
, USA

PHYSICAL REVIEW D 68, 073006 ~2003!
Resummation of large QCD corrections togg\bb̄
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We study the resummation of large QCD radiative corrections up to the next-to-leading logarithmic accuracy

to the processgg→bb̄; i.e., we resum logarithms of the typeas
pln2pm2/s and as

pln2p21m2/s (m is the quark
mass!. The only source of all the logarithms to this accuracy is the off-shell Sudakov form factor included into
the triangle topologies of the one-loop box diagram. We prove that any other configurations of diagrams to this
accuracy either cancel in subgroups or develop a universal on-shell Sudakov exponent due to the final quark
antiquark lines. We study the mechanism of cancellations between the different diagrams, which leads to the
simple resummed results. We show the cancellation explicitly at three loops for the leading and at two loops for
the next-to-leading logarithms. We also point out the general mechanism responsible for it, and discuss how it
can be extended to higher orders.
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I. INTRODUCTION

Future linear colliders are expected to reveal the answ
to many questions of modern particle physics. One of th
concerns the physics of the Higgs particle and the origin
electroweak symmetry breaking. The neutral scalar Hi
boson is an important ingredient of the standard model~SM!
and is the only SM elementary particle which has not be
detected so far~see for a review@1,2#!. The lower limit on
mH of approximately 113.5 GeV at 95% C.L. has been o
tained from direct searches at the CERNe1e2 collider LEP
@3#. Current experiments are concentrating on the possib
of finding a Higgs particle in the intermediate mass reg
113.5,mH,150 GeV. In this region it decays mainly to
bb̄ pair.

The photon modeof the future linear collider~LC!,
namely the collisions of the energetic polarized Comp
photons, will be used for the production and for the study
the Higgs particle. In the intermediate mass range, the m
production process is

gg→H→bb̄.

QCD as well as electroweak radiative corrections to this p
cess have been studied very well and have been found t
small in this region@4#. The main challenge, however, is t
get under control the background process

gg→bb̄,

which gets extremely large QCD corrections.
In this paper we discuss the process of the quark antiqu

production in the photon mode of the LC,gg→bb̄. The
amplitude for this process in the scalar channel conta
large double logarithms atusu,utu,uuu@m2. At very high en-
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ergies, the large logarithms spoil the perturbative predictio
Therefore it is mandatory to develop a clear resummat
procedure for these double and single logarithmic terms.

us stress that the main interest in the processgg→bb̄ comes
from the fact~but is not limited to it! that it represents the
dominant background for the production of the Higgs p

ticle, gg→H→bb̄ @5–7#. In fact, our motivations for this
study are twofold:~i! A detailed study of the processgg

→bb̄ is very important due to phenomenological reaso
mentioned above; and~ii ! in addition to that, the quark anti
quark production in photon collisions, being one of the si
plest processes in QCD, is important in its own right, e.g.
studying and understanding QCD effects.

The Born cross section for the polarizedbb̄ production in
the scalar channel~at Jz50), where the Higgs boson will be
studied as well, is suppressed bymb

2/s @8,9# ~heres is the
center of mass energy of the initial photons!. However, the
perturbative QCD corrections contain the large double lo
rithms of the formr5asln

2(mb
2/s), which give a contribution

to the cross section which is of the same order as the B
contribution at high energies. The presence of the large
rection was noticed by Jikia in@9#. The double logarithmic
nature and the origin of these corrections were studied in@7#.
The authors studied the process to one and two loop a
racy. Later, the form of the resummed results for the dou
logarithms was argued in@10#. These authors also claime
that the double logarithms have a ‘‘non-Sudakov’’ origin.

In this paper, we first present an alternative way of und
standing the resummation procedure for the double lo
rithms. The general idea of our approach is that the o
source of double logarithms is the off-shell Sudakov fo
factor included in the triangle topologies of the one-loop b
diagram. We have proved that the other types of the hig
loop diagrams will either cancel in subgroups or develop
universal on-shell Sudakov exponent due to the final qu
antiquark lines. In addition to that,~i! we extend this analysis
to the next-to-leading-logarithmic~NLL ! accuracy, and~ii !
we study the mechanism of cancellations alluded to ab
between the different diagrams, which leads to very sim
©2003 The American Physical Society06-1
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resummed results. We demonstrate the cancellation expli
at three loops and point out the mechanism respons
which then allows for the generalization to higher loops,
up to the next to leading logarithmic accuracy. As an as
we argue that all the large logarithms up to the next to le
ing level are related to the Sudakov ones. This includes
only the leading ones of the formas

pln2pm2/s but also the
next to leading ones of the formas

pln2p21m2/s (m is the
quark mass!. It is this fact together with an understanding
the cancellation mechanism which allows us to develop
easy resummation procedure.

Of course,bb̄ production must be accompanied by oth
final state particles depending on the experimental det
The most favorable setup for Higgs production occurs wh
there are soft photons in the final state and the semi-inclu
cross section is infrared finite with the infrared singularit
in the virtual~exclusive! cross section being cancelled by th
brehmstrahlung diagrams. In this paper, our main focus
be on the amplitude for the processgg→bb̄ and the resum-
mation of the large logarithms of the type discussed abo
In Sec. III E we will briefly discuss the case of real emissio
Detailed analysis of this is beyond the scope of this pap

The paper is organized as follows. In Sec. II A we discu
the one loop diagrams and explain which topologies are
portant. In Sec. II B we present a procedure for the resu
mation of the double logarithms. In Sec. II C we extend o
analysis to the next-to-leading logarithmic level. In this se
tion we consider all possible topologies and give the fi
result of the resummation. Section III is devoted to the stu
of the different cancellations which are responsible for
simple resummed results of Sec. II B for the double logar
mic case. In Sec. IV we tackle the case of the form factor
the next to leading logarithmic accuracy and justify the
sults given in Sec. II C. The paper ends with some conc
sions and discussions.

II. THE RESUMMATION UP TO
NEXT-TO-LEADING LOGARITHMS

A. One loop results

We study the process of quark antiquark pair product
in photon-photon collisions

g~k1!1g~k2!→q~p1!1q̄~p2! ~1!

in the scalar channelJz50, at very high energies compare
to the mass of the quarkm, and at large scattering angles

usu;utu;uuu@m2. ~2!

The radiative corrections to this helicity amplitude conta
large double and single QCD logarithms of the for
asln

p(s/m2), p52,1, in the limit Eqs.~17!,~18!.
It has been shown in@7# that the large double logarithm

~DL! have a Sudakov-like nature and can be extracted f
the total result by identifying special kinematic regions.
was demonstrated that only the box diagram contributes,
that this box diagram can be reduced to three different ef
tive diagrams with triangle topology. We label them as
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pologies A,B,C following@7#, see Fig. 1. These effectiv
diagrams result from the box diagram when one of the f
propagators is hard, two collinear and one soft~the soft line
can be either the gluon or the quark propagator!. Hence one
can shrink the hard propagator of the box diagram to a po
because it does not depend on the soft loop momenta
more. The hard momenta would be just an ultraviolet cut
in this situation.

In order to introduce notations and to get an idea ab
the structure of the DL, let us consider one loop calculatio
in the DL approximation. Also, we will use these results
the next section for the construction of the DL-resumm
result.

As is well known, the double logarithms come from th
region of soft loop momenta. Hence, one can always writ
factorized form for the amplitude in the DL approximation

MA5MBorn•FA ,

MB5MBorn•FB ,

MC52MBorn•FC . ~3!

The factor 2 in the last equation represents two ident
contributionsC1 ,C2 of the topology C. The amplitude the
reads

M5MBorn•~FA1FB12FC!. ~4!

We turn now to the calculation of the form facto
FA ,FB ,FC .

It is convenient to use the standard Sudakov technique
calculating DL contributions, as described in@7,11#, and in-
troduce Sudakov parametrization@11,12#. One starts with de-
composing the soft momenta in terms of those along the h
external momenta, for examplek1 ,k2 and transverse to them

k5ak11bk21k' . ~5!

The DL contribution comes only from the region

m2,uk'u2!suau,subu!s. ~6!

For different topologies it is convenient to use different d
compositions of the soft momenta:

A B C1 C2

FIG. 1. Triangle topologies obtained from the one loop b
diagram.
6-2
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topology A: k5bS p2
m2

s
p̄D1aS p̄2

m2

s
pD1k' ~7!

topology B: k5bk21ak11k' ~8!

topology C: k5bk21aS p̄2
m2

s
k2D1k' . ~9!

The loop integration in terms of the new variables reads

E
2`

`

d4k5
s

2E2`

`

daE
2`

`

dbE
0

`

pdl'
2 . ~10!

