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Complex conjugate poles and parton distributions
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We calculate parton and generalized parton distributions in Minkowski space using a scalar propagator with
a pair of complex conjugate poles. Correct spectral and support properties are obtained only after careful
analytic continuation from Euclidean space. Alternately the quark distribution function can be calculated from
modified cutting rules, which put the intermediate state on its complex mass shells. Distribution functions
agree with those resulting from the model's Euclidean space double distribution which we calculate via
nondiagonal matrix elements of twist-two operators. Thus one can use a wide class of analytic parametrizations
of the quark propagator to connect Euclidean space Green functions to light-cone dominated amplitudes.

DOI: 10.1103/PhysRevD.68.073002 PACS nuni®er13.40.Gp, 13.60.Fz, 14.40.Aq

[. INTRODUCTION use of free particle propagators for the quarks and diquark. In
a different study, the authors of RdR] calculated quark
Understanding the strong QCD aspects of hadron propedistribution functions for the pion using a Dyson-Schwinger
ties remains a challenge. Experimental probes at large mdype model based on entire functions. Their analysis avoided
mentum transfer will continue to yield a wealth of data ontwo problems: the integral over the relative light-cone energy
hadron structure—stimulating theoretical explanations of thés not convergent in the complex plane because nonconstant
underlying physics in terms of quark and gluon degrees oéntire functions are unbounded; secondly, expressions were
freedom. It is well known that light-cone correlation func- derived supposing the existence of al&a-Lehmann repre-
tions are relevant for describing hard procesgEs since  sentation which admittedly does not exist for their model
struck constituents rebound at speeds near that of light. Ipropagator. Although such a model is successful at describ-
recent years there has been renewed interest in the conndng low momentum, spacelike processes where the propaga-
tion between inclusive and exclusive reactions at large motor can be approximated as entire, the nonanalytic points in
mentum transfef2]. The underlying connection is encom- the whole complex plane must be known to calculate the
passed by generalized parton distributi¢8®D9 which are  quark distribution. The present investigation enlarges the
functions that enter in the description of a variety of hardclass of model propagators which can be used to calculate
exclusive processd8]. light-cone dominated amplitudes. We show how meromor-
Attempting to describe the nonperturbative light-cone cor-phic propagators can be used in Minkowski space to arrive at
relations that enter in large momentum transfer processes hgarton and generalized parton distributions as well as the
led to the formulation of gauge theories on the light cbhle  electromagnetic form factor expressed on the light cone. Ad-
There has been progress in directly solving for pion light-ditionally vertex functions for spacelike processes can be
cone Fock components in light-cone Hamiltonian Q&) modeled using meromorphic functions which allows one to
Another important stride has been made in enumerating ango beyond the impulse approximation.
classifying hadronic light-cone Fock-space amplitu@és Complex conjugate singularities present in solutions to
These could be used for modeling hadrons, although Lorent®yson-Schwinger equations have been studied in the con-
covariance requires infinitely many Fock components andhection with the violation of Osterwalder-Schrader reflection
the incorporation of symmetries into model wave functionspositivity and confinemerjtL0,11]. Recent work12] in solv-
has been very limited. ing the Bethe-Salpeter equation with a quark propagator con-
In a different approach, QCD models based on solutionsisting of pairs of complex conjugate singularities shows that
to Dyson-Schwinger equations provide a useful frameworkhe width for meson decafnto free quarksgenerated from
for exploring strongly interacting bound states, see E8§. one pole is exactly canceled by the contribution from its
This framework is fully Poincareovariant, allows for close complex conjugate. Additionally recent studies have mod-
contact with lattice simulations and provides a means to preeled Euclidean space lattice data with propagators that have
serve symmetries and implement quark and gluon confinetimelike complex conjugate singularitisd3,14). In this
ment. Dyson-Schwinger models have also been used to studyork, we pursue the calculation of spacelike amplitudes in
light-cone dominated amplitudes. A calculation of quark dis-Minkowski space using a simple model propagator consist-
tributions in the impulse approximation was undertaken ining of a pair of complex conjugate poles. Specifically, we are
[8], where the nucleon Bethe-Salpeter equation was solved imterested in the calculation of light-cone dominated ampli-
a diquark spectator model. That investigation relied upon theudes for this model which necessitates a treatment in
Minkowski space.
The paper is organized as follows. First in Sec. Il, we

