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We discuss the computation of the leading corrections to D-brane solutions due to higher derivative terms in
the corresponding low energy effective action. We develop several alternative methods for analyzing the
problem. In particular, we derive an effective one-dimensional action from which the field equations for
spherically symmetric two-block brane solutions can be derived, show how to obtain first order equations, and
discuss a few other approaches. We integrate the equations for extremal branes and obtain the corrections in
terms of integrals of the evaluation of the higher derivative terms on the lowest order solution. To obtain
completely explicit results one would need to know all leading higher derivative corrections which at present
are not available. One of the known higher derivative terms iskfheerm, and we obtain the corrections to the
D3-brane solution due to this term alone. We note, however(timkinown at presephigher terms depending
on Fg are expected to modify our result. We analyze the thermodynamics of brane solutions when such
quantum corrections are present. We find thatRheerm induces a correction to the tension and the electric
potential of the D3-brane but not to its charge, and the tension is still proportional to the electric potential times
the charge. In the near-horizon limit the corrected solution becomes>A&Swith the same cosmological
constant as the lowest order solution but a different value of¢bastank dilaton.

DOI: 10.1103/PhysRevD.68.066001 PACS nunfgerll.25.Uv

I. INTRODUCTION spondence, and generalizations thereof.
In all these studies, thp-brane solutions solve the field
One can hardly overestimate the importance of supergrayequations that follow from supergravity actions that involve

ity solutions. The solutions describing the long-range fieldsUP to two-derivative terms. These actions are the lowest or-

associated with strings, D-branes and solitonic fivebraneder t€rms in the low-energy effective theories of string theo-
es, and the latter are known to receive string corrections.

have played an instrumental role in many advances in strin . L .
he corrections appear as a seriesxinand are higher de-

theory. String dualities require the existence of certain solu-. ~..
rivative terms.

tions and'conver.se!y the pattern of supergravity solutions Given the importance of thp-brane solutions, one may
strongly hints of similar patterns and properties of the undery g o\, the solutions are modified by the higher dimensional
lying microscopic theory. Furthermore, the interplay betweeng o Any such modification will represent the leading
the microscopic and the supergravity description of an objectyingy effects at low energies. It is known that some solu-
has been extremely fruitful. One of the most prominent ex+jons do not receive any corrections. Examples of such solu-
amples is the case of black holes and their study in stringions are maximally supersymmetric spacetimes such as flat
theory. One can construct solutions describing black holes bypace, and the AdS S® vacuum of type IIB supergravity,
superimposingintersecting “elementary” branes, i.e. fun- put also spacetimes with less supersymmetry such as pp-
damental strings, D-branes, etc. These objects have a welvave solutiond1]. These cases, however, are rather excep-
defined description in string perturbation theory and, protional and generically one expects the solutions to receive
vided appropriate conditions hold, one can use thisorrections, see for examplg]. «’ corrections to the near-
description to obtain results about black holes. For instancehorizon geometry of extremal and nonextremal D3-branes
such considerations led to a microscopic understanding ofere studied in[1,3-5. It was found that the AdS<S®
the black hole entropy for extremal black holes. Further-geometry is not corrected, but the nonextremal version is.
more, such reasoning applied to D3 and other branes led tdigher derivative corrections to near-horizon-NS5/little
the anti—de Sitter/conformal field theofAdS/CFT) corre-  string theory thermodynamics have been consideré@,id.
The precise form of the corrections may have implications
in all problems involvingp-brane solutions. For instance, the

*Email address: sebas@physics.ucla.edu a' corrections top-brane solutions will inducex’ correc-
"Email address: sinkovic@science.uva.nl tions to black hole solutions and their properties, such as
*Email address: skenderi@science.uva.nl their entropy formula. The explanation of such subleading
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terms in terms of a microscopic theory will then pose a newations are applicable to other branes as )well
challenge to our understanding of black holes. In the context After the field equations are derived, we have to evaluate
of the AdS/CFT correspondence, corrections are associ- the higher derivative terms on the lowest order solution
ated with subleading terms in the 't Hooft coupling expan-whose corrections we want to compute. This leads to
sion. Other applications involve the computation of r-dependent source terms in the field equations. To explicitly
a'-corrections to duality transformation rules. The highercompute the source terms one needs to know the exact form
derivative terms also become important near spacetime siref the higher derivative terms which is not known at present.
gularities where curvatures are large. Given such source terms, however, we succeeded in integrat-
To compute the precise form of the corrected D-braneng the equations to obtain the corrections as integrals of the
solutions, one would need the complete set of bosonic termsources. When the higher derivative terms become available,
in the low-energy effective action at leading order. Higherthese results would immediately lead to the exact form of the
derivative interactions can be computed by scattering amplicorrected solutions.
tudes[8,9] or using sigma model techniqués0] (see[11] One of the cases that is under better control is the case of
for a more complete list of referengesiowever, apart from the D3-brane. In this case the lowest order solution has a
the well knownR* term only a very few other terms are constant dilaton and a self-dual five-form. This eliminates
known, seq12—14 for recent discussions. One way to ob- some of the possible interaction terms. For instance, higher
tain further interactions terms is to find all terms that arederivative terms that depend on the derivatives of the dilaton
related by supersymmetry to the known terms[1d] we  will not contribute and thus they need not be considered.
investigated in detail the possibility of constructing a super-Even in the D3-brane case, however, there are possible yet
invariant as a scalar superpotential term in type 1IB superundetermined interaction terms depending on the five-form
spacq 15]. A linearized version of such a term was known to RR field F5 and derivatives theredthe superpotential term
contain theR* term[16] leading to the expectation that such mentioned above does contain such terma fact, our
a superspace term contains all terms that are related R’the analysis indicates that such terms will contribute to the full
by linearized supersymmetry. We have showriifi, how-  form of the corrected D3-brane solutions. Noting this, we
ever, that a superinvariant based on a scalar superpotentiloceed by taking into account the corrections due toRthe
does not exist. Finding the superinvariant associated to th&rm only. In this sense, the computation may be viewed as a
R* term, and thus determining the complete set of interactoy model computation. We obtained the corrected solution
tions at leading order is still an open question. For the comin closed form. It has a nontrivial dilaton, is regular in the
putation of the corrections to D-brane solutions one wouldnterior and approaches Ad8S° in the near-horizon limit.
need the full set of bosonic terms depending on the metric, In the presence of higher derivative interactions the stan-
dilaton and Ramond-Ramor(&R) fields. dard formulas for the computation of the thermodynamic
In this paper we systematically analyze the computatiorproperties of the solutions are modified. We discuss in detail,
of corrections to brane solutions. The computation consistfllowing [17-19, how to do such computations. We find
of obtaining the corrected field equations, evaluating thghat the tension and the electric potential of the D3-brane
terms that originate from the higher derivative terms on the'enormalize, but the charge, temperature and entropy remain
lowest order solution and then integrating the resulting equadncorrected. Despite the renormalization of the tension, we
tions. We present several different methods to obtain the fielghow that a Bogomol'nyi-Prasad-Sommerfie(8PS) type
equations. The straightforward determination of the fieldformula that relates the mass and the charge still holds. This
equations is possible but very laborious. A method that wdormula follows from the integrated form of the first law of
find well-suited for this problem is the Palatini formalism. In thermodynamics(Smarr formula. The renormalization of
this formalism the metric and the Christoffel symbols arethe mass is compensated by the renormalization of the elec-
considered as independent fields that are varied indepeitdc potential.
dently. The simplifications are due to the fact that one has to Any correction to the mass of the D3-brane due to higher
perform fewer partial integrations when deriving the field derivative terms has rather dramatic consequences: the mass
equations. This reduces the number of terms that participatef N; branes plus the mass b, branes is higher than the
in the field equations. This formulation, even though simplermass ofN;+ N, branes. This implies that there is a force
than the direct computation, is still tedious. between the branes and the branes will tend to coalesce to-
A significant improvement is possible when one considergether. This is opposite to what one expects from BPS
spherically symmetric solutions. In this case we derive arbranes. We take these results as a strong indication that the
effective one-dimensional action that governs the field equahigher derivative terms contaiis dependent terms so that
tions. This action may be thought of as the consistent redudhere are additional contributions to our computation.
tion of the ten dimensional action over all coordinates but the One may expect that once tikg terms are included, the
radial one. The method developed can also be used mofall extremal D3-brane solution will turn out to be uncor-
generally to derive consistent reductions in general. The fieldected, but such a proof is still lacking. Such nonrenormal-
equations to be solved are second order differential equazation will be consistent with the fact that the Kaluza-Klein-
tions. In the case where the lowest order solution is supertKK-) monopole solution, which is connected to the D3-
symmetric, we also derive associated first order equationrane via dualities, does not receive corrections fromRhe
that include the effects of the higher derivative tertae  term. This follows from the fact that the corresponding sigma
present such an analysis for D3-branes, but similar considermodel is finite[20]. (Since the KK-monopole is a purely
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gravitational solution there is no issue of undetermined4-point graviton scattering amplitudd§] or a four-loop
higher derivative interactionsThis argument, however, as- sigma model computatioplO] and give rise to the well-
sumes that the duality rules will not introduce amy cor-  knownR* terms. To compute the corrections to the D3-brane
rections, but in general the T-duality rules are known to re-solution we need to know the higher derivative terms that
ceive a’ corrections, see for instan¢21]. Another way to involveg;;, ¢ andF¢.2 As discussed in the Introduction, the
analyze this question would be to study Killing spinor equa-complete set of such terms is not known at present. In prin-
tions but the corrections to supersymmetry rules due to theiple, such terms can be computed by studying tree-level
higher derivative corrections are also not yet available. scattering amplitudes. One would need to compute up to

This paper is organized as follows. In the first three sec8-point functions in order to compute all 8-derivative terms
tions we analyze in detail the corrections to the D3-brane du@ the effective action. Terms that depend on the RR-fields
to the R* term. In particular, in Sec. Il we discuss the deri- are more difficult to compute using the sigma model methods
vation of the corrected field equations. We present threén the RNS formalism, but one could use sigma models in
methods: the direct derivation of the field equations, the apthe pure spinor formalisth22,23 to perform a manifestly
plication of the Palatini method and the derivation of ansupersymmetric beta function computation, &4 for such
effective one-dimensional action. The analysis in this sectiom computation.
holds for both extremal and nonextremal braftes some of We will proceed by considering only the effect of tRé
the explicit formulas apply only to extremal D3-brapelsi  term. This is what has been done in similar computations in
Sec. Il we restrict our attention to the extremal D3-branemost of the literature. We emphasize, however, that there is
and rewrite the equations of motion in first order form, whichno a priori reason that thex’ ® terms can be truncated to
we then integrate to obtain the' corrected solution. In Sec. only theR* term. In fact our results indicate that, at least for
IV we discuss in detail thermodynamics for higher derivativethe computation ok’ corrections to the D3-brane solution,
theories and apply the results to the corrected D3-brane sthe truncation is not consistent. We consider the following
lution. In Sec. V we discuss the corrections to extremal eleca’ 3 corrections to Eq(2.1),
tric p-branes irD dimensional spacetimes. We conclude with
a discussion of our results in Sec. VI. Finally in Appendixes 1
A and B we give several results regarding the evaluation of T f d"x =g y(H)W (2.2

X L . - TGN

the higher derivatives terms on lowest order solutions, and in
Appendix C we present the most general D3-brane solution
of the lowest order equations with a specific two-block"/"€®
ansatz.

