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Dirac-Born-Infeld action on the tachyon kink and vortex
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Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211019, India

~Received 9 May 2003; published 26 September 2003!

The tachyon effective field theory describing the dynamics of a non-Bogomol’nyi-Prasad-Sommerfield
~BPS! D-brane in superstring theory has an infinitely thin but finite tension kink solution describing a codi-
mension one BPS D-brane. We study the world-volume theory of massless modes on the kink, and show that
the world volume action has precisely the Dirac-Born-Infeld~DBI! form without any higher derivative cor-
rections. We generalize this to a vortex solution in the effective field theory on a brane-antibrane pair. As in the
case of the kink, the vortex is infinitely thin, has finite energy density, and the world-volume action on the
vortex is again given exactly by the DBI action on a BPS D-brane. We also discuss the coupling of fermions
and restoration of supersymmetry andk symmetry on the world volume of the kink. The absence of higher
derivative corrections to the DBI action on the soliton implies that all such corrections are related to higher
derivative corrections to the original effective action on the world volume of a non-BPS D-brane or brane-
antibrane pair.

DOI: 10.1103/PhysRevD.68.066008 PACS number~s!: 11.25.Uv
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I. INTRODUCTION

The study of various aspects of tachyon dynamics o
non-Bogomol’nyi-Prasad-Sommerfield~BPS! D-brane of
type IIA or IIB superstring field theory has led to some u
derstanding of the tachyon dynamics near the tach
vacuum. The proposed tachyon effective action, describ
the dynamics of the tachyon field on a non-BPS Dp-brane of
type IIA or IIB superstring theory, is given by@1–6#:1

S5E dp11xL,

L52V~T!A2detA, ~1.1!

where

Amn5hmn1]mT]nT1]mYI]nYI1Fmn , ~1.2!

Fmn5]mAn2]nAm . ~1.3!

*Email address: ashoke.sen@cern.ch or sen@mri.ernet.in
1Although we shall carry out our analysis for this action, o

results are valid for a more general class of actions discusse
@6–9#, where the Lagrangian density in the absence of gauge
massless scalar fields takes the form2V(T)F(hmn]mT]nT), and
F(u);u1/2 for largeu. This follows from the fact that for the solu
tions we shall be considering,u[hmn]mT]nT is large everywhere,
and hence in this regime all these actions reduce to Eq.~1.1!. Gen-
eralization of the action2*dp11xV(T)F(hmn]mT]nT) to include
the world-volume gauge and scalar fields can be carried ou
replacinghmn by the open string metricGmn @10,11#, and by mul-
tiplying the action by an overall factor ofA2det(gmn1Fmn), gmn

5hmn1]mYI]nYI being the induced closed string metric on t
D-brane world volume. This class of actions includes the act
proposed in@7–9,12,13#, motivated by boundary string field theor
@14,15#.
0556-2821/2003/68~6!/066008~17!/$20.00 68 0660
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Am andYI for 0<m,n<p, (p11)<I<9 are the gauge and
the transverse scalar fields on the world volume of the n
BPS brane, andT is the tachyon field.V(T) is the tachyon
potential which is symmetric underT→2T, has a maximum
at T50, and has its minimum atT56` where it vanishes.
We are using the convention whereh5diag(21,1, . . . ,1)
and the fundamental string tension has been set equa
(2p)21 ~i.e. a851).

The effective field theory described by the action~1.1! is
expected to be a good description of the system under
condition that~1! T is large, and~2! the second and highe
derivatives ofT are small. A kink solution in the full tachyon
effective field theory, which is supposed to describe a B
D-(p21)-brane@16–18#, interpolates between the vacua
T56`, and henceT must pass through 0. Thusa priori we
would expect that higher derivative corrections to the act
~1.1! will be needed to provide a good description of t
D-(p21)-brane as a kink solution. Nevertheless it is know
that the energy density on the kink in the theory described
the action~1.1! is localized strictly on a codimension on
surface@7–9,19# as in the case of a BPS D-(p21)-brane.
We show that the world-volume theory on this kink solutio
is also given precisely by the Dirac-Born-Infeld~DBI! action
on a BPS D-(p21)-brane. This agreement continues to ho
even after including the world-volume fermion fields in th
action, and we recover the expected supersymmetry ank
symmetry on the BPS D-(p21)-brane world volume@20–
24#. Thus contrary to expectation, the kink solution of t
effective field theory does provide a good description of
D-(p21)-brane even without taking into account higher d
rivative corrections.

There have been several previous attempts to analyze
dynamics of fluctuations on a tachyon kink solution. Ref
ence @7# analyzed the world-volume theory of the fluctu
tions on the kink. However, in this study they restricted
the analysis of small fluctuations. We shall not put such
strictions, since in order to see the full DBI action we need
keep terms involving arbitrary power of the world-volum
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fields. Reference@25# analyzed the world-volume action o
the kink keeping the non-linear terms, but including only t
fluctuations in the transverse scalar field. Reference@26# ad-
dresses the problem of getting the DBI action on the soli
from the conformal field theory viewpoint, whereas Ref.@27#
discusses construction of various special classical solut
of the tachyon effective field theory around the kink solutio
without doing a general analysis of the equations of mot
around this background. A general approach to getting
DBI action on the kink and vortex solutions has been
scribed in @28,29#. These papers, however, worked with
very general form of the tachyon effective action, and arriv
at the DBI action after ignoring the higher derivative term
In contrast, we work with a specific form of the action give
in Eq. ~1.1!, but given this form, we make no further ap
proximation in our analysis. In particular, we keep all powe
of fields and all derivative terms, and nevertheless arrive
the DBI action without any higher derivative terms. W
should, of course, keep in mind that the action~1.1! itself is
at best an approximate action for the tachyon in string the
and corrections to this action will certainly modify th
world-volume action on the kink. The significance of o
result is that all such corrections involving higher derivati
terms on the world-volume action of the BP
D-(p21)-brane must come from an explicit addition of su
corrections to the world-volume action of the non-BP
D-p-brane. This suggests a sense in which the action~1.1! is
a ‘‘low energy effective action,’’—namely that it reproduce
the low energy effective action on the world volume of t
soliton without any correction terms. In fact we also arg
that in the world-volume theory on the kink, the would b
massive modes, obtained by analyzing the linearized eq
tions of motion of various fields around the kink solution@7#,
disappear when we take into account the effect of the n
linear terms. Thus the only perturbative excitations on
kink world volume are the massless degrees of freedom

We also generalize our analysis to the construction o
vortex solution on a Dp-brane–anti-Dp-brane pair. For this
we begin with a generalization of the tachyon effective
tion on the brane-antibrane pair—this is done in a way t
satisfies various known consistency requirements for suc
action. We then construct the vortex solution, and find tha
has finite energy density per unit (p22)-volume; however,
the energy density is strictly localized on a codimension
subspace. Furthermore, the world-volume theory on the
tex is given by the DBI action expected for a BPS D-p
22)-brane.

The rest of the paper is organized as follows. In Sec. II
review construction of the kink solution on a non-BP
D-brane. In Sec. III we analyze the world-volume theory
the bosonic fields on the kink. In Sec. IV we discuss
coupling of fermions on the non-BPS and BPS D-bra
world volume, and show how the supersymmetry andk sym-
metry, expected to be present on the world-volume action
a BPS D-(p21)-brane, appear in the world-volume actio
on the tachyon kink in a non-BPS D-p-brane. Section V is
devoted to construction of the vortex solution on the bra
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antibrane pair, and in Sec. VI we construct the world-volu
action on the vortex. We conclude with a few general co
ments in Sec. VII.

II. THE KINK SOLUTION

The construction of the kink solution follows@4,7–9#. The
energy momentum tensor2 associated with the action~1.1! is
given by @30,5,31#

Tmn52V~T!~A21!S
mnA2detA, ~2.1!

where the subscriptSdenotes the symmetric part of a matri
In order to construct a kink solution, we look for a solutio
for which the tachyon depends on one spatial directionx
[xp and is time independent, and furthermore, the ga
fields and the transverse scalar fields are set to zero. For
a background the energy momentum tensor is given by

Txx52V~T!/A11~]xT!2, Tax50,

Tab52V~T!A11~]xT!2hab for 0<a,b<~p21!.
~2.2!

The energy-momentum conservation gives

]xTxx50. ~2.3!

Thus Txx is independent ofx. Since for a kink solutionT
→6` asx→6`, andV(T)→0 in this limit, Txx vanishes
asx→`. ThusTxx must vanish for allx. This, in turn, shows
that we must have

T56`, or ]xT5` ~or both! for all x. ~2.4!

