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We discuss the computation of the leading corrections to D-brane solutions due to higher derivative terms in
the corresponding low energy effective action. We develop several alternative methods for analyzing the
problem. In particular, we derive an effective one-dimensional action from which the field equations for
spherically symmetric two-block brane solutions can be derived, show how to obtain first order equations, and
discuss a few other approaches. We integrate the equations for extremal branes and obtain the corrections in
terms of integrals of the evaluation of the higher derivative terms on the lowest order solution. To obtain
completely explicit results one would need to know all leading higher derivative corrections which at present
are not available. One of the known higher derivative terms is theR4 term, and we obtain the corrections to the
D3-brane solution due to this term alone. We note, however, that~unknown at present! higher terms depending
on F5 are expected to modify our result. We analyze the thermodynamics of brane solutions when such
quantum corrections are present. We find that theR4 term induces a correction to the tension and the electric
potential of the D3-brane but not to its charge, and the tension is still proportional to the electric potential times
the charge. In the near-horizon limit the corrected solution becomes AdS53S5 with the same cosmological
constant as the lowest order solution but a different value of the~constant! dilaton.
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I. INTRODUCTION

One can hardly overestimate the importance of superg
ity solutions. The solutions describing the long-range fie
associated with strings, D-branes and solitonic fivebra
have played an instrumental role in many advances in st
theory. String dualities require the existence of certain so
tions and conversely the pattern of supergravity soluti
strongly hints of similar patterns and properties of the und
lying microscopic theory. Furthermore, the interplay betwe
the microscopic and the supergravity description of an ob
has been extremely fruitful. One of the most prominent
amples is the case of black holes and their study in st
theory. One can construct solutions describing black hole
superimposing~intersecting! ‘‘elementary’’ branes, i.e. fun-
damental strings, D-branes, etc. These objects have a w
defined description in string perturbation theory and, p
vided appropriate conditions hold, one can use t
description to obtain results about black holes. For instan
such considerations led to a microscopic understanding
the black hole entropy for extremal black holes. Furth
more, such reasoning applied to D3 and other branes le
the anti–de Sitter/conformal field theory~AdS/CFT! corre-

*Email address: sebas@physics.ucla.edu
†Email address: sinkovic@science.uva.nl
‡Email address: skenderi@science.uva.nl
0556-2821/2003/68~6!/066001~22!/$20.00 68 0660
v-
s
s
g
-
s
r-
n
ct
-
g
y

ll-
-
s
e,
of
-
to

spondence, and generalizations thereof.
In all these studies, thep-brane solutions solve the fiel

equations that follow from supergravity actions that invol
up to two-derivative terms. These actions are the lowest
der terms in the low-energy effective theories of string the
ries, and the latter are known to receive string correctio
The corrections appear as a series ina8 and are higher de-
rivative terms.

Given the importance of thep-brane solutions, one ma
ask how the solutions are modified by the higher dimensio
terms. Any such modification will represent the leadi
stringy effects at low energies. It is known that some so
tions do not receive any corrections. Examples of such s
tions are maximally supersymmetric spacetimes such as
space, and the AdS53S5 vacuum of type IIB supergravity
but also spacetimes with less supersymmetry such as
wave solutions@1#. These cases, however, are rather exc
tional and generically one expects the solutions to rece
corrections, see for example@2#. a8 corrections to the near
horizon geometry of extremal and nonextremal D3-bra
were studied in@1,3–5#. It was found that the AdS53S5

geometry is not corrected, but the nonextremal version
Higher derivative corrections to near-horizon-NS5/litt
string theory thermodynamics have been considered in@6,7#.

The precise form of the corrections may have implicatio
in all problems involvingp-brane solutions. For instance, th
a8 corrections top-brane solutions will inducea8 correc-
tions to black hole solutions and their properties, such
their entropy formula. The explanation of such sublead
©2003 The American Physical Society01-1
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terms in terms of a microscopic theory will then pose a n
challenge to our understanding of black holes. In the con
of the AdS/CFT correspondence,a8 corrections are assoc
ated with subleading terms in the ’t Hooft coupling expa
sion. Other applications involve the computation
a8-corrections to duality transformation rules. The high
derivative terms also become important near spacetime
gularities where curvatures are large.

To compute the precise form of the corrected D-bra
solutions, one would need the complete set of bosonic te
in the low-energy effective action at leading order. High
derivative interactions can be computed by scattering am
tudes@8,9# or using sigma model techniques@10# ~see@11#
for a more complete list of references!. However, apart from
the well knownR4 term only a very few other terms ar
known, see@12–14# for recent discussions. One way to o
tain further interactions terms is to find all terms that a
related by supersymmetry to the known terms. In@11# we
investigated in detail the possibility of constructing a sup
invariant as a scalar superpotential term in type IIB sup
space@15#. A linearized version of such a term was known
contain theR4 term @16# leading to the expectation that suc
a superspace term contains all terms that are related to thR4

by linearized supersymmetry. We have shown in@11#, how-
ever, that a superinvariant based on a scalar superpote
does not exist. Finding the superinvariant associated to
R4 term, and thus determining the complete set of inter
tions at leading order is still an open question. For the co
putation of the corrections to D-brane solutions one wo
need the full set of bosonic terms depending on the me
dilaton and Ramond-Ramond~RR! fields.

In this paper we systematically analyze the computat
of corrections to brane solutions. The computation cons
of obtaining the corrected field equations, evaluating
terms that originate from the higher derivative terms on
lowest order solution and then integrating the resulting eq
tions. We present several different methods to obtain the fi
equations. The straightforward determination of the fi
equations is possible but very laborious. A method that
find well-suited for this problem is the Palatini formalism.
this formalism the metric and the Christoffel symbols a
considered as independent fields that are varied inde
dently. The simplifications are due to the fact that one ha
perform fewer partial integrations when deriving the fie
equations. This reduces the number of terms that partici
in the field equations. This formulation, even though simp
than the direct computation, is still tedious.

A significant improvement is possible when one consid
spherically symmetric solutions. In this case we derive
effective one-dimensional action that governs the field eq
tions. This action may be thought of as the consistent red
tion of the ten dimensional action over all coordinates but
radial one. The method developed can also be used m
generally to derive consistent reductions in general. The fi
equations to be solved are second order differential eq
tions. In the case where the lowest order solution is su
symmetric, we also derive associated first order equat
that include the effects of the higher derivative terms~we
present such an analysis for D3-branes, but similar consi
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ations are applicable to other branes as well!.
After the field equations are derived, we have to evalu

the higher derivative terms on the lowest order solut
whose corrections we want to compute. This leads
r-dependent source terms in the field equations. To explic
compute the source terms one needs to know the exact
of the higher derivative terms which is not known at prese
Given such source terms, however, we succeeded in inte
ing the equations to obtain the corrections as integrals of
sources. When the higher derivative terms become availa
these results would immediately lead to the exact form of
corrected solutions.

One of the cases that is under better control is the cas
the D3-brane. In this case the lowest order solution ha
constant dilaton and a self-dual five-form. This eliminat
some of the possible interaction terms. For instance, hig
derivative terms that depend on the derivatives of the dila
will not contribute and thus they need not be consider
Even in the D3-brane case, however, there are possible
undetermined interaction terms depending on the five-fo
RR field F5 and derivatives thereof~the superpotential term
mentioned above does contain such terms!. In fact, our
analysis indicates that such terms will contribute to the f
form of the corrected D3-brane solutions. Noting this, w
proceed by taking into account the corrections due to theR4

term only. In this sense, the computation may be viewed a
toy model computation. We obtained the corrected solut
in closed form. It has a nontrivial dilaton, is regular in th
interior and approaches AdS53S5 in the near-horizon limit.

In the presence of higher derivative interactions the st
dard formulas for the computation of the thermodynam
properties of the solutions are modified. We discuss in de
following @17–19#, how to do such computations. We fin
that the tension and the electric potential of the D3-bra
renormalize, but the charge, temperature and entropy rem
uncorrected. Despite the renormalization of the tension,
show that a Bogomol’nyi-Prasad-Sommerfield-~BPS-! type
formula that relates the mass and the charge still holds. T
formula follows from the integrated form of the first law o
thermodynamics~Smarr formula!. The renormalization of
the mass is compensated by the renormalization of the e
tric potential.

Any correction to the mass of the D3-brane due to hig
derivative terms has rather dramatic consequences: the
of N1 branes plus the mass ofN2 branes is higher than th
mass ofN11N2 branes. This implies that there is a forc
between the branes and the branes will tend to coalesce
gether. This is opposite to what one expects from B
branes. We take these results as a strong indication tha
higher derivative terms containF5 dependent terms so tha
there are additional contributions to our computation.

One may expect that once theF5 terms are included, the
full extremal D3-brane solution will turn out to be unco
rected, but such a proof is still lacking. Such nonrenorm
ization will be consistent with the fact that the Kaluza-Klei
~KK- ! monopole solution, which is connected to the D
brane via dualities, does not receive corrections from theR4

term. This follows from the fact that the corresponding sigm
model is finite @20#. ~Since the KK-monopole is a purel
1-2
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gravitational solution there is no issue of undetermin
higher derivative interactions.! This argument, however, as
sumes that the duality rules will not introduce anya8 cor-
rections, but in general the T-duality rules are known to
ceive a8 corrections, see for instance@21#. Another way to
analyze this question would be to study Killing spinor equ
tions but the corrections to supersymmetry rules due to
higher derivative corrections are also not yet available.

This paper is organized as follows. In the first three s
tions we analyze in detail the corrections to the D3-brane
to theR4 term. In particular, in Sec. II we discuss the de
vation of the corrected field equations. We present th
methods: the direct derivation of the field equations, the
plication of the Palatini method and the derivation of
effective one-dimensional action. The analysis in this sec
holds for both extremal and nonextremal branes~but some of
the explicit formulas apply only to extremal D3-branes!. In
Sec. III we restrict our attention to the extremal D3-bra
and rewrite the equations of motion in first order form, whi
we then integrate to obtain thea8 corrected solution. In Sec
IV we discuss in detail thermodynamics for higher derivat
theories and apply the results to the corrected D3-brane
lution. In Sec. V we discuss the corrections to extremal e
tric p-branes inD dimensional spacetimes. We conclude w
a discussion of our results in Sec. VI. Finally in Appendix
A and B we give several results regarding the evaluation
the higher derivatives terms on lowest order solutions, an
Appendix C we present the most general D3-brane solu
of the lowest order equations with a specific two-blo
ansatz.

