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Resummation of large QCD corrections toyy—bb
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We study the resummation of large QCD radiative corrections up to the next-to-leading logarithmic accuracy
to the processyy—bb; i.e., we resum logarithms of the typelln?®m?s and a?In?*~*n?/s (m is the quark
mas$. The only source of all the logarithms to this accuracy is the off-shell Sudakov form factor included into
the triangle topologies of the one-loop box diagram. We prove that any other configurations of diagrams to this
accuracy either cancel in subgroups or develop a universal on-shell Sudakov exponent due to the final quark
antiquark lines. We study the mechanism of cancellations between the different diagrams, which leads to the
simple resummed results. We show the cancellation explicitly at three loops for the leading and at two loops for
the next-to-leading logarithms. We also point out the general mechanism responsible for it, and discuss how it
can be extended to higher orders.
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I. INTRODUCTION ergies, the large logarithms spoil the perturbative predictions.
Therefore it is mandatory to develop a clear resummation
Future linear colliders are expected to reveal the answernsrocedure for these double and single logarithmic terms. Let
to many questions of modern particle physics. One of thesgg stress that the main interest in the procegs»bb comes
concerns the physics of the Higgs particle and the origin okom the fact(but is not limited to i that it represents the

electroweak symmetry breaking. The neutral scalar Higg%ominant backaround for the production of the Hiaas par-
boson is an important ingredient of the standard m¢al) ¢ P ges p

and is the only SM elementary particle which has not beericle; Yy—H—Dbb [5-7]. In fact, our motivations for this
detected so fafsee for a review1,2]). The lower limit on  Study are twofold:(i) A detailed study of the procesgy

my, of approximately 113.5 GeV at 95% C.L. has been ob-—bb is very important due to phenomenological reasons
tained from direct searches at the CERNe™ collider LEP  mentioned above; an@i) in addition to that, the quark anti-
[3]. Current experiments are concentrating on the possibilityguark production in photon collisions, being one of the sim-
of finding a Higgs particle in the intermediate mass regionplest processes in QCD, is important in its own right, e.g. for
113.5<my <150 GeV. In this region it decays mainly to a studying and understanding QCD effects.

bb pair. . _ The Born cross section for the polarizlagproduction in
The photon modeof the future linear collider(LC),  the scalar channéhtJ,=0), where the Higgs boson will be

namely the collisions of the energetic polarized Comptonsy,died as well, is suppressed by/s [8,9] (heres is the

photons, will be used for the production and for the study O,fcenter of mass energy of the initial photpnlowever, the

the nggs particle. I'f] the intermediate mass range, the ma'Berturbative QCD corrections contain the large double loga-
production process is rithms of the formp= aslnz(mf,/s), which give a contribution
to the cross section which is of the same order as the Born
contribution at high energies. The presence of the large cor-
rection was noticed by Jikia if@]. The double logarithmic

QCD as well as electroweak radiative corrections to this Prot ature and the origin of these corrections were studidd]in

cess have_been.studied Very V\.’e” and have been founld to tﬁe authors studied the process to one and two loop accu-
small in this regior{4]. The main challenge, however, is to racy. Later, the form of the resummed results for the double
get under contro| the background process logarithms was argued ifL0]. These authors also claimed
that the double logarithms have a “non-Sudakov” origin.
In this paper, we first present an alternative way of under-
_ i standing the resummation procedure for the double loga-
which gets extremely large QCD corrections. _rithms. The general idea of our approach is that the only
In this paper we discuss the process of the quark antiquark,yrce of double logarithms is the off-shell Sudakov form
production in the photon mode of the LG,y—bb. The factor included in the triangle topologies of the one-loop box
amplitude for this process in the scalar channel containgiagram. We have proved that the other types of the higher
large double logarithms ds|,|t|,|u[>m?. At very high en-  loop diagrams will either cancel in subgroups or develop a
universal on-shell Sudakov exponent due to the final quark
antiquark lines. In addition to tha, we extend this analysis

y'y—>H—>bE

yy—bb,

*Email address: akhoury@umich.edu to the next-to-leading-logarithmi@NLL) accuracy, andii)
"Email address: haibinw@umich.edu we study the mechanism of cancellations alluded to above
*Email address: yakovlev@umich.edu between the different diagrams, which leads to very simple
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resummed results. We demonstrate the cancellation explicitly

at three loops and point out the mechanism responsible ;@<

which then allows for the generalization to higher loops, all

up to the next to leading logarithmic accuracy. As an aside, A B C G

we argue that all the large logarithms up to the next to lead-

ing level are related to the Sudakov ones. This includes not FIG. 1. Triangle topologies obtained from the one loop box

only the leading ones of the formfIn?’mé/s but also the  diagram.

next to leading ones of the formfIn? In?/s (m is the

quark masg It is this fact together with an understanding of

the cancellation mechanism which allows us to develop amologies A,B,C following[7], see Fig. 1. These effective

easy resummation procedure. diagrams result from the box diagram when one of the four
Of course,bb production must be accompanied by otherPropagators is hard, two collinear and one stfe soft line

final state particles depending on the experimental detail€an be either the gluon or the quark propagatdence one

The most favorable setup for Higgs production occurs wherf@n shrink the hard propagator of the box diagram to a point,

there are soft photons in the final state and the semi-inclusivRécause it does not depend on the soft loop momenta any-
cross section is infrared finite with the infrared singularities™ore. The hard momenta would be just an ultraviolet cutoff

in the virtual(exclusive cross section being cancelled by the In this situation.

brehmstrahlung diagrams. In this paper, our main focus will N order to introduce notations and to get an idea about
. — the structure of the DL, let us consider one loop calculations
be on the amplitude for the procegy— bb and the resum-

. : . in the DL approximation. Also, we will use these results in
mation of the large logarithms of the type discussed abovethe next section for the construction of the DL-resummed
In Sec. Il E we will briefly discuss the case of real emission.result

Detalled analy5|s of th's is beyond the scope of this Paper. — as is well known, the double logarithms come from the

The paper is organized as follows. In Sec. Il A we discuss_ . .

X . : . .~ region of soft loop momenta. Hence, one can always write a

the one loop diagrams and explain which topologies are im; : . . J=

factorized form for the amplitude in the DL approximation:

portant. In Sec. IIB we present a procedure for the resum-
mation of the double logarithms. In Sec. Il C we extend our

analysis to the next-to-leading logarithmic level. In this sec- Ma=Mpgom: Fa,

tion we consider all possible topologies and give the final

result of the resummation. Section Il is devoted to the study

of the different cancellations which are responsible for the

simple resummed results of Sec. Il B for the double logarith-

mic case. In Sec. IV we tackle the case of the form factors to Mc=2Mgom: Fec. ©)

the next to leading logarithmic accuracy and justify the re-

sults given in Sec. Il C. The paper ends with some conclu- ] ) ] )
sions and discussions. The factor 2 in the last equation represents two identical

contributionsC,,C, of the topology C. The amplitude then
reads

99999999999
9
999
90
92,
29,
22209,

Mg=Mgom Fg,

Il. THE RESUMMATION UP TO
NEXT-TO-LEADING LOGARITHMS
A. One loop results M=Mgom' (FatFgt2Fc). )
We study the process of quark antiquark pair productio

in photon-photon collisions We turn now to the calculation of the form factors

Fa.Fg.Fc.
o It is convenient to use the standard Sudakov technique for
v(ka)+ (ko) =a(p1) +d(po) @) calculating DL contributions, as described[iRh11], and in-
in the scalar channel,=0, at very high energies compared troduce Sudakov parametrizatiptl,12. One starts with de-
to the mass of the quark, and at large scattering angles ~ composing the soft momenta in terms of those along the hard
external momenta, for exampkg ,k, and transverse to them
|s|~It|~|u[>m?. 2
The radiative corrections to this helicity amplitude contain k= akyt Bl tk, . ®)
large double and single QCD logarithms of the form
adnP(gn?), p=2,1, in the limit Eqs(17),(18). The DL contribution comes only from the region
It has been shown ifi7] that the large double logarithms
(DL) have a Sudakov-like nature and can be extracted from
the total result by identifying special kinematic regions. It
was demonstrated that only the box diagram contributes, and
that this box diagram can be reduced to three different effecFor different topologies it is convenient to use different de-
tive diagrams with triangle topology. We label them as to-compositions of the soft momenta:

m? |k, |*<s|a|,s|B|<s. (6)
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2