1
—E 3/2 /3
Il. EQUATIONS OF MOTION Y $)= 16Eanl #)85

The fields that participate in the D3-brane solution of type 1
[IB supergravity are the metrig;;, the d|IaFon¢, and the W= Cimnjckmnlcirskclrsj+ ECijmncklmncirskdrsj_
four-form gauge fleIdAil,_.u. The terms in the classical

type lIB supergravity action that only involve these fields, in
the Einstein frame, re

2.3

Notice that we used the field redefinition ambigyiBy26] to
92 reach a scheme whel® depends only on the Weyl tensor.
Fs Es(7,7) is the nonholomorphic modular form of weight
(2.1) (0,0.* Here r= 1, +i = xy+ie~ ¢, wherey is the axion. In
the following we sety=0. The factor ofg>? in Eq. (2.3 is
wheré GN=8wﬁg§a’4. The field equations derived from correlated with our conventions, see footnote 2. The dilaton
this action should be supplemented by the self-duafip) dependence follows from supersymmetry and 8i42,7)
condition onFs. symmetry of type IIB string theory16,25. This behavior
The leading higher derivative terms in the low energytakes into account nonperturbative effects as well. At string
effective action of type 1B string theory appear at ordéf.  tree-levely( )|y ee=35<(3).
The purely gravitational terms can be computed by the

1
|:—16WGNf dloxF{R——(aqﬁ)

3We assume throughout this work that the fields that are zero in

1our curvature conventions araIlk =0 F (iHj) the lowest order solution remain zero after i€ corrections are
R le] R= guR . The Weyl tensor |s glven b)C,,k = Ijkl taken into account. This would be correct if all higher derivative
[5' k+gij gRg'ng (i=))]. terms are at least quadratic in the fields that are zero at lowest order.
2Notlce that we use the convention of leaving a factorggfin “Explicitly, Eg(7,7) == (mm=0.0(7s7|m+n7%), where (n,n)

Newton’s constant. This means that our “Einstein frame” is relateddenotes the greatest common divisor of the integarand n. A
to the string frame bge=e (¢~ #)?g,=gl’ge, wherege is the  nonholomorphic form F(*: w) of weight (,w) transforms as
true Einstein metric and@?==g,. Under S-dualityg is invariant, ~ pw.w _, p(w, W)(C7-+ d)W(CT+ d)w under theSL(2,Z) transforma-

but 9e— 95 "ge - tion 7— (ar+b)/(cr+d).
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The equations of motion of type 1IB supergravity in the lowest order equations, not introduce new equations. Any
Einstein frame, restricted on these fields, and including th@ew equations would generically make the system of equa-

corrections from Eq(2.2), read, tions inconsistent. It follows that if the higher derivative
terms areF5 dependent, the self-duality condition will have

E R _ Eg»R— 1 S lg_.(a(ﬁ)z} to be deformed. In other words, it should be a combination of

LR A I I 2% the 5-form field strength with other fields that is self-dual not

) the 5-form by itself. Notice that any superinvariant based on
9% E. Elila_ ig--Fz the dilaton superfield will contaifr 5 dependent termgl1].
96| Milall s Since in this work we only take into account E@.2) the
1 self-duality equation holds at order  as well. This is one
Wij—§9117(¢)W) point where the complete analysis is expected to deviate

+
from the analysis presented here.
—0 2.4 We look for perturbative solutions in’ of these equa-
N ' tions of motion. The general ansatz we consider is
E=Dd=7,(¢)W=0 (2.5 d2=e?((— fd2+dx®) + eN(F1dr2+r2d02)
Fs=*Fs (2.6) (2.12
herd where the functiong, h andf depend only on the radius
wher Extremal solutions havé=1, but we will keepf arbitrary
Cdy 1 o — for the time being, and sdt=1 at a later stage. The self-
Yo7 3% 9 (Dot Do)Ear (27 Juality condition is solved by
andw;; is defined by Fraper=167Na' 2,225,

f d*%\gy( ) SW= f d*%Vgsgliw; (2.8 Frn,...mg=167Na’%en i, (2.13
and is given in Appendix A. Using the fact that the Weyl wherea,b,c are Spsati_al worldvolume coordinates; . .. ms
tensor is Weyl invariant one can show that are indices on th&> directions anck,,. andeml _..mg are the

) volume densities on flaR® and on the unit five-spher&?,
9w =4y(H)W. (2.9  respectively.

) ) . ] The lowest order equations of motion admit the solution,
Notice that the self-duality equatia2.6) is expected to

receive corrections from the’? terms that depend oRs. yz
The reason is the following. ARs-dependent’ correction e ?o=glo=1+—, eh=g,, f=1, (*=4mgNa’?
will give rise, upon variation with respect to the gauge field, r
to the equation (2.14
1 1 o o where the subscript iag, hy, and ¢, indicates that this is
—ﬁa|(\/—_gF"1-'-'5)+ ywy't-'5=0 (2.10  the lowest order solution. The solution describes the long
\/__9 o range field ofN D3-branes. Removing the “1” from the har-

where WAil...i5(g A, ) is the variation of the extra term monic function yields AdSX S°, the near-horizon limit of
with respect to the gauge field. Suppose now that the selfhe D3-branes.

duality condition holds. The first term in E¢2.10 would Our objective is to obtain a solution of the equations of
then vanish by itself and we obtain, motion (2.4) perturbatively ina’, i.e. we will look for solu-
tions
wa't - +15(g,A, ) =0. (2.1)

a:a0+’ya1, h:h0+’yh1, ¢:¢0+’Y¢¢1, f=1.
We thus find a new equation arising at ordet.® The (2.19

higher derivative terms, however, should only correct the _ )
To obtaina;, h; and¢; one may substitute the ans&®z12)

with the coefficients in Eg(2.15) to the field equation§2.4)

5 . = . o and keep only the terms of order 3. The computation in-
Dw=1(720/97=1W/2) andDy,= —i(rp0lo7+iwl2) are modular 0\ oo oy alyating the ordes’® terms in Eq.(2.4) on the
covariant derivatives that map a modular form of weightw) ©0oyest order solutiori2.14. We now present a few different
another one of a different weightD,F""=F"" "™, tormylations of the problem.
EQVF(W,W): F(wfl,WJr 1).

5This conclusion would be avoided if there is a higher derivative
term that depends dhs and is not zero on-shefvith respect to the
lowest order equationsbut whose variation vanishes on-shell. As  This is the straightforward approach where one first ob-
far as we can tell, this cannot happen. tainsw;; by varying the new term in the 10D action and then

A. Direct computation
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substitutes the lowest order solution. Both of these steps are Lo 1 denr

straightforward but very tedious. The general expression for I';jj=— (G Wi + oW )+ 5 (W WK —=WE)
wj; is given in Appendix A. The evaluation of the corrections

on the lowest order solution is also very tedious because the
expressions involve tensors with complicated index contrac- ro—_ }W__j gkrl = — EW-” (2.22
tions. A useful observation is that one can use the symmetries = 11l 9 U Lik 9 - '

of the Weyl tensor to rewrite E¢2.3) in the following com-

pact form: The right-hand side of the above formulas should be read as
W=B, (2Bl — Bliik) (2.16 being evaluated in the lowest order methig,/¥ is such that
1] '

h N . .
e f 7(¢)5W=f 5g'JWij+f ST Wk (2.23
Bijki =C™ijn Cikm- (2.17

This tensor is symmetric under a pair interchange and undernese tensors satisfy the following identities:

simultaneous permutation of the first two and last two indi- -
ces, g"Wij=4y(o)W

Bijki =Buiij»  Bijki = Bjiik - (2.18 1
. : - Vi =5 Wik (2.29
The use ofMATHEMATICA was instrumental in obtaining the 2
final equations. We will present these equations after present-
ing two alternative methods for performing the computation.By explicit computation one finds thav,! is given by the
covariant derivative of a tensor that is cubic in the Weyl
B. Palatini formalism tensor, although we will not give the explicit expression here.
Symbollcally,WJk has the structurg/~ V[ y(¢)CB] where

There is an alternative method to derive field equatlonsB is the tensor defined in the previous section. At the end of

that is particularly useful in higher derivative actions. We Lo ] .
the day, the combination that appears in the equation of mo-
outline it here because it is completely general and can b
lon is given in terms of aingle scalar function ofr when

used when there are no symmetries that one can employ 10

computed for the lowest order solution, but we will not re-
derive a simple form of the actiofas we do in the next

port the details here.

section. Furthermore, this method is simpler than the direct The remaining equations for the metric and matter fields

derivation of the equations of motion described in the previ-

are also easily derived. In particular, deriving the equation of
ous section. In this method one constructs a Palatini action

Motion for the metric is much simpler than in the second
that is first rather than second order in derivatives, and has

88rder formalism. One obtains equations of motion where the

the metric and the covariant derivativer, equivalently, the
, . , Ricci tensor depends on bograndI”. One then expands this
Christoffel symbol$ as independent variablésee[27] for in the above solutions to obtain the standard form of the

an elementary exposition Einstein equations:
2

9

|[9,F]:fdlox\/—<R[g ]_—(19¢) Fs g2 3
,9¢(9 b Fg., ij_ggin’(d’)w

+7(¢)W[g,l“]>- (2.19 1o,
In deriving the equations of motion, let us vary the connec-
tion first. This gives D—y,W=0, (2.25
80V, gd' - vigik+ (gikaP— 8UgWP) (T} — 9 logy/g) + Wik
o ' b o P ' which are supplemented with the self-duality condition.

