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Dirac-Born-Infeld action on the tachyon kink and vortex
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The tachyon effective field theory describing the dynamics of a non-Bogomol’'nyi-Prasad-Sommerfield
(BPS D-brane in superstring theory has an infinitely thin but finite tension kink solution describing a codi-
mension one BPS D-brane. We study the world-volume theory of massless modes on the kink, and show that
the world volume action has precisely the Dirac-Born-InfdlBl) form without any higher derivative cor-
rections. We generalize this to a vortex solution in the effective field theory on a brane-antibrane pair. As in the
case of the kink, the vortex is infinitely thin, has finite energy density, and the world-volume action on the
vortex is again given exactly by the DBI action on a BPS D-brane. We also discuss the coupling of fermions
and restoration of supersymmetry arndsymmetry on the world volume of the kink. The absence of higher
derivative corrections to the DBI action on the soliton implies that all such corrections are related to higher
derivative corrections to the original effective action on the world volume of a non-BPS D-brane or brane-
antibrane pair.
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. INTRODUCTION A, andY' for 0<pu,v<p, (p+1)<I<9 are the gauge and
the transverse scalar fields on the world volume of the non-
The study of various aspects of tachyon dynamics on 8ps prane, and is the tachyon fieldV(T) is the tachyon
non-Bogomol'nyi-Prasad-SommerfieldPS D-brane of  potential which is symmetric und@— — T, has a maximum
type lIA or IIB superstring field theory has led to some un- atT=0, and has its minimum & = =« where it vanishes.
derstanding of the tachyon dynamics near the tachyorwe are using the convention wherg=diag(—1,1, . . .,1)

vacuum. The proposed tachyon effective action, describin he f | stri ion h |
the dynamics of the tachyon field on a non-BP&-rane of %;S_)t_le(i l;ng?rjir;ta string tension has been set equal to

; e A 1
type llA or IIB superstring theory, is given tj—-6]: The effective field theory described by the actidnl) is
expected to be a good description of the system under the
S:f dPtixg, condition that(1) T is large, and2) the second and higher
derivatives ofT are small. A kink solution in the full tachyon
effective field theory, which is supposed to describe a BPS

L=—V(T)y—detA, (1.) D-(p—1)-brane[16-18, interpolates between the vacua at
T==*o0, and hencd must pass through 0. Thaspriori we
where would expect that higher derivative corrections to the action
(1.1 will be needed to provide a good description of the
_ D-(p—1)-brane as a kink solution. Nevertheless it is known
A= 0t 3, To,T+a, Yo, Y +F,,, (1.2 (p—1)

that the energy density on the kink in the theory described by
the action(1.1) is localized strictly on a codimension one
w (1.3 surface[7-9,19 as in the case of a BPS [p{ 1)-brane.
We show that the world-volume theory on this kink solution
*Email address: ashoke.sen@cern.ch or sen@mri.ernet.in 's also given precisely by the-DiraC-Bom-lnfdﬂBl) action
1 : : : ) - . on a BPS [?-p— 1')-brane. This agreement cpntlnues tp hold
Although we shall carry out our analysis for this action, our eyen after including the world-volume fermion fields in the
T e e Sy o Ao s o, an i recover the expected supersymmetyand
massiess scalar fielgs tagkes the fosz(T)F(n’”ﬂ To T)g angd ymmetry on the BPS Dﬁ_l)fbrane Wo_rld VOlumE{ZO_
poov 24]. Thus contrary to expectation, the kink solution of the

F(u)~u*?for largeu. This follows from the fact that for the solu- . . . L
tions we shall be considering= 7#"3,T4,T is large everywhere, effective field theory does provide a good description of the

and hence in this regime all these actions reduce toEd). Gen- D-(p—1)-brane even without taking into account higher de-
eralization of the action- [dP*xV(T)F(5""3,Td,T) to include ~ fvatlve corrections. _

the world-volume gauge and scalar fields can be carried out by There have been several previous attempts to analyze the
replacing7** by the open string metriG*” [10,11, and by mul- dynamics of fluctuations on a tachyon kink solution. Refer-
tiplying the action by an overall factor of —det(g,,, +F,,), 9, 9”06[7] analyzed the world-volume theory of the fluctua-
=Nt aﬂYlngl being the induced closed string metric on the tions on the kink. However, in this Study they restricted to
D-brane world volume. This class of actions includes the actiorthe analysis of small fluctuations. We shall not put such re-
proposed if7-9,12,13, motivated by boundary string field theory strictions, since in order to see the full DBI action we need to
[14,15. keep terms involving arbitrary power of the world-volume

Fu=0d,A,—d,A
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fields. Referencé25] analyzed the world-volume action on antibrane pair, and in Sec. VI we construct the world-volume
the kink keeping the non-linear terms, but including only theaction on the vortex. We conclude with a few general com-
fluctuations in the transverse scalar field. Referd@égad-  ments in Sec. VII.

dresses the problem of getting the DBI action on the soliton

from the conformal field theory viewpoint, whereas Hef7] Il. THE KINK SOLUTION

discusses construction of various special classical solutions
of the tachyon effective field theory around the kink solution,
without doing a general analysis of the equations of motio
around this background. A general approach to getting th
DB_I actipn on the kink and vortex solutions has bee_n de- T””=—V(T)(A‘1)§”m, (2.2
scribed in[28,29. These papers, however, worked with a

very general form of the tachyon effective action, and arrivedvhere the subscrig denotes the symmetric part of a matrix.

at the DBI action after ignoring the higher derivative terms.In order to construct a kink solution, we look for a solution

In contrast, we work with a specific form of the action given for which the tachyon depends on one spatial direction

in Eq. (1.1), but given this form, we make no further ap- =x" and is time independent, and furthermore, the gauge
proximation in our analysis. In particular, we keep all powersfields and the transverse scalar fields are set to zero. For such
of fields and all derivative terms, and nevertheless arrive a@ background the energy momentum tensor is given by

the DBI action without any higher derivative terms. We

should, of course, keep in mind that the actian) itself is To= ~V(MNIH(D? Ta=0,
at best an approximate action for the tachyon in string theor)f,
and corrections to this action will certainly modify the
world-volume action on the kink. The significance of our
result is that all such corrections involving higher derivativeThe energy-momentum conservation gives

terms on the world-volume action of the BPS

D-(p—1)-brane must come from an explicit addition of such IxTyx=0. (2.3
corrections to the world-volume action of the non-BPS
D-p-brane. This suggests a sense in which the acfiah) is

The construction of the kink solution followd,7—9. The
energy momentum tensoassociated with the actidd. 1) is
iven by[30,5,31

wp=—V(DV1+(5,T)27,s for O0<a,B<(p—1).
(2.2

Thus T,, is independent ok. Since for a kink solutionl

b ; o . —* o asx— oo, andV(T)—0 in this limit, T,, vanishes

a “low energy effective action,”—namely that it reproduces . I

the low ener ffectiv tion on the world volume of th asx—oo. ThusT,, must vanish for alk. This, in turn, shows
e low energy effective action on the wo olume of the, -+ \\e must have

soliton without any correction terms. In fact we also argue

that in the world-volume theory on the kink, the would be T=+w, or 4,T=x (orboth forall x. (2.4

massive modes, obtained by analyzing the linearized equa-

tions of motion of various fields around the kink solutjgfj, =~ Clearly the solution looks singular. We shall now see that

disappear when we take into account the effect of the nondespite this singularity, the solution has finite energy density

linear terms. Thus the only perturbative excitations on thevhich is independent of the way we regularize the singular-

kink world volume are the massless degrees of freedom. ity: Also the energy density is localized on a codimension 1
We also generalize our analysis to the construction of #ubspace, just as is expected of gpB(1)-brane[7,9]. For

vortex solution on a P-brane—anti-p-brane pair. For this this let us consider the field configuration

we begin with a gengralization. of th_e Fachyon .effective ac- T(x)=f(ax), (2.5

tion on the brane-antibrane pair—this is done in a way that

satisfies various known consistency requirements for such agheref(u) satisfies

action. We then construct the vortex solution, and find that it

has finite energy density per unip{ 2)-volume; however,  f(-u)=—f(u), f'(uU)>0 V u, f(xw)==xx,

the energy density is strictly localized on a codimension 2 (2.6

subspace. Furthermore, the world-volume theory on the vorg

tex is given by the DBI action expected for a BPS P~( a constant that we shall take 4oat the end. In this limit we

