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Correlation entropy of an interacting quantum field and H theorem for the O„N… model
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Following the Boltzmann-BBGKY paradigm we propose a correlation entropy~of the nth order! for an
interacting quantum field. The concept of correlation entropy is useful for addressing issues related to ther-
malization. As a small yet important step in that direction, we state anH theorem for the correlation entropy of
a quantum-mechanical O(N) model with a closed time path two-particle irreducible effective action at the level
of a next-to-leading-order largeN approximation. This model may be regarded as a field theory in 0 space
dimensions. We verify the validity of the proposedH theorem in two limiting cases.
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I. INTRODUCTION

The goal of this paper is twofold: the proposal of a co
relation entropy for an interacting quantum field, and t
statement of anH theorem for the quantum-mechanic
O(N) model @1,2#, which may be regarded as a field theo
in zero space dimensions. For the former, we follow
paradigm of Boltzmann and Bogoliubov, Born, Green, Kir
wood, and Yvon~BBGKY! @3# and propose a correlatio
entropy ~of the nth order! for an interacting quantum field
@4–8#. We then derive the closed time path~CTP! @9# two-
particle irreducible~2PI! @10# effective action~EA! for this
model up to the next-to-leading order~NLO! in 1/N @11#. As
a useful step towards addressing issues related to the
malization of interacting quantum fields, we state anH theo-
rem for the correlation entropy of a quantum-mechani
O(N) model at the CTP 2PI NLO level. We introduce th
thermalization issue as a motivation for this study and giv
short description of different definitions for the entropy
interacting quantum fields in the next section, followed
the statement of theH theorem given in the ensuin
sections.1

The problem of thermalization in relativistic quantu
fields has drawn much attention over time, both in the
tempt to understand the origin of macroscopic irreversi
behavior from microscopic theories, and for practical cons
erations of nonequilibrium quantum field processes in
early Universe and in relativistic heavy ion collisions@14#.

In the strictest theoretical sense, an isolated system
picted by quantum field theory undergoes unitary evolut
and does not thermalize~in the strong sense!. However, one

*Email address: calzetta@df.uba.ar
†Email address: hub@physics.umd.edu
1The following descriptive summary in this and the next section

adapted from Chap. 5 of@12#, where a preliminary attempt to con
struct a correlation entropy was made but the proof of theH theo-
rem for an interacting quantum field did not materialize, and fr
@13#.
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can still ask meaningful questions such as whether cer
correlation functions may converge to their thermal forms
some well defined physical limit. We may call this a we
thermalization condition. In practical terms, one needs to
careful when addressing the question of even weak therm
ization, as its precise meaning is often attached to a cho
level of approximation, such as thenPI of the correlation
hierarchy, the loop expansion, the 1/N expansion, or expan
sion in powers of a coupling constant, etc.

There have been recent claims based on numerical
dence@15–19# that at the NLO largeN approximation an
interacting quantum field may show signs of thermalizatio
In a recent report@13#, we consider an O(N) invariant scalar
field of unbroken symmetry, develop the CTP 2PI EA@6# in
powers of 1/N, retaining up to the next-to-leading orde
@O(1)# terms, and show that the only time translation inva
ant solutions are thermal. Our analytic result provides s
port for similar claims. Here, we present an alternative
proach by defining a correlation entropy and verifying t
existence of anH theorem in the simpler quantum
mechanical O(N) model. We first summarize the differen
ways of defining entropy for a quantum field.

II. ENTROPY OF INTERACTING QUANTUM FIELDS

Entropy reflects and measures the degree of incompl
ness in the information one can attain resulting from on
specific way of seeking an approximate description of
features and dynamics of a system, in our case, the quan
field. First, for a unitarily evolving quantum field theor
whose dynamics is a closed system~as opposed to an ‘‘ef-
fectively open system’’! and governed by the quantum Liou
ville equation, it is well known that the von Neumann e
tropy of the density matrix,

SVN52Tr@r~ t !ln r~ t !#, ~1!

is exactly conserved. If there is a justifiable separation
macroscopic and microscopic time scales, one can adop
theoretical framework of quantum kinetic field theory. If on

s
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makes the assumption of factorization~equivalently, slaving
of the Wigner-transformed four-point function!, one obtains
the relativistic Boltzmann equation in the binary collisio
approximation. The Boltzmann entropySB defined in terms
of the phase-space distributionf (k,X) for quasiparticles can
in this case be shown to satisfy a relativisticH theorem
@20,6#. We want to generalize this to a correlation entropy
interacting quantum fields.