=0, (220  These equations are equivalent to the ones found by direct

computation, but their derivation is simplified.

which at lowest order inx’ implies the usual compatibility
condition between the metric and the connection. Standard ) ]
manipulations yield C. Effective 1D action

We show in this section that for spherically symmetric

Fk»:l Kl 5 Goit + & Dok — &1 Gois) 2.21) solutions, there is an effective one-dimensional action that
0ij =7 90 (%90 + 7jGoik 91 Goij)- ' yields the same field equations as E214) evaluated on the
ansatz(2.12. To obtain the one-dimensional action we start
We also find the following solution at next order: from the variation of the ten-dimensional action,
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- 40
:f d'%/g[ 897 E;; + SHE], (2.26 l1p=— f dr\/—{ Rs— 295 (9,4)2— ?gg(ﬁrv)Z
_ —(10/3)»
where we have substituted the solutith13 of the self- V(v)+y(d)e W} (2.29
duality equation(2.6) in E andE;; . We now use the ansatz
(2.12 to expressig' in terms ofda, sh, andSf. This yields
1
V( V): F[Se— (40/3)v _ 2%—(16/3)1/] (23@
y N of t . . . .
Sl=1]d Ox\/§ —da(g"Ejj) + T(g”Err—g Ew) where gs denotes the determinant of the five-dimensional
metric gsmn, given in EqQ.(2.32. The fields appearing in this
action are related to the h andf by
—6h(g"E,,+ g™ E ) + SPE]|. (2.27

v(r)= = (a+ h)+|og€ (2.3)

) 10/3

h
e
X | — fdt?+ pdx3d X0+ Tdrz). (2.32

Since all the fields depend only on the radial variable, one
can now perform all integrations but the radial one. The re-
sulting variations can be integrated again to a one-
dimensional action,

| =

dsZ= gsmadxMdx"= e(1/3)(8a+5h)(

r
l1p= fdre“a“he (64fa”+40fh”+148fa’2

This can be shown using the standard reduction formula

! !

fa fh
rh! 12 12 _
+168fa’h’+50fh +3fd) +400 p + 240 p ds%o: e—(10/3)v95mndxmdxn+e2V€2dQ§ (2.33

f , L o f' 120 and matching with the ansatz in E@.12). The dimensionful
+200r_2+6f +64f'a’+37f'h" +80 - — Tz parametet is proportional to the Planck length and is intro-
duced into the ansatz on dimensional grounds.

g8 The equations of motion that follow from ER.28 with
+ o y(p)e*"w (2.28  fsetequal to one=1, are given by
182"+ 10h"+36a'?+36a’h’ + 10" ?+ ¢+ _90a’ L2
where we have discarded an ovef@lifinite) volume factor. r
W is given by Eq.(2.3) evaluated on E¢2.12. It is a func- +yW,=0 (2.34)

tion of a, h, f and their first two radial derivatives. The ex-
plicit expression is given in Appendix A.

Notice that this derivation of the effective action guaran-
tees that all solutions of the 1D action are solutions of the
10D action. In other words, the reduction from 10D to 1D is
consistent. What is crucial is that the number of independent
functions appearing in the ansd&12 is equal to the num- + T
ber of equations one gets by evaluating Eq4) on the Eq.

(2.12. For the problem at hand this number is four even

whenf=1, so even in this case one must first proceed with 5h’

generalf and then sef=1. The method presented here can 8a"+5h"—4a'?—4a’'h’ + ¢'*+ -~ toywi=0

be used more generally in order to provide consistent reduc- (2.36
tions of the higher dimensional theories. One should contrast

this method with the most common practice to substitute an

ansatz in the action and then reduce. This latter does not ¢"+
guarantee a consistent reduction.

It is instructive to rewrite Eq(2.28 in terms of the vari-
ables used in the reduction of the type IIB supergravity ovewhere yw, is the variation ofa’3 term in action(2.28 with
S°. Such a reduction was presented 4. Using their vari-  respect taa, etc. We give in Appendix A the explicit form of
ables the one-dimensional action reads W as a function ofg, h, f, and their derivatives. From there

1
10 "+ Eh” +2a'%+20

/+lh/ 2+l 12
arah) T3¢

+yw,=0 (2.35

8
a’ + _h’ — L
r10e4(a+h)

5
4a’+2h'+ | ¢ —2ywy=0  (2.37)
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one may deriven, etc. The evaluation of the corrections on ds2=e?*(P) 5, . dx2dxP+ dp?
the lowest order solutiof2.14) is given by
5 v="v(p)
Wo=W,=—14400————
a=Wo  245(1972)0 é=¢(p) (3.3
wherec(p) and v(p) are solutions of the first order equa-
4800¢ 12 tions
W= — —— (11208 2490 %+ 84 )
r 285(19/2)hg
) _3 = 2W =0 3.4
ﬁpv—%g, d,C= 3V &pd)— . (3.4

2880012 8 4 8 ) . ,
W= m(l% —35¢7r*+10r°). (2.39 One can verify that solutions of the first order system solve
r e( )0 . . .
the second order equations. The first order equations also
follow from the requirement that the “Killing spinor” equa-

Notice that the metric in Eq(2.12 depends ona only tions

through an overall conformal factor. It follows that the Weyl

tensor does not depend anand thatwW depends on it only 1
through the inverse metrics used in contracting indices. This D,+—=WT ) =
explains whyw, is equal tow,, . V15

We have explicitly verified that Eq92.34—(2.37) are
equivalent to the equations one obtains by evaluating Eq. WY
(2.4 on the ansatZ£2.12, as discussed in Sec. Il A. This
remains true even whehis not set equal to one. This is a
nice check, especially ow,, wy,, w; andw,,, as the orga-

nization of the two computations is rather different. In theadmlt solutions for nonzero spiner[30). In the context of

next section we present yet another reformulation in terms oﬁiﬁgg;anvc;t{htg(assoﬁuir:nghgfvﬁréa;:?sqso?;é?eeglrjz\tl:ggg Z?ed SL:
first order equations. q

persymmetric solutions.

The coordinate transformation,
Ill. FIRST ORDER SYSTEM
5/3

d r
f=r(p), d_’r’z o] e o, 3.6

The D3-brane solution is half supersymmefia8]. This
implies that there must be an equivalent first order formula-
tion of the field equations when the ansatz for the solution is
consistent with supersymmetry. In this section wefset,  ¢an bring the metri¢2.32 to the form(3.3). Furthermore,
and present such a reformulation. (Somewhat different  @(r) andh(r) are related t@(p) andv(p) in a simple way,
discussion of first order equations appearefili. (p)

Let us first consider the effective action without thé
correction. The potential in Eq2.30 has an AdS critical v(p)= {a[r(p)]+h[r(p)]}+log S
point atv=0. This critical point is stable as it is maximally

supersymmetric. It follows that the potentM(») admits a 1 (P)
“superpotential”}y such that the AdS critical point is a criti-  ¢(P)= 3] 4alr(p)]+ 3 h[r p)]+5log 38
cal point of W [29]. Indeed, one finds that the potential
(2.30 can be rewritten as It follows that one can obtain first order equations &and
h by substituting Egs(3.7) and (3.8) in Eqg. (3.4). One ob-
3 (oW 2 16 tainS,
e e R Y § 7
V(v)= 10 7, ) 31/\2i (3.1 o4
dia+adh+ r—5€72(a+h)=0,
[ 5 e
Wizz e (203) iie (8/3) } (3.2 5 4

2l
4ara+§a,h+r—5e—2<a+“>:o, d,¢6=0. (3.9

The formula for the potentigBB.1) coincides with the one in
[29] after the differences in conventions are taken into acThese are exactly the equations that follow from the analysis

count. The AdS critical point is also a critical point B¥_ . of supersymmetry in ten dimensiof23].

We shall henceforth consider only_ , which we shall de- Before we move on to consider the modification dueto
noteV, and only add a few comments abdwt, . corrections we note that had we considered the superpoten-
A simple Bogomol'nyi argument implies that the theory tial YW, , we would have ended up with a solution of the

admits BPS domain wall solutiori80,31] form (2.14) but with
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) |4 s ) |4 44 integration constants are fixed by requiring that solution is
elo=1-7, =" ev=—1+7 1<% asymptotically flat and regular at the horizon.

(3.10

This solution has a curvature singularityrat|, and is re-
lated to the standard D3-brane solution by analytic continu-

B. a’-corrected solution

Using thew’s in Eq. (2.38 one can easily compute the

. . . sources,
ation to imaginaryr.
, _ , _ 3¢4+5r4 16¢12 o .
A. a' corrections to the first order system j1(r)=Cy YR 2431r43e(17/2)h0[768€ + 7808
We now discuss the extension of the analysis to include
the a’ corrections. Ideally one would like to write the effec- + 35360 1% 8+ 9384017 12+ 16133@8r 16
tive action as a sum and/or differences of squares and then 4.20 oz
read off thea'-corrected first order equations. Such a rewrit- +3658653 17— 3500640
ing should be possible because of supersymmetry. However,
the complexity ofW for generalh, a and ¢ makes suchan . , . 5Co 320¢* 6402+ 5440164
exercise rather formidable. Furthermore, as we discussed,Z(r)_ (504 2433399(17/2)%[ 5 '

our action is not complete since further relevant bosonic
terms may be present and such additional terms may be nec- +20400 8+ 442068 12+ 133709 4r 10
essary in order to rewrite the action as a sum of squares.

