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Complex conjugate poles and parton distributions

B. C. Tiburzi,* W. Detmold,† and G. A. Miller‡
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~Received 28 May 2003; published 15 October 2003!

We calculate parton and generalized parton distributions in Minkowski space using a scalar propagator with
a pair of complex conjugate poles. Correct spectral and support properties are obtained only after careful
analytic continuation from Euclidean space. Alternately the quark distribution function can be calculated from
modified cutting rules, which put the intermediate state on its complex mass shells. Distribution functions
agree with those resulting from the model’s Euclidean space double distribution which we calculate via
nondiagonal matrix elements of twist-two operators. Thus one can use a wide class of analytic parametrizations
of the quark propagator to connect Euclidean space Green functions to light-cone dominated amplitudes.
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I. INTRODUCTION

Understanding the strong QCD aspects of hadron pro
ties remains a challenge. Experimental probes at large
mentum transfer will continue to yield a wealth of data
hadron structure—stimulating theoretical explanations of
underlying physics in terms of quark and gluon degrees
freedom. It is well known that light-cone correlation fun
tions are relevant for describing hard processes@1#, since
struck constituents rebound at speeds near that of ligh
recent years there has been renewed interest in the con
tion between inclusive and exclusive reactions at large m
mentum transfer@2#. The underlying connection is encom
passed by generalized parton distributions~GPDs! which are
functions that enter in the description of a variety of ha
exclusive processes@3#.

Attempting to describe the nonperturbative light-cone c
relations that enter in large momentum transfer processes
led to the formulation of gauge theories on the light cone@4#.
There has been progress in directly solving for pion lig
cone Fock components in light-cone Hamiltonian QCD@5#.
Another important stride has been made in enumerating
classifying hadronic light-cone Fock-space amplitudes@6#.
These could be used for modeling hadrons, although Lore
covariance requires infinitely many Fock components a
the incorporation of symmetries into model wave functio
has been very limited.

In a different approach, QCD models based on soluti
to Dyson-Schwinger equations provide a useful framew
for exploring strongly interacting bound states, see e.g.@7#.
This framework is fully Poincare´ covariant, allows for close
contact with lattice simulations and provides a means to p
serve symmetries and implement quark and gluon confi
ment. Dyson-Schwinger models have also been used to s
light-cone dominated amplitudes. A calculation of quark d
tributions in the impulse approximation was undertaken
@8#, where the nucleon Bethe-Salpeter equation was solve
a diquark spectator model. That investigation relied upon
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use of free particle propagators for the quarks and diquark
a different study, the authors of Ref.@9# calculated quark
distribution functions for the pion using a Dyson-Schwing
type model based on entire functions. Their analysis avoi
two problems: the integral over the relative light-cone ene
is not convergent in the complex plane because noncons
entire functions are unbounded; secondly, expressions w
derived supposing the existence of a Ka¨llén-Lehmann repre-
sentation which admittedly does not exist for their mod
propagator. Although such a model is successful at desc
ing low momentum, spacelike processes where the prop
tor can be approximated as entire, the nonanalytic point
the whole complex plane must be known to calculate
quark distribution. The present investigation enlarges
class of model propagators which can be used to calcu
light-cone dominated amplitudes. We show how merom
phic propagators can be used in Minkowski space to arriv
parton and generalized parton distributions as well as
electromagnetic form factor expressed on the light cone.
ditionally vertex functions for spacelike processes can
modeled using meromorphic functions which allows one
go beyond the impulse approximation.

Complex conjugate singularities present in solutions
Dyson-Schwinger equations have been studied in the c
nection with the violation of Osterwalder-Schrader reflecti
positivity and confinement@10,11#. Recent work@12# in solv-
ing the Bethe-Salpeter equation with a quark propagator c
sisting of pairs of complex conjugate singularities shows t
the width for meson decay~into free quarks! generated from
one pole is exactly canceled by the contribution from
complex conjugate. Additionally recent studies have mo
eled Euclidean space lattice data with propagators that h
timelike complex conjugate singularities@13,14#. In this
work, we pursue the calculation of spacelike amplitudes
Minkowski space using a simple model propagator cons
ing of a pair of complex conjugate poles. Specifically, we a
interested in the calculation of light-cone dominated amp
tudes for this model which necessitates a treatment
Minkowski space.