II. EQUATIONS OF MOTION

The fields that participate in the D3-brane solution of ty
IIB supergravity are the metricgi j , the dilatonf, and the
four-form gauge fieldAi 1 . . . i 4

. The terms in the classica
type IIB supergravity action that only involve these fields,
the Einstein frame, read,1

I 52
1

16pGN
E d10xA2gFR2

1

2
~]f!22

gs
2

4•5!
F5

2G
~2.1!

where2 GN58p6gs
2a84. The field equations derived from

this action should be supplemented by the self-duality~SD!
condition onF5.

The leading higher derivative terms in the low ener
effective action of type IIB string theory appear at ordera83.
The purely gravitational terms can be computed by

1Our curvature conventions areRi jk
l5] jG ik

l 2G ip
l G jk

p 2( i↔ j ),
Ri j 5Rik j

k,R5gi j Ri j . The Weyl tensor is given byCi jk
l5Ri jk

l

1
1
8 @d i

lRjk1gjkRi
l2

1
9 Rd i

lgjk2( i↔ j )#.
2Notice that we use the convention of leaving a factor ofgs in

Newton’s constant. This means that our ‘‘Einstein frame’’ is rela

to the string frame byg̃E5e2(f2f`)/2gst5gs
1/2gE , wheregE is the

true Einstein metric andef`5gs . Under S-dualitygE is invariant,

but g̃E→gs
21g̃E .
06600
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4-point graviton scattering amplitudes@8# or a four-loop
sigma model computation@10# and give rise to the well-
knownR4 terms. To compute the corrections to the D3-bra
solution we need to know the higher derivative terms t
involve gi j , f andF5.3 As discussed in the Introduction, th
complete set of such terms is not known at present. In p
ciple, such terms can be computed by studying tree-le
scattering amplitudes. One would need to compute up
8-point functions in order to compute all 8-derivative term
in the effective action. Terms that depend on the RR-fie
are more difficult to compute using the sigma model meth
in the RNS formalism, but one could use sigma models
the pure spinor formalism@22,23# to perform a manifestly
supersymmetric beta function computation, see@24# for such
a computation.

We will proceed by considering only the effect of theR4

term. This is what has been done in similar computations
most of the literature. We emphasize, however, that ther
no a priori reason that thea8 3 terms can be truncated t
only theR4 term. In fact our results indicate that, at least f
the computation ofa8 corrections to the D3-brane solution
the truncation is not consistent. We consider the followi
a8 3 corrections to Eq.~2.1!,

I W52
1

16pGN
E d10xA2gg~f!W ~2.2!

where

g~f!5
1

16
E3/2~f!gs

3/2a83,

W5Cimn jCkmnlCi
rskCl

rs j1
1

2
Ci jmnCklmnCi

rskCl
rs j .

~2.3!

Notice that we used the field redefinition ambiguity@8,26# to
reach a scheme whereW depends only on the Weyl tenso
E3/2(t,t̄) is the nonholomorphic modular form of weigh
~0,0!.4 Heret5t11 i t25x1 ie2f, wherex is the axion. In
the following we setx50. The factor ofgs

3/2 in Eq. ~2.3! is
correlated with our conventions, see footnote 2. The dila
dependence follows from supersymmetry and theSL(2,Z)
symmetry of type IIB string theory@16,25#. This behavior
takes into account nonperturbative effects as well. At str
tree-levelg(f)u tree5

1
8 z(3).

3We assume throughout this work that the fields that are zer
the lowest order solution remain zero after thea8 corrections are
taken into account. This would be correct if all higher derivati
terms are at least quadratic in the fields that are zero at lowest o

4Explicitly, E3/2(t,t̄)5( (m,n)Þ(0,0)(t2
3/2/um1ntu3), where (m,n)

denotes the greatest common divisor of the integersm and n. A

nonholomorphic form F (w,ŵ) of weight (w,ŵ) transforms as

F (w,ŵ)→F (w,ŵ)(ct1d)w(ct̄1d) ŵ under theSL(2,Z) transforma-
tion t→(at1b)/(ct1d).
1-3
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The equations of motion of type IIB supergravity in th
Einstein frame, restricted on these fields, and including
corrections from Eq.~2.2!, read,

Ei j [Ri j 2
1

2
gi j R2

1

2F] if] jf2
1

2
gi j ~]f!2G

2
gs

2

96S Fil 1 . . . l 4
F j

l 1 . . . l 42
1

10
gi j F5

2D
1S wi j 2

1

2
gi j g~f!WD

50 ~2.4!

E[hf2gf~f!W50 ~2.5!

F55!F5 ~2.6!

where5

gf5
]g

]f
52

1

32
a83gs

3/2~D01D̄0!E3/2 ~2.7!

andwi j is defined by

E d10xAgg~f!dW5E d10xAgdgi j wi j ~2.8!

and is given in Appendix A. Using the fact that the We
tensor is Weyl invariant one can show that

gi j wi j 54g~f!W. ~2.9!

Notice that the self-duality equation~2.6! is expected to
receive corrections from thea83 terms that depend onF5.
The reason is the following. AnF5-dependenta8 correction
will give rise, upon variation with respect to the gauge fie
to the equation

1

A2g

1

2•4!
] l~A2gFli 1 . . . i 5!1gwA

i 1 . . . i 550 ~2.10!

where wA
i 1 . . . i 5(g,A,f) is the variation of the extra term

with respect to the gauge field. Suppose now that the s
duality condition holds. The first term in Eq.~2.10! would
then vanish by itself and we obtain,

wA
i 1 . . . i 5~g,A,f!50. ~2.11!

We thus find a new equation arising at ordera83.6 The
higher derivative terms, however, should only correct

5Dw5 i (t2]/]t2 iw/2) andD̄ŵ52 i (t2]/]t1 iŵ/2) are modular

covariant derivatives that map a modular form of weight (w,ŵ) to

another one of a different weight,DwF (w,ŵ)5F (w11,ŵ21),

D̄ŵF (w,ŵ)5F (w21,ŵ11).
6This conclusion would be avoided if there is a higher derivat

term that depends onF5 and is not zero on-shell~with respect to the
lowest order equations!, but whose variation vanishes on-shell. A
far as we can tell, this cannot happen.
06600
e
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e

lowest order equations, not introduce new equations. A
new equations would generically make the system of eq
tions inconsistent. It follows that if the higher derivativ
terms areF5 dependent, the self-duality condition will hav
to be deformed. In other words, it should be a combination
the 5-form field strength with other fields that is self-dual n
the 5-form by itself. Notice that any superinvariant based
the dilaton superfield will containF5 dependent terms@11#.
Since in this work we only take into account Eq.~2.2! the
self-duality equation holds at ordera83 as well. This is one
point where the complete analysis is expected to dev
from the analysis presented here.

We look for perturbative solutions ina8 of these equa-
tions of motion. The general ansatz we consider is

ds25ea~~2 f dt21dxW2!1eh~ f 21dr21r 2dV5
2!!

~2.12!

where the functionsa, h and f depend only on the radiusr.
Extremal solutions havef 51, but we will keepf arbitrary
for the time being, and setf 51 at a later stage. The self
duality condition is solved by

Ftabcr516pNa82eabce
22hr 25,

Fm1 . . . m5
516pNa82em1 . . . m5

~2.13!

wherea,b,c are spatial worldvolume coordinates,m1 . . . m5
are indices on theS5 directions andeabc andem1 . . . m5

are the

volume densities on flatR3 and on the unit five-sphere,S5,
respectively.

The lowest order equations of motion admit the solutio

e22a05eh0511
,4

r 4
, ef05gs , f 51, ,454pgsNa82

~2.14!

where the subscript ina0 , h0, andf0 indicates that this is
the lowest order solution. The solution describes the lo
range field ofN D3-branes. Removing the ‘‘1’’ from the har
monic function yields AdS53S5, the near-horizon limit of
the D3-branes.

Our objective is to obtain a solution of the equations
motion ~2.4! perturbatively ina8, i.e. we will look for solu-
tions

a5a01ga1 , h5h01gh1 , f5f01gff1 , f 51.
~2.15!

To obtaina1 , h1 andf1 one may substitute the ansatz~2.12!
with the coefficients in Eq.~2.15! to the field equations~2.4!
and keep only the terms of ordera83. The computation in-
volves evaluating the ordera83 terms in Eq.~2.4! on the
lowest order solution~2.14!. We now present a few differen
formulations of the problem.

A. Direct computation

This is the straightforward approach where one first o
tainswi j by varying the new term in the 10D action and th
1-4
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substitutes the lowest order solution. Both of these steps
straightforward but very tedious. The general expression
wi j is given in Appendix A. The evaluation of the correctio
on the lowest order solution is also very tedious because
expressions involve tensors with complicated index contr
tions. A useful observation is that one can use the symme
of the Weyl tensor to rewrite Eq.~2.3! in the following com-
pact form:

W5Bi jkl ~2Bikl j 2Bli jk ! ~2.16!

where

Bi jkl 5Cm
i jnCn

lkm . ~2.17!

This tensor is symmetric under a pair interchange and un
simultaneous permutation of the first two and last two in
ces,

Bi jkl 5Bkli j , Bi jkl 5Bjilk . ~2.18!

The use ofMATHEMATICA was instrumental in obtaining th
final equations. We will present these equations after pres
ing two alternative methods for performing the computatio

B. Palatini formalism

There is an alternative method to derive field equatio
that is particularly useful in higher derivative actions. W
outline it here because it is completely general and can
used when there are no symmetries that one can emplo
derive a simple form of the action~as we do in the nex
section!. Furthermore, this method is simpler than the dir
derivation of the equations of motion described in the pre
ous section. In this method one constructs a Palatini ac
that is first rather than second order in derivatives, and
the metric and the covariant derivative~or, equivalently, the
Christoffel symbols! as independent variables~see@27# for
an elementary exposition!:

I @g,G#5E d10xAgS R@g,G#2
1

2
~]f!22

gs
2

4•5!
F5

2

1g~f!W@g,G# D . ~2.19!

In deriving the equations of motion, let us vary the conn
tion first. This gives

d i
( j¹lg

k) l2¹ig
jk1~gjkd i

p2d i
( jgk)p!~G lp

l 2]plogAg!1Wi
jk

50, ~2.20!

which at lowest order ina8 implies the usual compatibility
condition between the metric and the connection. Stand
manipulations yield

G0i j
k 5

1

2
g0

kl~] ig0 j l 1] jg0ik2] lg0i j !. ~2.21!

We also find the following solution at next order:
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G1i j
k 52

1

18
~d i

kWjl
l1d j

kWil
l !1

1

2
~Wj

k
i1Wi

k
j2W k

i j !

G1i j
j 52

1

9
Wi j

j , gjkG1 jk
i 52

1

9
Wj

i j . ~2.22!