_ 2
We proceed by adding order’® terms in Eq.(3.9 and 1093957
demand that the solutions of the first order system solve the c 160016
second order equatiori2.34—(2.37), : _ -1 16 12,4
\ ja(r)= e —243]r39e(17’2)h0(128€ + 1088
' ' — h)y_ .;
a'+h'+ e 2@ N =yjy(r) (3.1 +4080¢ 88+ 8840 “r 124 12155 16). (3.16
5 214 The integration constants, andC, can be fixed by requir-
4a'+ -h'+ —e 2@*M=1yj (1) (3.12  ing that the terms on the right-hand side of E¢®.11)—
2 r° .
(3.13 are small compared to the terms on the left-hand side
b'=274i5(r) (3.13 for all r. This implies thaf,,j, andj; should be at most the

same order as the terms on the left-hand side. Nedr the
where the prime indicates a derivative with respeat fbhis ~ terms on the left-hand side behave as Tn the other hand,
yields j1 behaves as i andj, andj; as 1f*. This can be rem-

edied by choosing appropriately the integration constants,

) 10 1 122
j1=2] 1+ — | by— — (Wp+w;—w,), 21 5
! ( rhé) Yoopyonm R Co=5z37 C1=74Co. (3.17)
) 1 This is a nontrivial result since the number of terms that we
J2=5| 1+ rh_’ by — W(WWWFWa)’ need to set to zero is greater than the integration constants
0 0

we have. The same values of integration constants follow by

1 fr c requiring that the solution we present in the next section is
: :_f dr'r’5w. + —= (3.14 smooth at the horizon.

J3= 5| drr-wg+ — . .

r r We note that thg, andj, are such that they cannot be
absorbed into a’-modification of the superpotentidd. To
check this one may rewrite E¢R3.11) in the coordinate sys-
tem(3.6). Let us callJ;(p) andJ,(p) the sources that appear
on the right-hand side of the first and second equations in Eq.
(3.4). One may absorld,(p) into W by W =W—32+J,. In
order for this transformation to also remove the soukrcthe
following relation should hold:

1
whereb,=a;+ > h; satisfies

9 1

oW~ Wa). (3.19

Notice that supersymmetry demands tigt=0 to lowest

order. There are nonsupersymmetric solutions of the lowest A, 2 dv

order second order equatiof.34—(2.37), including non- %’L 3 %‘Jl:o' (3.18
supersymmetric solutions withy=0, as we discuss in Ap-

pendix C, but we shall not consider them here. A direct computation shows that this is not satisfied, but we

Oncew;, w, andwy, are computed using the lowest order note that there aréunexpectef cancellations between the
solution, Eq.(3.15), for b; the equation folj; can be easily two terms. Had we been able to absorb the sources into a
integratedb, in turn gives the source ternyg, andj,. The  modified superpotential, we would conclude that the form of
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the supersymmetry rules in E.5) is not modified at order Notice that the AdS radius does not receive corrections
a3, so these results may be taken to indicate that there ateut the string coupling constant does. The choice of the in-
new terms in the supersymmetry transformation rules at ortegration constants in E¢3.17) is crucial for the limit(3.20

der «’3. We should add, however, that given that we onlyto exist.

consider a part of the complete effective action such a con-

clusion is premature. IV. THERMODYNAMICS OF CORRECTED SOLUTIONS
Knowing the sources, it is straightforward to integrate the ) . ] .
first order equation$3.1)—(3.13. Taking the sum of the In this section we discuss the thermodynamics of the cor-

first two equations one obtains a differential equationgor rected solution. The quantities of interest are the mass
+h/2 which can be easily integrated. Feeding back onélensity; the temperature, the entropy and the charge density
solves fora; andh;. The integration of Eq(3.13 is equally ~ Of the solution. One may use either Euclidean of Lorentzian
straightforward. All integration constants are set to zero bynethods to study thermodynamics. In the present case the
requiring that the solution be asymptotically flat. The resultSelf-duality of the lowest order solution presents an addi-

is tional complication in the Euclidean computation since one
needs to understand the proper analytic continuation of the
1024308+ 9044+ 10r®) 3¢12 self-duality condition. We will follow a Lorentzian analysis
1=— — and adapt the method of WaJd7-19 for the problem at
24310%r %Mo 243138157200 hand.
T —96¢20— 16,4 _ 12,8 8,12 Recall th{:\t the entropy, mass and_ charg_e o_f a black hole
[—9607— 91207 "~ 39100 223557 satisfy the first law of thermodynamics which in integrated
— 97240 %r1%+ 21879027 form (Smarr formula reads
1024208+ 5¢%r*+5r8) . 812 TS=M-vQ. 4.)
a —
! 2431 %r %Mo 2431 3815720 HereT is the Hawking temperatur&,is the entropyM is the

B 20 16,4 128 812 mass,Q is the charge and the corresponding potential.
X[~ 25600~ 230401 *— 9384(**r °— 4760 °r Extremal black holes have zero temperaflire0 (and quite
—197799%r 16+ 486200 %] often zero entropy as welso the Smarr formula implies

M=00. 4.2
10240 160016 vQ “2

T 24317 2431 %657

b= [64¢12+ 408¢8r*

In the context of supersymmetric black holes, this relation
originates from the supersymmetry algebra. The case of
+1020¢4r8+ 1105 2. (3.19  D-branes is exactly analogous, but the appropriate quantities
are now densities. One may wrap the spatial worldvolume
The corrections are smooth =0, and the choice of inte- coordinates of the brane on a torits some other compact

gration constants was crucial for this property. ~ manifold) and reduce over that manifold to obtain a black
Let us consider the. near hqnz_on limit of the solution. hole in lower dimensions. For instance, the D3-brane can be
Following [32] we consider the limit viewed as a 7D black hole after reduction over the spatial

worldvolume coordinates. Our analysis will be done from the
, r. . ten-dimensional point of view.
a'—0, — fixed, g fixed. (3.20 In the presence of higher derivative terms, the extremal
“« D3-brane still has zero temperatuias we verify below, so
a relation of the form4.2) should still hold since Eq4.1)
follows from first law alone. Since the charge of the D3-
1 Eufgl) brane is quantized one might expect that E42) would
I D Yob1=— 180ﬁ(yh1). imply that the mass does not renormalize. We find, however,
N3?2 2.2431732" 77 Y that things are more subtle and both the mass and the poten-
(3.2)  tial v renormalize.
Given a gravitational system described by an actione
Itis intriguing that even though we ignored higher derivativemay compute the gravitational energy as follows. Let us con-
terms that depend OrF5 the near horizon limit is still Sider a SpacetimM and denote wax |ts asymptotic in-

AdS;xX S, just as one would expect for the “true” D3-brane finity which is considered as its boundary. We first require
solution[1,3]. This may indicate thef 5 dependent terms can

be ignored in the near-horizon limit. Recall that in the near

horizon limit F5 is proportional to the volume form both in 7gtice that we use interchangeably the terminology “mass den-
the AdS and the 8 directions. One may verify using the sity” and “tension.” With abuse of terminology will also sometimes
results in[11] that theFs dependent terms of the dilaton just call “mass” the tension, and “charge” the charge density. It
superfield vanish in this case. This is an additional indicatiorwill be clear, however, from the context which quantity we are
that our results are exact in this case. discussing.

In this limit we find that

yhi=—vya,
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that the theory, subject to appropriate boundary conditions, M 1 _

has a well-defined variational problem, i.e. all boundary “:VZRJ (Imhpm—dphl)d S (4.9
terms in the variation of the action should vanish automati- N

cally so that the bulk field equations are true extrema of th
action. In gravitational systems this requires the addition o
boundary term$,

hereh;; is the deviation of the metric from the Minkowski
etric andV is the volume of the spatial worldvolume direc-
tions. The integration is over the sphere at asymptotic infinity
in transverse space. The inderuns over all spatial indices
|:j L_f B. 4.3 and p and m only over the transverse coordinates. Formula
M Mo, (4.9 generalizes the ADM formula to apply tp-brane

o spacetime$35]. One may rewrite this formula as a Komar-
Under a variation we have like mass formula,

oL = (field equations+dO (P, 5D) (4.9 1 [b £c]
M= SWGNJS%eal...aSch 3 (4.10

whered denotes collectively all fields. In order for the varia-

tional problem to be well-defineB and® should be related where S, is the spacelike surface at infinity enclosing the

by brane. We wrap the spatial worldvolume coordinates of the
brane on a torus of volume, so thatS,=T>xS°. Static
5J B:f O(P,5D). (4.5  spacetimes of the forrf2.12) have a timelike Killing vector
M. M.,
; : i 9 t i_Qi
In pure gravityB=2K, whereK is the trace of the second §=8-7 £=1, £=0i7t. (4.17

fundamental form. In more general theori@amay contain
additional terms.