The paper is organized as follows. First in Sec. II, w
present the scalar model used to investigate complex co
gate poles in propagators. Here we show that naive calc
tion of the quark distribution in Minkowski space is prob
©2003 The American Physical Society02-1
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lematic. The distribution has neither proper support nor
positive definite. In Sec. III we demonstrate that desp
troubles in Minkowski space, amplitudes involving propag
tors with pairs of complex conjugate poles can be calcula
directly in Euclidean space. The double distribution~DD! is
extracted from nondiagonal matrix elements of twist-two o
erators. This distribution satisfies all of the relevant spec
and support properties and can be used to derive parton
generalized parton distributions for the model, in addition
the electromagnetic form factor. In Sec. IV, we show that
quark distribution can be calculated in Minkowski space
using a natural modification of the cutting rules applied
the handbag diagram. The effect of these cutting rules i
put intermediate states on their complex mass shells. Fin
in Sec. V, we rectify the situation in Minkowski space b
analytically continuing amplitudes from Euclidean spa
This justifies the cutting rules presented. The detailed ca
lation of the generalized parton distribution in Minkows
space is contained in the Appendix. After analytic continu
tion, the model’s parton and generalized parton distributi
agree with those calculated from the Euclidean space DD
brief summary~Sec. VI! concludes the paper.

II. PROBLEMS IN MINKOWSKI SPACE

In this section we present the simple model under con
eration. Here the propagator is treated in Minkowski sp
where difficulties are encountered. We show that amplitu
cannot be directly calculated in Minkowski space when co
plex conjugate poles are present in propagators and vert

The model we take isf3 theory with electromagnetic
interactions. Equivalently we can view this model as a bou
state of two scalar particles with a trivial Bethe-Salpeter v
tex G(k,P)51, where the coupling constant is assumed
be absorbed into the overall normalization. We make
simple ansatz for the nonperturbative propagator consis
of a pair of complex conjugate poles

S~k!5
i ~k22a21b2!

~k22a21b2!214a2b2
, ~1!

where a22b2.0. Defining for easem25a22b2 and e
52ab ~which is taken to be positive without any loss
generality!, we can write the propagator as

S~k!5
i /2

k22m21 i e
1

i /2

k22m22 i e
. ~2!

The light-cone energy poles1 of the propagator are thus

ka
25

k'21m2

2k1
2

i e

2k1
~3!

1For any vector am, we define the light-cone variablesa6

[(1/A2)(a06a3).
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and ka*
2

5(ka
2)* , where * denotes the complex conjugat

Although we use a scalar model, results straightforwar
extend to spin-12 particles, e.g., since only the pole structu
of Eq. ~1! is relevant.

Now let us consider calculating this model’s quark dist
bution by projecting onto the light cone. The quark distrib
tion can be derived by fixing the plus-momentum of the a
tive quark x5k1/P1, see Fig. 1, and taking the plus
component of the current. Thus up to overall normalizati
we have the expression

q~x!}E d4kd~k12xP1!xS~k!S~k2P!S~k!. ~4!

The k2 integral is then performed by residues. Choosing
frame in whichP'50, the spectator propagator has ligh
cone energy poles

kb
25P21

k'21m2

2~k12P1!
2

i e

2~k12P1!
, ~5!

andkb*
2

5(kb
2)* .

Performing thek2 integral in Eq.~4!, we arrive at the
quark distribution

q~x!}2p i $2u~2x!@Res~ka*
2

!1Res~kb*
2

!#

1u@x~12x!#@Res~ka*
2

!1Res~kb
2!#

1u~x21!@Res~ka*
2

!1Res~kb*
2

!#%. ~6!

This distribution does not have proper support, i.e. it is no
vanishing outside the intervalxP@0,1#. Moreover, the distri-
bution is not real valued, whereas it should be positive d
nite. Thus the model based on the propagator in Eq.~1!
cannot be suitably formulated in Minkowski space. We w
find below that Eq.~1! makes sense as a Minkowski spa
propagator only after analytic continuation from Euclide
space for the amplitude in question.

�k k

k � P

P P

FIG. 1. Triangle diagram at zero momentum transfer used
calculate the quark distribution function by projecting onto the lig
cone.
2-2
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III. COVARIANT CALCULATION IN EUCLIDEAN SPACE

In Euclidean space, the model propagator is

SE~k!5 (
e56

1/2

k21m22 i e
. ~7!

Here and below we use the shorthande56 to denote the
pair of polese522ab,12ab. Unlike in Minkowski space
where the measure is imaginary, contributions to Euclid
space amplitudes are real and one has no difficulty in ca
lating form factors and distribution functions usingSE(k) in
the relevant diagrams. The simplicity of the model at ha
will allow us to calculate its double distribution analytical
and thereby determine the quark distribution and electrom
netic form factor, since these functions are related to
double distribution by the so-called reduction relations. T
remainder of the paper will be devoted to calculation of th
quantities in Minkowski space by projecting onto the lig
cone.