The right-hand side of the above formulas should be read
being evaluated in the lowest order metric.Wi

jk is such that

E g~f!dW5E dgi j Wi j 1E dG jk
i Wi

jk. ~2.23!

These tensors satisfy the following identities:

gi j Wi j 54g~f!W

Wj
ji 5

1

2
Wi j

j . ~2.24!

By explicit computation one finds thatWi
jk is given by the

covariant derivative of a tensor that is cubic in the We
tensor, although we will not give the explicit expression he
Symbolically,Wi

jk has the structureW;¹@g(f)CB# where
B is the tensor defined in the previous section. At the end
the day, the combination that appears in the equation of
tion is given in terms of asingle scalar function ofr when
computed for the lowest order solution, but we will not r
port the details here.

The remaining equations for the metric and matter fie
are also easily derived. In particular, deriving the equation
motion for the metric is much simpler than in the seco
order formalism. One obtains equations of motion where
Ricci tensor depends on bothg andG. One then expands thi
in the above solutions to obtain the standard form of
Einstein equations:

Ri j 2
1

2
] if] jf2

gs
2

96
F5

2
i j 1FWi j 2

3

8
gi j g~f!WG

1
1

2
¹k@Wji

k1Wi j
k2Wi j

k#50

hf2gfW50, ~2.25!

which are supplemented with the self-duality conditio
These equations are equivalent to the ones found by d
computation, but their derivation is simplified.

C. Effective 1D action

We show in this section that for spherically symmet
solutions, there is an effective one-dimensional action t
yields the same field equations as Eq.~2.4! evaluated on the
ansatz~2.12!. To obtain the one-dimensional action we sta
from the variation of the ten-dimensional action,
1-5
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dI 5E d10xAg@dgi j Ei j 1dfE#, ~2.26!

where we have substituted the solution~2.13! of the self-
duality equation~2.6! in E andEi j . We now use the ansat
~2.12! to expressdgi j in terms ofda,dh, andd f . This yields

dI 5E d10xAgF2da~gi j Ei j !1
d f

f
~grr Err 2gttEtt!

2dh~grr Err 1gmnEmn!1dfEG . ~2.27!

Since all the fields depend only on the radial variable, o
can now perform all integrations but the radial one. The
sulting variations can be integrated again to a o
dimensional action,

I 1D5E dre4a12h
r 5

,5 F1

6 S 64f a9140f h91148f a82

1168f a8h8150f h8213 f f821400
f a8

r
1240

f h8

r

1200
f

r 2
16 f 9164f 8a8137f 8h8180

f 8

r
2

120

r 2 D
1

8,8

r 10e4(a1h)
2g~f!ea1hWG ~2.28!

where we have discarded an overall~infinite! volume factor.
W is given by Eq.~2.3! evaluated on Eq.~2.12!. It is a func-
tion of a, h, f and their first two radial derivatives. The ex
plicit expression is given in Appendix A.

Notice that this derivation of the effective action guara
tees that all solutions of the 1D action are solutions of
10D action. In other words, the reduction from 10D to 1D
consistent. What is crucial is that the number of independ
functions appearing in the ansatz~2.12! is equal to the num-
ber of equations one gets by evaluating Eq.~2.4! on the Eq.
~2.12!. For the problem at hand this number is four ev
when f 51, so even in this case one must first proceed w
generalf and then setf 51. The method presented here c
be used more generally in order to provide consistent red
tions of the higher dimensional theories. One should cont
this method with the most common practice to substitute
ansatz in the action and then reduce. This latter does
guarantee a consistent reduction.

It is instructive to rewrite Eq.~2.28! in terms of the vari-
ables used in the reduction of the type IIB supergravity o
S5. Such a reduction was presented in@4#. Using their vari-
ables the one-dimensional action reads
06600
e
-
-

-
e

nt

h

c-
st
n
ot

r

I 1D52E drAg5FR52
1

2
g5

rr ~] rf!22
40

3
g5

rr ~] rn!2

2V~n!1g~f!e2(10/3)nWG ~2.29!

V~n!5
1

,2
@8e2(40/3)n220e2(16/3)n# ~2.30!

where g5 denotes the determinant of the five-dimension
metric g5mn given in Eq.~2.32!. The fields appearing in this
action are related to thea, h and f by

n~r !5
1

2
~a1h!1 log

r

,
~2.31!

ds5
25g5mndxmdxn5e(1/3)(8a15h)S r

, D 10/3

3S 2 f dt21dabdxadxb1
eh

f
dr2D . ~2.32!

This can be shown using the standard reduction formula

ds10
2 5e2(10/3)ng5mndxmdxn1e2n,2dV5

2 ~2.33!

and matching with the ansatz in Eq.~2.12!. The dimensionful
parameterl is proportional to the Planck length and is intr
duced into the ansatz on dimensional grounds.

The equations of motion that follow from Eq.~2.28! with
f set equal to one,f 51, are given by

18a9110h9136a82136a8h8110h821f821
90a8

r
1

50h8

r

1gwa50 ~2.34!

10S a91
1

2
h9D12a82120S a81

1

2
h8D 2

1
1

2
f82

1
50

r S a81
1

2
h8D2

8,8

r 10e4(a1h)
1gwh50 ~2.35!

8a915h924a8224a8h81f821
5h8

r
1gwf50

~2.36!

f91S 4a812h81
5

r Df822gfwf50 ~2.37!

wheregwa is the variation ofa83 term in action~2.28! with
respect toa, etc. We give in Appendix A the explicit form o
W as a function ofa, h, f, and their derivatives. From ther
1-6
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one may derivewa etc. The evaluation of the corrections o
the lowest order solution~2.14! is given by

wa5wf5214400
,16

r 24e(19/2)h0

wh52
4800,12

r 28e(19/2)h0
~112,82249,4r 4184r 8!

wf5
28800,12

r 28e(19/2)h0
~14,8235,4r 4110r 8!. ~2.38!

Notice that the metric in Eq.~2.12! depends ona only
through an overall conformal factor. It follows that the We
tensor does not depend ona, and thatW depends on it only
through the inverse metrics used in contracting indices. T
explains whywa is equal towf .

We have explicitly verified that Eqs.~2.34!–~2.37! are
equivalent to the equations one obtains by evaluating
~2.4! on the ansatz~2.12!, as discussed in Sec. II A. Thi
remains true even whenf is not set equal to one. This is
nice check, especially onwa , wh , wf andwf , as the orga-
nization of the two computations is rather different. In t
next section we present yet another reformulation in term
first order equations.

III. FIRST ORDER SYSTEM

The D3-brane solution is half supersymmetric@28#. This
implies that there must be an equivalent first order formu
tion of the field equations when the ansatz for the solutio
consistent with supersymmetry. In this section we setf 51,
and present such a reformulation. A~somewhat different!
discussion of first order equations appeared in@14#.

Let us first consider the effective action without thea8
correction. The potential in Eq.~2.30! has an AdS critical
point atn50. This critical point is stable as it is maximall
supersymmetric. It follows that the potentialV(n) admits a
‘‘superpotential’’W such that the AdS critical point is a criti
cal point of W @29#. Indeed, one finds that the potenti
~2.30! can be rewritten as

V~n!5
3

10S ]W6

]n D 2

2
16

3
W 6

2 ~3.1!

W65
1

, Fe2(20/3)n6
5

2
e2(8/3)nG . ~3.2!

The formula for the potential~3.1! coincides with the one in
@29# after the differences in conventions are taken into
count. The AdS critical point is also a critical point ofW2 .
We shall henceforth consider onlyW2 , which we shall de-
noteW, and only add a few comments aboutW1 .

A simple Bogomol’nyi argument implies that the theo
admits BPS domain wall solutions@30,31#
06600
is

q.

of

-
is

-

ds5
25e2c(r)habdxadxb1dr2

n5n~r!

f5f~r! ~3.3!

wherec(r) and n(r) are solutions of the first order equa
tions

]rn5
3

20

]W
]n

, ]rc52
2

3
W, ]rf50. ~3.4!

One can verify that solutions of the first order system so
the second order equations. The first order equations
follow from the requirement that the ‘‘Killing spinor’’ equa
tions

S Dm1
1

A15
W GmD e50,

S Gm]mn2
3

5A2

]W
]n D e50, Gm]mfe50 ~3.5!

admit solutions for nonzero spinore @30#. In the context of
supergravity these are the variations of the gravitino and
latino, and the solutions of the first order equations are
persymmetric solutions.

The coordinate transformation,

r 5r ~r!,
dr

dr
5S r

l D
5/3

e4/3[a(r )1h(r )] , ~3.6!

can bring the metric~2.32! to the form ~3.3!. Furthermore,
a(r ) andh(r ) are related toc(r) andn(r) in a simple way,

n~r!5
1

2
$a@r ~r!#1h@r ~r!#%1 log

r ~r!

l
~3.7!

c~r!5
1

3 H 4a@r ~r!#1
5

2
h@r ~r!#15 log

r ~r!

l J . ~3.8!

It follows that one can obtain first order equations fora and
h by substituting Eqs.~3.7! and ~3.8! in Eq. ~3.4!. One ob-
tains,

] ra1] rh1
2l 4

r 5 e22(a1h)50,

4] ra1
5

2
] rh1

2l 4

r 5 e22(a1h)50, ] rf50. ~3.9!

These are exactly the equations that follow from the analy
of supersymmetry in ten dimensions@28#.

Before we move on to consider the modification due toa8
corrections we note that had we considered the superpo
tial W1 , we would have ended up with a solution of th
form ~2.14! but with
1-7
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eh0512
l 4

r 4 , r 4. l 4, eh05211
l 4

r 4 , r 4, l 4 .

~3.10!

This solution has a curvature singularity atr 5 l , and is re-
lated to the standard D3-brane solution by analytic conti
ation to imaginaryr.

A. a8 corrections to the first order system

We now discuss the extension of the analysis to inclu
thea8 corrections. Ideally one would like to write the effe
tive action as a sum and/or differences of squares and
read off thea8-corrected first order equations. Such a rew
ing should be possible because of supersymmetry. Howe
the complexity ofW for generalh, a andf makes such an
exercise rather formidable. Furthermore, as we discus
our action is not complete since further relevant boso
terms may be present and such additional terms may be
essary in order to rewrite the action as a sum of squares

We proceed by adding ordera83 terms in Eq.~3.9! and
demand that the solutions of the first order system solve
second order equations~2.34!–~2.37!,

a81h81
2l 4

r 5 e22(a1h)5g j 1~r ! ~3.11!

