hamiltonian in a non-perturbative lattice approa
@99#. It will be interesting to see further developments alo
these lines aiming at an understanding of hadronic hi
energy scattering from the QCD Lagrangian.
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APPENDIX A: THE NON-ABELIAN STOKES THEOREM

In this appendix we review briefly the derivation of th
non-Abelian Stokes theorem@16# and explain the emerging
surface ordering. We follow the lucid presentation given
@10#.

Let us consider a surfaceS in Euclidean space-time with
boundaryC5]S and the QCD Schwinger stringF r(X,X;C)
defined according to Eq.~2.5! which starts at some pointX
on the boundary and evolves along the pathC back to the
point X as illustrated in Fig. 12. We now explain how th
non-Abelian line integral overC associated with the QCD
Schwinger string is transformed into the non-Abelian surfa
integral overS which involves the surface orderingPS .

First, we choose an arbitrary reference pointO on the
surfaceS and draw a fan-type net onS as a spider could do
~cf. Fig. 12!. ~Note that a real spider draws its net in a s
quence different from the one described.! This net is spanned
over S and is given by the following curve:CXO running
from X to O, followed byCZ1O

21 running fromO to Z1, where

the path around the infinitesimal small squareDsmn(Z1), i.e.
the plaquette atZ1, is attached before it goes back toO along
CZ1O and so on. The net is completed withCXO

21 that runs
from O to X. Apart from the initial and final elements of th
4-24
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net,CXO andCXO
21 , we have many plaquettes with ‘‘handles

connecting them toO. With the following basic properties o
the QCD Schwinger string:

F r~O,X;CXO!F r~O,X;CXO!2151, ~A1!

F r~O,X;CXO!215F r
†~O,X;CXO!5F r~X,O;COX5CXO

21!,

~A2!

F r~Z,X;CXZ!F r~X,O;COX!5F r~Z,O;COX1CXZ!,

~A3!

one sees immediately that the QCD Schwinger string al
the net spanned onS is equivalent to the QCD Schwinge
string F r(X,X;C) along the pathC:

F r~X,X;C!5F r~O,X;CXO!•~product of QCD

Schwinger strings for the

plaquettes with handles!•F r~O,X;CXO!21.

~A4!

Next, we consider the contribution of a single plaquette w
handle. The QCD Schwinger string for one plaquette, say
one atZn singled out in Fig. 12, reads@10#

F r~plaquette atZn!512 ig
1

2
Dsmn~Zn!G mn

a ~Zn!t r
a1•••,

~A5!

where Dsmn(Zn) denotes the surface element at the po
Zn . Taking into account the handles, the contribution of t
plaquette to Eq.~A4! becomes

F r~O,Zn ;CZnO!F r~plaquette atZn!F r~O,Zn ;CZnO!21

512 ig
1

2
Dsmn~Zn!G mn

a ~O,Zn ;CZnO!t r
a1•••, ~A6!

where Eq. ~A2! and the parallel transported gluon fie
strength as defined in Eq.~2.4! have been used.

FIG. 12. A surfaceS with boundaryC5]S in Euclidean space-
time, the reference pointO on S, and the fan-type net with centerO
spanned overS.
07400
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Finally, inserting Eq.~A6! into Eq. ~A4! for all n, i.e.
summing up the contributions of all plaquettes with handl
while respecting the ordering, one obtains in the limit of
infinitesimally fine net

F r~X,X;C!5F r~O,X;CXO!•PS

3expF2 i
g

2ES
dsmn~Z!

3G mn
a ~O,Z;CZO!t r

aG•F r~O,X;CXO!21.

~A7!

HerePS denotes the ordering on the whole surfaceS as im-
plied by the net shown in Fig. 12. Taking the trace in E
~A7! and exploiting its cyclic property leads ultimately to th
non-Abelian version of Stokes theorem:

TrrF r~X,X;C!

5TrrPSexpF2 i
g

2ES
dsmn~Z!G mn

a ~O,Z;CZO!t r
aG .
~A8!