GPDs are not Lorentz invariant objects, however, th
stem from a projection of a Lorentz invariant double dist
bution function@15#. These functions are particularly attra
e
si
ri

th

d

i

he
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tive from the perspective of model building@16#, though one
must be careful that the starting point is indeed covari
@17#, otherwise desirable distribution properties and straig
forward physical interpretation may be sacrificed. The mo
under consideration is fully covariant, and thus the DD re
resentation is an ideal testing ground for our model propa
tor. Hence we proceed to calculate the model’s Euclide
space DD, recalling along the way the relevant properties
DDs.

Let DJ m5]Wm2]Qm. For this scalar model, we define th
twist-two operator of spin-n as

O mm1 . . . mn5f~0!iDJ [miDJ m1
••• iDJ mn ]f~0!, ~8!

where the action of@•••# on Lorentz indices produces only th
symmetric traceless part.

We work in Radyushkin’s asymmetric frame2 with P as
the momentum of the initial state,P1D that of the final and
t5D2. The initial and final states are on-shell:P25(P
1D)25M2. Following the two-component formalism o
@19#, the nondiagonal matrix element ofO mm1 . . . mn can be
decomposed into Lorentz invariant moment functionsAnk(t)
andBnk(t)
^P1DuO mm1 . . . mnuP&5~2P1D! [m(
k50

n
n!

k! ~n2k!!
Ank~ t !~2P1D!m1

•••~2P1D!mn2k~2D!mn2k11
•••~2D!mn]

2D [m(
k50

n
n!

k! ~n2k!!
Bnk~ t !~2P1D!m1

•••~2P1D!mn2k~2D!mn2k11
•••~2D!mn] . ~9!
a-

re,
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Hermiticity forces the matrix elements ofO mm1 . . . mn to be
invariant under the transformation

P→P1D,

D→2D.

Consequently the values ofk are restricted to be even in th
first sum and odd in the second. As it stands there is con
erable freedom in this decomposition, e.g. one could rew
the above withkBn,k21(t)/(n2k11) as a contribution to
Ank(t). Carrying this out for allk puts the bulk in the first
term and renders the second term proportional only to
symmetric traceless part of (n11) D ’s—moments of the
Polyakov-WeissD term @20#. This is the usually encountere
form of the DD with D term. Alternatively one can also
express the moments as projections of a single Lorentz
variant function@21#. Calculationally, however, Eq.~9! be-
comes the most practical to work with@22#.

The F and G DDs can be defined as generators of t
coefficient functions
d-
te

e

n-

Ank~ t !5E
0

1

dxE
0

12x

dyxn2k~x12y21!kF~x,y;t ! ~10!

Bnk~ t !5E
0

1

dxE
0

12x

dyxn2k~x12y21!kG~x,y;t !. ~11!

As a consequence of the restriction onk in the sums, the
function F(x,y;t) is München symmetric @23#, i.e.
F(x,y;t)5F(x,12x2y;t), while G(x,y;t) is Münchenan-
tisymmetric. Also forn even, there is no contribution from
the D term to the functionG(x,y;t).

These functions then appear in the decomposition of m
trix elements of lightlike separated operators

2The nondiagonal matrix elements of twist-two operators a
however, more conveniently expressed in variables symmetric w
respect to initial and final states. Since we use perturbative
grams and do not have antiparticles, asymmetrical variables
warranted. Good discussion of the conversion from symmetr
and asymmetrical variables and distributions can be found in@18#.
Additionally advantages and disadvantages of both are presen
2-3



-

ly

:

All
d
n
er,

. 2,

nts

TIBURZI, DETMOLD, AND MILLER PHYSICAL REVIEW D 68, 073002 ~2003!
^P1Duf~0!iz•DJf~z2!uP&

5~2P•z1D•z!E
0

1

dxE
0

12x

dye2 ixP•z1 iyD•zF~x,y;t !

2D•zE
0

1

dxE
0

12x

dye2 ixP•z1 iyD•zG~x,y;t !, ~12!

wherez250.
Denotingz52D1/P1.0, the GPD in asymmetric vari

ables reads

H~x,z,t !5E dz2eixP1z2

2p~22z!
^P1Duf~0!iDJ1f~z2!uP&.

~13!

Physicallyz plays the role of the Bjorken variable for deep
virtual Compton scattering. Inserting Eq.~12! into this defi-
nition yields

H~x,z,t !5E
0

1

dzE
0

12z

dyd~x2z2zy!

3FF~z,y;t !1
z

22z
G~z,y;t !G . ~14!