4a81
5

2
h81

2l 4

r 5 e22(a1h)5g j 2~r ! ~3.12!

f852gf j 3~r ! ~3.13!

where the prime indicates a derivative with respect tor. This
yields

j 152S 11
10

rh08
D b12

1

2h08
~wh1wf2wa!,

j 255S 11
4

rh08
D b12

1

2h08
~wh1wf2wa!,

j 35
1

r 5E r

dr8r 85wf1
C1

r 5
~3.14!

whereb1[a181
1
2

h18 satisfies

b181
9

r
b15

1

10
~wf2wa!. ~3.15!

Notice that supersymmetry demands thatb050 to lowest
order. There are nonsupersymmetric solutions of the low
order second order equations~2.34!–~2.37!, including non-
supersymmetric solutions withb050, as we discuss in Ap
pendix C, but we shall not consider them here.

Oncewf , wa andwh are computed using the lowest ord
solution, Eq.~3.15!, for b1 the equation forj 3 can be easily
integrated.b1 in turn gives the source termsj 1, and j 2. The
06600
-

e

en
-
er,

d,
c
c-

e

st

integration constants are fixed by requiring that solution
asymptotically flat and regular at the horizon.

B. a8-corrected solution

Using thew’s in Eq. ~2.38! one can easily compute th
sources,

j 1~r !5C0

3,415r 4

r 9,4
2

16,12

2431r 43e(17/2)h0
@768,2417808,20r 4

135360,16r 8193840,12r 121161330,8r 16

13658655,4r 2023500640r 24#

j 2~r !5
5C0

r 5,4
2

320,12

2431r 39e(17/2)h0
@64,201544,16r 4

12040,12r 814420,8r 121133705,4r 16

2109395r 20#

j 3~r !5
C1

r 5
2

160,16

2431r 39e(17/2)h0
~128,1611088,12r 4

14080,8r 818840,4r 12112155r 16!. ~3.16!

The integration constantsC0 andC1 can be fixed by requir-
ing that the terms on the right-hand side of Eqs.~3.11!–
~3.13! are small compared to the terms on the left-hand s
for all r. This implies thatj 1 , j 2 and j 3 should be at most the
same order as the terms on the left-hand side. Nearr 50 the
terms on the left-hand side behave as 1/r . On the other hand
j 1 behaves as 1/r 9 and j 2 and j 3 as 1/r 4. This can be rem-
edied by choosing appropriately the integration constants

C05
212l 2

2431
, C15

5

l 4 C0 . ~3.17!

This is a nontrivial result since the number of terms that
need to set to zero is greater than the integration const
we have. The same values of integration constants follow
requiring that the solution we present in the next section
smooth at the horizon.

We note that thej 1 and j 2 are such that they cannot b
absorbed into aa8-modification of the superpotentialW. To
check this one may rewrite Eq.~3.11! in the coordinate sys-
tem~3.6!. Let us callJ1(r) andJ2(r) the sources that appea
on the right-hand side of the first and second equations in
~3.4!. One may absorbJ2(r) into W by W85W2 3

2 gJ2. In
order for this transformation to also remove the sourceJ1 the
following relation should hold:

]J2

]r
1

2

3

]n

]r
J150. ~3.18!

A direct computation shows that this is not satisfied, but
note that there are~unexpected! cancellations between th
two terms. Had we been able to absorb the sources in
modified superpotential, we would conclude that the form
1-8
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ON a8 CORRECTIONS TO D-BRANE SOLUTIONS PHYSICAL REVIEW D68, 066001 ~2003!
the supersymmetry rules in Eq.~3.5! is not modified at order
a83, so these results may be taken to indicate that there
new terms in the supersymmetry transformation rules at
der a83. We should add, however, that given that we on
consider a part of the complete effective action such a c
clusion is premature.

Knowing the sources, it is straightforward to integrate t
first order equations~3.11!–~3.13!. Taking the sum of the
first two equations one obtains a differential equation foa
1h/2 which can be easily integrated. Feeding back o
solves fora1 andh1. The integration of Eq.~3.13! is equally
straightforward. All integration constants are set to zero
requiring that the solution be asymptotically flat. The res
is

h152
1024~3,819,4r 4110r 8!

2431,2r 12eh0
2

32,12

2431r 38e(15/2)h0

3@296,202912,16r 423910,12r 8222355,8r 12

297240,4r 161218790r 20#

a15
1024~2,815,4r 415r 8!

2431,2r 12eh0
1

8,12

2431r 38e(15/2)h0

3@2256,2022304,16r 429384,12r 8247600,8r 12

2197795,4r 161486200r 20#

f152
10240

2431l 2r 4
1

160,16

2431r 34e(15/2)h0
@64,121408,8r 4

11020,4r 811105r 12#. ~3.19!

The corrections are smooth atr 50, and the choice of inte
gration constants was crucial for this property.

Let us consider the near horizon limit of the solutio
Following @32# we consider the limit

a8→0,
r

a8
fixed, gs fixed. ~3.20!

In this limit we find that

gh152ga15
1

N3/2

E3/2~gs!

2•2431p3/2
, gff152180

gf

g
~gh1!.

~3.21!

It is intriguing that even though we ignored higher derivati
terms that depend onF5 the near horizon limit is still
AdS53S5, just as one would expect for the ‘‘true’’ D3-bran
solution@1,3#. This may indicate thatF5 dependent terms ca
be ignored in the near-horizon limit. Recall that in the ne
horizon limit F5 is proportional to the volume form both i
the AdS5 and the S5 directions. One may verify using th
results in @11# that theF5 dependent terms of the dilato
superfield vanish in this case. This is an additional indicat
that our results are exact in this case.
06600
re
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Notice that the AdS radius does not receive correctio
but the string coupling constant does. The choice of the
tegration constants in Eq.~3.17! is crucial for the limit~3.20!
to exist.

IV. THERMODYNAMICS OF CORRECTED SOLUTIONS

In this section we discuss the thermodynamics of the c
rected solution. The quantities of interest are the m
density,7 the temperature, the entropy and the charge den
of the solution. One may use either Euclidean of Lorentz
methods to study thermodynamics. In the present case
self-duality of the lowest order solution presents an ad
tional complication in the Euclidean computation since o
needs to understand the proper analytic continuation of
self-duality condition. We will follow a Lorentzian analysi
and adapt the method of Wald@17–19# for the problem at
hand.

Recall that the entropy, mass and charge of a black h
satisfy the first law of thermodynamics which in integrat
form ~Smarr formula! reads

TS5M2vQ. ~4.1!

HereT is the Hawking temperature,S is the entropy,M is the
mass,Q is the charge andv the corresponding potentia
Extremal black holes have zero temperatureT50 ~and quite
often zero entropy as well! so the Smarr formula implies

M5vQ. ~4.2!

In the context of supersymmetric black holes, this relat
originates from the supersymmetry algebra. The case
D-branes is exactly analogous, but the appropriate quant
are now densities. One may wrap the spatial worldvolu
coordinates of the brane on a torus~or some other compac
manifold! and reduce over that manifold to obtain a bla
hole in lower dimensions. For instance, the D3-brane can
viewed as a 7D black hole after reduction over the spa
worldvolume coordinates. Our analysis will be done from t
ten-dimensional point of view.

In the presence of higher derivative terms, the extrem
D3-brane still has zero temperature~as we verify below!, so
a relation of the form~4.2! should still hold since Eq.~4.1!
follows from first law alone. Since the charge of the D
brane is quantized one might expect that Eq.~4.2! would
imply that the mass does not renormalize. We find, howe
that things are more subtle and both the mass and the po
tial v renormalize.

Given a gravitational system described by an actionI one
may compute the gravitational energy as follows. Let us c
sider a spacetimeM and denote by]M` its asymptotic in-
finity which is considered as its boundary. We first requ

7Notice that we use interchangeably the terminology ‘‘mass d
sity’’ and ‘‘tension.’’ With abuse of terminology will also sometime
just call ‘‘mass’’ the tension, and ‘‘charge’’ the charge density.
will be clear, however, from the context which quantity we a
discussing.
1-9
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that the theory, subject to appropriate boundary conditio
has a well-defined variational problem, i.e. all bounda
terms in the variation of the action should vanish autom
cally so that the bulk field equations are true extrema of
action. In gravitational systems this requires the addition
boundary termsB,

I 5E
M

L2E
]M`

B. ~4.3!

Under a variation we have

dL5~field equations!1dQ~F,dF! ~4.4!

whereF denotes collectively all fields. In order for the vari
tional problem to be well-definedB andQ should be related
by

dE
]M`

B5E
]M`

Q~F,dF!. ~4.5!

In pure gravityB52K, whereK is the trace of the secon
fundamental form. In more general theoriesB may contain
additional terms.

The action~4.3! is invariant under diffeomorphisms. Thi
implies that there is a corresponding Noether current,

J5Q~F,LjF!2 i jL ~4.6!

whereja is a vector that generates the diffeomorphism,Lj is
the Lie derivative alongja, i j is the inner derivative@when
acting on an-form it produces a (n21)-form by contracting
its first index byja] and we use form notation@J is a (d
21)-form, L is a d-form etc.#. When the field equations ar
satisfiedJ is closed,dJ50, and one can construct locally
(d22)-form Q such thatJ5dQ. The Hamiltonian that pro-
vides the dynamics generated byja is given by

H5E
C
J2E

]M`

i jB ~4.7!

where C is a Cauchy surface. On-shell this evaluates to
surface term

H5E
]M`

~Q2 i jB!. ~4.8!

The gravitational energy is now defined by takingj to be a
timelike Killing vector. In general, this expression is dive
gent so a suitable subtraction should be employed. In asy
totically AdS spacetimes one may incorporate inB covariant
boundary counterterms@33#, but in asymptotically flat space
times such universal covariant local counterterms do not
ist @34#. We ~implicitly ! use the background subtractio
method below.

Let us now consider the theory based on the action~2.1!.
Following similar steps as in@18# one finds that the mas
density of a D3-brane solution is given by
06600
s,
y
i-
e
f

a

p-

x-

m5
M

V
5

1

16pGN
E ~]mhpm2]phj

j !dS5
p ~4.9!

wherehi j is the deviation of the metric from the Minkowsk
metric andV is the volume of the spatial worldvolume direc
tions. The integration is over the sphere at asymptotic infin
in transverse space. The indexj runs over all spatial indices
and p and m only over the transverse coordinates. Formu
~4.9! generalizes the ADM formula to apply top-brane
spacetimes@35#. One may rewrite this formula as a Koma
like mass formula,

M5
1

8pGN
E

S`

ea1 . . . a8bc¹
[bjc] ~4.10!

where S` is the spacelike surface at infinity enclosing t
brane. We wrap the spatial worldvolume coordinates of
brane on a torus of volumev, so thatS`5T33S5. Static
spacetimes of the form~2.12! have a timelike Killing vector

j5j i
]

]xi , j t51, j i50,iÞt. ~4.11!