However, in the case where there doesnot exist such a
separation of time scales, how does one define the entrop
a quantum field? For nonperturbative truncations of the
namics of interacting quantum fields, this is a nontriv
question@21#. Intuitively, one expects that any coarse gra
ing which leads to an effectively open system with irreve
ible dynamics will also lead to the growth of entropy. Fo
mally these operations can be systematically expresse
terms of the projection operator techniques@22#. A projection
operatorP projects out theirrelevant degrees of freedom
~thus going over to an open system! from the total system
described by the density operatorr, yielding the reduced
density matrixrR ,

rR~ t !5Pr~ t !. ~2!

There exists a well-developed formalism for deriving t
equation of motion of therelevantdegrees of freedom, and i
terms of it, the behavior of the coarse-grained~CG! entropy
@22,3#

SCG52Tr@rR~ t !ln rR~ t !#, ~3!

which will in general not be conserved. The projection o
erator formalism can be used to express the slaving of hig
correlation functions in the correlation hierarchy. From it o
can define an entropy in effectively open systems~see, e.g.,
@23#!. ~So far it has only been implemented within the fram
work of perturbation theory.! Another equally powerful
method adept to field theory is the Feynman-Vernon in
ence functional formalism@24,25# which has been used t
treat entropy in quantum open systems~see, e.g.,@26#!.

A. Entropy special to choice of basis or representation

We now consider the entropy functions for quantu
fields, beginning with the simpler yet more subtle case o
free field. Historically this issue was, to our knowledge, fi
raised in the context of entropy generation from particle c
ation for a free quantum field in an expanding Universe@27#
due to the parametric amplification of vacuum fluctuatio
The focal point is a wave equation with a time-depend
natural frequency for the amplitude function of a norm
mode. @The same condition arises for an interacting fie
~such as thelF4 theory! in the Hartree-Fock approximatio
or the O(N) field theory at leading order in the large-N ex-
pansion@11#.# Since the underlying dynamics is clearly un
tary and time-reversal invariant in this case, a suitable co
graining leading to entropy growth is not trivially eviden
Hu and Pavon@28# first made the observation that a coar
graining is implicitly incorporated when one chooses to d
pict particle numbers in then-particle Fock~or ‘‘ N’’ ! repre-
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sentation or to depict phase coherence in the phase~or ‘‘ P’’ !
representation. Various proposals for coarse graining the
namics of parametric oscillators have followed@29–33#. The
language of squeezed states is particularly useful for desc
ing entropy growth due to parametric particle creati
@26,31,34,35#. For our purposes, the essential features of
tropy growth due to parametric particle creation which d
tinguish it from correlational entropy growth~to be discussed
below! are that parametric particle creation depends se
tively on the choice of representation for the state space
the parametric oscillators and the specificity of the init
conditions.

B. Entropy from projecting out irrelevant variables

In contrast to entropy growth resulting from paramet
particle creation from the vacuum, entropy growth due t
particle interactionsin quantum field theory@21# has a very
different physical origin. A coarse-graining scheme was p
posed by Hu and Kandrup@21# for these processes. Expres
ing an interacting quantum field in terms of a collection
coupled parametric oscillators, their proposal is to defin
reduced density matrix by projecting the full density opera
onto each oscillator’s single-oscillator Hilbert space in tur

g~kW ![TrkW8ÞkWr, ~4!

and defining the reduced density operator as the tensor p
uct P of the projected single-oscillator density operato
g(kW ),

rR[PkWg~kW !. ~5!

The coarse-grained~Hu-Kandrup! entropy is then just given
by Eq. ~3!, from which we obtain

SHK52(
kW

Tr@g~kW !ln g~kW !#. ~6!

It is interesting to observe that for a spatially translatio
invariant density matrix for a quantum field theory which
Gaussian in the position basis, this entropy is just the v
Neumann entropy of the full density matrix, because the s
tially translation-invariant Gaussian density matrix separa
into a product over density submatrices for eachkW oscillator.
This projection ~Hu-Kandrup! coarse graining, like the
correlation-hierarchy~Calzetta-Hu! coarse-graining scheme
does not choose or depend on a particular representatio
the single oscillator Hilbert space. It is sensitive to the est
lishment of correlations through the explicit couplings.