The integration over the transverse momenta of the soft quark is performed by taking half of the residues in the corres
propagator,

E d4k

k22l21 i0
F5E s

2

dadbd2k'

sab2k'
2 2l21 i0

F→2 ip2
s

2E dadbQ~sab2l2!F, ~11!

wherel is a small~fictitious! gluon mass. In this manner the one loop amplitude may be calculated in the DL approxim
and topology A gives

FA
1-loop52

CFas

2p E
0

1E
0

1dadb

ab
QS ab2

l2

s DQS a2
l2

s
b DQS b2

l2

s
a D ~12!

52
CFas

2p S 1

2
ln2

m2

s
1 ln

m2

s
ln

l2

m2D . ~13!

Topology B and C have the following form at one loop in the DL approximation:

FB
1-loop5FC

1-loop52
CFas

2p E
0

1E
0

1dadb

ab
QS ab2

m2

s D52
CFas

2p S 1

2
ln2

m2

s D . ~14!

These results were derived first in@7# and will be used in our calculation later on.
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B. The double logarithmic resummation

The main idea behind our method is that the only orig
of the double logarithms is the off-shell Sudakov for
factor1 included in the effective one loop triangle diagram
A, B and C. Contributions from other types of diagrams w
either cancel in subgroups or develop a simple on-s
Sudakov exponent due to the final quark antiquark pair. T
cancellations amongst the diagrams will be discussed in
next section where the general mechanism is elucida
Here we study the DL resummation in the topologies A,
and C.

The diagrams of topology A represent a simple case. H
we do not have any ‘‘hard’’ DLs, but only the ‘‘soft’’ ones
which develop the usual on-shell Sudakov form factor fro
the gluon exchanges between the final quark antiquark p
It is well known, that the on-shell DL Sudakov form factor
QCD is the exponent of the one loop result

1Hard outer lines are slightly off-shell.
07300
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FA5exp~FA
1-loop!, ~15!

with FA
1-loop given in Eq.~12!.

The resummation of the DL terms coming from the d
grams of topology B is more involved. First, we have
account for the ‘‘soft’’ on-shell exponent from the final qua
antiquark rescattering, similar to the one in topology A, E
~15!. Second, we observe a new element, namely the ‘‘ha
double logarithms from quark antiquark rescattering ins
the one loop diagram. The interacting particles~quarks in
this case! are hard and slightly off-shell,p1,2

2 !s.
According to our general idea, the resummation of t

‘‘hard’’ DL can be obtained by including the off-shell Suda
kov form factor into the loop, and accounting only for tho
momenta which do not destroy the DL nature of the one lo
result.

We recall that the off-shell Sudakov form factor is a ve
tex of the production of the quark and antiquark with sm
virtualities p1

2 andp2
2 and has a form@13#
6-3
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S~p1 ,p2!5expF2
CFas

2p
lnS s

up1u2
D lnS s

up2u2D G , ~16!

assuming thatm2!up1u2,up2u2!s. Now the momentap1 and
p2 become loop momenta, i.e., they depend ona,b

p1
25~k11k!25sb, p2

25~k22k!52sa. ~17!

Because of the DL approximation, the kinematic region
interest is restricted by the inequalities

m2!up1u2,up2u2!s. ~18!

Taking into account the result Eq.~16! and including it into
Eq. ~14! we get

FB52
CFas

2p E
0

1E
0

1dadb

ab
QS ab2

m2

s D
3expS 2

CFas

2p
lnuau lnubu D . ~19!

We next transform the exponent into a power series and
that the integral of thenth term will be of the form

E
0

1

dj1E
12j1

1

dj2j1
n1aj2

n1b5
G~n1a11!G~n1b11!

G~312n1a1b!
.

~20!

The final result at DL accuracy reads

FB5FB
1-loop(

n50

`
2G~n11!

G~2n13!
~2rB!n ~21!

with rB5(CFas/2p)L2,L5 ln(m2/s). The indexn shows that
the order of the amplitude isas

n . We can clearly identify the
separate contributions of the fixed orders inas . On the other
hand, if rB is large all terms in the series are importa
giving altogether some analytic functionFDL(r). This func-
tion is identified with a hypergeometric functio

2F2(1,1;2,32 ;z), namely,

FB5FB
1-loop(

n50

`
2G~n11!

G~2n13!
~2rB!n

5 2F2S 1,1;2,
3

2
,2

rB

4 DFB
1-loop. ~22!

These functions are exact answers inrB in the DL approxi-
mation. For large values of the parameterr the functionFDL
has the following asymptotic:

FB~rB!5
2 ln~2rB!

rB
FB

1-loop. ~23!

Thus we see that despite the fact that perturbation the
blows up at largerB , the resummed result gives a smoo
well defined function.
07300
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Topology C differs from B only through the color struc
ture at the DL level. At the end of the calculations the a
swers for topologies B and C are similar and are related
the simple substitution

CF→CA/2 in the variablerB . ~24!

Combining all results for the three topologies we have

M5MBorn~11FB12FC!exp~FA
1-loop! ~25!

with the functions defined above. We must stress that th
are other diagrams which can give DL contributions. For
nately, all of them cancel in the certain groups, as will
discussed in Sec. III. This cancellation has a very sim
physical interpretation~see Sec. III!.

Our results are written in two different representation
We have checked that they are in agreement with@10#, where
the authors used a completely different method, not ment
ing the off-shell Sudakov form factors at all. We believe th
our approach is more transparent. It shows that the n
double logarithms are of Sudakov type, and, therefore,
resummation procedure becomes simple. Another advan
of our approach is that it opens up the possibility for resu
ming the single logarithms as well.

C. Next-to-leading logarithmic accuracy

It is possible to develop this approach to achieve next
leading logarithmic accuracy. First, the factorization formu
should be modified in order to take into account single lo
rithms. The amplitude reads at NLL approximation

M5MBorn~11D1FB12FC!FA ~26!

with the function

D5
asCF

p

3

2
ln~s/m2!,

which can be extracted from the explicit calculations p
formed in@9# by expanding the result ats5utu5uuu@m2. FA
is the on-shell Sudakov form factor to the next-to-leadi
logarithmic accuracy@14#.

Second, in order to calculate the form factorsFB andFC
at NLL, we need an expression for the Sudakov form fac
also to this accuracy. We turn now to the calculation of t
form factorsFB and FC . In fact, such an analysis alread
exists in the literature@15# for the case when the two extern
fermion lines are off-shell by the same amount, i.e.,p1

25p2
2

5p2:

SNLL~p,p!5expF2
CFas~p2!

2p
ln2S s

upu2
D

1
3CFas~p2!

4p
lnS s

upu2
D G . ~27!
6-4
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For our purposes, we need to extend the analysis to take
account thatp1

2Þp2
2. It is easy to see that for the region, E

~17!, the proof of factorization and exponentiation given
@15# goes through with straightforward changes. The ma
change involves the normalization of the coupling. We ha
studied one and two loop diagrams for theqq̄ production
vertex with slightly off-shell quarks with the following
result:

SNNL~p1 ,p2!5expF2
as~n2!CF

2p S ln
up1u2

s
ln

up2u2

s

1
3

4
ln

up1u2

s
1

3

4
ln

up2u2

s D G , ~28!

with the normalization of the coupling constant determin
to ben25Aup1

2uup2
2u. We show only the double and single I

logarithms in the exponent of Eq.~28!.
In order to understand this normalization, we have to c

sider the diagram shown in Fig. 2 where we keep track of
nf dependent pieces only since they are separately ga
invariant. Such diagrams can be accounted for by consi
ing the following gluon propagator:

Dmn
ab52 idabS gmn2

kmkn

k2 D 1

k2

1

11P~k2!
, ~29!

whereP(k2) is the vacuum polarization by the gluon; at th
one loop level it is simplyP5(asb0/4p)ln@(k2/m2)eC#,
b05112 2

3 nf , C being a scheme-dependent constant (MS
schemeC52 5

3 ).
The diagram, Fig. 2, corresponds to the first term in

expansion of the gluon propagator inas . Thenf part of this
result is, as mentioned earlier, a gauge invariant subset o
complete set of two loop diagrams.

Because the effects of the running coupling gives o
single logarithmic terms it is enough to consider the rema
ing integrals to DL accuracy. Namely, we may trace only
terms proportional to ln(up1u2/s)ln(up2u2/s) from Fig. 2. At the
DL accuracy the spin structure of the amplitude is simple,
that one needs to consider the scalar integral only,

I 511
as~m2!CF

2p
~2p1p2!E d4k

~2p!4

1

~p11k!2

1

~p22k!2

3F12
asb0

4p
lnS k2

m2D G i

k2
. ~30!

p1

p2

k

FIG. 2. A diagram responsible for determining the normalizat
scale of the coupling constant.
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To evaluate this, we consider a slightly more general integ

J5 i E d4k

~2p!4

1

~p11k!2

1

~p22k!

m2D

~k2!11D
, ~31!

which after expanding inD will give us the desired integra
I. Using Feynman parameters, this integral is reduced to

J52
1

~4p!2E0

1

dy
1

AD
m2D@e2D ln(A1B)2e2D ln(B)#,

~32!

with

A~y!5p2
2y212p1p2y1p1

2 , ~33!

