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Confining QCD strings, Casimir scaling, and a Euclidean approach to high-energy scattering
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We compute the chromo-field distributions of static color dipoles in the fundamental and adjoint represen-
tation of SU(N,) in the loop-loop correlation model and find Casimir scaling in agreement with recent lattice
results. Our model combines perturbative gluon exchange with the non-perturbative stochastic vacuum model
which leads to confinement of the color charges in the dipole via a string of color fields. We compute the
energy stored in the confining string and use low-energy theorems to show consistency with the static quark-
antiquark potential. We generalize Meggiolaro’s analytic continuation from parton-parton to gauge-invariant
dipole-dipole scattering and obtain a Euclidean approach to high-energy scattering that allows us in principle
to calculateS-matrix elements directly in lattice simulations of QCD. We apply this approach and compute the
Smatrix element for high-energy dipole-dipole scattering with the presented Euclidean loop-loop correlation
model. The result confirms the analytic continuation of the gluon field strength correlator used in all earlier
applications of the stochastic vacuum model to high-energy scattering.

DOI: 10.1103/PhysRevD.68.074004 PACS nuntber12.38.Lg, 11.80.Fv

[. INTRODUCTION tions of hadrons and photoi8] on the basis of a functional
integral approacH9-13]. The central element in our ap-
The structure of the QCD vacuum is responsible for colomproach is the gauge-invariant Wegner-Wilson Iddg,15:
confinement, spontaneous chiral symmetry breaking, and dyFhe physical quantities considered are obtained from the
namical mass generatiofl]. Hadronic reactions are ex- vacuum expectation valuéVEV) of one Wegner-Wilson
pected to show further manifestations of a non-trivial QCDloop, (W,[C]), and the correlation of two Wegner-Wilson
vacuum. It is indeed a key issue to unravel the effects ofoops, (W, [C1]W, [C,]). Herer indicates theSU(N)
confinement and topologically non-trivial gauge field con- e esentation of the Wegner-Wilson loops which we keep as

figurations (such as instantomson such reactiong2,3]. | ibl Wi W
Moreover, it would be a significant breakthrough to under—genera as _ possible. e expresgWi[C]) and

stand the size, behavior and growth of hadronic cross seé—er[C_l]Wrz[Cz]> in terms of .the gauge—mvarlar]t. bilocal
tions with increasing c.m. energy from the QCD Lagrangian.gluon field s_,trength correlato.r integrated over minimal sur-
Lattice QCD is the principal theoretical tool to study the faces by using the non-Abelian Stokes theorfeii] and a
QCD vacuum from first principles. Numerical simulations of matrix cumulant expansiofi7] in the Gaussian approxima-
QCD on Euclidean lattices give strong evidence for colortion. The latter approximation relies on the assumption of a
confinement and spontaneous chiral symmetry breaking an@aussian dominance in the correlations of gauge-invariant
describe dynamical mass generation from the QCD Lagrangion-local gluon field strengths, i.e. the dominance of the
ian [4—6]. However, since lattice QCD is limited to the Eu- bilocal correlator over higher ones, and is supported by lat-
clidean formulation of QCD, it cannot be applied in tice investigation$18]. In our model this Gaussian approxi-
Minkowski space-time to simulate high-energy reactions inmation leads directly to the Casimir scaling of the static
which particles are moving near the light cone. Furthermoreguark-antiquark potential which f@U(3) has clearly been
although lattice investigations have significantly enhancedonfirmed on the lattic§19,2(0. We decompose the gauge-
our understanding of non-perturbative phenomena and pairvariant bilocal gluon field strength correlator into a pertur-
ticularly confinement, one can quote the concluding sentenckeative and a non-perturbative component: The stochastic
of Greensite’s recent revief7]: “The confinement problem vacuum modelSVM) [21] is used for the non-perturbative
is still open, and remains a major intellectual challenge inow-frequency background field and perturbative gluon ex-
our field.” Here (phenomenologicalmodels that allow ana- change for the additional high-frequency contributions. This
lytic calculations are important as they provide valuablecombination allows us to describe long and short distance
complementary insights. correlations in agreement with lattice calculations of the
In this work we introduce the Euclidean version of the gluon field strength correlat¢d8,22—24. Moreover, it leads
loop-loop correlation modglLLCM) which has been devel- to a static quark-antiquark potential with color Coulomb be-
oped in Minkowski space-time to describe high-energy reachavior for small and confining linear rise for large source
separations. We calculate the static quark-antiquark potential
with the LLCM parameters determined in fits to high-energy
*Electronic address: shoshi@tphys.uni-heidelberg.de scattering daté8] and find good agreement with lattice data.
TElectronic address: Frank.D.Steffen@thphys.uni-heidelberg.de We thus have one model that describes both static hadronic
*Electronic address: H.G.Dosch@thphys.uni-heidelberg.de properties and high-energy reactions of hadrons and photons
SElectronic address: pir@tphys.uni-heidelberg.de in good agreement with experimental and lattice QCD data.
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We apply the LLCM to compute the chromo-electric dipole scattering such th&matrix elements for high-energy
fields generated by a static color dipole in the fundamentateactions can be computed from configurations of Wegner-
and adjoint representation &U(N.). The non-perturbative Wilson loops in Euclidean space-time and with Euclidean
SVM component describes the formation of a color flux tubefunctional integrals. This shows how one can access high-
that confines the two color sources in the dipi26] while ~ energy reactions directly in lattice QCD. First attempts in
the perturbative component leads to color Coulomb fieldsthis direction have already been carried out but only very
We find Casimir scaling for both the perturbative and non-féw signals could be extracted, while most of the data was
perturbative contributions to the chromo-electric fields agairfiominated by noisg39]. We apply this approach to compute

as a direct consequence of the Gaussian appoximation in tjg€_scattering of dipolesl ath high—eln%rgy ind th_ehE;]JcIidean
gluon field strengths. The mean squared radius of the confi —IE_CM' V¥e retqoverfg[ﬁact)l/ t effe%“ tt erlvti wit It € ana-
ing QCD string is calculated as a function of the dipole size ytic continuation of the gluon field strength correlafd.

L . . This confirms the analytic continuation used in all earlier
Transverse and longitudinal energy density profiles are pro-

. . . applications of the stochastic vacuum model to high-energy
Vld?d tt)ot§tudyhth§ mfterﬂ;y bEttV\:fenl pe'rturba_l'Elr\]/e tand .rt].on'scatteringfll—13,40—43including the Minkowskian appli-
perturbative physics for difterent dipole sizes. The ransition, 4tions of the LLCM[8,32—-34. In fact, the Smatrix ele-

from perturbative to string behavior is found at source sepas,ant obtained has already been used as the basis for a uni-
rations of about 0.5 fm in agreement with the recent resultg;gq description of hadronic high-energy reactidi@, to
of Luscher and Weis{26]. . . study saturation effects in hadronic cross secti@32,34,

‘The low-energy theorems, known in lattice QCD asand to investigate manifestations of the confining QCD
Michael sum rule$27], relate the energy and action stored in string in high-energy reactions of photons and hadf@§.
the chromo-fields of a static color dipole to the correspond- The outline of the paper is as follows. In Sec. Il the
ing ground state energy. The Michael sum rules, howevei.LCM is introduced in its Euclidean version and the general
are incomplete in their original forri27]. We present the computations of W,[C]) and(er[Cl]Wrz[Cz]) are pre-

complete energy and action sum rul@8—3( in continuum  sented. Based on these evaluations, we compute the potential
theory taking into account the contributions to the action sunpf a static color dipole in Sec. Ill and the associated chromo-
rule found in[31] and the trace anomaly contribution to the field distributions in Sec. IV with emphasis on Casimir scal-
energy sum rul¢28]. Using these low-energy theorems, we ing and the interplay between perturbative color Coulomb
compare the energy and action stored in the confining stringehavior and non-perturbative formation of the confining
with the confining part of the static quark-antiquark poten-QCD string. In Sec. V low-energy theorems are discussed
tial. This allows us to confirm consistency of the model re-and used to show consistency of the model results and to
sults and to determine the values of the Callan-Symagzik determine the values ¢f ande; at the renormalization scale
function and the strong coupling, at the renormalization at which the non-perturbative SVM component is working.
scale at which the non-perturbative SVM component isln Sec. VI the Euclidean approach to high-energy scattering
working. The values obtained fg# and ag are compared to is presented and applied to compute high-energy dipole-
model independent QCD results for the Callan-Symanzildipole scattering in our Euclidean model. In the Appendixes
function. Earlier investigations along these lines have beewe review the derivation of the non-Abelian Stokes theorem,
incomplete since only the contribution from the traceless pargive parametrizations of the loops and the minimal surfaces,
of the energy-momentum tensor has been considered in tt@nd provide the detailed computations for the results in the

energy sum rule. main text.
To study the effect of the confining QCD string examined
in Euclidean space-time on high-energy reactions in [l. THE LOOP-LOOP CORRELATION MODEL

Minkowski space-time, an analytic continuation from Eu-

clidean to Minkowski space-time is needed. For investigas In_this _sectlon the vacuum expec_taﬂon value of one
Wegner-Wilson loop and the correlation of two Wegner-

tions of high-energy reactions in our Euclidean model, th<=Wilson loons are comouted for arbitrary 100o geometries
gauge-invariant bilocal gluon field strength correlator can be P P Y P9

analytically continued from Euclidean to Minkowski space- within a Gaussian approximation in the gluon field strengths.

time. This analytic continuation has been introduced for ap:rhe results are applied in the following sections. We describe

S . . our model for the QCD vacuum in which the stochastic
plications of the SVM to high-energy reactiofil-13 and . i i )
is used in our Minkowskian applications of the LLCM vacuum model[21] is used for the non-perturbative low

[8,32—34. Recently, an alternative analytic continuation forfrequency background fieldong-distance correlationsind

) : . . bpgzrturbative gluon exchange for the additional high-
parton-parton scattering has been established in the pertur 82 quenc contributiongéshort-distance correlations
tive context by Meggiolarg35]. This analytic continuation q y

has already been used to access high-energy scattering from
the supergravity side of the AdS/CFT corresponder6d,
which requires a positive definite metric in the definition of A crucial quantity in gauge theories is the Wegner-Wilson
the minimal surfacg37], and to examine the effect of instan- loop operatof14,15

tons on high-energy scattering8].

In this work we generalize Meggiolaro’s analytic continu- W.ICT=Tr.Pexd —i 3€ dZ G3(Z)t? 21
ation [35] from parton-parton to gauge-invariant dipole- [CI=TrP 9 Te pGu2tr). (21

A. Vacuum expectation value of one Wegner-Wilson loop
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Concentrating orSU(N.) Wegner-Wilson loops, wherbl, Due to the linearity of the functional integralJr,- - -)
is the number of colors, the subscripindicates a represen- I’ﬁ&' .Y, we can write

tation of SU(N,), Tr,=Tr,(---)/Tr1l, is the normalized

trace in the corresponding color space with unit element (W,[C])e

g is the strong coupling, and, (Z) =G%(Z)t7 represents the
gluon field with theSU(N;) group generators in the corre-

sponding representatiotf, that demand the path ordering > '
indicated byP on the closed patl in space-time. A distin- G
guishing theoretical feature of the Wegner-Wilson loop is its (2.6
invariance under local gauge transformations in color space.

— .9
:Trr< Psexr{ —i ELd(rW(Z)gf‘w(O,Z;Czo)tﬁ1

Therefore, it is the basic object in lattice gauge theoried-or the evaluation of Eq2.6), a matrix cumulant expansion
E do(Z2)G(0,Z;C

represents the phase factor associated with the propagation of Psexg —15 S 0(2)4(0,Z;Cz0)

a very massive color source in the representatiaf the

[4,14,19 and has been considered as the fundamental builds used as explained {10] (cf. also[17])
> G
gauge grouBU(N,). w
o

ing block for a gauge theory in terms of gauge invariant
variableg49]. Phenomenologically, the Wegner-Wilson loop
_ : 1/ .g)\"
To compute the expectation value of the Wegner-Wilson > il J’ do(Xy)- - -do(X,)
loop (2.1) in the QCD vacuum n=1n

, 2.7

(W[Cl)e= <':I'—rr7?exp{ —ig écdz,ugi(z)t?

> , XKn(Xl,"',Xn)
G

(2.2) o .
where space-time indices are suppressed to simplify nota-

we transform the line integral over the lo@anto an integral  tion. The cumulant¥,, consist of expectation values of or-
over the surfac& with dS=C by applying the non-Abelian dered products of the non-commuting matrices
Stokes theoreml6] G(0,Z;C5p). The leading matrix cumulants are

(W [C])e K1(X)=(G(0,X;Cx))s, (2.9

—_ .9
- < TrrPSex;{ —i Efsd(rw(Z)gf‘w(O,Z;Czo)tﬁ1

>G’ Ka(X1,X2) =(PdG(0,X1;Cx,)G(0,X2;Cx ) I)s

1
(2.3 — 5[(9(0,X1;Cx))a(9(0,X2:Cx,))e

where Pg indicates surface ordering ar@ is an arbitrary

reference point on the surfa& In Eqg. (2.3 the gluon field +(1-2)]. (2.9
strength tensog,,,(2) =G (2)t7, is parallel transported to
the reference poinD along the pattC,o, Since the vacuum does not prefer a specific color direction,
_ _ _ . K vanishes andk, becomes
Gu(0,Z;C20)=P(0,Z;C20)G,,(2)P(0,Z;Cz0)
24 K2(X1,X2) =(PG(0,X1;Cx,)G(0,X2;Cx )]} -
with the QCD Schwinger string (2.10

: _ . a a Now, we approximate the functional integral associated with
(D’(O’Z’CZO)_PeX;{ 'gfczodzf‘g“(z)tr} @9 the expectation values - - ) as a Gaussian integral in the
parallel transported gluon field strength4). This Gaussian
A more detailed explanation of the non-Abelian Stokes theoapproximation is supported by lattice investigatiphg] that
rem and the associated surface ordering is given in Appendighow a dominance of the bilocal gauge-invariant gluon field
A. strength correlator over higher-point non-local correlators.
The QCD vacuum expectation valde- -)g represents As a consequence of the Gaussian approximation, the cumu-
functional integrals in which the functional integration over lants factorize into two-point field correlators such that all
the fermion fields has already been carried out as indicatetigher cumulantsK,, with n>2, vanish* Thus, (W,[C])g
by the subscripG [10]. The model we use for the evaluation can be expressed in terms kf:
of {(---)g is based on the quenched approximation which
does not allow string breaking through dynamical quark-
antiquark production. So far, it is not clear how to introduce we are going to use the cumulant expansion in the Gaussian
dynamical quarks into this model. One suggestion is preapproximation also for perturbative gluon exchange. Here certainly
sented in Appendix A of Ref10]. the higher cumulants are non-zero.
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_ g° cannot reproduce the saher term which has recently been
(W([Cl)e=Trexg — gfsdff,w(xl) Ld%g(xz) confirmed by Lischer and Weisf26].
x(PS[gZV(o,xl;cxlO)tf B. The loop-loop correlation function

The computation of the loop-loop correlation function
_ (2.1 (er[Cl]W,z[CZDG starts again with the application of the
non-Abelian Stokes theorefi6] which allows us to trans-
form the line integrals over the loofi, , into integrals over
surfacesS, , with 9S; ,=C, ,:

XGp,(0,X7:Cx,0)t7 ]

Due to the color neutrality of the vacuum, the gauge-
invariant bilocal gluon field strength correlator containg a
function in color space, (W [C1IW, [Col)e

9° = g
<ﬁ[gzv(o,xl;cxlo)ggo(o,xz;cxzo)]> —<Tr,17vsexp[—| > Slolaw(xl)

G
1 b, . Xga (01 Xl'Cxo)ta
:Z‘Sa F,LLV[J(r(xl!XZIOyCXlO1CX20) (212 my ’ ’ 1817
which makes the surface orderifi in Eq. (2.11) irrelevant. X—ﬁrzpsexr{ —i gf da,e(X2)
The tensorF ,,,, will be specified in Sec. Il C. With Eq. 2Js,

(2.12 and the quadratic Casimir operai@,(r),
X ggo(oz,xzicxzoz)tb

M2

2 > (2.16
2=t?=Cy(r)],, (2.13 .