2
topology A: k:ﬁ( p— ?E +a

— m
p—?p)ﬂq (7

topology B: k= Bk,+ ak;+k, (8)

2
topology C: k= pBk,+ a(E—?kz

+k, . 9)
The loop integration in terms of the new variables reads

“ak=2" da” dg " rdl? (10)
— 0 2 —o0 — 0 L

The integration over the transverse momenta of the soft quark is performed by taking half of the residues in the corresponding
propagator,

J dk . fs dadpBd?k,
k2—N\2+i0

S
=| = Fo—i Z—J'dds —\)F, 11
2 sap—nirio " 2] GedpOEaETAY +y

where\ is a small(fictitious) gluon mass. In this manner the one loop amplitude may be calculated in the DL approximation
and topology A gives

Cras (1 (1dadp \? A2 \?
1-loop_ _ —ZF%s _ _ A _
= = fofo B @( B S)@(a S B8|6l - a (12)
_ Cpag[1 m? 2 \?
=— o zln ?+In?lnﬁ . (13)

Topology B and C have the following form at one loop in the DL approximation:

2 2
[ L-loop_ p1-loop_ _ CFanlfldad’8® B— m - _ Cras E nZm_ (14)
B c 27 Jo Jo af S 27 \2 S
These results were derived first[id] and will be used in our calculation later on.
|
B. The double logarithmic resummation Fa=exp F}\-Ioo ’ (15)

The main idea behind our method is that the only origin
of the double logarithms is the off-shell Sudakov form

factor* included in the effective one loop triangle diagrams The resummation of the DL terms coming from the dia-

A, B and C. Contributions from other types of diagrams will grams of topology B is more involved. First, we have to

either cancel in subgroups or develop a simple On'ShQIaccount for the “soft” on-shell exponent from the final quark

Sudakov exponent due to the final quark antiquark pair. The ntiouark rescattering. similar to the one in topoloav A. E
cancellations amongst the diagrams will be discussed in thflS)qS d b 9 | i P | tghy h ?j
next section where the general mechanism is elucidate - Second, We observe a new element, namely the har

Here we study the DL resummation in the topologies A, Bdouble Ioganthr_ns from quar.k anthgark res_cattenng |pS|de
and C. the one loop diagram. The interacting particlggiarks in

The diagrams of topology A represent a simple case. Her#lis casg are hard and slightly off-shelp? <s.
we do not have any “hard” DLs, but only the “soft” ones, According to our general idea, the resummation of the
which develop the usual on-shell Sudakov form factor from‘hard” DL can be obtained by including the off-shell Suda-
the gluon exchanges between the final quark antiquark paikov form factor into the loop, and accounting only for those
It is well known, that the on-shell DL Sudakov form factor in momenta which do not destroy the DL nature of the one loop
QCD is the exponent of the one loop result result.
We recall that the off-shell Sudakov form factor is a ver-
tex of the production of the quark and antiquark with small
Hard outer lines are slightly off-shell. virtualities p7 andp3 and has a forni13]

with F31°° given in Eq.(12).
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Cea S S Topology C differs from B only through the color struc-

Fls :

S(p1.p2)=exp — 5 In( 2) ( 2) , (16)  ture at the DL level. At the end of the calculations the an-
m |pal |pal swers for topologies B and C are similar and are related by

: 2 21 12 the simple substitution
assuming thamn*<|p,|4,|p,|“<s. Now the momenta, and

p, become loop momenta, i.e., they dependagp Cr—Cu/2 in the variable pg . (24)

= 2: 2: — g
Pi=(kitk)®=sp, po=(kp=k)==sa. (17 Combining all results for the three topologies we have

Because of the DL approximation, the kinematic region of 1100
interest is restricted by the inequalities M=Mpgon(1+Fg+2Fc)expFa™ %P (25

m?<|p,|?,|po|?<s. (18)  with the functions defined above. We must stress that there

o ) L are other diagrams which can give DL contributions. Fortu-
Taking into account the result EL6) and including it into  pately, all of them cancel in the certain groups, as will be

Eq. (14) we get discussed in Sec. lll. This cancellation has a very simple
5 physical interpretatiorisee Sec. Il
— CF“SJ fld“dﬁ ( _ 1) Our results are written in two different representations.
S We have checked that they are in agreement {liH}, where

the authors used a completely different method, not mention-
(19) ing the off-shell Sudakov form factors at all. We believe that
our approach is more transparent. It shows that the new
double logarithms are of Sudakov type, and, therefore, the
We next transform the exponent into a power series and fingesummation procedure becomes simple. Another advantage
that the integral of thexth term will be of the form of our approach is that it opens up the possibility for resum-
ming the single logarithms as well.

CFCYS
X - :
ex;{ > In||In| 8|

I'ln+a+1L)I'(n+b+1
f dflf deaty 2y == T 3+2)+( b :
( n+a+b) 20 C. Next-to-leading logarithmic accuracy
It is possible to develop this approach to achieve next-to-
The final result at DL accuracy reads leading logarithmic accuracy. First, the factorization formula
should be modified in order to take into account single loga-
2T'(n+1 rithms. The amplitude reads at NLL approximation
Fe=Fp IOOpE ﬁ( pe)" (21
(2n+3) M =Mpor(1+A+Fg+2Fc)Fa (26)

with pg=(Crag/27)L2,L=In(m?/s). The indexn shows that
the order of the amplitude is; . We can clearly identify the
separate contributions of the fixed ordersvn On the other
hand, if pg is large all terms in the series are important, A=
giving altogether some analytic functiéty, (p). This func-

tion is identified with a hypergeometric function

o,F2(1,1;22;2), namely,

with the function

aSCF

3I /m?
En(sm),

which can be extracted from the explicit calculations per-
formed in[9] by expanding the result at=|t|=|u|>m?. F,
2T(n+1) is thg on_—shell Sudakov form factor to the next-to-leading
Fg=FL Ioopz e (—pp)" logarithmic accuracy14].
oI'(2n+3) Second, in order to calculate the form factérg andF ¢
3 at NLL, we need an expression for the Sudakov form factor
=_F (1 1:2- — @) [ L-loop. (22)  also to this accuracy. We turn now to the calculation of the
=2F2 ' B .
2" 4 form factorsFg and F. In fact, such an analysis already
exists in the literaturgl5] for the case when the two external

These functions are exact answerspiin the DL approxi-  tarmion lines are off-shell by the same amount, ipé.,= p%

mation. For large values of the parametethe functionF =p?
has the following asymptotic: '
2
21In(2pg) _, Crasp?)
F = ————F5 "%, 23 Syic(p.p)=exg — ————In"| —
s(ps) o5 B (23 om | |2
Thus we see that despite the fact that perturbation theory 3Craq(pd) s
blows up at largepg, the resummed result gives a smooth + Y ni—; (27)
well defined function. |pl
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To evaluate this, we consider a slightly more general integral

d*k 1 1 2
Jzif ~

(2m)* (py+k)? (p2—K) (k2)1+A' (31

which after expanding i\ will give us the desired integral
I. Using Feynman parameters, this integral is reduced to

FIG. 2. Adiagram responsible for determining the normalization 1 1 1
scale of the coupling constant. J=— _f yMIuJZA[efA In(A+B) _ g—A In(B)],
0

For our purposes, we need to extend the analysis to take into (32
account thap?+ p3. It is easy to see that for the region, Eq.

(17), the proof of factorization and exponentiation given in with

[15] goes through with straightforward changes. The major

change involves the normalization of the coupling. We have A(Y) = p3y>+2p1pay+p3, (33
studied one and two loop diagrams for thg production
vertex with slightly off-shell quarks with the following B(y)=—2p:p2y—p3y—Pi. (34)
result:
A(Y) +B(y)=p3y(—1+Y). (35)
Suni(P1,P ):ex;{— “S(Vz)CF(|n|pl|2|n|p2|2 2
NLFL 2 2m s s The functionA(y) has two zerosy. :
3 Ipd® 3, |pal? 2
— — A= - ) - —)1
+4In +2n—/|. (28 Py =y )(y—y
with the normalization of the coupling constant determined _ —2pip* V(2p1p,)®—4pip; (36)
to bev?=/|p?||p2|. We show only the double and single IR == 2p2 '

logarithms in the exponent of E28).

