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Correlation entropy of an interacting quantum field and H theorem for the O(N) model
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Following the Boltzmann-BBGKY paradigm we propose a correlation enti@bythe nth ordey for an
interacting quantum field. The concept of correlation entropy is useful for addressing issues related to ther-
malization. As a small yet important step in that direction, we statd #reorem for the correlation entropy of
a quantum-mechanical ®f model with a closed time path two-patrticle irreducible effective action at the level
of a next-to-leading-order largd approximation. This model may be regarded as a field theory in O space
dimensions. We verify the validity of the proposkldtheorem in two limiting cases.
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[. INTRODUCTION can still ask meaningful questions such as whether certain
correlation functions may converge to their thermal forms in
The goal of this paper is twofold: the proposal of a cor-some well defined physical limit. We may call this a weak
relation entropy for an interacting quantum field, and thethermalization condition. In practical terms, one needs to be
statement of anH theorem for the quantum-mechanical careful when addressing the question of even weak thermal-
O(N) model[1,2], which may be regarded as a field theory ization, as its preci;e meaning is often attached to a.chosen
in zero space dimensions. For the former, we follow thel€vel of approximation, such as thePl of the correlation
paradigm of Boltzmann and Bogoliubov, Born, Green, Kirk- hiérarchy, the loop expansion, theNléxpansion, or expan-

wood, and Yvon(BBGKY) [3] and propose a correlation Sion in powers of a coupling constant, etc. _ _
entropy (of the nth ordej for an interacting quantum field There have been recent claims based on numerical evi-

[4—8]. We then derive the closed time pa@TP) [9] two- ~ dence[15-19 that at the NLO largeN approximation an
particle irreducible(2P) [10] effective action(EA) for this interacting quantum field may show signs of thermahzatlon.
model up to the next-to-leading ord@LO) in 1/N [11]. As In a recent reportl3], we consider an Q) invariant scglar

a useful step towards addressing issues related to the thdfeld of unbroken symmetry, develop the CTP 2PI EA in
malization of interacting quantum fields, we statetatheo- ~ Powers of 1IN, retaining up to the next-to-leading order
rem for the correlation entropy of a quantum—mechanica[o(l)] terms, and show that the only time translation invari-
O(N) model at the CTP 2Pl NLO level. We introduce the ant solutions are thermal. Our analytic result provides sup-
thermalization issue as a motivation for this study and give £°rt for similar claims. Here, we present an alternative ap-
short description of different definitions for the entropy of Proach by defining a correlation entropy and verifying the
interacting quantum fields in the next section, followed by€xistence of anH theorem in the simpler quantum-

the statement of thed theorem given in the ensuing Mechanical OK) model. We first summarize the different
sectiond ways of defining entropy for a quantum field.

The problem of thermalization in relativistic quantum
fields has drawn much attention over time, both in the at- 1I. ENTROPY OF INTERACTING QUANTUM FIELDS
tempt to understand the origin of macroscopic irreversible )
behavior from microscopic theories, and for practical consid- ENtropy reflects and measures the degree of incomplete-

erations of nonequilibrium quantum field processes in thé'€SS In the information one can attain resulting from one’s
early Universe and in relativistic heavy ion collisiofist]. specific way of seeking an approximate description of the

In the strictest theoretical sense, an isolated system dd€atures and dynamics of a system, in our case, the quantum

picted by quantum field theory undergoes unitary evolutiorfi€!d- First, for a unitarily evolving quantum field theory

and does not thermalizgén the strong sengeHowever, one  Whose dynamics is a closed systéas opposed to an “ef-
fectively open system"and governed by the quantum Liou-

ville equation, it is well known that the von Neumann en-
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The following descriptive summary in this and the next section is Sw=—Trlp(t)Inp(1)], @
adapted from Chap. 5 ¢fL.2], where a preliminary attempt to con-
struct a correlation entropy was made but the proof ofthineo- IS exactly conserved. If there is a justifiable separation of
rem for an interacting quantum field did not materialize, and frommacroscopic and microscopic time scales, one can adopt the
[13]. theoretical framework of quantum kinetic field theory. If one
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makes the assumption of factorizatiGequivalently, slaving sentation or to depict phase coherence in the plaseP”)

of the Wigner-transformed four-point functiprone obtains representation. Various proposals for coarse graining the dy-

the relativistic Boltzmann equation in the binary collision namics of parametric oscillators have followg®—-33. The

approximation. The Boltzmann entrof8g defined in terms language of squeezed states is particularly useful for describ-

of the phase-space distributid(k, X) for quasiparticles can ing entropy growth due to parametric particle creation

in this case be shown to satisfy a relativistit theorem [26,31,34,3% For our purposes, the essential features of en-