C. Entropy from slaving the higher correlations: The CTP 2PI
effective action

A general procedure has been presented for obtain
coupled equations for correlation functions at any orderl in
the correlation hierarchy, which involves a truncation of t
master effective actionat a finite order in the loop expansio
@7,8#. By working with anl loop-order truncation of the mas
ter effective action, one obtains a closed, time-reversal
7-2
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variant set of coupled equations for the firstl 11 correlation

functions, f̂,G,C3 , . . . ,Cl 11. In general, the equation o
motion for the highest-order correlation function will be lin
ear, and thus can be formally solved using Green’s-func
methods. The existence of a unique solution depends on
plying boundary conditions. We have shown elsewhere
this system will manifest noise/fluctuations@7,8# for the case
of the slaving of the four-point function to the two-poin
function in the symmetry-unbrokenlF4 field theory. Thus a
framework exists for exploring irreversibility and fluctua
tions within the context of a unitary quantum field theo
using the truncation and slaving of the correlation hierarc
The effectively open system framework is useful for p
cisely those situations, where a separation of macrosc
and microscopic time scales~which would permit an effec-
tive kinetic theory description! does not exist, such as is
encountered in the thermalization issue.

While it is certainly not the only coarse-graining schem
which could be applied to an interacting quantum field,
slaving of higher correlation functions to lower-order corr
lation functions within a particular truncation of the correl
tion hierarchy, as a particular coarse-graining method,
several important benefits. It can be implemented in a tr
nonperturbative fashion. This necessitates a nonperturba
resummation of daisy graphs, which can be incorporate
the truncation/slaving of the correlation hierarchy in a na
ral way.

III. THE H THEOREM FOR THE
QUANTUM-MECHANICAL O „N… MODEL

A. The next-to-leading order largeN approximation

The numberN of replicas of essentially identical field
@like the N scalar fields in an O(N) invariant theory, or the
N221 gauge fields in aSU(N) invariant non-Abelian gauge
theory# suggests using 1/N as a natural small parameter, wi
a well-defined physical meaning. Unlike coupling constan
this is not subjected to renormalization or radiative corr
tions. By ordering the perturbative expansion in powers
this small parameter, several nonperturbative effects~in
terms of coupling constants! may be systematically investi
gated.

The ability of the 1/N framework to address the nonpe
turbative aspects of quantum field dynamics has motivate
detailed study of the properties of these systems. In none
librium situations, this formalism has been applied to t
dynamics of symmetry breaking@11,36–40# and self-
consistent semiclassical cosmological models@41–46#.

In the case of the O(N) invariant theory, in the presenc
of a nonzero background field~or an external gravitational o
electromagnetic field interacting with the scalar field! we
may distinguish the longitudinal quantum fluctuations in t
direction of the background field, in field space, from t
N21 transverse~Goldstone or pion! fluctuations perpen-
dicular to it. To first order in 1/N, the longitudinal fluctua-
tions drop out of the formalism, so we effectively are treati
the background field as classical. Likewise, quantum fluct
tions of the external field are overpowered by the fluctuati
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of the N scalar fields. In this way, the 1/N framework pro-
vides a systematics and a quantitative measure of the s
classical approximation@47#.

To leading order~LO!, the theory reduces toN21 linear
fields with a time-dependent mass, which depends on
background field and on the linear fields themselves thro
a gap equation local in time. This depiction of the dynam
agrees both with the Gaussian approximation for the den
matrix @48,49# and with the Hartree approximation@32#. The
LO 1/N theory is Hamiltonian@32# and time-reversal invari-
ant. It simply does not thermalize. For example, if we set
conditions where both the background field and the s
consistent mass are space-time independent, then the pa
numbers for each fluctuation mode will be conserved. T
existence of these conservation laws precludes therma
tion @50#.

We note that the failure of the LO approximation to d
scribe thermalization is indicative of a more general bre
down of the approximation at later times, where effects
particle interaction dominate. Both the distribution of ener
among the field modes and the phase relationships~or lack
thereof! among them affect the way quantum fluctuatio
react on the background or external fields. Therefore, fr
physical considerations, one can say that a theory which d
not describe thermalization becomes unreliable for m
other purposes as well@51#.

This is where the next to leading order~NLO! approxima-
tion enters. It has been applied to quantum mechanics@1,2#,
classical field theory@52–55#, and quantum field theory
@17,19,56#, being contrasted both to exact numerical simu
tions of these systems, as well as against other approx
tions purporting to go beyond LO. The NLO has been sho
to be an accurate approximation, even at moderate va
of N.