In order to understand this normalization, we have to COngor very small virtualitiesp?,p2—0, the roots are simpli-
sider the diagram shown in Fig. 2 where we keep track of the;o q toy, =— p%/s,y_ _ —s/p%. Expanding the integrand of
n; dependent pieces only since they are separately gauge, A up to second order we have
invariant. Such diagrams can be accounted for by consider-
ing the following gluon propagator:

1 1 1
kok,)1 1 J: (4w)2f0 dypz(y—y (y=y-)
D= —iéab( 90— “2”)—2 ~. (29 2 + -
ke ) ke 14+T11(k?) p2y(1-y)
2A

wherell (k?) is the vacuum polarization by the gluon; at the {In( (2p1po+ pf)y+ pi (37)
one loop level it is simplyIl=(asBo/4m)In[(k¥u?)e"],
Bo=11-%n;, C being a scheme-dependent constaWits( A
schemeC=—3). + 5 {=In%[p3y(1=y) ]+ In’[(2p1p,+ p3)y+ pi]}}

The diagram, Fig. 2, corresponds to the first term in the (39)
expansion of the gluon propagatordn. Then; part of this
result is, as mentioned earlier, a gauge invariant subset of thﬁ1e final integration ovey is simple, the result is
complete set of two loop diagrams. '

Because the effects of the running coupling gives only ) 5
single logarithmic terms it is enough to consider the remain- J= 1 {—In |4 In 1A
ing integrals to DL accuracy. Namely, we may trace only the (47)%2p1p, S S
terms proportional to IMg,|%/s)In(|p,/%s) from Fig. 2. At the
DL accuracy the spin structure of the amplitude is simple, so A Ip? Ipal? [ IP3lIP3l
that one needs to consider the scalar integral only, ZIn——In—=In ik (39

2 4
=1+ M(Zplpz)f d’k ! ! We see that the first term in this equation reproduces the DL
2m (2m)* (p1+k)? (p2—k)? result from Eq.(16) and Eq.(28). It can be checked that the
) second term suggests the normalization of the coupling con-
«|1- aS'BOm K L (30 Stantto bev?=\/|p?|[p2|. Indeed, returning to the integral
4w\ w2 |Kk? we find
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ag(u®)Ce . |p1l?. |pol? NLL with equal virtualitiesp?= p7 = p3 derived by Smilga in
l=1— 5 In S In S [15], Eq. (27).
In addition, the normalization point?=/|p?||p3| that
ag(u? )ﬁo NTSHIEH we find reproduces that of the NLL results with equal virtu-
X|1- 4 In 2 (40) alities p?=p3= p2 derived by Smilga irf15], Eq. (27).

This scale,v?= /| p12||p22 , has a very transparent origin.
The vertex of the interaction of a soft gluon with an off-shell
It is clear that the last logarithm, containing tBg term, can  quark (pi) is described by the coupling;(pi). In the situa-
be absorbed into the running coupling, giving(»?) with  tion of gluon-exchange between two quarks with different
the normalization point?=/|p?||p3|. The exponentiation Vvirtualities, we have an effective couplirg(p?)g(p3). Us-
of the integrall will give us the final off-shell Sudakov ex- ing the running of the coupling®(u?)=4mag(u?), at one
ponent, Eq(28). loop level, a(u?)=ag(v?)/[1+ (asBoldm)IN(u?1A)], we

In order to get single logarithms in ER8) we have to  will find that the effective coupling(p%)g(pg) is reduced to
include the numerator and the spin structure carefully. We dQ(S(1/|p21||p22|)’ which coincides with our previous results.
not present the details of these calculations here. Instead we As a next step, we include this form factor inside the one
note that all Iogarlthms we have accounted for are of lnfrareqloop tr|ang|e d|agram and calculate the last |00p |ntegrat|on
origin, s>p3,p5—0. We do not show the UV logarithms with the form factor which now accounts for all large loga-
which come as a result of the renormalization of the quarkithms to NLL accuracy. The final result for the next-to-
mass. Such terms can be omitted if the quark mass in theading-logarithmic form factor reads
leading order result is normalized at a large sqafe=s.

The formula Eq.(28) reproduces the expression for the FB=FB +FR,,. (41
Sudakov form factor at nonequal virtualities at DL accuracy
derived by Carrazonet al. in [13], Eq. 16, as well as at with Fg, from Eq.(21) and

ee]

F(n+1) peBo N
B _ ~ gl-loop nfo__
Frnu=pFs 2 . T(2n+2)\~Pe) [3 Cr 2n+2

(42

n+1 In(s/u?)
nv3 L )/

with By=11-2n;/3, n; is the number of light flavor§16].

Topology C at NLL gives a slightly different result. In the previous section where we have already studied the DL result,
we saw that the “hard” Sudakov form factor is developed as a result of the rescattering of a hard quark on the hard gluon. Let
us start with the Sudakov form factor for the quark-gluon vertex with an off-shell outgoing quark of virp@tiyd a gluon
of virtuality p3. The result for the reduced form factor is

¢ 2 2 2 2 c 2 4 2
SNNL:eXF{_aS(:; A(In|p1| In|p2| +In|pl| +_|n|p2| )+as F(|n|p1| _a |n|p2|)

S S S 2 4 S 4Ck S
where the coefficienf; = (10C,/3)— (8Tgng/3) is related to the wave function renormalization of the gluon. Now we can
obtain a resummed result by substituting this form factor in the known one loop integral of topology C. The DL result
coincides with that of topology Bas we discussed previously, after accounting for the substit@ior C,/2). The result for
the next-to-leading-logarithmic form factor reads

: (43

oo

1 I'(n+1)
FﬁLL__Féloop

o, 2CF ar  2pcBo N
Tronioy (—Pc)
2 T(2n+2)

3¢ t2c, ¢, 2ni2

n+1 In(s/u?)
13 L |

(44)

The final result for the amplitude is ER6) together with  coming from other source@han the Sudakov form factgrs
Egs. (41), (42), (44). That concludes our derivation of the cancel between contributions of subsets of diagrams.
NLL form factors.

We emphasize that throughout this subsection we havelll: CANCELLATION MECHANISMS AT THE LEADING
taken into account all logarithms of the Sudakov type only. LOGARITHMIC LEVEL
In Sec. IV we argue that to the NLL level this is justified  The simple expressions for the resummed results given in
because of cancellations among diagrams that are similar the previous section are a consequence of the cancellation of
the DL case. In other words, logarithms of the NLL type double logarithmic terms which are not of the Sudakov type.
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Ky k P Ky Py
Q(,GGUF[ k
S 22 GGGCFGZ‘C\ /

+
1
o

JDDDDDDDD/\

1999999999):

FIG. 3. The general mechanism of the DL cancellation in the
groups 1 and 2 of Sec. Il B is the dipole interaction of a collinear
pair of quarks with one soft gluon. K, P2 Ky P2

FIG. 4. Example of a cancellation dictated by the dipole mecha-

In fact for the exponentiation to work there has to be a large"S™

number of cancellations between subgroups of diagrams.

Such cancellations have been discussed in the literature ex-

plicitly at the two loop[7] and the three loop leve[40]. We M,=T, 1 VP 1

agree with the results of these papers; however, the new el- (ky=H)—m " (ky—t=K)—m
ement we would like to add here is to point out the general

mechanism which is responsible for these cancellations. We 1 w

discuss this mechanism on various examples and write down XFZ('{) +K)—m YU(P1)D ap(), (49
identities which guarantee the cancellations to higher loop !

orders. where we have explicitly written down only the factors rel-

evant for the cancellation and denoted the rest of the corre-
_ _ ) sponding expressions for the diagram By andI',. Their
A. The dipole mechanism for cancellation explicit form is of no interest as long as they are common to
The relevant cancellations at the double logarithmic leveboth the diagramsM; and M,. Employing the Grammar-
are due to a single mechanism—the dipole mechanism. Twiennie decomposition we write for the gauge boson propa-
fermions with opposite charges form a dipole when separategator,
by a short distance. When observing from far away, or prob-
ing by means of a gluon with long wavelength, one finds the D op(K)=Gopt+K,p(k), (46)
dipole system to be neutral to leading order. To be more
specific, the total amplitude for exchanging a soft gluon with K.D,.p7
two such oppositely charged fermions, as shown by the sum Gop(K) =Dy~ a= g1 (47)

of the two generic Feynman diagrams in Fig. 3, vanishes in k-py '
the infrared sensitive regiof@ouble and single logarithms
This infrared sensitive region is that of a soft gluon, i.e., a K.D,p!
gluon with all components of the 4-momentum sméft, aﬁzwy (48)
=(k* k™ k), K-py
k* k™ ,k, ~\—0. and keep only the terr ,4(k), i.e., we make the replace-
ment
This soft region is responsible for the double logarithms. D _Yap KaQp-P1
! u : ap(K)= == ————, (49)
The cancellation can be shown explicitly by employing B k> Kk3(p;-k)

the Grammar-Yennigl7] decomposition and the Ward iden-
tity. To illustrate the mechanism let us consider a special casehich leaves the infrared behavior unchang#d. We ob-

shown in Fig. 4. The amplitude for the first diagram is tain
Ky Ky 1 Ko9s-P1

M r B r _— 50
T e 2perkm P,k 0
= S . (P —— (51)