B~y!522p1p2y2p2
2y2p1

2 , ~34!

A~y!1B~y!5p2
2y~211y!. ~35!

The functionA(y) has two zeros,y6 :

A5p2
2~y2y1!~y2y2!,

y65
22p1p26A~2p1p2!224p1

2p2
2

2p2
2

. ~36!

For very small virtualities,p1
2 ,p2

2→0, the roots are simpli-
fied to y152p1

2/s,y252s/p2
2. Expanding the integrand o

J in D up to second order we have

J5
1

~4p!2E0

1

dy
1

p2
2~y2y1!~y2y2!

3m2DF lnS p2
2y~12y!

~2p1p21p1
2!y1p1

2D ~37!

1
D

2
$2 ln2@p2

2y~12y!#1 ln2@~2p1p21p2
2!y1p1

2#%G .
~38!

The final integration overy is simple, the result is

J5
1

~4p!22p1p2
F2 ln

up1u2

s
ln

up2u2

s

1
D

2
ln

up1u2

s
ln

up2u2

s
lnS up1

2uup2
2u

m4 D G . ~39!

We see that the first term in this equation reproduces the
result from Eq.~16! and Eq.~28!. It can be checked that th
second term suggests the normalization of the coupling c
stant to ben25Aup1

2uup2
2u. Indeed, returning to the integralI,

we find
6-5
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I 512
as~m2!CF

2p
ln

up1u2

s
ln

up2u2

s

3F12
as~m2!b0

4p
lnS Aup1

2uup2
2u

m2 D G . ~40!

It is clear that the last logarithm, containing theb0 term, can
be absorbed into the running coupling, givingas(n

2) with
the normalization pointn25Aup1

2uup2
2u. The exponentiation

of the integralI will give us the final off-shell Sudakov ex
ponent, Eq.~28!.

In order to get single logarithms in Eq.~28! we have to
include the numerator and the spin structure carefully. We
not present the details of these calculations here. Instea
note that all logarithms we have accounted for are of infra
origin, s@p1

2 ,p2
2→0. We do not show the UV logarithm

which come as a result of the renormalization of the qu
mass. Such terms can be omitted if the quark mass in
leading order result is normalized at a large scalem25s.

The formula Eq.~28! reproduces the expression for th
Sudakov form factor at nonequal virtualities at DL accura
derived by Carrazoneet al. in @13#, Eq. 16!, as well as at
e

av
ly
d
r
e

07300
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NLL with equal virtualitiesp25p1
25p2

2 derived by Smilga in
@15#, Eq. ~27!.

In addition, the normalization pointn25Aup1
2uup2

2u that
we find reproduces that of the NLL results with equal virt
alities p25p1

25p2
2 derived by Smilga in@15#, Eq. ~27!.

This scale,n25Aup1
2uup2

2u, has a very transparent origin
The vertex of the interaction of a soft gluon with an off-sh
quark (p1

2) is described by the couplingg(p1
2). In the situa-

tion of gluon-exchange between two quarks with differe
virtualities, we have an effective couplingg(p1

2)g(p2
2). Us-

ing the running of the couplingg2(m2)54pas(m
2), at one

loop level, a(m2)5as(n
2)/@11(asb0/4p)ln(m2/n2)#, we

will find that the effective couplingg(p1
2)g(p2

2) is reduced to
as(Aup1

2uup2
2u), which coincides with our previous results.

As a next step, we include this form factor inside the o
loop triangle diagram and calculate the last loop integrat
with the form factor which now accounts for all large log
rithms to NLL accuracy. The final result for the next-to
leading-logarithmic form factor reads

FB5FDL
B 1FNLL

B , ~41!

with FDL
B from Eq. ~21! and
result,
uon. Let

can
result
FNLL
B 5

1

L
FB

1-loop(
n51

`
G~n11!

G~2n12!
~2rB!nF32

rBb0

CF

n

2n12 S n11

2n13
1

ln~s/m2!

L D G , ~42!

with b051122nf /3, nf is the number of light flavors@16#.
Topology C at NLL gives a slightly different result. In the previous section where we have already studied the DL

we saw that the ‘‘hard’’ Sudakov form factor is developed as a result of the rescattering of a hard quark on the hard gl
us start with the Sudakov form factor for the quark-gluon vertex with an off-shell outgoing quark of virtualityp1

2 and a gluon
of virtuality p2

2. The result for the reduced form factor is

SNNL5expF2
as~n2!CA

4p S ln
up1u2

s
ln

up2u2

s
1 ln

up1u2

s
1

1

2
ln

up2u2

s D1
asCF

4p S ln
up1u2

s
2

a1

4CF
ln

up2u2

s D G , ~43!

where the coefficienta15(10CA/3)2(8TFnF/3) is related to the wave function renormalization of the gluon. Now we
obtain a resummed result by substituting this form factor in the known one loop integral of topology C. The DL
coincides with that of topology B~as we discussed previously, after accounting for the substitutionCF→CA/2). The result for
the next-to-leading-logarithmic form factor reads

FNLL
C 5

1

L
FC

1-loop(
n51

`
G~n11!

G~2n12!
~2rC!nF32

2CF

CA
1

a1

2CA
2

2rCb0

CA

n

2n12 S n11

2n13
1

ln~s/m2!

L D G . ~44!
n in
n of

pe.
The final result for the amplitude is Eq.~26! together with
Eqs. ~41!, ~42!, ~44!. That concludes our derivation of th
NLL form factors.

We emphasize that throughout this subsection we h
taken into account all logarithms of the Sudakov type on
In Sec. IV we argue that to the NLL level this is justifie
because of cancellations among diagrams that are simila
the DL case. In other words, logarithms of the NLL typ
e
.

to

coming from other sources~than the Sudakov form factors!
cancel between contributions of subsets of diagrams.

III. CANCELLATION MECHANISMS AT THE LEADING
LOGARITHMIC LEVEL

The simple expressions for the resummed results give
the previous section are a consequence of the cancellatio
double logarithmic terms which are not of the Sudakov ty
6-6
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In fact for the exponentiation to work there has to be a la
number of cancellations between subgroups of diagra
Such cancellations have been discussed in the literature
plicitly at the two loop@7# and the three loop levels@10#. We
agree with the results of these papers; however, the new
ement we would like to add here is to point out the gene
mechanism which is responsible for these cancellations.
discuss this mechanism on various examples and write d
identities which guarantee the cancellations to higher lo
orders.

A. The dipole mechanism for cancellation

The relevant cancellations at the double logarithmic le
are due to a single mechanism—the dipole mechanism.
fermions with opposite charges form a dipole when separa
by a short distance. When observing from far away, or pr
ing by means of a gluon with long wavelength, one finds
dipole system to be neutral to leading order. To be m
specific, the total amplitude for exchanging a soft gluon w
two such oppositely charged fermions, as shown by the s
of the two generic Feynman diagrams in Fig. 3, vanishe
the infrared sensitive region~double and single logarithms!.
This infrared sensitive region is that of a soft gluon, i.e.
gluon with all components of the 4-momentum small,km

5(k1,k2,k'),

k1,k2,k';l→0.

This soft region is responsible for the double logarithms.
The cancellation can be shown explicitly by employi

the Grammar-Yennie@17# decomposition and the Ward iden
tity. To illustrate the mechanism let us consider a special c
shown in Fig. 4. The amplitude for the first diagram is

+ =0

FIG. 3. The general mechanism of the DL cancellation in
groups 1 and 2 of Sec. III B is the dipole interaction of a colline
pair of quarks with one soft gluon.
07300
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M15G1

1

~k” 12 ł !2m
gb

1

~k” 12 ł 2k” !2m

3G2

1

~p” 11k” !2m
gau~p1!Dab~k!, ~45!

where we have explicitly written down only the factors re
evant for the cancellation and denoted the rest of the co
sponding expressions for the diagram byG1 and G2. Their
explicit form is of no interest as long as they are common
both the diagrams,M1 and M2. Employing the Grammar-
Yennie decomposition we write for the gauge boson pro
gator,

Dab~k!5Gab1Kab~k!, ~46!

Gab~k!5Dab2
kaDbtp1

t

k•p1
, ~47!