APPENDIX B: LOOP AND MINIMAL SURFACE
PARAMETRIZATIONS

A rectangular loopCi with ‘‘spatial’’ extension Ri and
‘‘temporal’’ extension 2Ti placed in four-dimensional Eu
clidean space, as shown in Fig. 13, has the following para
eter representation:

Ci5Ci
AøCi

BøCi
CøCi

D ~B1!

with

Ci
A5$Xi

A~ui !5X0 i2~12zi !r i1ui t i ,uiP@2Ti ,Ti #%,

~B2!

Ci
B5$Xi

B~v i !5X0 i2~12zi !r i1v i r i1Tit i ,v iP@0,1#%,

~B3!

Ci
C5$Xi

C~ui !5X0 i1zir i1uit i ,uiP@Ti ,2Ti #%,
~B4!

Ci
D5$Xi

D~v i !5X0 i2~12zi !r i1v i r i2Tit i ,v iP@1,0#%,

~B5!

where

r iªS Risinu icosf i

Risinu isinf i

Ricosu icosQ i

Ricosu isinQ i

D and t iªS 0

0

2sinQ i

cosQ i

D . ~B6!

The ‘‘center’’ of the loopCi is given byX0 i . The parameters
zi , Ri , u i , f i , andQ i are defined in Fig. 13 which illus-
trates~a! the spatial arrangement of a color dipole and~b! its
world-line Ci in Euclidean ‘‘longitudinal’’ space. The tilting
angleQ iÞ0 is the central quantity in the analytic continu
tion presented in Sec. VI. Moreover,Q15p/2 together with
4-25
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Q250 allows us to compute conveniently the chrom
magnetic field distributions in Appendix C.

The minimal surfaceSi is the planar surface bounded b
the loopCi5]Si given in Eq.~B1!. It can be parametrized a
follows:

Si5$Xi~ui ,v i !

5X0 i2~12zi !r i1v i r i1ui t i ,

uiP@2Ti ,Ti #,v iP@0,1#% ~B7!

with r i and t i given in Eq.~B6!. The corresponding infini-
tesimal surface element reads

dsmn~Xi !5S ]Xim

]ui

]Xin

]v i
2

]Xim

]v i

]Xin

]ui
Dduidv i

5~ t imr in2r imt in!duidv i . ~B8!

FIG. 13. ~a! Spatial arrangement of a color dipole and~b! its
world-line in Euclidean ‘‘longitudinal’’ space given by the recta
gular loopCi that defines the minimal surfaceSi with ]Si5Ci . The
minimal surface is represented by the shaded area. In our mod
is interpreted as the world-sheet of the QCD string that confines
quark and antiquark in the dipole.
07400
-

APPENDIX C: x COMPUTATIONS WITH MINIMAL
SURFACES

The quantities considered in the main text are compu
from the VEV of one loop̂ W@C#& and the loop-loop corre-
lation function ^W@C1#W@C2#&. Using the Gaussian ap
proximation in the gluon field strengths, both are expres
in terms of xSiSj

functions ~2.15! and ~2.27! as shown in

Secs. II A and II B. Thesex functions are central quantitie
since here the ansatz of the gauge-invariant bilocal gl
field strength correlator and the surface choice enter
model. In this appendix, these functions are computed
plicitly for minimal surfaces~B7! and theFmnrs ansatz given
in Eqs.~2.42!, ~2.44!, and~2.48!. Note that the contributions
from the infinitesimally thin tube—which allows us to com
pare the field strengths in surfaceS1 with the field strength in
surfaceS2—cancel mutually.

Depending on the geometries and the relative arran
ment of the loops, thex functions determine the physica
quantities investigated within the LLCM such as the sta
qq̄ potential ~3.2!, the chromo-field distributions of a colo
dipole ~4.9!, and theS-matrix element for elastic dipole
dipole scattering~6.10!.

We compute the three componentsxS1S2

P , xS1S2

NPnc, and

xS1S2

NPc separately for general loop arrangements from wh

the considered quantities are obtained as special cases. W
out loss of generality, the center of the loopC2 is placed at
the origin of the coordinate system,X0 25(0,0,0,0). More-
over, C2 is kept untilted,Q250, and QªQ1 is used to
simplify notation. We limit our general computation to loop
with r 1,25(rW1,2',0,0)[u1,25p/2 and transverse ‘‘impact pa
rameters’’ b5X0 12X0 25X0 15(b1 ,b2,0,0)5(bW',0,0)
which allows us to compute all of the considered quantiti

xS1S2

NPc computation

Starting with the definition

xS1S2

NPc
ª

p2

4 E
S1

dsmn~X1!E
S2

dsrs~X2!Fmnrs
NPc ~Z5X12X2!