7w Pz 2P,

2Kk1(p1-kq) 1

=- e ToU(py)——— (52

[(kl_l m?[(ky—1=k)*—m?] k2(py-k)’

073006-7



AKHOURY, WANG, AND YAKOVLEV

PHYSICAL REVIEW D 68, 073006 (2003

where we have applied the Ward identity on the outgoing ( B np2"
fermion line. Summing the two diagrams together, we have 2“(;) %co@g, a>f
S
p1-ki Pp2-ka 2 n_2n
= — -k n
Mot M2 M[ p1-k pz'k}' 53 BRI 2" il 5 picosznﬁ, a~pB
(B+a)5 (atB7] <
2
where the relative minus sign arises from the fact that the no-2n
soft gluon interacts with two oppositely charged fermions on @ pico§“6, B>a
and .\ S
(60)
3 K, 1 and power suppression arises from the tefa()" with «
M= _Fl[(k1_|)z_mz][(kl_| 12— Fau(p1)iz- > B, (al B)" with B>« and (p?, /s)" for all the three cases.

(54)
In order to prove that the suiM ,+ M, vanishes, we use
Sudakov parametrization,

k:Bkl+ak2+kl, (55)
and proceed with the soft approximation,
sa,sB>k? . (56)
We arrive at
[pl’kl_pZ'kZZE 1
pi-k  pa-k S
' 2 (B+a’)§_plL'kL
1
- . (57

S
(,34'0)5_[321'&

Again, in the soft approximatiorp,, -k, andp,, -k, are
negligible compared tog+ «)(s/2) due to thes function

S(saB—k*—\?) (58

arising from the pole of the gauge boson propagator. This

can be readily seen in the expansion

1 1
= 1+

S S
(,B+a)§_le_'kJ_ (,8+a)§

P1-k;

s
(ﬁ‘*‘a)z

-k 4
+p1LL

S : (59
(B+ 01)5

Thus we have seen that the two diagrams indeed cancel
each other in the double logarithmic approximation. The ex-
plicit calculation is applicable to the generic diagrams in Fig.
4 if we recall that what really matters here is nothing but the
exchange of the soft gluon with the fermion-antifermion pair.
The same conclusion holds for an exchanging collinear
gluon in the single logarithm approximation as we will dis-
cuss later.

B. Three loop examples

We will next discuss how the dipole mechanism for can-
cellation works in certain 3 loop examples. More specifically,
we will show the cancellation of double logarithms in the
diagramsz, — z; of topology C(see Fig. 5. For simplicity
of presentation we first discuss only the Abelian case omit-
ting all group theory factors and in the next section the ex-
tension to the non-Abelian case will be presented. These dia-
grams can be grouped in twos or threes according to the
cancellation as seen below.

(1) z;+z,=0

(2) z,+z,=0

(3) z5+2z5+2;=0
(4) zg+2z9+210=0
(5) z41+ 21,1 215=0
(6) z13t+2z44+216=0.

These six groups cover all the Abelian-like diagrams of
Fig. 5.

Group 1
We start with group 1. The amplitudes andz; may be

written as
dk dl, [ i
Z]_:f ! f ! é ; |’y'u ME})
(2m*) 2m*| K+t —mg+io
(61)
dk dl, | i
23:J ! J’ ! |’y’u ; M'(UEL)
(2m*) (2m* * ki—t;—my+i0
(62

since the odd terms ip4, -k, vanish when integrating over WhereME}) is some one loop subdiagram, which is identical

the angle betweep,, andk, . Further,

in both z; andz;. Such a representation of the diagrams is
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FIG. 5. The Abelian diagrams of the topology C.
very convenient because it turns out that the cancellation ofve obtain for the sum of the diagrams
double logarithmic contributions could be traced without ex-
plicit computations of the separate diagrams. Instead we ob-
serve the cancellations by comparing diagrams in some sub-

dks dly
groups and using kinematic simplifications specific to the z;+ Zsz—f J
double logarithmic approximation.

2m*) (2m)*
Because the final quark line is hard we might wil\ Y
=p2 .M . The moment#; must be softer thaky, otherwise
no double logarithms can appear. Then we find that the inte-
grand of the diagram, contains p,-k;). Therefore decom- =0. (64)
posing the momentakf) into ks andp, we find that only the
component parallel té&; contributes. We remind the reader

thatp%zmé—>0. Introducingn,,, the unit vector parallel to Thus the leading contribution in the integrand, responsible
K, for the double logarithmic asymptotic, cancels. This is shown
in Fig. 3.
ki’

1 1

— + —IM1!
nl;+i0  —nly+i0

X éML(n-p,)

k= 63) As we will see below, the mechanism of the cancellation
kel is very general and is related to the dipole mechanism. In-
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deed we may define an impact factor as a subdiagram, where Group 2
a real photon produces a nearly on-shell quark and antiquark

Sor . . We continue with group 2 which constitutes diagrazgs
which interacts with the soft gluons. The remarkable fact ISand 2,. The corresponding amplitudes could be written as

that in the configuration responsible for double logarithms

both particles move in the same direction. Because the quark dk dl i
momenta are harder than the gluon momenta, only the direc- zz:f f f e —jy” MELZ)
tion of its movement plays a role. (2m*) (2m)*| Ktt—mg+io 5
65
kip_np — .
o nl Z4=f dk; f dly " i M@
o (2m*) (2m)* " k—t;—my+i0 a
Further, because thieb system does not have a net color (66)

charge, being produced by a photon, the first term in the

multipole expansion of interaction of this system with anywhere as beforeM? is some subdiagram, and we may
number of soft gluons is the color-dipole moment. This leadswvrite Mﬁf)= pzMMz. Again, the momentunh, is softer than
to the power suppression of the subdiagram and the loss & and only the component d&f parallel tok; contributes.
the double logarithms. We have

tz,= f—dkff i e R S LR 6
227 24— (2,”_)4 (27T)4 (n.pZ) n|1+i0 _n|1+i0 e (7)

We thus see that the leading contribution to the integrand, which gives rise to the double logarithmic asymptotic, cancels.

Group 3
We turn now to the amplitudes for the diagramszg,z; which may be written as

[ dk dl; dl, i . .
Zs= é —iy* —iy"|My, (68
2m*) (2m*) 2m* Kettith—mg+i0 T Kgth,—mg+io )"
dk dl dl i i
2m*) (2m*) 2m* Kertitt—mg+i0 T kgt -mg+io T
dks f dl, f dl, |. i i )
Z;= iy ¢ iy’ M) 70
7 J(27T)4 (277)4 (277)4 Y Y w,v ( )

Ki—t—mg+i0 Krtt,—mg+i0

It is clear from the diagrams that we can write to the accuracy needed for the relevant subdtgphsm (>, =M,
= pzupl,,Me‘. The momentd,, |, are softer tharky and only the component &6 parallel tok; contributes. After simplifi-

cations, we obtain

[ dk dl, dl,
25+26+Z7—f (ZW)J (ZW)J (277)4é|\/| (n-p2)(n-py1)

1 N 1 1 B 1 1
n(li+1,) (nly)  n(ly+1y) (nly)  (nly) (nly)

=0.
(71)

Again, we see that the leading contribution to the integrand, which could give rise to the double logarithmic asymptotic,
cancels.