—2)-brane. haveT=c for x>0 andT= — for x<0. Thus the kink is

The rest of the paper is organized as follows. In Sec. Il Weingular as expected. Equatiéh?) gives the non-zero com-
review construction of the kink solution on a non-BPS ponents ofT ,, for this background to be

D-brane. In Sec. lll we analyze the world-volume theory of
the bosonic fields on the kink. In Sec. IV we discuss the———

coupling of fermions on the non-BPS and BPS D-brane 2, yiting down the expression for the energy momentum tensor,
world volume, and show how the supersymmetry &r&ym- i will be understood that these are localized on the plane of the
metry, expected to be present on the world-volume action ofriginal D-p-brane by a position space delta function in the trans-
a BPS D-p—1)-brane, appear in the world-volume action verse coordinates. Also only the components of the energy-
on the tachyon kink in a non-BPS p-brane. Section V is momentum tensor along the world volume of the original

devoted to construction of the vortex solution on the braneb-p-brane are non-zero.

ut is otherwise an arbitrary function of its argument is
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T=—V(f(ax))/J1+a?(f'(ax))?, D-(p—1)-brane. For comparison, we also recall thgD)
denotes the tension of apBbrane. These relations can be

Tos= V(@)1 +a’(f (ax)2n.s. (27  Wwritten as

Clearly in thea— o limit, T, vanishes everywhere since the
numerator vanishegexcept atx=0) and the denominator
becomes infinite at=0. Hence the conservation 1&&.3) is
automatically satisfied. If we also require that the tachyon aroufic0 has mass
Let us now check that this configuration satisfies the full= — 1 \ve get[7] V"(0)/V(0)= — 1/2. However, higher de-
set of_equations Qf motion. The non-trivial components of theijyative contribution to the action could modify this result.
equations of motion are Incidentally, we might note that one possible choice of the
V(T)aT function f(u) is f(u)=u. For this choice, the secondﬁ?nd
dx , T higher derivatives of the tachyon field vanish everywhere.
J1+(5,T)2 ~VIDNIF(4T)7=0. 28 Thus the tachyon satisfies at least one of the two conditions
under which the effective actidi.1) is expected to be valid.
Taking T=f(ax) we get the left hand side to be The agreement between the properties of the soliton and
those of a D-p—1)-brane suggests that corrections to the
action(1.1) organize themselves in a way so as not to affect
== 2) -V’ (f(ax))V1+a*(f’ (ax))? the desired features of the kink solution (@f1).
vVit+ai(f'(ax)) We conclude this section by giving an intuitive argument
26, 2 2en for the infinite spatial gradient of. From Eq.(2.2) we see
a’(f’(ax)) + V(i(ax)a’i"(ax) that the total energy associated with a static configuration
Vi+a?(f'(ax))? [1+a?(f'(ax))?]%? depending on only one spatial directisnand interpolating

betweenT =+ atx= * o, is given by
—V’(f(ax))\/1+az(f’(ax) -0

©

T,=V(0), T, 1= f Viydy. (213

X

V(f(ax))af'(ax)

X

=V'(f(ax))

1
N e w
E=f AXV(T(X))V1+(9,T)?
assuming thatV(f(y))f"(y)/(f'(y))® is finite everywhere. o
Thus in thea— o limit the configuration satisfies the equa- 2
tions of motion. Bf dxV(T(x))[d,T|

We shall now compute the energy density associated with -
this solution. From Eq(2.7) we see that in thea— o limit o o
T« vanishes, and we can writg,; as Bf deV(T(X))ﬂxTZJ _dyv(y). (2.14

T,5=— V(f f’ . 2.1
ap= ~a7apV(F(@X)F" (aX) 2.19 The right hand side of Eq2.14) is independent of the choice

Thus the integrated ,z, associated with the codimension 1 0f T(x). Since a static solution of the equations of motion
soliton, is given by must minimize(extremize the total energy, we conclude that
in order to get a solution of the equations of motion the
Kink % ) o bound given in Eq(2.14 must be saturated. This requires
Tap = —anaﬁf_mde(f(ax))f (ax)=-— Waﬁf_mdyV(Y)' |0,T|—c and d,T>0 everywhere. This is precisely the re-
(2.11) sult_we obtained by explicitly analyzing the equations of

motion.

wherey=f(ax). Thus ¥4 depends only on the form of
V(y) and not on the shape of the functidifu) used to [ll. STUDY OF FLUCTUATIONS AROUND THE KINK
describe the solitof®,27]. It is also clear from the exponen-
tial falloff in V(y) for largey that most of the contribution to
T';'gk is contained within a finite range gf From the relation
y=f(ax) we see that this means that the contribution comes

from a region ofx integral of width 14 aroundx=0. In the
a—oo limit such a distribution approachessdunction. Thus
the (p+ 1)-dimensional energy-momentum tensor associate
with this solution is given by

In this section we shall study fluctuations of various
bosonic fields around the kink background and compare the

3For more general actions of the kind discussed in footnotef, if
j§ normalized such thaF(0)=1, and if for largeu, F(u)/u*?
=C, then we haveT,=V(0), 7,_,=C[Z,V(y)dy. V(T) and
F(u), motivated by boundary string field theory, automatically
w gives the correct ratio of the @brane and D{§—1)-brane ten-
To=0, Tag=—7450(%) f dyM(y). (212 sions[7] . | |
- “We note the similarity between such solutions and those in
boundary superstring field theof§4]. This of course is consistent
This is precisely what is expected of a P-{ 1)-brane, pro-  with the proposal that the effective action from boundary string
vided the integralf/”..dyV(y) equals the tension of the field theory has the general form given in footnot)8,12,13.
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effective action describing the dynamics of these fluctuationgiecessarily induced due to a variatiér(&) of t. For this we

to the expected DBI action on the [p{1)-brane world npeed to look at the general equation of motioTdéllowing
volume. First as a warm-up exercise we shall consider thgom Eq. (1.1). It is

dynamics of the translation zero mode along xtgirection,

k(laeping the gauge fields_ﬂ and the transverse scala_r fields V(T)d,T
Y! to zero. Such fluctuations correspond to fluctuatiorof 7%44, —
of the form: N1+ 949,19, T
= — V(T)o, T
T(x.&)=f{alx—t(&}, (3. | = <M>0xm |~V (ITF 773, T, 0.
+ 14
where we have denoted B¢} for 0O<a<(p—1) the coor- OO
dinates tangential to the kink world volume. He(&) is the (3.7
(p—1,1)-dimensional field associated with the translational o , , )
zero mode of the kink.For this configuration, Substituting(3.1) into (3.7), and using the equations of mo-

tion of t(£) derived from Eq(3.6) we can easily verify that
—de(A)=(1+ n“”aMTaVT)=1+a2(f’)2(1+ naﬂaawﬁt), the left hand side of3.7) vanishes in the— o« limit. This,
(3.2 in turn, shows that the dynamics of the fi¢(d@) is described
precisely by the actioi3.6).

where for brevity we have denoted{a[x—t(&)]} by f’, Let us now turn to the inclusion of the gauge fiefjsand
andf{a[x—t(&)]} by f. Substituting this into the actioid.1)  the scalar fieldsr'. We expect that appropriate fluctuations
we get, fora—c: in these fields will be responsible for the transverse scalar

field excitationsy' and gauge field excitationa, on the
_ p ,\/T D-(p—1)-brane. Thus the first step is to make a suitable
S j d §f dxXV(Naf’ V1t 7™ outogt. (33 ansatz for the fluctuations in the ¢ 1)-dimensional fields
_ A, and Y' in terms of the p—1+1)-dimensional fields
We now make a change of variables fronto y: a (&) andy'(£€). We make the following ansatz:

y=FHa[x=t(&)]}. (3.9 Adx,6)=0, Ay (x,6)=a4(8), Y'(x&=Y'(),

3.8
Equation(3.3) may then be rewritten as 38

together with Eq(3.1). In other words we take the fields,

o] I - . - . .
S:_f dr f dvVIVIVI+ 7989 ta .t @By 194t 3 a_ndY to be mdependen.t of. This seems surprising at first
¢ —w yVy) K A 39 sight, since the fluctuations on a kink are expected to be

localized aroundx=0 where the kink is sitting. We note,

Performing they integral, and using Eq2.13 we get however, that the dynamics of the gauge fiefdsand the
scalar fieldsy' away from the location of the kink is essen-
__ PeJTT 77P9 1ot _ tially trl_\/lal [1,32,30,33,3]4 and hence although_ we allow
S %ﬂj AL 7" 0ut gt 39 fluctuations inA,, and Y! far away from the location of the

o ) o . ] kink, the energy momentum tensor associated with such fluc-
This is precisely the action involving the scalar fi¢ldsso-  tuations is localized in the plane of the brane due to the
ciated with the coordinate transverse to a Dg(— 1)-brane, explicit factor of V(T) in Eqg. (2.1) which vanishes away

lying in the &', ... ,£P~* plane. For the boundary string field from the plane of the kinR.We shall discuss this issue fur-
theory action, this analysis was carried out previously inther at the end of this section.
[25]. The next step will be to show that with the ansé&dz),