A straightforward computation yields

¹ rj t5
1

2
grr gtt] rgtt . ~4.12!

One may now substitute this expression in Eq.~4.10! to ob-
tain the mass of the solution.

The temperatureT associated with a spacetime is equal
T5k/2p wherek is the surface gravity. The latter can b
shown to be equal to@27#

k252
1

2
¹ajb¹ajb52

1

4
gttgrr gtt,r

2 ~4.13!

where in the last step we used Eq.~4.12!.
The entropy of a solution can be computed using thed

22)-form Q introduced earlier,

S5E
H

Q52pE
H

dS i j Q
i j ~4.14!

where dS i j 5d8xAhe i j is the surface element defined ov
the horizonH, with h the induced metric on the horizon.Qi j
is related to the Noether charge as discussed above and~after
fixing ambiguities with certain choices! is given by

Qi j 522L i jkl ¹kj l14¹kL i jkl j l . ~4.15!

L i jkl is the variation of the action with respect to the Ri
mann tensor andj is the timelike Killing vector. In the case
where the action contains only the Einstein-Hilbert term,
result gives the well-known Bekenstein-Hawking formu
S5A/4. The derivation of Eq.~4.15! assumes a nondegene
ate horizon (kÞ0). It was successfully applied, however~in
1-10
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ON a8 CORRECTIONS TO D-BRANE SOLUTIONS PHYSICAL REVIEW D68, 066001 ~2003!
a context similar to ours!, to extremal black holes as we
@36#.8 We will assume that this formula remains valid f
extremal black holes.

Finally the electric charge density of the solution is giv
by

q5
gs

A16pGN
E

S5* F5 . ~4.16!

The prefactor is due to the normalization of theF5 terms in
Eq. ~2.1!. The magnetic chargeq̃ is given by a similar inte-
gral that involvesF5. In general, the electric and magnet
charges satisfy the Dirac quantization condition@37#

qq̃52pn ~4.17!

wheren is an integer. For dyons this formula is modified a
it does not by itself lead to a quantization condition for se
dual solutions withq5q̃, such as the D3-brane solutio
which we discuss@28#. The exact quantization condition fo
D3-branes is determined in string theory by string dualit
~see for instance Sec. 3 of@38#!. With the normalizations as
in Eq. ~2.14! the chargeq of a single self-dual brane come
out to beq5A2p @see Eq.~4.19!#, which agrees with the
naive application of Eq.~4.17! with n51,q5q̃.

A. Lowest order solution

Before we proceed to incorporate thea8 corrections let us
discuss the lowest order D3-brane solution. In this case
metric is given in Eq.~2.14!, and the mass density can b
easily calculated@using either Eq.~4.9! or Eq. ~4.10!# to be

m5
N

~2p!3gsa82
~4.18!

where we usedGN58p6gs
2a84. The charge density of the

solution is given by

q5A2pN, ~4.19!

where the factor ofA2p is discussed below Eq.~4.17!. It is
straightforward to use the formulas given above to comp
the entropy and the temperature of the solution. The resu
that both of them are equal to zero. So one expects a form
of the form ~4.2! and we indeed find

m5
1

A16pGN

q. ~4.20!

This is the BPS formula derived in@28#. Let us now derive
this relation in a way that will be useful when we consid
the corrected solution.

Using Stokes’ theorem one can express the surface
gral in Eq.~4.10! in terms of a volume integral,

8We thank Bernard de Wit for discussions about this point.
06600
-

s

e

te
is
la

r

e-

M52
1

4pGN
E

S
ea1 . . . a9bRc

bjc1
1

8pGE
H

ea1 . . . a8bc¹
[bjc]

~4.21!

whereS is a spacelike hypersurface that extends from
horizon to spatial infinity, and the last term is a surface in
gral over the horizon~which also involves the worldvolume
T3). To derive this one needs to use

¹j¹
jj i52Rj

i j j ~4.22!

which holds for Killing vectors. The integral over the hor
zon may be evaluated using our explicit metric and it va
ishes. In general, this term gives the entropy contribution
the first law.

To evaluate the volume term we now use the Einst
equation,

Ri j 5
1

2
] if] jf1

gs
2

96
Fil 1 . . . l 4

F j
l 1 . . . l 4. ~4.23!

We further note thatj generates an isometry of the solutio
so

j i¹if50, j i¹iA
j 1 . . . j 414~¹ [ j 1jk!A

uku j 2 j 3 j 4]50.
~4.24!

Inserting Eq.~4.23! in Eq. ~4.21! we get a term that depend
on the dilaton and a term that depends onF. The former
yields a vanishing contribution upon using Eq.~4.24!. The
latter can be manipulated as follows:

j iFil 1 . . . l 4
F jl 1 . . . l 4524¹l 1

~j iAil 2l 3l 4
F jl 1l 2l 3l 4!

1@j i¹iAl 1l 2l 3l 4

14~¹[ l 1
jk!Auku l 2l 3l 4] #F

jl 1l 2l 3l 4

24j iAil 2l 3l 4
¹l 1

F jl 1 . . . l 4. ~4.25!

The last two terms vanish due to theF-field equation and the
invariance of the solution~4.24!. We finally get

M52
gs

2

96pGN
E

S`øH
e tra1 . . . a8

j iAil 1l 2l 3
Ftrl 1l 2l 3.

~4.26!

One may integrateFt123r to obtainAt123r ,

At1235
1

gs
~e2h021! ~4.27!

where the constant part was chosen such thatAt123 vanishes
asymptotically. It follows then thatj iAi123uH521/gs . In
general, one can change the asymptotic value ofAt123 by
performing a gauge transformation. This will modify th
value ofj iAi123 at the horizon. The combination

v5j iAi123uS`
2j iAi123uH52

1

gs
~4.28!
1-11
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de HARO, SINKOVICS, AND SKENDERIS PHYSICAL REVIEW D68, 066001 ~2003!
is the associated electric potential and is gauge invariant9 It
is this gauge invariant combination that couples to the e
tric chargeq ~notice that one may use Stokes’ theorem
show that*H* F5*S`

* F). It follows that

m5
1

A16pGN

~2gsv !q ~4.30!

which is equal to Eq.~4.20! upon using Eq.~4.28!.
In the present case we were able to explicitly manipul

the bulk integral in Eq.~4.21! into boundary terms. When w
include thea8 corrections, however, similar manipulation
involving the higher derivative term become increasing co
plicated. Instead of using Eq.~4.25! in order to manipulate
the bulk integral one could also just use the explicit solut
to evaluate the bulk integral. Since the dilaton is constant
first term on the right-hand side drops out. The contribut
of F5 can also be computed straightforwardly since the in
gral can be computed by elementary means. These man
lations lead to the same result~4.20!, but now the contribu-
tion of the charges was computed via a bulk integral.

B. Corrected solution

Thea8 corrected D3-brane solution in the Einstein fram
is given by

ds25e21/2h0~11ga1!~2dt21dxW2!1e1/2h0

3@11g~a11h1!#~dr21r 2dV5
2!

ef5gs~11gff1!

Ftabcr516pNa82eabce
22h0~122gh1!r 25,

Fm1 . . . m5
516pNa82em1 . . . m5

~4.31!

where theeh0 is given in Eq.~2.14! and a1 ,h1 and f1 are
given in Eq.~3.19!. We should emphasize that this solutio
would be the true corrected D3-brane only if the part of
effective action relevant for this problem consisted of on
Eqs. ~2.1! and ~2.2!. However, as we discussed earlier, it
likely that additional terms that depend onF5 are relevant.

9On a curved spacetime one may define the electric and mag
part of a field strength as

E5 i jF, B5 i j* F ~4.29!

hereE andB are four-forms in our case,i j is the inner derivative
and j is a timelike Killing vector. For self-dual solutions,E5B.
When the field equations and Bianchi identity hold,dF5d* F50,
one finds thatdE5dB50, so locally there are electric and ma

netic potentialsE5dv, B5dṽ, respectively. In the case at hand, th
electric potential is related with the gauge field asv5 i jA. One may
show in general thatv is constant at the horizon and the differen
between its asymptotic value and the constant value at the hor
is gauge invariant.
06600
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To compute the mass of the solution one has to take
account that the action has been modified by the addition
the term~2.2!, so the mass formula should also be modifi
accordingly. The discussion in the beginning of this sect
outlines the steps that are necessary in order to compute
new mass formula. This computation is technically rath
complex because of the complicated tensor contraction
W. We will use instead the following shortcut. We will sta
from Eq. ~4.10! and use Stokes’ theorem to rewrite it as
Eq. ~4.21!. We should emphasize that the starting point do
not represent the entire mass of the corrected solution sin
does not properly take into account that the mass formula
been modified. We now use the field equations,

Ri j 5
1

2
] if] jf1

gs
2

96
Fil 1 . . . l 4

F j
l 1 . . . l 41S 3

8
g~f!Wgi j 2wi j D .

~4.32!

The first two contributions can be analyzed as in the previ
section. The last contribution represents an additional gr
tational contribution. It should thus be combined with t
term on the left-hand side to yield the mass of the soluti
We thus propose as a mass formula

M5
1

8pGN
E

S`

ea1 . . . a8bc¹
[bjc]

1
1

4pGN
E

S
eda1•••a9S 3

8
g~gs!Wgd

e2we
dD je.

~4.33!

The logic here is similar to the one discussed in the l
paragraph of the previous section: one could either rew
the bulk integral as a surface integral or just directly comp
the bulk integral.

The result for the mass is

m5m0S 11g~gs!
53210

2431

1

l 6D5m0S 11
1

N3/2

40E3/2~gs!

2431p3/2 D
~4.34!

wherem05N/(2p)3gsa82 is the mass density of the lowes
order solution. In this result the three terms in Eq.~4.33!
contribute to the correction with relative weights21,3/2,0.

The form of the correction in Eq.~4.34! follows by di-
mensional analysis and the fact that the lowest order solu
depends on the parameters of the solution only vial 4. The
detailed form of the higher derivative term only determin
the numerical coefficient. In particular, if the numerical c
efficient is nonzero, as we find in Eq.~4.34!, then the mass of
N11N2 branes is less than the mass ofN1 branes plus the
mass ofN2 branes. This follows from the inequality

1

AN11N2

,
1

AN1

1
1

AN2

. ~4.35!

tic
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ON a8 CORRECTIONS TO D-BRANE SOLUTIONS PHYSICAL REVIEW D68, 066001 ~2003!
It follows that energetically the branes would prefer to co
lesce to form a single group. Thus there should be a fo
acting on the two sets of branes. This is opposite to what
expects from BPS configurations, where the branes sh
not feel any force. We believe that after taking into acco
the effect of the~presently unknown! F5 dependent highe
derivative terms the mass of the D3-brane solution will n
renormalize.