Kab5
kaDbtp1

t

k•p1
, ~48!

and keep only the termKab(k), i.e., we make the replace
ment

Dab~k!5
gab

k2
→

kagbtp1
t

k2~p1•k!
, ~49!

which leaves the infrared behavior unchanged@17#. We ob-
tain

e
r

l

k1

k2

p1

p2

k

l

k1

k2

p1

p2

k

+ = 0

FIG. 4. Example of a cancellation dictated by the dipole mec
nism.
M1→G1

k” 1

~k12 l !22m2
gb

k” 1

~k12 l 2k!22m2
G2

1

~p” 11k” !2m
gau~p1!

kagbtp1
t

k2~p1•k!
~50!

52G1

k” 1

~k12 l !22m2
p” 1

k” 1

~k12 l 2k!22m2
G2u~p1!

1

k2~p1•k!
~51!

52G1

2k” 1~p1•k1!

@~k12 l !22m2#@~k12 l 2k!22m2#
G2u~p1!

1

k2~p1•k!
, ~52!
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where we have applied the Ward identity on the outgo
fermion line. Summing the two diagrams together, we ha

M11M25M Fp1•k1

p1•k
2

p2•k2

p2•k G , ~53!

where the relative minus sign arises from the fact that
soft gluon interacts with two oppositely charged fermio
and

M52G1

k” 1

@~k12 l !22m2#@~k12 l 2k!22m2#
G2u~p1!

1

k2 .

~54!
In order to prove that the sumM11M2 vanishes, we use

Sudakov parametrization,

k5bk11ak21k' , ~55!

and proceed with the soft approximation,

sa,sb@k'
2 . ~56!

We arrive at

Fp1•k1

p1•k
2

p2•k2

p2•k G5
s

2 F 1

~b1a!
s

2
2p1'•k'

2
1

~b1a!
s

2
2p2'•k'

G . ~57!

Again, in the soft approximation,p1'•k' and p2'•k' are
negligible compared to (b1a)(s/2) due to thed function

d~sab2k'
2 2l2! ~58!

arising from the pole of the gauge boson propagator. T
can be readily seen in the expansion

1

~b1a!
s

2
2p1'•k'

5
1

~b1a!
s

2
H 11F p1'•k'

~b1a!
s

2
G 2

1F p1'•k'

~b1a!
s

2
G 4

1•••J , ~59!

since the odd terms inp1'•k' vanish when integrating ove
the angle betweenp1' andk' . Further,
07300
g
e

e

is

F p1'•k'

~b1a!
s

2
G 2n

55
2nS b

a D n p1'
2n

sn
cos2nu, a@b

2nF ab

~a1b!2G n
p1'

2n

sn
cos2nu, a;b

2nS a

b D n p1'
2n

sn
cos2nu, b@a

~60!

and power suppression arises from the term (b/a)n with a
@b, (a/b)n with b@a and (p1'

2 /s)n for all the three cases
Thus we have seen that the two diagrams indeed ca

each other in the double logarithmic approximation. The
plicit calculation is applicable to the generic diagrams in F
4 if we recall that what really matters here is nothing but t
exchange of the soft gluon with the fermion-antifermion pa
The same conclusion holds for an exchanging collin
gluon in the single logarithm approximation as we will di
cuss later.

B. Three loop examples

We will next discuss how the dipole mechanism for ca
cellation works in certain 3 loop examples. More specifica
we will show the cancellation of double logarithms in th
diagramsz12z16 of topology C~see Fig. 5!. For simplicity
of presentation we first discuss only the Abelian case om
ting all group theory factors and in the next section the
tension to the non-Abelian case will be presented. These
grams can be grouped in twos or threes according to
cancellation as seen below.

~1! z11z250
~2! z21z450
~3! z51z61z750
~4! z81z91z1050
~5! z111z121z1550
~6! z131z141z1650.

These six groups cover all the Abelian-like diagrams
Fig. 5.

Group 1

We start with group 1. The amplitudesz1 andz3 may be
written as

z15E dkf

~2p!4E dl1

~2p!4 Fe”
i

k” f̄1 ł 12mq1 i0
igmGMm

(1)

~61!

z35E dkf

~2p!4E dl1

~2p!4 F igm
i

k” f2 ł 12mq1 i0
e” GMm

(1)

~62!

whereMm
(1) is some one loop subdiagram, which is identic

in both z1 and z3. Such a representation of the diagrams
6-8
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l2

l1

kf

z1
p2

p1

l2

l1

kf

z2
p2

p1

l2

l1

kf

z3
p2

p1

l2

l1

kf

z4
p2

p1

l2

l1

kf

z5
p2

p1

l2

l1

kf

z6
p2

p1

l2

l1

kf

z7
p2

p1

l2

l1

kf

z8
p2

p1

l2

l1

kf

z9
p2

p1

l2

l1

kf

z10
p2

p1

l2

l1

kf

z11
p2

p1

l2
l1

kf

z12
p2

p1

l1

l2

kf

z13
p2

p1

l1

l2
kf

z14
p2

p1

l2

l1

kf

z15
p2

p1

l2

l1
kf

z16
p2

p1

FIG. 5. The Abelian diagrams of the topology C.
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very convenient because it turns out that the cancellatio
double logarithmic contributions could be traced without e
plicit computations of the separate diagrams. Instead we
serve the cancellations by comparing diagrams in some
groups and using kinematic simplifications specific to
double logarithmic approximation.

Because the final quark line is hard we might writeMm
(1)

5p2mM1. The momental 1 must be softer thankf̄ , otherwise
no double logarithms can appear. Then we find that the i
grand of the diagramz1 contains (p2•kf̄). Therefore decom-
posing the momenta (kf̄) into kf andp2 we find that only the
component parallel tokf contributes. We remind the reade
that p2

25mq
2→0. Introducingnm , the unit vector parallel to

kf ,

nm5
kf

m

ukf u
, ~63!
07300
of
-
b-
b-

e

e-

we obtain for the sum of the diagrams

z11z352E dkf

~2p!4E dl1

~2p!4

3e”M1~n•p2!F 1

nl11 i0
1

1

2nl11 i0GM1

50. ~64!

Thus the leading contribution in the integrand, responsi
for the double logarithmic asymptotic, cancels. This is sho
in Fig. 3.

As we will see below, the mechanism of the cancellati
is very general and is related to the dipole mechanism.
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deed we may define an impact factor as a subdiagram, w
a real photon produces a nearly on-shell quark and antiqu
which interacts with the soft gluons. The remarkable fac
that in the configuration responsible for double logarith
both particles move in the same direction. Because the q
momenta are harder than the gluon momenta, only the di
tion of its movement plays a role.

kf̄p

kf̄ l
5

np

nl
.

Further, because thebb̄ system does not have a net col
charge, being produced by a photon, the first term in
multipole expansion of interaction of this system with a
number of soft gluons is the color-dipole moment. This lea
to the power suppression of the subdiagram and the los
the double logarithms.
07300
re
rk,
s
s
rk
c-

e

s
of

Group 2

We continue with group 2 which constitutes diagramsz2
andz4. The corresponding amplitudes could be written a

z25E dkf

~2p!4E dl1

~2p!4 Fe”
i

k” f̄1 ł 12mq1 i0
igmGMm

(2)

~65!

z45E dkf

~2p!4E dl1

~2p!4 F igm
i

k” f2 ł 12mq1 i0
e” GMm

(2)

~66!

where as before,Mm
(2) is some subdiagram, and we ma

write Mm
(2)5p2mM2. Again, the momentuml 1 is softer than

kf̄ and only the component ofkf̄ parallel tokf contributes.
We have
ncels.

ptotic,
z21z452E dkf

~2p!4E dl1

~2p!4
e”M (2)~n•p2!F 1

nl11 i0
1

1

2nl11 i0GM250. ~67!

We thus see that the leading contribution to the integrand, which gives rise to the double logarithmic asymptotic, ca

Group 3

We turn now to the amplitudes for the diagramsz5 ,z6 ,z7 which may be written as

z55E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 Fe”
i

k” f̄1 ł 11 ł 22mq1 i0
igm

i

k” f̄1 ł 22mq1 i0
ignGMm,n

(5) ~68!

z65E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 Fe”
i

k” f̄1 ł 11 ł 22mq1 i0
ign

i

k” f̄1 ł 12mq1 i0
igmGMm,n

(6) ~69!

z75E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 F igm
i

k” f2 ł 12mq1 i0
e”

i

k” f̄1 ł 22mq1 i0
ignGMm,n

(7) . ~70!