The action(4.3) is invariant under diffeomorphisms. This
implies that there is a corresponding Noether current,

A straightforward computation yields

1
\vAl t_ T ITr ttﬁ ) (4.12)
I=0(D,LD)—i L (4.6 £=59"9"9gu

where¢? is a vector that generates the diffeomorphigipjs ~ One may now substitute this expression in E410 to ob-
the Lie derivative along?, i, is the inner derivativgwhen  tain the mass of the solution. o
acting on an-form it produces ar{— 1)-form by contracting The temperatur@ associated with a spacetime is equal to
its first index by £?] and we use form notatiofJ is a (d T=«/2m where k is the surface gravity. The latter can be
—1)-form, L is ad-form etc]. When the field equations are Shown to be equal tf27]
satisfiedJ is closed,dJ=0, and one can construct locally a L L
(d—2)-form Q such thatJ=dQ. The Hamiltonian that pro- 2 asb _ torr 2
vides the dynamics generated &y is given by K= VI Vb= 1070 Gier 4.13

_ . where in the last step we used E4.12.
H= JC‘J_ Jng'fB 4.7 The entropy of a solution can be computed using tthe (

—2)-form Q introduced earlier,

where C is a Cauchy surface. On-shell this evaluates to a
surface term s:f Q:—wf ds;; Q" (4.19
H H

HzLMx(Q—igB). (4.9

where (Eijzdsx\/ﬁeij is the surface element defined over

the horizonH, with h the induced metric on the horizoQ;;

The gravitational energy is now defined by takiggo be a is related to the Noether charge as discussed abovéaéted

timelike Killing vector. In general, this expression is diver- fixing ambiguities with certain choicgss given by

gent so a suitable subtraction should be employed. In asymp- - - -

totically AdS spacetimes one may incorporateigovariant Ql=—2LMV &+aV LK g (4.19

boundary counterterni83], but in asymptotically flat space-

times such universal covariant local counterterms do not ex£ ' is the variation of the action with respect to the Rie-

ist [34]. We (implicitly) use the background subtraction mann tensor and is the timelike Killing vector. In the case

method below. where the action contains only the Einstein-Hilbert term, the
Let us now consider the theory based on the actibt). result gives the well-known Bekenstein-Hawking formula,

Following similar steps as if18] one finds that the mass S=A/4. The derivation of Eq4.15 assumes a nondegener-

density of a D3-brane solution is given by ate horizon k#0). It was successfully applied, howev@ar

ijkl
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a context similar to oups to extremal black holes as well 1 ) 1

[36].8 We will assume that this formula remains valid for M=— mf €a, ... ahRcEF %J €a, .. aghcV €%

extremal black holes. N/ " .21
Finally the electric charge density of the solution is given :

by where2 is a spacelike hypersurface that extends from the
horizon to spatial infinity, and the last term is a surface inte-

__ 9 f F 4.16 gral over the horizorfwhich also involves the worldvolume
a 167Gyt ' T2). To derive this one needs to use
The prefactor is due to the normalization of tRe terms in VViE=—Rg (4.22

Eq. (2.1). The magnetic charge is given by a similar inte-
gral that involvesFs. In general, the electric and magnetic
charges satisfy the Dirac quantization conditj&]

which holds for Killing vectors. The integral over the hori-
zon may be evaluated using our explicit metric and it van-
ishes. In general, this term gives the entropy contribution in

~ the first law.
qgq=2mn (4.17) To evaluate the volume term we now use the Einstein
wheren is an integer. For dyons this formula is modified and equation,
it does not by itself lead to a quantization condition for self- 1 g§
dual solutions withq=q, such as the D3-brane solution Rij=5diddjd+ 9_6Fill...I4Fjll”'l4- (4.23

which we discus$28]. The exact quantization condition for

D3-branes is determined in string theory by string dualitiesye further note thag generates an isometry of the solution,
(see for instance Sec. 3 [#8]). With the normalizations as gq

in Eq. (2.14) the chargey of a single self-dual brane comes

out to beq= 27 [see Eq.(4.19], which agrees with the EVip=0, EVAIL-lapgvlig)alKizisid=0.
naive application of Eq(4.17 with n=1,0=q. (4.29

_ Inserting Eq.(4.23 in Eq. (4.21) we get a term that depends
A. Lowest order solution on the dilaton and a term that depends BnThe former
Before we proceed to incorporate thé corrections let us  Yields a vanishing contribution upon using Ed.24. The
discuss the lowest order D3-brane solution. In this case thiatter can be manipulated as follows:
metric is given in Eq(2.14), and the mass density can be

easily calculatedusing either Eq(4.9) or Eq. (4.10] to be EFy . g Fllrla=—ay (EAy ), Flilde)
N +LEVALLLL
o W (418 JF4(V[|1§k)A|k||2|3|4]]FjIlI2I3I4
where we usedsy=87°g2a’. The charge density of the —48 A M Fl el (425

solution is given by
The last two terms vanish due to thefield equation and the

q=v2=N, (4.19  invariance of the solutio4.24). We finally get
where the factor of/27 is discussed below E@4.17). It is g2

. . — i 1415l
straightforward to use the formulas given above to compute M=— 967TGNJSxUH6tra1 - .asf'Ai|1|2|3F" 12,

the entropy and the temperature of the solution. The result is

4.2
that both of them are equal to zero. So one expects a formula (4.29
of the form(4.2) and we indeed find One may integrat® ;.5 to obtainA;;»g ,
! (4.20 A 1( “ho—1) (4.27)
=——q. : =—(e "o— .
M T&TGNQ 123~ g

This is the BPS formula derived ii28]. Let us now derive ~Where the constant part was choseni such Mgk vanishes
this relation in a way that will be useful when we considerasymptotically. It follows then that'Aj;2dy= —1/gs. In

the corrected solution. general, one can change the asymptotic valuég$; by
Using Stokes’ theorem one can express the surface intdrforming a gauge transformation. This will modify the
gral in Eq.(4.10 in terms of a volume integral, value of &' A; 1,3 at the horizon. The combination
v=_EAds _fiA'uiH:_i (4.28
I I .
8We thank Bernard de Wit for discussions about this point. ’ Js
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is the associated electric potential and is gauge invati#nt. To compute the mass of the solution one has to take into
is this gauge invariant combination that couples to the elecaccount that the action has been modified by the addition of
tric chargeq (notice that one may use Stokes’ theorem tothe term(2.2), so the mass formula should also be modified
show thatf,*F=[g *F). It follows that accordingly. The discussion in the beginning of this section
outlines the steps that are necessary in order to compute the
new mass formula. This computation is technically rather

uw=——(—gw)q (4.30 complex because of the complicated tensor contractions in
V167Gy W. We will use instead the following shortcut. We will start
from Eq. (4.10 and use Stokes’ theorem to rewrite it as in
which is equal to Eq(4.20 upon using Eq(4.28. Eq. (4.21). We should emphasize that the starting point does

In the present case we were able to explicitly manipulatenot represent the entire mass of the corrected solution since it
the bulk integral in Eq(4.21) into boundary terms. When we does not properly take into account that the mass formula has
include thea' corrections, however, similar manipulations been modified. We now use the field equations,
involving the higher derivative term become increasing com-
plicated. Instead of using E@4.25 in order to manipulate 1 g2 3
the bulk integral one could also just use the explicit solutionR;; :Eai¢ﬁj¢+ 9_(55':“1 - _|4Fj'1""4+ g?’(d’)WQij —w;; |.
to evaluate the bulk integral. Since the dilaton is constant the
first term on the right-hand side drops out. The contribution (4.32
of F5 can also be computed straightforwardly since the inte- ) o _ )
gral can be computed by elementary means. These manipﬁhe first two contributions can be analyzed as in the previous

lations lead to the same res@t.20), but now the contribu-  S€ction. The last contribution represents an additional gravi-

term on the left-hand side to yield the mass of the solution.
We thus propose as a mass formula

B. Corrected solution

The o' corrected D3-brane solution in the Einstein frame 1

L = [bgel
is given by M SWGNJSmEal"'aSbCV &
ds’=e ¥o(1+ ya,)(—dt?+dx?) + e 1 3
N — _ e.
X[1+y(a;+hy)](dr2+r2d3) 4wGNJz€dal”'a9(87(95)nge We ¢

4.3
e¢=gs(l+7¢¢1) (433
The logic here is similar to the one discussed in the last
paragraph of the previous section: one could either rewrite
the bulk integral as a surface integral or just directly compute
Fr, .. .m=167Na'?en  m (4.3)  the bulk integral.

The result for the mass is

Ftaber= 1677Na,263bc672h0( 1-2yhy)r 75-

where thee is given in Eq.(2.14) anda;,h; and ¢, are

given in Eq.(3.19. We should emphasize that this solution 5x 210 1 1 40Esge)
would be the true corrected D3-brane only if the part of the w=puq| 1+ y(gs)m |—6) =puol 1+ —3/2—3/2)
effective action relevant for this problem consisted of only N** 2431
Egs.(2.1) and(2.2). However, as we discussed earlier, it is (4.34
likely that additional terms that depend &3 are relevant.

where uo,=N/(2)3ga’? is the mass density of the lowest
order solution. In this result the three terms in E4.33

°0n a curved spacetime one may define the electric and magnetfontribute to the correction with relative weightsl,3/2,0.

part of a field strength as The form of the correction in Eq4.34) follows by di-
_ _ mensional analysis and the fact that the lowest order solution
E=iF, B=igxF (429  depends on the parameters of the solution onlyl{iaThe

hereE andB are four-forms in our casé, is the inner derivative detailed form of the higher derivative term only determines
and ¢ is a timelike Killing vector. For self-dual solution& = B. the numerical coefficient. In particular, if the numerical co-
When the field equations and Bianchi identity haiti=d*F=0,  €fficientis nonzero, as we find in E@t.34), then the mass of
one finds thalE=dB=0, so locally there are electric and mag- N1+ N branes is less than the massNf branes plus the
netic potential €= dv, B=dv, respectively. In the case at hand, the Mass ofN branes. This follows from the inequality

electric potential is related with the gauge fieldvasi ;/A. One may

show in general that is constant at the horizon and the difference 1 1 1
between its asymptotic value and the constant value at the horizon + . (4.395
is gauge invariant. VN3+Nz YN VN3
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It follows that energetically the branes would prefer to coa-solution, but the coefficient af receives corrections. For the
lesce to form a single group. Thus there should be a forcentropy we use Eqs4.14), (4.15. The corrections to the
acting on the two sets of branes. This is opposite to what onentropy vanish as'® (after factoring out the behavior of the
expects from BPS configurations, where the branes shoul@mperaturg
not feel any force. We believe that after taking into account
the effect of the(presently unknownFs dependent higher
derivative terms the mass of the D3-brane solution will not V. OTHER BRANES
renormalize.