[20,6]. We want to generalize this to a correlation entropy fortropy growth due to parametric particle creation which dis-

interacting quantum fields. tinguish it from correlational entropy growtko be discussed
However, in the case where there doest exist such a below) are that parametric particle creation depends sensi-

separation of time scales, how does one define the entropy tiffely on the choice of representation for the state space of

a quantum field? For nonperturbative truncations of the dythe parametric oscillators and the specificity of the initial

namics of interacting quantum fields, this is a nontrivial conditions.

question[21]. Intuitively, one expects that any coarse grain-

ing which leads to an effectively open system with irrevers- B. Entropy from projecting out irrelevant variables

ible dynamics will also lead to the growth of entropy. For- . .

mally these operations can be systematically expressed in In contrast to entropy growth resulting from parameiric

terms of the projection operator techniqi2g]. A projection part!cle .Cfea“"'.‘”om the vacuum, entropy growth due ta
operatorP projects out theirrelevant degrees of freedom particle interactionsin quantum field theory21] has a very

(thus going over to an open systefom the total system different physical origin. A coarse-graining scheme was pro-

described by the density operatpr yielding the reduced _posed by Hu a_nd Kandru21] _for t_hese Processes. Express-
density matrixpg, ing an interacting quantum field in terms of a collection of

coupled parametric oscillators, their proposal is to define a
pr(t)=Pp(t). ) reduced density matrix by projecting the full density operator
R onto each oscillator’s single-oscillator Hilbert space in turn,

There exists a well-developed formalism for deriving the .
equation of motion of theelevantdegrees of freedom, and in Y(K=Tric zip, (4)
terms of it, the behavior of the coarse-grain@&is) entropy

[22.3 and defining the reduced density operator as the tensor prod-

uct IT of the projected single-oscillator density operators
Sce=—Tr pr(t)In pg(t)], ® k),

which will in general not be conserved. The projection op- pr=1Igv(Kk). (5
erator formalism can be used to express the slaving of higher ) ) ) .
correlation functions in the correlation hierarchy. From it one The coarse-grainetHu-Kandrup entropy is then just given
can define an entropy in effectively open systesee, e.g., by Eq.(3), from which we obtain

[23]). (So far it has only been implemented within the frame-

work of perturbat.ion theory. _Another equally powerful Sik= _Z | y(lZ)In 7('2)]- (6)
method adept to field theory is the Feynman-Vernon influ- K

ence functional formalisni24,25 which has been used to

treat entropy in quantum open systefase, e.g.[26]). It is interesting to observe that for a spatially translation-
invariant density matrix for a quantum field theory which is

Gaussian in the position basis, this entropy is just the von
Neumann entropy of the full density matrix, because the spa-
We now consider the entropy functions for quantumtially translation-invariant Gaussian density matrix separates
fields, beginning with the simpler yet more subtle case of 84, 5 product over density submatrices for eéatscillator.
free field. Historically this issue was, to our knowledge, first-l-hiS projection (Hu-Kandrup coarse graining, like the
raised in the context of entropy generation from particle Cre'correlation-hierarch)(CaIzetta-H1)1 coarse-grainin,g scheme,

Zt'on forha free quantum f|elﬂl|n an exfpandmg Ufrluve[rzé]_ does not choose or depend on a particular representation for
ue to the parametric ampliication of vacuum fluctuations, o gingle oscillator Hilbert space. It is sensitive to the estab-

The focal point is a wave equation with a tlme-dependenhshmem of correlations through the explicit couplings.
natural frequency for the amplitude function of a normal

mode. [The same condition arises for an interacting field
(such as the.®* theory) in the Hartree-Fock approximation
or the ON) field theory at leading order in the largé-ex-
pansion[11].] Since the underlying dynamics is clearly uni- A general procedure has been presented for obtaining
tary and time-reversal invariant in this case, a suitable coarseoupled equations for correlation functions at any oildier
graining leading to entropy growth is not trivially evident. the correlation hierarchy, which involves a truncation of the
Hu and Pavorj28] first made the observation that a coarsemaster effective actioat a finite order in the loop expansion
graining is implicitly incorporated when one chooses to de{7,8]. By working with anl loop-order truncation of the mas-
pict particle numbers in the-particle Fock(or “N”) repre-  ter effective action, one obtains a closed, time-reversal in-

A. Entropy special to choice of basis or representation

C. Entropy from slaving the higher correlations: The CTP 2PI
effective action
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variant set of coupled equations for the firstl correlation of the N scalar fields. In this way, the N/framework pro-
functions, ¢,G,Cs, ...,C/.1. In general, the equation of Vides a systematics and a quantitative measure of the semi-

motion for the highest-order correlation function will be lin- classical approximatiofa7].