It is clear from the diagrams that we can write to the accuracy needed for the relevant subgraphs,Mm,n
(5) 5Mm,n

(6) 5Mm,n
(7)

5p2mp1nM3. The momental 1 ,l 2 are softer thankf̄ and only the component ofkf̄ parallel tokf contributes. After simplifi-
cations, we obtain

z51z61z75E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4
e”M3~n•p2!~n•p1!F 1

n~ l 11 l 2!

1

~nl2!
1

1

n~ l 11 l 2!

1

~nl1!
2

1

~nl1!

1

~nl2!G50.

~71!

Again, we see that the leading contribution to the integrand, which could give rise to the double logarithmic asym
cancels.

Group 4

The amplitudes forz8 ,z9 ,z10 could be written as

z85E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 F igm
i

k” f2 ł 12mq1 i0
ign

i

k” f2 ł 12 ł 22mq1 i0
e” GMm,n

(8) ~72!
6-10
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z95E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 F ign
i

k” f2 ł 22mq1 i0
igm

i

k” f2 ł 12 ł 22mq1 i0
e” GMm,n

(9) ~73!

z105E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 F ign
i

k” f2 ł 22mq1 i0
e”

i

k” f̄1 ł 12mq1 i0
igmGMm,n

(10) ~74!

with Mm,n
(8) 5Mm,n

(9) 5Mm,n
(10)5p2mp1nM4 to the desired accuracy for the subdiagrams. The momental 1 ,l 2 are softer thankf̄ and

only the component ofkf̄ parallel tokf contributes. After simplifications, we obtain

z81z91z105E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4
e”M4~n•p2!~n•p1!F2

1

~nl1!

1

~nl2!
1

1

n~ l 11 l 2!

1

~nl2!
1

1

n~ l 11 l 2!

1

~nl1!G50.

~75!

We see that the leading contribution to the integrand cancels. The mechanism of the cancellation is identical to th
group 3. It is important to note specially for purposes of the next section thatM45M3. Hence one might find another 2 se
of 3 diagrams in groups 3 and 4, which cancel in groups of three.

Group 5

The amplitudes forz11,z12,z15 could be written as

z155E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 F igm
i

k” f2 ł 12mq1 i0
e”

i

k” f̄1 ł 22mq1 i0
ignGMm,n

(15) ~76!

z125E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 Fe”
i

k” f̄1 ł 11 ł 22mq1 i0
igm

i

k” f̄1 ł 22mq1 i0
ignGMm,n

(12) ~77!

z115E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 Fe”
i

k” f̄1 ł 11 ł 22mq1 i0
ign

i

k” f̄1 ł 12mq1 i0
ignGMm,n

(11) ~78!

with Mm,n
(11)5Mm,n

(12)5Mm,n
(15)5p1mp1nM5 the relevant subdiagrams. The momental 1 ,l 2 have to be softer thankf̄ and only the

component ofkf̄ parallel tokf contributes. After simplifications, we obtain

z111z121z155E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4
e”M5~n•p1!~n•p1!F2

1

~nl1!

1

~nl2!
1

1

n~ l 11 l 2!

1

~nl2!
1

1

n~ l 11 l 2!

1

~nl1!G50.

~79!

We again observe the cancellation of the leading contribution to the integrand. The mechanism of cancellation is ide
the one of group 3 and is just the dipole mechanism.

Group 6

Finally the amplitudes forz13,z14,z16 could be written as

z165E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 F igm
i

k” f2 ł 12mq1 i0
e”

i

k” f̄1 ł 22mq1 i0
ignGMm,n

(16) ~80!

z145E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 F igm
i

k” f2 ł 22mq1 i0
ign

i

k” f2 ł 12 ł 22mq1 i0
e” GMm,n

(14) ~81!

z135E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4 F ign
i

k” f2 ł 12mq1 i0
igm

i

k” f2 ł 12 ł 22mq1 i0
e” GMm,n

(13) ~82!

where as before we write to this accuracy,Mm,n
(13)5Mm,n

(14)5Mm,n
(16)5p1mp1nM6. The momental 1 ,l 2 have to be softer thankf̄ and

only the component ofkf̄ parallel tokf contributes. After simplifications, we obtain
073006-11
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z131z141z165E dkf

~2p!4E dl1

~2p!4E dl2

~2p!4
e”M6~n•p1!~n•p1!F2

1

~nl1!

1

~nl2!
1

1

n~ l 11 l 2!

1

~nl2!
1

1

n~ l 11 l 2!

1

~nl1!G50

~83!
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which explicitly shows the cancellation of the leading term
The mechanism of the cancellation is identical to the one
the earlier groups and is the dipole mechanism~see Fig. 6!.
Note that for these two groups as well,M55M6 after inter-
changingl 1 and l 2. Hence one might expect to find anoth
two sets of three diagrams in groups 5 and 6, which cance
groups of three~see Fig. 6!.

In conclusion, we have shown that all diagramsz12z16
cancel in groups of two or three due to the dipole mec
nism.

C. Inclusion of non-Abelian diagrams

The inclusion of the non-Abelian contributions does n
pose any new difficulties. In fact, there are many simplific
tions because the final state quark and antiquark are
duced by photons and hence carry no net color charge. W
the color factors are included the cancellations take pl
between diagrams with the same such factors. For exam
consider the cancellation between the diagrams of grou
Here z1 and z3 have the same group factor since the on
difference between them is an Abelian vertex. The sam
true for group 2. Thus the cancellation between the diagra
of groups 1 and 2 proceeds as in the previous section eve
the full non-Abelian theory.

Consider next, group 3 of the previous subsection.
this case we will discuss the cancellation in two differe
ways. In the first method we note that only the group the
factor for the diagramz6 is different from that ofz5 andz7.
Explicitly, for z6 the factor isTaTcTaTbTcTb while for the
other two it isTaTcTbTaTcTb . All other factors are the sam
as in the previous section with the rule that the group fac
are overall multiplicative. In particular, the subdiagram
Mm,n

(5) 5Mm,n
(6) 5Mm,n

(7) 5p2mp1nM3 contain no color matrices
Now we can write the color factor ofz6 as the one forz5 and
z7 plus a left over term which isi f abcTaTcTb(CF2CA/2).
Consider now the diagrams in group 4 of the previous s
tion. Here the group factor associated withz8 is
TaTcTbTaTcTb which is different fromz9 and z10 which is
TaTcTaTbTcTb . The difference now is2 i f abcTaTcTb(CF
2CA/2). Using the fact thatM35M4 we see that the lef
over pieces from groups 3 and 4 cancel each other out.
easy to check that the same applies to the combinatio
groups 5 and 6.

+ + =0

FIG. 6. The general mechanism of the DL cancellation in
groups 3–6 is the dipole interaction of a collinear pair of qua
with two soft gluons.
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It is clear from the above discussion, that it is much mo
straightforward in the non-Abelian case to change the ass
ment of the diagrams into different groups. It is easy to s
that apart from the group theory factors, and in the soft
proximation, the diagrammatic expressions forz6 andz8 of
the previous subsection~from groups 3 and 4! are the same
~using of courseM35M4). From groups 5 and 6 of the
previous subsection the same applies to the expression
z12 andz14 ~in this case usingM55M6). Thus the following
assignment of the diagrams in the non-Abelian case into
ferent groups will make sure that all diagrams in a gro
have the same group theoretical factors:

~1! z11z350
~2! z21z450
~3! z51z81z750
~4! z61z91z1050
~5! z111z141z1550
~6! z131z121z1650.

The new assignment does not change the results for the A
lian case and now the cancellation in the non-Abelian c
proceeds within each group. The only nontrivial result o
must use is the equalitiesM35M4 andM55M6. These are
always seen to be true in the soft approximation. In
present grouping, the diagrams in each group are seen t
related to each other by a cyclic permutation of the glu
lines. Such a cyclic permutation leaves the color factor
changed.

The cancellation between the other non-Abelian diagra
shown in Fig. 7 also proceeds similarly: For example,z21
cancelsz22; z23 cancelsz24 and so on.

This discussion now has been set up for generalizatio
all orders.

D. Generalization to higher orders

We see that the cancellation at the 3 loop level discus
in the previous subsection relies on the following:~i! the soft
approximation,~ii ! algebraic identities like

1

2p•k1
1

1

p•k1
50

1

2p•k1

1

2p•~k11k2!
1

1

p•k1

1

2p•k2

1
1

p•~k11k2!