5
p2G2k

12~Nc
221!

E
S1

dsmn~X1!E
S2

dsrs~X2!

3~dmrdns2dmsdnr!D~Z2!, ~C1!

one exploits the anti-symmetry of the surface elemen
dsmn52dsnm , and applies the surface parametrizati
~B7! with the corresponding surface elements~B8! to obtain

xS1S2

NPc5cosQ
p2G2k

3~Nc
221!

~r 1•r 2!E
0

1

dv1E
0

1

dv2

3E
2T1

T1
du1E

2T2

T2
du2D~Z2! ~C2!

with

, it
e

4-26
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Z5X12X2

5S bW'2~12z1!rW1'1v1rW1'1~12z2!rW2'2v2rW2'

2u1sinQ

u1cosQ2u2

D ,

~C3!

where the identitiest1•r 25r 1•t250 andt1•t25cosQ, evi-
dent from Eq.~B6! with the mentioned specification of th
loop geometries, have been used. In the limitT2→`, theu2
integration can be performed:

lim
T2→`

E
2T2

T2
du2D~Z2!

5E d4K

~2p!4
D̃~K2! lim

T2→`
E

2T2

T2
du2eiKZ

5E d4K

~2p!4
D̃~K2!2pd~K4!exp@ iKW 'ZW'

1 iK 3u1sinQ1 iK 4u1cosQ#

5E d3K

~2p!3
D̃ (3)~KW 2!exp@ iKW 'ZW'1 iK 3u1sinQ#

5D (3)~ZW 2!, ~C4!

which leads to

lim
T2→`

xS1S2

NPc5cosQ
p2G2k

3~Nc
221!

~rW1'•rW2'!E
0

1

dv1E
0

1

dv2

3E
2T1

T1
du1D (3)~ZW 2!. ~C5!

Taking in addition the limitT1→`, theu1 integration can be
performed as well:

lim
T1→`

E
2T1

T1
du1exp@ iK 3u1 sinQ#

5H 2pd~K3sinQ!5
2pd~K3!

usinQu
for sinQÞ0,

lim
T1→`

2T1 for sinQ50.

~C6!

With T15T25T/2→`, one obtains for sinQÞ0

lim
T→`

xS1S2

NPc5
cosQ

usinQu
p2G2k

3~Nc
221!

~rW1'•rW2'!E
0

1

dv1E
0

1

dv2

3D (2)~ZW'
2 ! ~C7!

and for sinQ50
07400
lim
T→`

xS1S2

NPc5 lim
T→`

T cosQ
p2G2k

3~Nc
221!

~rW1'•rW2'!

3E
0

1

dv1E
0

1

dv2D (3)~ZW 2!. ~C8!

Evidently, Eq. ~C7! is the result given in Eqs.~6.12! and
~6.15! which describes the confining contribution to th
dipole-dipole scattering matrix elementSDD .

From Eq.~C8!, one obtains the confining contribution t
the static color dipole potential forS15S25S which implies
T15T25T/2, Q50, z15z2 , r 15r 25r , and rW1'•rW2'5r 2

5R2 so that

lim
T→`

xSS
NPc5 lim

T→`

T
p2G2k

3~Nc
221!

R2E
0

1

dv1E
0

1

dv2

3D (3)@ZW 25~v12v2!2R2#

5 lim
T→`

T
2p2G2k

3~Nc
221!

R2E
0

1

dr

3~12r!D (3)~r2R2!, ~C9!

which leads directly to Eq.~3.7!.
From Eq.~C5! the confining contribution to the chromo

field distributionsDGab
2 (X) can be computed conveniently

Equation ~C5! reads forS15SP , T15RP/2 and R15RP ,
andS25SW , T25T/2 andR25R

lim
T→`

xSPSW

NPc 5cosQ
p2G2k

3~Nc
221!