ear, and thus can be formally solved using Green's-function To leading orde(LO), the theory reduces t—1 linear
methods. The existence of a unique solution depends on sufields with a time-dependent mass, which depends on the
plying boundary conditions. We have shown elsewhere thapackground field and on the linear fields themselves through
this system will manifest noise/fluctuatiofig 8] for the case @ gap equation local in time. This depiction of the dynamics
of the slaving of the four-point function to the two-point agrees both with the Gaussian approximation for the density
function in the symmetry-unbrokend? field theory. Thus a Matrix[48,49 and with the Hartree approximati§82]. The
framework exists for exploring irreversibility and fluctua- LO 1/N theory is Hamiltoniari32] and time-reversal invari-
tions within the context of a unitary quantum field theory, ant. It simply does not thermalize. For example, if we set up
using the truncation and slaving of the correlation hierarchyconditions where both the background field and the self-
The effectively open system framework is useful for pre_consistent mass are space-time independent, then the particle
cisely those situations, where a separation of macroscopigumbers for each fluctuation mode will be conserved. The
and microscopic time scaléwhich would permit an effec- existence of these conservation laws precludes thermaliza-

tive kinetic theory descriptiondoesnot exist, such as is tion [50]. ) S
encountered in the thermalization issue. We note that the failure of the LO approximation to de-

scribe thermalization is indicative of a more general break-

While it is certainly not the only coarse-graining schemed £ th o | . h ff f
which could be applied to an interacting quantum field, the own of the approximation at later times, where effects o

slaving of higher correlation functions to lower-order Corre_particle interaction dominate. Both the distribution of energy

lation functions within a particular truncation of the correla- among the field modes and the phase relationsupsack

tion hierarchy, as a particular coarse-graining method hathereoj among them affect the way guantum fluctuations

. X . . . » N3 act on the background or external fields. Therefore, from
several important benefits. It can be implemented in a truly hysical considerations, one can say that a theory which does
nonperturbative fashion. This necessitates a nonperturbati\%ot describe thermaliz,ation becomes unreliabie for most
resummation of daisy graphs, which can be incorporated i%ther purposes as wdlb1].

the truncation/slaving of the correlation hierarchy in a natu- This is where the next to leading ord@¥LO) approxima-

ral way. tion enters. It has been applied to quantum mechdnic,
classical field theory{52-55, and quantum field theory
Ill. THE H THEOREM FOR THE [17,19,58, being contrasted both to exact numerical simula-
QUANTUM-MECHANICAL O (N) MODEL tions of these systems, as well as against other approxima-
A. The next-to-leading order large N approximation tions purporting to go beyond LO. The NLO has been shown

. _ . _ . to be an accurate approximation, even at moderate values
The numberN of replicas of essentially identical fields ¢

[like the N scalar fields in an @) invariant theory, or the

2_ . . . . .
N“—1 gauge fields in &U(N) invariant non-Abelian gauge o\ 5jytion in a 1IN expansion of the standard 1PI effective
theony] suggests using W as a natural small parameter, With 5ction at NLO fail. This happens, in particular, because of

a well-defined physical meaning. Unlike coupling constantsy,o appearance of secular terms which grow with time and

this is not subjected to renormalization or radiative COIeCran spoil the I counting for times of ordeN (see, e.g.,

tiqns. By ordering the perturbative expansion in PoOwWers Of[57,58§). Therefore, it is crucial to resume the standard 1/
this small parameter, several nonperturbapve gffe(ms_ expansion, which can be done using the 2l &kpansion.
terms of coupling constantsnay be systematically investi- The 2PI formalism is also suitable for this question be-
gated. cause, provided an auxiliary field is cleverly introduced, the

Th? ability of the 1N framev_vork to add_ress the NONPEr- 5p| CTP effective action can be found in closed form at each
turbative aspects of quantum field dynamics has motivated Brder in 1N [11,59. We now begin our study with a con-
detailed study of the properties of these systems. In nonequiate model. T

librium situations, this formalism has been applied to the
dynamics of symmetry breakindg11,36—4Q and self-
consistent semiclassical cosmological moddlts—44. B. O(N) AX* theory

In the case of the Q¥) invariant theory, in the presence =~ We summarize in this section some known results on the
of a nonzero background fie[dr an external gravitational or O(N) AX* theory which we shall need below; sg216,59.
electromagnetic field interacting with the scalar fjelde To fix the physical ideas, we shall discuss the problem in
may distinguish the longitudinal quantum fluctuations in thezero space dimensions, namely, the quantum-mechanical
direction of the background field, in field space, from theO(N) model. The system dynamics is described by the
N—1 transverse(Goldstone or pion fluctuations perpen- Hamiltonian with variable, and their conjugate momenta
dicular to it. To first order in M, the longitudinal fluctua- P*, whereA,B are the ON) group indices, with
tions drop out of the formalism, so we effectively are treating
the background field as classical. Likewise, quantum fluctua-
tions of the external field are overpowered by the fluctuations