With the definition of mass in Eq.~4.33! one may proceed
as in the previous section to derive

M52
gs

2

96pGN
E

S`øH
e tra1 . . . a8

j iAil 1l 2l 3
Ftrl 1l 2l 3.

~4.36!

One may integrateFt123r to obtainAt123,

At1235
1

gs
~e2h021!2

32pNg~gs!a82

2431l 2r 40e9h0
~256r 28e7h0~3l 4

15r 4!116l 14r 2e1/2h0~248l 162352l 12r 421037l 8r 8

11700l 4r 12119890r 16!! ~4.37!

and from here we obtain

v5j iAi123uS`
2j iAi123uH5v0S 11g~gs!

53210

2431

1

l 6D
~4.38!

wherev0521/gs is the value of the electric potential for th
lowest order solution. The remaining computation is exac
the same as the one in the previous paragraph, and we en
with

m5
1

A16pGN

~2gsv !q. ~4.39!

The charge density of the solution retains its lowest or
value, as is required by charge quantization. We thus find
even though the mass of the solution renormalizes and
charge does not renormalize, a BPS-type formula still ho
This is possible because the electric potential renormaliz

One can understand this behavior as follows. In the
sence of corrections to the gauge field equation, the form
for the charge,q;** dA, remains uncorrected. Sinceq does
not renormalize and * renormalizes~since it depends on th
metric!, A has to renormalize in such a way that the co
bined corrections to * andA cancel each other. So unless t
gauge field equation is corrected the electric potential w
renormalize. Then the first law~4.39! can be used to infe
that the mass renormalizes. As we argued above, howe
any correction to the mass would imply that the branes fe
force. This strongly indicates that the gauge field equatio
and therefore the self-duality condition ofF5 receives cor-
rections such that at the end the mass of the brane doe
renormalize.

One may easily check that the temperature and the
tropy remain equal to zero. For the temperature this follo
upon using Eq.~4.13!. It goes to zero asr, as in lowest order
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solution, but the coefficient ofr receives corrections. For th
entropy we use Eqs.~4.14!, ~4.15!. The corrections to the
entropy vanish asr 15 ~after factoring out the behavior of th
temperature!.

V. OTHER BRANES

Corrections to other R and NS D-brane solutions can
analyzed as in the D3-brane case. Analogously to the 3-b
case, a 1D effective action may be derived. The system
second order equations can be integrated by introducing v
ables suggested by the lowest order supersymmetry relat
As in the D3 case, these equations contain source te
evaluated on the lowest order solution. Once the comp
source terms are known, the corrected solutions can be
rived.

A. Equations of motion

The D dimensional action in the Einstein frame releva
for general brane solutions is given by

S52
1

16pGE dDxA2gS R2
4

D22
~]f!2

2
1

2~p12!!
eãfFp12

2 1ge212/(D22)fWD ~5.1!

where

g5
1

8
z~3!a83gs

12/(D22) , ã5
2~D22p24!

D22
2aNS

~5.2!

aNS52 for NS branes but zero otherwise. The dilaton fac
in front of W is that of a tree-level string correction.W is
expected to depend onFp12 and on its covariant derivative
as well as on the covariant derivatives of the dilaton.
discussed in the Introduction, this expression is not known
present, so in our analysis we will keepW arbitrary.

The equations of motion from the above action are

Ei j 5Ri j 2
1

2
gi j R2

1

2 S ] if] jf2
1

2
gi j ~]f!2D

2
eãf

2~p12!! S ~p12!Fil 1 . . . l p11
F j

l 1 . . . l p11

2
1

2
gi j Fp12

2 D1gS wi j 2
1

2
gi j e

2[12/(D22)]fWD50

~5.3!

E5¹2f2
ãeãf

2~p12!!
Fp12

2 1gwf50 ~5.4!
1-13



ti

ne

ric

ent

de HARO, SINKOVICS, AND SKENDERIS PHYSICAL REVIEW D68, 066001 ~2003!
Ei 1 . . . i p115
1

A2g

1

~p11!!
] l~A2geãfFli 1 ..i p11!

1gwA
i 1 ..i p1150 ~5.5!

wherewi j is defined by

E dDxAge2[12/(D22)]fdW5E dDxAgdgi j wi j ~5.6!

andwf andwA denote the variation ofe2[12/(D22)]fW with
respect to the dilaton and the gauge field, respectively.

The equations of motion admit both electric and magne
solutions @39–41#. Here we will consider only electric
branes, but similar methods apply to magnetic branes
well. For an electric brane solutions we take the ansatz

ds25eaS 2dt21 (
a51

d21

~dxa!21eh~dr21r 2dVq11
2 !D

Ata1 . . . ap
5ea1 . . . ap

c~r !. ~5.7!

The field equations evaluated on this ansatz give

a91
~D22!

2
a821

q

2
a8h81~q11!

a8

r

2eãf
q

D22
K21gw̃t50 ~5.8!

~D21!a91~q11!h92
d

2
a8h81f821

~q11!

r
a8

1
~q11!

r
h82eãf

q

D22
K21gw̃r50 ~5.9!

a91h91
~D22!

2
a821

1

2
~2q1d!a8h81

1

2
qh82

1~2q1d11!
a8

r
1~2q11!

h8

r
1eãf

d

D22
K2

1gw̃m50 ~5.10!

f91S ~D22!

2
a81

q

2
h81

~q11!

r Df81
ã

2
eãfK21gw̃f50

~5.11!

1

~p11!!
e2(D/2)a2(q12)h2ãfr 2(q11)] r

3~e(D/22p22)a11/2qh1ãfr (q11)k~r !!1gw̃A50

~5.12!

whered5p11 andq5D2p23 and
06600
c

as

w̃t52ehF 1

D22
~2gklwkl1e2[12/(D22)]fW!gtt1wttG

~5.13!

w̃r522F 1

D22
~2gklwkl1e2[12/(D22)]fW!grr 1wrr G

~5.14!

w̃m522ea1hF 1

D22
~2gklwkl1e2[12/(D22)]fW!gmm

1wmmGgmm ~5.15!

w̃f5grr wf ~5.16!

w̃A5e2ãfwA ~5.17!

K25k~r !2e2da, k5
1

p12
c8 ~5.18!

and

wA
i 1••• i p115wAe i 1••• i p11

. ~5.19!

The same equations also hold for magnetic solutions. O
only has to exchangeq↔d and takeã→2ã.

The lowest order equation admits the following elect
solution @39–41#:

eh05F11S l

r D
qG4/D

, a05
2q

D22
h0 ,

f05
ã

2
h0 , k~r !5Qe[ 2ãf02(q/2)h01(d112D/2)a0]r 2(q11),

D5ã21
2dq

D22
, Q25

4q2

D
l 2q, ~5.20!

whereQ is the charge of the solutions.
We would like to obtain perturbative solutions

a5a01ga1

h5h01gh1

f5f01gf1

c5c01gc1 . ~5.21!

Before we proceed to integrate the equations we will pres
a 1D effective action from which the field equations~5.8!–
~5.12! can be derived.
1-14
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B. Effective action

As in the case of the D3-brane, the 1D effective action
most naturally written in terms of (d11) dimensional fields.
The (d11) dimensional action may be viewed as the red
tion of the D-dimensional theory over the sphereSq11 in
transverse infinity and is given by

I d115E drA2gd11FRd112
1

2
gd11

rr f82

2
~q11!~D22!

~d21!
gd11

rr n821
1

2
gd11

rr eãf2da

f ~p12!2
c8~r !2

2V~n!G ~5.22!

where

V~n!52
q~q11!

l 2
e2[2(D22)/(d21)]n. ~5.23!

The metricgd11 and the scalar fieldn are related toa, h and
f by

gd11,i j dxidxj5eaS 2 f dt21 (
p51

d21

dxp
21

eh

f
dr2D

a5
1

d21 S ~D22!a1~q11!h12~q11!log
r

l D
n5

1

2 S a1h12 log
r

l D . ~5.24!

This can be shown by using the standard reduction form

dsD
2 5e22[(q11)/(d21)]ngd11,i j dxidxj1e2nl 2dVq11

2

~5.25!

and matching with Eq.~5.7!.
The a8 correction can be incorporated by adding to t

action the following term:

I W5gE drA2gd11e2[2(q11)/(d21)]n2[12/(D22)]f

3W@r ,a,h,f, f ,c#. ~5.26!

To connect theD-dimensional equations with the equatio
of the effective action we note that

dgtt52S da1
d f

f Dgtt, dgrr 5S 2~da1dh!1
d f

f Dgrr

dgmn52~da1dh!gmn, dAi 1 . . . i p11
5e i 1 . . . i p11

dc.
~5.27!

Substituting in theD-dimensional action we obtain
06600
s

-

a

dI 5E dDxA2gF2Ei j g
i j da1

d f

f
~grr Err 2gttEtt!2~grr Err

1gmnEmn!dh1Edf1E[ j
j i 1 . . . i p11e i 1 . . . i p11] G

5E dDxA2g@Eada1Efd f 1Ehdh1Ecdc#.

~5.28!

Since the solutions of interest depend on onlyr one may
integrate over all directions butr. Integrating the variation to
an action we get Eq.~5.22!.

From Eq.~5.28! we can read off the relation between th
D and 1D field equations:

Ea52Ei j g
i j

Ef5
1

f
~grr Err 2gttEtt!

Eh52~grr Err 1gmnEmn!

Ef5E

Ec5Ei 1 . . . i p11e i 1 . . . i p11
. ~5.29!

The sourcesw̃ in Eqs. ~5.8!–~5.12! can be expressed as
combination of the source terms in thea,h, f ,f, c equations
of motion:

wa,h, f ,f,c5
1

A2g

d

d~a,h, f ,f,c!
~A2ge2[12/(D22)]fW!

~5.30!

with the result

w̃t5
2e(a1h)

d~D22!
@qwa2~D22!wh#

w̃r5
2e(a1h)

d~D22!
@qwa2~D22!~wh1dwf !#

w̃m5
2e(a1h)

d~q11!~D22!
$~D22!@~11d!wh

1dwf #2@q1d~q12!#wa%

w̃f5e(a1h)wf

wA5
1

~p11!!
wc . ~5.31!

C. Integrating the equations

In this section we integrate the equations assuming
the source termsw̃ are known. It is convenient to introduc
the following variables:
1-15
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b5a1
q

D22
h

F5f2
ã

2
h. ~5.32!