~rW1'•rW2'!E
0

1

dv1E
0

1

dv2

3E
2RP/2

RP/2

du1D (3)~ZW 2! ~C10!

with

ZW 5XW 12XW 2

5S bW'2~12z1!rW1'1v1rW1'1~12z2!rW2'2v2rW2'

2u1sinQ
D .

~C11!

The confining non-perturbative contribution to the chrom
magnetic fields vanishes as it is obtained for plaquettes w
Q5p/2. The corresponding contribution to the chrom
electric fields can be computed withQ50 as follows: Due to
R15Rp→0, theu1 andv1 integrations in Eq.~C10! can be
performed with the mean value theorem. Keeping only ter
up to O(Rp

2), the confining non-perturbative contribution t
the chromo-field distributionsDGab

2 (X) is obtained as given
in Eq. ~4.18!.
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xS1S2

NPnc computation

We start again with the definition

xS1S2

NPnc
ª

p2

4 E
S1

dsmn~X1!E
S2

dsrs~X2!Fmnrs
NPnc~Z5X12X2!

5
p2G2~12k!

12~Nc
221!

E
S1

dsmn~X1!E
S2

dsrs~X2!
1

2 F ]

]Zn
~Zsdmr2Zrdms!1

]

]Zm
~Zrdns2Zsdnr!GD1~Z2! ~C12!

and use the anti-symmetry of both surface elements to obtain

xS1S2

NPnc5
p2G2~12k!

6~Nc
221!

E
S1

dsmn~X1!E
S2

dsrs~X2!
]

]Zn
ZsdmrD1~Z2! ~C13!

5
p2G2~12k!

3~Nc
221!

E
S1

dsmn~X1!E
S2

dsrs~X2!
]

]Zn

]

]Zs
dmrD18~Z2! ~C14!

52
p2G2~12k!

3~Nc
221!

E
S1

dsmn~X1!
]

]X1n
E

S2

dsrs~X2!
]

]X2s
dmrD18~Z2! ~C15!

with

D18~Z2!5E d4K

~2p!4
eiKZD̃18~K2!5E d4K

~2p!4
eiKZ

d

dK2
D̃1~K2!. ~C16!

As evident from Eq.~C15!, Stokes theorem can be used to transform each of the surface integrals inxS1S2

NPnc into a line integral:

xS1S2

NPnc52
p2G2~12k!

3~Nc
221!

E
S1

dsmn~X1!
]

]Zn
R

C2

dZr~X2!dmrD18~Z2! ~C17!

52
p2G2~12k!

6~Nc
221!

E
S1

dsmn~X1! R
C2

dZr~X2!dmrZnD1~Z2! ~C18!

52
p2G2~12k!

3~Nc
221!

R
C1

dZm~X1! R
C2

dZr~X2!dmrD18~Z2!. ~C19!

With the line parametrizations ofC1 andC2 given in Eq.~B1! and the specification of the loop geometries mentioned at
beginning of this appendix, Eq.~C19! becomes

xS1S2

NPnc52
p2G2~12k!

3~Nc
221!

H cosQE
2T1

T1
du1E

2T2

T2
du2@D18~ZAA

2 !2D18~ZAC
2 !2D18~ZCA

2 !1D18~ZCC
2 !#

1~rW1'•rW2'!E
0

1

dv1E
0

1

dv2@D18~ZBB
2 !2D18~ZBD

2 !2D18~ZDB
2 !1D18~ZDD

2 !#J ~C20!
074004-28
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where the following shorthand notation is used:

ZXYªX1
X2X2

Y with X2
XPC2

X and X2
YPC2

Y .
~C21!

In the limit R1,2!T1,2→`, the term proportional to (rW1'

•rW2') on the RHS of Eq.~C20! can be neglected and thu
Eq. ~C20! reduces to

lim
T1→`
T2→`

xS1S2

NPnc52cosQ
p2G2~12k!

3~Nc
221!

lim
T1→`

E
2T1

T1
du1 lim

T2→`

3E
2T2

T2
du2@D18~ZAA

2 !2D18~ZAC
2 !2D18~ZCA

2 !

1D18~ZCC
2 !#. ~C22!

Here, the integrations overu1 andu2 can be performed ana
lytically proceeding analogously to Eqs.~C4! and~C6!. With
T15T25T/2→`, one obtains for sinQÞ0

lim
T→`

xS1S2

NPnc52
cosQ

usinQu
p2G2~12k!