It is crucial to realize that attempts to compute the tim
evolution in a 1/N expansion of the standard 1PI effectiv
action at NLO fail. This happens, in particular, because
the appearance of secular terms which grow with time a
can spoil the 1/N counting for times of orderN ~see, e.g.,
@57,58#!. Therefore, it is crucial to resume the standard 1N
expansion, which can be done using the 2PI 1/N expansion.

The 2PI formalism is also suitable for this question b
cause, provided an auxiliary field is cleverly introduced, t
2PI CTP effective action can be found in closed form at ea
order in 1/N @11,59#. We now begin our study with a con
crete model.

B. O„N… lX4 theory

We summarize in this section some known results on
O(N) lX4 theory which we shall need below; see@2,16,59#.

To fix the physical ideas, we shall discuss the problem
zero space dimensions, namely, the quantum-mechan
O(N) model. The system dynamics is described by
Hamiltonian with variablesXA and their conjugate moment
PA, whereA,B are the O(N) group indices, with

H5
1

2 H PBPB1M2XBXB1
l

4N
~XBXB!2J . ~7!
7-3
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The classical action

S5E dt
1

2 H ẊBẊB2M2XBXB2
l

4N
~XBXB!2J ~8!

whereM0
2 andl0 are the mass parameter and coupling c

stant. We rescaleXB[ANxB ,

S5NE dt
1

2 H ẋBẋB2M2xBxB2
l

4
~xBxB!2J . ~9!

Discarding a constant term, we may rewrite the classical
tion as

S5NE dt
1

2 H ẋBẋB2FM2

Al
1

Al

2
xBxBG 2J . ~10!

To set up the 1/N resummation scheme, it is customary
introduce the auxiliary fieldx, writing

S5
N

2E H ẋBẋB2FM2

Al
1

Al

2
xBxBG 2

1FM22x

Al
1

Al

2
xBxBG 2J ~11!

whence

S5NE dtH 1

2
ẋBẋB2xFM2

l
1

xBxB

2 G1
1

2l
x2J . ~12!

From now on, we considerx and xB as fundamental vari-
ables on equal footing.

Because of the O(N) symmetry, the symmetric point mus
be a solution of the equations of motion. For simplicity, w
shall assume we are within this symmetric phase, and t
xB as a quantum fluctuation. We also split the auxiliary fie
x5x̄1x̃ into a background fieldx̄ and a fluctuation fieldx̃.
The action becomes

S5S01S11S21S3 . ~13!

S0 is just the classical action evaluated atxB50, x5x̄:

S05
N

l E dtH 1

2
x̄22M2x̄J . ~14!

S1 contains terms linear inx̃ and can be set to zero by
suitable choice of the background fieldx̄,

S15
N

l E dt$x̄2M2%x̃. ~15!

S2 contains the quadratic terms and yields the tree-level
verse propagators,

S25NE dtH 1

2
ẋBẋB2

x̄

2
xBxB1

1

2l
x̃2J . ~16!
06502
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Finally S3 contains the bare vertex

S35S 2N

2 D E ddx$x̃xBxB%. ~17!

To write the 2PI CTP EA we double the degrees of fre
dom, incorporating a branch labela51,2 @for simplicity, if
not explicitly written, we assume that the labela also con-
tains the time branch, i.e.,xAa[xAa(ta)]. We also introduce
propagatorsGAa,Bb for the path ordered expectation value

GAa,Bb5^xAaxBb& ~18!

andFab for

Fab5^x̃ax̃b&. ~19!

Because of symmetry, it is not necessary to introduc
mixed propagator, for̂x̃axBb&[0. The 2PI CTP EA reads

G5S0@ x̄1#2S0@ x̄2#1
1

2E du dvH DAa,Bb~u,v !GAa,Bb~u,v !

1
N

l0
cabd~u,v !Fab~u,v !J

2
i\

2
@Tr ln G1Tr ln F#1GQ , ~20!

where, if the position variable is explicit,c1152c2251,
c125c2150,

DAa,Bb~u,v !5NdAB@cab]x
22cabcx̄

c#d~u,v !, ~21!

andcabc51 when all entries are 1,cabc521 when all en-
tries are 2, andcabc50 otherwise. When we use the com
pressed notation, it is understood thatcab[cabd(ta ,tb) and
cabc[cabcd(ta ,tb)d(ta ,tc). GQ is the sum of all 2PI
vacuum bubbles with cubic vertices fromS3 and propagators
GAa,Bb andFab. Observe thatGQ is independent ofx̄c.