It is crucial to realize that attempts to compute the time

1 BpB 2 A 2
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The classical action Finally S; contains the bare vertex

1(. . 5 N ) —N do ¢~
S= | dt5| XeXg—MXsXp— 51 (X6Xa) (8) S=| 5 f d%{xXgXe}- (17)
whereMS and\ are the mass parameter and coupling con- To write the 2Pl CTP EA we double the degrees of free-
stant. We rescalXg= \/NXB, dom, incorporating a branch labak 1,2 [for simplicity, if
not explicitly written, we assume that the laksehlso con-

nld 1(. . X A 5 tains the time branch, i.ex*3=x"3(t,)]. We also introduce
S=N [ dit7) XeXg=MXeXg— 7 (XeXs)“. (9 propagatorgzA2B for the path ordered expectation values
Discarding a constant term, we may rewrite the classical ac- GAaBb= (xAayBb) (18
tion as
and F2° for
if. . [m2 W P -
S=N f dti[xBxB— W—FTXBXB . (10 Fab=(%%xP). (19

Because of symmetry, it is not necessary to introduce a

To set up the ™M resummation scheme, it is customary to mixed propagator, fofx?x®=0. The 2PI CTP EA reads

introduce the auxiliary fieldy, writing

N o M2 \/X 2 = 17 i +£ dud (D a ’ GAa,Bb ,
5= [rwto| M P ST ST 5 | dudo Dagonu0)G**H(u,0)
N
2_ 2 +—c, 5(u,v)Fab(u,v)]
* MJ;MJTXXBXB ] (11) ho

ih
——[TrinG+TrinF]+T4, 20
whence 2[rn rinFl+Tq 20

S—Nfd 1. . M?  XgXg
N FeeT X T

From now on, we considey and xg as fundamental vari- DAaYBb(u,v)=N5AB[cab&§—cach°]5(u,v), (21
ables on equal footing.

Because of the Q) symmetry, the symmetric point must andcapc=1 when all entries are .= —1 when all en-
be a solution of the equations of motion. For simplicity, wetries are 2, anat,,.=0 otherwise. When we use the com-
shall assume we are within this symmetric phase, and tregaressed notation, it is understood tlegh=c,,5(t,,t,) and
Xg as a quantum fluctuation. We also split the auxiliary fieldCapc=CancI(ta,tp) o(ta,te). g is the sum of all 2PI
X:;Jr;( into a background field?and a fluctuation fieldy. vacuum bubbles with cubic vertices frdgg and propagators
The action becomes G*2Bb andFaP. Observe thaf ' is independent of°.

Taking variations of the 2Pl CTP EA and identifying

1, where, if the position variable is explicig;;= —C=1,
X 12 ¢p=cy=0,

S=St St SHSs. (13 =X2=; we find the equations of motion
S, is just the classical action evaluatedxat=0, x= x: N in 1
N 1 5 0a8Dab~ 5 [G Tlaapnt 51laaep=0,  (22)
SO:XJ dt(i?—MZ;]. (14)
N iﬁ[Ffl] +1H 0 (23
~ 5y Cab™ & b 5 Hap=0,
S, contains terms linear ify and can be set to zero by a 207 2 o2
suitable choice of the background field
N — 2 N Al1B1
T -MF =5 5,5G Pt =0, (24

N — ~
Sl:if dt{x—M?}x. (15)
whereD 4,(U,v) = Caol 32— x(u)18(u,v),
S, contains the quadratic terms and yields the tree-level in-

verse propagators, B ol'g B ol'g
N M paBp= ZW,. ap= 25Fab' (25
1. . X 1.,
S2= Nj dt{ 2X8X8 T XeXe T o X - (18 \ve shall seek a solution with the structure
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h i%

GAAEBP=5 3"BG(u,v), (26) Qan=" CacdCbeiG*G"". (34
which is consistent with vanishing Noether charges. Then itrhe theory so constructed belongs to the class of
Is convenient to write ®-derivable theories, and therefore is consistent with energy