With the definition of mass in Eq4.33 one may proceed
as in the previous section to derive

Corrections to other R and NS D-brane solutions can be
analyzed as in the D3-brane case. Analogously to the 3-brane
case, a 1D effective action may be derived. The system of

92 second order equations can be integrated by introducing vari-
M=— s f €ira ...a8§i | |2|3|:tr|1|z'3_ ables suggested by the lowest order supersymmetry relations.
967Gy Js.un ! ! As in the D3 case, these equations contain source terms

(4.3 evaluated on the lowest order solution. Once the complete

One may integrat€, s to obtainA s, source terms are known, the corrected solutions can be de-

rived.
1 327N y(gs)a'?
— (e ho—1)—- ——— 27>~ 28,7hg( 7|4
Auzs gs(e 1 2431 2r 4% (256 e (3l A. Equations of motion
+5r4)+ 161 14 26120 — 48116 35 1%4— 103788 The D dimensional action in the Einstein frame relevant
for general brane solutions is given by
+1700%r 2+ 19890 19)) (4.37)
— 1 D \/_ 4 2
and from here we obtain S= " 1erG) XV RT3 (90
_ i i _ 5x21%1 adr-2 —12/(D—2)¢
v=_¢Ai12ds —E'Aiady=vo| 1+ Y9) 5431 18 —me Foratye wW| (5.0
(4.38

wherev = — 1/g4 is the value of the electric potential for the where
lowest order solution. The remaining computation is exactly
the same as the one in the previous paragraph, and we end up
with 2(D-2p—4)
——F——a
D-2 NS
(5.2

1 ~
,y:§§(3)ar3 éZ/(D*Z), a=

(4.39

1
=———=(—0gw)q.
M ,—167TGN gsv)q
. _ L ans=2 for NS branes but zero otherwise. The dilaton factor
The charge density of the solution retains its lowest ordellrn front of W is that of a tree-level string correctiokV is

value, as is required by charge quantization. We thus find thaéxpected to depend df, , , and on its covariant derivatives

even though the mass of the solution renormalizes and thgs well as on the covariant derivatives of the dilaton. As

$*;]?‘rge does_l;otbrenormaléﬁe, 5} BItD_S-typte f(t)_rrlnula stil hI.OIdeiscussed in the Introduction, this expression is not known at
is is possible because the electric potential renorma|zespresent, s0 in our analysis we will ke& arbitrary.

One can undgrstand this behav!or as follqws. In the ab- The equations of motion from the above action are
sence of corrections to the gauge field equation, the formula
for the chargeg~ [*dA, remains uncorrected. Singedoes
not renormalize and * renormalizésince it depends on the 1 1 1 5
metrio, A has to renormalize in such a way that the com-Eij=Rij = 59ijR— 5(!% b= 50ij(9) )
bined corrections to * ané cancel each other. So unless the ~
gauge field equation is corrected the electric potential will e?? L
renormalize. Then the first la$4.39 can be used to infer - Z(IDT)I((p+2)Fi|l...|p+lel.“ Pt
that the mass renormalizes. As we argued above, however, ’
any correction to the mass would imply that the branes feel a 1

. . . . . 2
force. This strongly indicates that the gauge field equations,  — EgijFp+2
and therefore the self-duality condition Bf receives cor-
rections such that at the end the mass of the brane does not (5.3
renormalize.

One may easily check that the temperature and the en-
tropy remain equal to zero. For the temperature this follows
upon using Eq(4.13. It goes to zero as, as in lowest order

1
+ fy( Wij — Egije[lZI(DZ)](bW) =0

—v2 4
E=V7¢ 2(p+2)!F

Dt yW,=0 (5.4
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~ (1
El1--ipra= (p+1 gl(\/_eaﬂ:“l ipr1) w,=2e" bE 55— gMlwy + e PO =2lew) g, +wy,
(5.13
+ w1 ipi=0 (5.5
~ (1
wherew;; is defined by we=-2 D- 2( g“'w+e " HC=21owW) g, +w,

(5.14)
f dPx\/ge [12/(O-2)14 sy = f d®x\gsg'iw;; (5.6

Wm:_zea+h ( g W +e [12/(D— 2)]¢W)g

D-2
andw, andw, denote the variation o~ (2P ~=214w with
respect to the dilaton and the gauge field, respectively. o
The equations of motion admit both electric and magnetic T Wimnm|9 (5.19
solutions [39-41. Here we will consider only electric
branes, but similar methods apply to magnetic branes as .
well. For an electric brane solutions we take the ansatz Wy=0rWy (5.19
d-1 = _ a—ag
wp=e *Pw 5.1
d?=e? —dt2+a21 (dx®)2+eM(dr?+r2d02, ;) A A ®17
1
K2=k(r)%e 92 k=——c' 5.1
Atay 0= €y CL1). 5.7 ™ pi2 (518
1 p 1 p
The field equations evaluated on this ansatz give and
D—2 a’ WAL Teri=wae . (5.19
a’+ (b=2) 5 )a’2+ga’h’+(q+1)7 e
The same equations also hold for magnetic solutions. One
q only has to exchangg«d and takea— —a.
_ pad 2 y ge
€ b- 2K +yw=0 (5.8 The lowest order equation admits the following electric

solution[39-41:

d , (q+1)
(D—1)a"+(q+1)h"— —a’h'+ ¢'2+ ——a’ [\ a]4iA _q
2 r ehO: 1+| - y aO: ho,
(q+1) r D-2
+ - ~
+ qr h’—ea“’%szL YW, =0 (5.9 B
bo= ohy,  k(r)=Qel~ado- @2ho+ (d+1-D2agl, ~(+1)
0-2) , 1 1 2
a’+h"+ a’’+ = (2q+d)a’h’+ =qh’
2 2 2 )
_~,, 2dq ,_49 2q
a’ h' d A=a +m, Q _Tl , (5.20
(2q+d+1)—+(2q+1)—+ef"¢ﬁK2
- whereQ is the charge of the solutions.
+yWn=0 (5.10 We would like to obtain perturbative solutions
(D-2) , g, (@+1)  a: . a=ag+ ya,
" ’ —h! ! —_padK?2 =
o'+ > a+2h+ ; ¢+2e Ko+ yw,=0
(5.10 h=ho+yh;
- o (D2)a-(a+2)h-ad, —(a+1) b=dot ydh1
(p+1)! '
C=Cqp+ yCy. (5.2)

X (e(P2-p-2at 1/2qh+5¢r(q+ Dk(r))+ y\ij: 0

(5.12 Before we proceed to integrate the equations we will present
a 1D effective action from which the field equatiof8)—
whered=p+1 andq=D—-p—3 and (5.12 can be derived.
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B. Effective action o - St
— | —_E..a'l . rr _ it _ rr
As in the case of the D3-brane, the 1D effective action is”! fd X g[ Eijg"oat - (9"En—g Ew) (9" Err
most naturally written in terms ofd(+ 1) dimensional fields.
The (d+1) dimensional action may be viewed as the reduc- +9™E VSh+ESdh+E ji1iprie
tion of the D-dimensional theory over the sphe®8*?! in 9" Emn) S+E; €y
transverse infinity and is given by

'ip+1]

= f dPx\—g[E,da+E8f + E,6h+Esc].

1
|d+1:f drv—9¢+1| Ra+1— Eggﬂfﬁ,z (5.28
(q+1)(D—2) Ad—da Since the solutions of interest depend on onlgne may
- q—gg+1,,f2+ gl —————c'(r)? integrate over all directions but Integrating the variation to
(d—1) 2 f(p+2)2 an action we get Eq(5.22.

From Eq.(5.28 we can read off the relation between the

D and 1D field equations:

—V(v) (5.22

Ea=—E;g’
where
(q+1) Ei= E(grrE” —9g"Eq)
alq f
=— 1 7 o [2(D-2)/(d-1)]¥
V(v) 2 e . (5.23
En=—(9"E++9""Emn)
The metricgq. 1 and the scalar field are related t@, h and
f by E,=E
d-1 h E.=E't - Tprig . (5.29
o e c EERN
gdﬂvijdx'de:ea( —fd2+ S dx§+—dr2) e
p=1

f ~
The sourcesw in Egs. (5.8—(5.12 can be expressed as a

combination of the source terms in theh,f, ¢, ¢ equations

1 r .
a= m((D—2)a+(q+ 1)h+2(q+1)log|—) of motion:

1 é
1 r Wah f,¢,c= (V—ge [12(O=2)9yy)
v=5lat h+2 Iogl—). (5.29 antee J—g d(a,h,f,¢,c)
(5.30
This can be shown by using the standard reduction formulawith the result
dSZD:e72[(q+1)/(d71)]vgd+l’ijdxidxj+e2v|2ng+1 o ze(a+h) -
(525) Wi= d(D—Z) [an ( )Wh]
and matching with Eq(5.7). 2e(ath)
The a' correction can be incorporated by adding to the W,=——[qw,— (D—2)(W,+dw;)]
action the following term: d(D-2)
2e(ath)
lw= )’f dry—gg e 2@ D/ DIy-[12(0-2)1¢ W= W{(D_z)[(l+d)wh
XWI[r,a,h,¢,f,cl. (5.26 +dws]—[q+d(q+2)]wa}
To connect theD-dimensional equations with the equations Wy=e@Mw,
of the effective action we note that
1
of of WA= 57 We .- (5.31
ogt'=~—| sa+ —|g", 5g”=( ~(a+oh)+ —|g" (Pt
A i h i
5g™= — (5a+ sh)g™" AL i —a, . .o C. Integrating the equations
P P (5.27) In this section we integrate the equations assuming that
the source termw are known. It is convenient to introduce

Substituting in theD-dimensional action we obtain the following variables:
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q
b=a+ mh

a
b=¢-h. (5.32

These combinations are motivated by the fact that the supe

symmetry of the lowest order solution implies thmand ®
vanish on the lowest order solution. Equatigbsd)—(5.11)
depend on the gauge field only through the combinaiién
It is convenient to introduce the notation