Group 4
The amplitudes forg,zq,2, could be written as

L dk [odly [odl [
Zs_f (277)4f (277)4j 2T

i i
iy é\mM® (72)
Ki—bi—mg+i0 | K—bi—bp—mg+i0 | *

Y
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dk dl, dl, i _ i .
Zg:f f f Y —iy* . MEL),, (73
2m*) (2m*) @2m* " k—tmmg+i0 T Kke—t—t,—mg+i0 '
dk dl dl i i
ZlOZJ f J’ : J 2 (% —¢ —iy, ME}?} (74
2m*) 2m*) @2m* T k—t—myg+i0 ket —mg+io ~

with M®, =M =M{Y=p, p;,M* to the desired accuracy for the subdiagrams. The monigritaare softer thark; and
only the component olrparallel tok; contributes. After simplifications, we obtain

L odk [odly [odl )
28+29+210_f (277)4f (277)4f (277)443'\/' (n-pz)(n-py)

1 1 1 1 1

(nl) (nly) " n(a+1,) () " ety (ip) =2

(79

We see that the leading contribution to the integrand cancels. The mechanism of the cancellation is identical to the one of
group 3. It is important to note specially for purposes of the next sectiorMfatM 2. Hence one might find another 2 sets
of 3 diagrams in groups 3 and 4, which cancel in groups of three.

Group 5

The amplitudes for,1,215,2;5 could be written as

dk dl, dl, | i i s
215:J f J’ i y* —¢ —iy' MG (76)
@m*) @2m*) @2m*| " k—t;—my+i0 Ktt,—mg+io '
dk dl dl i i
23 f f f - J e —iy —iy' MY (77)
2m*) (2m*) (2m)*] Kkttt -mg+i0 T Kt —mg+i0 '

v (11)
M. (78)

f dkff dI1J dlz [ i _ i
Z11— i v
") emt) o) @mf| Krhl—mgti0 | Kt —mg+i0 Y

with M=M= MT9=p, p, M® the relevant subdiagrams. The momehtd, have to be softer thaky and only the

v

component oky parallel tok; contributes. After simplifications, we obtain

dkffolllfdl25 11 11 1]
2] 2md) 2md M PO P S R T R () T ) (nl |

Zyt 2755+ lezf (
(79

We again observe the cancellation of the leading contribution to the integrand. The mechanism of cancellation is identical to
the one of group 3 and is just the dipole mechanism.

Group 6

Finally the amplitudes for;3,2,4,216 could be written as

dk dl d, | i i
wm | o] o] ¢ iy Mg 0

m*) (2m*) @2m)* " ke—ti—mg+i0 K+t —mg+i0
dk dl dl, | i i ]

214= f f f - f =iyt — iy —é|M (D (81)
@m*) @2m*) @em* " k—t;=mg+i0 T k=t —t,—mg+io | *
dk dl dl, | i i ]

lezf f f - f =iy —iy" —¢ ME}?;) (82
2m*) @2m*) @em* " k—ti—my+i0 T k=t —t,—mg+io | *

where as before we write to this accurawﬂf_i): M= M%E P1,P1,M°®. The momentd, |, have to be softer thaky and
only the component ok; parallel tok; contributes. After simplifications, we obtain
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dkff dllJ' dl, M (o) po)| — 11t Lt L],
2mt) @mt] 2w PP ™ () (nly) " n(ly+1,) (nly) " nip+15) (nly)

(83

Zy3t 7214t 296= f

which explicitly shows the cancellation of the leading terms. It is clear from the above discussion, that it is much more
The mechanism of the cancellation is identical to the one fostraightforward in the non-Abelian case to change the assign-
the earlier groups and is the dipole mechanisee Fig. 6. ment of the diagrams into different groups. It is easy to see
Note that for these two groups as weéll°>=M?® after inter-  that apart from the group theory factors, and in the soft ap-
changingl, andl,. Hence one might expect to find another proximation, the diagrammatic expressions fgrand zg of
two sets of three diagrams in groups 5 and 6, which cancel ithe previous subsectioffirom groups 3 and ¥are the same
groups of thredsee Fig. 6. (using of courseM®=M#*). From groups 5 and 6 of the

In conclusion, we have shown that all diagrams-z;5  previous subsection the same applies to the expressions for
cancel in groups of two or three due to the dipole mechaz;, andzy, (in this case using/1°=M?®). Thus the following
nism. assignment of the diagrams in the non-Abelian case into dif-
ferent groups will make sure that all diagrams in a group
C. Inclusion of non-Abelian diagrams have the same group theoretical factors:

The inclusion of the non-Abelian contributions does not (1 Z1+23=0
pose any new difficulties. In fact, there are many simplifica- (2) Z2+24=0
tions because the final state quark and antiquark are pro- (3 Zs+2g+2;=0
duced by photons and hence carry no net color charge. When (4) Zs+29+210=0
the color factors are included the cancellations take place (9 ZutZiatzi5=0
between diagrams with the same such factors. For example, (6) Zia*+Zio+216=0.
consider the cancellation between the diagrams of group 1.

Herez, andz; have the same group factor since the onlyThe new assignment does not change the results for the Abe-

difference between them is an Abelian vertex. The same ifan case and now the cancellation in the non-Abelian case

true for group 2. Thus the cancellation between the diagramgroceeds within each group. The only nontrivial result one

of groups 1 and 2 proceeds as in the previous section even [yst use is the equalitidd3=M* andM5=M®. These are

the full non-Abelian theory. _ _ always seen to be true in the soft approximation. In the
_Consider next, group 3 of the previous subsection. FOpresent grouping, the diagrams in each group are seen to be

ways. In the first method we note that only the group theonjines. Such a cyclic permutation leaves the color factor un-

factor for the diagranz, is different from that ofzs andz;.  changed.

Explicitly, for zs the factor isT,T T, T, T:T, while for the The cancellation between the other non-Abelian diagrams

other two itisT,TcT,T,TcTy - All other factors are the same shown in Fig. 7 also proceeds similarly: For examplg,

as in the previous section with the rule that the group factorgancelsz,,: z,, cancelsz,, and so on.

M® =M® =M =p,,p1,M? contain no color matrices. gl orders.

Now we can write the color factor @ as the one for; and

z; plus a left over term which i$f 3, T, TcTp(Cr— Cal2). o _

Consider now the diagrams in group 4 of the previous sec- D. Generalization to higher orders

tion. Here the group factor associated with is We see that the cancellation at the 3 loop level discussed
TaTcTpTalcTp Which is different fromzg and z;o which is i the previous subsection relies on the followifig:the soft
TaTcTaTpTcTy. The difference now is—if,,cTaTcTh(Cr approximationii) algebraic identities like

—Cal2). Using the fact thaM3=M* we see that the left

over pieces from groups 3 and 4 cancel each other out. It is 1 1

easy to check that the same applies to the combination of —p-k; + p._k1:O

groups 5 and 6.

NG = T —— t _*t 1

)

s 3 2 - +
- - % 0 —p-ky =p-(kitky)  p-ky —p-ky
s & s 8 &2
1 1
FIG. 6. The general mechanism of the DL cancellation in the + p-(k;+kp) p-ky
groups 3-6 is the dipole interaction of a collinear pair of quarks
with two soft gluons. =0, (84)
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FIG. 7. Non-Abelian diagrams.

and that diagrams in the same group are related by a cyclie1,2. Thus we see each of the technical ingredients have a
permutation of the gluon linesee Fig. 8 In the abovepis  generalization to higher loop orders. The physics of the di-
a generic hard momentum akdare the soft ones. The soft pole mechanism and the color singlet nature of the fiaad
approximation essentially tells us that a soft gluon does nainitial) states combined with the above guarantee the cancel-
see spin and more explicitly ifp generically denotes lations needed to all orders.

a hard fermion momentum then we can consistently use

i/2p-k for the hard propagator andp2 for the vertex fac- E. Soft real gluon emission

tors. This will ensure the equalities liké*=M* needed for _ _ _
the cancellations to occur for our process. As far as the alge- In this subsection we briefly comment on the type of cor-

braic identities are concerned, they are in fact special cas&{gcuqtnhs ‘f’msmdg frorr'? ﬁoft re:[atlj gluonb(_amlgsptr;] ?kE leading
of the Sterman-Libby identitie§18]. These identities ob- ogarithmic order which must be combined wi € corre-

tained by considering diagrams related by cyclic permuta-Spon.di.ng virtwal contributions c_;liscussed above_ to get infra-
tions of the gluon lines read in general red finite results. The cancellation of infrared divergences in

semi-inclusive processes has a long history and is seen to be

nom-1 1 n 1 a consequence, quite generally, of unitarfty7]. In the
E H e —— H —=0. (8H present context, soft gluon emission of up to two gluons has
m=0 i=0 P-Om=P-0i j=m+1 P-Um—P-G; been considered in some detail [ifi]. There it was shown

that the sum of the contributions to the two loop cross sec-

tion from yy—bbgg, andyy—bbg gives a factorized re-
sult, which must then be combined with a similar contribu-

p tion from the virtual procesyy—bb. Here we will briefly
! comment on why the systematics observed at the two loop
P2 level is in fact expected to hold to all orders. Indeed some of
the cancellations that ensure their factorized result are due to
the dipole mechanism which will hold to all orders. Let us
consider this in detail first.