Clearly the solution looks singular. We shall now see th
despite this singularity, the solution has finite energy den
which is independent of the way we regularize the singu
ity. Also the energy density is localized on a codimension
subspace, just as is expected of a D(p21)-brane@7,9#. For
this let us consider the field configuration

T~x!5 f ~ax!, ~2.5!

where f (u) satisfies

f ~2u!52 f ~u!, f 8~u!.0 ; u, f ~6`!56`,
~2.6!

but is otherwise an arbitrary function of its argumentu. a is
a constant that we shall take tòat the end. In this limit we
haveT5` for x.0 andT52` for x,0. Thus the kink is
singular as expected. Equation~2.2! gives the non-zero com
ponents ofTmn for this background to be

2In writing down the expression for the energy momentum tens
it will be understood that these are localized on the plane of
original D-p-brane by a position space delta function in the tra
verse coordinates. Also only the components of the ene
momentum tensor along the world volume of the origin
D-p-brane are non-zero.
8-2
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Txx52V„f ~ax!…/A11a2
„f 8~ax!…2,

Tab52V„f ~ax!…A11a2
„f 8~ax!…2hab . ~2.7!

Clearly in thea→` limit, Txx vanishes everywhere since th
numerator vanishes~except atx50) and the denominato
becomes infinite atx50. Hence the conservation law~2.3! is
automatically satisfied.

Let us now check that this configuration satisfies the
set of equations of motion. The non-trivial components of
equations of motion are

]xS V~T!]xT

A11~]xT!2D 2V8~T!A11~]xT!250. ~2.8!

Taking T5 f (ax) we get the left hand side to be

]xS V„f ~ax!…a f8~ax!

A11a2
„f 8~ax!…2

D 2V8„f ~ax!…A11a2
„f 8~ax!…2

5V8„f ~ax!…
a2
„f 8~ax!…2

A11a2
„f 8~ax!…2

1
V„f ~ax!…a2f 9~ax!

@11a2
„f 8~ax!…2#3/2

2V8„f ~ax!…A11a2
„f 8~ax!…25OS 1

aD , ~2.9!

assuming thatV„f (y)…f 9(y)/„f 8(y)…3 is finite everywhere.
Thus in thea→` limit the configuration satisfies the equ
tions of motion.

We shall now compute the energy density associated w
this solution. From Eq.~2.7! we see that in thea→` limit
Txx vanishes, and we can writeTab as

Tab52ahabV„f ~ax!…f 8~ax!. ~2.10!

Thus the integratedTab , associated with the codimension
soliton, is given by

Tab
kink52ahabE

2`

`

dxV„f ~ax!…f 8~ax!52habE
2`

`

dyV~y!,

~2.11!

where y5 f (ax). Thus Tab
kink depends only on the form o

V(y) and not on the shape of the functionf (u) used to
describe the soliton@9,27#. It is also clear from the exponen
tial falloff in V(y) for largey that most of the contribution to
Tab

kink is contained within a finite range ofy. From the relation
y5 f (ax) we see that this means that the contribution com
from a region ofx integral of width 1/a aroundx50. In the
a→` limit such a distribution approaches ad function. Thus
the (p11)-dimensional energy-momentum tensor associa
with this solution is given by

Txx50, Tab52habd~x!E
2`

`

dyV~y!. ~2.12!

This is precisely what is expected of a D-(p21)-brane, pro-
vided the integral*2`

` dyV(y) equals the tension of th
06600
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e
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D-(p21)-brane. For comparison, we also recall thatV(0)
denotes the tension of a Dp-brane. These relations can b
written as3

Tp5V~0!, Tp215E
2`

`

V~y!dy. ~2.13!

If we also require that the tachyon aroundT50 has mass2

52 1
2 , we get@7# V9(0)/V(0)521/2. However, higher de-

rivative contribution to the action could modify this result
Incidentally, we might note that one possible choice of t

function f (u) is f (u)5u. For this choice, the second an
higher derivatives of the tachyon field vanish everywher4

Thus the tachyon satisfies at least one of the two conditi
under which the effective action~1.1! is expected to be valid
The agreement between the properties of the soliton
those of a D-(p21)-brane suggests that corrections to t
action~1.1! organize themselves in a way so as not to aff
the desired features of the kink solution of~1.1!.

We conclude this section by giving an intuitive argume
for the infinite spatial gradient ofT. From Eq.~2.2! we see
that the total energy associated with a static configura
depending on only one spatial directionx, and interpolating
betweenT56` at x56`, is given by

E5E
2`

`

dxV„T~x!…A11~]xT!2

>E
2`

`

dxV„T~x!…u]xTu

>E
2`

`

dxV„T~x!…]xT5E
2`

`

dyV~y!. ~2.14!

The right hand side of Eq.~2.14! is independent of the choic
of T(x). Since a static solution of the equations of moti
must minimize~extremize! the total energy, we conclude tha
in order to get a solution of the equations of motion t
bound given in Eq.~2.14! must be saturated. This require
u]xTu→` and ]xT.0 everywhere. This is precisely the re
sult we obtained by explicitly analyzing the equations
motion.

III. STUDY OF FLUCTUATIONS AROUND THE KINK

In this section we shall study fluctuations of vario
bosonic fields around the kink background and compare

3For more general actions of the kind discussed in footnote I,F
is normalized such thatF(0)51, and if for largeu, F(u)/u1/2

.C, then we haveTp5V(0), Tp215C*2`
` V(y)dy. V(T) and

F(u), motivated by boundary string field theory, automatica
gives the correct ratio of the Dp-brane and D-(p21)-brane ten-
sions@7#.

4We note the similarity between such solutions and those
boundary superstring field theory@14#. This of course is consisten
with the proposal that the effective action from boundary str
field theory has the general form given in footnote I@7,8,12,13#.
8-3
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effective action describing the dynamics of these fluctuati
to the expected DBI action on the D-(p21)-brane world
volume. First as a warm-up exercise we shall consider
dynamics of the translation zero mode along thex direction,
keeping the gauge fieldsAm and the transverse scalar field
YI to zero. Such fluctuations correspond to fluctuation oT
of the form:

T~x,j!5 f $a@x2t~j!#%, ~3.1!

where we have denoted by$ja% for 0<a<(p21) the coor-
dinates tangential to the kink world volume. Heret(j) is the
(p21,1)-dimensional field associated with the translatio
zero mode of the kink.5 For this configuration,

2det~A!5~11hmn]mT]nT!511a2~ f 8!2~11hab]at]bt !,

~3.2!

where for brevity we have denotedf 8$a@x2t(j)#% by f 8,
and f $a@x2t(j)#% by f. Substituting this into the action~1.1!
we get, fora→`:

S52E dpjE dxV~ f !a f8A11hab]at]bt. ~3.3!

We now make a change of variables fromx to y:

y5 f $a@x2t~j!#%. ~3.4!

Equation~3.3! may then be rewritten as

S52E dpjE
2`

`

dyV~y!A11hab]at]bt. ~3.5!

Performing they integral, and using Eq.~2.13! we get

S52Tp21E dpjA11hab]at]bt. ~3.6!

This is precisely the action involving the scalar fieldt asso-
ciated with the coordinatex transverse to a D-(p21)-brane,
lying in thej1, . . . ,jp21 plane. For the boundary string fiel
theory action, this analysis was carried out previously
@25#.

Note, however, that this does not yet establish that
dynamics of the kink is described by the action~3.6!. In
order to do so, we need to establish that given any solutio
the equations of motion derived from Eq.~3.6!, it will pro-
duce a solution of the original equations of motion deriv
from the action~1.1! under the identification~3.1!. Put an-
other way, sinceS given in ~1.1! reduces to that given in
~3.6! when ~3.1! holds, we already know that given a sol
tion of the equations of motion of~3.6!, dS vanishes for any
variation of T that is induced due to a variation oft(j)
through~3.1!. What needs to be shown is thatdS also van-
ishes for adT with more generalx dependence that is no

5Since the soliton solution is infinitely thin, we do not need
rescale the argument off by A11]at]at as in @28#.
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necessarily induced due to a variationdt(j) of t. For this we
need to look at the general equation of motion ofT following
from Eq. ~1.1!. It is

hab]aS V~T!]bT

A11hmn]mT]nT
D

1]xS V~T!]xT

A11hmn]mT]nT
D 2V8~T!A11hmn]mT]nT50.

~3.7!

Substituting~3.1! into ~3.7!, and using the equations of mo
tion of t(j) derived from Eq.~3.6! we can easily verify that
the left hand side of~3.7! vanishes in thea→` limit. This,
in turn, shows that the dynamics of the fieldt(j) is described
precisely by the action~3.6!.

Let us now turn to the inclusion of the gauge fieldsAi and
the scalar fieldsYI . We expect that appropriate fluctuation
in these fields will be responsible for the transverse sc
field excitationsyI and gauge field excitationsaa on the
D-(p21)-brane. Thus the first step is to make a suita
ansatz for the fluctuations in the (p11)-dimensional fields
Am and YI in terms of the (p2111)-dimensional fields
aa(j) andyI(j). We make the following ansatz:

Ax~x,j!50, Aa~x,j!5aa~j!, YI~x,j!5yI~j!,
~3.8!

together with Eq.~3.1!. In other words we take the fieldsAm
andYI to be independent ofx. This seems surprising at firs
sight, since the fluctuations on a kink are expected to
localized aroundx50 where the kink is sitting. We note
however, that the dynamics of the gauge fieldsAm and the
scalar fieldsYI away from the location of the kink is essen
tially trivial @1,32,30,33,34#, and hence although we allow
fluctuations inAm andYI far away from the location of the
kink, the energy momentum tensor associated with such fl
tuations is localized in the plane of the brane due to
explicit factor of V(T) in Eq. ~2.1! which vanishes away
from the plane of the kink.6 We shall discuss this issue fur
ther at the end of this section.