3~Nc
221!

@D18
(2)~ZW AA'

2 !

2D18
(2)~ZW AC'

2 !2D18
(2)~ZW CA'

2 !1D18
(2)~ZW CC'

2 !#

~C23!

and for sinQ50

lim
T→`

xS1S2

NPnc52 lim
T→`

T cosQ
p2G2~12k!

3~Nc
221!

@D18
(3)~ZW AA

2 !

2D18
(3)~ZW AC

2 !2D18
(3)~ZW CA

2 !1D18
(3)~ZW CC

2 !#.

~C24!

With the identities

ZW AA'5rW1q2rW2q , ZW AC'5rW1q2rW2q̄ ,

ZW CA'5rW1q̄2rW2q , ZW CC'5rW1q̄2rW2q̄ , ~C25!

one sees immediately that Eq.~C23! is the result given in
Eqs.~6.12! and ~6.14! that describes the non-confining no
07400
perturbative contribution to the dipole-dipole scattering m
trix elementSDD .

From Eq.~C24!, one obtains the non-confining contribu
tion to the static potential forS15S25S, i.e. T15T25T/2,
Q50, r 15r 25r ,

lim
T→`

xSS
NPnc52 lim

T→`

T
p2G2~12k!

3~Nc
221!

@D18
(3)~ZW AA

2 !2D18
(3)~ZAC

2 !

2D18
(3)~ZW CA

2 !1D18
(3)~ZW CC

2 !#, ~C26!

which contributes to the self-energy of the color sources w

lim
T→`

xSS self
NPnc 52 lim

T→`

T
p2G2~12k!

3~Nc
221!

@D18
(3)~ZW AA

2 !

1D18
(3)~ZW CC

2 !#

52 lim
T→`

T
2p2G2~12k!

3~Nc
221!

D18
(3)~ZW AA

2 !

~C27!

and to the potential energy between the color sources w

lim
T→`

xSS pot
NPnc 5 lim

T→`

T
p2G2~12k!

6~Nc
221!

@D18
(3)~ZW AC

2 !1D18
(3)~ZW CA

2 !#

5 lim
T→`

T
p2G2~12k!

3~Nc
221!

D18
(3)~ZW AC

2 !. ~C28!

The last gives the non-confining contribution to the sta
potential~3.6!.

The non-confining non-perturbative contribution to t
chromo-electric fields@DGab

2 (X) with ab5 i454i ] can be
computed most conveniently from Eq.~C18! with zero
plaquette tilting angleQ50. The corresponding contributio
to the chromo-magnetic fields@DGab

2 (X) with ab5 i j
5 j i ] is obtained for plaquette tilting angleQ5p/2 and thus
vanishes which can be seen most directly from the surf
integrals~C13!. Now, we setQ50 to compute the contribu
tion to the chromo-electric fields: Using the surfaceS15SP
and loop C25]SW parametrizations, Eqs.~B7! and ~B1!,
with our specification of the loop geometries, one obta
from Eq. ~C18!
xSPSW

NPnc52
p2G2~12k!

3~Nc
221!

E
2RP/2

RP/2

du1E
0

1

dv1H E
2T/2

T/2

du2@~rW1'•ZW 1A'!D1~Z1A
2 !2~rW1'•ZW 1C'!D1~Z1C

2 !#

2~rW1'•rW2'!E
0

1

dv2@~rW1'•ZW 1B'!D1~Z1B
2 !2~rW1'•ZW 1D'!D1~Z1D

2 !#J ~C29!
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with T15RP/2, R15RP , T25T/2, R25R, and the short-
hand notation

Z1XªX12X2
X with X1PS15SP and X2

XPC2
X5]SW

X .
~C30!

In the limit R!T→`, the term proportional to (rW1'•rW2') on
the RHS of Eq.~C29! can be neglected,

lim
T→`

xSPSW

NPnc52
p2G2~12k!

3~Nc
221!

E
2RP/2

RP/2

du1E
0

1

dv1 lim
T→`

3E
2T/2

T/2

du2@~rW1'•ZW 1A'!D1~Z1A
2 !

2~rW1'•ZW 1C'!D1~Z1C
2 !#. ~C31!