Eq. (2.11) reads whereO; andO, are the reference points on the surfags
and S,, respectively, that enter through the non-Abelian
Cy(r) Stokes theorem. In order to ensure gauge invariance in our
=exp{— 2 Xss) model, the gluon field strengths associated with the loops
(2.14 must be compared aine reference pointO. Due to this
' physical constraint, the surfac& and S, are required to
where touch at a common reference poidf=0,=0.
To treat the product of the two traces in HG.16), we

—_ C
<Wr[c]>G:TrreXF{ - 22(r) Xsdr

? transfer the approach of Berger and Nachtmfaj (cf. also
Xss~'=jfsdﬂw(xl) Ldtqu(xz)pru [8]) to Euclidean space-time. Accordingly, the product of the
two traces, T,r1(~ : -)Trrz(» --), overSU(N,) matrices in the
X(Xl’XZ’O;Cxlo’CXzO)' (2.15 r, andr, representations, respectively, is interpreted as one

In this rather general resul2.14 obtained directly from the trace Tror, () =Thor,(- '.')/Tr”@r?(lrl@rZ) that acts in
color neutrality of the QCD vacuum and the Gaussian ap:[.he tensor product space built from theandr, representa-
proximation in the gluon field strengths, the more detailedt'onS:
aspects of the QCD vacuum and the geo_metry of the_ consid- (W, [C,IW, [Co])e
ered Wegner-Wilson loop are encoded in the functigyy L 2
which is computed in Appendix C for a rectangular loop. .

In explicit computations we use f&the minimal surface, = < Trr1®r2[
which is the planar surface spanned by the 100p-(S) that
leads most naturally to Wilson's area |4@1]. Of course, the
results should not depend on the choice of the surface. In our xgiv(o,xl;cxlo)tf‘l
model the perturbative and non-perturbative non-confining
components satisfy this requirement. The non-perturbative g
confining component i ,, ., depends on the choice of the X Ll®7?sex;{ —i Ef do,.(X2)
surface due to the Gaussian approximation and the associ- S
ated truncation of the cumulant expansion. Since the minimal
surface leads to a static quark-antiquark potential that is in xgg(,(o,xz;cxzo)t&’2> }> . (2.17
good agreement with lattice datsee Sec. I, we think that G
the minimal surface reduces the contribution from higher ) N
cumulants. Within bosonic string theory, our minimal surfaceWith the identities
represents the world-sheet of a rigid string: Our model does
not describe fluctuations or excitations of the string and thus exqt?1)®ﬂr2:exqt?1®]r2)’ (2.18

.9
Psexr( =i 5J81dcrw(xl)

®l,,
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}Lr1®exp(t?2)=exp(1rl®traz), (2.19 . X giV(O,X;CXO)(tf‘lQ@Lz) for Xe'S,
TulOXiEx0=) g2 (0,%:Cx0) (1, 81%) for XeS,.
the tensor products can be shifted into the exponents. Using (2.23
the matrix multiplication relations in the tensor product
space In Eq. (2.22 the surface integrals ov&; andS, are written

as one integral over the combined surf&eS,; + S, so that

the right-hand sidéRHS) of Eq. (2.22 becomes very similar

to the RHS of Eq.(2.3). This allows us to proceed analo-
gously to the computation @iW,[ C])g in the previous sec-
tion. After exploiting the linearity of the functional integral,
the matrix cumulant expansion is applied, which holds for
GM(O,X;CXO) as well. Then, with the color neutrality of
the vacuum and by imposing the Gaussian approximation
now in the color components of the gluon field strength
tensor? only then=2 term of the matrix cumulant expansion

(2l )t @l ) =t 7 @1,
b b
(tral®]l,2)(]l,1®tr2) =tf‘1®tr2, (2.20

and the vanishing of the commutator

[t?1®lr2,1rl®t?2]=0, (2.2)  survives, which leads to
(W, [C1IW, [C2])e

the two exponentials in Eq2.17) commute and can be writ- )

i — g
ten as one exponential :Trrl®r2exf{ _ §J’Sd%v(xl) deGpU(XZ)
(WCIW[C;])6 R .

g X(PdG,(0,X1;Cx,0)G,5(0,X2;Cx,0) ) |-
:<Trr1®l‘2,PSeXF{_i zjsdo-,uv(x)g/.w(orx;cxo) >G (224)
(2.22

Using definition(2.23 and relationg2.20), we now redivide

the exponent in Eq.2.24) into integrals of the ordinary par-
with the following gluon field strength tensor acting in the allel transported gluon field strengths over the separate sur-
tensor product space: facesS; andS;:

— 92 a a
<vvr1[cllwr2[cz]>e=Trr1®rzexp[ -2 80,u(X) fszdap(,(xzwsugﬂxo,xl;cxlc,)g,?g(o,xz Cr, ol ot2)]

1

g* a a
-7 fszd%(xl) Llola,,cx><2>7>s[<g,bw<o,xl;cxlo)gf;,xo,xz;cxzo>>e<tr ot?)]

92
_ §JSldO',w()(l) jSldUpU(XZ)PS[<gZV(nyl ; Cxlo)ggg(O,Xz ; CX20)>G(tf‘ltPl® 1.)]

92 a a
) Szdo-,uv(xl)fszdopa(x2)7)$[<gp,y(ovx1;CXlO)ggg(onZ;CX20)>G(]rl®tr2t?2)] . (229

Here the surface orderirBs is again irrelevant due to the color neutrality of the vacu@m 2, and Eq.(2.25 becomes

°Note that the Gaussian approximation on the level of the color components of the gluon field strengtictemponent factorization
differs from the one on the level of the gluon field strength teriswtrix factorization used to computéW,[ C]) in the original version of
the SVM[21]. Nevertheless, with the additional ordering r[2&] explained in detail in Sec. 2.4 §50], a modified component factorization
is obtained that leads to the same area law as the matrix factorization.
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W, [C,]W, [C
W [CaIWe [ Callo (Pa) (ayap) (812 = <6algl wpy— By Pap)s (232
5 p[ X X 10 o | |
r®r; which decompose the direct product space of two fundamen-
tal SU(N;) representations into the irreducible representa-
a.a )(52s2 a.a tions
- 2 (trltrl el )———( ®tr2tr2)
2.2 Ne®Ng=(N;+1)N/28N(N.—1)/2. (2.33

with With Try en Inen,= NZ and the projector properties
2 P2.=Psa,  TryenPs=(Nc+1)N/2, and
Xss= f dor,.,(X1) f doyy(Xz) a= e Thon (e D
TrNC®NCPa=(Nc_l)Nc/21 (234)
XF,quU(XlaXZvO;Cxlo1CX20)- (227) . . . .
we find for the loop-loop correlation function with both
The symmetries in the tensor structurefof,,, [see Egs. loops in the fundament&8U(N.) representation
(2.42, (2.44, and (2.48] lead to xs s, = xs,s,- With the

quadratic Casimir operatd2.13 our final Euclidean result (Wi [C1]Wy [C2]>G:exﬁ{ 2( o)

for generalSU(N,) representations; andr, become$ (Xslsl XSZSZ)}

<Wr1[C1]Wr2[C2]>G Nc+1 Nc—1
X —
2N, TN, Xes
;T‘rrl%em[ Xs,s, (17 ®17) . Ne—1  [Ng+1
2N, TH TN, Ass
Cy(rq) Cy(ry)
( 2 XSlsl+ 2 stsz r®r, (235)
(2.28 where
wherel, ory =l ®lp, . After specifying the representations N2—1
r, andr,, the tensor product; o, ta @ta can be ex- Ca(Ne) = 2N, (2.36
pressed as a sum of projection operatqrwim the property
Pt, or.=\iP, For one Wegner-Wilson loop in the fundamental and one
v in the adjoint representation dBU(N.), r;=N, and r,
Tfr L (Pt o) =N§—1, which is needed in Sec. IV to investigate the
trer,= => AP with ) =2 1z chromo-field distributions around color sources in the adjoint
T or,(P) representation, the decompositith29 reads
(2.29
1 1
which corresponds to the decomposition of the tensor prod- ty ®th 1= ?°P1+ EPZ_ §P3 (2.37

uct space into irreducible representations.

For two Wegner-Wilson loops in the fundamental repre-
sentation ofSU(N.), r{=r,=N;, which could describe the
trajectories of two quark-antiquark pairs, the decomposition
(2.29 becomes trivial:

with the projection operatot®;, P,, and R that decompose
the direct product space of one fundamental and one adjoint
representation cd U(N,) into the irreducible representations

Ne—1  Ng+1 2 4N NN
ROt = P NP (230 Nee N = 1=Ne® SNe(Ne = 1)(N+2)
with the projection operators 1
pro) P & SNe(Ne+ 1)(Ne—2), (2.39

(PS)(alaz)(ﬂlﬁz) (5“131 azBy T 5“1525"2:31)’ (2.31)

“The explicit form of the projection operators PP,, and B can
be found in[51] but note that we use the Gell-Mariconventional
*Note that the Euclidearyss+#0 in contrast toyss=0 for  normalization of the gluons. The eigenvaluks, of the projection
Minkowskian light-like loopsC; considered in the original version operators in Eq(2.37) can be evaluated conveniently with the com-
of the Berger-Nachtmann approa@45|. puter prograncoLOuR [52)].
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which reduces foN.=3 to the well-knownSU(3) decom- quark-antiquark potential to the energy stored in the chromo-
position electric fields presented in Sec. V, we infer that the minimal

surfaces are more compatible with the Gaussian approxima-

398=3¢1586. (2.39  tion. Indeed, the application of low-energy theorems in Sec.

V will show that the minimal surfaces are important for the

With Try onz-1ln onz-1=Ne(N2—1) and projector proper- consistency between the results for the VEV of one _Ioop,
W,[C]), and the loop-loop correlation function,

er[Cl]W,Z[Cz]>. In addition, the simplicity of the mini-
mal surfaces gives definitive advantages in analytical com-
putations. For example, it has allowed us to represent the

confining string as an integral over stringless dipoles with a
(Wn [C1IWh2-41[Cs])e given dipole number densif\33].

ties analogous to Ed2.34), we obtain the loop-loop corre- (
lation function for one loop in the fundamental and one in
the adjoint representation &U(N.):

Co(Ny) C,(N2—1) In applications of the model to high-energy scattering
=6XF{ — (L Xs.s Zz e XSzSz” [8,32—-34 the surfaces are interpreted as the world-sheets of
2 v 2 the confining QCD strings in line with the picture obtained

for the static dipole potential from the VEV of one loop. The
minimal surfaces are the most natural choice to examine the
scattering of two rigid strings without any fluctuations or
excitations. Our model does not choose the surface dynami-
cally and, thus, cannot describe string flips between two non-
(2.40 perturbative color dipoles. Recently, new developments to-
ward a dynamical surface choice and a theory for the
dynamics of the confining strings have been repof&s].

X

1 N, N

c

Ng+2 1
2(Ng+ 1) H ™ 2818,

N,—2 1
T PR

where

Cg(Ng— 1)=N,. (2.41 C. Perturbative and non-perturbative QCD components

We decompose the gauge-invariant bilocal gluon field

Note that our expressions for the loop-loop correlationstrength correlatof2.12—as in the Minkowskian version of
function(2.29 and, more specifically, Eq&2.35 and(2.40,  our model[8]—into a perturbativéP) and non-perturbative
are rather general results—as is our result for the VEV of onéNP) component:
Wegner-Wilson loop (2.14—obtained directly from the
color neutrality of the QCD vacuum and the Gaussian ap- Fruvpr=Fhvpot Flbno (2.42
proximation in the gluon field strengths. The loop geom-
etries, which characterize the problem under investigationwhereFfffp(, gives the low-frequency background field con-
are again encoded in the functlomgs, where also more tribution modeled by the non-perturbative stochastic vacuum

detailed aspects of the QCD vacuum enter in terms ofnodel[21] and F},,c the additional high-frequency contri-
F o0 1-€., the gauge-invariant bilocal gluon field strengthbution described by perturbative gluon exchange. This com-

correlator(2.12). bination allows us to describe long and short distance corre-
For the explicit computations ofs 5 presented in Ap- lations in agreement with lattice calculations of the gluon
pendix C, one has to specify surfac®s, with the restriction field strength correlatdil8, 2224, _Moreover, th_|s two com- .
dS; ,=C4, according to the non-Abelian Stokes theorem,PONeNt ansatz leads to the static quark—anthu.ark pqtenual
Welyzchoci'sze folS: » minimal surfaceshat are built from the with color Coulomb behavior for small and confining linear
1,2

plane areas spaied by the corresponding psnd the 152 Y52 Sauree separations 1 oo agreeentwih
infinitesimally thin tube which connects the two surfa&s S, )

andS,. This is in line with our surface choice in applications two component ansatz an ongoing effort to reconcile the
of the LLCM to high-energy reactiori®,32—34. The thin non-perturbative SVM with perturbative gluon exchange has

tube allows us to compare the field strengths in surface Iedvf/(; (z:?)r:]nplEtn;etrr]lt:ryeﬂﬁtrgztgii_fj.reIaIEE from the
with the field strengths in surfac®. b P

. . vpa )
Due to the Gaussian approximation and the associatelt:juc"dean gluon propagator in the Feynman—'t Hooft gauge:
truncation of the cumulant expansion, the non-perturbative

d* b
confining contribution to the loop-loop correlation function <g (X)) GP (X,))= j d*K  5%°%5 e LK (Xy-Xy)
depends on the surface choice. For example, our results for ' (2w )4 K2+ ma '
the chromo-field distributions of color dipoles obtained with (2.43

the minimal surfaces diffequantitativelyfrom the ones ob-

tained with the pyramid mantle choice for the surfaf®s|  where we introduce an effective gluon massmg=m,
even if the same parameters are used. ghalitativemain ~ =0.77 GeV to limit the range of the perturbative interaction
features of the non-perturbative SVM compongsiich as  in the infrared(IR) region. This IR cutoff for the perturbative
confinement via flux tube formatignhowever, emerge very component is important in applications of our model to high-
similarly in both scenarios. From a comparison of the staticenergy scatterinfg]. Its value has been chosen such that the
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unintegrated gluon distribution for transverse momenta beThe perturbative gluon field strength correlator has also been

low |K,|~1 GeV is dominated by non-perturbative physicsconsidered at next-to-leading order, wher(_e the dependence of
[33]. Of course, the parameterg is also important for the the corrglatqr on both the renormallz.agon scale anq. the

interplay between the perturbative and non-perturbativéenormalization scheme becomes explicit and an additional

components in the presented Euclidean applications. Furthel€nsor structure arises together with a path dependence of the
more, our value formg gives the “perturbative glueball” correlator{56]. However, cancellations of contributions from

(GB) generated by our perturbative component a finite mas#is additional tensor structure have been sh¢#s]. We
of ME,=2mg=1.54 GeV, which is larger than that of its 'efer to Sec. 3.3 of Ref50] for a more detailed discussion

non-perturbative counterpart discussed below. This ensuréy this issue. _ o
that long-range correlations are dominated by non- We describe the perturbative correlations in our phenom-

perturbative physics. enological applications only with the leading tensor structure
In leading order in the strong coupling the resulting _(2.44) and take into account radiative corrections by replac-

bilocal gluon field strength correlator is gauge invariant al-Ng the constant coupling® with the running coupling

ready without the parallel transport to a common reference

point so thatF”  depends only on the differencg=X;

Lvpo
— Xy ) 4872
0% (Z%) =4may(Z%)= VNI
(33— 2N)In[(Z"“+M?)/Aqcp]
g2 1] 4 (2.47
P _
Frvpo(Z)= ) E[ﬁv(zvaﬂp_zp@w)

in the final step of the computation of thefunction, where
the Euclidean distand&| over which the correlation occurs

+ _(Zpava_zoavp)}DP(Zz)
" provides the renormalization scale. In E8.47) N; denotes

9° d*K ikz the number of dynamical quark flavors, which is setNp
- ; (27)46 [KiK o8y = KK pSpe =0 in agreement with the quenched approximatiag,cp
=0.25 GeV, anadV allows us to freezg? for |Z| —«. Re-

+K K, 8,0~ KMKa5vp]5E>(K2) (2.44)  lying on low-energy theorems, we freeze the running cou-

pling at the value g?=10.2 (=a,=0.81), ie. M

=0.488 GeV, at which our non-perturbative results for the
with the perturbative correlation function confining potential and the total flux tube energy of a static
guark-antiquark pair coincidesee Sec. V.