The next step will be to show that with the ansatz~3.1!,
~3.8! the action~1.1! reduces to the DBI action on a BP
D-(p21) brane. Computation ofAmn defined in Eq.~1.2!
with this ansatz yields

Axx511a2~ f 8!2, Axa5Aax52a2~ f 8!2]at,

Aab5~a2~ f 8!221!]at]bt1aab , ~3.9!

where f [ f $a@x2t(j)#%, f 8[ f 8$a@x2t(j)#%, and

aab5hab1 f ab1]ayI]byI1]at]bt, f ab5]aab2]baa .

~3.10!

6Only exceptions to this arises when the field strengths are at t
critical values@35,30,33#.
8-4
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We can simplify the evaluation of detA by adding appropri-
ate multiples of the first row and first column to other row
and columns. More specifically, we define

Âmb5Amb1Amx]bt, Âmx5Amx ,

Ãan5Âan1Âxn]at, Ãxn5Âxn .
~3.11!

Clearly this operation does not change the determinants
we have

det~A!5det~Â!5det~Ã!. ~3.12!

On the other hand, we have, from Eqs.~3.9!, ~3.11!,

Ãxx511a2~ f 8!2, Ãxa5Ãax5]at,

Ãab5aab . ~3.13!

Using Eqs.~3.12!, ~3.13!, we get

det~A!5a2~ f 8!2Fdeta1OS 1

a2D G . ~3.14!

Substituting this into Eq.~1.1!, we get, in thea→` limit,

S52E dpjE dxV~ f !a f8A2deta. ~3.15!

Making the change of variables~3.4! and using~2.13! we
can write this as

S52Tp21E dpjA2deta, ~3.16!

with aab given by Eq.~3.10!. This is precisely the world-
volume action on a BPS D-(p21)-brane if we identify the
field t as the coordinateyp associated with thepth direction.

In order to establish that the dynamics of the kink is d
scribed by the action~3.16!, we now need to show that an
solution of the equations of motion derived from the acti
~3.16! also provides a solution of the fu
(p11)-dimensional equations of motion. Thep-dimensional
equations, derived from Eq.~3.16! are

]a@~a21!S
ab]btA2deta#50,

]a@~a21!S
ab]byIA2deta#50,

]a@~a21!A
abA2deta#50, ~3.17!

where the subscriptsSandA denote the symmetric and ant
symmetric components of a matrix, respectively. On
other hand, the (p11)-dimensional equations, which need
be verified, are
06600
so

-

e

]m@V~T!~A21!S
mn]nTA2detA#2V8~T!A2detA50,

]m@V~T!~A21!S
mn]nYIA2detA#50,

]m@V~T!~A21!A
mnA2detA#50. ~3.18!

Equations~3.1! and ~3.8! expresses the (p11)-dimensional
fields in terms ofp-dimensional fields. We also need expre
sions forA21 and det(A) in terms ofaab . These are sum-
marized in the relations:

~A21!xx.~a21!ab]at]bt, ~A21!xa.]bt~a21!ba,

~A21!ax.~a21!ab]bt, ~A21!ab.~a21!ab,
~3.19!

together with Eq.~3.14!. All the relations given in Eq.~3.19!
hold up to corrections of order 1/a2.

We shall now verify that Eqs.~3.17!, together with Eqs.
~3.1!, ~3.8!, implies Eqs.~3.18!. Besides the relations~3.14!,
~3.19!, an identity that is particularly useful in carrying ou
this analysis is

]aF@x2t~j!#52]at]xF@x2t~j!#, ~3.20!

for any functionF. We begin our discussion with the verifi
cation of the second equation of~3.18!. Using Eqs.~3.1!,
~3.8!, ~3.14! and ~3.19! we can express the left hand side
this equation as

]x$V~T!~A21!S
xb]bYIA2detA%

1]a$V~T!~A21!S
ab]bYIA2detA%

.]x$V~ f !]at]byI~a21!S
aba f8A2deta%

1]a$V~ f !~a21!S
ab]byIa f8A2deta%

5~a21!S
ab]byIA2deta$]at]x„V~ f !a f8…

1]a„V~ f !a f8…%50, ~3.21!

where in going from the second to the third line we ha
used the second equation in~3.17!, and in the last step we
have used Eq.~3.20!. Note, however, that only terms of orde
a2 and a cancel, leaving behind a contribution of order
These finite contributions come, for example, from prod
of O(a22) corrections to the right hand side of Eqs.~3.14!,
~3.19! with theO(a2) contribution from]x„V( f )a f8…. How-
ever, sinceV(T) is non-zero only within a range of order 1/a
in thex space, the contribution to a variationdS in the action
due to the finite terms in the equations of motion will be
order 1/a for any finitedYI . This goes to zero in thea→`
limit, and hence we conclude that theyI equations of motion
given in ~3.17! implies dS50 for arbitrary finitedYI .

Verification of the third equation of~3.18! proceeds in the
same way. Forn5b the left hand side of this equation i
given by
8-5
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]x$V~T!~A21!A
xbA2detA%1]a$V~T!~A21!A

abA2detA%

.]x$V~ f !]at~a21!A
aba f8A2deta%

1]a$V~ f !~a21!A
aba f8A2deta%

5~a21!A
abA2deta$]at]x„V~ f !a f8…1]a„V~ f !a f8…%50.

~3.22!

In going from the second to the third line in Eq.~3.22! we
have used the last equation in Eqs.~3.17!. Again ~3.22! has a
finite left-over contribution, but this is sufficient to establis
that the variation ofdS vanishes for arbitrary finitedAa
when the equations~3.17! are satisfied.

For n5x, the left hand side of the third equation in~3.18!
has the form

]a$V~T!~A21!A
axA2detA%

.]a$V~ f !~a21!A
ab]bta f8A2deta%

5~a21!A
ab]btA2deta]a„V~ f !a f8…

52~a21!A
abA2deta]bt]at]x„V~ f !a f8…50, ~3.23!

where in going from the second to the third line of Eq.~3.23!
we have used the third equation in~3.17! and the antisym-
metry of (a21)A

ab , and in the last step we have used t
antisymmetry of (a21)A

ab .
Verification of the first equation of~3.18! is a little more

involved due to the following reasons. First of all, here t
leading contribution from individual terms is of ordera3,
with one factor ofa coming fromA2detA and two more
factors of a coming from the two derivatives off $a@x
2t(j)#%. Thus we cannot, from the beginning, use~3.14!
and~3.19!, since the corrections of ordera22 in these equa-
tions could combine with thea3 terms to give a contribution
of order a. Furthermore, since finitedt induces adT5
2a f8dt;a, the equations of motion ofT must hold, includ-
ing finite terms, since such terms will give a contribution
order 1 in dS. We proceed with our analysis as follow
Using the equations (A21)mnAnx5dx

m , Axn(A21)nm5dx
m ,

we get the following exact relations:

~A21!S
mx2~A21!S

mb]bt5
1

a2~ f 8!2
@dx

m2~A21!S
mx#.

~3.24!

Using Eq. ~3.24! and that]bT52]xT]bt52a f8]bt, we
can now express the left hand side~lhs! of the first equation
of ~3.18! as

lhs5]mS V~ f !a f8
1

a2~ f 8!2
@dx

m2~A21!S
mx#A2detAD

2V8~ f !A2detA. ~3.25!

Due to the explicit factor ofa2( f 8)2 in the denominator of
the first term, the leading contribution from individual term
in this expression is now of ordera, and hence we can now
06600
f

use Eqs.~3.14!, ~3.19! to analyze Eq.~3.25! if we are willing
to ignore contributions of order 1/a. Using these equation
Eq. ~3.25! can be simplified as follows:

lhs.]x$V~ f !A2deta@12~a21!S
ab]at]bt#%

2]a$V~ f !A2deta~a21!S
ab]bt%2V8~ f !a f8A2deta

5V8~ f !a f8A2deta@12~a21!S
ab]at]bt#

1V8~ f !a f8A2deta~a21!S
ab]at]bt

2V~ f !]a@A2deta~a21!S
ab]bt#

2V8~ f !a f8A2deta50, ~3.26!

using the first equation of~3.17!. This establishes that an
solution of Eqs.~3.17! automatically gives a solution of Eqs
~3.18!.

Before concluding this section, let us note that if we co
sider a general expansion of the fieldsYI andAm of the form:

YI~x,j!5yI~j!1 (
n51

`

f n@x2t~j!#y(n)
I ~j!,

Ax~x,j!5f (0)~j!1 (
n51

`

f n@x2t~j!#f (n)~j!