Note, however, that this does not yet establish that the3 g) the action(1.1) reduces to the DBI action on a BPS
dynamics of the kink is described by the acti®6). In  p-(p—1) brane. Computation ok, defined in Eq.(1.2
order to do so, we need to establish that given any solution afjith this ansatz yields
the equations of motion derived from E@.6), it will pro-

duce a solution of the original equations of motion derived An=1+a%(f)2, A=A = —a%(f)2a,t,
from the action(1.1) under the identificatior§3.1). Put an-
other way, sinceS given in (1.1 reduces to that given in Anp=(a%(F)2=1)d,tdgt+a,g, (3.9

(3.6) when (3.1) holds, we already know that given a solu-

tion of the equations of motion @B.6), 5S vanishes for any wheref=f{a[x—t(&)]}, f'=f'{a[x—t(&)]}, and
variation of T that is induced due to a variation of¢)

through(3.1). What needs to be shown is thé§ also van-  a,5= 7,5+ fapt oy dgy' + dutdgt, fap=daas—dga,.
ishes for asT with more generak dependence that is not (3.10

®Since the soliton solution is infinitely thin, we do not need to ®Only exceptions to this arises when the field strengths are at their
rescale the argument 6ty 1+ 9%td,t as in[28]. critical values[35,30,33.
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We can simplify the evaluation of datby adding appropri-
ate multiples of the first row and first column to other rows

and columns. More specifically, we define
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A[V(T)(A"1E"9,T\—detA]-V'(T)—detA=0,
V(T (A™HE"9,Y"—detA]=0,

9, [V(T) (A1 "~ detA]=0. (3.18

Equations(3.1) and (3.8) expresses thep(+ 1)-dimensional
fields in terms ofp-dimensional fields. We also need expres-

. . . H 71 .
Clearly this operation does not change the determinants, sons forA™" and det@) in terms ofa,z. These are sum-

ALs=AustAndgt, AL=A,
An=An+AGdt,  Ag=A,,.
(3.1
we have
de(A)=detA)=det(A). (3.12
On the other hand, we have, from E@3.9), (3.11),
An=1+a%(f")2, A=A =d,t,
Aaﬁ:aaﬁ- (3.13
Using Egs.(3.12, (3.13, we get
de{(A)=a?(f')?/ deta+ O %” (3.19

Substituting this into Eq(1.1), we get, in thea— o limit,

S=—f d%J dxV(f)af'\—deta. (3.19

Making the change of variablg8.4) and using(2.13 we
can write this as

S=—Tp,1j dP&/—deta, (3.16

with a,, given by Eq.(3.10. This is precisely the world-
volume action on a BPS Dp(-1)-brane if we identify the

field t as the coordinatgP associated with thpth direction.

In order to establish that the dynamics of the kink is de-
scribed by the actio(3.16), we now need to show that any

marized in the relations:

(A™H=(@ )P tapt, (AH* =gt )P,

(A_l)axz(a_l)a‘gﬁﬁt, (A—l)aﬁz(a—l)aﬁ'
(3.19

together with Eq(3.14). All the relations given in Eq(3.19
hold up to corrections of order 4.

We shall now verify that Eqs3.17), together with Egs.
(3.1, (3.8), implies Egs.(3.18. Besides the relation8.14),
(3.19, an identity that is particularly useful in carrying out
this analysis is

I FIX—1(£)]= = d taF[x—t(£)], (3.20

for any functionF. We begin our discussion with the verifi-
cation of the second equation ¢8.18. Using Egs.(3.1),
(3.9, (3.14 and(3.19 we can express the left hand side of
this equation as

HV(THA oY~ detA}
+ 3 4V(TI A HEPa,Y' [~ detA}
=3 V(f)d tagy'(a ) &Paf’ - deta}
+a,{V(f)(a H&fazy'at’ |~ deta)
=(a 1)&Pay'—detald,ta,(V(f)af’)

+a,(V(Haf’)}=0, (3.21)

solution of the equations of motion derived from the actionwhere in going from the second to the third line we have

(3.16 also provides a solution of the
(p+1)-dimensional equations of motion. Tphealimensional
equations, derived from E@3.16) are

dal(a 1)&Pa4t\—deta] =0,
do[(a 1) §Papy'—deta]=0,

d[(a~1)ak\—deta] =0, (3.17)

full used the second equation (8.17), and in the last step we

have used Eq3.20. Note, however, that only terms of order
a® and a cancel, leaving behind a contribution of order 1.
These finite contributions come, for example, from product
of O(a™?) corrections to the right hand side of E8.14),
(3.19 with the ©(a?) contribution froma,(V(f)af’). How-
ever, since/(T) is non-zero only within a range of orderal/

in thex space, the contribution to a variatié® in the action
due to the finite terms in the equations of motion will be of
order 14 for any finite 8Y'. This goes to zero in tha—
limit, and hence we conclude that tiileequations of motion

where the subscriptS andA denote the symmetric and anti- given in(3.17) implies §S=0 for arbitrary finitesY'.
symmetric components of a matrix, respectively. On the Verification of the third equation df3.18 proceeds in the
other hand, the{+ 1)-dimensional equations, which need to same way. Fow= g3 the left hand side of this equation is

be verified, are

given by
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ILV(T)(A™ )= detAl + 3, {V(T)(A~H ek [~ detA} use Eqgs(3.19), (3.1_9) to analyze Eq(3.2§) if we are willing
to ignore contributions of order 4/ Using these equations
= 4V(f)a,t(a ) sPaf’ \—deta} Eq. (3.295 can be simplified as follows:
+a,{V(f)(a H)ePaf’\—deta} Ihs=a,{V(f)/—deta[ 1— (a 1)&Pa,ta,t]}
=(a YH)gP\—detald,ta(V(fat')+a,(V(faf')}=0. —a,{V(f)|—deta(a )&k} — V' (f)af’—deta
(3.22 =V'(f)af’ = detal 1- (a1)&%0,tdt]
In going from the second to the third line in EG.22 we V' (flaf J—deta(a— )28
have used the last equation in E¢3.17). Again (3.22 has a (Da deta(a s dat et
finite Ieft-ovgr gontrlbutlon, put this is suff.|C|ent to .establlsh —V(f)a,[ /—deta(afl)gﬁaﬁt]
that the variation oféS vanishes for arbitrary finitedA,
when the equation&3.17) are satisfied. —-V'(f)af’{—deta=0, (3.26
For v=Xx, the left hand side of the third equation(i®.18 ) ] ) ) )
has the form using the first equation of3.17). This establishes that any
solution of Eqs(3.17) automatically gives a solution of Egs.
A AV(T) (A1) X\ —detA} (3.18.
Before concluding this section, let us note that if we con-
=9, 4V(f)(a 1) aPastaf’ \—deta} sider a general expansion of the fieMisandA, of the form:

=(a haPasty—detad, (V(f)af’)