Taking variations of the 2PI CTP EA and identifyingx̄1

5x̄25x̄, we find the equations of motion

N

2
dABDab2

i\

2
@G21#Aa,Bb1

1

2
PAa,Bb50, ~22!

N

2l
cab2

i\

2
@F21#ab1

1

2
Pab50, ~23!

N

l
$x̄~ t !2M2%2

N

2
dABGA1,B1~ t,t !50, ~24!

whereDab(u,v)5cab@]x
22x̄(u)#d(u,v),

PAa,Bb52
dGQ

dGAa,Bb
, Pab52

dGQ

dFab
. ~25!

We shall seek a solution with the structure
7-4
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GAa,Bb5
\

N
dABGab~u,v !, ~26!

which is consistent with vanishing Noether charges. The
is convenient to write

Fab5
\

N
Hab, PAa,Bb5dABPab,

Pab~x,y!5NQab~x,y!. ~27!

The equations become

Dab2 i @G21#ab1
1

N
Pab50, ~28!

1

l
cab2 i @H21#ab1Qab50, ~29!

1

l
$x̄~ t !2M2%2

\

2
G11~ t,t !50. ~30!

Observe that

Pab5
2

\

dGQ

dGab
, Qab5

2

\

dGQ

dHab
. ~31!

These are the exact equations we must solve. The succe
1/N approximations amount to different constitutive relatio
expressingPab andQab in terms of the propagators.

The key observation is that in any given Feynman gra
each vertex contributes a power ofN, each internal line a
power of N21, and each trace over group indices anoth
power ofN. We have bothG andH internal lines, but theG
lines only appear in closed loops. On each loop, the num
of vertices equals the number ofG lines, so there only re-
mains one power ofN from the single trace over group la
bels. Therefore, the overall power of the graph is the num
of G loops minus the number ofH lines. Now, since we only
consider 2PI graphs, there is a minimum number ofH lines
for a given number ofG loops. For example, if there are tw
G loops, they must be connected by no fewer than threH
lines, and so this graph cannot be higher than NNLO
graph with threeG loops cannot have fewer than fiveH
lines, and so on.

We conclude thatGQ vanishes at LO, and thereforePab
5Qab50. There is only one NLO graph, consisting of
singleG loop and a singleH line. This graph leads to

GQ
NLO5~2 i\!S 2

1

2D S 2
N

2Z0\ D 2

2NS \

ND 3

cabccde f

3E du dvHad~u,v !Gbe~u,v !Gc f~u,v !. ~32!

Therefore, we get

Pab5 i\cacdcbe fH
ceGd f, ~33!
06502
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Qab5
i\

2
cacdcbe fG

ceGd f. ~34!

The theory so constructed belongs to the class
F-derivable theories, and therefore is consistent with ene
conservation@60#.

From quantum field theory it is common knowledge th
equations derived from an action principle are necessa
time reversal invariant if the Lagrangian is local. For a no
local action, there is noa priori justification to this effect. In
fact, anonlocalaction of the closed time-path kind may lea
upon variation to equations of motion containing dissipat
and fluctuations with a clear mathematical and physi
meaning.~This has been shown in many circumstances b
in theory and in practice, with detailed calculations and d
cussions. See, e.g., Refs.@44,45,61,62#. In the latest example
@63#, it is shown how a general dissipative and stochas
equation of motion can be derived from a CTP effecti
action.!

C. From correlations to the reduced density matrix

The 2PIEA yields equations of motion for the~arbitrary
time! two-point functions of the theory. Given a solution o
these equations, in principle we may find the expectat
values of a large family of composite operators at any giv
time. Suppose we adopt a coarse-grained description w
we choose a certain number of these expectation value
the relevant variables to describe the system. Then there
be a single density matrix which has maximum von Ne
mann entropy with respect to the class of states reprodu
the preferred expectation values. This maximum entro
density matrix is the reduced density matrix for the syste
and its entropy its correlation entropy. TheH theorem is the
statement that the correlation entropy grows in time, wh
the correlations themselves are evolved using the equat
derived from the 2PIEA truncated to some order in the 1N
expansion~this statement will be qualified below!.