[f~x,j!,

Aa~x,j!5aa~j!1 (
n51

`

f n@x2t~j!#aa
(n)~j!

2f~x,j!]at, ~3.27!

where$ f n(u)% for n>1 is a basis of smooth functions whic
vanish atu50, and which are bounded including atu5
6`,7 then the action will be independent ofy(n)

I (j), aa
(n)(j)

for n>1 andf (n)(j) for n>0. This can be seen by carryin
out the same manipulations on the matrixAmn as given in
Eqs.~3.9!–~3.16!. This has the following implication. As wa
argued in@32,38#, at the tachyon vacuum a finite deformatio
of the Am and theYI fields do not change the action, an
hence it is natural to identify all such field configurations
a single point in the configuration space, just like in the po
coordinate system different values of the polar angleu give
rise to the same physical point atr 50. This can be made
into a general principle by postulating that whenever we
counter a local transformation that does not change the
tion, we should identify the different points in the config
ration space related by this local transformation. In t
spirit, the deformations associated withf(x,j), y(n)

I (j) and
aa

(n)(j) should be regarded as pure gauge deformations. T
general principle means, however, that the dimension of
gauge group may change from one point to another in

7This condition is imposed so that2det(A) remains positive for
all x for arbitrary finite amplitude fluctuations ofy(n)

I , aa
(n) and

f (n) .
8-6
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configuration space, e.g. while around the tachyon ba
ground all deformations inAm andYI are pure gauge, aroun
the non-BPS D-p-brane solution most of these deformatio
are physical, while around a kink solution some of the
deformations are physical. This should not come as a
prise, as it simply indicates that the coordinate system
we have chosen—the fieldsT, Am and YI—are not good
coordinates everywhere in the configuration space just
the polar coordinate system is not a good system near
origin.

To summarize, what we see from this analysis is that
only is the effective field theory of low energy modes on t
world volume of the kink described by DBI action, but a
the other smooth excitations on the kink world volume as
ciated with gauge and transverse scalar fields are pure g
deformations. The action depends only on the pull-back
the fieldsYI and the gauge field strengthFmn along the sur-
face x5t(j) along which the kink world-volume lies. In
particular, invariance of the action under the deformatio
generated byy(n)

I , aa
(n) and f (n) for n>1 reflects that the

action does not depend on the fields away from the loca
of the kink, whereasf (0) independence of the action reflec
that the action depends only on the components of the ga
field strength along the world volume of the kink.

In this context we would like to note that Ref.@7# ana-
lyzed the non-zero mode excitations involving theAm ~and
the tachyon! fields and found a non-trivial spectrum for the
modes by working to quadratic order in these fields in
action. For potentialV(T) motivated by the boundary strin
field theory analysis, these eigenmodes turned out to be
mite polynomials with their arguments scaled bya. Since
these are not smooth functions in thea→0 limit, and grow
for largex except for the constant mode, there is no confl
with our result. However, we should note that in general,
actions of the kind considered here where the overall mu
plicative factor vanishes away from the core of the solito
the results based on the linearized analysis of the equa
of motion may be somewhat misleading, since the non-lin
terms could dominate even for small amplitude oscillatio
In particular, if we consider the fluctuation of a mode ofAm

associated with a Hermite polynomial that grows for largex,
then for any small but finite amplitude oscillation theFmn in
Amn will become comparable withhmn for sufficiently large
x, and could drive2det(A) to be negative, thereby invali
dating the analysis. We can see this explicitly by taking
linear tachyon profileT}ax as in@7# and considering a fluc
tuation in the gauge field A1(x,j) of the form
Hn(ax)a1(j0), whereHn denotes thenth Hermite polyno-
mial. Let us further consider a specific instant of time wh
a1(j0) vanishes but]0a1(j0) is non-zero. As this instan
A2det(A)}aA12@Hn(ax)#2(]0a1)2. SinceHn(ax) grows
for largeax, we see that for any finite]0a1, however small,
the expression under the square root will become nega
for sufficiently largeax. The only mode that does not suffe
from this problem is the constant mode. A similar argum
holds for fluctuations inYI and T. This leads us to suspec
that the only surviving modes on the kink world volume a
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the massless modes associated witht, yI andaa .8 A similar
argument works for potentialsV(T) with different
asymptotic behavior, e.g.V(T);e2bT for largeT whereb is
some constant. The only difference is that instead of the H
mite polynomialsHn(ax), we have some other function
which grow for largeax.

A simpler version of this problem can be seen even
studying gauge ~and scalar! field fluctuations around
the tachyon vacuum. If we expand the actio
2C*dp11xA2det(h1F) to quadratic order inF, then we
can absorb a factor ofAC in Am and get the standard kineti
term for the gauge fields. This would lead to a conclus
that the spectrum contains a massless photon for allC. How-
ever, in theC→0 limit ~relevant for the tachyon vacuum!
this procedure is clearly incorrect since this will give an a
tion 2C*dp11xA2det(h1C21/2F), and even a small fluc-
tuation inF could drive the term under the square root neg
tive, invalidating the analysis. In this case a Hamiltoni
analysis of the system gives a much better understandin
the possible fluctuations around the tachyon vacuum@30#
~see also@37#!. A similar analysis in the kink backgroun
may provide useful insight into what type of fluctuations a
present around this background.

IV. WORLD-VOLUME FERMIONS, SUPERSYMMETRY
AND k SYMMETRY

So far in our discussion we have ignored the wor
volume fermions. We shall now discuss inclusion of the
fields in our analysis.

For definiteness we shall restrict our analysis to D-bra
in type IIA string theory, but generalization to type IIB
theory is straightforward following the analysis of Ref.@1#.
On a non-BPS Dp-brane world volume in type IIA string
theory, we have a 32 component anti-commuting fieldQ
which transforms as a Majorana spinor of the ten dim
sional Lorentz group@1#. We shall denote byGM the ten
dimensionalg matrices, and take the indicesM ,N to run
from 0 to 9. In order to construct the world-volume actio
involving the fieldsAm , YI , Q and T (0<m<p, (p11)
<I<9) in static gauge, we first define

Pm
n 5dm

n 2Q̄Gn]mQ, Pm
I 5]mYI2Q̄G I]mQ, ~4.1!

Gmn5hMNPm
MPn

N1]mT]nT, ~4.2!

and

Fmn5Fmn2@$Q̄G11Gn]mQ1Q̄G11G I]mQ]nYI

2 1
2 Q̄G11GM]mQQ̄GM]nQ%2$m↔n%#, ~4.3!

8This argument of course does not affect the analysis for o
types of action discussed in@36,7# where the action takes the form
of a kinetic plus a singular potential term.
8-7
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where

Fmn5]mAn2]nAm . ~4.4!

In terms of these variables, the DBI part of the world-volum
action is given by@1–3#

SDBI52E dp11xV~T!A2det~G1F!. ~4.5!

The action is invariant under the supersymmetry transfor
tion parametrized by a ten dimensional Majorana spinore. In
the static gauge in which we are working, the infinitesim
supersymmetry transformation laws are given by@1#

dpQ5e2~ ēGmQ!]mQ,

dpYI5 ēG IQ2~ ēGmQ!]mYI , dpT52~ ēGmQ!]mT,

dpAn5 ēG11GnQ1 ēG11G IQ]nYI

2 1
6 ~ ēG11GMQQ̄GM]nQ1 ēGMQQ̄G11G

M]nQ!

2~ ēGmQ!]mAn2]n~ ēGmQ!Am . ~4.6!

The subscriptp in dp denotes that these are the supersy
metry transformation laws on the D-p-brane world volume.
The supersymmetry transformation parametere is a Majo-
rana spinor of the ten dimensional Lorentz group.

Besides the DBI term, the world-volume action also co
tains a Wess-Zumino term. In the bosonic sector this term
important only for non-vanishing RR background field, b
once we take into account the world-volume fermions, t
term survives even for zero RR background. The structur
this term is@39,18,45,3#

SWZ5E W~T!dT`C`eF, ~4.7!

where F5Fmndxm`dxn, W(T) is an even function ofT
which vanishes asT→6`, andC is a specific combination
of background RR fields and the world-volume fieldsYI , Q
on the D-brane@3#. In particular, the bosonic part ofC is
given by (q>0C(p22q) whereC(p22q) denotes the pullback
of the RR (p22q)-form field on the D-p-brane world vol-
ume. This vanishes for vanishing RR background, but th
is a part ofC involving the world-volume fermion fields tha
survives even in the absence of any RR background@20–
24,3#. Since we shall not need the explicit form ofC for our
analysis, we shall not give it here.~See, for example,@3# for
the component form of this term for trivial supergravi
background.! The Wess-Zumino term is also invariant und
the supersymmetry transformations~4.6!. Later we shall see
that consistency requires

E
2`

`

W~T!dT5E
2`

`

V~T!dT5Tp21 , ~4.8!

where in the last step we have used Eq.~2.13!.
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Since we want to compare the world-volume action on
kink solution with that on the BPS D-(p21)-brane, we need
to first know the form of the world-volume action on a BP
D-(p21)-brane. The world-volume fields in this case co
sist of a vector fieldaa(j) (0<a<(p21)), a set of (9
2p11) scalar fields which we shall denote byyI(j) ((p
11)<I<9) and yp(j)[t(j), respectively, in the conven
tion of Sec. III, and a Majorana spinoru(j) of the ten di-
mensional Lorentz group. Here$ja% denotes the world-
volume coordinate on the D-(p21)-brane as in Sec. III. The
DBI part of the action is given by@20–24#

Sdbi52Tp21E dpjA2det~g1f!, ~4.9!

where

gab5hMNpa
Mpb

N , ~4.10!

pa
b5da

b2 ūGb]au, pa
I 5]ayI2 ūG I]au,

pa
p5]at2 ūGp]au, ~4.11!

fab5 f ab2@$ūG11Gb]au1 ūG11G I]au]byI1 ūG11Gp]au]bt

2 1
2 ūG11GM]auūGM]bu%2$a↔b%#, ~4.12!

f ab5]aab2]baa . ~4.13!