*Email address: bctiburz@u.washington.edu present the scalar model used to investigate complex conju-
"Email address: wdetmold@phys.washington.edu gate poles in propagators. Here we show that naive calcula-
*Email address: miller@phys.washington.edu tion of the quark distribution in Minkowski space is prob-
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lematic. The distribution has neither proper support nor is

positive definite. In Sec. Ill we demonstrate that despite

troubles in Minkowski space, amplitudes involving propaga-

tors with pairs of complex conjugate poles can be calculated

directly in Euclidean space. The double distributi@D) is

extracted from nondiagonal matrix elements of twist-two op- k k
erators. This distribution satisfies all of the relevant spectral
and support properties and can be used to derive parton and
generalized parton distributions for the model, in addition to
the electromagnetic form factor. In Sec. IV, we show that the
quark distribution can be calculated in Minkowski space by P P

using a natural modification of the cutting rules applied to

the handbag diagram. The effect of these cutting rules is to FIG. 1. Triangle diagram at zero momentum transfer used to
put intermediate states on their complex mass shells. Finallyalculate the quark distribution function by projecting onto the light
in Sec. V, we rectify the situation in Minkowski space by cone.

analytically continuing amplitudes from Euclidean space.

This justifies the cutting rules presented. The detailed calcuypg k- =(k;)*, where * denotes the complex conjugate
a* 1 .

lation of the generalized parton distribution in Minkowski Although we use a scalar model, results straightforwardly
space is contained in the Appendix. After analytic continua—extend to spirs particles, e.g., since only the pole structure
tion, the model's parton and generalized parton distribution%f Eq. (1) is relevant. ' ’

agree with those calculated from the Euclidean space DD. A

Now let us consider calculating this model’'s quark distri-
brief summary(Sec. V) concludes the paper. g d

bution by projecting onto the light cone. The quark distribu-
tion can be derived by fixing the plus-momentum of the ac-
Il. PROBLEMS IN MINKOWSKI SPACE tive quark x=k*/P", see Fig. 1, and taking the plus-

) ) ) . component of the current. Thus up to overall normalization,
In this section we present the simple model under considye have the expression

eration. Here the propagator is treated in Minkowski space

where difficulties are encountered. We show that amplitudes

cannot be directly calculated in Minkowski space when com- q(x)e J d*ks(kt —xP*)xS(k)S(k— P)S(k) (4)
plex conjugate poles are present in propagators and vertices. ’

The model we take isp® theory with electromagnetic
interactions. Equivalently we can view this model as a boun he k™ integral is then performed by residues. Choosing a
state of two scalar particles with a trivial Bethe-Salpeter Velame in whichP =0 the spectator propagator has light-
tex I'(k,P)=1, where the coupling constant is assumed % one energy poles '
be absorbed into the overall normalization. We make a
simple ansatz for the nonperturbative propagator consisting
of a pair of complex conjugate poles k124 m? ie

kg:P_‘l' - ’
2(kt=P") 2(k"—=P7")

®)

i(K*—a%+b?) (1)
(kz_a2+b2)2+4a2b2, andkg*=(kr;)*-

Performing thek™ integral in Eq.(4), we arrive at the
where a®~b?>0. Defining for easem?’=a®~b* and €  quark distribution

=2ab (which is taken to be positive without any loss of
generality, we can write the propagator as

S(k)=

q(x)=2mi{— 6(—x)[Regk,,)+Regk,,)]

i/2 .\ i/2 @ +6[x(1—x)][Regk )+ Regk)]
K2—m?+ie Ki—ml—ie

S(k)=
+6(x—1)[Regk_, )+ Regk;,)]}. (6)

The light-cone energy polésf the propagator are thus
This distribution does not have proper support, i.e. it is non-
vanishing outside the intervale [ 0,1]. Moreover, the distri-
- (3)  bution is not real valued, whereas it should be positive defi-
2k* 2k* nite. Thus the model based on the propagator in &g.
cannot be suitably formulated in Minkowski space. We will
find below that Eq(1) makes sense as a Minkowski space
For any vectora®, we define the light-cone variablea™ propagator only after analytic continuation from Euclidean
=(1/\/2)(a°+ a3). space for the amplitude in question.

 k2+m? e
ky=——"
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lll. COVARIANT CALCULATION IN EUCLIDEAN SPACE tive from the perspective of model building6], though one
must be careful that the starting point is indeed covariant
[17], otherwise desirable distribution properties and straight-
1/2 forward physical ?nterpretation may be sacrificed. The model
Se(k)=> ————. (7)  under consideration is fully covariant, and thus the DD rep-
== K2+m’—ie resentation is an ideal testing ground for our model propaga-
tor. Hence we proceed to calculate the model’'s Euclidean