By integrating Eq.~14! over x, we uncover two sum rules
the sum rule for the form factor

E
0

1

dxE
0

12x

dyF~x,y;t !5F~ t ! ~15!

and theG-sum rule
l

an

07300
E
0

1

dxE
0

12x

dyG~x,y;t !50, ~16!

which follows sinceG is Münchenantisymmetric. Equation
~16! is important and mandated by current conservation.
too frequently theG DD function is overlooked and treate
as identically zero. Lastly, the quark distribution functio
q(x) can be found from the DD at zero momentum transf
see Eq.~13!,

q~x!5E
0

12x

dyF~x,y;0!. ~17!

We can use the decomposition in Eq.~9! to calculate our
simple model’s DD. Parametrizing the momenta as in Fig
the nondiagonal matrix element ofO (n) reads

FIG. 2. Diagram used to calculate nondiagonal matrix eleme
of twist-two operators~denoted by a cross!.
^P1DuO mm1 . . . mnuP&5
2N

p2 (
e,e8,e956

E d4k
~2k1D! [m~2k1D!m1

•••~2k1D!mn]

@k21m22 i e#@~k1D!21m22 i e8#@~k2P!21m22 i e9#
. ~18!
g
ered
The normalization constantN is chosen by the condition
F(0)51. Let us denote the propagators simply byA5(k
2P)21m22 i e9, B5(k1D)21m22 i e8 and C5k21m2

2 i e. We introduce two Feynman parameters$x,y% to render
the denominator specifically in the form@xA1yB1(12x
2y)C#23. One then translateskm to render the integra
~hyper-! spherically symmetric via the definitionkm5 l m

1xPm2yDm. The resulting integral overl can be evaluated
directly ~remember we are in Euclidean space!.

Binomially expanding the result of the integral, we c
make contact with Eq.~9! and subsequently determine theF
andG double distributions by inspection from Eqs.~10! and
~11!. Defining the auxiliary functions

Do~x,y;t !5m22x~12x!M22y~12x2y!t ~19!

and
D~x,y;t !5N (
z50,x,y,x1y

Do~x,y;t !

Do~x,y;t !21e2~122z!2
,

~20!

the DDs can be written simply as

F~x,y;t !5xD~x,y;t ! ~21!

G~x,y;t !5~x12y21!D~x,y;t !.
~22!

Accordingly F is Münchensymmetric andG is antisymmet-
ric. Notice althoughe is finite, corresponding results usin
the standard perturbative propagator can always be recov
in the limit e→0. For example, the correctF andG DDs are
recovered in the limite→0 @22#.
2-4
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FIG. 3. On the left, the quark distribution Eq.~23! is plotted as a function ofx for a few values ofe in GeV2. On the right, the form factor
calculated from Eqs.~15! and~21! is plotted as a function of2t for a few values ofe in GeV2. The model parameters are arbitrarily chos
asM50.14 GeV andm50.33 GeV.
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The model GPD can be derived by utilizing Eq.~14!,
although the integral must be performed numerically. T
quark distribution can be found via the reduction relation E
~17!, namely

q~x!5N (
z50,x

S x~12x!Do~x,0;0!

Do~x,0;0!21e2~122z!2

1
x

e
tan21

e~122z!

Do~x,0;0!D . ~23!

Lastly the form factor can be found from the sum rule E
~15!.

In Fig. 3, we plot the quark distribution and electroma
netic form factor for various values ofe in GeV2. We have
arbitrarily chosen the other model parameters asM
50.14 GeV andm50.33 GeV. Additionally in Fig. 4, the
GPD is plotted: first at fixedz and t for various values ofe
and then at fixedt and e for various values ofz. Curves
corresponding toe50 are the standard results for a prop
gator with one real pole.

IV. CUTTING RULES

In this section, we show there is some hope in work
with the model propagator Eq.~1! in Minkowski space. We
07300
e
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g

demonstrate that the quark distribution can be derived b
straightforward generalization of the cutting rules.

Consider the forward Compton amplitudeM mn depicted
in Fig. 5. In the Bjorken limit, the imaginary part of thi
diagram is related to the quark distribution. For simplici
we can choose a frame in whichq'50. The minus-plus
component of the forward Compton amplitude in su
frames reads

iM 2152
16N

p3 E d4k~2k21q2!S~k!S~k2P!S~k!

3~2k11q1!S~k1q!. ~24!