The Wess-Zumino term, on the other hand, has the form

Swz5Tp21E c`ef, ~4.14!

where f5fabdja`djb, and c is an expression containin
the RR background and the world-volume fieldsyI ,t,u @20–
24#. The bosonic part ofc is given by(q>0C(p22q) where
C(p22q) denotes the pullback of the RR (p22q)-form field
on the D-(p21)-brane world volume. LikeC, c also con-
tains a term involvingyI andu which survive even for trivial
RR background. If we think of the world volume of th
D-(p21)-brane as sitting inside that of a D-p-brane along
the surfacexp5t(j), then c is in fact the pullback ofC
appearing in~4.7! provided we identifyu and yI as the re-
striction of Q andYI along the surfacexp5t(j).

Both Sdbi and Swz are separately invariant under the i
finitesimal supersymmetry transformation:

dp21u5e2~ ēGau!]au, dp21yI5 ēG Iu

2~ ēGau!]ayI , dp21t5 ēGpu2~ ēGau!]at,

dp21ab5 ēG11Gbu1 ēG11G Iu]byI1 ēG11Gpu]bt

2 1
6 ~ ēG11GMuūGM]bu1 ēGMuūG11G

M]bu!

2~ ēGau!]aab2]b~ ēGau!aa . ~4.15!
8-8
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The subscript (p21) on dp21 indicates that these represe
supersymmetry transformation laws on the world volume
a BPS D-(p21)-brane.

In order to show that the world-volume actionSdbi1Swz
on the BPS D-(p21)-brane arises from the world-volum
action on the tachyon kink solution of Sec. II, we need
first propose an ansatz relating the fieldsT(x,j), Am(x,j),
YI(x,j) and Q(x,j) to the fieldsaa(j), yI(j), t(j) and
u(j) on the BPS D-brane. For this we propose the followi
ansatz:

T~x,j!5 f $a@x2t~j!#%, YI~x,j!5yI~j!,

Q~x,j!5u~j!,

Ax~x,j!50 Aa~x,j!5aa~j!. ~4.16!

We can now computeGmn andFmn in terms of the variables
aa , yI , t andu using Eqs.~4.1!–~4.4! and~4.16!. The result
is

Gxx511a2~ f 8!2, Gax5Gxa52a2~ f 8!2]at2 ūGp]au,

Gab5gab1]at ūGp]bu1]bt ūGp]au

1@a2~ f 8!221#]at]bt,

Fax52Fxa52 ūG11G
p]au,

Fab5fab2]at ūG11G
p]bu1]bt ūG11G

p]au, ~4.17!

with gab and fab defined as in Eqs.~4.10!–~4.13!. Using
manipulations similar to those in Eqs.~3.11!–~3.16! we can
now show that

det~G1F!5a2~ f 8!2$det~g1f!1O~a22!%, ~4.18!

and

SDBI52E dp11xV~T!A2det~G1F!

52Tp21E dpjA2det~g1f!5Sdbi . ~4.19!

The analysis forSWZ is even simpler; indeed, this term
was designed to reproduce the Wess-Zumino term on
world volume of a kink solution@18,3#. For this let us define

u5x2t~j!. ~4.20!

Then from Eqs.~4.17! we get

F[Fmndxm`dxn

52Fxbdx`djb1Fabdja`djb

52ūG11Gp]audu`dja1fabdja`djb. ~4.21!

Since we have

dT5a f8~au!du, ~4.22!
06600
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only the second term on the right hand side of Eq.~4.21! will
contribute toSWZ given in Eq.~4.7!. Thus we can replaceF
by f in Eq. ~4.7!. On the other hand, we can analyzeC by
writing it as

C5(
q

Cm1•••mq

(q) dxm1`•••dxmq

5(
q

~qCxa2•••aq

(q) dx`dja2`•••djaq

1Ca1•••aq

(q) dja1`•••djaq!

5(
q

@qCxa2•••aq

(q) du`dja2`•••djaq1~qCxa2•••aq

(q) ]a1
t

1Ca1•••aq

(q) !dja1`•••djaq#, ~4.23!

where in the last step we have useddx5du1]atdja. The
term proportional todu does not contribute to Eq.~4.7!
due to Eq. ~4.22!, whereas the term proportional t
dja1`•••djaq, after being summer overq, is precisely the
pullback ofC on the kink world volume alongx5t(j) and
hence can be identified withc. Thus we get

SWZ5E W„f ~au!…a f8~au!du`c`ef5Tp21E c`ef5Swz ,

~4.24!

using Eq.~4.8!.
This shows thatSDBI1SWZ reduces toSdbi1Swz under

the identification~4.16!. In principle we also need to chec
that any solution of the equations of motion derived fro
Sdbi1Swz is automatically a solution of the equations of m
tion derived fromSDBI1SWZ . Presumably this can be don
following the analysis of Sec. III, but we have not worke
out all the details.

Finally, we need to check that the supersymmetry tra
formations ~4.15! are compatible with the supersymmet
transformations~4.6!. For this we need to calculatedp21Am ,
dp21YI and dp21T using Eqs.~4.15!, ~4.16! and compare
them with Eqs.~4.6!. The calculation is straightforward, an
we get

dpAx5dp21Ax1 ēG11Gpu,

dpAa5dp21Aa2 ēG11Gpu]at, ~4.25!

dpYI5dp21YI , dpT5dp21T.

Thus we see thatdp and dp21 differ for the transformation
laws ofAx andAa . This difference, however, is precisely o
the form induced by the functionf(x,j) in Eq. ~3.27! with
f(x,j)5 ēG11Gpu(j). As was argued below~3.27!, this is a
gauge transformation. Thus we see that the action ofdp and
dp21 differ by a gauge transformation in the world-volum
theory on the D-p-brane.

This establishes that the world-volume action on the k
reduces to that on a D-(p21)-brane. The latter has a loca
8-9
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k-symmetry which can be used to gauge away half of
world-volume fermion fields@20–24#. This leads to a puzzle
Whereas on a BPS D-brane the localk symmetry is postu-
lated to be a gauge symmetry, i.e. different configuratio
related byk transformation are identified, on a kink solutio
the appearance of thek symmetry seems accidental anda
priori there is no reason to identify field configuratio
which are related byk symmetry. We believe the resolutio
of this puzzle lies in the general principle advocated bel
~3.27! that any local transformation of the fields which do
not change the action must be a gauge symmetry. This
automatically imply that thek transformation is a gaug
transformation and we should identify the configurations
lated byk transformation. Thisk symmetry can now be use
to gauge away half of the fermion fields on the world volum
of the kink.

V. VORTEX SOLUTION
ON THE BRANE-ANTIBRANE PAIR

In this section we shall generalize the construction of S
II to a vortex solution on a brane-antibrane pair. For this
need to begin with a tachyon effective action on a bra
antibrane pair. In this case we have a complex tachyon fi
T, besides the massless gauge fieldsAm

(1) , Am
(2) and scalar

fields Y(1)
I , Y(2)

I corresponding to the transverse coordina
of individual branes. We shall work with the following effec
tive action that generalizes~1.1!:9 ,10

S52E dp11xV~T,Y(1)
I 2Y(2)

I !~A2detA(1)1A2detA(2)!,

~5.1!

where

A( i )mn5hmn1Fmn
( i ) 1]mY( i )

I ]nY( i )
I 1 1

2 ~DmT!* ~DnT!

1 1
2 ~DnT!* ~DmT!, ~5.2!

Fmn
( i ) 5]mAn

( i )2]nAm
( i ) , DmT5~]m2 iAm

(1)1 iAm
(2)!T,

~5.3!

9As in Sec. II, we expect our analysis to be valid for a mo
general action of the form:

2Edp11xV~T,Y(1)
I 2Y(2)

I !@A2det~gmn
(1)1Fmn

(1)!F~G(1)
mnDmT* DnT!