We will be using the cut diagram approach for the cross
section contributions. Let us consider the two loop contribu-
tion from yy—bbg, with for example, diagrams of the kind

FIG. 8. The general mechanism of the DL cancellation is thein Fig. 6 of[7] on the left of the cut and on the right we have

dipole interaction of a collinear pair of quarks with many soft glu- the one gluon tree level amplitude. The cancellations be-
ons. tween the diagrams of Figs(l§ and Gc) are then clearly of

In the aboveq;=k;+k,+ - - - +k; andq;-,=0. These iden-
tities are easily seen to reduce to E(®4) for the cased
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the type arising due to the dipole mechanism. This is the casmomentuml can be expressed in terms of light cone vari-
of topology B, while Fig. 7 of[7] deals with the case of ables

topology C. In Figs. ) and 7e) we again have the cancel-
lation based on the dipole mechanism, however only for
those contributions from Fig.(&8 when the emitted gluon is
softer than the soft fermion propagator. When the emitted
gluon in Fig. 1e) of [7] is harder than the softest fermion
line then we get other contributions, some of which go into
the factorization of the soft gluon emission and the other to
the term proportional to the tensor. The latter must cancel

| = aky+ Bko+1, . (86)

We note that the following integral in the soft regime:

11
in general grounds of time reversal invariance for the pro- f dadﬁ—i —j(Sa,B—mZ),
cess. A similar cancellation takes place for the contributions a p
of Fig. 6(d) of [7] to cut diagrams. Clearly the only nontrivial ij=...,-2-1012..., (87)

cancellations can be identified with the dipole mechanism
and we expect that it can be generalized to all orders using
the analysis of the earlier subsections. One only needs tgives terms like lo§s/n?), (m?/s)"log(sn?) or (m?/s)". In
discuss the contributions from Fig. 5 [of]. These contribu- other words, the soft regime cannot give rise to a single
tions arise from adding single gluon emission to the diadogarithm at the one-loop level.

grams of topology A. Topology A is essentially the on-shell ~Consider an n-loop Feynman integral with loop momenta
Sudakov form factor and multiple gluon emissions from sucHhi,1<i=<n. We can decomposg in terms of “external mo-
topologies have been extensively studied in the literatureenta”k; andka,
see, for exampld,19]. The main result here is that there are

contributions which violate the independent gluon emission

results so familiar from QED. However, when combined

with the contributions from the diagrams with strongly cor-

related multigluon emission, such terms cancel to all orderg, the soft region| «;|,| 81,1

; ; : : 2 |/s<1, the Feynman integral
in perturbation theory. Thus to the leading double logarith-4,aq ot give the next-to-leading logarithm, FogH(m?/s).

mic accuracy the real emission cross section factorizes anfhis is because, intuitively, each integration over the light

exponentiates for the semi-inclusive process of interest herggone variablesy and g gives either a logarithm or a power

suppression, as exemplified in the previous paragraph. We
IV. CONTRIBUTING DIAGRAMS AT THE ”OV\X/prf(?Vf th'ts \:,rt]at?rrl}ent' more lr'gorous?"f | .
NEXT-TO-LEADING LOGARITHMIC ORDER ¢ firstnote the following replacement for loop momenta
corresponding to a soft line:

li=ajki+ Biko+ 1, . (89)

The goal of this section is to identify those diagrams that

either vanish or cancel some other diagrams at next-to- 1
leading logarithmic order. The diagrams left over are then #H—irr&(smﬁﬁrli—m?). (89
just those needed in the discussion in Sec. 11 C. Our explicit IF—mi+ie

analysis is only at the two loop level and at the end we argue
that the results hold to NLL accuracy. In the first subsection,
we discuss the regime contributing to the next-to—leadingco

logarithms. We then introduce a power counting techniqu% the infrared sensitivity. The remaining possibilities are
that enables us to discover the nonvanishing diagrams ang - Y- ; g pe
collinear tok; or k,, soft or collinear top. We discuss them

make appropriate approximations. Armed with these twa
techniques, we are able to exclude a set of diagrams withotl? “.””- . .

actually carrying out the loop integrations. We remind the (i) Collinear tok, orka. A t_)oson that is parallel te, has
reader that we work throughout in the Feynman gauge. IR propagator that can be written as
this gauge we will see that for the process under consider-
ation, the additional logarithms at the NLL level must be of

collinear origin.

The rest of the propagators can be categorized into hard,
llinear and soft ones. The hard propagators are irrelevant

1 1

1+Ei uiai)(zi Uiﬂi)5/2

|<1+2i uili)z

A. Sources of single logarithms

In a two-particle scattering process, all momenta lie in the 2 1
same plane. We can take two of the independent momenta, —— . (90)
k, andk,, as “+” and “ —” direction, and denote the third S 2 u.B;
1~

momentum as (p could be eitherp; or p,). The loop i
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The fermionic propagator can be expressed as 1 1

RSN P v ey

= 7 (92
k 1] —m?
1+Z “") m Using &(seiBi+17 —m?), and 2/(a;B))(a;B)<aiB;

+a;B;, itis easy to show

2

1

k1+2 uih) -m
|

Ky

B

>(2 uilu)z. (93

(ii) Soft. A bosonic propagator Hence, the expansion below,

[ (e

1- - , (94
Ei Uj i (EI Ui,Bi)S (EI Uj i (Z UiBi)S
converges. The fermionic propagator has a term proportioni tan addition to the expansion above.
(iif) Collinear top. Again, the bosonic propagator can be expanded as
1 1
2 —
p+§i: uili) —m? Z Ui(ai+ﬂi)|t|/2+§i: ui(py i)
1 2. ui(pe-lin)
= 1- — | (95

2 ui( i+ By)|t|/2 E ui(a;+ Blt]/2

The fermionic propagator may give rise to an additidifah ~ rithm or a power suppression?/s. No next-to-leading loga-

the numerator. rithm can arise in the soft regime.
First, we only include the first term in the series in Egs. We now include the whole series in E§84),(95), as well
(94),(95) and apply the following trick: as their fermionic counterpart whenever appropriate. The de-
nominators are polynomials ef; and g;,
11 1 _( 1 1 1 96) L L L
aBat+B \a a+p ,82. (99)

o _ L > e X uiB X Uit By)
This trick reduces the number of different combinations of [ [ [
a’s and B's while splitting one term into two.

Therefore, when the propagators in cégeand only the  The numerator consists of terms proportionaptband|; .
first terms in the expansions of the soft and collineapto- The Feynman integral is thus of the following form:
propagators are included, the integral can be reduced to a
finite sum of the type

ga(ei B .pu-lin i) T I
2n

I1 deidgid?, ,
j 1T daii, (97) f ‘ - 92(a;,Bi)
soft regimei=1 oM (99)

whered’s represent’s, 8's or the combinations thereof. It whereg, andg, are both polynomial functions of their ar-
is evident that an integration over eaglyives either a loga- guments and the spinor structure is not interesting. Since
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is the only vector in the integrand which is not the integra-grations have to give logarithm while the last one gives a
tion variable, the integral of interest can further be reduced t@onstant of order 1. This is impossible for the above integral

) 2 l( |vﬁ|vpL ur il IJL)
[ TR
(100

where we have further left out the tensorial structurg¥df
andg*”.
By noting
o= IZVIT cod 6, 6y)
p -l = \/p_f\/ﬁcosei

where the angles, are relative to the vectqi, the integral
can be cast into

(101

(i, Bi NP2 N7
fo(ai,Bi)

f IT da;dgdI?,
><J IT doifs(0)
—>f [T dedg;

ir.,r., VE o)

Q. By)

(102

in the soft region. It follows that at least one of the loop

momenta has to be taken out of the soft region to correctly
reproduce the next to leading logarithmic behavior in the
Feynman gauge.