5 conservatiorj60].
ab_ " jab — From quantum field theory it is common knowledge that
F H ' l_IAa Bb 5ABPab: . . . . .
N ' equations derived from an action principle are necessarily

time reversal invariant if the Lagrangian is local. For a non-

an(X,Y) =NQap(X,Y). (270 local action, there is na priori justification to this effect. In
fact, anonlocalaction of the closed time-path kind may lead
The equations become upon variation to equations of motion containing dissipation
1 and fluctuations with a clear mathematical and physical
i1 o _ meaning.(This has been shown in many circumstances both
Dap=I[G Tapt GPan=0, (28) in theory and in practice, with detailed calculations and dis-
cussions. See, e.g., Refd4,45,61,62 In the latest example
1 g [63], it is shown how a general dissipative and stochastic
5 Cab—I[H “Jap* Qap=0, (29 equation of motion can be derived from a CTP effective
action)
1 - 2 11, —
X{X(t)_ M}~ EG (t,1)=0. (30) C. From correlations to the reduced density matrix

The 2PIEA yields equations of motion for tharbitrary

Observe that time) two-point functions of the theory. Given a solution of
these equations, in principle we may find the expectation
values of a large family of composite operators at any given
time. Suppose we adopt a coarse-grained description where
we choose a certain number of these expectation values as
These are the exact equations we must solve. The successﬁ'j@ relevant variables to describe the System. Then there will
1/N approximations amount to different constitutive relationsbe a single density matrix which has maximum von Neu-
expressing®,, andQ,y, in terms of the propagators. mann entropy with respect to the class of states reproducing

The key observation is that in any given Feynman grapthe preferred expectation values. This maximum entropy
each vertex contributes a power Wf each internal line a density matrix is the reduced density matrix for the system,
power of N™%, and each trace over group indices another@nd its entropy its correlation entropy. Thetheorem is the
power ofN. We have botiG andH internal lines, but th&s ~ Statement that the correlation entropy grows in time, when
lines only appear in closed loops. On each loop, the numbdhe correlations themselves are evolved using the equations
of vertices equa|s the number 6&f |ines7 so there 0n|y re- derived from the 2PIEA truncated to some order in thd 1/
mains one power oN from the single trace over group la- €xpansionthis statement will be qualified below
bels. Therefore, the overall power of the graph is the number Let us consider first the simplest case where we describe
of G loops minus the number ¢f lines. Now, since we only the system by specifying the values Okgxg), (XgPg
consider 2P| graphs, there is a minimum numbeHdfnes  + pgxg), and(p®pB) (p”=Nx" is the momentum conjugate
for a given number o6 loops. For example, if there are two to xg) at every moment of timéby symmetry, we assume
G loops, they must be connected by no fewer than tittee (xgXc)= dgc(XgXg)/N, and similarly in the other cases
lines, and so this graph cannot be higher than NNLO. AThis choice of relevant variables does not utilize or display
graph with threeG loops cannot have fewer than fivé  the full power of the 2PI CTP EA, in the sense that the 2PI
lines, and so on. CTP EA yields equations of motion which, if carried beyond

We conclude thaf’ vanishes at LO, and therefof,, LO, account for the build-up of non-Gaussian correlations.
=Q,,=0. There is only one NLO graph, consisting of a However, this restriction is assumed explicitly or implicitly

2 ol 2 8T

ab=7 Sgan’  QabTF Sab (31)

single G loop and a singléd line. This graph leads to in most of the work on thermalization, and the focus is
placed on the shape of the spectrum of the two-point func-

NLO . 1 N |2 f\® tions at different times. The situation is analogous to Boltz-
e =(=ih)| - 2\ 2z, 2N N/ CabcCdef mann theory, where the equations of motion can describe the

build-up of two-particle correlation functions from an uncor-
related initial state, but the Boltzmann entropy is defined
from the one-particle distribution function alone.

At every moment of time we define a maximum entropy
Therefore, we get density matrix{64,65

xfdu dvH2%(u,v)G %(u,v)G (u,v). (32

P.p=1%CacdCheH ceGY", (33) p(t)=2"te Ho, (35
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where
1 BB
Hozi{ap p®+ B(XgPg+ PeXp) + ¥XpXp}
and
Z=Tre Ho=2zN
_ 1
Z_2 i 1ﬁ |
sinh) > fior
where
0_2=a,y_ﬂ2

(see Appendix A The parameterr measures how far the

(36)

37)

(38)

(39

system is from a pure state. To see this, observe that

N

2 sinit 1ﬁ
. , Tre o sty
=T T T sinf{o]
1 N
= tanl‘{iﬁcr) .

(40)

PHYSICAL REVIEW D 68, 065027 (2003
N#A o

<H0>:—1
2tanr{§fw

therefore the von Neumann entropy of the maximum entropy
density matrix is

: (45)

S=—(Inp)=(Hg)+InZ

N7 o |1
=—1—Nln sin Eﬁ(f —NIn2. (46
2tanr{§fm
Observe that
dS_ N7%20 0 4
do- 1 1% “7
4 sink? Ehg

So again, to obtain ail theorem we must show that is
nonincreasing in time.