1A2det~gmn
(2)1Fmn

(2)!F~G(2)
mnDmT* DnT!#

wheregmn
( i ) 5hmn1]mY( i )

I ]nY( i )
I is the induced closed string metri

on thei th brane,G( i )
mn is the open string metric on thei th brane and

the functionF(u) grows asu1/2 for largeu.
10There have been various other proposals for the tachyon e

tive action and/or vortex solutions on brane-antibrane pair, see,
@40–44#.
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and the potentialV(T) depends onuTu and ( I(Y(1)
I 2Y(2)

I )2

only. For smallT, V behaves as

V~T,Y(1)
I 2Y(2)

I !5TpF11
1

2 H(
I

S Y(1)
I 2Y(2)

I

2p D 2

2
1

2 J uTu2

1O~ uTu4!G . ~5.4!

Tp denotes the tension of the individual D-p-branes. Al-
though this action has not been derived from first principl
we note that this obeys the following consistency conditio

~1! The action has the required invariance under the ga
transformation:

T→e2ia(x)T, Am
(1)→Am

(1)1]ma~x!,

Am
(2)→Am

(2)2]ma~x!. ~5.5!

~2! For T50 the action reduces to the sum of the usu
DBI action on the individual branes.

~3! If we require the fields to be invariant under the sym
metry (21)FL that exchanges the brane and the antibra
we get the restriction

T5real, Am
(1)5Am

(2)[Am , Y(1)
I 5Y(2)

I [YI . ~5.6!

Under this restriction the action becomes proportional to t
on a non-BPS D-p-brane, as given in Eq.~1.1!. This is a
necessary consistency check, as modding out a br
antibrane configuration by (21)FL is supposed to produce
non-BPS D-p-brane@45#.

We should keep in mind however that these constraints
not fix the form of the action uniquely. Nevertheless we sh
make the specific choice given in~5.1! and proceed to study
the vortex solution in this theory.

The energy momentum tensorTmn associated with this
action is given by

Tmn52V~T,Y(1)
I 2Y(2)

I !@A2det~A(1)!~A(1)
21!S

mn

1A2det~A(2)!~A(2)
21!S

mn#. ~5.7!

In order to construct a vortex solution we begin with t
ansatz

T~r ,u!5 f̄ ~r !eiu, Au
(1)52Au

(2)5 1
2 ḡ~r !, ~5.8!

wherer andu denote the polar coordinates in the (xp21,xp)
plane, andf̄ (r ) andḡ(r ) are real functions ofr satisfying the
boundary conditions

f̄ ~0!50, f̄ ~`!5`, ḡ~0!50, ḡ8~0!50. ~5.9!

All other fields vanish. For such a background

c-
.g.
8-10



s to
e

1,
s of

s
1,
the

t a
lu-

that

at

by
c-
ge

ons

es

-

DIRAC-BORN-INFELD ACTION ON THE TACHYON . . . PHYSICAL REVIEW D68, 066008 ~2003!
DrT5 f̄ 8~r !eiu, DuT5 i f̄ ~r !~12ḡ~r !!eiu,

Fru
(1)52Fru

(2)5 1
2 ḡ8~r !. ~5.10!

Also in the polar coordinate that we have been using:

h5S hab

1

r 2
D , 0<a,b<~p22!. ~5.11!

This gives

A(1)5S hab

11~ f̄ 8!2 1
2 ḡ8

2 1
2 ḡ8 r 21 f̄ 2~12ḡ!2

D ,

A(2)5S hab

11~ f̄ 8!2 2 1
2 ḡ8

1
2 ḡ8 r 21 f̄ 2~12ḡ!2

D . ~5.12!

2det~A(1)!52det~A(2)!

5@$11~ f̄ 8!2%$r 21 f̄ 2~12ḡ!2%1 1
4 ~ ḡ8!2#,

~5.13!

Tab522habV~T!

3A$11~ f̄ 8!2%$r 21 f̄ 2~12ḡ!2%1 1
4 ~ ḡ8!2,

Trr 522V~T!$r 21 f̄ 2~12ḡ!2%/

A$11~ f̄ 8!2%$r 21 f̄ 2~12ḡ!2%1 1
4 ~ ḡ8!2,

Tuu522V~T!$11~ f̄ 8!2%/

A$11~ f̄ 8!2%$r 21 f̄ 2~12ḡ!2%1 1
4 ~ ḡ8!2, ~5.14!

where we have used the shorthand notationV(T) to denote
V(T,0). All other components ofTmn vanish. The energy
momentum conservation
06600
05]mTmr5] rTrr ~5.15!

now shows thatTrr must be a constant. SinceV(T)
5V( f̄ eiu) falls off exponentially for largeuTu, we see from
Eq. ~5.14! that Trr vanishes at̀ , unlessḡ(r ) increases suf-
ficiently fast. Shortly, we shall see thatḡ varies monotoni-
cally between 0 and 1, and hence is bounded. This leads u
the conclusion thatTrr does vanish at infinity, and henc
must be zero everywhere due to the conservation law~5.15!.

To see thatḡ(r ) varies monotonically between 0 and
we proceed as follows. As a consequence of the equation
motion of the gauge fields, the (p22)-dimensional energy
density*rdrduT00, with T00 given in Eq.~5.14!, must be
minimized with respect to the functionḡ(r ) subject to the
boundary condition~5.9!. Now if ḡ(r ) exceeds 1 for some
range ofr, then we can lowerT00 in that range by replacing
the original ḡ(r ) by another continuous function which i
equal to the original function when the latter is less than
and which is equal to 1 when the latter exceeds 1. Thus
original ḡ(r ) does not minimize energy and hence is no
solution of the equations of motion. This shows that a so
tion of the equations of motion must haveḡ(r )<1 every-
where. An exactly similar argument can be used to show
ḡ(r )>0 everywhere. Furthermore, ifḡ(r ) is not a monotone
increasing function, then it will have a local maximum
some pointa. We can now define a range (a,b) on ther axis
such thatḡ(r ),ḡ(a) for a,r ,b. (b could be infinity.! In
this case we can lower the energy of the configuration
replacing the original function by another continuous fun
tion that agrees with the original function outside the ran
(a,b) and is equal toḡ(a) in the range (a,b). Since this
should not be possible if the originalḡ(r ) is a solution of the
equations of motion, we see that a solution of the equati
of motion must have a monotone increasingḡ(r ).

The vanishing ofTrr requires that for every value ofr,
either the numerator in the expression forTrr vanishes,
which requiresV(T) to vanish, or the denominator becom
infinite, which requiresf̄ 8 and/or ḡ8 to be infinite.V(T) is
finite at r 50 whereT vanishes, thus it is not zero every
where. Thus at least forr 50, f̄ 8 and/orḡ8 must be infinite.
In analogy with the kink solution, we look forf̄ andḡ of the
form:

f̄ ~r !5 f ~ar !, ḡ~r !5g~ar !, ~5.16!

and at the end take thea→` limit, keeping the functionsf
andg fixed. The boundary conditions~5.9! now translate to

f ~0!50, f ~`!5`, g~0!50, g8~0!50.
~5.17!

We shall also impose the condition
8-11
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f 8~u!.0 for 0<u,`. ~5.18!

This guarantees thatf̄ 8(r )5a f8(ar) is infinite everywhere
in the a→` limit. Once we have chosenf̄ this way, we do
not need to takeḡ in the form given in Eq.~5.16!. But this
form allows for more general possibilities since without th
the term involvingḡ8 will simply drop out in the scaling
limit a→`. On the other hand, by allowingḡ to scale as in
Eq. ~5.16! we do not preclude the case whereḡ approaches a
finite function in thea→` limit, since this will just corre-
spond to choosingg(r )[ḡ(r /a) to be a nearly constan
function except for very larger.

Substituting Eq.~5.16! into Eqs.~5.13!, ~5.14! we get, for
Eq
on

06600
largea,

2det~A(1)!52det~A(2)!.a2
„f 8~ar !…2$r 21 f ~ar !2

3@12g~ar !#21 1
4 @g8~ar !/ f 8~ar !#2%,

~5.19!

and

Tab.22habV„f ~ar !…a f8~ar !

3Ar 21 f ~ar !2@12g~ar !#21 1
4 @g8~ar !/ f 8~ar !#2,

~5.20!
Trr .22V„f ~ar !…
r 21 f ~ar !2@12g~ar !#2

a f8~ar !Ar 21 f ~ar !2@12g~ar !#21 1
4 @g8~ar !/ f 8~ar !#2

. ~5.21!
lds,
gy

f

ary

ily a
e in

s of
r, we

the
e a
ThusTrr vanishes everywhere in thea→` limit as required.
On the other hand, integrating~5.20! over the (r ,u) coordi-
nates gives the (p2211)-dimensional energy momentum
tensorTab

vortex on the vortex:

Tab
vortex524phabE

0

`

drV„f ~ar !…a f8~ar !

3Ar 21 f ~ar !2@12g~ar !#21 1
4 @g8~ar !/ f 8~ar !#2.

~5.22!

Defining

y5 f ~ar !, r̂ ~y!5a21f 21~y!, ĝ~y!5g~ar !5g„ar̂~y!…,
~5.23!

where f 21 denotes the inverse function off, we can rewrite
Eq. ~5.22! as

Tab
vortex524phabE

0

`

dyV~y!