B. A power counting technique

In order to identify the regime contributing to the next-to-
leading logarithmic order at the two-loop level, we consider
inserting a gluon into the one-loop box diagram. From the
previous subsection, we know the inserted gluon has to be
collinear. Therefore, we will consider in turn the three to-
pologies with an additional collinear gluon inserted to each
of them.

Throughout the following subsections, we always denote
the soft loop momentum blyand that of the collinear gluon

k

We take two momentpa andEas the basis to decompose
the momentunk of the collinear gluon,
k=ap+Bp+k, . (105
The generic moment]aandacan be any two of the external
momentak,, k,, p; andp,.

In the so-called collinear region, without loss of general-
ity, we assumek parallel top such that

kL
jal~1) 8~ <L

In general, all the propagators in a Feynman diagram can
be characterized as hardff-shell), soft or collinear(to a

(106)

whereP andQ are polynomial functions of their arguments. certain direction In order to get the next-to-leading loga-

We have used thé function[Eq. (89)] to perform the inte-
gration oveﬂI and implicitly included the resultin@ func-

rithm at the two-loop level, which is a double logarithm mul-
tiplied with a single logarithm, a Feynman diagram has to

tions in the “polynomials“E. The summation in the second contain at least four collinear and one soft propagator. Spe-
line is due to the expansions in the soft and collineap-to- cifically, the double logarithmic form factor arises from a

propagators. It is a convergent series.
Now we examine the arguments of the polynonfain

EqQ.(102. The yX(u;je;+v;B;) represents various combina-
tions of a; and B; that may appear. For such a combination,

we split the integration region

Joi+ ;= L (103
\/Fj(l*l-zﬁ-l- , a'i<,3j-
J

After such manipulations, we obtain a convergent series

P(Nai, VB)

Q@ B (104

fHdadﬂE

with P andQ polynomial functions of/a; and+/B;. In order
to obtain the next-to-leading logarithmnz 1 of the inte-

soft virtual particle “interacting” with two(nearly) on-shell
particles that are flying apart along two different directions.
On the other hand, the interaction between two collinearly
flying virtual particles gives rise to the single logarithmic
form factor.

As a result, whenever we have fewer than four collinear
propagators, we can immediately conclude that the Feynman
diagram does not contribute at the next-to-leading logarith-
mic level. When we have exactly four collinear and a soft
propagator, we only keep terms proportionalton the nu-
merator. The3 term can be dropped because it cancesia
the denominator and effectively “removes” a collinear
propagator. An example of such a collinear propagator is

1 1
(p+k)2—m? (1+a)B(2p-p)+K2 + p2+ p?—m?
(107

And when we carry out the integration overwe can pick
up a pole from an “on-shell” propagator such as the above
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FIG. 9. Diagrams relevant to the next-to-leading logarithms in topology A. The diagrams dependent @yyaom shown here.

one. It follows thai3s~k? andk? should also be dropped. If ute single logarithms in all the three topologies. Such vertex

we get more than four collinear propagators, we will keep allcorrections are shown in Figs(d, 9(h), 11(g), 11(h), 12(e),

the terms. However, in general the terms proportionakto 12(f), 13(e), and 13f). Self-energy corrections are under-

are suppressed hy? and thus leaved and kf the leading stood and not explicitly drawn.

terms. Hereafter, we will omit the diagram&nd regions of dia-
gram that give rise to large logarithms only of ultraviolet

origin, until we are ready to run the relevant parameters us-
C. Vertex functions ing the RGE.

When inserting a gluon into a box diagram, we will obtain
one-loop vertex subdiagrams inside four of the resulting two- D. Contributing diagrams in topology A
loop diagrams. Two of the vertex corrections each have two
legs (nearly on-shell and the other soft. There is no IargeIeading logarithms of topology A in Fig. 9. The shorter fer-
scale of ordes, other than that from the UV cutoff, in such . X . -
.mion lines in the box subdiagrams represent the off-shell

i . Theref h f i ) . .
2()5?”2?;‘?3&?9““?550%’ these two vertex functions ContalBropagators, which characterize the topology A. Note Figs.

The other two vertex function subdiagrams have tvvog(a) and 9b) represent different regions of the same dia-

(nearly on-shell and one off-shell leg each. They do contrib-9ram., where the soft gluons are labeled layd the collinear
gluons byk. The same comments apply to Figgc)9and

9(d). (We will follow the conventions that the characteristic

off-shell propagator is denoted by the shorter linér the

soft momentum and for the collinear momentum through-
© out the rest of this article.

(,@ The reduced diagrams for the first six diagrams, Figs.
9(a)—9(f), all consist of a hard vertex with four jets attached
to it, as shown in Fig. 10. The two jets eventually emerge as
the quark and antiquark further interact with each other via a
soft diagram(the gluon with momentunt). One of them
consists of the collinear gluon and the quark or antiquark. In

FIG. 10. Jet diagram for topology A. addition, these subsets of diagrams are gauge invariant, since

We show some of the diagrams relevant to the next-to-
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FIG. 11. Diagrams relevant to the next-to-leading logarithms in topology B. The t-channel diagrams dependentGnrershown
here.

the reciprocal subsétonsisting of the vertex correction and physical gauge, but it obviously holds for the gauge invariant
self-energy subdiagramss gauge invariant. We can now set discussed above. Hence, the sum of Fi¢m-9(f) does
invoke results from a general power counting analysis ohot contain infrared logarithms.

infrared sensitive contribution®oth soft and collinearto a The remaining diagrams are Figsbp and 9h), which
typical wide-angle scattering procels20,21]. It was shown contribute to the next-to-leading logarithmic order. These are
there that the logarithmic configuration requires that jet linegust the diagrams proportional only @- contributing to the
are attached to hard vertices by a single line, otherwise theren-shell Sudakov form factor to NLL accuracy which is ex-
is power suppression. The analysig20,21] was made in a tensively discussed ifi4].

P2

FIG. 12. Diagrams relevant to the next-to-leading logarithms in topology C. The s-channel diagrams dependenCandyeoshown
here.
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FIG. 13. Diagrams relevant to the next-to-leading logarithms in topology C. The u-channel diagrams dependenCanyeshown
here.

E. Contributing diagrams in topology B Noc(Ky+ K+1) E(ky) (k+1)

Now we turn to the diagrams in Fig. 11. In Fig.(&), the
collinear gluon, labeled bk, can be parallel tp,, k; or k,.
We discuss them in turn.

(i) Parallel top; (k||p,). There are only three collinear
propagators left. This region can be excluded by powe

ok £(kq) k=0, (108

Yvhich implies a vanishing contribution to the next-to-leading
ogarithmic order from this region.

counting. . _ _ _
(i) Parallel tok, (k|k,). The soft fermion is the one la- (i) The last possible region Ig|k,, which vanishes due

beled byl, while the fermion labeled big+1 is collinear to O the similar reason as ifii). .

k. And the fermion with momentunk+p; is off-shell. Therefore, Fig. 1(e) vanishes as well as Fig. 1. The

There are exactly four collinear and one soft propagator leftdiagrams in Figs. 1&-11(d) can be shown to factorize.
Hence we only keep the componentkahat is parallel tdi;. ~ Take Fig. 11d) as an example. The numerator of the ampli-
The numerator of the diagram here is tude is

Nygg=u(py) ¥*(Ky+1+K) y=(ky +1) £(kp) mé(ko) (— Ko+ 1) yo — P+ K) Yuv(P2)

_ u(py) YKy ek ME(KD) (— Ko+ 1)y [ —4py- (ki +K) Ju(pa),  Klks

— (109
U(p1) y[4ky- (—po+ k) J(ky+H) é(kp)mé(ko) (—KptH) y,0(p2),  KlP2.

The factorization is evident now. Similar results hold for theing to the next-to-leading logarithmic approximation for
other three diagrams. However, they do not contain any largfigs. 12a)—12(c) are both the gluons being parallel pg.
single logarithms. Note the “incoming” quark and the “outgoing” gluon of

The remaining diagrams, Figs.(@l and 11h) are justthe  the hard subprocess—qg are nearly on shell. In addition,
ones included in the resummation discussed in Sec. IIC tﬂ']e g|u0n labeled b)k in the three diagrams is near|y on-
this order. shell too. We can expect the contributions only proportional
to C of the three diagrams to cancel to the leading order, in
the same manner as discussed earlier in Sec. Ill.