The tensor structur€.44) together with the perturbative
correlation function(2.45 or (2.46) leads to the color
Yukawa potential(which reduces formg=0 to the color
Coulomb potentigl as shown in Sec. lll. The perturbative
contribution thus dominates the full potential at small quark-
~ d _ antiquark separations.

DE(KZ)EQJ d*ze"“Dp(Z%) If the path connecting the poind$, andX, is a straight
line, the non-perturbative correlatﬁﬂfp(, also depends only
1 on the differencez=X;—X,. Then, the most general form
== (2.46  of the correlator that respects translational, Lorentz, and par-
K+mg ity invariance read$21]

2
G

m
DP(ZZ):EKZ(deDa (2.49

FNP (Z)zFNPC (Z)+FNPHC(Z)

nrpo nrpo urpo

1 1| o d
:—Gz[ K(8upOus 8000 D(ZH) (1= K) 5| (2,8 —zpa,w)+—(zpaw—zam}m(zz)]

3(NZ-1) Tme 9z,
= Gf oK TR K(8pBro— 8,y 0,)D(K?)
= e K vo~ 9ucy
3(N2-1) ) (2m)* “e uotre
— (1= K)[K K8, K,K,8,,+K,K,8,,—K,K,35,,1Di(KH}, (2.48

074004-8



CONFINING QCD STRINGS, CASIMIR SCALING, AND . .. PHYSICAL REVIEW 8, 074004 (2003

where =0.173 GeV}, k=0.746, anda=0.219 fm. We have opti-
mized these parameters in a fit to high-energy scattering
=, 02 d 4 2\aiKZ data [8]:
Di(K ):@ d*zD,(z?)e'k%. (2.49

a=0.302 fm, «=0.74, G,=0.074 GeV.
In all previous applications of the SVM, this form, depend- (2.5)

ing only onZ=X;—X,, has been used. New lattice results

on the path dependence of the correldf#] show a domi- We use these optimized parameté®s51) throughout this
nance of the shortest path. This result is effectively incorpowork. They lead to a static quark-antiquark potential that is
rated in the model since the straight paths dominate in théh good agreement with lattice dataee Sec. Il and, in
averaging over all paths. particular, give a QCD string tensior{3.12 of o3
Let us emphasize that the non-perturbative correlatoe=0.22 Ge\f=1.12 GeV/fm which is consistent with hadron
(2.48 is a sum of the two different tensor structurg$,”"°  spectroscopy62], Regge theory63], and lattice QCD in-
andF/’\L'f;(,, with characteristic behavior: The tensor structurevestigationg 64]. Moreover, the non-perturbative component
F/'jfg‘(f is characteristic for Abelian gauge theories, exhibitswith a=0.302 fm generates a “non-perturbative glueball”
the same tensor structure as the perturbative correfa  with a mass 01M(N3§= 2/a=1.31 GeV which is smaller than
and does not lead to confinem¢@t]. In contrast, the tensor M{z=1.54 GeV and thus governs the long-range correla-
structureFL)‘fCU can occur only in non-Abelian gauge theo- tions as expected. We thus have one model that describes
ries and Abelian gauge theories with monopoles and leads tooth static hadronic properties and high-energy reactions of
confinement[21]. Therefore, we call the tensor structure hadrons and photons in good agreement with experimental
multiplied by (1— k) non-confining(nc) and the one multi- and lattice QCD data.
plied by « confining (). At this point, we would like to comment on the model
The non-perturbative correlat¢2.48 involves the gluon parameters and the accuracy of the results. Although there
condensat&,:=((g%/47?) G5 ,(0)G5,(0)) [58], the weight ~ are strong hints for the choice of the integration surface and
parameterx, and the correlation lengtla which enters physical constraints on the non-perturbative correlation func-
through the non-perturbative correlation functi@andD ;. tions, we have no criteria from first principles that fix these
While the perturbative correlation functiddp given in Eq.  model ingredients unambigiously. Therefore, we have
(2.45 is computed from the gluon propagatevith a finite ~ checked different integration surfaces and different non-
effective gluon magsthe non-perturbative correlation func- perturbative correlation functions: While the analytic result
tions D and D, can be studied rigorously in lattice QCD for the string tension changes, the general picterg. the
investigationg18,22—24. In addition, the non-perturbative confining linear rise of the static dipole potential and flux
correlation functions are constrained by the following physi-tube formation is reproduced by readjusting the parameters
cal considerations(i) The correlations at large distances & k, andG,. Therefore, the model parameters are meaning-
should decrease exponentially so that the interaction range fgl only within about 20% accuracy, which estimates pos-
determined by the glueball masg) Toward small distances, sible errors incurred by chosing a certain combination of
the non-perturbative correlation functions must satisfyintegration surfaces and correlation functions. In Table | we
D(0)=D;(0)=1 in order to ensure the correct relation be- show different sets of parameters used together with different
tween the VEV of infinitesimal plaquettes and the gluon con-surfaces and different correlation functions in applications of
densates,. (i ) The correlation functions must stay positive the SVM to high-energy scattering. The table documents the
at all distances to be compatible with a spectral represent&tability of the SVM parameters within 20%. However, after

tion [59]. the Gaussian approximatigqr truncation of the cumulant
We adopt for our calculations a simple exponential correxpansion and the specification of the integration surface
lation function and the correlation functions, the quantitative results depend
sensitively on some of the model parameters. To achieve a
D(Z?)=D4(Z?) =exp(—|Z|/a), (250  good fit to high-energy cross sectiof@, a fine tuning ofa

L ) ) ) ) , andG, is necessary.
which is consistent with the physical constraints discussed Finally, we should discuss the pragmatic treatment of

and has been successfully tested in fits to lattice data of th@normalization of the perturbative compond@t44) that
gluon field strength correlatqd8,24. The exponential cor-  gominates the small distance correlations. Only the lowest
relation function stays positive for all Euclidean distanZes

and is compatible with a spectral representation of the corre——

lation function[59]. This is a conceptual improvement since  sgjce we describe both lattice QCD data obtained in the
the correlation function that has been used in several earligf,enched approximation and high-energy scattering data taken in
applications of the SVM becomes negative at large distancege presence of light quarks, our value for the gluon condensate,
[12,25,31,40-4p G,=0.074 GeV, interpolates betwee6,=0.173 GeV found in

With the exponential correlation functid@.50 fits to the  quenched lattice QCD investigationk22,24 and G,=0.024
lattice data of the gluon field strength correlator down t0+0.011 GeV found in phenomenology58,60 and full lattice

distances of 0.4 fm give the following values for the param-QCD investigationg23,24. It is known that the effect of light
eters of the non-perturbative correlatof24]: G, quarks reduces the value 6, substantially{61].
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TABLE |. Different sets of parameters used together with different surfaces and different correlation
functions in applications of the SVM to high-energy scattering.

Reference [12] [41] [43] [8]

a(fm) 0.350 0.346 0.346 0.302

G, (GeV) 0.0605 0.0631 0.0631 0.074

K 0.74 0.74 0.74 0.74
mg(GeV) — — 0.571 0.77
Integration surface pyramid pyramid pyramid minimal
Correlation function Bessel Bessel Bessel exponential
Perturbative component no no yes yes

order result is adopted in which the strong coupling is pro- 1
moted to a 1-loop effective running coupling. The mass Vi(R)=~—lim $|n<Wr[C]>pon 3.1
renormalization of the considered heavy quarks and anti- T=e

quarks is also taken into account by subtracting the Self\'/vhere “pot” indicates the subtraction of the self-energy of

Sin%rlgey O;t;hneti;ou;\ﬁizl;n ;hehzonﬂfnuéﬁgfon ii;ﬂhesslfgggsiﬂ?{he color sources. This subtraction corresponds to the mass
P P ; gn p gicarty renormalization of the heavy color sources as discussed

one needs to r_eflne the_: trgatment of renormalization, for X phove. The static quark-antiquark potentié]_is obtained
ample, by explicitly taking into account counterterms for the c

cusps and by introducing a factorization scale in order to put’©m @ loop in the fundamental representatior-(\) and
the model on a more solid basis. We defer this task to futurd1® potential of a static gluino pa¥fy2_, from a loop in the
work and turn now to the phenomenological performance otdjoint representationr & Ng— 1).

our pragmatic approach. With our result fo W,[C]), Eq.(2.14), obtained with the
Gaussian approximation in the gluon field strength, the static
lll. THE STATIC COLOR DIPOLE POTENTIAL potential reads
In this section the QCD potential of static color dipoles in Cy(r) .
the fundamental and adjoint representationSI(N,) is Vi(R)= 2 T"m T Xsspot 3.2

computed in our model. Color Coulomb behavior is found
fqr smal_l dipole si_ze_s and_the_confini_ng Iir_1ear rise for Iargewith the self-energy subtracted, i.&sspot=Xss~ XsSsel
d|p_ole sizes. Casn_mr _scalmg is obtained in agreement W'”Isee Appendix € According to the structure of the gluon
lattice QCD investigations. field strength correlator, Eq&2.12 and(2.42), there are per-

The static color dipole—two static color sources sepay,rhative (P) and non-perturbativéNP) contributions to the
rated by a distancR in a net color singlet state—is described gatic potential:

by a Wegner-Wilson looW,[ C] with a rectangular patiC

of spatial extensiofR and temporal extensiohi— wherer Cy(r)
indicates theSU(N,) representation of the sources consid- ~ Vi(R)=—
ered. Figure 1 illustrates a static color dipole in the funda- 3.3
mental representatian= N, . The potential of the static color '

dipole is obtained from the VEV of the corresponding where the explicit form of the functions is given in Egs.

1
: P NP NP
lim T{Xss potT (XSS pot™ XSS pot) )

T—oo

Wegner-Wilson loog 15,65 (C9), (C28), and(C37).
: The perturbative contribution to the static potential de-
‘ A1 scribes the color Yukawa potenti@vhich reduces to the
¢=08 S\ R q color Coulomb potential66] for mg=0)

\ VF(R)=—C IR g R 3.4
: P F(R)==Cy(n) J—ex{-mgR]. (3.4
. o . L Here we have used the result prSpot.given in Eq.(C37)

-3 0 5 and the perturbative correlation function

FIG. 1. A static color dipole of siz® in the fundamental rep- P d4K K2R (32
resentation. The rectangular pathof spatial extensiofR and tem- Dp™(Z )’ZJ Fe Dp™(K%) 8(Ky)
poral extensionT indicates the world-line of the dipole described (2m)

the Wegner-Wilson looWy [ C]. The shaded area bounded by the >

b g exd —mg|Z[]
loop C= S represents the minimal surfaGused to compute the = > - (3.5
static dipole potential. 47|Z|
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which is obtained from the massive gluon propag#®43). L3 — ]
As shown below, the perturbative contribution dominates the Lo gﬁﬁfﬁlrh&tm 1
static potential for small dipole sizé® 1p-—- Nen-Confining 3

The non-perturbative contributions to the static potential, [ ---- Confining
the non-confiningcomponeninc) and theconfiningcompo- '

nent (), read

m°G,y(1— k)

VNPI"IC R :C

D;®(R?), (3.6

V3(R) [GeV]

VIPYR)=Cy(r)

R
X f dp(R—p)DB)(p?), (3.7
0

R [fm]

where we have used the results feBEDs and X885y FIG. 2. The static SUNN.=3) quark-antiquark potential

= xSE¢ given respectively in Eq4C28 and (C9) obtained Vi (R)=Vs(R) as a function of the quark-antiquark separatin
with the minimal surface, i.e. the planar surface bounded byhe solid, dotted, and dashed lines indicate the full static potential
the loop as indicated by the shaded area in Fig. 1. With th@nd its perturbative and non-perturbative contributions, respec-
exponential correlation functio(2.50, the correlation func- tively. For small quark-antiquark separatiofi$=0.5 fm, the per-

tions in Eqs.(3.6) and(3.7) read turbative contribution dominates and gives rise to the well-known
color Coulomb behavior at small distances. For medium and large
. 4 o quark-antiquark separationR=0.5 fm, the non-perturbative con-
D;®)(Z?) ::f 3e'KZDi(3)(K2) S(Ky) tribution dominates and leads to the confining linear rise of the
(2m static potential. As our model is working in the quenched approxi-
-5 N mation, string breaking cannot be described, which is expected to
=—al|Z|*K,[|Z|/a], (3.9 stop the linear increase f&t=1 fm [67,64.
5 d*K kzs he staticSU(N,=3) quark-antiquark il (R
D(3)(ZZ)::f eKZD(K2) 5(K 4) The staticSU(N.=3) quark-antiquark potenti Nc( )
(2m)® =V;(R) is shown as a function of the quark-antiquark sepa-

- - ration R in Fig. 2, where the solid, dotted, and dashed lines
=2|Z|K4[|Z]/a]. (3.9  indicate the full static potential and its perturbative and non-
perturbative contributions, respectively. For small quark-
antiquark separationR=0.5 fm, the perturbative contribu-
tion dominates giving rise to the well-known color Coulomb
behavior. For medium and large quark-antiquark separations
R=0.5 fm, the non-perturbative contribution dominates and

NPc _ leads to the confining linear rise of the static potential. The
Ve (R)lr=05 = 7R+ const (3.10 transition from pertur%ative to string behavior Eikes place at

Thus, the QCD string tension is given by the confining Svmsource separations of about 0.5 fm in agreement with the
componenf21]: For a color dipole in th&U(N,) represen- recent results of Lscher and Weisg26]. This supports our

For large dipole sizefR=0.5 fm, the non-confining contri-
bution (3.6) vanishes exponentially while the confining con-
tribution (3.7—as anticipated—leads to confinemdgtl],
i.e. the confining linear increase,

tationr, it reads value for the gluon masmc,:mpzo.?? QeV which is im-
portant only aroundR~0.4 fm, i.e. for the interplay between
Gk (%, mKkG,a? perturbative and non-perturbative physics. FR=0.3 fm
0r=Ca(r) —73 JO dZ°D(Z29)=Cor) —5— andR=0.5 fm, the effect of the gluon mass, introduced as

(3.11) an IR regulator in our perturbative component, is negligible.
String breaking is expected to stop the linear increasdrfor

where the exponential correlation functiéa 50 is used in =1 fm where lattice investigations show deviations from the
the final step. Since the string tension can be computed frordinear rise in full QCD[67,64. As our model is working in
first principles within lattice QCO64], relation(3.11) puts the quenched approximation, string breaking through dy-
an important constraint on the three parameters of the noramical quark-antiquark production is excluded.
perturbative QCD vacuura, G,, andx. With the values for As can be seen from E@3.2), the static potential shows
a, G,, andk given in Eq.(2.51), which are used throughout Casimir scaling which emerges in our approach as a trivial
this work, one obtains for the string tension of t8&J(3)  consequence of the Gaussian approximation used to truncate

quark-antiquark potentialr&3) a reasonable value of the cumulant expansiof2.7). Indeed, the Casimir scaling
hypothesi§68] has been verified to high accuracy BU(3)
03=0.22 GeV¥=1.12 GeV/fm. (3.12 on the lattice[19,20 (see also Fig. B These lattice results
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string tensions show Casimir scaling behaviggck(N,

—k), the sine law behaviotr,ocsin(mk/N,) predicted from
M-theory approaches to QC[J4], or simply the behavior of

k non-interacting fundamental stringsk:ko,\,c. Physical
explanations of the lattice results obtained are discussed, for
example, in the center vortex confinement mechaniafrb).