Y! 1§)= I + fn —t In )
=—(a Y)aP—detadgti ta(V(Haf)=0,  (3.23 (X, 6=y (&) nZl [X=t(&)]Y(n) (&)

where in going from the second to the third line of E&23 “

we have used the third equation (8.17) and the antisym- AX, €)= oy (€)+ 2, Tl X—1(E)1d(ny(£)
metry of @ )¢, and in the last step we have used the et

antisymmetry of & 1)4#. = (X&),

Verification of the first equation of3.18 is a little more

involved due to the following reasons. First of all, here the i

leading contribution from individual terms is of order, AX,E)=a, &)+ 21 f[x—t(&)1al (&)

with one factor ofa coming from—detA and two more "~

factors of a coming from the two derivatives of{a[x — P(X,E)d,t, (3.29

—t(&)]}. Thus we cannot, from the beginning, u&e14
and(3.19, since the corrections of order 2 in these equa- Where{f,(u)} for n=1 is a basis of smooth functions which
tions could combine with tha® terms to give a contribution Vvanish atu=0, and which are bounded including at=
of order a. Furthermore, since finitest induces asT= =, then the action will be independent g, (£), al’(£)
—af’ st~a, the equations of motion of must hold, includ-  for n=1 and¢,(£) for n=0. This can be seen by carrying
ing finite terms, since such terms will give a contribution of out the same manipulations on the matéiy, as given in
order 1 in 8S. We proceed with our analysis as follows. Egs.(3.9—(3.16). This has the following implication. As was
Using the equations A~ H#*A =6, A (A"hH#=¢,  arguedin32,38, at the tachyon vacuum a finite deformation
we get the following exact relations: of the A, and theY' fields do not change the action, and
hence it is natural to identify all such field configurations as
a single point in the configuration space, just like in the polar
[8;—(A™HEN. coordinate system different values of the polar angjigive
(3.24) rise to the same physical point at0. This can be made
' into a general principle by postulating that whenever we en-
Using Eq.(3.24 and thatd,T=—dcTdgt=—af'dgt, we counter a local transformation that does not change the ac-
can now express the left hand sidies) of the first equation tion, we should identify the different points in the configu-
of (3.18 as ration space related by this local transformation. In this
S[(Ji)l’i'[, the deformations associated witt{x, &), y'(n)(g) and
1 B a’ (&) should be regarded as pure gauge deformations. This
f,)z[ait_(A 1E]V~ detA general principle means, however, that the dimension of the
gauge group may change from one point to another in the

A HE— (A LBt =
(A7H)E = (A5 dg 21

lhs=g,| V(f)af’

a’(
—V'(f)J—detA. (3.25

Due to the explicit factor od?(f')? in the denominator of  7This condition is imposed so thatdet(A) remains positive for
the first term, the leading contribution from individual terms all x for arbitrary finite amplitude fluctuations ofi,), a‘’ and
in this expression is now of orde; and hence we can now ¢, .
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configuration space, e.g. while around the tachyon backthe massless modes associated wityl anda,, .® A similar
ground all deformations iA,, andY' are pure gauge, around argument works for potentialsV(T) with different
the non-BPS Dp-brane solution most of these deformations asymptotic behavior, e./(T)~e AT for large T whereg is
are physical, while around a kink solution some of thesesome constant. The only difference is that instead of the Her-
deformations are physical. This should not come as a suiite polynomialsHy(ax), we have some other functions
prise, as it simply indicates that the coordinate system thathich grow for largeax.
we have chosen—the f|e|d’§y AM and Yl_are not good A Slmpler version of this problem can be seen even for
coordinates everywhere in the configuration space just likstudying gauge (and scalar field fluctuations around
the polar coordinate system is not a good system near tH&€ tac?yon vacuum. If we expand the action
origin. —C[dP*x\—det(n+F) to quadratic order irF, then we

To summarize, what we see from this analysis is that nofan absorb a factor ofC in A,, and get the standard kinetic
only is the effective field theory of low energy modes on theterm for the gauge fields. This would lead to a conclusion

world volume of the kink described by DBI action, but all that the spectrum contains a massless photon fdr.atow-

the other smooth excitations on the kink world volume asso£Veh N theCﬁO limit (r_elevant for_ the tqchy_on yacuum
s procedure is clearly incorrect since this will give an ac-

ciated with gauge and transverse scalar fields are pure gau —
— p+1 _ 172, _

deformations. The action depends only on the pull-back Otlont' Cf(é Xl\é dd'et(7t]rT(i F),dandtheven a smalltfluc
the fieldsY' and the gauge field strengk,, along the sur- uation int could crive the term unger the square root nega-

= . . : tive, invalidating the analysis. In this case a Hamiltonian
face x=1t(¢) along which the kink world-volume lies. In . ; .

dcular. . f th i der the def i analysis of the system gives a much better understanding of

particufar, invariance of the action under the detormationgy, possible fluctuations around the tachyon vaclygdoy

| (n)
generated by, a,” and ¢, for n=1 reflects that the (see alsf37]). A similar analysis in the kink background

action does not depend on the fields away from the locatiopyay provide useful insight into what type of fluctuations are
of the kink, whereaspo) independence of the action reflects present around this background.

that the action depends only on the components of the gauge
field strength along the world volume of the kink.

In this context we would like to note that Rdf7] ana- IV. WORLD-VOLUME FERMIONS, SUPERSYMMETRY
lyzed the non-zero mode excitations involving the (and AND x SYMMETRY
the tachyomfleld_s and founda_non-tnwgl spectrum for t_hese So far in our discussion we have ignored the world-
modes by working to quadratic order in these fields in the,olume fermions. We shall now discuss inclusion of these
action. For potential/(T) motivated by the boundary string fields in our analysis.
field theory analysis, these eigenmodes turned out to be Her- For definiteness we shall restrict our analysis to D-branes
mite polynomials with their arguments scaled dySince in type IIA string theory, but generalization to type IIB
these are not smooth functions in the-0 limit, and grow  theory is straightforward following the analysis of REf].
for largex except for the constant mode, there is no conflictOn a non-BPS P-brane world volume in type lIA string
with our result. However, we should note that in general, fortheory, we have a 32 component anti-commuting fiéld
actions of the kind considered here where the overall multiwhich transforms as a Majorana spinor of the ten dimen-
plicative factor vanishes away from the core of the soliton,sional Lorentz groudl]. We shall denote byl"y, the ten
the results based on the linearized analysis of the equatiortimensionaly matrices, and take the indicéd,N to run
of motion may be somewhat misleading, since the non-lineaffom O to 9. In order to construct the world-volume action
terms could dominate even for small amplitude oscillationsinvolving the fieldsA,,, Y', ® and T (0<u<p, (p+1)
In particular, if we consider the fluctuation of a modesgf ~ <!<9) in static gauge, we first define
associated with a Hermite polynomial that grows for laxge
then fqr any small but finite amplitude oscillgti.on the, in M’=6"-0r",0, ' =4Y-0I"3,0, 4.1
A, will become comparable withy,,, for sufficiently large ook K’ moom ”
X, and could drive—det(A) to be negative, thereby invali-
Qating the analysi;. We can see this expliciFIy b_y taking the Gu= UMNH,TH':+ a,Ta,T, 4.2
linear tachyon profil «ax as in[7] and considering a fluc-
tuation in the gauge fieldA,(x,£) of the form
H,(ax)a;(&°%), whereH, denotes thexth Hermite polyno-
mial. Let us further consider a specific instant of time when

and

a,(&% vanishes butipa;(&°) is non-zero. As this instant F,,=F,,—[{0T,,d,0+0T,d,0d,
J—det(A)xa\1—[Hy(ax)]*(dpa;)?. SinceH,(ax) grows e o S
for largeax, we see that for any finité;a,, however small, - %@FMFM(?M@@F'V'&V@}—{MHv}], 4.3

the expression under the square root will become negative

for sufficiently largeax. The only mode that does not suffer

from this problem is the constant mode. A similar argument 8Thjs argument of course does not affect the analysis for other
holds for fluctuations inY' and T. This leads us to suspect types of action discussed [86,7] where the action takes the form
that the only surviving modes on the kink world volume areof a kinetic plus a singular potential term.
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where Since we want to compare the world-volume action on a
kink solution with that on the BPS Dp(—1)-brane, we need
Fu=0,A,—d,A,. (4.4 to first know the form of the world-volume action on a BPS
) D-(p—1)-brane. The world-volume fields in this case con-
In terms of these variables, the DBI part of the world-volumegjst of a vector fielda, (&) (0O<a<(p—1)), a set of (9
action is given by1-3] —p+1) scalar fields which we shall denote p¥(£) ((p
+1)<I=<9) andyP(£)=t(&), respectively, in the conven-
SDBIZ_J dP*IxV(T)\/— de(G+F). (4.5  tion of Sec. Ill, and a Majorana spindi(é) of the ten di-
mensional Lorentz group. Hergt*} denotes the world-