With an infinitesimal plaquette used to measure the chro
electric field,R15Rp→0, the mean value theorem can b
used to perform theu1 and v1 integrations in Eq.~C31!.
Keeping only terms up toO(Rp

2), this leads directly to the
non-confining non-perturbative contribution to the chrom
field distributions DGab

2 (X) as given in Eqs.~4.16! and
~4.17!.

xP Computation

Comparing the definition of the perturbative compone

xS1S2

P
ª

p2

4 E
S1

dsmn~X1!E
S2

dsrs~X2!Fmnrs
P ~Z5X12X2!

5
g2

4 E
S1

dsmn~X1!E
S2

dsrs~X2!

3
1

2 F ]

]Zn
~Zsdmr2Zrdms!1

]

]Zm
~Zrdns2Zsdnr!G

3DP~Z2! ~C32!

with that of the non-confining non-perturbative compone
xS1S2

NPnc given in Eq. ~C12!, one finds an identical structure

Thus, accounting for the different prefactors and the differ
correlation function, the results forxS1S2

P can be read off

directly from the results forxS1S2

NPnc given above.

With T15T25T/2→` and our specification of the loo
geometries, one obtains the result for sinQÞ0 from Eq.
~C23!

lim
T→`

xS1S2

P 52
cosQ

usinQu
g2@DP8

(2)~ZW AA'
2 !2DP8

(2)~ZAC'
2 !

2DP8
(2)~ZW CA'

2 !1DP8
(2)~ZW CC'

2 !# ~C33!

and the result for sinQ50 from Eq.~C24!
07400
o-

-

t

t

lim
T→`

xS1S2

P 52 lim
T→`

T cosQg2@DP8
(3)~ZW AA

2 !2DP8
(3)~ZAC

2 !

2DP8
(3)~ZW CA

2 !1DP8
(3)~ZW CC

2 !#, ~C34!

whereZXY is defined in Eq.~C21! andZXY' is given explic-
itly in Eq. ~C25!. Evidently, Eq. ~C33! is the final result
given in Eqs.~6.12! and~6.13! which describes the perturba
tive contribution the dipole-dipole scattering matrix eleme
SDD .

The perturbative contribution to the static potential is o
tained from the expression corresponding to Eq.~C26!,

lim
T→`

xSS
P 52 lim

T→`

Tg2@DP8
(3)~ZW AA

2 !2DP8
(3)~ZAC

2 !2DP8
(3)~ZW CA

2 !

1DP8
(3)~ZW CC

2 !#, ~C35!

which contributes to the self-energy of the color sources w

lim
T→`

xSS self
P 52 lim

T→`

Tg2@DP8
(3)~ZW AA

2 !1DP8
(3)~ZW CC

2 !#

52 lim
T→`

T2 g2DP8
(3)~ZW AA

2 ! ~C36!

and to the potential energy between the color sources w

lim
T→`

xSS pot
P 52 lim

T→`

Tg2@DP8
(3)~ZW AC

2 !1DP8
(3)~ZW CA

2 !#

52 lim
T→`

T2g2DP8
(3)~ZW AC

2 !. ~C37!

The last gives the perturbative contribution to the static
tential ~3.4!.

The perturbative contribution to the chromo-magne
fields @DGab

2 (X) with ab5 i j 5 j i ] vanishes while the one
to the chromo-electric fields@DGab

2 (X) with ab5 i454i ],
for which a plaquette withQ50 is needed, is obtained from
the expression corresponding to Eq.~C31!,

lim
T→`

xSPSW

P 52g2E
2RP/2

RP/2

du1E
0

1

dv1 lim
T→`

E
2T/2

T/2

du2

3@~rW1'•ZW 1A'!DP~Z1A
2 !

2~rW1'•ZW 1C'!DP~Z1C
2 !# ~C38!

with Z1X as defined in Eq.~C30!. To perform theu1 andv1
integrations in Eq.~C38!, again the mean value theorem ca
be used since the plaquette has infinitesimally small ex
sions,R15Rp→0. Keeping only terms up toO(Rp

2), this
leads directly to the perturbative contribution to the chrom
field distribution DGab

2 (X) as given in Eqs.~4.13! and
~4.14!.
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