1

p•k2

50, ~84!

e
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z17 z18 z19 z20

z21 z22 z23 z24

z25 z26 z27 z28

FIG. 7. Non-Abelian diagrams.
c

ft
n

us

lg
s

ta

ve a
di-

cel-

or-
ng
e-
fra-

in
o be

has

ec-

u-

oop
of

e to
s

ss
u-

d
e
be-

th
lu-
and that diagrams in the same group are related by a cy
permutation of the gluon lines~see Fig. 8!. In the above,p is
a generic hard momentum andki are the soft ones. The so
approximation essentially tells us that a soft gluon does
see spin and more explicitly ifp generically denotes
a hard fermion momentum then we can consistently
i /2p•k for the hard propagator and 2pm for the vertex fac-
tors. This will ensure the equalities likeM35M4 needed for
the cancellations to occur for our process. As far as the a
braic identities are concerned, they are in fact special ca
of the Sterman-Libby identities@18#. These identities ob-
tained by considering diagrams related by cyclic permu
tions of the gluon lines read in general

(
m50

n

)
i 50

m21
1

p•qm2p•qi
)

j 5m11

n
1

p•qm2p•qj
50. ~85!

In the above,qi[k11k21•••1ki andqi 50[0. These iden-
tities are easily seen to reduce to Eqs.~84! for the casesn

⋅⋅⋅

p1

p2

FIG. 8. The general mechanism of the DL cancellation is
dipole interaction of a collinear pair of quarks with many soft g
ons.
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51,2. Thus we see each of the technical ingredients ha
generalization to higher loop orders. The physics of the
pole mechanism and the color singlet nature of the final~and
initial! states combined with the above guarantee the can
lations needed to all orders.

E. Soft real gluon emission

In this subsection we briefly comment on the type of c
rections arising from soft real gluon emission at leadi
logarithmic order which must be combined with the corr
sponding virtual contributions discussed above to get in
red finite results. The cancellation of infrared divergences
semi-inclusive processes has a long history and is seen t
a consequence, quite generally, of unitarity@17#. In the
present context, soft gluon emission of up to two gluons
been considered in some detail in@7#. There it was shown
that the sum of the contributions to the two loop cross s
tion from gg→bb̄gg, andgg→bb̄g gives a factorized re-
sult, which must then be combined with a similar contrib
tion from the virtual processgg→bb̄. Here we will briefly
comment on why the systematics observed at the two l
level is in fact expected to hold to all orders. Indeed some
the cancellations that ensure their factorized result are du
the dipole mechanism which will hold to all orders. Let u
consider this in detail first.

We will be using the cut diagram approach for the cro
section contributions. Let us consider the two loop contrib
tion from gg→bb̄g, with for example, diagrams of the kin
in Fig. 6 of @7# on the left of the cut and on the right we hav
the one gluon tree level amplitude. The cancellations
tween the diagrams of Figs. 6~b! and 6~c! are then clearly of

e
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the type arising due to the dipole mechanism. This is the c
of topology B, while Fig. 7 of@7# deals with the case o
topology C. In Figs. 7~c! and 7~e! we again have the cance
lation based on the dipole mechanism, however only
those contributions from Fig. 7~e! when the emitted gluon is
softer than the soft fermion propagator. When the emit
gluon in Fig. 7~e! of @7# is harder than the softest fermio
line then we get other contributions, some of which go in
the factorization of the soft gluon emission and the othe
the term proportional to thee tensor. The latter must cance
in general grounds of time reversal invariance for the p
cess. A similar cancellation takes place for the contributio
of Fig. 6~d! of @7# to cut diagrams. Clearly the only nontrivia
cancellations can be identified with the dipole mechan
and we expect that it can be generalized to all orders u
the analysis of the earlier subsections. One only need
discuss the contributions from Fig. 5 of@7#. These contribu-
tions arise from adding single gluon emission to the d
grams of topology A. Topology A is essentially the on-sh
Sudakov form factor and multiple gluon emissions from su
topologies have been extensively studied in the literatu
see, for example,@19#. The main result here is that there a
contributions which violate the independent gluon emiss
results so familiar from QED. However, when combin
with the contributions from the diagrams with strongly co
related multigluon emission, such terms cancel to all ord
in perturbation theory. Thus to the leading double logari
mic accuracy the real emission cross section factorizes
exponentiates for the semi-inclusive process of interest h

IV. CONTRIBUTING DIAGRAMS AT THE
NEXT-TO-LEADING LOGARITHMIC ORDER

The goal of this section is to identify those diagrams t
either vanish or cancel some other diagrams at next
leading logarithmic order. The diagrams left over are th
just those needed in the discussion in Sec. II C. Our exp
analysis is only at the two loop level and at the end we ar
that the results hold to NLL accuracy. In the first subsecti
we discuss the regime contributing to the next-to-lead
logarithms. We then introduce a power counting techniq
that enables us to discover the nonvanishing diagrams
make appropriate approximations. Armed with these t
techniques, we are able to exclude a set of diagrams with
actually carrying out the loop integrations. We remind t
reader that we work throughout in the Feynman gauge
this gauge we will see that for the process under consi
ation, the additional logarithms at the NLL level must be
collinear origin.

A. Sources of single logarithms

In a two-particle scattering process, all momenta lie in
same plane. We can take two of the independent mome
k1 andk2, as ‘‘1 ’’ and ‘‘ 2 ’’ direction, and denote the third
momentum asp (p could be eitherp1 or p2). The loop
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momentuml can be expressed in terms of light cone va
ables

l 5ak11bk21 l' . ~86!

We note that the following integral in the soft regime:

E dadb
1

a i

1

b j
Q~sab2m2!,

i , j 5 . . . ,22,21,0,1,2, . . . , ~87!

gives terms like log2(s/m2), (m2/s)nlog(s/m2) or (m2/s)n. In
other words, the soft regime cannot give rise to a sin
logarithm at the one-loop level.

Consider an n-loop Feynman integral with loop mome
l i ,1< i<n. We can decomposel i in terms of ‘‘external mo-
menta’’ k1 andk2,

l i5a ik11b ik21 l i' . ~88!

In the soft region,ua i u,ub i u,u l i'
2 u/s!1, the Feynman integra

does not give the next-to-leading logarithm, log2n21(m2/s).
This is because, intuitively, each integration over the lig
cone variablesa andb gives either a logarithm or a powe
suppression, as exemplified in the previous paragraph.
now prove this statement more rigorously.

We first note the following replacement for loop momen
corresponding to a soft line:

1

l i
22mi

21 i e
→2 ipd~sa ib i1 l i'

2 2mi
2!. ~89!

The rest of the propagators can be categorized into h
collinear and soft ones. The hard propagators are irrelev
to the infrared sensitivity. The remaining possibilities a
collinear tok1 or k2, soft or collinear top. We discuss them
in turn.

~i! Collinear tok1 or k2. A boson that is parallel tok1 has
a propagator that can be written as

1

S k11(
i

ui l i D 25
1

S 11(
i

uia i D S (
i

uib i D s/2

→ 2

s

1

(
i

uib i

. ~90!
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The fermionic propagator can be expressed as

1

S k” 11(
i

ui ł i D 2m

5

S k” 11(
i

ui ł i D 2m

S k11(
i

ui l i D 2

2m2

→ k” 1

S (
i

uib i D s/2

. ~91!

~ii ! Soft. A bosonic propagator
s

o

-
to

t

07300
1

S (
i

ui l i D 2 5
1

S (
i

uia i D S (
i

uib i D s1S (
i

ui l i'D 2 .

~92!

Using d(sa ib i1 l i'
2 2mi

2), and 2A(a ib j )(a jb i)<a ib j

1a jb i , it is easy to show

US (
i

uia i D S (
i

uib i D sU.S (
i

ui l i'D 2

. ~93!

Hence, the expansion below,
1

S (
i

uia i D S (
i

uib i D s
F 12

S (
i

ui l i'D 2

S (
i

uia i D S (
i

uib i D s

2•••G , ~94!

converges. The fermionic propagator has a term proportional tol i
m , in addition to the expansion above.

~iii ! Collinear top. Again, the bosonic propagator can be expanded as

1

S p1(
i

ui l i D 2

2mi
2
→ 1

(
i

ui~a i1b i !utu/21(
i

ui~p'• l i'!

5
1

(
i

ui~a i1b i !utu/2
F 12

(
i

ui~p'• l i'!

(
i

ui~a i1b i !utu/2
2•••G . ~95!
de-

-

The fermionic propagator may give rise to an additionall i
m in

the numerator.
First, we only include the first term in the series in Eq

~94!,~95! and apply the following trick:

1

a

1

b

1

a1b
5S 1

a
2

1

a1b D 1

b2
. ~96!

This trick reduces the number of different combinations
a ’s andb ’s while splitting one term into two.

Therefore, when the propagators in case~i! and only the
first terms in the expansions of the soft and collinear-top
propagators are included, the integral can be reduced
finite sum of the type

E
soft regime

)
i 51

2n

ds i

1

smi
, ~97!

wheres ’s representa ’s, b ’s or the combinations thereof. I
is evident that an integration over eachs gives either a loga-
.

f

a

rithm or a power suppressionm2/s. No next-to-leading loga-
rithm can arise in the soft regime.