L . volume coordinate on the Dp(-1)-brane as in Sec. Ill. The
The action is invariant under the supersymmetry transformap g, part of the action is given bj20—24

tion parametrized by a ten dimensional Majorana spindn
the static gauge in which we are working, the infinitesimal

supersymmetry transformation laws are given[ by Sybi= —%,J dP&y —defg+1), (4.9

5,0=e—(el*0)3,0, where

5pY'=eI"®—(EF"®)¢9MYI, OopT=—(el'*®)4,T, Oup= nMNﬂ-';"Trg, (4.10

_ I [ _ _
5pAV— €F11FV®+ €F11F|®(9VY 7T€: 85_ 01—"8(90/01 77_|0(:(90(y| _ er‘laae,
— L (el F'y®OTM9,0+€el,0OT,,TM9,0) -
_ _ mh=0,t—6T"3,0, (4.11
—(el'*®)d,A,—d,(el'*O)A,,. (4.6
— 1Al 1 (B
The subscripp in §, denotes that these are the supersym-f“ﬁ_faﬁ [{6T 10 g9 00+ 0T 14119489 gy + 6T 111" p0 09 t
metry transformation laws on the p-brane world volume.
The supersymmetry transformation parametes a Majo-
rana spinor of the ten dimensional Lorentz group.
Besides the DBI term, the world-volume action also con- fap=0daBp— dpaa- (4.13
tains a Wess-Zumino term. In the bosonic sector this term is )
important only for non-vanishing RR background field, but The Wess-Zumino term, on the other hand, has the form
once we take into account the world-volume fermions, this
term survives even for zero RR background. The structure of T J f
. . =7, 1| cN\€', 4.1
this term is[39,18,45,3 Swz=Tp-1 .14

— 30T 14T 3, 00T M50} —{ @ B}, (4.12

wheref=fa3d§“/\d§/3, and c is an expression containing
the RR background and the world-volume fieldst, 6 [20—
24]. The bosonic part o is given byS,-oC"~?% where
where F=F,,dx“/\dx", W(T) is an even function off  C(P~2% denotes the pullback of the RR{ 2q)-form field
which vanishes a$— =0, andC is a specific combination on the D-—1)-brane world volume. LikeC, ¢ also con-
of background RR fields and the world-volume fields © tains a term involving/' and @ which survive even for trivial
on the D-brand3]. In particular, the bosonic part & is RR background. If we think of the world volume of the
given by S - oCP~29 whereC(P~29 denotes the pullback D-(p—1)-brane as sitting inside that of a Bbrane along
of the RR (p—2q)-form field on the Dp-brane world vol-  the surfacexP=t(¢), thenc is in fact the pullback ofC
ume. This vanishes for vanishing RR background, but ther@ppearing in(4.7) provided we identify andy' as the re-
is a part ofC involving the world-volume fermion fields that striction of ® andY' along the surface&P=t(¢).

survives even in the absence of any RR backgro2t- Both Syp,; and S, are separately invariant under the in-
24,3). Since we shall not need the explicit form ©ffor our  finitesimal supersymmetry transformation:

analysis, we shall not give it heré&ee, for exampld,3] for

the component form of this term for trivial supergravity Sp-10= e—(e'“0)a,,0, 5pilylz:rlg
background. The Wess-Zumino term is also invariant under . o .

the supersymmetry transformatio(6). Later we shall see —(el'“0)a,y", Op—1t=€l'Ph—(el'*0),t,

that consistency requires

Swz= f W(T)dTACAeF, 4.7

o © 5p_1aB::F11Fﬁa+:F11F|Haﬁyl"‘:l—‘llrpaaﬁt
WTdT=f V(T)dT=7,_1, 4.8 _ _ -

f—x ( ) —© ( ) p-1 ( ) - %(EF]_]_FM 00FM350+ EFMQBF]_]_I‘M&BG)

where in the last step we have used E2j13. —(el'*0)d,a5— gl *O)a,, . (4.15
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The subscriptf—1) on &,_, indicates that these represent only the second term on the right hand side of @21 will

supersymmetry transformation laws on the world volume ofcontribute toSy,7 given in Eq.(4.7). Thus we can replaceé

a BPS D-p—1)-brane. by f in Eq. (4.7). On the other hand, we can analy@eby
In order to show that the world-volume acti®,;+S,,  writing it as

on the BPS D-p—1)-brane arises from the world-volume

action on the tachyon kink solution of Sec. I, we need to~_ (@ BN . Al

first propose an ansatz relating the fieltsc, £), A, (x,€), c Z C“l"'“qu /e dx

Y'(x,€) and O(x,&) to the fieldsa,(&), y'(¢), t(¢) and

0(&) on the BPS D-brane. For this we propose the following

= (a) @ @
ansatz: _Eq: (qcxtlz“'aqd)(/\dg AN
T(x,&)=Halx—t(&1},  Y(x.8=y'(d), +CW@, dEmA - dg)
0(x,8)=06(¢),
=2 [aC{d .., duAdéeN.- . dé®a+(aCE ., da,t
Ax(X,6)=0  Au(X §)=2a,(é). (4.19 a ‘ !
(a) a @
We can now comput&,,, andF,,, in terms of the variables +Caql-~-aq)d§ A dgta], (4.23
a,,y' tand@ using Eqs(4.1)—(4.4) and(4.16). The result }
is where in the last step we have usgd=du+ Jd, tdé“. The
term proportional todu does not contribute to Eq4.7)
G, =1+a%(f)2, G, =G.=—a%(f")% t—6TPg_ 6, due to Eq. (4.22, whereas the term proportional to
“ “ “ “ de*i/\ - - -déa, after being summer ova, is precisely the
Gup=0upt? tgrpaBGJraBtgrpa P pullback of C on the kink world volume along=t(¢) and

hence can be identified with Thus we get
+[a®(f)2=1]d,td,t,

vaz:f W(f(au))af’(au)du/\c/\ef=7;,_1f cNef=S,,,

Fox=—Fxa=— 0011173,
X X 11 (4.24)

Fap=Fap— 0t 01 11IP90+ 9t o' 111°P9,0, (4.17) using Eq.(4.9).

This shows thatSpg,+ Sy, 7 reduces toSy,;+S,,, under
the identification(4.16). In principle we also need to check
that any solution of the equations of motion derived from
SabiT Swz IS automatically a solution of the equations of mo-

del(G+F)=a(f")2{de(g+f)+O(a 2}, (4.18 tion derived fromSpg, + Syz. Presumably this can be done
following the analysis of Sec. Ill, but we have not worked

with g,z andf,z defined as in Eqs(4.10—(4.13. Using
manipulations similar to those in Eg&8.11)—(3.16 we can
now show that

and out all the details.
Finally, we need to check that the supersymmetry trans-
formations (4.15 are compatible with the supersymmetry
=_ p+1 J—de(G+F) . .
Sos f dPTIXV(T) V- de(G+F) transformationg4.6). For this we need to calcula@®_;A,,,

5p_1Y' and 8, 1T using Egs.(4.19, (4.16 and compare

_ _%*1j dPe—delg+f) =Sy, (4.19 wsn(;evtvith Eqgs(4.6). The calculation is straightforward, and

The a_nalysis forSyz is even simpler; inde_ed, this term 5pr:5p71Ax+:F11Fp9,
was designed to reproduce the Wess-Zumino term on the
world volume of a kink solutio18,3]. For this let us define

u=x—t(&). (4.20
Then from Eqs(4.17) we get

SpAa= 8y 1A,— €l 11T 10,1, (4.25
| | _
SY'=6, 1Y, 6, T=6, T

Thus we see thad, and 6,_, differ for the transformation
F=F,,dx*/\dx" laws ofA)_( andA,. This differe_nce, how_ever, is preciS(_aIy of
the form induced by the functiogh(x,¢) in Eq. (3.27 with

= B @ B
2P gdXN\ 7+ F,pdg/\dE d(x,8)=e€l'11",0(&). As was argued belows.27), this is a

— o] a a ¥ gauge transformation. Thus we see that the actiod,aind
20T 14l p0o OAUNAE™ + fpdE"NDER. (.23 8,1 differ by a gauge transformation in the WorIdFivqume
Since we have theory on the Dp-brane.
This establishes that the world-volume action on the kink
dT=af’(au)du, (4.22  reduces to that on a Dp(-1)-brane. The latter has a local
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x-symmetry which can be used to gauge away half of theand the potential/(T) depends orT] andE.(Y{l)—Yiz))2
world-volume fermion field§20—24. This leads to a puzzle. only. For smallT, V behaves as
Whereas on a BPS D-brane the logabymmetry is postu-

lated to be a gauge symmetry, i.e. different configurations 1 YIl —Y'2 2 4
related by transformation are identified, on a kink solution  V/(T,Y{;)=Y(,))=7;| 1+ 5 > (%) _5} |T|?
the appearance of the symmetry seems accidental aad ! m

priori there is no reason to identify field configurations

which are related bx symmetry. We believe the resolution +O(|T|4)} (5.9

of this puzzle lies in the general principle advocated below

(3.27) that any local transformation of the fields which does

not change the action must be a gauge symmetry. This will;, denotes the tension of the individual Pbranes. Al-
automatically imply that thex transformation is a gauge though this action has not been derived from first principles,
transformation and we should identify the configurations rewe note that this obeys the following consistency conditions:
lated byx transformation. This symmetry can now be used (1) The action has the required invariance under the gauge
to gauge away half of the fermion fields on the world volumetransformation:

of the kink.