Let us consider first the simplest case where we desc
the system by specifying the values of^xBxB&, ^xBpB

1pBxB&, and^pBpB& (pA5NẋA is the momentum conjugat
to xB) at every moment of time~by symmetry, we assume
^xBxC&5dBC^xBxB&/N, and similarly in the other cases!.
This choice of relevant variables does not utilize or disp
the full power of the 2PI CTP EA, in the sense that the 2
CTP EA yields equations of motion which, if carried beyon
LO, account for the build-up of non-Gaussian correlatio
However, this restriction is assumed explicitly or implicit
in most of the work on thermalization, and the focus
placed on the shape of the spectrum of the two-point fu
tions at different times. The situation is analogous to Bol
mann theory, where the equations of motion can describe
build-up of two-particle correlation functions from an unco
related initial state, but the Boltzmann entropy is defin
from the one-particle distribution function alone.

At every moment of time we define a maximum entro
density matrix@64,65#

r~ t !5Z21e2H0, ~35!
7-5
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where

H05
1

2
$apBpB1b~xBpB1pBxB!1gxBxB% ~36!

and

Z5Tr e2H05zN, ~37!

z5
1

2 sinhF1

2
\sG , ~38!

where

s25ag2b2 ~39!

~see Appendix A!. The parameters measures how far the
system is from a pure state. To see this, observe that

Tr r25
Tr e22H0

Z2
5F 2 sinh2F1

2
\sG

sinh@\s#
G N

5S tanhF1

2
\sG D N

. ~40!

Sos→` yields a pure state, while the state is mixed for a
finite s. Therefore, to show theH theorem, we must show
that ds/dt,0.

Let us begin by showing thats may be written directly in
terms of the expectation values for binary products of
nonical variables. Indeed, we have

22
]

]a
ln Z5^pBpB&5

N\

tanhF1

2
\sG

g

2s
, ~41!

22
]

]g
ln Z5^xBxB&5

N\

tanhF1

2
\s G

a

2s
, ~42!

22
]

]b
ln Z5^xBpB1pBxB&5

2N\

tanhF1

2
\s G

b

s
. ~43!

Therefore,

4^pBpB&^xBxB&2^xBpB1pBxB&2

5S N\

tanhF1

2
\s G D 2

. ~44!

As an aside, these formulas show that
06502
y

-

^H0&5
N\s

2 tanhF1

2
\s G , ~45!

therefore the von Neumann entropy of the maximum entro
density matrix is

S52^ ln r&5^H0&1 ln Z

5
N\s

2 tanhF1

2
\sG 2N lnS sinhF1

2
\sG D2N ln 2. ~46!

Observe that

dS

ds
52

N\2s

4 sinh2F1

2
\sG,0. ~47!

So again, to obtain anH theorem we must show thats is
nonincreasing in time.

D. The physical basis of theH theorem

It is clear that if we could solve the exact evolution, theH
theorem would be manifest: Givenr(t0) at the initial time
t0, solve the exact Liouville equation up to a timet1. Let
r̄(t1) be the result. We extract the new expectation valu
from r̄(t1) and use them to construct the new maximu
entropy density matrixr(t1). ThenS@r(t1)#>S@ r̄(t1)#, by
definition, andS@ r̄(t1)#5S@r(t0)#, because the exact evolu
tion is unitary, thus theH theorem.

What we need to determine is whether, given the appro
mate dynamics for the expectation values provided by
1/N scheme, theH theorem still holds. In fact, we know to
LO it does not. From the angle of addressing the thermal
tion issue, the LO approximation totally misses the point

Physically, we expect to obtain anH theorem because ou
description of the system is incomplete, in that it ignor
higher correlations. We may rightfully call this entropycor-
relation entropy, as explained in the Introduction. The sy
tem as described by a finite-order 1/N approximation is an
open system, in the following sense: Suppose we try to
produce it in the lab. In order to have the different corre
tions evolving according to the 2PI 1/N equations appropri-
ate to the desired order, rather than the full Schwinger-Dy
hierarchy, we must keep nudging it to conform to this art
cially created condition~again, due to our inability to com
prehend the complete picture!. So there is energy and~in
principle! entropy flow in and out of the system besides c
relation entropy production. The sum of the entropy p
duced in the system, and that exchanged with the envir
ment ~which keeps the system on course! need not be
positive.

In the LO case, as the approximate evolution~described
by a quantum Vlasov equation@33#! is unitary, there is no ne
entropy production and noH theorem. This implies that the
two sources of entropy change must cancel exactly. Note
7-6
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in such a case, if one works with a Fock representation,
boson fields, the number of particles increases with time
can be used as a measure of field entropy~what Hu and
Pavon@28# called an intrinsic measure of field entropy,
described in Sec. II A above; see also@32#!. However, this
should not be confused with the correlation entropy of
Boltzmann kind under study for which theH theorem is
defined.