IV. CHROMO-FIELD DISTRIBUTIONS OF COLOR

Vas(R) [GeV]

o ] DIPOLES
05 & ; -
[ & f F““d‘“jiﬁ‘jﬁfji Sﬁziti ] In this section we compute the chromo-electric fields gen-
) e 3: =60 o erated by a static color dipole in the fundamental and adjoint
THL A gzgi ] representation 08 U(N,). We find formation of a color flux
i 8: =621+ tube that confines the two color sources in the dipole. This
-1~50 —_ 0'5 —_ { — confining string is analyzed quantitatively. Its mean squared
' R [fun] ’ radius is calculated and transverse and longitudinal energy

density profiles are provided. The interplay between pertur-
bative and non-perturbative contributions to the chromo-field
distributions is investigated and exact Casimir scaling is
found for both contributions.

FIG. 3. The staticSU(N.=3) potential of color dipoles in the
fundamental representatiMy(R) (solid line) and adjoint represen-
tation Vg(R) (dashed ling as a function of the dipole sizR in

comparison tSU(3) lattice data for3=6.0, 6.2, and 6.420,64). As already explained in Sec. lll, the stat.ic colpr dipole—
The model results are in good agreement with the lattice data. ThiWO Static color sources separated by a distaRda a net
particularly holds for the obtained Casimir scaling behavior. color singlet state—is described by a Wegner-Wilson loop

W,[C] with a rectangular patl of spatial extensiofir and
temporal extensiod —o (cf. Fig. 1) wherer indicates the
n13:5'U(Nc) representation of the sources considered. A second
"Chall quadratic loop or plaquette in the fundamental repre-
sentation placed at the space-time pointwith side length
Rp—0 and oriented along the3 axes,

have been interpreted as a strong hint toward Gaussian do

suppression of higher cumulant contributiof89,70. In
contrast to our model, the instanton model can describe ne
ther Casimir scaling70] nor the linear rise of the confining
potential[71]. ~ .
Figure 3 shows the statBU(N.=3) potential for funda- Pﬁf(X)ZTfNCeXF{ —ig ﬁ dZMQZ(Z)tEC}
mental sourcesVy (R)=V3(R) (solid line) and adjoint P
sourceng_l(R)=V8(R) (dashed lingas a function of the _1_RA g_zga (X)G2 (X)+ORS). (4.1)
dipole sizeR in comparison toSU(3) lattice data[20,64. PAN,” *# h Pl
The model results are in good agreement with the lattice . ) )
data. In particular, the obtained Casimir scaling behavior ¢S Néeded—as a “Hall probe”—to calculate the chromo-field
strongly supported b U(3) lattice datd 19,20 This, how- distributions at the space-time poiKtcaused by the static
ever, points also to a shortcoming of our model: From EqSCurces 76,77
(3.2 and Fig. 3 it is clear that string breaking is described 2
neither for fundamental nor for adjoint dipoles in our model AG (X):= 9 ca (X)G2 ,(X)
which indicates that not only dynamical fermiofggienched rab w2 P “p
approximation but also some gluon dynamics are missing. wtel
An extension of the model that allows one to describe 92
color screening remains a major challenge. Without such a —<—2g2B(X)g‘ZB(X)> 4.2
modification, our model unfortunately cannot contribute to Am vac
the recent discussion on the scaling behaviok-sfring ten-

sionsoy, i.e. the tensions of strings connecting sources with 1 N, (Wr[C]Pﬁf(X))
N-ality k=1. A source ofN-ality k<N./2 is defined as a == lim —— TwWiey
source in the representation constructed from the tensor Rp—0 Rp 7 r

product of quarks—objects transforming under the funda-

mental representation—and antiquarks—objects transform- —(PEE(X)) 4.3
ing under the conjugated representation—whkrés the Ne '

number of quarks minus the number of antiquarks modulo ) )

N.; see e.g[72]. For SU(N.) with N.=4, k strings are With no summation over and 8 in Egs.(4.1), (4.2), and
particularly interesting since in addition to the fundamental(4-3). In definition(4.2) (- - - )w (cj indicates the VEV in the
(k=1) string other strings also exist that are stable againgbresence of the static color dipole while- - ), indicates
color screening. Based on lattice results fdg=4,5,6 the VEV in the absence of any color sources. Depending on
[72,73, the present debate is whether the correspondinghe plaquette orientation indicated lyand 3, one obtains

074004-12



CONFINING QCD STRINGS, CASIMIR SCALING, AND . .. PHYSICAL REVIEW B8, 074004 (2003

X 1. -
PRUX) : 5:(X)= = S[E(X)+ B(X)] 4.7
—T/2 o . . . .
with signs according to Euclidean space-time conventions.
C = dSy Low-energy theorems that relate the energy and action stored
Sw in the chromo-fields of the static color dipole to the corre-
X1 sponding ground state energy are discussed in the next sec-
tion.

For the chromo-field distributions of a static color dipole
in the fundamental representation 8UU(N,), i.e. a static
quark-antiquark pair, we obtain with our results for the VEV
of one loop(2.14 and the correlation of two loops in the
fundamental representatidB.35

FIG. 4. The plaquette-loop geometry needed to compute the 5 ' 1 N C,(Np)
squared chromo-electric fielf(X) generated by a static color di- AGR, op(X)=— lim —- —zeXF{ T T XSS
pole in the fundamente& U(N,) representationr(=N.). The rect- Rp—0 Rp 7
angular pattC i_ndicates the world-line of the sta_tic di_pole described N+ 1 N.—1
the Wegner-Wilson IoopWNc[C]. The square with side lengtRp x| == ex;{ — C—Xs }
illustrates the plaquett@,{fz(X). The shaded areas represent the 2N 2N PSw
minimal surfaces used in our computation of the chromo-field dis- N.—1 N +1
tributions..The thin tupe allows us. to compare .the gluon field + 2N ex;{ >N XSPS\N}_:I-) (4.9
strengths in surfac8, with the gluon field strengths in surfa&g, . c c

from Egq. (4.3) the squared components of the chromo- ) ] ) _
electric and chromo-magnetic fields at the space-time poinvherexss, is defined in Eq(2.27). The subscript® and\W

X indicate surface integrations to be performed over the sur-
faces spanned by the plaquette and the Wegner-Wilson loop,
0 B? B§ EZ respectively. Choosing the surfaces—as illustrated by the
g2 B2 0 B2 EZ2 shaded areas in Fig. 4—to be the minimal surfaces connected
AG? 4(X)=— ; ) X ; (X), (4.4 by aninfinitesimal thin tubéwhich gives no contribution to
m?| By By 0 E; the integralsit is clear thatys_s,>Rp and xs s, *Rp - Be-
E2 E§ E2 0 ing interested in the chromo-fields at the space-time pgjnt

the extension of the quadratic plaquette is taken to be infini-
i.e. space-time plaquettea8=i4) measure chromo-electric tesimally smallRp— 0, so that one can expand the exponen-
fields and space-space plaquettesrB8Eij) chromo- tial functions and keep only the term of lowest ordeiRp
magnetic fields. As shown in Fig. 4, we place the static color
sources on theX; axis at X;=*R/2,0,0X,) and use the
following notation plausible from symmetry arguments: 1 1

AGR_ ap(X)==Ca(Nc) lim ) Fxgpsw. 4.9

EP=EZ, E?=E2=EZ, Bf=BZ, B?=BZ=BZ. Rp—0 Fp 27

(4.9

Figure 4 illustrates also the plaquettéﬁz(x) at X  Thisresult—obtained with the matrix cumulant expansion in

a very straightforward way—agrees exactly with the result
=(X1,X2,0,0) needed to Cqmpuh'?f(_x)- Due to symmetry gerived in[25] with the expansion method. Indeed, the ex-
arguments, the complete information on the chromo-fieldyansion method agrees for smglfunctions with the matrix
distributions is obtained from plaquettes in “transverse” . mulant expansioriBerger-Nachtmann approachsed in
spacex=(X1,X,0,0) with four different orientationse 8 this work but breaks down for large functions, where the
=14,24,13,23cf. Eq. (_4-5)]- . _matrix cumulant expansion is still applicable.

The energy and action density distributions around a static The chromo-field distributions of a static color dipole in
color dipole in theSU(N,) representation are given by the e adjoint representation &U(N,), i.e. a static gluino pair,
squared chromo-field distributions are computed analogously. Using our res@40 for the

1 correlation of one loop in the fundamental representation
_ T P2 52 (plaguette with one loop in the adjoint representatistatic
er(X)= 2[ EX)+BYX)], (4.6 sourcey, one obtains
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AG? (X) gim 2 Ne gy f - C2M) AG2 ,(X)=—Cy(r) lim iuiqp (X)12
N2-1 ap Sl Ré 2 5 XSpSp rap 2 R0 g 2 XSpSy aB
1 N, X5 gt [XSrs (X ]aph?).
X 2 ex 7XSPS\N
N¢+2 1 Interference of perturbative and non-perturbative correlations
T aNT 1)SXR T 2 Xsesw is not considered to be in line with the applications of our

model to high-energy scatterin$,32—34 with separate
hard (perturbative and soft(non-perturbative Pomeron ex-
changes. The interferences do not change the qualitative pic-
ture. Slight modifications occur in regions where fields origi-
nating from perturbative and non-perturbative correlations
re of similar size. For thg functions in Eq.(4.12 we give
irectly in the following the final results obtained with the
minimal surfaces shown in Fig. 4. Details of their derivation
can be found in Appendix C.

The perturbative contributiofP) described by massive

N,—2 1
+ mex EXSPSW -1 (4.10)

which reduces—as explained for sources in the fundament%
representation—to

AGELl aﬁ(x):_CZ(Ng_l) lim i4—2)(§ S gluon exchange leads, of course, to the well-known color
c Rp—0Rp 47 " Yukawa field which reduces to the color Coulomb field for
(4.11 mg=0. It contributes only to the chromo-electric fieldﬁﬁ

=EZ (ap=14) andE? =E;=E’ («B=24), and reads ex-
plicitly for X=(Xy,X5,0,0)
Thus, the squared chromo-electric fields of an adjoint dipole
differ from those of a fundamental dipole only in the eigen-
value of the corresponding quadratic Casimir operator

RZ (=
(XS5, X) 1= = > f ~dr{(X,—RI2g%(Z34)Dp(Z],)
C,(r). In fact, Casimir scaling of the chromo-field distribu-

tions holds for dipoles in any representationf SU(N,) in — (X1 +R2)gX(Z3:)Dp(Z30)}, (413
our model. As can be seen with the low-energy theorems

discussed below, this is in line with the Casimir scaling of | R3 (= » 2 )

the static dipole potential found in the previous section. In [Xs.s,(X)]24= — 7J d7X2{9°(Z14)Dp(Z7a)

addition to lattice investigations that show Casimir scaling of o

the static dipole potential to high accuracyShJ(3) [19,20, —QZ(Zic)DP(ch)} (4.14

Casimir scaling of the chromo-field distributions has been
considered on the lattice as well but only f8tJ(2) [78].  with the perturbative correlation functiq@.45), the running
Here only slight deviations from the Casimir scaling hypoth-coupling(2.47), and

esis have been found which were interpreted as hints toward

2
adjoint quark screening. . S Z§A=<X1— E +X§+ 2 and
In our model the shape of the field distributions around 2
the color dipole is identical for aBU(N,) representations )
and given beSPSW. Th.|s again |IIu_strates the shortco_mln_g of Zicz X, + > +X§+ 2. (4.19
our model discussed in the previous section. Working in the

quenched approximation, one expects a difference between e non_confining non-perturbative contributiéMP ng
fundamental and adjoint dipoles: string breaking cannot 0Cpag the same structure as the perturbative contribution—as

cur in fundamental dipoles as dynamical quark-antiquarky,hected from the identical tensor structure—but differs, of

production is excluded but should be present for adjoint di
poles because of gluonic vacuum polarization. Comparin
Eq. (4.9 with Eq. (4.1)) it is clear that this difference is not

‘course, in the prefactors and the correlation functibn,
g#Dp. Its contributions to the chromo-electric fieldﬁf

_ 2 _ 2_pF2_p2 _
described in our model. In fact, as shown in Sec. Ill, string= Ex (@8=14) andE{=Ej=E; («p=24) read forX

breaking is described neither for fundamental nor for adjoint:(beZvO’O)
dipoles. Interestingly, even on the lattice there has been no
striking evidence for adjoint quark screening in quenched
QCD [79]. It is even conjectured that the Wegner-Wilson
loop operator is not suited to studies of string breaKi8@j.

In the LLCM there are perturbativgP) and non-
perturbative(NP) contributions to the chromo-electric fields
according to the structure of the gluon field strength cor-
relator, Eqs(2.12 and(2.42),

[XSPSW
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w creasing dipole siz&, one sees explicitly the formation of
j d7X,{D1(Z3,) the flux tube which represents the confining QCD string.