We now include the whole series in Eqs.~94!,~95!, as well
as their fermionic counterpart whenever appropriate. The
nominators are polynomials ofa i andb i ,

1

(
i

uia i

,
1

(
i

uib i

,
1

(
i

ui~a i1b i !

. ~98!

The numerator consists of terms proportional topm and l i
n .

The Feynman integral is thus of the following form:

E ) da idb id
2l i'

g1~a i ,b i ,p'• l i' ,l i'• l j'!) l j'
m j

g2~a i ,b i !
,

~99!

whereg1 and g2 are both polynomial functions of their ar
guments and the spinor structure is not interesting. Sincep'
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is the only vector in the integrand which is not the integ
tion variable, the integral of interest can further be reduce

E ) da idb id
2l i'

f̄ 1~a i ,b i ,p'• l i' ,l i'• l j'!

f̄ 2~a i ,b i !
,

~100!

where we have further left out the tensorial structure ofp'
m

andgmn.
By noting

l i'• l j'5Al i'
2 Al j'

2 cos~u i2u j !

p'• l i'5Ap'
2Al i'

2 cosu i ~101!

where the anglesu i are relative to the vectorp'
W , the integral

can be cast into

E ) da idb idl i'
2

f 1~a i ,b i ,Ap'
2 ,Al i'

2 !

f 2~a i ,b i !

3E ) du i f 3~u!

→E ) da idb i

3(
P̄XAa i ,Ab i ,A( ~uia i1v jb j ! C

Q̄~a i ,b i !
~102!

whereP̄ andQ̄ are polynomial functions of their argument
We have used thed function @Eq. ~89!# to perform the inte-
gration overl i'

2 and implicitly included the resultingQ func-

tions in the ‘‘polynomials’’P̄. The summation in the secon
line is due to the expansions in the soft and collinear-top
propagators. It is a convergent series.

Now we examine the arguments of the polynomialP̄ in
Eq. ~102!. TheA((uia i1v jb j ) represents various combina
tions of a i andb j that may appear. For such a combinatio
we split the integration region

Aa i1b j5H Aa i S 11
1

2

b j

a i
1••• D , a i.b j

Ab j S 11
1

2

a i

b j
1••• D , a i,b j .

~103!

After such manipulations, we obtain a convergent series

E ) da idb i(
P~Aa i ,Ab i !

Q~a i ,b i !
~104!

with P andQ polynomial functions ofAa i andAb i . In order
to obtain the next-to-leading logarithm, 2n21 of the inte-
07300
-
to

,

grations have to give logarithm while the last one gives
constant of order 1. This is impossible for the above integ
in the soft region. It follows that at least one of the loo
momenta has to be taken out of the soft region to corre
reproduce the next to leading logarithmic behavior in t
Feynman gauge.

B. A power counting technique

In order to identify the regime contributing to the next-t
leading logarithmic order at the two-loop level, we consid
inserting a gluon into the one-loop box diagram. From t
previous subsection, we know the inserted gluon has to
collinear. Therefore, we will consider in turn the three t
pologies with an additional collinear gluon inserted to ea
of them.

Throughout the following subsections, we always den
the soft loop momentum byl and that of the collinear gluon
by k.

We take two momentap and p̄ as the basis to decompos
the momentumk of the collinear gluon,

k5ap1b p̄1k' . ~105!

The generic momentap andp̄ can be any two of the externa
momentak1 , k2 , p1 andp2.

In the so-called collinear region, without loss of gener
ity, we assumek parallel top such that

uau;1,ubu;Ak'
2

s
!1. ~106!

In general, all the propagators in a Feynman diagram
be characterized as hard~off-shell!, soft or collinear~to a
certain direction!. In order to get the next-to-leading loga
rithm at the two-loop level, which is a double logarithm mu
tiplied with a single logarithm, a Feynman diagram has
contain at least four collinear and one soft propagator. S
cifically, the double logarithmic form factor arises from
soft virtual particle ‘‘interacting’’ with two~nearly! on-shell
particles that are flying apart along two different direction
On the other hand, the interaction between two collinea
flying virtual particles gives rise to the single logarithm
form factor.

As a result, whenever we have fewer than four colline
propagators, we can immediately conclude that the Feynm
diagram does not contribute at the next-to-leading logar
mic level. When we have exactly four collinear and a s
propagator, we only keep terms proportional toa in the nu-
merator. Theb term can be dropped because it cancels ab in
the denominator and effectively ‘‘removes’’ a collinea
propagator. An example of such a collinear propagator is

1

~p1k!22m2
5

1

~11a!b~2p• p̄!1k'
2 1p21 p̄22m2

.

~107!

And when we carry out the integration overk, we can pick
up a pole from an ‘‘on-shell’’ propagator such as the abo
6-16
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FIG. 9. Diagrams relevant to the next-to-leading logarithms in topology A. The diagrams dependent only onCF are shown here.
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one. It follows thatbs;k'
2 andk'

2 should also be dropped. I
we get more than four collinear propagators, we will keep
the terms. However, in general the terms proportional toa
are suppressed bym2 and thus leaveb and k'

2 the leading
terms.

C. Vertex functions

When inserting a gluon into a box diagram, we will obta
one-loop vertex subdiagrams inside four of the resulting tw
loop diagrams. Two of the vertex corrections each have
legs ~nearly! on-shell and the other soft. There is no lar
scale of orders, other than that from the UV cutoff, in suc
a subdiagram. Therefore, these two vertex functions con
no infrared logarithms.

The other two vertex function subdiagrams have t
~nearly! on-shell and one off-shell leg each. They do contr

s

FIG. 10. Jet diagram for topology A.
07300
ll

-
o

in

-

ute single logarithms in all the three topologies. Such ver
corrections are shown in Figs. 9~g!, 9~h!, 11~g!, 11~h!, 12~e!,
12~f!, 13~e!, and 13~f!. Self-energy corrections are unde
stood and not explicitly drawn.

Hereafter, we will omit the diagrams~and regions of dia-
gram! that give rise to large logarithms only of ultraviole
origin, until we are ready to run the relevant parameters
ing the RGE.

D. Contributing diagrams in topology A

We show some of the diagrams relevant to the next
leading logarithms of topology A in Fig. 9. The shorter fe
mion lines in the box subdiagrams represent the off-sh
propagators, which characterize the topology A. Note Fi
9~a! and 9~b! represent different regions of the same d
gram, where the soft gluons are labeled byl and the collinear
gluons byk. The same comments apply to Figs. 9~c! and
9~d!. ~We will follow the conventions that the characterist
off-shell propagator is denoted by the shorter line,l for the
soft momentum andk for the collinear momentum through
out the rest of this article.!

The reduced diagrams for the first six diagrams, Fi
9~a!–9~f!, all consist of a hard vertex with four jets attache
to it, as shown in Fig. 10. The two jets eventually emerge
the quark and antiquark further interact with each other vi
soft diagram~the gluon with momentuml ). One of them
consists of the collinear gluon and the quark or antiquark
addition, these subsets of diagrams are gauge invariant, s
6-17
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FIG. 11. Diagrams relevant to the next-to-leading logarithms in topology B. The t-channel diagrams dependent only onCF are shown
here.
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x-
the reciprocal subset~consisting of the vertex correction an
self-energy subdiagrams! is gauge invariant. We can now
invoke results from a general power counting analysis
infrared sensitive contributions~both soft and collinear! to a
typical wide-angle scattering process@20,21#. It was shown
there that the logarithmic configuration requires that jet lin
are attached to hard vertices by a single line, otherwise th
is power suppression. The analysis of@20,21# was made in a
07300
f

s
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physical gauge, but it obviously holds for the gauge invari
set discussed above. Hence, the sum of Figs. 9~a!–9~f! does
not contain infrared logarithms.

The remaining diagrams are Figs. 9~b! and 9~h!, which
contribute to the next-to-leading logarithmic order. These
just the diagrams proportional only toCF contributing to the
on-shell Sudakov form factor to NLL accuracy which is e
tensively discussed in@14#.
k1

k2 p2

p1

l

k

(a)

k1

k2 p2

p1

l

k

(b)

k1

k2 p2

p1

l

k

(c)

k1

k2 p2

p1

l

k

(d)

k1

k2 p2

p1

l

k

(e)

k1

k2 p2

p1

l

k

(f)

FIG. 12. Diagrams relevant to the next-to-leading logarithms in topology C. The s-channel diagrams dependent only onCF are shown
here.
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FIG. 13. Diagrams relevant to the next-to-leading logarithms in topology C. The u-channel diagrams dependent only onCF are shown
here.
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E. Contributing diagrams in topology B

Now we turn to the diagrams in Fig. 11. In Fig. 11~e!, the
collinear gluon, labeled byk, can be parallel top1 , k1 or k2.
We discuss them in turn.