In the scalar particle case, the minus-plus componen
the forward Compton amplitude can be used to define
quark distribution in a way analogous to the spin-1

2 case. The
relation is simplyI(M 21)}q(x); see@24#. In Eq. ~24!, we
have adjusted the overall normalization so that equality
tweenI(M 21) andq(x) holds. With standard perturbativ
propagators, we could calculate the imaginary part ofM mn

by using the cutting rules, whereby one replaces the
propagators in Fig. 5 by an on-shell prescription, namely

S~k!e50→22p id~k22m2!. ~25!

In Eq. ~25!, we have specifiede50 for the case of the free
particle propagator. Since large momentum flows through
FIG. 4. Plots of the GPD calculated from Eqs.~21!, ~22! and~14!. On the left, the GPD is plotted as a function ofx for a few values of
e ~in GeV2) at fixedz50.5 andt521.0 GeV2. On the right, the GPD appears at fixede50.17 GeV2 andt522.0 GeV2 and is plotted as
a function ofx for a few values ofz. The model parameters are arbitrarily chosen asM50.14 GeV andm50.33 GeV.
2-5
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TIBURZI, DETMOLD, AND MILLER PHYSICAL REVIEW D 68, 073002 ~2003!
handle of the handbag, we may neglect the mass of
struck quark and use the standard cutting rule forS(k1q).
In the Bjorken limit, we definex52q2/2P•q which remains
finite asq2,P•q→` and is kinematically bounded betwee
zero and one. Further we orient our frame of reference
that q has a large minus component in this limit, and con
quently q15q2/2q2 is finite. Hence we have the familia
replacement

S~k1q!→2
p i

2q2
d~k12xP1!. ~26!

To complete the cut, we must deal with the spectator p
ticle’s complex mass shells. We must worry about the pro
gator Eq.~1! only where the denominator is zero. Thus w
are lead to the cutting rule for the propagator Eq.~1!

S~k!→2p i @d~k22m21 i e!1d~k22m22 i e!#, ~27!

which puts the intermediate state on its complex mass sh
Furthermore, the limite→0 produces the regular cutting ru
Eq. ~25!.

Using this cutting rule for the spectator particle alo
with Eq. ~26!, we can deduce the quark distribution fro
I(M 21) in the Bjorken limit

q~x!5
4N

p E d4kd~k12xP1!@d~k22kb
2!

1d~k22kb*
2

!#
xS~k!2

12x
, ~28!

where the light-cone energy poles are given in Eq.~5!. No-
tice the resulting distribution is real and has proper supp
due to the kinematic constraintxP@0,1# imposed by the
Bjorken limit. Evaluation of the two trivial integrals leave
only the transverse momentum integration

q~x!5
N

p (
e,e8,e956

E dk'

x~12x!
DW~x,k',e,e9uM2!

3DW~x,k',e8,e9uM2! ~29!

FIG. 5. Handbag diagram for the forward Compton amplitu
Dashed line denotes the cut which yields the quark distribution
the Bjorken limit.
07300
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where we have defined the Weinberg propagator general
for complex masses as

DW~x,k',e,e8uM2!215M22
k'21m2

x~12x!
1

i e

x
1

i e8

12x
.

~30!

Evaluation of thek' integral yields an analytic expressio
for q(x), which is identical to that obtained from the DD E
~23!. Notice Eq.~28! is equivalent to evaluating Eq.~4! at
Res(kb

2)1Res(kb*
2 ) and hence the quark distribution is d

rived as if the complex conjugate spectator poles both lie
the upper-half complex plane. We will understand this be
once we analytically continue from Euclidean space.

V. ANALYTIC CONTINUATION

Above we have seen that modified cutting rules can
used to derive the correct quark distribution function
Minkowski space. In essence the result stems from put
the spectator particle on its complex mass shells. This wil
justified by careful analytic continuation of Euclidean spa
amplitudes. Below we consider the Minkowski space cal
lation of the generalized parton distribution which cannot
derived by cuts. This will force us to deal with the underl
ing Wick rotation necessary to define the model
Minkowski space.

In Sec. III, the model double distributions were calculat
in Euclidean space. Thus to calculate related amplitude
Minkowski space, we must Wick rotate in the complex e
ergy plane: k4→ ik0. The analytic continuation can b
viewed alternately in the complex light-cone energy pla
For k350, the rotation is from theI(k2) axis to theR(k2)
axis. In the general case, such a correspondence can on
made precise by considering the Wick rotation in terms ofk0

and then boosting to the infinite momentum frame. T
requires tedious algebraic manipulations and a prolife
tion of energy poles and time-ordered diagrams. Inde
it is easier just to imagine the rotation simply and de
with the light-cone singularities. This is the approach w
present.