D. The physical basis of theH theorem

It is clear that if we could solve the exact evolution, the
theorem would be manifest: Gives(ty) at the initial time
to, solve the exact Liouville equation up to a tinhg Let

p(t1) be the result. We extract the new expectation values

Soo—x yields a pure state, while the state is mixed for anyfrom p(t;) and use them to construct the new maximum
finite o. Therefore, to show thél theorem, we must show entropy density matriy(t;). ThenS[p(t;)1= p(t;)], by

thatdo/dt<0.

Let us begin by showing that may be written directly in
terms of the expectation values for binary products of ca-

nonical variables. Indeed, we have

Y

Jd
—_)— = B B: —_
Z(MInZ (p°p°) 5

1ﬁ
tan E o

N7# a

J
—2£In Z=<XBXB>:—1 %,
tan Efw

a —Nha B
—2£In Z=(XgPstPeXe)= —7 7 p
tan Eha

Therefore,

4(p®p®)(xgXg) — (XsPs+ PeXg)*
N# 2

1ﬁ
tan E o

As an aside, these formulas show that

(41)

(42)

(43

(44)

definition, andS p(t;1) 1= p(to) ], because the exact evolu-
tion is unitary, thus théd theorem.
What we need to determine is whether, given the approxi-
mate dynamics for the expectation values provided by the
1/N scheme, théd theorem still holds. In fact, we know to
LO it does not. From the angle of addressing the thermaliza-
tion issue, the LO approximation totally misses the point.

Physically, we expect to obtain &htheorem because our
description of the system is incomplete, in that it ignores
higher correlations. We may rightfully call this entropgr-
relation entropy as explained in the Introduction. The sys-
tem as described by a finite-ordemMNLApproximation is an
open system, in the following sense: Suppose we try to re-
produce it in the lab. In order to have the different correla-
tions evolving according to the 2PIN/equations appropri-
ate to the desired order, rather than the full Schwinger-Dyson
hierarchy, we must keep nudging it to conform to this artifi-
cially created conditior{fagain, due to our inability to com-
prehend the complete pictyreSo there is energy an@n
principle) entropy flow in and out of the system besides cor-
relation entropy production. The sum of the entropy pro-
duced in the system, and that exchanged with the environ-
ment (which keeps the system on courseeed not be
positive.

In the LO case, as the approximate evolutidescribed
by a quantum Vlasov equati§B3]) is unitary, there is no net
entropy production and nbl theorem. This implies that the
two sources of entropy change must cancel exactly. Note that
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in such a case, if one works with a Fock representation, for
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A
boson fields, the number of particles increases with time and m(PBPBF - N[ M*(XgPg + PgXg) — 5 ((XcXc)XePs

can be used as a measure of field entrgppat Hu and
Pavon[28] called an intrinsic measure of field entropy, as
described in Sec. Il A above; see als32]). However, this
should not be confused with the correlation entropy of the
Boltzmann kind under study for which thid theorem is
defined.

Of course, we expect better approximations to be closer to
the exact dynamics, therefore requiring less external control
of (or rather, tampering withthe system. This reduces the
entropy loss to the environment. Eventually correlation en-
tropy production becomes the dominant factor, andHan
theorem is obtained.

To summarize, the relevant question is not whether thergg
is an H theorem for a given choice of relevant variables,
which is obvious, but rather if the NLO approximation is
good enough to make it manifest, or if we must go even
higher.

We emphasize again that the choice of the set of relevant
observables is crucial. If one would e.g. define a maximum
entropy density matrix by specifying the system only in
terms of (xgxg) and (p®pB), while leaving out(xgpg
+ pgXg), then the entropy would probably not be a constant
already at LO and a similar analysis would give ldritheo-

rem. At the opposite extremum, the von Neumann entropy oFinally,

the full density matrix(not the maximum entropy ohee-
mains constant both at LO and NLO.

E. Statement of theH theorem

To continue our investigation, first note that

d BB 2
A=a{4<p P=)(XgXg) —(XgPst PeXs)"}
S0
N?#2 1 do
—— (49)

1h ,ﬁlh dt
tan E g Sin E (o2

So we must show that the left-hand side is positive. Since the
1/N scheme proceeds via taking the expectation values of the
canonical equations of motion, we may use them to simplify
this expression. The canonical equations @oe simplicity,

we use the form without the auxiliary field

A
=t (49

+ PeXp(XcXc)) |- (52

Recall the canonical commutation relations

1 i
XgPg= E(XBpB+ PsXg) + X (53
1 i
PeXg= 5 (XgPs+ PeXe) — 5 » (54)
2 2
d 55 2
g1 (P7P%)=—N M%(xgPgs + PpXes)
A
+ Z((chc)(XBpB+ PeXg)