~i! Parallel top1 (kip1). There are only three collinea
propagators left. This region can be excluded by pow
counting.

~ii ! Parallel tok1 (kik1). The soft fermion is the one la
beled byl, while the fermion labeled byk1 l is collinear to
k1. And the fermion with momentumk1p1 is off-shell.
There are exactly four collinear and one soft propagator l
Hence we only keep the component ofk that is parallel tok1.
The numerator of the diagram here is
he
rg

ro
t-
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t.

N}~k” 11k”1 ł !e” ~k” 1!~k”1 ł !

}k” 1e” ~k” 1!k” 150, ~108!

which implies a vanishing contribution to the next-to-leadi
logarithmic order from this region.

~iii ! The last possible region iskik2, which vanishes due
to the similar reason as in~ii !.

Therefore, Fig. 11~e! vanishes as well as Fig. 11~f!. The
diagrams in Figs. 11~a!–11~d! can be shown to factorize
Take Fig. 11~d! as an example. The numerator of the amp
tude is
N11d5ū~p1!ga~k” 11 ł 1k” !gm~k” 11 ł !e” ~k1!me” ~k2!~2k” 21 ł !ga~2p” 21k” !gmv~p2!

5H ū~p1!ga~k” 11 ł !e” ~k1!me” ~k2!~2k” 21 ł !ga@24p2•~k11k!#v~p2!, kik1

ū~p1!ga@4k1•~2p21k!#~k” 11 ł !e” ~k1!me” ~k2!~2k” 21 ł !gav~p2!, kip2 .
~109!
or

,
-

nal
, in
The factorization is evident now. Similar results hold for t
other three diagrams. However, they do not contain any la
single logarithms.

The remaining diagrams, Figs. 11~g! and 11~h! are just the
ones included in the resummation discussed in Sec. II C
this order.

F. Contributing diagrams in topology C

In topology C, the two-loop s-channel diagrams only p
portional toCF are shown in Fig. 12. The regions contribu
e

to

-

ing to the next-to-leading logarithmic approximation f
Figs. 12~a!–12~c! are both the gluons being parallel top2.

Note the ‘‘incoming’’ quark and the ‘‘outgoing’’ gluon of
the hard subprocessgq→qg are nearly on shell. In addition
the gluon labeled byk in the three diagrams is nearly on
shell too. We can expect the contributions only proportio
to CF of the three diagrams to cancel to the leading order
the same manner as discussed earlier in Sec. III.

In order to show the cancellation, we decompose

k5akk21bkp21k' . ~110!
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FIG. 14. Some of the diagrams proportional toCA in topology C.
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Each of the three amplitudes takes on the form
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akk” 21~11bk!p” 21k”'

~p21k!2
gmv~p2!, ~111!

with Mi , i 51,2,3, representing amplitudes of Figs. 12~a!–
12~c!, respectively. In this subsection, integrations overl and
k should be understood in the amplitudes. We consiste
omit common numerical factors for simplicity. To the sing
th
tio
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nn
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en
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lle
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e
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07300
ly

logarithmic approximation,ak andk' terms in the numera-
tors can be neglected. Hence,

Mi52M̄ im

~11bk!p2
m

~p21k!2
v~p2!

52
11bk

bk
M̄ imkm

1

~p21k!2
v~p2! ~112!

and we have put back theakk21k' in the second line.
The summation ofkmM̄ im in the three amplitudes closel

follows the earlier proof using the Ward identity~see Sec.
III A !. We obtain~for the piece proportional only toCF)
M11M21M352
11bk

bk
F ū~p1!p” 1gl

1

k” 11k” 21 ł
e” ~k1!

1

k” 21 ł
2ū~p1!gl
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k” 11k” 21 ł 1k”
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ł 2m
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~p21k1 l !2
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The first term is suppressed by the quark mass, while
second one vanishes in the single logarithmic approxima
by simple power counting. Therefore, the contributing d
grams in Fig. 12 are~d!, ~e!, and~f!.

Similarly, the diagrams with the u-channel hard subp
cess also include six diagrams. Noteworthy is that Fig. 13~a!
can also be drawn as a vertex correction to the s-cha
diagrams, with the triangle subdiagram being the vertex c
rection therein. However, we notice they represent differ
regions. In Fig. 13~a!, the quark labeled byl is soft, whereas
in the s-channel diagram, the corresponding one is collin
to k2. A similar remark applies to Fig. 13~b!. Here, it can be
viewed as a vertex correction to the u-channel diagra
which in turn represents a different region. As a summa
the two diagrams shown in Figs. 13~a! and 13~b! represent
the region that both the virtual gluons are parallel top2,
while in their counterparts, the two virtual gluons are para
to k2 andp2 respectively. Obviously, the sum of Figs. 13~a!–
13~c! vanishes to the next-to-leading logarithmic approxim
tion in exactly the same way Figs. 12~a!–12~c! do.

Therefore, the contributing diagrams of the topology C
the two-loop level include Figs. 12~d!–12~f! and Figs.
13~d!–13~f! only. We note the diagrams contributing to th
‘‘hard’’ off-shell Sudakov form factor in this topology ar
e
n
-

-

el
r-
t

ar

,
y,

l

-

t

mostly non-Abelian which are of Sudakov type. Some
these are shown in Fig. 14. This completes our argum
justifying that the only source of logarithms at this order a
of the ‘‘Sudakov’’ type.

G. Extension to higher loops

In this section, we argue without detailed proof that t
above results hold to the full NLL accuracy. We consid
only topologies B and C, since topology A, which corr
sponds to the on-shell Sudakov form factor, has been
cussed in detail in@14#.

For topologies B and C, consider the insertions of a glu
into the bare diagram. There are two cases:

~i! The gluon momentum is in the soft region. The ana
sis in Sec. III can be applied and it can be factored out.

~ii ! If the gluon momentum is in the collinear region, th
analysis in the previous subsections applies and again,
torization results.

All subsequent insertions of gluons in case~ii ! must be
restricted to the soft region. Therefore, for these the anal
of Sec. III applies. In case~i!, we keep inserting gluons an
apply the same analysis until we encounter a collinear glu
Then case~ii ! applies. Hence we can conclude that to NL
accuracy, the relevant diagrams are all of the Sudakov ty
6-20
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V. SUMMARY AND DISCUSSIONS

In this paper we have studied the resummation up to
next to leading logarithmic level of the QCD radiative co
rections tob̄b production by photon photon collisions. Apa
from the phenomenological applications, this problem h
inherent interest in providing a theoretical laboratory
study QCD effects. We showed that to the accuracy con
ered all logarithms are of the Sudakov type. On a diagram
diagram basis other types of diagrams do give rise to nex
leading logarithms but they cancel amongst each other by
dipole mechanism. We explicitly showed how the dipo
mechanism works to 3 loops and outlined an all orders g

@1# J.F. Gunion, H.E. Haber, G. Kane, and S. Dawson,The Higgs
Hunter’s Guide~Addison-Wesley, Reading, MA, 1990!.

@2# J.F. Gunion and H.E. Haber, Phys. Rev. D48, 5109~1993!.
@3# Particle Data Group, K. Hagiwaraet al., Phys. Rev. D66,

010001~2002!.
@4# K. Melnikov and O. Yakovlev, Phys. Lett. B312, 179 ~1993!;

A. Djouadi, M. Spira, J.J. van der Bij, and P.M. Zerwas,ibid.
257, 187~1991!; J.G. Korner, K. Melnikov, and O.I. Yakovlev
Phys. Rev. D53, 3737~1996!; K. Melnikov, M. Spira, and O.
Yakovlev, Z. Phys. C64, 401 ~1994!.

@5# I.F. Ginzburg, G.L. Kotkin, V.G. Serbo, and V.I. Telnov, Nuc
Instrum. Methods Phys. Res.205, 47 ~1983!.

@6# V. Telnov, Nucl. Instrum. Methods Phys. Res. A355, 3 ~1995!.
@7# V.S. Fadin, V.A. Khoze, and A.D. Martin, Phys. Rev. D56,

484 ~1997!.
@8# D.L. Borden, V.A. Khoze, W.J. Stirling, and J. Ohnemus, Ph

Rev. D50, 4499~1994!.
@9# G. Jikia and A. Tkabladze, Phys. Rev. D54, 2030~1996!.

@10# M. Melles and W.J. Stirling, Phys. Rev. D59, 094009~1999!.
@11# V.V. Sudakov, Sov. Phys. JETP3, 65 ~1956! @Zh. Éksp. Teor.
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