. In order to show the cancellation, we decompose
In topology C, the two-loop s-channel diagrams only pro-

portional toCg are shown in Fig. 12. The regions contribut- k=ak,+ Bpot+K, . (110

F. Contributing diagrams in topology C
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a C
FIG. 14. Some of the diagrams proportional@gq in topology C.
Each of the three amplitudes takes on the form logarithmic approximationg, andk, terms in the numera-
tors can be neglected. Hence,
— 1 M
Mi:Mi’u Y U(p2) v (1+Bk)p2
—th— K H M=—M, ———— ¢
P2 i 5yt k)2 (P2)
— ak,+ (1+ B+ k
:_Mi'u K2 ( +kk)22 L’y,u,v(pZ)i (111) :_1+qu K- 1 U(p ) (112)
P2 B T (pytk)2 P

with M;, i=1,2,3, representing amplitudes of Figs(@2  and we have put back thek,+k, in the second line.
12(c), respectively. In this subsection, integrations dvand The summation ok“M; , in the three amplitudes closely

k should be understood in the amplitudes. We consistentljollows the earlier proof using the Ward identifgee Sec.
omit common numerical factors for simplicity. To the single Il A). We obtain(for the piece proportional only t€¢)

M+ My+M 1+Bk—( )po ¥ ! é(k)l u(py) Y ! E(ky)
=———lu —u
N s g P Y Vit P otk Ykt

1 1 1
(Pt k)2 K2 (pytk+1)2

1
X é(kz)m Y (p2) (113

The first term is suppressed by the quark mass, while thenostly non-Abelian which are of Sudakov type. Some of
second one vanishes in the single logarithmic approximatiothese are shown in Fig. 14. This completes our argument
by simple power counting. Therefore, the contributing dia-justifying that the only source of logarithms at this order are

grams in Fig. 12 aréd), (e), and(f). of the “Sudakov” type.
Similarly, the diagrams with the u-channel hard subpro-
cess also include six diagrams. Noteworthy is that Figa)l3 G. Extension to higher loops

can also be drawn as a vertex correction to the s-channel

i ith the trianal bdi being th . In this section, we argue without detailed proof that the
'agrams, wi € triangie subdiagram being the VErtex Corgy, e resyits hold to the full NLL accuracy. We consider

rection therein. However, we notice they represent differeany topologies B and C, since topology A, which corre-
regions. In Fig. 1&), the quark labeled byis soft, whereas  g,5n4s to the on-shell Sudakov form factor, has been dis-
in the s-channel diagram, the corresponding one is collineg;,ssed in detail if14].

to k. A similar remark applies to Fig. 18). Here, it can be For topologies B and C, consider the insertions of a gluon
viewed as a vertex correction to the u-channel diagraminto the bare diagram. There are two cases:

which in turn represents a different region. As a summary, (i) The gluon momentum is in the soft region. The analy-
the two diagrams shown in Figs. (B and 13b) represent sis in Sec. Ill can be applied and it can be factored out.

the region that both the virtual gluons are parallelpig (i) If the gluon momentum is in the collinear region, the
while in their counterparts, the two virtual gluons are parallelanalysis in the previous subsections applies and again, fac-
to k, andp, respectively. Obviously, the sum of Figs.(&8-  torization results.

13(c) vanishes to the next-to-leading logarithmic approxima- All subsequent insertions of gluons in casge must be
tion in exactly the same way Figs. (B?-12(c) do. restricted to the soft region. Therefore, for these the analysis
Therefore, the contributing diagrams of the topology C atof Sec. Il applies. In casé), we keep inserting gluons and
the two-loop level include Figs. 1@-12f) and Figs. apply the same analysis until we encounter a collinear gluon.

13(d)-13(f) only. We note the diagrams contributing to the Then casdii) applies. Hence we can conclude that to NLL
“hard” off-shell Sudakov form factor in this topology are accuracy, the relevant diagrams are all of the Sudakov type.
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FIG. 15. The ratiog g, | /FY.jo0p @Nd FBL/F?—I.OOp are shown as FIG. 16. The ratiod=g,,/FY 0, and F§ /F 1o, are shown as
functions of\/s. The result of the DL resummation is shown by the functions ofy/s. The result of the DL resummation is shown by the
dashed line and the resummation up to NLL accuracy is shown b¥jashed line and the resummation up to NLL accuracy is shown by
the solid line withu?=s. the solid line withu?=s.

eralization. At the NLL level we found that in the Feynman

gauge the only new logarithms are of collinear origin. The
In this paper we have studied the resummation up to théinal expression for the resummed amplitude is given in Sec.

next to leading logarithmic level of the QCD radiative cor- Il. Ed. (26) together with Eqs(41),(42),(44). In Figs. 15 and

rections tobb production by photon photon collisions. Apart 16, we show numerically the sizes of the corrections to NLL

from the phenomenological applications, this problem hagccur_?_(r:]y ill‘l_tﬁpologytl_?a an? CthreI?twe ]:[O those at DLdaCCltJ'
inherent interest in providing a theoretical laboratory toracy. The corrections fo the form factors are moderate

study QCD effects. We showed that to the accuracy consi(J‘r-e'aﬁVe to DL resummation, i.e., about 5% for topology B

ered all logarithms are of the Sudakov type. On a diagram b?nd 8% for topology C.
diagram basis other types of diagrams do give rise to next to
leading logarithms but they cancel amongst each other by the
dipole mechanism. We explicity showed how the dipole We would like to thank G. Sterman for discussions. This
mechanism works to 3 loops and outlined an all orders genwork was supported by the U.S. Department of Energy.
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ACKNOWLEDGMENTS

[1] J.F. Gunion, H.E. Haber, G. Kane, and S. Dawskime Higgs
Hunter's Guide(Addison-Wesley, Reading, MA, 1990

[2] J.F. Gunion and H.E. Haber, Phys. Rev4B 5109(1993.

[3] Particle Data Group, K. Hagiwarat al., Phys. Rev. D66,

Fiz. 30, 87 (1956)].

[12] V.G. Gorshkov, V.N. Gribov, L.N. Lipatov, and G.V. Frolov,
Sov. J. Nucl. Phys6, 95 (1968 [Yad. Fiz.6, 129(1967)].

[13] J. Carazzone, E.C. Poggio, and H.R. Quinn, Phys. BB,

010001(_2002. 161 (1975.
[4] K. Melnikov and O. Yakovlev, Phys. Lett. B12 179(1993;  [14] J.C. Collins, Adv. Ser. Direct. High Energy PhyaB, 573
A. Djouadi, M. Spira, J.J. van der Bij, and P.M. Zerwdsd. (1989.

257, 187(1991); J.G. Korner, K. Melnikov, and O.1. Yakovlev,
Phys. Rev. D63, 3737(1996; K. Melnikov, M. Spira, and O.
Yakovlev, Z. Phys. (54, 401(1994).

[5] I.LF. Ginzburg, G.L. Kotkin, V.G. Serbo, and V.I. Telnov, Nucl.
Instrum. Methods Phys. Re205, 47 (1983.

6] V. Telnov, Nucl. Instrum. Methods Phys. Res3B5, 3 (1995. .
%7% V.S. Fadin, V.A. Khoze, and A.D. M)eltrtin Phys. Rev.5s, L8 S:B. Libby and G. Sterman, Phys. Rev.B, 2468(1979; V.

484(1997). Ganapathi and G. Stermaibjd. 23, 2408(1981).

[8] D.L. Borden, V.A. Khoze, W.J. Stirling, and J. Ohnemus, Phys.[lg] S. Catani and M. Ciafaloni, Nucl. PhyB236 61 (1984; A.
Rev. D50, 4499(1994. Bassetto, M. Ciafaloni, and G. Marchesini, Phys. R&@Q,

[9] G. Jikia and A. Tkabladze, Phys. Rev.52, 2030(1996. 201 (1983.

[10] M. Melles and W.J. Stirling, Phys. Rev. B9, 094009(1999.  [20] R. Akhoury, Phys. Rev. 19, 1250(1979.
[11] V.V. Sudakov, Sov. Phys. JETR 65 (1956 [Zh. Eksp. Teor.  [21] G. Sterman, Phys. Rev. D7, 2773(1978.

[15] A.V. Smilga, Nucl. PhysB161, 449(1979.

[16] R. Akhoury, H. Wang, and O.l. Yakovlev, Phys. Rev. @4,
113008(2001).

[17] G. StermanAn Introduction to Quantum Field TheofZam-
bridge University Press, New York, 1993

073006-21