Here and below we use the shorthasid = to denote the space DD, recalling along the way the relevant properties of
pair of polese= —2ab, +2ab. Unlike in Minkowski space pps.

where the measure is imaginary, contributions to Euclidean
space amplitudes are real and one has no difficulty in calc
lating form factors and distribution functions usigg(k) in
the relevant diagrams. The simplicity of the model at hand OB = d)(o)iﬁ*[ﬂig#l. ) ~i5“n]¢(0), (8)
will allow us to calculate its double distribution analytically
and thereby determine the quark distribution and electromagwhere the action df "l on Lorentz indices produces only the
netic form factor, since these functions are related to theymmetric traceless part.
double distribution by the so-called reduction relations. The We work in Radyushkin’s asymmetric frafwith P as
remainder of the paper will be devoted to calculation of theséhe momentum of the initial stat®+ A that of the final and
quantities in Minkowski space by projecting onto the lightt=A2. The initial and final states are on-shel?=(P
cone. +A)2=M?2. Following the two-component formalism of
GPDs are not Lorentz invariant objects, however, they[19], the nondiagonal matrix element ¢f##1---#n can be
stem from a projection of a Lorentz invariant double distri- decomposed into Lorentz invariant moment functidpg(t)
bution function[15]. These functions are particularly attrac- andB,(t)

In Euclidean space, the model propagator is

i Let D*=g*— g*. For this scalar model, we define the
Ywist-two operator of spim as

n

(P+A|O#H1 - '“n|P>=(2P+A)[“kZO Mn—'_k),Ank(t)(Zme- S+ (2P+ A)Fnk(— A)#n-ked. . (— Akl

_A[P-IZO ﬁik)!Bnk(t)(zp“LA)Ml' (2P A)Hn—k(— A)FEn—ki1. . (= Al 9)

Hermiticity forces the matrix elements @?##1---#n to be 1 1-x . )
invariant under the transformation An(t) = fo dXJO dyx" " (x+2y—1)F(x,y;t)  (10)

P—P+A, 1 1-x
Bnk(t):f dXJ dyx" *(x+2y—1)*G(x,y;t).  (11)
0 0

A——A.

As a consequence of the restriction krin the sums, the

) _ function F(x,y;t) is Munchen symmetric [23], i.e.
Consequently the values &fare restricted to be even in the £y y:t)=F(x,1-x—y;t), while G(x,y;t) is Miinchenan-

first sum and odd in the second. As it stands there is considisymmetric. Also forn even, there is no contribution from
erable freedom in this decomposition, e.g. one could rewritgne p term to the functiorG(x,y;t).
the above withkB, —1(t)/(n—k+1) as a contribution to These functions then appear in the decomposition of ma-

Ani(t). Carrying this out for alk puts the bulk in the first ix elements of lightlike separated operators
term and renders the second term proportional only to the

symmetric traceless part ofn¢-1) A’'s—moments of the

Polyakov-WeisD term[20]. This is the usually encountered  2rpe pondiagonal matrix elements of twist-two operators are,
form of the DD with D term. Alternatively one can also however, more conveniently expressed in variables symmetric with
express the moments as projections of a single Lorentz inegpect to initial and final states. Since we use perturbative dia-
variant function[21]. Calculationally, however, Eq9) be-  grams and do not have antiparticles, asymmetrical variables are

comes the most practical to work wifa2]. warranted. Good discussion of the conversion from symmetrical
The F and G DDs can be defined as generators of theand asymmetrical variables and distributions can be fourjd 8h
coefficient functions Additionally advantages and disadvantages of both are presented.
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(P+A|¢(0)iz-Dgp(z7)|P)

1 1-x ) .
=(2P-z+A-z)f dxf dye P ZHyAZE(x yit)
0 0

1 1-x _ _ k E+ A
—A-zf dxf dye XP-zHyAZG(x yit), (12
0 0
wherez?=0. L— P
DenotingZ=—A"/P*>0, the GPD in asymmetric vari-
ables reads P P+ A
—gixPTz" ey B FIG. 2. Diagram used to calculate nondiagonal matrix elements
H(x,{,t)= J m(P+A|¢(O)|D é(z7)|P). of twist-two operatorgdenoted by a crogs

13

1 1-x

PhysicallyZ plays the role of the Bjorken variable for deeply J de dyG(x,y;t)=0, (16)
virtual Compton scattering. Inserting E(.2) into this defi- o Jo

nition yields .
which follows sinceG is Munchenantisymmetric. Equation
(16) is important and mandated by current conservation. All
too frequently theG DD function is overlooked and treated
as identically zero. Lastly, the quark distribution function
g(x) can be found from the DD at zero momentum transfer,

see Eq(13),

1 1-z
H(x,§,t)=JodZJ0 dyd(x—z—{y)
. ¢ .
F(z,y,t)+2T§G(z,y,t) :