These combinations are motivated by the fact that the su
symmetry of the lowest order solution implies thatb andF
vanish on the lowest order solution. Equations~5.8!–~5.11!
depend on the gauge field only through the combinationK2.
It is convenient to introduce the notation

K̄25eãfK2

K̄25K̄0
21gK̄1 ~5.33!

whereK̄0 is the lowest order value ofK̄ andK̄1 depends on
the corrections. In terms of these variables Eqs.~5.8!–~5.11!
become

b192
q

D22
h192

q

2
b18h081

~q11!

r
b182

q~q11!

~D22!

h18

r

2
q

D22
K̄11w̃t50 ~5.34!

~D21!b191
d

D22
h192

d

2
b18h081

D

2
h08h181

~q11!

r
b18

1
~q11!d

~D22!

h18

r
1ãF18h082

q

D22
K̄11w̃r50 ~5.35!

b191
d

D22
h191

d

2
b18h081~2q1d11!

b18

r
1

d~q11!

~D22!

h18

r

1
d

~D22!
K̄11w̃m50 ~5.36!

F191
~q11!

r
F181

ã

2 S h191
~D22!

2
b18h081

~q11!

r
h18D

1
ã

2
K̄11w̃f50. ~5.37!

Consider the linear combination of equationsd(5.34)
1q(5.36). Theresulting equation can be integrated,

b185
1

~D22!

1

r 2q11 F2E r 2q11~dw̃t1qw̃m!1C0G .
~5.38!

Let us introduce

y5
ã

2
b11

q

~D22!
F1 . ~5.39!
06600
r-

The linear combination of equation ãa/2(5.34)
1q/(D22)(5.37) can beintegrated as

y85
1

r q11 F2E r q11S ã

2
w̃t1

q

~D22!
w̃fD 1Y0G .

~5.40!

Integratingb18 andy8 once more one getsF1,

F15
~D22!

q
S y2

ã

2
b1D . ~5.41!

Finally, givenb1 andy, one may integrate the linear comb
nation @Eq. ~5.35!–Eq. ~5.34!# to obtain

h185
1

e(D/2)h0r q11 H E r q11e(D/2)h0F ~w̃t2w̃r !2S ~D22!b19

1
~q2d!

2
b18h081ãF18h08D G1C3J ~5.42!

which can be further integrated to yieldh1.
Having obtaineda1 , h1 andf1 one then substitutes to th

gauge field equation~5.12! to obtainc1. Finally there is one
further equation among Eqs.~5.8!–~5.11! to satisfy~we only
used three linear combinations to obtaina1 , h1 and f1).
This is expected to follow from the other equations up to
constant because of the Bianchi identity. This final equat
will thus impose a condition among the integration constan
as in the case of the D3-brane.

VI. CONCLUSIONS

We have studied in this paper the computation of quant
corrections to brane solutions. These corrections are dr
by the leading higher derivative corrections to the stri
theory effective action. The corrections were computed p
turbatively in a8, i.e. the lowest order solution was subs
tuted into the leading higher derivative term of the effecti
action and then the resulting equations were integrated
obtain the corrected solution. The straightforward applicat
of this procedure, i.e. the direct computation of the correc
equations, is very tedious, basically due to the complica
tensor structure of the higher derivative terms. We comple
the computation in this manner but we also developed s
eral alternative methods for analyzing the problem.

The first alternative method is the extension of the Pa
tini formalism to higher derivative theories. In this metho
the metric and the Christoffel symbols are considered as
dependent fields. The main advantage of this method is
it reduces the number of partial integrations needed in or
to derive the field equations. This is a significant simplific
tion because each factor of the Riemann tensor requires
partial integrations in the standard derivation of the fie
equations, so for higher derivative theories that depend
Rp, whereRp denotesp Riemann tensors contracted in som
way, one gains at leastp2 terms when using the Palatin
method. Furthermore, the organization of the computatio
more transparent.
1-16
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ON a8 CORRECTIONS TO D-BRANE SOLUTIONS PHYSICAL REVIEW D68, 066001 ~2003!
Even with the simplifications of the Palatini method, ho
ever, the computations are still very laborious. Things s
plify enormously if one is studying spherically symmetr
solutions. In this case we derived an effective on
dimensional action that governs the field equations, as
now describe. We start by substituting in the variation of
ten-dimensional action, the ansatz for the metric and the m
ter fields. Since by assumption we are considering a sph
cally symmetric solution, the resulting expression depe
only on the radial coordinater, and one may thus trivially
integrate over all coordinates butr. After discarding an over-
all ~infinite! volume factor, the result can be integrated ba
to a one-dimensional action where the fields are the funct
that appear in the original ansatz. By construction the so
tions of the one-dimensional field equations automatica
solve the field equations of the original theory. Provided t
the number of independent functions in the original ansat
equal to the number of field equations one gets by subst
ing the ansatz in the original field equations, this meth
guarantees that the lower dimensional theory is a consis
truncation of the higher dimensional one~i.e., all solutions of
the lowest order equations lift to solutions of the higher
mensional theory!.

In the cases we study in this paper, the 1D action has
most transparent parametrization in terms of fields that
pear in an intermediate step. In the brane solutions one
parametrize the transverse space in terms of polar coo
nates. The intermediate theory is obtained by reducing o
the sphere at infinity. In the context of near-horizon geo
etries, this is the sphere that appears in the near-hor
limit. We have derived an effective 1D action for a
D-branes~the explicit formulas are for electric branes, b
the magnetic case can be obtained along similar lines!. These
results can be used to studya8 corrections to extremal an
nonextremal branes, but we only studied extremal brane
this paper.

In the case of the D3-brane we further derive first ord
equations. The existence of such first order equations foll
from the fact that the potential of the intermediate theo
~obtained by the reduction over the S5 at infinity! admits an
AdS critical point ~since a particular solution of our equa
tions is the AdS53S5 solution!. This implies that the lowes
equations admit a superpotential, and we indeed show
this is the case. The inclusion of thea8 corrections modifies
the first order equations by the addition of source terms.

The main limitation in our considerations comes from t
fact that the complete set of the leading higher derivat
terms is not yet available. Provided that we are supplied w
these terms, we show how to integrate the equations in
cases to obtain the corrections to the solutions. The cor
tions are given in terms of integrals of the evaluation of
higher derivative terms on the lowest order solution.

The case of the D3-brane is under better control beca
the dilaton is constant, so higher derivative terms depend
on derivatives of the dilaton do not contribute. To compu
the correction one still needs to know the higher derivat
terms that depend onF5, but these terms are not known
present. Such terms are expected to be present because
are present in the dilaton superfield@11#.
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These terms would also lead to a modification of the s
duality equation ofF5, as discussed in the Introduction. W
proceed by considering the effect of only theR4 term, so one
may consider this computation as a ‘‘toy’’ model comput
tion. Including theR4 only, we explicitly integrate the equa
tions and obtain the corrected solution for this case. We fi
that the integration constants may be adjusted so that
solution is asymptotically flat and regular in the interior. Th
is a nontrivial result because the integration constants at
disposal are less than the number of terms that are diver
in the near-horizon limit. In turns out, however, that the c
efficient of these terms is appropriately correlated and
smooth limit exists. In the near-horizon limit the solutio
becomes AdS53S5 with the same value of the cosmologic
constant but a different~constant! value of the dilaton than
the lowest order solution. The fact that the cosmological c
stant is uncorrected is due to a cancellation.

We used the general method of Wald@17–19# to analyze
the thermodynamics of the corrected solutions. In the pr
ence of higher derivative terms the ADM mass formula a
other thermodynamic quantities receive corrections and
discuss how to obtain the new formulas. In particular,
computed all thermodynamics quantities of the corrected
brane solution. We find that the temperature and the entr
remain equal to zero, the charge is uncorrected but the m
and the electric potential renormalize. For solutions w
zero temperature or entropy the first law of thermodynam
in integrated form~Smarr formula! implies that the mass
densitym, charge densityq and electric potentialv are re-
lated by

m52
gs

A16pGN

vq ~6.1!

where the factor depending on Newton’s constant is conv
tional. The lowest order D3-brane solution satisfies Eq.~6.1!
with m;q;N, whereN is the number of D3-branes andv
;gs

21 . In the corrected solutionq remains uncorrected bu
m andv renormalize such that Eq.~6.1! still holds.

We emphasize again that in computing the corrections
the D3-brane solution we did not take into account~presently
unknown! higher derivative terms that depend onF5. Such
terms will modify the field equations~in particular the self-
duality condition for F5) as well as the formula for the
charges of the solution~similarly to the fact that theR4 term
modifies the ADM mass formula!. A simple argument that
uses dimensional analysis and the form of the lowest or
solution shows that any~positive! correction to the mass den
sity would imply that it is energetically favored for D3
branes to coalesce together rather than remain separ
This contradicts the no-force condition and strongly sugge
that half supersymmetric D3-brane solutions do not ren
malize. This in turn suggests that theF5 terms will make a
significant contribution. To properly address this issue
exact knowledge of theF5-dependent higher derivativ
terms will be required.

In this paper we studied corrections to extremal bran
Even though the exact form of the higher derivative ter
1-17
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are not known, we succeeded in integrating the equation
general. Some of our results, such as the effective o
dimensional action, hold for nonextremal branes as wel
would be interesting to investigate whether the nonextre
equations can be similarly integrated in general. Other g
eralizations of our analysis involve studying corrections
intersecting brane configurations. It will be interesting to s
if the simple intersection rules generalize whena8 correc-
tions are included. This study will be relevant for obtaini
a8 corrections to black hole configurations.
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APPENDIX A: EXPLICIT EXPRESSIONS
FOR W AND ITS VARIATION

In this appendix we outline the details of the direct co
putation of the variation of thea83 term in the action for
arbitraryp-branes, and present some results for specific lo
est order solutions.

We will be completely general in that we will consider
genericp-brane inD dimensions, with an ansatz for the me
ric of the form:

ds25ea@~2 f dt21dxW p
2!1eh~ f 21dr 21r 2dVd

2!#, ~A1!

wherea5a(r ) and h5h(r ), andp and d satisfy p1d5D
22.

In a background with these symmetries the nonzero c
ponents of the Weyl tensor are

C cbd
a 5Q~db

agcd2dd
agbc!

C atb
t 5Sgab

C arb
r 5Tgab

C anb
m 5Udn

mgab

C rtr
t 5Vgrr

C mrn
r 5Xgmn

C mtn
t 5Ygmn

C mqn
p 5Z~dq

pgmn2dn
pgmq!. ~A2!

The explicit expressions for the functionsQ, . . . ,Z are
06600
in
e-
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n-

e

e
-

-

-

-

Q52
e2a2h

4~D21!~D22!r 2
@2r f 8~4d2rh812drh8!