- The longitudinal and transverse energy density profiles
generated by a color dipole in the fundamental representation
(r=3) of SU(N.=3) are shown for quark-antiquark sepa-
rations (dipole sizeg of R=0.1,0.5,1 and 1.5 fm in Figs. 6

2 ) . and 7. The perturbative and non-perturbative contributions
Zic @s given in Eq(4.15. . I are given by the dotted and dashed lines, respectively, and

_The confining non-perturbative contributiéNP ¢ has a 6 sum of both in the solid lines. The open and filled circles
different structure that leads to confinement and flux—tubqndiCate the quark and antiquark positions. As can be seen
formatizon. Iztgives contributions only to the chromo-electric from Egs. (4.3 and (4.4), we cannot compute the energy
field Ef=E} (af=14) which read foiX=(X1,X,0,0) density separately but only the produgis,(X). Neverthe-
less, a comparison of the total energy stored in chromo-

R27m2G,(1— k)
6(NZ—-1)
~Dy(Zio)} (4.17)

with the exponential correlation functid@.50 andz?, and

[Xg:,srx(x)]m: -

2
NPC o ™Gk (1 3),572 electric fields to the ground state energy of the color dipole
[Xsps(X)]1a= RPRg(NZ_l)fo dpD(Z,), via low-energy theorems vyieldg?®=10.2 (=a=0.81) for
¢ (4.19 the non-perturbative SVM component as shown in the next
section.
with the correlation function given in Eq3.9) as derived In Figs. 6 and 7 the formation of the confining strifflyix
from the exponential correlation functid@.50, and tube with increasing source separatidR€an again be seen
explicitly: For small dipolesR=0.1 fm, perturbative phys-
72 =[X1+(1/2— p)R]>+ X3. (4.19 ics dominates and non-perturbative correlations are negli-

gible. For large dipolesR=1 fm, the non-perturbative cor-
In our model there are no contributions to the chromo-relations lead to formation of a narrow flux tube which
magnetic fields, i.e. the static color charges do not affect theominates the chromo-electric fields between the color
magnetic background field sources.
. s o s Figure 8 shows the evolution of the transverse widip-
Bj=B5=0 and B{=B{=B;=0, (4.20  per plop and height(lower plo of the flux tube in the cen-
tral region of the Wegner-Wilson loop as a function of the
which can be seen from the corresponding plaquette-loogipole sizeR where perturbative and non-perturbative con-
geometries as pointed out in Appendix C. Thus, the energytibutions are given by the dotted and dashed lines, respec-
and action densities are identical in our approach and contively, and the sum of both in the solid lines. The width of
pletely determined by the squared chromo-electric fields  the flux tube is best described by the root mean squamnsd

. radius
er(X)=5(X) = = SEA(X). (421 :
j dXLXngsr(Xl=O,XL)
This picture is in agreement with other effective theories of Rms= , (4.22
confinement such as the 't Hooft—Mandelstam picti8#] J dX, X, 9%,(X;=0X,)

or dual QCD[82] and, indeed, a relation between the dual
Abelian Higgs model_ anq the .SVM has been eStabIIShe(f;vhich is universal for dipoles in aBU(N.) representations
[83]. In contrast, lattice investigations work at scales at

which the chromo-electric and chromo-magnetic fields are of as the Casimir factors divide out. The height of the flux
o . ) . . be is given by the energy density in the center of the con-
similar magnitude[30,84—-86. Indeed, these simulations tbe 1S giv y %y i

s - X 5 sidered dipole,g%e,(X=0). For large source separations,
have been performed iSU(N.=2) at bare coupling®lo  R=1 fm, hoth the width and height of the flux tube in the

- 2_ i ini i . .
down tofy=4/gy=2.74 corresponding to a minimum lattice central region of the Wegner-Wilson loop are governed com-

cutoff of 0.04 fm, which determines also the minimum sizepjetely by non-perturbative physics and saturate for a funda-
of the plaquette used in the measurements of the color fieldgsentalSU(3) dipole ¢ =N.=3) at reasonable values of
Interestingly, as shown in Figs. 13 and 14[84], the action

density slightly decreases by decreasing the lattice spacing RR “~0.55 fm and

from 0.08 fm (Bp;=2.5) to 0.05 fm 3,=2.635). In our

model the vanishing of the chromo-magnetic fields deter- e?ﬁ‘“(X=O)~1 GeV/fn?  with ¢?=10.2. (4.23

mines the value of the Callan-Symanzik function at the

renormalization scale at which our non-perturbative compo- Note that the qualitative features of the non-perturbative

nent is working. This is shown as a result of low-energySVM component do not depend on the specific choice for the

theorems in the next section. parameters, surfaces, and correlation functions and have al-
In Fig. 5 the energy density distributiorg’e (X7, X5 ready been discussed with the pyramid mantle choice of the

=X3) generated by a color dipole in the fundamentalsurface and different correlation functions in the first inves-

SU(N.=3) representation r=3) are shown for quark- tigation of flux-tube formation in the SVNI25]. The quan-

antiquark separations d8=0.1,0.5,1 and 1.5 fm. With in- titative results, however, are sensitive to the parameter val-
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FIG. 5. Energy density distributiong?e;(X;,X,=X3) generated by a color dipole in the fundamer8al(3) representationr(=3)
for quark-antiquark separations B= 0.1, 0.5, 1 and 1.5 fm. Flux-tube formation leads to the confining QCD string with increasing dipole
sizeR.

ues, the surface choice, and the correlation functions and atg their original form[27], however, the Michael sum rules
presented above with the LLCM parameters, the minimagre incomplete[28,31]. In particular, significant contribu-
surfaces, and the exponential correlation function. tions to the energy sum rule from the trace anomaly of the
energy-momentum tensor have been fo{i28] that modify
the naively expected relation in line with the importance of
the trace anomaly found for hadron masg&g|. Taking all

In this section we use low-energy theorems to test théhese contributions into account, the energy and action sum
consistency of the non-perturbative SVM component and téule read respectivelj28—3Q
determine the value of the Callan-Symangifunction and
as=g?/(47) at the renormalization scale at which this com- E(R)= | d®Xe, (X)— 1 @ d3X

\ : ; ; r r s(X), (5.2

ponent is working. The energy and action sum rules consid- 2 g
ered allow us to confirm the consistency of our loop-loop
correlation result with the result obtained for the VEV of one
loop. Finally, we compare our results fBrand ag to model
independent QCD results for the Callan-Symangikunc-
tion. where the Callan-Symanzik function is denoted B{Q)

Many low-energy theorems have been derived in con=u®dg/du with the renormalization scalg.
tinuum theory by Novikov, Shifman, Vainshtein, and zZa- Inserting Eq.(5.3) into Eq. (5.2), we find the following
kharov [61] and in lattice gauge theory by Michag27].  relation between the total energy stored in the chromo-fields
Here we consider the energy and action sum rules—knowE'°(R) and the ground state energy(R):
in lattice QCD as Michael sum rules—that relate the energy

V. LOW-ENERGY THEOREMS

E(R)+R—2 3

and action stored in the chromo-fields of a static color dipole ot oy [ 43 1 S 9E(R)
to the corresponding ground state enelryy,65 Er (R)'_f d*Xe(X)= 4 3E(R)-R IR
(5.9
E.(R)=— lim Em(v\/r[cp_ (5.1 The difference from the naive classical expectation that the
T | full ground state energy of the static color sources is stored
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FIG. 6. Longitudinal energy density profileges(X;,X,=X3 FIG. 7. Transverse energy density profilgdes(X,,X,=X
=0) generated by a color dipole in the fundamerg&l(3) repre- =0) generated by a color dipole in the fundametg&l(3) repre-

sentation (=3) for quark-antiquark separations B&=0.1, 0.5, 1  sentation (=3) for quark-antiquark separations B~0.1, 0.5, 1

and 1.5 fm. The dotted and dashed lines give the perturbative an@nd 1.5 fm. The dotted and dashed lines give the perturbative and
non-perturbative contributions, respectively, and the solid lines théon-perturbative contributions, respectively, and the solid lines the
sum of both. The open and filled circles indicate the quark andgsum of both. The filled circles indicate the positions of the color
antiquark positions. For small dipoleR=0.1 fm, perturbative sources. For small dipole®=0.1 fm, perturbative physics domi-
physics dominates and non-perturbative correlations are negligiblélates and non-perturbative correlations are negligible. For large di-
For large dipolesR=1 fm, the formation the confining strindux  poles,R=1 fm, the formation the confining strin@lux tubg can

tube can be seen which dominates the chromo-electric fields bebe seen which dominates the chromo-electric fields between the
tween the color sources. color sources.

that the trace anomaly contribution vanishes on the classical
in the chromo-fields is due to the trace anomaly contributiorlevel as expected.
[28] described by the second term on the RHS of G&R). With the low energy theorem®.3) and(5.4) the ratio of
Indeed, for the Coulomb potential, obtained in tree-level perthe integrated squared chromo-magnetic to the integrated
turbation theory, the action sum ru(.3 shows explicitly  squared chromo-electric field distributions can be derived:

3y p2
f IXBX) 12434(9)/g1E,(R) +[2— B(9)/GIRIE(R)IR

~ [2—3B(9)/g]E/(R)+[2+ B(9)/9IRIE(R)/IR’

Q(R):= (5.5

f d3XE2(X)
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FIG. 8. Root mean squared radiis,s of the flux tube and
energy density in the center of a fundamen&U(3) dipole
g%e5(X=0) as a function of the dipole sizR. Perturbative and

non-perturbative contributions are given respectively in the dottecr_)

and dashed lines and the sum of both in the solid lines. For Rrge

both the width and height of the flux tube in the central region are
governed completely by non-perturbative physics and saturate r

spectively atRR ~*~0.55 fm ande}~*(X=0)~1 GeV/fn?. The
latter value is extracted with the resgft=10.2 deduced from low-
energy theorems in the next section.

This ratio can be used, for example, to determine non

perturbatively the Callan-Symanzil3(g) function. For
SU(N.=2) lattice investigations along these lines have al
ready been performe®0,86,88,89°

In the largeR region, the static color dipole potential can
be approximated by the linear potential,(R)=o,R
=E,;(R) — Ege With string tensiono, in the considered rep-
resentatiorr. In this approximation, the ratits.5 becomes
the simple form

2+B(9)/g

QR)|v,(R)=v,r= 2—B(g)lg"

(5.9

Since the non-perturbative SVM component of our mode

describes the confining linear potential for large source sep
rationsR, we can use Ed5.6) together with the vanishing of
the chromo-magnetic fieldgt.20 to determine the value of
the Callan-Symanzil@ function at the scalgwyp at which
the non-perturbative component is working:

B(9)

g

—2.

(5.7

H=HENP

8In [84] the B function was determined similarly based on a high-
statistics study of chromo-field distributions 81U(N.=2) but un-

fortunately without taking the trace anomaly contribution into ac-

count.
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FIG. 9. The total energy stored in the chromo-field distributions
around a static color dipole of si®in the fundamentalr(=3) and
adjoint (r=28) representation o§U(3) from the confining non-
erturbative SVM componentEg’gNPC(R), for as=0.81 (solid
ines) compared with the relation to the corresponding ground state

energy(dashed lingsgiven by the low-energy theorefb.4). Good

e(:_onsistency is found even down to very small valuefRof

Here one should emphasize that this value is strictly valid
only at asymptotically large values & while perturbative
correlations must be taken into account to extend this inves-
tigation to smaller values dR.

" Concentrating on the confining non-perturbative compo-
nent(NP¢ we now use Eq(5.4) to determine the value of
as=g?/(47) at which the non-perturbative SVM component
is working. The RHS of Eq(5.4) is obtained directly from
the confining contribution to the static potentia]'"%(R)
=VNPYR) given in Eq.(3.7) in Sec. lll. The left-hand side

of Eqg. (5.4), however, involves a division by tha priori
unknown value ofg? after integratingg?e,(X) for the
chromo-electric field of the confining non-perturbative com-
ponent(4.18. As discussed in the previous section, we can-
not compute the energy density separately but only the prod-
uctg?e,(X). Adjusting the value of? such that Eq(5.4) is
exactly satisfied for source separations Rf 1.5 fm, we
find that the non-perturbative component is working at the

Iscale,u,\,p at which

a_

9%(unp) =10.2= ag( unp) =0.81. (5.9

As already mentioned in Sec. Il C, we use this value as a
practical asymptotic limit for the simple one-loop coupling
(2.47) used in our perturbative component. Note that earlier
SVM investigations along these lines found a smaller value
of ag(unp)=0.57 with the pyramid mantle choice for the
surface[25,31] but were incomplete since only the contribu-
tion from the traceless part of the energy-momentum tensor
was considered in the energy sum rule.

In Fig. 9 we show the total energy stored in the chromo-
field distributions around a static color dipole in the funda-
mental ¢ =3) and adjoint (=8) representations & U(3)
from the confining non-perturbative SVM component,
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totNPc(R) for as=0.81 (solid lineg as a function of the and LLCM to high-energy scattering. Finally, we comment

dipole sizeR. Comparing this total energy, which appears onlOn the QCD V?” der Waalslpotccjantllal which appears in the
the LHS of Eq.(5.4), with the corresponding RHS of Eq. Miting 'ci\se Ok,tWO static co ﬁ,r hlpo es. _  col
(5.4) (dashed lines we find good consistency even down to " Minkowski space-time, high-energy reactions of color

very small values oR. This is a nontrivial and important d'pOIGdS :jn th‘; e'ﬁonﬁl dapprzoi(]llmatlor; ha\r/]ed been g
result as it confirms the consistency of our loop-loop correcONSidered—as basis for hadron-hadron, photon-hadron, an

lation result—needed to compute the chromo-electric field—Photon-photon reactions—in the functional integral approach

with the result obtained for the VEV of one loop—needed to!© high- energy collisions developed originally for. parton-

compute the static potentialNPC(R) Moreover. it shows parton scattering9,10] and then extended to gauge-invariant
r ) !

. ) dipole-dipole scattering [11-13. The corresponding
that the minimal surfaces ensure the consistency of our NORr_natix element for the elastic scattering of two color di-

perturbative component. The good consistency found for the | tt tum t for (1= — g 2 d
pyramid mantle choice of the surface relies on the naivel oles at transverse momentum transfgr (t=—q,) an
c.m. energy squaresireads

expected energy sum ruf@5,31] in which the contribution
from the traceless part of the energy-momentum tensor is not

taken into account. T (st 21,010 ,22.T2,)
Let us discuss the values gfg andg? at the renormal-
ization' scale,uNF?—give_n respectively in Eqs(5.7).and =2isJ deLeiqibL[l_Ser (S,Bl -Zlfu 1ZZ-F2L)]
(5.8—in comparison with the perturbative expansi@0] L2
and lattice computation®1] of the Callan-Symanzik func- (6.1)

tion in pure SU(N.=3) gauge theory. We obtained Egs.