T e2iat)T, AE})HAE}M d,a(x),

V. VORTEX SOLUTION T
ON THE BRANE-ANTIBRANE PAIR A=A = da(X). (5.9

In this section we shall generalize the construction of Sec.
Il to a vortex solution on a brane-antibrane pair. For this wep
need to begin with a tachyon effective action on a brane-
antibrane pair. In this case we have a complex tachyon ﬁelﬂqetry (- 1)F: that exchanges the brane and the antibrane
T, besides the massless gauge fieddd, A and scalar o get the restriction ’
fields Y'(l), Y'(z) corresponding to the transverse coordinates
of individual branes. We shall work with the following effec-

= M= Q)=
tive action that generalizgd.1):>:*° T=real, AL =A=A,,

(2) For T=0 the action reduces to the sum of the usual
Bl action on the individual branes.
(3) If we require the fields to be invariant under the sym-

Yiy=Y=Y'. (5.6

Under this restriction the action becomes proportional to that
on a non-BPS [p-brane, as given in Eql1.1). This is a
S= _f deXV(T'YEl)_YEZ))(\/_detA(1)+ \/_detA(Z))’ necessary consistency check, as modding out a brane-
(5.0 antibrane configuration by{1)Ft is supposed to produce a
non-BPS Dp-brane[45].

We should keep in mind however that these constraints do
where not fix the form of the action uniquely. Nevertheless we shalll
make the specific choice given {6.1) and proceed to study
the vortex solution in this theory.

The energy momentum tensdr*” associated with this
action is given by

A(i),uV: 77p,v+ FEB;" BMYI(I)&VYI(I)—’_ % (DMT)*(DVT)

+3(D,T)*(D,T), (5.2
T#"==V(T, Y5~ Y(2) [V —detAu) (Ap)E”
F) =9, AD—5 A0 D T=(9,—iAD+iA@)T, 1w
wr— Cu T WAy u 1= (0, = 1AL HIAL) 53 +\/—de(A(2))(A(2%)§ ] (5.7

In order to construct a vortex solution we begin with the

%As in Sec. Il, we expect our analysis to be valid for a more @NSatz

general action of the form:
- f AP IXV(T, Yy~ Vi)V —detg MU )+ FLQ)F(G@V)DMT* D,T)

N WLWF(G%DJ*DVT)] wherer and ¢ denote the polar coord-inates in t.hé’(.‘l,xp)
_ plane, and (r) andg(r) are real functions of satisfying the

whereg()=17,,+d,Y{;d,Y{; is the induced closed string metric poundary conditions
on theith brane G{;) is the open string metric on tfiéh brane and
the functionF (u) grows asu*? for largeu.

There have been various other proposals for the tachyon effec-
tive action and/or vortex solutions on brane-antibrane pair, see, e.qg.
[40-44. All other fields vanish. For such a background

T(r,o)=f(ne'’, AP=-AP=%g(r), (58

(0)=0, f(x)=o, g(0)=0, g¢'(0)=0. (5.9
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D,T=F(r)e'’, D,T=if(r)(1-g(r))e",

FH=—F§=2g'(n. (519

Also in the polar coordinate that we have been using:

77&[3
n= 1 , 0<a,8<(p—2). (5.1
r2
This gives
naﬁ
Awy= 1+(f7)? 3q’ ,
—319"  r2+f¥(1-g)?
77&[3’
A= 1+(f")2 -39’ (5.12
79’ r?+f%(1-g)?

—detAq)) = —de(Ay)
=[{1+(f)2{r2+3(1-g)%+ (9",
(5.13

TaB: -2 naBV(T)

X {1+ (F)2Hr2+ 1(1-g)2+ 1(g')?,

T =—2V(T){r2+f3(1—g)3/

V{L+ ()32 + 2(1-0)3+ L9

Tyo=—2V(T){1+(F")2}/

V()3 {r2+12(1-9)3 + ()2 (5.14

where we have used the shorthand notatigit) to denote

V(T,0). All other components off ,, vanish. The energy

momentum conservation

PHYSICAL REVIEW D68, 066008 (2003

0=0"T . =0, Tys (5.19

now shows thatT,, must be a constant. Sinc¥(T)
=V(fe'% falls off exponentially for largeT|, we see from

Eq. (5.14 thatT,, vanishes ate, unlessg(r) increases suf-
ficiently fast. Shortly, we shall see thgtvaries monotoni-
cally between 0 and 1, and hence is bounded. This leads us to
the conclusion thafl,, does vanish at infinity, and hence
must be zero everywhere due to the conservation(fahs).

To see thag(r) varies monotonically between 0 and 1,
we proceed as follows. As a consequence of the equations of
motion of the gauge fields, thg - 2)-dimensional energy
density [rdrd 6Ty, with Tgq given in Eq.(5.14, must be
minimized with respect to the functiog(r) subject to the

boundary condition(5.9). Now if g(r) exceeds 1 for some
range ofr, then we can loweT 4 in that range by replacing

the originala(r) by another continuous function which is
equal to the original function when the latter is less than 1,
and which is equal to 1 when the latter exceeds 1. Thus the
original g(r) does not minimize energy and hence is not a
solution of the equations of motion. This shows that a solu-
tion of the equations of motion must hagér)<1 every-
where. An exactly similar argument can be used to show that
g(r)=0 everywhere. Furthermore,df(r) is not a monotone
increasing function, then it will have a local maximum at
some poinia. We can now define a range,p) on ther axis
such thatg(r)<g(a) for a<r<b. (b could be infinity) In

this case we can lower the energy of the configuration by
replacing the original function by another continuous func-
tion that agrees with the original function outside the range
(a,b) and is equal tag(a) in the range &,b). Since this
should not be possible if the origing(r) is a solution of the
equations of motion, we see that a solution of the equations
of motion must have a monotone increasg(y).

The vanishing ofT,, requires that for every value of
either the numerator in the expression fby, vanishes,
which requiresV(T) to vanish, or the denominator becomes
infinite, which requires’ and/org’ to be infinite.V(T) is
finite at r=0 whereT vanishes, thus it is not zero every-
where. Thus at least far=0, f’ and/org’ must be infinite.

In analogy with the kink solution, we look fdrandg of the
form:

f(ry="f(ar), g(r)=g(ar), (5.16

and at the end take thee— limit, keeping the functions$
andg fixed. The boundary condition®.9) now translate to

f(0)=0, f(»)=, g(0)=0, g'(0)=0.

(5.17

We shall also impose the condition
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f'(uy>0 for Osu<oo,

(5.18

This guarantees thdt (r)=af’(ar) is infinite everywhere
in the a— limit. Once we have chosehthis way, we do
not need to takeg in the form given in Eq(5.16). But this

form allows for more general possibilities since without this

the term involvingg’ will simply drop out in the scaling
limit a—c0. On the other hand, by allowing to scale as in

Eq. (5.16 we do not preclude the case Whaapproaches a
finite function in thea—oo limit, since this will just corre-
spond to choosingy(r)=g(r/a) to be a nearly constant
function except for very large.

Substituting Eq(5.16) into Egs.(5.13), (5.14) we get, for
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largea,
- de(A(l)) = — de(A(z)) = az(f ’(ar))z{rz—i- f(ar)2

X[1—g(an]?+ i[g’(an/f’(ar)]?},
(5.19

and

Top=—2n,5V(f(ar))af’(ar)

X \r2+f(ar)[1—g(ar)]>+ g’ (ar)/f'(an)]?,
(5.20

r2+f(ar)][1—g(ar)]?