By integrating Eq.(14) over x, we uncover two sum rules:
the sum rule for the form factor

X (149

1—x
q(x)= JO dyF(x,y;0). (17)

1 1—-x
J de dyF(x,y;t)=F(t) (15
0 0

We can use the decomposition in E) to calculate our
simple model’s DD. Parametrizing the momenta as in Fig. 2,

and theG-sum rule the nondiagonal matrix element 6f" reads

2N (2k+A)[#(2k+ A)#1. - (2k+ A)#nd
(Prajormmip)-=5 S [ . . — (s
P [K2+m?—ie][(k+A)2+m?—ie' ][(k—P)2+m?—i€"]
|
The normalization constaril is chosen by the condition Dy(X,y;t)
F(0)=1. Let us denote the propagators simply 8y (k D(x,y;t)=N ,
—P)2+m?—ie", B=(k+A)2+m2—ie' and ¢=k3>+m? z=0xyxcty Do(X,y;t)?+ €%(1-22)°
—ie. We introduce two Feynman parametéxsy} to render (20)
the denominator specifically in the forfix+y%B+(1—x
—y)€]73. One then translatek” to render the integral the DDs can be written simply as
(hypery spherically symmetric via the definitiok*=1#
+xP*—yA#, The resulting integral ovdrcan be evaluated F(x,y;t)=xD(x,y;t) (22
directly (remember we are in Euclidean space
Binomially expanding the result of the integral_, we can G(x,y;t)=(x+2y—1)D(x,y:t).
make contact with Eq9) and subsequently determine the (22)

andG double distributions by inspection from Eq40) and
(11). Defining the auxiliary functions

Do(X,y;t)=m?—x(1—x)M2—y(1-x—y)t (19

and

Accordingly F is Munchensymmetric ands is antisymmet-
ric. Notice althoughe is finite, corresponding results using
the standard perturbative propagator can always be recovered
in the limit e—0. For example, the correEtandG DDs are
recovered in the limit—0 [22].
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FIG. 3. On the left, the quark distribution E@3) is plotted as a function of for a few values of in GeV?. On the right, the form factor
calculated from Eqg(15) and(21) is plotted as a function of t for a few values ok in GeV2. The model parameters are arbitrarily chosen
asM=0.14 GeV andn=0.33 GeV.

The model GPD can be derived by utilizing Ed.4), demonstrate that the quark distribution can be derived by a
although the integral must be performed numerically. Thestraightforward generalization of the cutting rules.
quark distribution can be found via the reduction relation Eq. Consider the forward Compton amplitudd #” depicted

(17), namely in Fig. 5. In the Bjorken limit, the imaginary part of this
diagram is related to the quark distribution. For simplicity,
X(1—X)D,(x,0;0) we can choose a frame in whiap"=0. The minus-plus
ag(x)=N E > > component of the forward Compton amplitude in such
2=0x | Do(x,0;0)"+ €7(1—22) frames reads
X e(1—-22)
+-tan t———= . 16N
can DO(X,O;O)) 23 *+:——3f d*k(2k~ +q7)S(k) S(k— P)S(k)
o
Lastly the form factor can be found from the sum rule Eq. X (2k*+qg*)S(k+q). (24)
(15. In the scalar particle case, the minus-plus component of

In Fig. 3, we plot the quark distribution and electromag-the forward Compton amplitude can be used to define the
netic form factor for various values efin GeV2. We have  quark distribution in a way analogous to the spicase. The
arbitrarily chosen the other model parameters Ms relation is simplyJ(M ~")xq(x); see[24]. In Eq.(24), we
=0.14 GeV andn=0.33 GeV. Additionally in Fig. 4, the have adjusted the overall normalization so that equality be-
GPD is plotted: first at fixed andt for various values ok tweenJ(M ~*) andq(x) holds. With standard perturbative
and then at fixed and e for various values off. Curves propagators, we could calculate the imaginary part\of”
corresponding tae=0 are the standard results for a propa-by using the cutting rules, whereby one replaces the cut
gator with one real pole. propagators in Fig. 5 by an on-shell prescription, namely

IV. CUTTING RULES S(K) e=o— — 2711 S(k?—m?). (25

In this section, we show there is some hope in workingin Eq. (25), we have specified=0 for the case of the free
with the model propagator E@l) in Minkowski space. We patrticle propagator. Since large momentum flows through the

3
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FIG. 4. Plots of the GPD calculated from E@&1), (22) and(14). On the left, the GPD is plotted as a functionxofor a few values of
€ (in GeV?) at fixed{=0.5 andt=—1.0 Ge\f. On the right, the GPD appears at fixed 0.17 Ge\f andt=—2.0 Ge\f and is plotted as
a function ofx for a few values off. The model parameters are arbitrarily choseiMas0.14 GeV andn=0.33 GeV.
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P P FIG. 6. Complex light-cone energy plane for the propagator.