(5.7) and(5.8) such that the renormalization scalegp ap-  with the Smatrix element ¥ refers to Minkowski space-
pearing in the two equations should be in good agreementime)

ConsideringB/g as a functiorg?, one thus can compare our

combination with the perturbative expansi@®]. This com- (W, [C1IW, [Co])m
parison shows that our result is close to the curve obta|ne$r'\"r (s,b,,21,11, ,Z5,T5, )= lim

on the two-loop level in perturbation theory. In contrast, the vz Tﬂw<Wf1[C1]>M<sz[C2]>M
non-perturbative lattice results for tifefunction of Lischer (6.2

et al.[91] are in good agreement with the perturbative three-
loop result computed in the modified minimal subtraction The color dipoles are considered in t5&/(N.) representa-
(MS) schemd92]. However, it must be stressed that in the tion r; and have transverse size and orientatipn. The
lattice investigation the considered values of the runnindongitudinal momentum fraction carried by the quark of di-
coupling g? stay below 3.5 while our comparison requires polei is z;. [Here and in the following we use several times
values up tog?(unp)=10.2. Thus, relying on a large ex- the term quark generically for color sources in an arbitary
trapolation of the model independent QCD results, our comSU(N,) representation.The impact parameter between the
parison provides at best an orientation. For a meaningfulipoles is[44]
consistency check, we have to map out the Callan-Symanzik
function at smaller values d® where also perturbative cor- b, =ry,+(1—23)r1; —T2q—(1=2) 2, =11 cm—T2 c.m.»
relations must be taken into account and thus refinements of 6.3
our treatment of renormalization are needed. The low-energy
theorems will provide crucial criteria for the success of SUCh/vhererlq (fE) is the transverse posmon of the quadati-
improvements. quark, ri, = lig— rlq, and ri. =z Iq+(1 z)rIq is the
center of light-cone momenta. Figure 10 illustrates tae
space-time andb) transverse arrangement of the dipoles.
The dipole trajectorie€; are described as straight lines. This
is a good approximation as long as the kinematical assump-
In this section we present a Euclidean approach to hightion behind the eikonal approximatioss —t, holds which
energy reactions of color dipoles in the eikonal approxima-allows us to neglect the change of the dipole velocities
tion. After a short review of the functional integral approach =p;/m in the scattering process, wheggis the momentum
to high-energy dipole-dipole scattering in Minkowski space-andmthe mass of the considered dipole. Moreover, the paths
time, we generalize the analytic continuation introduced byC; are considered light-likein line with the high-energy
Meggiolaro [35] from parton-parton scattering to dipole- limit, m?><s—o. For the hyperbolic angle or rapidity gap
dipole scattering. This shows how one can access highbetween the dipole trajectorieg=(v,-v,)—Wwhich is the
energy reactions directly in lattice QCD. We apply this ap-
proach to compute the scattering of dipoles in the———
fundamental and adjoint representation33f(N.) at high- "In fact, exactly light-like trajectories{— o) are considered in
energy in the Euclidean LLCM. The result shows the consismost applications of the functional integral approach to high-energy
tency with the analytic continuation of the gluon field collisions[8,11-13,32—34,40—47A detailed investigation of the
strength correlator used in all earlier applications of the SVMmore general case of finite rapidity can be found if47].

VI. EUCLIDEAN APPROACH TO HIGH-ENERGY
SCATTERING
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tering is described in terms of Wegner-Wilson lines: The
Minkowskian amplitudeg™(y,T,t), given by the expecta-
tion value of two Wegner-Wilson lines, forming an hyper-
bolic angley in Minkowski space-time, and the Euclidean
“amplitude,” g5(®,T,t), given by the expectation value of
two Wegner-Wilson lines, forming an angkee[0,7] in Eu-
clidean space-time, are connected by the following analytic
continuation in the angular variables and the temporal exten-
sion T, which is needed as an IR regulator in the case of
Wegner-Wilson lines:

(a)

950, T,)=gM(y—i0,T——iT,1), (6.5
gM(y, T, =050 ——iy, T—iT,1). (6.6

Generalizing this relation tgauge-invariantdipole-dipole
scattering described in terms of Wegner-Wilson loops, the IR
(®) divergence known from the case of Wegner-Wilson lines
vanishes and no finite IR regulat®dris necessary. Thus, the
Minkowskian S-matrix element(6.2), given by the expecta-
tion values of two Wegner-Wilson loops, forming a hyper-
bolic angle y in Minkowski space-time, can be computed
o1 7 from the Euclidean S-matrix element”

SE (@ 6 N N ) i (er[cl]WrZ[CZDE
v 0,291,011 ,Z5,r2 )= 1M
(s argt TR B2 T AW [C1 D (W [Cal)e

(6.7)
given by the expectation values of two Wegner-Wilson loops,

forming an angle® €[ 0,7] in Euclidean space-time, via an
analytic continuation in the angular variable

K2

(S1)L

SM (y=~In[s/m?],b, ,z;,F1, .Z5.T
FIG. 10. High-energy dipole-dipole scattering in the eikonal ap- ,1,2()/ [ Lbi.z1,r1 . 22.21)

proximation represented by Wegner-Wilson loops in the fundamen-
tal representation dBU(N.): (a) space-time andb) transverse ar-
rangement of the Wegner-Wilson loops. The shaded areas represent o ) )
the strings extending from the quark to the antiquark path in eachvhereE indicates Euclidean space-time and the QCD VEV's
color dipole. The thin tube allows us to compare the field strengthd - - - )e represent Euclidean functional integrals that are
in surfaceS; with the field strengths in surfacs,. The impact equivalent to the ones denoted by - )¢ in the preceding
pararnetert-;L connects the centers of |ight_cone momenta of theSGCtIOI’]S, |e in Wh'Ch the funCtIOI‘]a| |ntegrat|0n over the fel’-
dipoles. mion fields has already been carried out.

The angle® is best illustrated in the relation of the Eu-
central quantity in the analytic continuation discussed belovglideanS-matrix element6.7) to the van der Waals potential
and also defined througls=4m?cost(y/2)—the high- between two static dip0|ey,r1r2(®=0,5,21,F1,22,F2), dis-

= II’Eer(@_)_i‘y’BLaZ]JF]_L1221F2L)1 (68)

energy limit implies cussed at the end of this section,
. _ 5 ) ) )
mzirsrlm’y In(s/m=)—c. &4 SrElrz(G,bL 121,011 ,22,121)
The QCD VEV’s( ...}y in the Smatrix elemen{6.2) rep- =Tli_rzcexp[—TV,1,2(®,bi Z1iT1122.T20) ]
resent Minkowskian functional integral40] in which—as
in the Euclidean case discussed above—the functional inte- (6.9

gration over the fermion fields has already been carried out. .

The Euclidean approach to the described elastic scatterin'E;'gureE 11 shows the loop-loop geometry necessary to com-
of dipoles in the eikonal approximation is based on Meggi-PuteSr,r,(@#0, .. .) and how it ibtained by generalizing
olaro’s analytic continuation of the high-energy parton-the geometry relevant for the computation of the potential
parton scattering amplitud@5]. Meggiolaro’s analytic con- between two static dipoledX=0): While the potential be-
tinuation has been derived in the functional integral approackween two static dipoles is computed from two loops along
to high-energy collision§9,10] in which parton-parton scat- parallel “temporal” unit vectorst;=t,=(0,0,0,1), the Eu-
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the minimal surfac¢37], and to examine the effect of instan-
tons on high-energy scatterifg8].

Let us now perform the analytic continuation explicitly in
our Euclidean model. For the scattering of two color dipoles
in the fundamental representation®U(N.), the Euclidean
Smatrix element becomes with the VEM2.14) and (2.35

el

Y

E N - -
SDD(®1bL 121,011 1221r2L)

...... X - > g
g =S (0,01 ,21,71 22,00
O\\ Cs =05, i Ng+1 [{ N.—1 }
4 = |im exp —
1w\ 2Ng 2N, X
- + Nc_l NC+1 6.1
N, OA N, Xsis|)r (610

FIG. 11. The loop-loop geometry necessary to computeWhereXsisjv defined in Eq(2.27), decomposes into a pertur-
SrEl,Z(G)séO, .. .)illustrated as a generalization of the geometry rel- bative (P) and non-perturbativeNP) component according
evant for the computation of the van der Waals potential betweeiio our decomposition of the gluon field strength correlator
two static dipoles @ =0). While the potential between two static (2.42):
dipoles is computed from two loops along parallel “temporal” unit
vectorst;=t,=(0,0,0,1), the Euclidea8-matrix elemen{6.7) in-
volves the tilting of one of the two loops, e.g. the tiltingtefby the
angle® toward theX; axis,t;=(0,0,—sin®,cos0).

_ P NP _ P NPnc, NP
Xs,5,= Xs,5, T X5;5,= Xs,5,% (Xs/s) T X5/3,)- -
N

In the limit T;=T,=T—~ and for® [0,7], the compo-
clideanS-matrix element6.7) involves the tilting of one of nents read
the two loops, e.g. the tilting df, by the angle® toward the
X3 axis, t;=(0,0,—sin®,cos®). The “temporal” unit vec-
torst; are also discussed in Appendix B together with an-
other illustration of the tilting angl®.

Since the Euclidea®-matrix elemen{6.7) involves only
configurations of Wegner-Wilson loops in Euclidean space-
time and Euclidean functional integrals, it can be computed
directly on a Euclidean lattice. With E¢6.7) evaluated nu-
merically for many different values @& [0,7], one needs
to find the function that describes the angular dependence

NPnc

XglsZZCOt@XP, X5182 NPnc

NPc

=cot@® yNPne X§§j°= cot® y

(6.12

X" =192D 3| 1= T gD+ 2D (| 1= o)

—g?D (|1 1q=T2g)) — g?DEP(|Fig= g,

obtained. If this function is analytic i®, the analytic con- (6.13
tinuation ®— —iy leads immediately to the desired

Minkowskian S'matrix element(6.2). An obvious difficulty 72G,(1— «)

in this proposal is the breaking of rotational invariance by ,NPnc= +[D1(2)(|qu—F2;|)

the lattice. Moreover, first attempts in the direction described 3(Ng—1)

have shown that the signal size for E§.7) decreases sig- (@ 2 T

nificantly with increasing® so that it is already covered for +D1(|rig=r2g)) = D1 (Ir 1= 2q])

small values of® by the statistical fluctuation§39]. At @) o

present, it is not clear how to overcome these technical dif- —D1"(|rig—raqD], (6.14
ficulties but the stakes are high: Once precise results are

available, the analytic continuatioi6.8) could allow us to NPe Gk . . (1 1

access hadronic high-energy reactions directly in lattice x = = m(fl'fz) fo dvlfo dv,

QCD, i.e. within a non-perturbative description of QCD from ¢

first principles. XD@(|ryqt vl —Toq—var2, ) (6.19

More generally, the presented gauge-invariant analytic
continuation(6.8) makes any approach limited to a Euclid-
ean formulation of the theory applicable for investigations of

high-energy reactions. Indeed, Meggiolaro’s approach has al

as derived explicitly in Appendix C with the minimal sur-
\‘gces illustrated in Fig. 11. In E46.13 the shorthand nota-

ready been used to access high-energy scattering from th®n 9?Dp2(I1Z:))=g%(IZL)DF?(|ZL|) is used with

supergravity side of the AdS/CFT corresponden®6],  g%(|Z,|)

again understood as the running couplif®y47).

which requires a positive definite metric in the definition of The transverse Euclidean correlation functions
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d*K
(Z—K)ZG'KZDX(KZ)5(K3) 0(Ky)

w

D77
(6.1

are obtained from thémassivé gluon propagato(2.43 and
the exponential correlation functigq®.50

1(2), 52 1 -
Dp (ZL):_Z Ko(mg|Z.|), (6.17)
r
. Z.| 2. |Z.|
1(2) 52\ _ .4 12, L =l
D (Z7)=ma" 3+3 a + 2 ex 2 |
(6.18
. z Z
D@(Z2)=2ma?| 1+ M)exp(—ﬁ).
a a
(6.19

With the full ® dependence exposed in E§.12), the ana-
lytic continuation(6.8) reads

O——iy
Xs,;5,=COtOY  —

col —iy)y — iy
(6.20

and leads to the desired Minkowski&matrix element for

elastic dipole-dipoléDD) scattering in the high-energy limit

in which the dipoles move on the light cone:

lim Spp(s,b, ,21,r1, ,25,75,)

S—

. M g g g
=limSy N (8,01 ,21.711,25.751)

s—®

:SED(COt®_)i vBL lzlaFlL 122!F2L)

N+ 1 p[ _Nc—l}
exp —1

= lim
72N, 2N, X
GNemt [Net 1 6
2NCeXI2NcX (6.21

where y= xP+ xNPc+ yNPC with Egs. (6.13, (6.14), and
(6.15.

It is striking that exactly the same result was obtafhied

PHYSICAL REVIEW D 68, 074004 (2003

8,,— —0,, and the analytic continuation of the Euclidean
correlation functions to real timB£(z%)—DY(z%). In the
subsequent steps, one find&/[C])y=1 due to the light-

likeness of the loops and the longitudinal correlations can be
integrated ou{W, [C;]W, [Co])u=f(s,b,,...). One is
left with exactly the Euclidean correlations in transverse
space that have been obtained above. This confirms the ana-
Iytic continuation used in the earlier LLCM investigations in
Minkowski space-timé¢8,32—34 and in all earlier SVM ap-
plications to high-energy scatteringjl—13,40—48

In the limit of small y functions,|x"|<1 and|x"P|<1,
Eq. (6.2]) reduces to

Y . . .
lim Spp(s,b, 121,11, ,22,12))

S—®

NZ—1 Ca(Np)
~ 2: e 2
1+ N X =1+ AN, x°. (6.22

The perturbative correlations,x()?, describe the well-
known two-gluon exchange contributid83,94 to dipole-
dipole scattering, which is, of course, an important success-
ful cross-check of the presented Euclidean approach to high-
energy scattering. The non-perturbative correlatiop8Fy?,
describe the corresponding non-perturbative two-point inter-
actions that contain contributions of the confining QCD
string to dipole-dipole scattering. We analyzed these string
contributions systematically as manifestations of confine-
ment in high-energy scattering reactions in our previous
work [33].

From the smally limit, one sees that the ful&matrix
element(6.21) describes multiple gluonic interactions. In-
deed, the higher order terms in the expansion of the expo-
nential functions ensure the fundamen®inatrix unitarity
condition in impact parameter space as discussé8,#b|.