Before tackling generalized parton distributions
Minkowski space, let us imagine a simpler fictitious e
ample. Consider some well-defined Euclidean space am
tude having only poles atka

2 and ka*
2 , see Eq.~3!. To cal-

culate the amplitude in Minkowski space, we naive

.
n

FIG. 6. Complex light-cone energy plane for the propagator.
2-6
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COMPLEX CONJUGATE POLES AND PARTON . . . PHYSICAL REVIEW D68, 073002 ~2003!
integrate along theR(k2) axis. In general the correct pat
on which to integrate is one which nears theR(k2) axis
except for detours around energy poles in the first and t
quadrants. Such a path is correct since it can be continuo
deformed into the Euclidean path. The difference betw
the naive integration and the correct path is a sum of resid
of the Wick poles. The energy poles of our fictitious amp
tude are depicted in Fig. 6. Their location depends upon
sign of x5k1/P1. Thus for this amplitude the correct con
tinuation from Euclidean space is

E dI~k2!→E dR~k2!12p i @u~2x!2u~x!#Res~ka*
2

!.

~31!

Notice onlyka*
2 is a Wick pole; this is expected because w

know the limit e→0 can be analytically continued in th
naive fashion. Closing the contour in the upper-half plane
perform the Minkowski space energy integral3 and evaluate
our fictitious amplitude, we pick up 2p i @u(2x)Res(ka

2)
1u(x)Res(ka*

2 )#. The net result according to Eq.~31! is
thus

2p iu~2x!@Res~ka
2!1Res~ka*

2
!#.

Looking back at Fig. 6, the net result after Wick rotatio
amounts to both poles lying in the same half-plane;
equivalently, we have effectively integrated in either t
right- or left-half plane. The result that both poles lie in t
same half-plane reflects quark confinement; the quark w
function must vanish as time becomes large@11#.

The spacelike amplitude4 for the generalized parton dis
tribution can now be continued to Minkowski space a
hence be evaluated by projecting onto the light cone. To
so, we refer to Fig. 2 and insert the nonlocal light-cone
eratorf(0)iDJ 1f(z2) in place of the local twist-two opera
tors denoted by a cross in the figure. Here the pl

3One must be careful of zero modes@25# for which k150. In
such cases, the pole lies on the contour at infinity and the inte
tion cannot be performed by residues. Since our fictitious exam
is only schematic, we are neglecting the issue of zero modes an
hence excluding amplitudes of the form

(
e56

E d4k

~k22m21ie!n
, n.2,

which must be handled separately. The example

E d4k

~k22m21 i e!2~k22m22 i e!2

is devoid of zero-mode complications and more closely parallels
expressions encountered for GPDs.

4There are additional complications for timelike amplitudes a
for amplitudes involving unstable bound states. In these cases W
poles are present even when standard perturbative propagato
used. The analysis above must be more carefully considere
these cases where threshold effects are already inherent in the
lytic continuation to, or from, Euclidean space.
07300
d
sly
n
es

e

o

r

ve

o
-

-

component picks out the leading-twist contributio
according to light-cone power counting. Thus in momentu
space, we arrive at

H~x,z,t !5
2N/p2

12z/2E d4kd~k12xP1!~2k11D1!S~k!

3S~k2P!S~k1D!. ~32!

Above we have included thez-dependent prefactor to nor
malize the action ofDJ 1 between nondiagonal states. Th
overall normalization is then the same as in Eq.~18!. By
writing Eq. ~32! in Minkowski space, we must also keep
mind the Wick residues implicitly necessary so that Eq.~32!
is meaningful. In addition to the poleska

2 , kb
2 @given in Eqs.

~3! and ~5!, respectively# and their complex conjugates, th
integrand of Eq.~32! also has the poles

kc
252D21

~k'1D'!21m2

2~k11D1!
2

i e

2~k11D1!
~33!

andkc*
2

5(kc
2)* . Carrying out the light-cone energy integra

tion in Eq. ~32! as well as adding relevant residues resulti
from the Wick rotation produces~the subtle details of this
calculation appear in the Appendix!

H~x,z,t !522p iu~x!u~z2x!@Res~ka
2!1Res~ka*

2
!#

12p iu~x2z!u~12x!@Res~kb
2!1Res~kb*

2
!#,

~34!

where the residue is of the integrand in Eq.~32!. As a result
of the effective relocation of poles to the same half-plane
their complex conjugates, the resulting GPD Eq.~34! is real
and vanishes outsidex from zero to one.

Using the Weinberg propagator Eq.~30!, the residues can
be compactly written in terms of relative momenta. Defini
the relative momentum of the final state as

x85
x2z

12z
, k8'5k'1~12x8!D', ~35!

and the relative momentum of the photon as

x95
x

z
, k9'5k'1x9D', ~36!

the light-cone GPD can be expressed in the form

~12z/2!H~x,z,t !5u~x!u~z2x!H1~x,z,t !