FIG. 5. Handbag diagram for the forward Compton amplitude. . . .
Dashed line denotes the cut which yields the quark distribution invhere we have defined the Weinberg propagator generalized
the Bjorken limit. for complex masses as

handle of the handbag, we may neglect the mass of the

struck quark and use the standard cutting ruleStk+q). K2
In the Bjorken limit, we definec= —q?/2P - q which remains DW(x,kL,e,e’|M2)*1: M2—
finite asq?,P-q—o and is kinematically bounded between

zero and one. Further we orient our frame of reference so

thatq has a large minus component in this limit, and conse-

quently g™ =qg?%/2q~ is finite. Hence we have the familiar Evaluation of thek* integral yields an analytic expression
replacement for q(x), which is identical to that obtained from the DD Eq.

(23). Notice Eq.(28) is equivalent to evaluating Eq4) at

Resk, ) + Resk,.) and hence the quark distribution is de-

rived as if the complex conjugate spectator poles both lie in

the upper-half complex plane. We will understand this better
To complete the cut, we must deal with the spectator paronce we analytically continue from Euclidean space.

ticle’s complex mass shells. We must worry about the propa-

gator Eq.(1) only where the denominator is zero. Thus we

are lead to the cutting rule for the propagator Eq. V. ANALYTIC CONTINUATION

+m2+ie+ i€
X(1—X) X 1-x
(30)

S(k+ Q) — — —— 5(k* —xP"). (26
2

Above we have seen that modified cutting rules can be
used to derive the correct quark distribution function in
Minkowski space. In essence the result stems from putting
ghe spectator particle on its complex mass shells. This will be
justified by careful analytic continuation of Euclidean space
Eq. (25). amplitudes. Below we consider the Minkowski_space calcu-

Using this cutting rule for the spectator particle along Iathn of the generapzeqi parton distribution \.Nh'Ch cannot be
with Eq. (26), we can deduce the quark distribution from _derlved_ by CUtS'.Th'S will force us to deal with the underl)_/-
J(M ) in the Bjorken limit ing chk_ rotation necessary to define the model in

Minkowski space.
In Sec. Ill, the model double distributions were calculated
AN in Euclidean space. Thus to calculate related amplitudes in
L +_ypt - k- Minkowski space, we must Wick rotate in the complex en-
at0 T f kot =xPHLak ~ky ) ergy plane: k*—ik®. The analytic continuation can be
xS(K)2 viewed alternately in the complex light-cone energy plane.
+ (k™ —kp) =, (28) For k=0, the rotation is from th&(k ™) axis to thefi(k ")
1-x axis. In the general case, such a correspondence can only be
made precise by considering the Wick rotation in termk%f
where the light-cone energy poles are given in &y. No-  and then boosting to the infinite momentum frame. This
tice the resulting distribution is real and has proper supportequires tedious algebraic manipulations and a prolifera-
due to the kinematic constrainte[0,1] imposed by the tion of energy poles and time-ordered diagrams. Indeed
Bjorken limit. Evaluation of the two trivial integrals leaves it is easier just to imagine the rotation simply and deal

only the transverse momentum integration with the light-cone singularities. This is the approach we
present.

Before tackling generalized parton distributions in

S(k)— — mi[ 8(k2—m2+ie)+ s(k2—m2—ie)], (27)

which puts the intermediate state on its complex mass shell
Furthermore, the limie— 0 produces the regular cutting rule