Of course, we expect better approximations to be close
the exact dynamics, therefore requiring less external con
of ~or rather, tampering with! the system. This reduces th
entropy loss to the environment. Eventually correlation
tropy production becomes the dominant factor, and anH
theorem is obtained.

To summarize, the relevant question is not whether th
is an H theorem for a given choice of relevant variable
which is obvious, but rather if the NLO approximation
good enough to make it manifest, or if we must go ev
higher.

We emphasize again that the choice of the set of relev
observables is crucial. If one would e.g. define a maxim
entropy density matrix by specifying the system only
terms of ^xBxB& and ^pBpB&, while leaving out ^xBpB
1pBxB&, then the entropy would probably not be a const
already at LO and a similar analysis would give anH theo-
rem. At the opposite extremum, the von Neumann entrop
the full density matrix~not the maximum entropy one! re-
mains constant both at LO and NLO.

E. Statement of theH theorem

To continue our investigation, first note that

D5
d

dt
$4^pBpB&^xBxB&2^xBpB1pBxB&2%

52S N2\2

tanhF1

2
\s G D 1

sinh2F1

2
\s G

ds

dt
. ~48!

So we must show that the left-hand side is positive. Since
1/N scheme proceeds via taking the expectation values o
canonical equations of motion, we may use them to simp
this expression. The canonical equations are~for simplicity,
we use the form without the auxiliary field!

ẋA5
pA

N
, ~49!

ṗA52NFM21
l

2
~xBxB!GxA. ~50!

Therefore,

d

dt
^xBxB&5

1

N
^xBpB1pBxB&, ~51!
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d

dt
^pBpB&52NFM2^xBpB1pBxB&2

l

2
^~xCxC!xBpB

1pBxB~xCxC!&G . ~52!

Recall the canonical commutation relations

xBpB5
1

2
~xBpB1pBxB!1

i\

2
, ~53!

pBxB5
1

2
~xBpB1pBxB!2

i\

2
, ~54!

so

d

dt
^pBpB&52NFM2^xBpB1pBxB&

1
l

4
^~xCxC!~xBpB1pBxB!

1~xBpB1pBxB!~xCxC!&G . ~55!

Finally,

d

dt
^xBpB1pBxB&

5
2

N
^pBpB&22NFM2^xBxB&1

l

2
^~xCxC!2&G ,

~56!

so

D5
d

dt
$4^pBpB&^xBxB&2^xBpB1pBxB&2%

5lN$2^xBpB1pBxB&^~xCxC!2&

2^xBxB&^~xCxC!~xBpB1pBxB!

1~xBpB1pBxB!~xCxC!&%. ~57!

This may be rewritten in the following suggestive way

D5lH 2^~xCxC!2&
d

dt
^xBxB&2^xBxB&

d

dt
^~xCxC!2&J

5~2l!^xBxB&3
d

dt F ^~xCxC!2&

^xBxB&2 G , ~58!

so theH theorem reads

d

dt F ^~xCxC!2&

^xBxB&2 G<0. ~59!

Or, equivalently,
7-7
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d

dt F ^~xCxC!2&2^xBxB&2

^xBxB&2 G<0. ~60!

Observe that this expression is invariant under a rescalin
the field.

IV. CORRELATION ENTROPY PRODUCTION
IN WEAKLY COUPLED THEORIES

The results from the last section may be summarized
@cf. Eqs.~47!, ~48!, and~58!#

dS

dt
5S 2l

4N Ds tanhF1

2
\sG^xBxB&3

d

dt F ^~xCxC!2&

^xBxB&2 G .

~61!

We shall not attempt to give a general proof that this quan
is non-negative, but only check that it is so in some sim
cases.

We must first express the expectation value in Eq.~61! to
the required order in 1/N. Recall that theq-number auxiliary
field x was introduced as a formal Gaussian process w
correlation functions

^x~ t !&x5M21
l

2
xBxB~ t !, ~62!

^x~ t !x~ t8!&x5S M21
l

2
xBxB~ t ! D S M21

l

2
xBxB~ t8! D

1
il\

N
d~ t2t8!, ~63!

where^&x denotes an expectation value with respect to thx
variable alone. Taking a further expectation value over
quantum state of thex fields, we recover Eq.~30! and

\

N
H11~ t,t8!5

l2

4
@^xBxB~ t !xBxB~ t8!&

2^xBxB~ t !&^xBxB~ t8!&#

1
il\

N
d~ t2t8!. ~64!