T,,=—2V(f(ar))

ThusT,, vanishes everywhere in tlee—c0 limit as required.
On the other hand, integratin®.20 over the ¢,#) coordi-
nates gives thepg—2+1)-dimensional energy momentum
tensorT4%'** on the vortex:

Tl;%”exz —41777QBJ' drV(f(ar))af'(ar)
0

X \Jr2+ f(ar)’[1—g(ar)]?+3[g’(ar)/f'(ar)]?.
(5.22

Defining
g(y)=g(ar)=gar(y)),
(5.23

wheref~! denotes the inverse function ffwe can rewrite
Eq. (5.22 as

y=f(ar), r(y)=a Ly,

T 4y | “ayviy)

X AT (y) 2+ y2{1-3(y)}2+ 19/ (y)2
(5.24)

From Eq.(5.23 it follows that in thea— o limit, r(y) van-
ishes for any finitey. Thus Eq.(5.24) further simplifies to

Top = —47”7aﬁf0 dyV(y) VyA{1-a(y)}?+33' (v)?.
(5.25

af’(ar)\/r2+f(ar)2[1—g(ar)]z+ %[g’(ar)/f’(ar)]z‘

(5.21

f, although it does depend on the choicg¢f). g(y) in turn

is determined by the equations of motion of the gauge fields,
or equivalently, by minimizing the expression for the energy
TYo"*, subject to the boundary conditions:

9(0)=0, g'(0)=0. (5.26

This leads to the following differential equation fgty):

ta[ v niyAi-am+ 1 ()2

V(YY1 VVYH1—-0(y)}2+ 19’ (y)?=0.
(5.2

Thusg(y) and the final expression f(Tr’;"ﬁ”ex are determined
completely in terms of the potenti®(T), independently of
the choice of the functiof!* Furthermore, as in the case of

the kink solution, most of the contribution &%'** comes

1The choicef(ar)=ar givesT=a(xP~*+ixP) in the Cartesian
coordinate system. This resembles the vortex solution in boundary
string field theory[40,41. However, unlike in[40,41], here we
have background gauge fields present. This is not necessarily a
contradiction, since the fields used here could be related to those in
[40,41 by a non-trivial field redefinition. In fact, we would like to
note that generically, when both the real and the imaginary parts of
the tachyon are non-zero and are not proportional to each other, we
have a source for the gauge fiedd?)—A?), and hence it is not
possible to find a solution of the equations of motion keeping the
gauge fields to zero. Boundary string field theory seems to use a

We now see that as in the case of the kink solution, Eqvery special definition of fields where this is possible in the o
(5.25 is completely insensitive to the choice of the function limit.
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from a finite range of values of, which corresponds to a lim fg(y)=1. (5.32
region inr space of width H around the origin. Thus in the Yoo

a—0 limit, T,z has the form of & function centered around

the origin of the §°~1,xP) plane: This, in turn, has the following consequence. From Egs.

(5.10, (5.23, (5.32 we have

__ -1y 50x) | _
Taﬁ 4’77770135()( ) O(X )fo dyV(y) f drdG(Fﬂ,)—Fﬁzg))=27-r[g(oo)—g(0)]

X AYHL1-g(y)12+ 10" (9)°. (5.28 =2m[g(=)—g(0)]=2.

This agrees with the identification of the vortex solution as a (5.33
D-(p—2)-brane; as for the latter, the energy-momentum tens
sor is localized on af— 2)-dimensional surfacgThis can
be seen by examining the boundary state describing pa D-(
—2)-brane] The tension of the Dff— 2)-brane is identified
as

his answer is universal, independent of the choice of the
potential V(T), providedV(T) satisfies the mild asymptotic
condition given above Eq5.32. This is also the same an-
swer that we would have gotten if we had a usual Abelien
Higgs model with an action given by the sum of a kinetic
" and a potential term. Finally, for this gauge field background,
7;’*2:47Tf dy\V(y) \/y2{1_§(y)}2+ 19'(y)2 if we compute the Ramond-RamofieR) charge of the vor-
0 tex using the usual coupling between the world-volume
(5.29 gauge fields and the RR fields at zero tachyon background,
we get the correct expression for the RR charge of the vor-
Before concluding this section, we shall determine theiex. Thus the net additional contribution to the RR charge
asymptotic behavior ofg(y) satisfying Egs.(5.26 and from the tachyon dependent coupling of the RR figld§]
(5.27). Our previous arguments for the functig_(]r)' when  mustvanish. This is in contrast with the bound_ary_string field
translated tog(y), shows thatg(y) must be a monotone theory resulf40,41 where the complete contribution to the

increasing function of, and must lie between 0 and 1. The RR chargg comes from the tachyon fields. This again reflects
" - . that the fields used here are related to those in boundary
boundary condition forceg(y) to vanish aty=0. We shall

tring field th b -trivial field redefinition.
now show that given a mild constraint on the potend@r), string fie eory by non-trivial field redetinttion

a(y) must approach 1 as—oc. We shall begin by assuming V1. WORLD-VOLUME ACTION ON THE VORTEX
that g(y) approaches some constant value—(@) asy .
—, and then show thaE must vanish. fC#0, then the We shall now study the world-volume action on the vor-

dominant term inside the square root for langés the first tex. We begin by in_troducing some notation. We shall denote
term which takes the valug?C? since@’(y) vanishes for by x' for (p—1)<i<p the coordinates transverse to the

world volume of the vortex but tangential to the original
largey. Thus for largey, Eq. (5.27) takes the form brane and by® for 0O<a<(p—2) the coordinates tangen-

1 -, . tial to the vortex. We shall express the classical vortex solu-
2 [V(y)g'(y)lyCl+yV(y) =0. (5.30 tion of EqQ.(5.8) in Cartesian coordinates as

Sincedy (g’ (y)/yC) approaches 0 ag—, clearly the only AV=—-AP=h,(x), T(x)=F(x), (6.1
part of the first term in Eq5.30 that can possibly cancel the

second term i/’ (y)g’ (y)/(4yC). If this has to cancel the
second term, we require

where

xP~1

P — . —
hp-1(X)==529(r), hy(x)= 2r29(r), f(x)=1(r),

V' (y)IV(y)=—4y2Clg’(y) forlargey. (5.31)

- - =|x| x=(xP~1xP
Sinceg(y) approaches a constant gs->, g'(y) must fall r=Ixf, x=(xP"%xP). 6.2

off faster than 1y for largey. Thus the magnitude of the \yg now make the following ansatz for the fluctuating fields
right hand side of Eq(5.31) increases faster thay? for large o the world volume of the vortex:
y. This, in turn, shows that V'(y)/V(y) must also increase

faster thany® for largey. Neither a potential of the form  AM(x, &) =h[x—t(&)], AP(x,&)=—h[x—t(&)],
e~ A obtained from the analysis of time dependent solutions

[5] nor a potential of the forme #Y* given by boundary AD(X, €)= =[x 1(£)]0,' +a,(£),
string field theory[40,41] satisfies this condition. Thus our R . .
original assumption must be wrong a@must vanish for A&z)(x,§)=hi[x—t(g)]ﬂat'+aa(§),

either of these choices &f(T). R R R L
This leads us to the conclusion thatiV’ (y)/V(y) does Y'(l)(x,§)=Y'(2)(x,§)=y'(§), T(x,&)=f[x—t(&)].
not increase faster thay? for largey, we must have (6.3
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Thus the world-volume fields on the vortex aré¢), t'(&)
anda,(¢).

We shall now substitute this ansatz into the actibri)
and evaluate the action. Using the ans&®) and the defi-
nitions (5.3) we get

D, T=4,f—2ih,f=D;f, D,T=—D;fd,t,
FiP=(aihj—ah),  FP==(ohj=a;h),
F(p=—F@=—(ahj—ah)ag,
F=—F®=—(oh—gh)at"
FEA=fapt (i = djh) dat'at),
F@=1 5= (aih;— d;hy) d,t oL, (6.4)
where
(6.5

faﬁ:é’aaﬁ_(?ﬁaa.

In each expression the argumentshofand f are[x—t(&)]
which we have suppressed. From Eg.2) we now get

Ay = 8ij+ (dih;—ah)) + 3 [(D;F)* D;f+(D;F)*D;f]

Aqyip=—(aih;=ajh)agt

— 3[(D;f)*D;f+(D;f)* D;f]g,t!