dk*+ L mtea Minkowski space, let us imagine a simpler fictitious ex-
q(X)Z; 2 . mew(X'k €.€"|M?) ample. Consider some well-defined Euclidean space ampli-
ceeTs tude having only poles & andk_, , see Eq(3). To cal-
X Dy(x,k, €, €"|M?) (29 culate the amplitude in Minkowski space, we naively
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integrate along théi(k~) axis. In general the correct path component picks out the leading-twist contribution
on which to integrate is one which nears k) axis  according to Ii.ght—cone power counting. Thus in momentum
except for detours around energy poles in the first and thirgpace, we arrive at
guadrants. Such a path is correct since it can be continuously
deformed into the Euclidean path. The difference between N/ 72
the naive integration and the correct path is a sum of residues H(x, ¢,t)= _J d*kS(k* —xP*)(2k* +A1)S(k)
of the Wick poles. The energy poles of our fictitious ampli- 1-¢42
tude are depicted in Fig. 6. Their location depends upon the
sign of x=k*/P*. Thus for this amplitude the correct con-
tinuation from Euclidean space is Above we have included thé-dependent prefactor to nor-
malize the action oD * between nondiagonal states. The
f dj(k*)—>f dR(k™)+27i[60(—x)— 0(x)]Regk, ). overall normalization is then the same as in Ef8). By
(31) writing Eqg. (32) in Minkowski space, we must also keep in
mind the Wick residues implicitly necessary so that E39)
Notice onlyk_, is a Wick pole; this is expected because weiS meaningful. In addition to the polég , k; [given in Egs.
know the limit e—0 can be analytically continued in the (3) and(5), respectively and their complex conjugates, the
naive fashion. Closing the contour in the upper-half plane tdntegrand of Eq(32) also has the poles
perform the Minkowski space energy integrahd evaluate

X S(k—P)S(k+A). (32)

our fictitious amplitude, we pick up 2i[ 8(—x)Resk,) (k- + A2+ m? ie
+ 0(x)Resk,.)]. The net result according to E¢31) is ke=—A"+ - (33
thus 2(kT+A™) 2(kt+A™)

andk_. = (k. )*. Carrying out the light-cone energy integra-
Sl - - tion in Eq.(32) as well as adding relevant residues resulting
2mi 0(—x)[Regk, )+ Resk_,)]. X ; ) .
m (= x)[Resk,) k)] from the Wick rotation produceg&he subtle details of this
Looking back at Fig. 6, the net result after Wick rotation Calculation appear in the Appendlix
amounts to both poles lying in the same half-plane; or

equivalently, we have effectively integrated in either the 4, )= 21 0(x) 6(¢ = x)[Re<k> )+ Regk
right- or left-half plane. The result that both poles lie in the (*..1) ™ 6(x)6({=x)[Resky) thar)]

same half-plane reflects quark confinement; the quark wave F 27 0(x— ) 0(1—x)[Resk- ) + Res k-
function must vanish as time becomes lafg&]. ™ 6(x= ) 6(1-x)[Regk, ) + Redky )],
The spacelike amplitudefor the generalized parton dis- (34)

tribution can now be continued to Minkowski space and

hence be evaluated by projecting onto the light cone. To dgvhere the residue is of the integrand in E8Q). As a result
s0, we refer to Fig. 2 and insert the nonlocal light-cone opof the effective relocation of poles to the same half-plane as

eratorg(0)iD *¢(z7) in place of the local twist-two opera- :]nec;rvcz:nrigﬂg)s( ggg:gﬁtrifﬁ tzheer(;etzug'nng GPD B is real
r n r in the figure. Here th lus- . . . .
tors denoted by a cross the figure. Here the plus Using the Weinberg propagator E®0), the residues can
be compactly written in terms of relative momenta. Defining

30ne must be careful of zero modE5] for which k*=0. In the relative momentum of the final state as

such cases, the pole lies on the contour at infinity and the integra-

tion cannot be performed by residues. Since our fictitious example X—¢ ,
is only schematic, we are neglecting the issue of zero modes and are x'= 1—¢ kt=k*+(1-x")A", (39
hence excluding amplitudes of the form

D d*k 5 and the relative momentum of the photon as

—, n>

e=* (kz—n12+ie)”

which must be handled separately. The example X ,
d4k X” = Z y k 1= kL + X”Al, (36)

J (K2—=m?+ie)?(k2—m?—ie)?
is devoid of zero-mode complications and more closely parallels th
expressions encountered for GPDs.
“There are additional complications for timelike amplitudes and (1—=ZI2)H(X,,t)=0(X) 0(L—x)H1(X,{,1)
for amplitudes involving unstable bound states. In these cases Wick

éhe light-cone GPD can be expressed in the form

poles are present even when standard perturbative propagators are +0(X={) 0(1=x)H,(X,¢,1),
used. The analysis above must be more carefully considered in (37)
these cases where threshold effects are already inherent in the ana-

lytic continuation to, or from, Euclidean space. where we have made the abbreviations
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N Dw(x,kt e, €'|M2)D X”,k,l,e,e't
N[ g Dulek e MADu 0] -

Hi(x,Z,t)=(2x"—1
1(x. 8,0 =( oy A (LX) (1—x)

N Duw(x.k" €, M2)Dy(x' K L€’ e’ M2
Hax L =(2x-05- S | dk* wxk' € €' IM?)Dy(x' K e’ €' |M?).