K2= e"é¢K2
K2=Kg2+ vK, (5.33
whereK is the lowest order value & andK, depends on

the corrections. In terms of these variables E§8)—(5.11)
become

, 49 ., 9., (q@+1) , q(g+tl) hy
bimp Mgt i ey
— K,+W,=0 (5.34

n d n d ! ! A ! ! (q+1) !
(D—l)b1+ mhl— §b1h0+ Ehoh1+ Tbl

(q+dhy - | qg — -~
+WT+6¢1ho—mKl+Wr—0 (5.35

" d h7 d 'y b; d(g+1) h;
1+ﬁ l+§bl O+(2q+d+l)7+

d — -
+ mKl‘FWm:O

(D=2) r

(5.36

+1 a D
8 g 3y

-2),.,,.@+1D |
5 bihp+ ———hj

a— -
+ 5K1+W,=0. (5.37)

Consider the linear combination of equatiodé5.34)
+q(5.36). Theresulting equation can be integrated,

b/ — 1 1
1" (D-2) y2a+1

—f r29°1(dw,+ qwy,) + Co|.
(5.39

Let us introduce

(5.39

PHYSICAL REVIEW [®8, 066001 (2003

The linear combination of equationaa/2(5.34)
+9g/(D—2)(5.37) can bentegrated as

a- q -~
[ _ q+1| |
Y = e fr 2Wt+(D—2)W¢’ Yo
(5.40
[ﬁtegratingbi andy’ once more one get®,
(D-2)[ a
=gy (5.41

Finally, givenb; andy, one may integrate the linear combi-
nation[Eg. (5.35—Eq. (5.34] to obtain

1
' q+1,(A/2)h
hy e(A/Z)hOrq+l:fr e °

(Vvt—Vvo—((D—zm’l’

(q—d)
T2

bihy+ad;h)

+Csy (5.42

which can be further integrated to yield.

Having obtainedy;, h; and ¢, one then substitutes to the
gauge field equatiofb.12) to obtainc,. Finally there is one
further equation among Eq&.8)—(5.11) to satisfy(we only
used three linear combinations to obtap, h; and ¢,).
This is expected to follow from the other equations up to a
constant because of the Bianchi identity. This final equation
will thus impose a condition among the integration constants,
as in the case of the D3-brane.

VI. CONCLUSIONS

We have studied in this paper the computation of quantum
corrections to brane solutions. These corrections are driven
by the leading higher derivative corrections to the string
theory effective action. The corrections were computed per-
turbatively ina’, i.e. the lowest order solution was substi-
tuted into the leading higher derivative term of the effective
action and then the resulting equations were integrated to
obtain the corrected solution. The straightforward application
of this procedure, i.e. the direct computation of the corrected
equations, is very tedious, basically due to the complicated
tensor structure of the higher derivative terms. We completed
the computation in this manner but we also developed sev-
eral alternative methods for analyzing the problem.

The first alternative method is the extension of the Pala-
tini formalism to higher derivative theories. In this method
the metric and the Christoffel symbols are considered as in-
dependent fields. The main advantage of this method is that
it reduces the number of partial integrations needed in order
to derive the field equations. This is a significant simplifica-
tion because each factor of the Riemann tensor requires two
partial integrations in the standard derivation of the field
equations, so for higher derivative theories that depend on
RP, whereRP denoteg Riemann tensors contracted in some
way, one gains at leagi® terms when using the Palatini
method. Furthermore, the organization of the computation is
more transparent.
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Even with the simplifications of the Palatini method, how-  These terms would also lead to a modification of the self-
ever, the computations are still very laborious. Things sim-duality equation of5, as discussed in the Introduction. We
plify enormously if one is studying spherically symmetric proceed by considering the effect of only tRéterm, so one
solutions. In this case we derived an effective one-may consider this computation as a “toy” model computa-
dimensional action that governs the field equations, as w#on. Including theR* only, we explicitly integrate the equa-
now describe. We start by substituting in the variation of thetions and obtain the corrected solution for this case. We find
ten-dimensional action, the ansatz for the metric and the mathat the integration constants may be adjusted so that the
ter fields. Since by assumption we are considering a Spherﬁolution is asymptotically flat and regular in the interior. This
cally symmetric solution, the resulting expression depend$ @ hontrivial result because the integration constants at our
only on the radial coordinate and one may thus trivially disposal are less than the number of terms that are diverging
integrate over all coordinates butAfter discarding an over- in the near-horizon limit. In turns out, however, that the co-
all (infinite) volume factor, the result can be integrated backefficient of these terms is appropriately correlated and a
to a one-dimensional action where the fields are the functiongMooth limit exists. In the near-horizon limit the solution
that appear in the original ansatz. By construction the solubecomes Ad$x S° with the same value of the cosmological
tions of the one-dimensional field equations automaticallyconstant but a differenfconstant value of the dilaton than
solve the field equations of the original theory. Provided thathe lowest order solution. The fact that the cosmological con-
the number of independent functions in the original ansatz i§tant is uncorrected is due to a cancellation.
equal to the number of field equations one gets by substitut- We used the general method of W4lt7—19 to analyze
ing the ansatz in the original field equations, this methodhe thermodynamics of the corrected solutions. In the pres-
guarantees that the lower dimensional theory is a consisteice of higher derivative terms the ADM mass formula and
truncation of the higher dimensional ofiee., all solutions of ~ Other thermodynamic quantities receive corrections and we
the lowest order equations lift to solutions of the higher di-discuss how to obtain the new formulas. In particular, we
mensional theory computed all thermodynamics quantities of the corrected D3-

In the cases we study in this paper, the 1D action has thBrane solution. We find that the temperature and the entropy
most transparent parametrization in terms of fields that aptemain equal to zero, the charge is uncorrected but the mass
pear in an intermediate step. In the brane solutions one cand the electric potential renormalize. For solutions with
parametrize the transverse space in terms of polar coordz€ro temperature or entropy the first law of thermodynamics
nates. The intermediate theory is obtained by reducing ovep integrated form(Smarr formula implies that the mass
the sphere at infinity. In the context of near-horizon geom-density u, charge density and electric potentia are re-
etries, this is the sphere that appears in the near-horizoated by
limit. We have derived an effective 1D action for all
D-branes(the explicit formulas are for electric branes, but Js
the magnetic case can be obtained along similar Jifdsese pm=———0q (6.
results can be used to study corrections to extremal and
nonextremal branes, but we only studied extremal branes in
this paper. where the factor depending on Newton’s constant is conven-

In the case of the D3-brane we further derive first ordertional. The lowest order D3-brane solution satisfies @dl)
equations. The existence of such first order equations follow®ith ©~q~N, whereN is the number of D3-branes and
from the fact that the potential of the intermediate theory~g;1. In the corrected solutiog remains uncorrected but
(obtained by the reduction over thé &t infinity) admits an ~ « andv renormalize such that E6.1) still holds.

AdS critical point(since a particular solution of our equa- We emphasize again that in computing the corrections to
tions is the Ad$x S° solution. This implies that the lowest the D3-brane solution we did not take into acco(presently
equations admit a superpotential, and we indeed show thatnknown higher derivative terms that depend Bg. Such
this is the case. The inclusion of tlag corrections modifies terms will modify the field equation&n particular the self-
the first order equations by the addition of source terms. duality condition forFg) as well as the formula for the

The main limitation in our considerations comes from thecharges of the solutiotsimilarly to the fact that th&* term
fact that the complete set of the leading higher derivativemodifies the ADM mass formulaA simple argument that
terms is not yet available. Provided that we are supplied witluses dimensional analysis and the form of the lowest order
these terms, we show how to integrate the equations in allolution shows that anfpositive correction to the mass den-
cases to obtain the corrections to the solutions. The corresity would imply that it is energetically favored for D3-
tions are given in terms of integrals of the evaluation of thebranes to coalesce together rather than remain separated.
higher derivative terms on the lowest order solution. This contradicts the no-force condition and strongly suggests

The case of the D3-brane is under better control becauddat half supersymmetric D3-brane solutions do not renor-
the dilaton is constant, so higher derivative terms dependingalize. This in turn suggests that the terms will make a
on derivatives of the dilaton do not contribute. To computesignificant contribution. To properly address this issue the
the correction one still needs to know the higher derivativeexact knowledge of the-g-dependent higher derivative
terms that depend oRs, but these terms are not known at terms will be required.
present. Such terms are expected to be present because theyin this paper we studied corrections to extremal branes.
are present in the dilaton superfigitl]. Even though the exact form of the higher derivative terms
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are not known, we succeeded in integrating the equations in
general. Some of our results, such as the effective one-
dimensional action, hold for nonextremal branes as well. It
would be interesting to investigate whether the nonextremal
equations can be similarly integrated in general. Other gen-
eralizations of our analysis involve studying corrections to
intersecting brane configurations. It will be interesting to see
if the simple intersection rules generalize wheh correc-
tions are included. This study will be relevant for obtaining
a' corrections to black hole configurations.
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APPENDIX A: EXPLICIT EXPRESSIONS
FOR W AND ITS VARIATION

In this appendix we outline the details of the direct com-
putation of the variation of ther'® term in the action for
arbitraryp-branes, and present some results for specific low-
est order solutions.

We will be completely general in that we will consider a
genericp-brane inD dimensions, with an ansatz for the met-
ric of the form:

ds?= e[ (— fdt?+dx3) +e"(f tdr2+r2dQd)], (A1)

wherea=a(r) andh=h(r), andp andd satisfyp+d=D
-2.