+ (XgPg+ PeXg) (XcXc)) |- (59

d
a<XBpB+ PeXg)

2 A
= N(poB>_ ZN{ M2(XgXg) + §<(XCXC)2>

(56)

d
A= a{4<poB><XBXB> —(XgPg+ PeXg)’}

=AN{2(Xgpg + PeXa){(XcXc)?)
—(XgXg){(XcXc)(XgPg+ PeXs)

+ (XgPg+ PeXp) (XcXc))}- (57

This may be rewritten in the following suggestive way:

2 d d 2
A:)\ 2<(XCXC) >a<XBXB>_<XBXB>a<(XCXC) >

d | ((XcXc)?)
A = (= N){XgXg) [ "], (58)
A 2 A dt| (xgxg)?
p =—NIM +§(XBXB) X (50) BAB
so theH theorem reads
Therefore, d <(XcXc)2>
dil ooz =<0. (59
d 1 <XBXB>
a(XBXB>:N<XBpB+ PeXg), (51 Or, equivalently,

065027-7



E. A. CALZETTAAND B. L. HU PHYSICAL REVIEW D 68, 065027 (2003

{(xcXc)?)—(XgXg)? Ha%(t,t")=iAcS(t—t")

(XeXg)?

d
dt

<0. (60)

—)\f ds APQp4(t,s)H(s,t’),  (66)

Observe that this expression is invariant under a rescaling of
the field. we get

3h2

IV. CORRELATION ENTROPY PRODUCTION HY(t,t) =i\ 8(0)—| )\2Q11(t,t)+i)\

v, (67
IN WEAKLY COUPLED THEORIES 4
The results from the last section may be summarized aghere
[cf. EQs.(47), (48), and(58)]

4
<XBXB>3d£ M ‘Pzﬁf dt {[Qll(tit )]2_[Q12(t,t )]2}
t

dsz( w (XeX)?

dt | 4N

1
otan Eﬁa’
61
( ) :f dt’{[Glz(t,t,)]4_[Gll(t,t,)]4}- (68)
We shall not attempt to give a general proof that this quantity
iSs non-negative, but only check that it is so in some simple We shall investigate thel theorem in two limiting cases,
cases. first at early times for an arbitraridiagonal in occupation
We must first express the expectation value in @) to  numbey initial state, and then at late time for vacuum initial
the required order in N. Recall that the-number auxiliary  conditions.
field y was introduced as a formal Gaussian process with

correlation functions A. The H theorem at early times
N To investigate the meaning of this expression, let us ex-
(x(1)),=M?+ ExBxB(t), (62)  pand the LO propagators in terms of mode functions,
A A f(t):ie—iwt. (69)
(x(Ox(t)),=| M2+ EXBXB(t)) MZ"’EXBXB(V)) V2w
NG Concretely, if the initial state is diagonal in occupation hum-
+ N o(t—t"), (63) ber, we have
. . 11 N — 1 —lo(t=—t.) n ’
where(), denotes an expectation value with respect toxthe GHLt)=5—e +—coso(t—t'), (70

variable alone. Taking a further expectation value over the
guantum state of the fields, we recover Eq.30) and 1 o
GHtt')=—e "+ —cosw(t—t'), (71)

2 2w 0}

h \
—HM(t,t")= —[(xgXa(t)XgXg(t’
NH (0= 7 Texa(txexe(1)) wheren=(a'a). Therefore,

—(xgXg(t))(xgXp(t"))] -
iN V(t)= Ffodt’ p(t=t'), (72)
o at-t), (64) w

(t)=4[2n3+3n2—n]sin 2wt
Therefore, theH theorem boils down to showing that
+[2(2n%+3n?)+4n+1]sin 4wt (73
4% d [H¥(t,t)—ix8(0)]
=

— 0. 65 (see Appendix B Since
AN dt (xgXg(1))? ©9

1+2n

It is clear that there is no correlation entropy production in {Xexe) = 2w
free theories, so if thél theorem is to hold as a categorical
relationship, then it must hold already to lowest order in theis constant, the relevant derivative is)dW/dt, which is
coupling constant. Therefore, we may expadd(t,t) in proportional tod(— [ dt)/dt. The H theorem[(i)dW¥/dt
powers of\, keeping only the lowest nontrivial order. Iter- <0] will be obtained if @/dt) [ dt>0. Now, since(0)
ating the equation of motion =0,

(74)
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d [t t d
ﬁfodt P(t—t )=fodt qrUt=t)

- [lovu-v)=u, @9
which is indeed positive at short times.