Concerning the energy dependence, $heatrix element
(6.21) leads to energy-independent cross sections in contra-
diction to the experimental observation. Although disap-
pointing from the phenomenological point of view, this is not
surprising since our approach does not describe the explicit
gluon radiation needed for a non-trivial energy dependence.
However, based on th&matrix element6.21), a phenom-
enological energy dependence can be constructed that allows
a unified description of high-energy hadron-hadron, photon-

[8] with the alternative analytic continuation introduced for hadron, and photon-photon reactions and an investigation of

applications of the SVM to high-energy reactigdgd—13. In

saturation effects in hadronic cross sections manifesting the

this complementary approach the gauge-invariant bilocaf-matrix unitarity[8,32,34. This, of course, can only be an
gluon field strength correlator is analytically continued fromintermediate step. For a more fundamental understanding of
Euclidean to Minkowskian space-time by the substitutionhadronic high-energy reactions in our model, gluon radiation

8To see this identity, recall thgW[C])=1 for light-like loops
and consider in Ref.8] the result(2.30 for the loop-loop correla-
tion function (2.3) together with they function (2.40 and its com-
ponents given in(2.49, (2.54, and (2.57 with the transverse
Minkowskian correlation function&.50), (2.59, and(2.58. (Note
that all these equation numbers refer to Réf.)

and quantum evolution have to be implemented explicitly.
Although the scattering of two color dipoles in the funda-
mental representation &U(N,) is, of course, the most rel-
evant case, we can derive immediately also the Minkowskian
Smatrix element for the scattering of a fundamerial and
an adjoint dipole(“glueball” GB) in the Euclidean LLCM.
Using Eq.(2.40 and proceeding otherwise as above, we find
in the high-energy limit
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lim S¥eg(s.0,21,1 1,25, ) 1 (PrPO)PE(m)
S—®© MGB::_ ||m_|n B B . (625)
. M > > - 7T (Prl (0)><P,2 (7')>
= I|mSN N2_1(®,b,21,r1,22,l’2)
soe  CC Note that we find for the non-perturbative compondnf;s
1 N N =2/a, which is smaller tharM{,=2mg with the LLCM
) N ct+2 1 . .
= lim eXF{' —X}‘F —eXF{ —ij —X} parameters and thus governs the long range correlations in
T | N2— 2 2(Nc+1) 2 the LLCM.
Thus, for a meaningful investigation of the QCD van der
n Ne—2 o E 6.2 Waals forces within our model, one has to go beyond the
2(N.—1) X '2X ! (6.23 static limit in order to describe the limited lifetime of the

intermediate octet states appropriately. This we postpone for
where y= P+ x"P"e+ yNPC with Egs. (6.13, (6.14, and  future work since the focus in this work is on high-energy
(6.15. scattering where the gluons are always exchanged within a
Finally, we would like to comment on the van der Waals short time interval due to the light-likeness of the scattered
interaction of two color dipoles, which is, as already men-Particles and the finite correlation lengths. Nevertheless, go-
tioned, related to the Euclidegmatrix element in the lim- iNg beyond the static limit in the dipole-dipole potential
iting case of® =0 as can be seen from E@.9: The QCD  Means going beyond the eikonal approximation in high-
van der Waals potential between two static dipoles can b&nergy scattering and itis, of course, of utmost importance to

expressed in terms of Wegner-Wilson lodg$,96 see how such generalizations alter our results.
Vi, (0=00,2,=1/211,2,=1/21 ) VIl. CONCLUSION
We have introduced the Euclidean version of the loop-
W, [C{]W, [C
— _iimin (Wi, [CaW: [ Cal) . (624 loop correlation mode[8] in which the QCD vacuum is
Tl (W [C1IW, [Co]) described by perturbative gluon exchange and the non-

perturbative stochastic vacuum mod@tl]. This combina-
In this limit (@ =0) intermediate octet states and their lim- tion leads to a static quark-antiquark potential with color
ited lifetime become important as is well known from per- Coulomb behavior for small and confining linear rise for
turbative computations of the QCD van der Waals potentialarge source separations in good agreement with lattice QCD
between two static color dipolef95-97: Working with  results. We have computed in the LLCM the vacuum expec-
static dipoles, i.e. infinitely heavy color sources, there is arfation value of one Wegner-Wilson loopV,[C]), and the
energy degeneracy between the intermediate octet states agairelation of two Wegner-Wilson loops,
the initial (final) singlet states that leads for perturbative two-(er[Cl]Wrz[CZD, for arbitrary loop geometries and gen-

gluon exchange to a linear divergenceliasT—~. This IR grg| representations;y of SU(N). Specifying the loop ge-
divergence can be lifted by manually introducing an energyometries, these results allow us to compute the static quark-
gap between the singlet ground state and the excited octghtiquark potential, the glueball mass, the chromo-field
state and thus a limit on the lifetime of the intermediate octetjjstributions of static color dipoles, the QCD van der Waals
state[95-97. potential between two static color dipoles, and Swatrix

In the perturbative limit og?—0 andT large but finite,  element for high-energy dipole-dipole scattering.
i.e. xP<1, the perturbative component of our model de- We have applied the LLCM to compute the potential and
scribes the two-gluon exchange contribution to the van dethe chromo-electric fields of a static color dipole in the fun-
Waals potential which is plagued by this IR divergence duejamental and adjoint representationSif(N.). The forma-
to the static limit. In the more general casegdffinite and  tion of a confining color flux tube is described by the non-
T—o, which is applicable also for the non-perturbative perturbative SVM correlationg25] and the color Coulomb
component of our model, one cannot use the smdimit  field is obtained from perturbative gluon exchange. We have
and multiple gluonic interactions become important. Herefound Casimir scaling for both the perturbative and non-
our perturbative component describes multiple gluon experturbative contributions to the chromo-electric fields in
changes that reduce to an effective one-gluon exchange coagreement with recent lattice data0]. String breaking is
tribution to the van der Waals potential whose interactiondescribed neither for sources in the fundamental representa-
range ¢<1/mg) contradicts the common expectations. In-tion nor for sources in the adjoint representation, which in-
deed, it is also in contradiction to our results for the glueballdicates that in our approach not only dynamical fermions
mass Mgg Which determines the interaction range (quenched approximatiorare missing but also some gluon
(<1/Mgp) between two color dipoles for large dipole sepa-dynamics. Transverse and longitudinal energy density pro-
rations. As already mentioned in Sec. Il C, we find for thefiles have been provided. For small dipol&s;0.1 fm, per-
perturbative componenMgBZZmG, i.e. half of the inter- turbative physics dominates and non-perturbative correla-
action range of one-gluon exchange, by computing the expaions are negligible. For large dipoleR=1 fm, the non-
nential decay of the correlation of two small quadratic loopsperturbative confining string dominates the chromo-electric
Pﬁ‘iﬁ for large Euclidean times— oo, fields between the color sources. The transition from pertur-
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bative to string behavior takes place at source separations gfuon radiation and quantum evolution explicitly.

about 0.5 fm in agreement with the recent results afdher More generally, the presented Euclidean approach to
and Weisz[26]. The root mean squared radi&s,s of the  high-energy scattering makes any method limited to a Eu-
confining string and the energy density in the center of &lidean formulation of the theory applicable for investiga-
fundamentalSU(3) dipole e3(X=0) are governed com- tions of high-energy reactions. Here encouraging new results

pletely by non-perturbative physics for lar§eand saturate have been obtained with instantdr@8] and within the AdS/
as R increases atRR_ “~0.55fm and 5 “(x=0) CFT correspondencE36] and it will be interesting to see

~1 GeV/fn®. precise results from the lattice. A promising complementary

We have presented the low-energy theorei28—30, Euclidean apprpach has beer] proppsec[g'a] vyhere the
known in lattice QCD as Michael sum rulgg7], in their ~ Structure functions of deep inelastic scattering at small
complete form in continuum theory taking into account theBjorkenx are related to an effective Euclidean field theory.
important contributions found if28,31 that are missing in Here one hopes that the limk—0 corresponds to critical
the original formulation[27]. We have used the complete behavior in th'e effeptwe theory. The aim is again to provide
theorems to compare the energy and action stored in th@ framework in which structure functions can be calculated
confining string with the confining part of the static quark- from first principles using genuine non-perturbative methods
antiquark potential. The comparison shows consistency ofuch as lattice computations. In another recent attempt, the
the model results and indicates that the non-perturbativ€nergy dependence of the proton structure function has been
SVM component is working at the renormalization scale atelated successfully to critical properties of an effective near
which 8(g)/g=—2 and a;=0.81. Earlier SVM investiga- light-cone Hamiltonian in a non-perturbative lattice approach
tions along these lines have found a different valuengf [99)- It ill be interesting to see further developments along
=0.57 with the pyramid mantle choice for the surfacethese lines aiming at an understanding of hadronic high-
[25,31] but were incomplete since only the contribution from €nergy scattering from the QCD Lagrangian.
the traceless part of the energy-momentum tensor has been
considered in the energy sum. ACKNOWLEDGMENT
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this direction have already been carried out but only very
few signals could be extracted, while most of the data were

dominated by nois¢39]. We applied this approach to com- APPENDIX A: THE NON-ABELIAN STOKES THEOREM
pute in the Euclidean LLCM the scattering of dipoles at

high-energy. The result derived in the Minkowskian versionnon Abelian Stokes theoref16] and explai ;

; . - plain the emerging
of the LLCM [8] has been exactly recovered including the g, - ordering. We follow the lucid presentation given in
well-known two-gluon exchange contribution to dipole- [10]

dipole scattering93,94]. This confirms the analytic continu- Let us consider a surfacgin Euclidean space-time with

ation of the gluon field strength correlator used in all ear"erboundaryc—as and the QCD Schwin . i
L . . = ger strirg, (X, X;C)
applications of the SVM to high-energy scatterif@l—  efineq according to Eq2.5 which starts at sorme poink

13’#])_438' o el btained i hh Ion the boundary and evolves along the p@tiback to the
€ Smatrix element obtained in our approach has al-,int x as jllustrated in Fig. 12. We now explain how the

ready been used to investigate manifestations of the confi Jon-Abelian line integral ove€ associated with the QCD

ing QCD string in high-energy reactions of photons and hac?Schwinger string is transformed into the non-Abelian surface

rons[33] but leads to energy-independent cross sections 'ﬂ1tegra| overSwhich involves the surface orderirfs.
contradiction to the experimental observat|@&j. The miss- First, we choose an arbitrary reference poditon the

ing energy dependence is disappointing but not surprisingurfaces and draw a fan-type net oBas a spider could do

since our approach does not describe explicit gluon radiatiog:f Fig. 12. (Note that a real spider draws its net in a se-

heeded for a npn—trivial energy dependenqe. In our previou uence different from the one describethis net is spanned
work we have introduced a phenomenological energy deperb—

dence into th&smatrix element that allows a unified descrip- ver S and is given by trlel foIIovymg CurveCxo running

. from X to O, followed byC; 5 running fromO to Z,, where
tion of hadron-hadron, photon-hadron, and photon-photon -7 TAC )
reactions and respects tBanatrix unitarity condition in im-  the path around the infinitesimal small square,,,(Z,), i.e.
pact parameter spa¢8,32,34. However, for a more funda- the plaquette af,, s attached before it goes back@along
mental understanding of hadronic high-energy reactions i¢z,0 and so on. The net is completed wiy that runs
our model, one faces the highly ambitious task to implemenfrom O to X. Apart from the initial and final elements of the

In this appendix we review briefly the derivation of the
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Finally, inserting Eq.(A6) into Eq. (A4) for all n, i.e.
summing up the contributions of all plaquettes with handles,
while respecting the ordering, one obtains in the limit of an
infinitesimally fine net

D (X, X;C)=D(0,X;Cx0) - Ps

xexr{ —ingaW(Z)

XG5.,(0,Z;Czo)t] -®,(0,X;Cxo) %

(A7)

Here Pg denotes the ordering on the whole surf&as im-
plied by the net shown in Fig. 12. Taking the trace in Eq.
(A7) and exploiting its cyclic property leads ultimately to the
non-Abelian version of Stokes theorem:

FIG. 12. A surfaceSwith boundaryC= S in Euclidean space-
time, the reference poir® on S and the fan-type net with centér

spanned oves. Tr, ®,(X,X;C)
net,Cxo_andC;é, we have many ple_lquettes with “ha_ndles” :Trr,PSeXF{ i gf dUW(Z)gZV(O,Z;Czo)t? .
connecting them t®. With the following basic properties of 2)s
the QCD Schwinger string: (A8)
®,(0,X;Cx0)®(0,X;Cxo) =1, (A1)
_ 1t _ _ 1 APPENDIX B: LOOP AND MINIMAL SURFACE
q)r(oi)(!CXO) —(I)r(O,X,Cxo)—CI)r(X,O,Cox— CX(Z)Z,) PARAMETRIZATIONS
) : _ ) A rectangular loopC; with “spatial” extension R; and
Pr(Z,XCxz)Pr(X,0;Cox) = Pr(Z,0;Coxt Cxz), “temporal” extension Z; placed in four-dimensional Eu-
(A3) " clidean space, as shown in Fig. 13, has the following param-
one sees immediately that the QCD Schwinger string alon§ter representation:
the net spanned o8 is equivalent to the QCD Schwinger c;=cfuckuctucP (B1)
string @, (X, X;C) along the patlC:
®,(X,X;C)=®,(0,X:Cxo)- (product of QCD with
CA={XMu)=Xo i—(1—z)ri+ut; ,uie[—T;, 1},
Schwinger strings for the P =Xo = (L= 2)r Uity b e[ T I]}(BZ)
plaguettes with handlgs®,(O,X;Cxo) L. CE={XB(vi)=Xo i—(1—2z)r;+vir;+Tit; ,v; €[0,1]},
(A4) (B3)
C C
: . . : C=I{XP(u)=Xo i+ziri+uit;, U [T, — T},
Next, we consider the contribution of a single plagquette with Cr={}(U)=Xo i zirituit, i e[T, i} (B4)
handle. The QCD Schwinger string for one plaquette, say the
one atZ, singled out in Fig. 12, read4.0] CP={XP(v))=Xq i—(1—z)r;+v;ri—Tit; ,v;€[1,0]},
1 R . (B5)
@, (plaquette aZ,) =1-ig 580, (Z) G5 (ZtE+ - oo
(A5) R;sin 6;cos¢; 0
where Ao ,,(Z,) denotes the surface element at the point R;sin 6;sin ¢; 0
Z,. Taking into account the handles, the contribution of this ri= R.c056,c050), and tj:= —sin®, |’ (B6)
plaquette to Eq(A4) becomes )
R;c0s#;Sin®; cos0);

q)r(O,Zn ;CZnO)(br(plaquette azn)(br(O,Zn ;CZnO)_l

The “center” of the loopC; is given byX, ;. The parameters
z, R, 6,, ¢;i, and®, are defined in Fig. 13 which illus-
trates(a) the spatial arrangement of a color dipole ghylits
world-line C; in Euclidean “longitudinal” space. The tilting
where Eq.(A2) and the parallel transported gluon field angle®;+0 is the central quantity in the analytic continua-
strength as defined in E¢R.4) have been used. tion presented in Sec. VI. Moreoved,; = 7/2 together with

1
=1-i9580,,(Z)G2,(0,Z,iC o)+, (AB)
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(a)

(b)

FIG. 13. (a) Spatial arrangement of a color dipole afl its
world-line in Euclidean “longitudinal” space given by the rectan-
gular loopC; that defines the minimal surfa& with ¢S,=C; . The

PHYSICAL REVIEW D 68, 074004 (2003

APPENDIX C: y COMPUTATIONS WITH MINIMAL
SURFACES

The quantities considered in the main text are computed
from the VEV of one loog W[ C]) and the loop-loop corre-
lation function (W[C,]W[C,]). Using the Gaussian ap-
proximation in the gluon field strengths, both are expressed
in terms Osz.sj functions (2.15 and (2.27 as shown in

Secs. Il A and Il B. Thesg functions are central quantities
since here the ansatz of the gauge-invariant bilocal gluon
field strength correlator and the surface choice enter the
model. In this appendix, these functions are computed ex-
plicitly for minimal surfacegB7) and theF ,,,,, ansatz given

in Egs.(2.42), (2.44), and(2.48. Note that the contributions
from the infinitesimally thin tube—which allows us to com-
pare the field strengths in surfaSg with the field strength in
surfaceS,—cancel mutually.

Depending on the geometries and the relative arrange-
ment of the loops, the' functions determine the physical
quantities investigated within the LLCM such as the static
gq potential (3.2), the chromo-field distributions of a color
dipole (4.9, and the Smatrix element for elastic dipole-
dipole scattering6.10.