3Ar̂ ~y!21y2$12ĝ~y!%21 1
4 ĝ8~y!2.

~5.24!

From Eq.~5.23! it follows that in thea→` limit, r̂ (y) van-
ishes for any finitey. Thus Eq.~5.24! further simplifies to

Tab
vortex524phabE

0

`

dyV~y!Ay2$12ĝ~y!%21 1
4 ĝ8~y!2.

~5.25!

We now see that as in the case of the kink solution,
~5.25! is completely insensitive to the choice of the functi
.

f, although it does depend on the choice ofĝ(y). ĝ(y) in turn
is determined by the equations of motion of the gauge fie
or equivalently, by minimizing the expression for the ener
T00

vortex , subject to the boundary conditions:

ĝ~0!50, ĝ8~0!50. ~5.26!

This leads to the following differential equation forĝ(y):

1
4 ]y@V~y!ĝ8~y!/Ay2$12ĝ~y!%21 1

4 ĝ8~y!2#
1V~y!y2@12ĝ~y!#/Ay2$12ĝ~y!%21 1

4 ĝ8~y!250.

~5.27!

Thusĝ(y) and the final expression forTab
vortex are determined

completely in terms of the potentialV(T), independently of
the choice of the functionf.11 Furthermore, as in the case o
the kink solution, most of the contribution toTab

vortex comes

11The choicef (ar)5ar givesT5a(xp211 ixp) in the Cartesian
coordinate system. This resembles the vortex solution in bound
string field theory@40,41#. However, unlike in@40,41#, here we
have background gauge fields present. This is not necessar
contradiction, since the fields used here could be related to thos
@40,41# by a non-trivial field redefinition. In fact, we would like to
note that generically, when both the real and the imaginary part
the tachyon are non-zero and are not proportional to each othe
have a source for the gauge fieldAm

(1)2Am
(2) , and hence it is not

possible to find a solution of the equations of motion keeping
gauge fields to zero. Boundary string field theory seems to us
very special definition of fields where this is possible in thea→`
limit.
8-12
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from a finite range of values ofy, which corresponds to a
region inr space of width 1/a around the origin. Thus in the
a→0 limit, Tab has the form of ad function centered around
the origin of the (xp21,xp) plane:

Tab524phabd~xp21!d~xp!E
0

`

dyV~y!

3Ay2$12ĝ~y!%21 1
4 ĝ8~y!2. ~5.28!

This agrees with the identification of the vortex solution a
D-(p22)-brane; as for the latter, the energy-momentum t
sor is localized on a (p22)-dimensional surface.@This can
be seen by examining the boundary state describing a Dp
22)-brane.# The tension of the D-(p22)-brane is identified
as

Tp2254pE
0

`

dyV~y!Ay2$12ĝ~y!%21 1
4 ĝ8~y!2.

~5.29!

Before concluding this section, we shall determine
asymptotic behavior ofĝ(y) satisfying Eqs. ~5.26! and
~5.27!. Our previous arguments for the functionḡ(r ), when
translated toĝ(y), shows thatĝ(y) must be a monotone
increasing function ofy, and must lie between 0 and 1. Th
boundary condition forcesĝ(y) to vanish aty50. We shall
now show that given a mild constraint on the potentialV(T),
ĝ(y) must approach 1 asy→`. We shall begin by assumin
that ĝ(y) approaches some constant value (12C) as y
→`, and then show thatC must vanish. IfCÞ0, then the
dominant term inside the square root for largey is the first
term which takes the valuey2C2, sinceĝ8(y) vanishes for
largey. Thus for largey, Eq. ~5.27! takes the form

1
4 ]y@V~y!ĝ8~y!/yC#1yV~y!50. ~5.30!

Since]y(ĝ8(y)/yC) approaches 0 asy→`, clearly the only
part of the first term in Eq.~5.30! that can possibly cancel th
second term isV8(y)ĝ8(y)/(4yC). If this has to cancel the
second term, we require

V8~y!/V~y!.24y2C/ḡ8~y! for largey. ~5.31!

Sinceĝ(y) approaches a constant asy→`, ĝ8(y) must fall
off faster than 1/y for large y. Thus the magnitude of the
right hand side of Eq.~5.31! increases faster thany3 for large
y. This, in turn, shows that2V8(y)/V(y) must also increase
faster thany3 for large y. Neither a potential of the form
e2by obtained from the analysis of time dependent solutio
@5# nor a potential of the forme2by2

given by boundary
string field theory@40,41# satisfies this condition. Thus ou
original assumption must be wrong andC must vanish for
either of these choices ofV(T).

This leads us to the conclusion that if2V8(y)/V(y) does
not increase faster thany3 for largey, we must have
06600
a
-

(

e

s

lim
y→`

ĝ~y!51. ~5.32!

This, in turn, has the following consequence. From E
~5.10!, ~5.23!, ~5.32! we have

E drdu~Fru
(1)2Fru

(2)!52p@ ḡ~`!2ḡ~0!#

52p@ ĝ~`!2ĝ~0!#52p.

~5.33!

This answer is universal, independent of the choice of
potentialV(T), providedV(T) satisfies the mild asymptotic
condition given above Eq.~5.32!. This is also the same an
swer that we would have gotten if we had a usual Abel
Higgs model with an action given by the sum of a kine
and a potential term. Finally, for this gauge field backgrou
if we compute the Ramond-Ramond~RR! charge of the vor-
tex using the usual coupling between the world-volum
gauge fields and the RR fields at zero tachyon backgrou
we get the correct expression for the RR charge of the v
tex. Thus the net additional contribution to the RR cha
from the tachyon dependent coupling of the RR fields@46#
must vanish. This is in contrast with the boundary string fie
theory result@40,41# where the complete contribution to th
RR charge comes from the tachyon fields. This again refle
that the fields used here are related to those in bound
string field theory by non-trivial field redefinition.

VI. WORLD-VOLUME ACTION ON THE VORTEX

We shall now study the world-volume action on the vo
tex. We begin by introducing some notation. We shall den
by xi for (p21)< i<p the coordinates transverse to th
world volume of the vortex but tangential to the origin
brane and byja for 0<a<(p22) the coordinates tangen
tial to the vortex. We shall express the classical vortex so
tion of Eq. ~5.8! in Cartesian coordinates as

Ai
(1)52Ai

(2)5h̄i~xW !, T~xW !5 f̄ ~xW !, ~6.1!

where

h̄p21~xW !52
xp

2r 2ḡ~r !, h̄p~xW !5
xp21

2r 2
ḡ~r !, f̄ ~xW !5 f̄ ~r !,

r[uxW u, xW5~xp21,xp!. ~6.2!

We now make the following ansatz for the fluctuating fiel
on the world volume of the vortex:

Ai
(1)~xW ,j!5h̄i@xW2 tW~j!#, Ai

(2)~xW ,j!52h̄i@xW2 tW~j!#,

Aa
(1)~xW ,j!52h̄i@xW2 tW~j!#]at i1aa~j!,

Aa
(2)~xW ,j!5h̄i@xW2 tW~j!#]at i1aa~j!,

Y(1)
I ~xW ,j!5Y(2)

I ~xW ,j!5yI~j!, T~xW ,j!5 f̄ @xW2 tW~j!#.
~6.3!
8-13
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Thus the world-volume fields on the vortex areyI(j), t i(j)
andaa(j).

We shall now substitute this ansatz into the action~5.1!
and evaluate the action. Using the ansatz~6.3! and the defi-
nitions ~5.3! we get

DiT5] i f̄ 22i h̄ i f̄ [Di f̄ , DaT52Di f̄ ]at i ,

Fi j
(1)5~] i h̄ j2] j h̄i !, Fi j

(2)52~] i h̄ j2] j h̄i !,

Fib
(1)52Fib

(2)52~] i h̄ j2] j h̄i !]bt j ,

Fa j
(1)52Fa j

(2)52~] i h̄ j2] j h̄i !]at i ,

Fab
(1)5 f ab1~] i h̄ j2] j h̄i !]at i]bt j ,

Fab
(2)5 f ab2~] i h̄ j2] j h̄i !]at i]bt j , ~6.4!

where

f ab5]aab2]baa . ~6.5!