Awyaj= = (dih;=djh) 3.t

— 1[(D;)*D;f+(D;F)* D;if]1d,t

A)ap=Napt Fapt oy 95y + (80— dih) ot 9 1)

+ 3[(DiF)*D;f+(D;F)*D;if]9,t' ¢!
A2)ij = 6ij _(3iﬁj—f9jﬁi)+ %[(Dif_)*Djf_+(Dj_)*Dif_]

Azyp= (3= djhy)agt!

— 3 [(Dif)*D;f+(D;)* D;f]at!
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A 2)aj = (dih; = ;) d,t

— 3[(DiF)*D;f+(D;f)* D;f]d,t

A2)ap= Napt Tapt 32y gy = (dih; = 3;h;) 3,8 9 gt!

+ 3[(Dif)*Djf+(D;f)*Dif]d t'dztl.  (6.6)
We now simplify the computation of the determinants by
subtracting appropriate multiples of the first two rows/
columns from the rest of the rows/columns. This does not
change the determinant of the matrix. More precisely, we
define

A(S)al/: AyartAgivdat’, A(s)i = AS)iv

A us= A upT A uidpt’

;&(S)MJ':A(S)MJ' for 0$,LL,V$p. (67)
Under this transformation we have
dE(A(s)):de(A(s)):de(Z\(s)), s=1,2. (68)

On the other hand, we have, from E§6.6), (6.7)
A (1ii = 8ij +(aiﬁj_ 31Fi)+ (D) Djf_+ (Djf_)* Dif]
Awis=pt  Awyai=dal!,
Ayap= NaptTaptday' dpy'+datdpt,
A2y = 8;—(aihj— ;) + 3 [(Dif)*D;f +(D;f)* D;f]
A@yip=apt', Agyei=datl,

z\(z)aﬁz naﬁ+faﬂ+aayl(?‘3yl+(7ati(?'3ti. (69)
Examining the form of théj component of the matriceis(l)

and 5\(2) we see that they are precisely of the same form as
one would get for the classical vortex solution without fluc-

tuation, except for the replacementi)by [)Z— f(f)] in the

argument ofh; and f. Since this determinant given in Eq.
(5.19 has an explicit factor ch? which becomes large in the
a— limit, and sinceA iz, A, andAg,s are all of
order one, in this limit we can ignore the contribution from
the off-diagonal elementd ), and A, in evaluating
det(A()). Thus the resulting action is given by
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full string theory, then it will imply that any tachyon matter
—ZJ dp_l%j drdoVv(f(ar))af’(ar) in contact with the soliton will be sucked in immediately.
This is consistent with the analysis|[&4,55 where a similar
X \Jr2+ f(ar)’[1—g(ar)]®+ 3 (g’ (ar)/f'(ar))? effect was found by analyzing the boundary state associated
with the time dependent solutiohs.This might provide a
X/ —deta, (6.10  very effective means of absorbing tachyon matter from the
surrounding by a defect brane, and drastically modify the
where results of Refs[57,58 for the formation of topological de-
o fects during the rolling of the tachyon. The appearance of an
Aup= NapT Fapt day' dpy' +a,t'dpt'. (6.1) infinite slope during the dynamical process of defect forma-
tion has already been observed 118]. We should note, how-
In Eq. (6.10 we have redefined to be|>2— f(§)|, and@ to  ever, that a different type of solution where a codimension 1
be tam {[xP"1—tP~1(&)]/[xP—tP(£)]}. We can now ex- soliton and tachyon matter coexist has been constructed in
plicitly perform ther and @ integrals as in Sec. V and use Eq. [56].
(5.29 to rewrite the actior(6.10 as Another surprising feature of both the kink and the vortex
solutions is that the world-volume theory on the soliton has
. exactly the DBI form without any higher derivative correc-
_%—ZJ dP™ gy —deta. (6.12  tions. This means that all such corrections must come from
higher derivative corrections to the original actiqasl) and

This is precisely the world-volume action on a BPS p-( (5.1. This may seem accidental, but may be significant for
—2)-brane witht' and y' interpreted as the coordinates the following reasons. This result suggests that there is a
transverse to the brane fop{ 1)<i<p and (p+1)<I close relation b_etween the systematic der_ivat(mé field
<9 anda, interpreted as the gauge field on the D-branestrength expansion of the viorld-volume action of the non-
world volume. BPS Dp-brane (Dp-brane—DBp-brane pair and that of the

As in Sec. lll, in order to establish completely that the BPS soliton solution representing the P-{1) brane
dynamics of the world-volume theory on the vortex is gov-[D-(p—2)-brand. It will be interesting to explore this line
erned by the actiori6.12 we need to show that given any of thought to see if one can establish a precise connection
solution of the equations of motion derived from this action,between the two. Since the derivative expansion on the
(6.3 provides us with a solution of the full world volume of BPS D-branes is well understood, finding a
(p+1)-dimensional equations of motion. We have notconnection of the type mentioned above will provide a better
checked this, but believe that this can be done followingunderstanding of the derivative expansion of the world-

techniques similar to that discussed in Sec. lll. volume action of a non-BPS D-brane/brane-antibrane
system.
VIIl. DISCUSSION One question that we have not addressed in this paper is

the analysis of the world-volume theories @nultiple) kink-

In this paper we have analyzed kink and vortex solutionsantikink pairs and multivortex solutions. The construction of
in tachyon effective field theory by postulating a suitablethese solutions should be quite straightforward following,
form of the tachyon effective action on the non-BPS D-branee.g. the analysis 0f27,9,49. In a finite region around the
and brane-antibrane system, respectively. In both cases thecation of each soliton the solution will have the form dis-
topological soliton has all the right properties for describingcussed in Secs. Il and V, and we need to ensure that before
a BPS D-brane. These properties include localization of theaking thea—c< limit, the various fields match smoothly,
energy-momentum tensor on subspaces of codimensionskkeping|T| of order a or larger in the intervening space.
and 2, respectively, as is expected of a D-brane and also th&nalysis of the world-volume theory around such a back-
DBI form of the effective action describing the world- ground will clearly yield the sum of the world-volume ac-
volume theory on the soliton. For the kink solution we havetions on the individual solitons, since essentially the field
also done the analysis including the world-volume fermionsconfigurations around individual solitons do not talk to each
and shown the appearance of symmetry in the world- other in thea—oe limit. The interesting question is whether
volume theory on the kink. we can see the excitations associated with the fundamental

One feature of both the solutions is an infinite spatialstring stretched between the solitons. We believe these exci-
gradient of the tachyon field away from the core of the soli-tations must come from classical solutiofisolitons”) de-
ton. If we want to construct a solution describing tachyonscribing fundamental string along the line of Refs.
matter [47,48,5,49-5Bin the presence of such a soliton, [35,30,33,59 We can, for example, take the solutions in the
then the spatial gradient of the tachyon field represents locabB| theory given in[60—63 and lift them to solutions of the
velocity of the tachyon matté¢b,6]. More precisely, the local
(p+1)-velocity of the dust is given by,=—4,T. Thus
large positive gradient of the tachyon implies large local ve- Ane should keep in mind, however, that this result is exact only
locity towards the core of the soliton. This shows that for bosonic string theory. For superstring theory the corresponding
tachyon matter in the presence of such a solution will fallboundary conformal field theory is not solvable, and hence no exact
towards the core of the soliton. If this feature survives in theresult can be obtained.
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equations of motion derived from Eqg€l.2) or (5.1) using capable of describing certain time dependent solutions of
Egs. (3.1, (3.8 or (6.3). The (spontaneously brokeémauge open string theoryf47,48,5, and solutions describing the
symmetry that mixes the states of the open string living orfundamental stringj35,30,33. Coupling the tachyon field to
individual D-branes with states of the open string stretchedupergravity does not give rise to any new perturbative
between different D-branes, exchanges perturbative statgfysical states, and hence does not violate any known result
with ‘solitonic’ states, and hence is analogous to the electrigy string theory. Finally, as was argued[#], coupling of the
magnetic duality symmetry in gauge theorjég—70. tachyon effective action to gravity may resolve some of the

_The general lesson that one could learn from the results tfonceptual problems involving “time” in quantum gravity.
this paper is that for many purposes, it is useful to comple-

ment the supergravity action, describing low energy effective

action of clqsed string theory, by_ Couplmg it to the tachyon ACKNOWLEDGMENT
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