We compute the three componer)tglsz, Xg'l'ggC, and
Xg‘f’sg separately for general loop arrangements from which

the considered quantities are obtained as special cases. With-
out loss of generality, the center of the l0Gp is placed at

the origin of the coordinate systerK, ,=(0,0,0,0). More-
over, C, is kept untilted,®,=0, and®:=0, is used to
simplify notation. We limit our general computation to loops
with r ,= (Fl,ZL ,0,0)= 6, ,= w/2 and transverse “impact pa-
rameters” b=Xg1—Xg 2=Xq 1=(b4,b,,0,0)= (BL,O,O)
which allows us to compute all of the considered quantities.

minimal surface is represented by the shaded area. In our model, it

is interpreted as the world-sheet of the QCD string that confines the

quark and antiquark in the dipole.

®,=0 allows us to compute conveniently the chromo-

magnetic field distributions in Appendix C.

The minimal surfaces; is the planar surface bounded by

the loopC;=4S; given in Eq.(B1). It can be parametrized as
follows:

S={Xi(uj,vj)
=Xo i=(I=z)ritviritut;,
uie[—T;,Til,v;e[0,1]} (B7)

with r; andt; given in Eq.(B6). The corresponding infini-
tesimal surface element reads

Xy X, 9K, X,
&ui (?Ui (9l)i aui

dO'I“,(Xi): duidUi

=(ti ri,—riuti,)dudo; . (B8)

NPc
Xs;s,

Starting with the definition

computation

71_2
X8i8,="1 f o, 47 (X) fszdapg<x2>FEE;U(z:x1—xz>

Gk

= 12(N(2:—l)fsldU”V(Xl)szdgpg(xz)

X ( 6/1,[)51/(7'_ 5/u7'5up) D(Zz): (Cl)
one exploits the anti-symmetry of the surface elements,
do,,=—do,,, and applies the surface parametrization

(B7) with the corresponding surface eleme(B8) to obtain

o T G2x (f1-15) f " f '
— (¢ T v v
3(N2-1) © o tJo P

LE T2
du, du,D(Z?)
-T1 -T2

NPc_
Xs;s,~ €O

X (C2

with

074004-26



CONFINING QCD STRINGS, CASIMIR SCALING, AND . ..

Z:X]__XZ

by —(1=2zy)ry, +vary, +(1=2)0 5 —val o,
—Uu;Sin® ,
u;cos® —u,

(C3
where the identitie$;-r,=r,-t,=0 andt;-t,=cos0, evi-
dent from Eq.(B6) with the mentioned specification of the

loop geometries, have been used. In the limit>, theu,
integration can be performed:

T

2
lim du,D(Z?)
T2~>oc 7T2
dK - T .
=f ~ B(K?) lim J * du,ek?
(277) Tp— =T,
f oK D(K?)2m8(KexdiK, Z
= expgl
(277)4 w 4 141

+iK3u;Sin® +iK ,u;c080 |

f (ger)3

=DC)(Z?),

DO(K2)exdiK,Z, +iKsu;sin®]

(CH
which leads to

lim xs's,=cos®

772G2K (_) N )J‘ld fld
Tyo 3(NZ—1) TR Rt
Ty N
xf du, DG)(Z?).
_Tl

(CH

Taking in addition the limifl;— <, theu, integration can be
performed as well:

N
lim f " dusexdiK 3u; Sin® ]
Tl—mo _T]_
27o(K )
2775(K35in®): for sin®=#0,
lim 2T, for sin®=0.
Ty—
(C6)

With T,=T,=T/2—, one obtains for si®+0

cos® 7°G,k 1 1
NPc__ 2 > >
(rlj_'rZJ_)fo dvlfo dv;

lim =
XS5 [sin®] 3(N2-1)

T—oo

xD®@Y(Z%) (7

and for sin®=0

PHYSICAL REVIEW 8, 074004 (2003

2
) ) mGok L
lim Xg‘lgzz lim T cos® ————(ry, I5,)
Too T Ne—1)

1 1 R
X f dUlJ’ dU2D(3)(ZZ). (C8)
0 0

Evidently, Eq.(C7) is the result given in Eqs6.12 and
(6.15 which describes the confining contribution to the
dipole-dipole scattering matrix eleme8p .

From Eq.(C8), one obtains the confining contribution to
the static color dipole potential f@; =S,=S which implies

T]_:TZZT/Z, ®:O, Zl:ZZ, r1=r2=l’, and FlL'FZL:rZ

=R? so that
1 1
sz dvlf dl}z
0 0

XD Z2=(v,-v,)?R?]
= lim

1
sz dp
T—oo 0

X (1-p)D®)(p?R?),

°G
. 2K
lim x§s°=

T—w

T
lim T———
3(N2-1)

T—oo

277Gy
T 2

3(NZ2-1)
(C9

which leads directly to Eq(3.7).

From Eq.(C5) the confining contribution to the chromo-
field distributionsAGiB(X) can be computed conveniently.
Equation (C5) reads forS;=Sp, T;=Rp/2 and R;=Rp,
andS,=Sy, T,=T/2 andR,=R

im P —c0s0 27, )Jld fld

m =C0SE) ————(Iq I v v

THxXSPS‘N 3(N§—1) wtay) f 801 ) HU2
Rp/2 .

X f du;D®)(Z?) (C10

—Rp/2

with

Z=X;-X,

(b= (I=2zy)ry, vy, H(1=2p)rp —vala)

—U;Sin®

(C1D

The confining non-perturbative contribution to the chromo-
magnetic fields vanishes as it is obtained for plaquettes with
®=m/2. The corresponding contribution to the chromo-
electric fields can be computed wih=0 as follows: Due to
R;=R,—0, theu, andv, integrations in Eq(C10) can be
performed with the mean value theorem. Keeping only terms
up to (’)(Rf)), the confining non-perturbative contribution to
the chromo-field distributionAGiB(X) is obtained as given

in Eq. (4.18.
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NPnc

Xs,s, computation

We start again with the definition

2
v
XS =g fsldo-w(xg f 800 (X U2 =X = X0)

_ mGy(1—k) g xfd xlﬁza 5 s +(925 N s
_—12(N§_1) s, 0',“,( 1) s, Up,,.( 2)5 &_ZV( c9up p /ur) @( pOvo o vp) 1( ) ( )

and use the anti-symmetry of both surface elements to obtain

m2Gy(1— k) 9
Xglpszcz 6('32_1) fsldo-/“’(xl)fSZdUPU(Xz)Ezagﬂle(zz) (C13)
Cc v
_772G2(1—K)f q X f q X a d 5 D22 c14
- 3(N§_1) s O-,U,V( 1) s, Up(r( Z)EE wp 1( ) ( )
B m°Gy(1—k) q X d J’d X J 5 D72 1
T a1 Js TG, s 8 X g, 0Pl 2T (C19
with
d*K d*k . d <
Dy(Z? :f ——e*Dj(K? :f ——eff— Dy(K?). C16

As evident from Eq(C15), Stokes theorem can be used to transform each of the surface integfafg’;ﬁinto a line integral:

2G,(1— k) 9
NPnc_ 7T 2 7 A,
XslsZ o 3(N(2:—1) Sldo-l“’(xl)azv éczdzp(XZ)élule(Z ) (Cl?)
=—MJ do (X)Jﬁ dZ,(X5)é8,,Z,D1(Z?) (C18
6(N2—1) Js, “7Y Je, T nE T
s Gl (X )3€ dZ,(X,)8, D.(Z?) (C19
3(N2-1) Je, 7 Je, M TETmeTRE

With the line parametrizations @, andC, given in Eq.(B1) and the specification of the loop geometries mentioned at the
beginning of this appendix, EC19 becomes

m°Gy(1— k) T T2
XSe=— cos@f dulf duy[D(Z4a) —D1(Z4c)—D1(Z&)+D1(Z20)]
t 3(Nc_ 1) -T; -T

o 1 1
(oo fo dos fo Qoa{ D}(Z38)— Dy(Z30) — DY(Z35) + D}(Z30)] (20
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where the following shorthand notation is used:

Zyyi=X{—Xy with XJeCj and XjeCj.
(c21)

In the limit Ry ,<T, ,—, the term proportional to r.,
‘T,,) on the RHS of Eq(C20) can be neglected and thus

Eq. (C20 reduces to
2
T°Go(1—k T
lim Xgﬁ;gcz—cos@%) lim | " du, lim
Tlﬂm 1 3(NC_1) Tlﬂw *Tl Tzﬂoc

Ty—
T2 2 2 2
xf . du,[D1(Zan) —D1(Zac) —D1(ZZ,)
— 12
+D1(ZE): (€22
Here, the integrations over; andu, can be performed ana-

lytically proceeding analogously to Eq€4) and(C6). With
T,=T,=T/2—», one obtains for si®+0

_ cos® 72G,(1— k)
lim Xglpnc_

T % [sin@]  3(N2-1)

[D{®N(ZaA)

~DIAZe,) - DI (Z2p) + DA (Zec))]

(C23
and for sin®@=0
m°Gy(1— k) -
lim yN?"°= — |im T cos® ——=——=[D/(®)(Z2
T_m)(sls2 e 3(N§—1) [ 1 ( AA)

—DiZ30) D1 ZEN + DA ZE0)].

(C24
With the identities
Zpp=T1g—T2q,  Zaci=T1q~ T2q>
Zear=T1g—T2qs Zcci=l1g—T2q, (C2H

one sees immediately that E(¢C23) is the result given in

Egs.(6.12 and(6.14) that describes the non-confining non-

2
NPhe. 7°Gy(1— k) (Rel2

X" T3(NZC1) J e

PHYSICAL REVIEW 8, 074004 (2003

perturbative contribution to the dipole-dipole scattering ma-
trix elementSpp .

From Eq.(C24), one obtains the non-confining contribu-
tion to the static potential fo8,=S,=S, i.e. T;=T,=T/2,
0=0,r=r,=r,

) ) TG 2(1—k) .
AT T gy (PF 2R iz
—D{®NZZ)+D®(Z20)], (C26

which contributes to the self-energy of the color sources with

. _mGy(1-k) )
T“anxgggcen: —ime D;®A(ZZn)
+D1®(Z%0)]
2m2G,(1—« -
= — lim T#Df”(z,@\)
T—o 3(NC_ 1)
(C27)

and to the potential energy between the color sources with

. . 772G2(1_ K) = =
lim x§8 o= lim T————[D;®(Z30) +D;¥(ZZ )]
T T—oo 6(NC_ 1)
G, (1— K .
— lim T#Di(S)(ZiC). (C298

T 3(NZ-1)

The last gives the non-confining contribution to the static
potential(3.6).

The non-confining non-perturbative contribution to the
chromo-electric fieId$AGiB(X) with aB=i4=4i] can be
computed most conveniently from EC18 with zero
plaguette tilting angl€®) = 0. The corresponding contribution
to the chromo-magnetic field$AGiﬁ(X) with aB=ij
=]ji] is obtained for plaquette tilting angl® = 7r/2 and thus
vanishes which can be seen most directly from the surface
integrals(C13). Now, we set® =0 to compute the contribu-
tion to the chromo-electric fields: Using the surfége= Sp
and loop C,= 43S,y parametrizations, EqgB7) and (B1),
with our specification of the loop geometries, one obtains
from Eq.(C18

1 T2 . ..
dulfo dvl{f leduz[(rli'ZlAL)Dl(ZiA)_(rlL'ZlCL)Dl(Zicn

> > 1 - . - -
(o) [ oal(Fay 10 )Du(Zhe) ~ (1, Zao1 D120 ] (€29
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W|th T]_:Rplz, R]_:Rp, T2:T/2, RZZR, and the Short'

lim x& « = — lim T cos®g?3[ D4 (Z2 ) — D3 (Z2
hand notation Xs;s, 9°[DpN(Zan) —Dp(Zac)

T—x T—ow

, —Dp®(ZE) +DEP(ZE )], C34
Z]_X5=X1_X§ W|th XJ_ES]_:SP and X?EC;(:aSC(\/ P ( CA) P ( CC)] ( )

(C30
whereZyy is defined in Eq(C21) andZyy, is given explic-
In the limit R<T—, the term proportional torg, -T,,) on itly in Eq. (C25. Evidently, Eq.(C33 is the final result

the RHS of Eq(C29 can be neglected, given in Eqs(6.12 and(6.13 which describes the perturba-
tive contribution the dipole-dipole scattering matrix element
Sop -
. NPne m2Gy(1— k) [Rel2 1 ) The perturbative contribution to the static potential is ob-
T|lm XspSy— m _Rpl2 Ulfo dUl_Il_Im tained from the expression corresponding to &R6),
— c — 00
TI2 . . 1 (3), 3 , L3y, 2
X f U (P, - Z1a)D1(Z2) lim gg=— lim Tg{DpH(Z3) ~D(Zho) ~DE(ZEw
—T/2 — —o
— (.- Z161)Dy(Z20)]. (C31) +DpNZE0)], (C35)

With an infinitesimal plaquette used to measure the chromowhich contributes to the self-energy of the color sources with
electric field,R;=R,—0, the mean value theorem can be

used to perform thei; and v, integrations in Eq(C31).

i P — i 2rn(3),52 1(3),52
Keeping only terms up tc@(Rf,), this leads directly to the l[nmXSS self™ TI'anTg [Dp(Zan) +Dp(Zcc)]
non-confining non-perturbative contribution to the chromo-
field distributionsAGiB(X) as given in Egs.(4.16 and =— |limT2 QZDE(3)(ZiA) (C36)
(4.17). T—w
x" Computation and to the potential energy between the color sources with

Comparing the definition of the perturbative component
lim x2s por= = im TGP DEP(Z20) + DpP(ZE)]
T—ow

2 T—w
P P RV
Xslsz'— 4 fsldo-,u.v(xl) fSZdUpU(XZ)FMVpo(Z Xl X2) T ngle;(s)(ZiC) (037)

T—w

g2
= ZJ do—p,v(xl)f do—po’(XZ)
S1 S2 The last gives the perturbative contribution to the static po-

1 P tential (3.4).
X5 ﬁ(z(,&wj—zp&wwf(zpfsw—zgayp) . The pezrturbat|\{e contnpungn to .the chromo—magnetm
v © fields [AG,4z(X) with eB=ij=]i] vanishes while the one
X Dp(Z?) (C32  to the chromo-electric field[sAGiﬁ(X) with aB=i4=4i],

for which a plaquette witl® =0 is needed, is obtained from
with that of the non-confining non-perturbative componentthe expression corresponding to EG31),

Xgl"sgc given in Eq.(C12, one finds an identical structure.

Thus, accounting for the different prefactors and the different P . ZJRPIZ q J’ld im fT/Z q
correlation function, the results fo;fgls2 can be read off THDCXSPSW_ 9 “Rel2 ! 0 vlpm - U2
directly from the results fo;s(gfsgc given above. o ,
With T;=T,=T/2—% and our specification of the loop X[(r1,-Zia)Dp(Z1p)
eometries, one obtains the result for ®i#0 from Eq. -
23 | ~ (P11 Z1c.)Dp(Z50)] (c38

with Z, as defined in Eq(C30). To perform theu; andv,
lim % o = — CF’S® g2DL®(72, )~ DLA(Z2,., ) integrations in Eq(C38), again the mean value theorem can
1. 12 [sin®| PPATAALL TR TACL be used since the plaquette has infinitesimally small exten-
sions, R;=R,—0. Keeping only terms up t@(R}), this

—Dp(ZE A ) +DPA(ZE )] (C33 leads directly to the perturbative contribution to the chromo-
field distribution AGiﬁ(X) as given in Egs.(4.13 and
and the result for si®@=0 from Eq.(C24) (4.14.
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