In each expression the arguments ofh̄i and f̄ are @xW2 tW(j)#
which we have suppressed. From Eq.~5.2! we now get

A(1)i j 5d i j 1~] i h̄ j2] j h̄i !1 1
2 @~Di f̄ !* D j f̄ 1~D j f̄ !* Di f̄ #

A(1)ib52~] i h̄ j2] j h̄i !]bt j

2 1
2 @~Di f̄ !* D j f̄ 1~D j f̄ !* Di f̄ #]bt j

A(1)a j52~] i h̄ j2] j h̄i !]at i

2 1
2 @~Di f̄ !* D j f̄ 1~D j f̄ !* Di f̄ #]at i

A(1)ab5hab1 f ab1]ayI]byI1~] i h̄ j2] j h̄i !]at i]bt j

1 1
2 @~Di f̄ !* D j f̄ 1~D j f̄ !* Di f̄ #]at i]bt j

A(2)i j 5d i j 2~] i h̄ j2] j h̄i !1 1
2 @~Di f̄ !* D j f̄ 1~D j f̄ !* Di f̄ #

A(2)ib5~] i h̄ j2] j h̄i !]bt j

2 1
2 @~Di f̄ !* D j f̄ 1~D j f̄ !* Di f̄ #]bt j
06600
A(2)a j5~] i h̄ j2] j h̄i !]at i

2 1
2 @~Di f̄ !* D j f̄ 1~D j f̄ !* Di f̄ #]at i

A(2)ab5hab1 f ab1]ayI]byI2~] i h̄ j2] j h̄i !]at i]bt j

1 1
2 @~Di f̄ !* D j f̄ 1~D j f̄ !* Di f̄ #]at i]bt j . ~6.6!

We now simplify the computation of the determinants
subtracting appropriate multiples of the first two row
columns from the rest of the rows/columns. This does
change the determinant of the matrix. More precisely,
define

Â(s)an5A(s)an1A(s) in]at i , Â(s) in5A(s) in ,

Ã(s)mb5Â(s)mb1Â(s)m j]bt j ,

Ã(s)m j5Â(s)m j for 0<m,n<p. ~6.7!

Under this transformation we have

det~A(s)!5det~Â(s)!5det~Ã(s)!, s51,2. ~6.8!

On the other hand, we have, from Eqs.~6.6!, ~6.7!

Ã(1)i j 5d i j 1~] i h̄ j2] j h̄i !1 1
2 @~Di f̄ !* D j f̄ 1~D j f̄ !* Di f̄ #

Ã(1)ib5]bt i , Ã(1)a j5]at j ,

Ã(1)ab5hab1 f ab1]ayI]byI1]at i]bt i ,

Ã(2)i j 5d i j 2~] i h̄ j2] j h̄i !1 1
2 @~Di f̄ !* D j f̄ 1~D j f̄ !* Di f̄ #

Ã(2)ib5]bt i , Ã(2)a j5]at j ,

Ã(2)ab5hab1 f ab1]ayI]byI1]at i]bt i . ~6.9!

Examining the form of thei j component of the matricesÃ(1)

and Ã(2) we see that they are precisely of the same form
one would get for the classical vortex solution without flu
tuation, except for the replacement ofxW by @xW2 tW(j)# in the
argument ofh̄i and f̄ . Since this determinant given in Eq
~5.19! has an explicit factor ofa2 which becomes large in the
a→` limit, and sinceÃ(s) ib , Ã(s)a j and Ã(s)ab are all of
order one, in this limit we can ignore the contribution fro
the off-diagonal elementsÃ(s) ib and Ã(s)a j in evaluating
det(Ã(s)). Thus the resulting action is given by
8-14
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22E dp21jE drduV„f ~ar !…a f8~ar !

3Ar 21 f ~ar !2@12g~ar !#21 1
4 „g8~ar !/ f 8~ar !…2

3A2deta, ~6.10!

where

aab5hab1 f ab1]ayI]byI1]at i]bt i . ~6.11!

In Eq. ~6.10! we have redefinedr to be uxW2 tW(j)u, andu to
be tan21$@xp212tp21(j)#/@xp2tp(j)#%. We can now ex-
plicitly perform ther andu integrals as in Sec. V and use E
~5.29! to rewrite the action~6.10! as

2Tp22E dp21jA2deta. ~6.12!

This is precisely the world-volume action on a BPS D-p
22)-brane with t i and yI interpreted as the coordinate
transverse to the brane for (p21)< i<p and (p11)<I
<9 and aa interpreted as the gauge field on the D-bra
world volume.

As in Sec. III, in order to establish completely that t
dynamics of the world-volume theory on the vortex is go
erned by the action~6.12! we need to show that given an
solution of the equations of motion derived from this actio
~6.3! provides us with a solution of the ful
(p11)-dimensional equations of motion. We have n
checked this, but believe that this can be done follow
techniques similar to that discussed in Sec. III.

VII. DISCUSSION

In this paper we have analyzed kink and vortex solutio
in tachyon effective field theory by postulating a suitab
form of the tachyon effective action on the non-BPS D-bra
and brane-antibrane system, respectively. In both cases
topological soliton has all the right properties for describi
a BPS D-brane. These properties include localization of
energy-momentum tensor on subspaces of codimensio
and 2, respectively, as is expected of a D-brane and also
DBI form of the effective action describing the world
volume theory on the soliton. For the kink solution we ha
also done the analysis including the world-volume fermio
and shown the appearance ofk symmetry in the world-
volume theory on the kink.

One feature of both the solutions is an infinite spa
gradient of the tachyon field away from the core of the so
ton. If we want to construct a solution describing tachy
matter @47,48,5,49–53# in the presence of such a solito
then the spatial gradient of the tachyon field represents l
velocity of the tachyon matter@5,6#. More precisely, the loca
(p11)-velocity of the dust is given byum52]mT. Thus
large positive gradient of the tachyon implies large local
locity towards the core of the soliton. This shows th
tachyon matter in the presence of such a solution will
towards the core of the soliton. If this feature survives in
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full string theory, then it will imply that any tachyon matte
in contact with the soliton will be sucked in immediatel
This is consistent with the analysis of@54,55# where a similar
effect was found by analyzing the boundary state associ
with the time dependent solutions.12 This might provide a
very effective means of absorbing tachyon matter from
surrounding by a defect brane, and drastically modify
results of Refs.@57,58# for the formation of topological de-
fects during the rolling of the tachyon. The appearance of
infinite slope during the dynamical process of defect form
tion has already been observed in@19#. We should note, how-
ever, that a different type of solution where a codimensio
soliton and tachyon matter coexist has been constructe
@56#.

Another surprising feature of both the kink and the vort
solutions is that the world-volume theory on the soliton h
exactly the DBI form without any higher derivative corre
tions. This means that all such corrections must come fr
higher derivative corrections to the original actions~1.1! and
~5.1!. This may seem accidental, but may be significant
the following reasons. This result suggests that there
close relation between the systematic derivative~of field
strength! expansion of the world-volume action of the no
BPS D-p-brane (D-p-brane–D̄-p-brane pair! and that of the
BPS soliton solution representing the D-(p21) brane
@D-(p22)-brane#. It will be interesting to explore this line
of thought to see if one can establish a precise connec
between the two. Since the derivative expansion on
world volume of BPS D-branes is well understood, finding
connection of the type mentioned above will provide a be
understanding of the derivative expansion of the wor
volume action of a non-BPS D-brane/brane-antibra
system.

One question that we have not addressed in this pap
the analysis of the world-volume theories on~multiple! kink-
antikink pairs and multivortex solutions. The construction
these solutions should be quite straightforward followin
e.g. the analysis of@27,9,42#. In a finite region around the
location of each soliton the solution will have the form di
cussed in Secs. II and V, and we need to ensure that be
taking thea→` limit, the various fields match smoothly
keeping uTu of order a or larger in the intervening space
Analysis of the world-volume theory around such a bac
ground will clearly yield the sum of the world-volume ac
tions on the individual solitons, since essentially the fie
configurations around individual solitons do not talk to ea
other in thea→` limit. The interesting question is whethe
we can see the excitations associated with the fundame
string stretched between the solitons. We believe these e
tations must come from classical solutions~‘‘solitons’’ ! de-
scribing fundamental string along the line of Ref
@35,30,33,59#. We can, for example, take the solutions in t
DBI theory given in@60–63# and lift them to solutions of the

12We should keep in mind, however, that this result is exact o
for bosonic string theory. For superstring theory the correspond
boundary conformal field theory is not solvable, and hence no e
result can be obtained.
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equations of motion derived from Eqs.~1.1! or ~5.1! using
Eqs.~3.1!, ~3.8! or ~6.3!. The ~spontaneously broken! gauge
symmetry that mixes the states of the open string living
individual D-branes with states of the open string stretch
between different D-branes, exchanges perturbative st
with ‘solitonic’ states, and hence is analogous to the elec
magnetic duality symmetry in gauge theories@64–70#.

The general lesson that one could learn from the result
this paper is that for many purposes, it is useful to comp
ment the supergravity action, describing low energy effect
action of closed string theory, by coupling it to the tachy
effective action of the type described in this paper. In suc
theory, BPS D-branes arise naturally as topological solit
rather than having to be added by hand, and we get
correct low energy effective action on these D-branes. F
thermore, we have seen earlier that this effective actio
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capable of describing certain time dependent solutions
open string theory@47,48,5#, and solutions describing th
fundamental string@35,30,33#. Coupling the tachyon field to
supergravity does not give rise to any new perturbat
physical states, and hence does not violate any known re
in string theory. Finally, as was argued in@6#, coupling of the
tachyon effective action to gravity may resolve some of
conceptual problems involving ‘‘time’’ in quantum gravity.
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