14~d2d21r 2f 9!1d f~4drh81~d21!r 2h82

14~d211r 2h9!#

S52
e2a2h

4~D21!~D22!r 2
@4d24d21r f 8~10d22Dd

23rh815drh81Drh82dDrh8!16r 2f 9

22Dr 2f 91d f~4drh81~d21!r 2h8214~d21

1r 2h9!!#

T5
e2a2h

4~D21!~D22!r 2
@24d14d21r f 8~210d12Dd

13rh825drh82Drh81Ddrh8!26r 2f 9

12Dr 2f 91d f~@424d22~112d2D !rh82~d

21!r 2h8226r 2h912Dr 2h9# !]

U52
e2a2h

4~D21!~D22!r 2
@2r f 8~214d22D12drh8

2Drh8!24~d2211D2Dd2r 2f 9!1 f ~4d224

14D24Dd12~2112d12d21D22dD!rh8

1 ~d21!~11d2D !r 2h8212r 2h914dr2h9

22Dr 2h9!#

V5
e2a2h

4~D21!~D22!r 2
@~D23!r f 8~4d22rh812drh8

1Drh8!12~22d12d226r 2f 915Dr 2f 9

2D2r 2f 9)1d f@424d22~112d2D !rh82~d

21!r 2h8226r 2h912Dr 2h9##

X52
e2a2h

4~D21!~D22!r 2
@424d224D14Dd1r f 8~8

110d210D22Dd12D21rh815drh824Drh8

2dDrh81D2rh8!16r 2f 922Dr 2f 91~11d

2D ! f

3@2414d12~112d2D !rh81~d21!r 2h82

16r 2h922Dr 2h9##
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Y5
e2a2h

4~D21!~D22!r 2
$24~d21!~11d2D !~211 f !

22@415d1D~252d1D !#r f 812@122d~d11!

1~2d21!D#r f h82@115d1D~242d1D !#r 2f 8h8

1@32~d24!d1~d23!D#r 2f h8212~D23!r 2f 9

22~112d2D !r 2f ~h821h9!%

Z52
e2a2h

4~D21!~D22!r 2
@2~r f 8~414d24D1rh8

12drh822Drh8!22~d1d22D22dD1D2

2r 2f 9!!1~11d2D ! f ~4~11d2D !rh8

1~d2D !r 2h8214~d2D1r 2h9!!#. ~A3!

The gravitationala83 correctionW in terms of these vari-
ables can be expressed as

W5p~p21!@T41S414~S31T3!Q13~p22!Q414Q2~T2

1S21dU2!1dU414dU3Q#1d~d21!@X41Y4

14~X31Y3!Z13~d22!Z414Z2~X21Y21pU2!

1pU414pU3Z#12p@T2S21V2T21V2S212~V2TS

1S2VT1T2VS!#12d@X2Y21V2X21V2Y212~V2XY

1Y2VX1X2VY!#12dp@X2T21S2Y21U2~X21Y2

1T21S2!12~S2UY1Y2SU1T2UX1X2TU1U2TX

1U2SY!#. ~A4!

We stress that these formulas are valid for arbitraryp and
D. In Appendix B we will give the results for specific ex
tremal and nonextremal D3-brane solutions.

Next we compute the variation ofW. Let us define

E dDxAge2[12/(D22)]fdW5E dDxAgdgi j wi j

5E dDxAgdgi j w
i j . ~A5!

Notice thatwi j 52gikgjl wkl . Explicit computation ofwi j
gives

wi j 5w1
i j 1v i j ~A6!

where

w1
i j 5

1

2
e2[12/(D22)]f@~24Bmk

ln14Bmk
ln

23Bm
ln

k!C
mip

nCk j
pl2Bmk

li Bm jk
l1~ i↔ j !#

~A7!
06600
v i j 5
1

4 F¹n¹m~Dinm j1Di jmn2Dnim j!2
1

~D22! S ¹l¹
i~djl

1dl j !2gi j ¹m¹ndnm2¹2di j 12~Rm
i D j

l
lm2Rn

mDm
i jn !

1
2

~D21!
~~Ri j 2¹ i¹ j1¹2gi j !Dmn

mn2RDl
il j ! D

1~ i↔ j !G ~A8!

and we have defined

Bi jkl 5Cm
i jnCn

lkm

D j
lki5e2[12/(D22)]f@~2Bjm

ni13Bj
ni

m22Bjm
ni !Cmlk

n

2Blni
mCm

j
k
n2Bm j

ln Cm
n

ki#2~k↔ i !

di j 5Dl
il j 2Di

l
l j . ~A9!

APPENDIX B: EXPLICIT FORM OF THE CORRECTIONS
FOR EXTREMAL AND NONEXTREMAL

D3-BRANES

In this appendix we give explicit formulas forW and its
variation for thermal AdS, and for the extremal and none
tremal D3-brane. These solutions satisfy the constrainta08
1h0850 ~which is a necessary but not sufficient conditio
for supersymmetry!, and we have

eh05k01S ,

r D d21

f 512S r 0

r D d21

ef05gs . ~B1!

1. Thermal AdS5ÃS5

The AdS limit can simply be taken by settingk050. The
scalarsQ, . . . ,Z are all given in terms of a single functio
C. We get:

S5T52Q52C

V53C

C5
r 0

4

r 4,2
~B2!

and

W5180C4, ~B3!

which agrees with the expression in@4#.
1-19



ff-
a

n

of

ns

-

di-

de HARO, SINKOVICS, AND SKENDERIS PHYSICAL REVIEW D68, 066001 ~2003!
2. Extremal and nonextremal D3-branes

For the extremal D3-braner 050, the result is

Q5S50

T5V55x

U5Y52x

X524x

Z52x

x5
,4k0

r 6
e2(5/2)h0 ~B4!

and

W528800x4. ~B5!

In the nonextremal case,W has a more complicated form:

W5
60

r 16~,41k0r 4!10
@3,32r 0

16132k0,28r 4r 0
161219k0

8r 32r 0
16

112k0
7,4r 28r 0

12~62r 4123r 0
4!12k0

2,24r 8r 0
8~12r 8

212r 4r 0
4183r 0

8!14k0
3,20r 12r 0

8~64r 8258r 4r 0
41131r 0

8!

12k0
6,8r 24r 0

8~612r 824r 4r 0
41371r 0

8!

116k0
5,12r 20r 0

4~60r 12214r 8r 0
4128r 4r 0

8153r 0
12!

12k0
4,16r 16~240r 162480r 12r 0

41832r 8r 0
82464r 4r 0

12

1515r 0
16!#. ~B6!

We also give here the variation ofW obtained from Eq.
~A8! for the extremal D3-brane. One finds that the o
diagonal components are zero and the diagonal ones
equal to

wtt52
4800k0

3,12

r 28e10h0
~56,82123k0,4r 4142k0

2r 8!gtt

waa52
4800k0

3,12

r 28e10h0
~56,82123k0,4r 4142k0

2r 8!gaa

wrr 52
9600k0

3,12

r 28e10h0
~7,829k0,4r 416k0

2r 8!grr

wmm5
1920k0

3,12

r 28e10h0
~119,82267k0,4r 4190k0

2r 8!gmm

~B7!

wherea runs over the spatial worldvolume coordinates a
m over the coordinates of the sphere.
06600
re

d

APPENDIX C: THE MOST GENERAL SOLUTION
OF THE LOWEST ORDER EQUATIONS

In this appendix we present the most general solution
the lowest order equations~2.34!–~2.37!. An analysis of this
system has also been presented in@42#. Let us define

a52a81h8, b5h8, g5f8. ~C1!

Consider the following linear combinations of the equatio

1

5
@~2.34!2~2.36!#: a81

9

r
a12a250 ~C2!

~2.37!: g81gS 2a1
5

r D50

~C3!

2
4

5 F ~2.34!2
9

4
~2.36!G :

b81
5

r
b1b22

36

r
a29a21g250. ~C4!

The solution of these equations should still satisfy Eq.~2.35!.
Equations~C2!, ~C3!, ~C4! can be integrated by elemen

tary means. Let us first consider the special case

a50⇒h12a5c1 . ~C5!

Then we get

g5
4c2

r 5 ⇒f5c32
c2

r 4 ~C6!

b52
4c2

r 5 tanS c42
c2

r 4D⇒h5c51 log cosS c42
c2

r 4D .

~C7!

Inserting in Eq.~2.35! we get

c2ec11c556 l 4. ~C8!

Requiring that the solution is asymptotically flat and the
laton approaches 1 asymptotically fixes

c150, e2c55cosc4 , c351. ~C9!

We thus finally get the solution

ds25S cosS c42
l 4cosc4

r 4 D
cosc4

D 21/2

~2dt21dxW2!

1S cosS c42
l 4cosc4

r 4 D
cosc4

D 1/2

~dr21r 2dV5
2!

f517
l 4cosc4

r 4 ~C10!
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and the self-dualF5 is given in Eq.~2.13!. The7 sign in the
dilaton is related to the two sign choices in Eq.~C8!. Neither
the metric nor the five-form depend on these signs. The
son is that one can change the relative sign inc4
2 l 4cosc4 /r4 by taking c4→2c4. This does not affect the
metric and the five-form because this combination appe
inside the cosine. The standard supersymmetric D3-brane
lution is obtained by the limit cosc4→0.

Equation ~C2! admits more general solutions than E
~C5!. The most general solution of Eq.~C2! is

a5
4

~r 8d021!r
⇒h12a5d11

1

2
logS d02

1

r 8D .

~C11!

Here and in the following we assumed0.0, but a similar
analysis can be done ford0,0. Inserting the solution ofa in
Eq. ~C3! and integrating we obtain

g5
d2r 3

d0r 821
⇒f5d31

d2

8Ad0

log
Ad0 r 421

Ad0 r 411
. ~C12!

Equation~C4! becomes

b81
5

r
b1b21

64d0Dr 6

~d0r 821!2 50 ~C13!
s

B

tu

06600
a-

rs
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.

whereD5(d2
22144d0)/64d0. This can be solved as follows

Let us define

H5eh, r5
1

2 S 1

Ad0r 4
11D . ~C14!

In terms of these variables Eq.~C13! becomes

]r
2H1

D

r2~12r!2 H50. ~C15!

The most general solution of this equation is

H5d4ra1~12r!a21d5ra2~12r!a1 ~C16!

wherea65 1
2 (16A124D). The exponents are real forD

<1/4. The caseD51/4 is a special case since in this ca
a15a2 . In this case the second independent solution
volves a logarithm. One should still impose Eq.~2.35! which
should relate the integration constants to the scalel.
Asymptotic flatness fixesd41d552,d152 1

2 logd0,d351.
ys.
ys.
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