(39
a e ==+ X(l_X)X’

First one can see analytically that the correct quark distrithe Bjorken limit in Sec. IV. Lastly we consider the analytic
bution results at zero momentum transfer, namelycontinuation of spacelike amplitudes from Euclidean space.
H,(x,0,0)=q(x), whereq(x) is given by Eq.(29). As re-  This is complicated by the presence of Wick poles and re-
marked in Sec. 1V, this function is identical to that obtainedquires their residues to be appropriately added when ampli-
from the double distribution Eq23). Secondly, the resulting tudes are calculated. The details of the GPD calculation ap-
light-cone GPD Eq(37) agrees numerically with that found pear in the Appendix. Resulting functions calculated in
from the double distribution, via E@14), which is plotted in  Minkowski space after the Wick rotation agree with those
Fig. 4. Finally the electromagnetic form factor found from obtained from the model defined in Euclidean space.
the sum rule This work lays the foundation for calculating light-cone

dominated amplitudes using meromorphic model propaga-
1 tors and vertices constrained by lattice datamd Ward-
F(t)= fo dxH(x,¢,1) (40 Takahashi identities. Distribution functions for such models
could be calculated rigorously since the pole structure of the
propagator is known and relevant integrals converge in the
complex light-cone energy plane. As far as light-cone phe-
omenology is concerned, resulting expressions would be
ruly Poincarecovariant(as opposed to diagonal with respect
to the noninteracting operatgrand would satisfy field-
ﬁheoretic identities. Filling these two gaps is essential for
adequate hadronic phenomenology for processes at large mo-
mentum transfer. Moreover, such models would help light-
cone methods and Dyson-Schwinger studies reach comple-
VI. SUMMARY mentary standing.

agrees numerically with the result of E@.5) (which is plot-
ted in Fig. 3. The ¢ independence of Eq40) stems from
Lorentz invariance which is present, however, not manifes
in Eq. (37). Thus with the calculation of Eq37) from ana-
Iytically continuing to Minkowski space, spacelike ampli-
tudes now agree with those calculated from the Euclideal
space double distribution.

Above we consider calculation of amplitudes for space-
like processes using a scalar propagator with one pair of ACKNOWLEDGMENT

complex conjugate poles. Although we use a scalar model, .
generalization to higher spins is clear since the energy de- This work was funded by the U. S. Department of Energy,

nominators are universal. Moreover, the analysis can be ex2rant No. DE-FG03-97ER41014.
tended easily to the case where vertex functions have com-

plex conjugate singularities. Such models cannot be directly APPENDIX: CALCULATION OF THE GPD
employed in Minkowski space, they must be analytically
continued from Euclidean space. Below we derive Eq.(34) for the GPD in Minkowski

In Sec. Il, the problems of using a propagator with com-space. The details have been relegated here since there is
plex conjugate poles in Minkowski space are discussed at theome subtlety. In order to evaluate E82), which implicitly
level of the quark distribution function. If the model is de- needs analytic continuation, we must shift the energy inte-
fined in Minkowski space, one will generally violate the sup-gration variable and define a prescription for dealing with
port and positivity properties of the quark distribution. Next vanishing real parts. Let us see how these difficulties arise.
in Sec. lll, we show the model is perfectly well defined in  In considering the Wick rotation, one is usually only con-
Euclidean space by calculating nondiagonal matrix elementserned with the single denominator that results from combin-
of twist-two operators. This leads us to the model’'s doubleng propagators via Feynman parameters. For the moment,
distribution which we used to calculate parton and generallet us ignore the complication of complex conjugate pairs of
ized parton distributions as well as the electromagnetic fornpoles. In this case, combining the denominators of #8)
factor. using Feynman parameters results [h2—Dy(x,y;t)