1u~x2z!u~12x!H2~x,z,t !,

~37!

where we have made the abbreviations

a-
le
are

e

d
ck
are
in
na-
2-7
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H1~x,z,t !5~2x921!
N

2p (
e,e8,e956

E dk'
DW~x,k',e,e9uM2!DW~x9,k9',e,e8ut !

x9~12x9!~12x!
, ~38!

H2~x,z,t !5~2x2z!
N

2p (
e,e8,e956

E dk'
DW~x,k',e,e9uM2!DW~x8,k8',e8,e9uM2!

x~12x!x8
. ~39!
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First one can see analytically that the correct quark dis
bution results at zero momentum transfer, nam
H2(x,0,0)5q(x), whereq(x) is given by Eq.~29!. As re-
marked in Sec. IV, this function is identical to that obtain
from the double distribution Eq.~23!. Secondly, the resulting
light-cone GPD Eq.~37! agrees numerically with that foun
from the double distribution, via Eq.~14!, which is plotted in
Fig. 4. Finally the electromagnetic form factor found fro
the sum rule

F~ t !5E
0

1

dxH~x,z,t ! ~40!

agrees numerically with the result of Eq.~15! ~which is plot-
ted in Fig. 3!. The z independence of Eq.~40! stems from
Lorentz invariance which is present, however, not manif
in Eq. ~37!. Thus with the calculation of Eq.~37! from ana-
lytically continuing to Minkowski space, spacelike amp
tudes now agree with those calculated from the Euclid
space double distribution.

VI. SUMMARY

Above we consider calculation of amplitudes for spa
like processes using a scalar propagator with one pai
complex conjugate poles. Although we use a scalar mo
generalization to higher spins is clear since the energy
nominators are universal. Moreover, the analysis can be
tended easily to the case where vertex functions have c
plex conjugate singularities. Such models cannot be dire
employed in Minkowski space, they must be analytica
continued from Euclidean space.

In Sec. II, the problems of using a propagator with co
plex conjugate poles in Minkowski space are discussed a
level of the quark distribution function. If the model is d
fined in Minkowski space, one will generally violate the su
port and positivity properties of the quark distribution. Ne
in Sec. III, we show the model is perfectly well defined
Euclidean space by calculating nondiagonal matrix eleme
of twist-two operators. This leads us to the model’s dou
distribution which we used to calculate parton and gene
ized parton distributions as well as the electromagnetic fo
factor.

In the remainder of the paper, we investigate how to c
culate amplitudes properly in Minkowski space. First amp
tudes dependent on the imaginary part of some set of
grams can be calculated by using a straightforw
generalization of the cutting rules. We apply this to calcul
the quark distribution function from the handbag diagram
07300
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the Bjorken limit in Sec. IV. Lastly we consider the analyt
continuation of spacelike amplitudes from Euclidean spa
This is complicated by the presence of Wick poles and
quires their residues to be appropriately added when am
tudes are calculated. The details of the GPD calculation
pear in the Appendix. Resulting functions calculated
Minkowski space after the Wick rotation agree with tho
obtained from the model defined in Euclidean space.

This work lays the foundation for calculating light-con
dominated amplitudes using meromorphic model propa
tors and vertices constrained by lattice data5 and Ward-
Takahashi identities. Distribution functions for such mod
could be calculated rigorously since the pole structure of
propagator is known and relevant integrals converge in
complex light-cone energy plane. As far as light-cone p
nomenology is concerned, resulting expressions would
truly Poincare´ covariant~as opposed to diagonal with respe
to the noninteracting operators! and would satisfy field-
theoretic identities. Filling these two gaps is essential
adequate hadronic phenomenology for processes at large
mentum transfer. Moreover, such models would help lig
cone methods and Dyson-Schwinger studies reach com
mentary standing.
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APPENDIX: CALCULATION OF THE GPD

Below we derive Eq.~34! for the GPD in Minkowski
space. The details have been relegated here since the
some subtlety. In order to evaluate Eq.~32!, which implicitly
needs analytic continuation, we must shift the energy in
gration variable and define a prescription for dealing w
vanishing real parts. Let us see how these difficulties ari

In considering the Wick rotation, one is usually only co
cerned with the single denominator that results from comb
ing propagators via Feynman parameters. For the mom
let us ignore the complication of complex conjugate pairs
poles. In this case, combining the denominators of Eq.~18!
using Feynman parameters results in@ l 22Do(x,y;t)
1 i e#23, whereDo is given by Eq.~19!. Since the bound
state is stable andt is spacelike,Do(x,y;t) is always positive

5One must proceed with caution: the lattice calculations emp
Landau gauge, while we have tacitly used light-cone gauge ab
2-8



,

COMPLEX CONJUGATE POLES AND PARTON . . . PHYSICAL REVIEW D68, 073002 ~2003!
FIG. 7. Complex light-cone
energy plane for the shifted poles
Eq. ~A3!, for the generalized par-
ton distribution.
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and hence there are no Wick poles. Moreover, we h
shifted the variablekm to arrive atl m.