B. The H theorem at late times

Let us assume vacuum initial conditions. The lowest-
order propagators may be written in terms of mode function

GH(t,t") =F(t=)F*(to), (76)

GH(t,t") =F*(H)F(t), (77)

V= ftdt’{F“(t’)F*“(t)—F4(t)F*4(t’)}. (79
0

We have ,
Y FA(t)~Ba?(t) BA()|f(D]*, (85)
(xexe)=H|F (V)] (79
So the relevant inequality is TR t)|1O|f('f)|4{': (1) F*5(t) (1) BA(Y)
d
e )I‘J dt' {F4(t" ) F*4(t) — F4)F*4(t')}=<0. —F* (OFS(t)a* 2(1) B*2(1)}. (86)
t
(80 We make the analogous approximation
|
FI(OF*3(t)= a(Of (DF*3(t)+ BT (HF*3(1)
~10/f(t)]*a*2(1) B*2(O{l () PF (O F* () +| B (D (1)} (87)
and get
—240 8 4 4 2_ 2 ’ * */
~Fa |1OIf(t)l la()[1 B a(t)>=BO)IPHT (OFF () —F* (HF (D)} (88)
|
But the order ofN~2; a strict (formal) 1/N expansion would
5 5 neglect such a quantity, but it would be generated in a nu-
le(D)]*—|B(D]*=1, (89 merical solution of the full I equations of motion. There-
) fore, it is suggestive that the statistical mechanical descrip-
frOf*(t)—f* (OHf(t)=—1. (90)  tion of an interacting quantum field at the NLO level of
approximation to a 2PI CTP effective action may permit
So “thermalization,” as claimed by15-19 based on numerical
results. Note that our analysis corroborating this claim is
—24( predicated upon the restrictive conditions discussed above.
8
|F |1o|f(t)| (] BD]*<0. ©1 Extension of this work to full field theory in conjunction
with the reported results ¢fL3] is under investigation.
QED.

The existence of akl theorem at the NLO is as reassur-

PHYSICAL REVIEW 38, 065027 (2003

Or, equivalently,

d FA(t)
gl dt[ alt

F*4(t ) <0 (81
F*A(t) :

Now

—F*(1)

N N ()
J=—4i Jodt [F (t) =

The mode functions may be expanded in terms of WKB
Tnodes

E* 4(t/)
= ] (82

F(t)=a()f(t)+BDF* (1), (83
F/()=a(t)f (1)+B(1)F* (). (84)

At long times, the integrals will be dominated by the
nonoscillatory terms
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APPENDIX A: COMPUTING THE PARTITION FUNCTION

To computeZ, it is best to diagonalizély. Introduce new
canonical variables

£x=(coshu)pa+ (sinhu)X, (A1)
na= (sinhu)pp+ (coshu)Xa , (A2)
so that[ &, 7e]=[Pa . Xg]=(—1%) Sag. Then
pa=(coshu)éa—(sinhu) 7, (A3)
Xp= —(sinhu) &+ (coshu) 74, (A4)

PHYSICAL REVIEW D 68, 065027 (2003

and

1
Ho= (5) {AEBER+B(mpép+Epmp) + Cygma}, (AD)

where
A= a costf u+ ysintf u—28 coshu sinhu,  (A6)
B= —(y+ a)coshu sinhu+ B(coslt u+sini u),
(A7)
C=a sinffu+ ycosifu— 28 coshu sinhu.  (A8)

To diagonalize the Hamiltonian, we requiBe=0, namely

2
tanh = —'3

e (A9)

Now Z is the usual partition function fo harmonic oscil-
lators with frequencyw?=C/A at inverse temperaturé.

APPENDIX B: #(t)

1
160"

w(t)=

t o, oo
J dt’'{[e'“t")+2n cosw(t—t")]*—[e ")+ 2n cosw(t—t')]%}
0

i t
= FI dt'{32n3cos w(t—t")sinw(t—t')+ 24n? cog w(t—t’)sin 2w(t—t")
w'JO

+8ncosw(t—t")sin3w(t—t')+sindw(t—t")}

i t
- FI dt'{8(2n*+3n?)coSw(t—t’)sin 2w(t—t')+8n cosw(t—t')sin 3o(t—t") +sin 4w(t—t')}
w JO

= ﬁftdt’{2(2n3+ 3n?)[2 sin2w(t—t')+sindw(t—t')]+4n[sin4w(t—t')—sin 2w(t—t')]+sin 4o (t—t')}
w JO

i t
- FJ dt’'{4 sin 2w(t—t")[2n®+3n%—n]+sin4dw(t—t')[2(2n3+3n?)+ 4n+1]}.
w JO
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