In the remainder of the paper, we investigate how to cal-+ie] 3, whereD, is given by Eq.(19). Since the bound
culate amplitudes properly in Minkowski space. First ampli-state is stable ands spacelikeD(x,y;t) is always positive
tudes dependent on the imaginary part of some set of dia-
grams can be -calculated by using a straightforward——
generalization of the cutting rules. We apply this to calculate 0One must proceed with caution: the lattice calculations employ
the quark distribution function from the handbag diagram inLandau gauge, while we have tacitly used light-cone gauge above.
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g x<0 g 0<x<(
5 E
a ¢ b c b H a¥
: 0 : w 0 |
— 0 + L 0 \+
a* B ¢ ¢t Tk a
- - FIG. 7. Complex light-cone
Re(k
e(k™) Re(k™) energy plane for the shifted poles,
—_ — Eq. (A3), for the generalized par-
& § <x<l ) x> 1 ton distribution.
E &
b +| c* a>{< % o* b* +|
: 0 : w 0 w
—_ 0 + L— 0 \+
b + ¢ a a ¢ b ¢+
Re(k™) Re(k™)
and hence there are no Wick poles. Moreover, we have Ki2+m?2
shifted the variabl&* to arrive atl*. K™ =P+ —— . (A2)
In analytically continuing the expression with uncom- 2P7(x—-1)

bined propagatoréand again no complex conjugate poles
we are confronted with a problem. The pdig, for ex-  The resulting poles of the integrand in E§2) we denote
ample, is shifted by the enerdy . Thus the location of the

singularity in the complex plane will be shifted parallel to

the real axis depending upon the relative magnitude of the K=k —Sk—=—pP-
spectator’s kinetic energy arRi. In the schematic example a 'a

shown in Sec. V, the polle; does not have such a shift. Thus

for the b and ¢ poles, the location of the singularities de- .
picted in Fig. 6 will shift along the real axi@lepending on ~ le

k12 4+ m? ie

+ - 1
2P x(1-x) 2P*x

P~ andA~) and there will be threshold Wick poldshe ko =kp = k™= n=—7~ 2P (x—1) (A3)
threshold is defined whefi(ky, .=0)]. This is unphysical:
we just demonstrated the Wick rotation can be done for the
combined denominators without crossing any poles. To per- - B L k't24+m?
form the same Wick rotation at the level of separate propa- ke =ke =k =-P -,
gators, we must use the freedom to shift the energy variable 2P X' (1=x")
as well as the stability of the bound state. .
On the light cone, the bound state stability condition can _ le
be expressed as 2PF(x—0)’
B k,lef+ m? and similarly for their complex conjugate partners. Notice
<mv (A1) imaginary parts of the poles are unaffected by the energy

translation. Then prescription has displaced the resulting
spectator pole away from the Euclidean path independent of
wherek;,=k* —xP"* is the relative transverse momentum of x. Moreover, thea andc poles have nonzero real parts; 80

the two constituents. Because we consider the elastic electrbas been set to zero for these poles above.

magnetic form factor, there is an analogous relation for the Using the expressions for the new poles E3) and the
final stateP’. Since each propagator contains the kineticbhound state stability condition E§A1), we can determine
energy of a single particle, the bound state stability conditiorthe quadrant location of the singularities independer® of

can never be utilized without shifting~. Yet in order to and A~ (see footnote ¥ These quadrant locations are de-
perform such a shift, the real part of one pole must be zerpicted for the full range ok in Fig. 7. Accordingly poles in
and hence we must invent a prescription for moving this poleéhe first and third quadrants are Wick poles. As we saw in

off the Euclidean contour. Sec. V, the net result of the analytic continuation is to evalu-
We choose the translatiok” — k™ + 6k~ + », wherenis  ate the integral by effectively closing the contour in the right-
a positive infinitesimal and or left-half plane. Hence the GPD E@2) is
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H(x,,t)=—27i 0(x) 0(¢ — x)[ Resk- ) + Resk_, case without conjugate pairs, all poles of the integrand are
(1) ™ 000 (LX) Resk, ) )] Wick poles. Though since the integral is convergent, the sum
+2mi 6(x— ) 6(1—x)[Resk, ) + Re{kg*)]. of these Wick residues vanishes.

The interested reader can verify that the alternate shifts
(A4)  which use the same pole prescription

Evaluating the residues in E¢A4) yields the result of Sec. K24 m2
V, namely Eq.(37) which is algebraically equivalent to Eq. ki—k=™+——+7
(34). 2P*x
Notice from Fig. 7, othern prescriptions for the shift,
such ast 7/[2P*(x—1)], lead to an incorrect result for the (KR A2 m?
case when there are no complex conjugate pairs. The figure k'—k —A"+ W+ Y
shows that the infinitesimal prescription must be positive and (A5)
independent of the sign of x— ¢, etc., in order to reproduce
the familiar result. It is interesting to note that for-1 inthe  also yield the correct results providéds spacelike.
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