In a background with these symmetries the nonzero com-
ponents of the Weyl tensor are

C®cpg= Q(I8Gca— 4T
Clat=SGb
Claro=TGab
Cano=Y 00 Gab
Cl =V
C' min=X0mn
C'tn=Y Gmn

Cpmqn: Z( 5ggmn_ 5ggmq)- (A2)

The explicit expressions for the functioy . .. ,Z are
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—a—h

~ 4(D_1)(D_2)r2[2rf’(4d—rh’+2drh’)

+4(d—d?+r?f")+df(4drh’+(d—1)r?h’?
+4(d—1+r?h")]

efafh

—4(D D0-2 s[4d—4d*+rf’(10d—2Dd
- —2)r

—3rh’+5drh’ +Drh’—dDrh’)+6rf"
—2Dr?f"+df(4drh’ +(d—1)r?h’?+4(d—1
+r2h"))]

e—a—h

20-00-2 s[—4d+4d*+rf’(-10d+2Dd
- —2)r

+3rh’—5drh’—=Drh’+Ddrh’)—6r2f"
+2Dr?f"+df([4—4d—2(1+2d—D)rh’—(d

—1)r2h’2—6r2h"+ 2Dr2h"])]

e—a—h

_4(D 1)(D-2) s[2rf'(2+4d—2D+2drh’
- -2)r

—Drh')—4(d?-~1+D—-Dd—r?f")+f(4d*°— 4
+4D—-4Dd+2(—1+2d+2d?+D—-2dD)rh’
+ (d—1)(1+d—D)r?h’'?+2r?h"+4dr?h"

—2Dr2h")]

e—a—h

20Dz (P~ Irf (@d=2rh+2drh’

+Drh’)+2(—2d+2d%—6r?f"+5Dr?f"
—D?r?f")+df[4—4d—2(1+2d—D)rh’—(d

—1)r2h'2—6r2h"+2Dr2h"]]

e—a—h

- [4—4d?—4D+4Dd+rf’(8
4(D—1)(D—2)r?

+10d—10D—2Dd+2D?+rh’+5drh’ —4Drh’
—dDrh’ +D?rh’)+6r%f"—2Dr?f"+(1+d
—D)f
X[—4+4d+2(1+2d—D)rh’+(d—1)r?n’2

+6r?h"—2Dr?h"]]



ON a’ CORRECTIONS TO D-BRANE SOLUTIONS PHYSICAL REVIEW B8, 066001 (2003

Y= —4(d—1)(1+d-D)(—1+f o'l =2 Vy V(D' DM — D) — Vvid
4(D—1)(D—2)r2{ ( )( )( ) 4| Yn¥m (D-2)
—2[4+5d+D(~5—d+D)]rf’+2[1—2d(d+1) +d)— gV ¥d""— Vd) + 2(Ry, D! M- RED 1)
+(2d—1)D]rfh’—[1+5d+D(—4—d+D)]r?f'h’ n (D_l)((Rij_Vivj+vzgij)Dmnmn_RDluj))
+[3—(d—4)d+(d—3)D]r2fh’2+2(D—3)r?f"

—2(14+2d—D)r?f(h'2+h")} +(i<—>j)} (A8)
—a—h .
7— [2(rf’(4+4d—4D+rh’ and we have defined

 4(D-1)(D-2)r2
Bijki =C"ijnC"ikm
+2drh’—2Drh’)—2(d+d?~D—2dD+D?

—12f"))+(1+d—D)f(4(1+d—D)rh’ D, =e [12C-2)19[ (2B, "'+ 3B;" —2B],)C™k,
+(d—D)r2h'2+4(d—D+r2h"))]. (A3) — B ,C™ K~ B CM = (ki)
The gravitationakr’ correctionW in terms of these vari- di=p,/l -D!/. (A9)

ables can be expressed as

W=p(p—1)[T4+ S+ 4(S*+ T3)Q+3(p—2)Q*+4Q4(T2  APPENDIX B: EXPLICIT FORM OF THE CORRECTIONS
FOR EXTREMAL AND NONEXTREMAL
+S2+dU?) +dU*+4dUBQ]+d(d—1)[ X*+ Y4 D3-BRANES

+4(X3+Y3)Z+3(d—2)Z*+ 4Z3(X?+ Y2+ pU?) In this appendix we give explicit formulas foW and its
variation for thermal AdS, and for the extremal and nonex-
+pUt+4pUSZ]+2p[ T?S?+ V2T?+ V282 + 2(VATS tremal D3-brane. These solutions satisfy the constrairit 2
+ SVT+ T2V ]+ 2d[ X2Y2+ V2X2+ V2Y2+ 2(V2XY +hy=0 (which is a necessary but not sufficient condition

for supersymmetry and we have
+Y2VX+X2VY) ]+ 2dp[ X2T2+ Y2+ U2(X2+ Y?

d-1
+T2+S2)+2(SPUY + Y2SU+ T2UX+ X2TU+ U?TX eMo= o+ ¢
+U2sVY)]. (A4)
Fold-1
We stress that these formulas are valid for arbitagnd f= 1—(7)
D. In Appendix B we will give the results for specific ex-
tremal and nonextremal D3-brane solutions. A
Next we compute the variation &f. Let us define e"0=gs. (B1)
f de\/Ee’[lz’(D*Z)]¢5W=f dPx\gagiw; 1. Thermal AdS;X S°
The AdS limit can simply be taken by setting=0. The
scalarsQ, ... ,Z are all given in terms of a single function

:J d®x\gsg;wl. (A5)  W. We get:

Notice thatw' = —g*g''w,,. Explicit computation ofw;;
gives V=37
ij — ij ij
w Wi +w (AG) rg
where V= r4¢2 B2
ij 1 —[12/(D-2)] ¢ In In and
W1=§e [(—4Bn"+4Bny
W=180¥*, (B3)

- 3Bm|nk)Cmipanij_ BmkIi ijkI +(i<])]
(A7) which agrees with the expression[i].
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2. Extremal and nonextremal D3-branes
For the extremal D3-brang,=0, the result is
Q=S=0
T=V=5y
U=Y=—x
X=—4y
Z=2x
x= erKO o (B4)
and
W= 28800*. (BS)
In the nonextremal cas®&Y has a more complicated form:
we— 0 [3€%% 5+ 324t 2 *r g™+ 219cGr 3 5°
P804+ ior) 10
+ 126048 T 6204+ 23r ) + 265024 Br8( 12
—12r% 3+ 83r D)+ 4k 020 12 3(64r8— 58 4r g+ 131r§)
+2u508r 256128 — 4rtr g+ 371r§)
+16k3€12r 2% §(60r 12— 14r8r 5+ 28rr§+ 5339
+ 2K 1192400 10— 480r 14§+ 832 Br §— 464 r
+51539)]. (B6)
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APPENDIX C: THE MOST GENERAL SOLUTION
OF THE LOWEST ORDER EQUATIONS

In this appendix we present the most general solution of
the lowest order equatior{2.34—(2.37). An analysis of this
system has also been presented4i@]. Let us define

a=2a'+h', B=h', y=¢'. (C1

Consider the following linear combinations of the equations

1 9
g[(2.34)—(2.36)]: o'+ Fa+2a2=o (C2

(2.37: y'+y 2a+? =0
(C3
4 o 1
5 36
Br+Fﬁ+ﬁz—Ta—9a2+ )/2=0. (C4H

The solution of these equations should still satisfy @435
Equations(C2), (C3), (C4) can be integrated by elemen-
tary means. Let us first consider the special case

a=0=h+2a=c;. (CH
Then we get
4c, (o)
Y= 15 =¢=C— 7 (Co)

We also give here the variation &Y obtained from Eq. (C7)
(A8) for the extremal D3-brane. One finds that the Oﬁ'lnsertlng in Eq.(2.35 we get
diagonal components are zero and the diagonal ones are
equal to C,e%1 5=+ |4, (C8)
" 4800<§(512 8 s 28 1t Requiring that the solution is asymptotically flat and the di-
wh=— m(%f =123kt 1" +42x5r°)g laton approaches 1 asymptotically fixes
480012 c,=0, e %=coscy, c3=1. (C9Y
0
waf=— m(%(fs— 123kt r*+ 42x5r8) g2 We thus finally get the solution
l“cosc,)| \ ~¥?
9600¢3¢ 12 CO§ C4— 2
Wrr:—W(7€8—9K064r4+6K§r8)g” ds?= cosc, (—dt2+dX2)
l“cosc, | \ Y2
1920¢3¢12 cod c,— 4
W= — (11908 — 267k o€ *r *+ 90k5r &) gm™ 4t
agitn, Ko Kor)g + — (dr2+r2d02)
(B7) 4
i ; I“cosc
wherea runs over the spatial worldvolume coordinates and =17 4 (C10

m over the coordinates of the sphere.

r
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and the self-dudfs is given in Eq.(2.13. The * sign in the
dilaton is related to the two sign choices in EG8). Neither
the metric nor the five-form depend on these signs. The re
son is that one can change the relative sign dp
—l%cosc, /r* by taking c,— —c,. This does not affect the

metric and the five-form because this combination appears
inside the cosine. The standard supersymmetric D3-brane so-

lution is obtained by the limit cos—0.
Equation (C2) admits more general solutions than Eq.
(C5). The most general solution of E¢C2) is

4 1 1
a= (I’ do_l)r:>h+2a=dl+ E|Og(do—r1 .
(C1y

Here and in the following we assuntg>0, but a similar
analysis can be done fdp<<0. Inserting the solution af in
Eqg. (C3) and integrating we obtain

dor3 d, Vdgr4—1
Y= = ¢=dst log
dor®—1 8Vdy  Vdort+1

. (C12

Equation(C4) becomes

4d,Dr® o
(dor®-1)2

g (C13

5
,8’~I—F,6’+,82+
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whereD = (dg— 144d,)/64d,. This can be solved as follows.

<,j{__et us define

H=e" o +1 (C14
=e", p=z| —— .
72| gt
In terms of these variables E(¢C13 becomes
PH+ 2 H=0 (C15
P pA1-p? T
The most general solution of this equation is
H=dp“+(1-p)*~+dsp“~(1-p)*=  (C1H

where a,. =3(1+J1—4D). The exponents are real f@
=<1/4. The casd =1/4 is a special case since in this case
a,.=a_. In this case the second independent solution in-
volves a logarithm. One should still impose Eg.35 which
should relate the integration constants to the sdale
Asymptotic flatness fixed,+ds=2,d,=— 1 log dy,dz=1.
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