In analytically continuing the expression with uncom
bined propagators~and again no complex conjugate pole!,
we are confronted with a problem. The polekb

2 , for ex-
ample, is shifted by the energyP2. Thus the location of the
singularity in the complex plane will be shifted parallel
the real axis depending upon the relative magnitude of
spectator’s kinetic energy andP2. In the schematic exampl
shown in Sec. V, the poleka

2 does not have such a shift. Thu
for the b and c poles, the location of the singularities d
picted in Fig. 6 will shift along the real axis~depending on
P2 and D2) and there will be threshold Wick poles@the
threshold is defined whenR(kb,c

2 50)]. This is unphysical:
we just demonstrated the Wick rotation can be done for
combined denominators without crossing any poles. To p
form the same Wick rotation at the level of separate pro
gators, we must use the freedom to shift the energy varia
as well as the stability of the bound state.

On the light cone, the bound state stability condition c
be expressed as

P2,
krel

'21m2

2P1x~12x!
, ~A1!

wherekrel
' 5k'2xP' is the relative transverse momentum

the two constituents. Because we consider the elastic ele
magnetic form factor, there is an analogous relation for
final stateP8. Since each propagator contains the kine
energy of a single particle, the bound state stability condit
can never be utilized without shiftingk2. Yet in order to
perform such a shift, the real part of one pole must be z
and hence we must invent a prescription for moving this p
off the Euclidean contour.

We choose the translation:k2→k21dk21h, whereh is
a positive infinitesimal and
07300
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dk25P21
k'21m2

2P1~x21!
. ~A2!

The resulting poles of the integrand in Eq.~32! we denote

k̃a
25ka

22dk252P21
k'21m2

2P1x~12x!
2

i e

2P1x
,

k̃b
25kb

22dk22h52h2
i e

2P1~x21!
, ~A3!

k̃c
25kc

22dk252P821
k8'21m2

2P81x8~12x8!

2
i e

2P1~x2z!
,

and similarly for their complex conjugate partners. Noti
imaginary parts of the poles are unaffected by the ene
translation. Theh prescription has displaced the resultin
spectator pole away from the Euclidean path independen
x. Moreover, thea andc poles have nonzero real parts; soh
has been set to zero for these poles above.

Using the expressions for the new poles Eq.~A3! and the
bound state stability condition Eq.~A1!, we can determine
the quadrant location of the singularities independent ofP2

and D2 ~see footnote 4!. These quadrant locations are d
picted for the full range ofx in Fig. 7. Accordingly poles in
the first and third quadrants are Wick poles. As we saw
Sec. V, the net result of the analytic continuation is to eva
ate the integral by effectively closing the contour in the rig
or left-half plane. Hence the GPD Eq.~32! is
2-9



.
.

e
gu
n

are
um

ifts

TIBURZI, DETMOLD, AND MILLER PHYSICAL REVIEW D 68, 073002 ~2003!
H~x,z,t !522p iu~x!u~z2x!@Res~ k̃a
2!1Res~ k̃a*

2
!#

12p iu~x2z!u~12x!@Res~ k̃b
2!1Res~ k̃b*

2
!#.

~A4!

Evaluating the residues in Eq.~A4! yields the result of Sec
V, namely Eq.~37! which is algebraically equivalent to Eq
~34!.

Notice from Fig. 7, otherh prescriptions for the shift,
such as1h/@2P1(x21)#, lead to an incorrect result for th
case when there are no complex conjugate pairs. The fi
shows that the infinitesimal prescription must be positive a
independent of the sign ofx, x2z, etc., in order to reproduce
the familiar result. It is interesting to note that forx.1 in the
er

s.

B
,

07300
re
d

case without conjugate pairs, all poles of the integrand
Wick poles. Though since the integral is convergent, the s
of these Wick residues vanishes.

The interested reader can verify that the alternate sh
which use the same pole prescription

k2→k21
k'21m2

2P1x
1h

k2→k22D21
~k'1D'!21m2

2P1~x2z!
1h

~A5!

also yield the correct results providedt is spacelike.
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