Therefore, theH theorem boils down to showing that

4\

l2N

d

dt

@H11~ t,t !2 ild~0!#

^xBxB~ t !&2
<0. ~65!

It is clear that there is no correlation entropy production
free theories, so if theH theorem is to hold as a categoric
relationship, then it must hold already to lowest order in
coupling constant. Therefore, we may expandH11(t,t) in
powers ofl, keeping only the lowest nontrivial order. Ite
ating the equation of motion
06502
of
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e

h

e

e

Hac~ t,t8!5 ilcacd~ t2t8!

2lE ds cabQbd~ t,s!Hdc~s,t8!, ~66!

we get

H11~ t,t !5 ild~0!2 il2Q11~ t,t !1 i
l3\2

4
C, ~67!

where

C5
4

\2E dt8$@Q11~ t,t8!#22@Q12~ t,t8!#2%

5E dt8$@G12~ t,t8!#42@G11~ t,t8!#4%. ~68!

We shall investigate theH theorem in two limiting cases
first at early times for an arbitrary~diagonal in occupation
number! initial state, and then at late time for vacuum initi
conditions.

A. The H theorem at early times

To investigate the meaning of this expression, let us
pand the LO propagators in terms of mode functions,

f ~ t !5
1

A2v
e2 ivt. ~69!

Concretely, if the initial state is diagonal in occupation nu
ber, we have

G11~ t,t8!5
1

2v
e2 iv(t.2t,)1

n

v
cosv~ t2t8!, ~70!

G12~ t,t8!5
1

2v
eiv(t2t8)1

n

v
cosv~ t2t8!, ~71!

wheren5^a†a&. Therefore,

C~ t !5
i

8v4E0

t

dt8 c~ t2t8!, ~72!

c~ t !54@2n313n22n#sin 2vt

1@2~2n313n2!14n11#sin 4vt ~73!

~see Appendix B!. Since

^xBxB&5
112n

2v
~74!

is constant, the relevant derivative is (i )dC/dt, which is
proportional tod(2*c dt)/dt. The H theorem@( i )dC/dt
,0# will be obtained if (d/dt)*c dt.0. Now, sincec(0)
50,
7-8
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d

dtE0

t

dt8 c~ t2t8!5E
0

t

dt8
d

dt
c~ t2t8!

52E
0

t

dt8
d

dt8
c~ t2t8!5c~ t !, ~75!

which is indeed positive at short times.

B. The H theorem at late times

Let us assume vacuum initial conditions. The lowe
order propagators may be written in terms of mode functi

G11~ t,t8!5F~ t.!F* ~ t,!, ~76!

G12~ t,t8!5F* ~ t !F~ t8!, ~77!

C5E
0

t

dt8$F4~ t8!F* 4~ t !2F4~ t !F* 4~ t8!%. ~78!

We have

^xBxB&5\uF~ t !u2. ~79!

So the relevant inequality is

i
d

dt

1

uF~ t !u4E0

t

dt8$F4~ t8!F* 4~ t !2F4~ t !F* 4~ t8!%<0.

~80!
r-
g

06502
-
s

Or, equivalently,

J5 i
d

dtE0

t

dt8H F4~ t8!

F4~ t !
2

F* 4~ t8!

F* 4~ t !
J <0. ~81!

Now

J524i E
0

t

dt8H F8~ t !
F4~ t8!

F5~ t !
2F* 8~ t !

F* 4~ t8!

F* 5~ t !
J . ~82!

The mode functions may be expanded in terms of WK
modes

F~ t !5a~ t ! f ~ t !1b~ t ! f * ~ t !, ~83!

F8~ t !5a~ t ! f 8~ t !1b~ t ! f * 8~ t !. ~84!

At long times, the integrals will be dominated by th
nonoscillatory terms

F4~ t8!;6a2~ t !b2~ t !u f ~ t !u4, ~85!

J;
224i t

uF~ t !u10
u f ~ t !u4$F8~ t !F* 5~ t !a2~ t !b2~ t !

2F* 8~ t !F5~ t !a* 2~ t !b* 2~ t !%. ~86!

We make the analogous approximation
F8~ t !F* 5~ t !5a~ t ! f 8~ t !F* 5~ t !1b~ t ! f * 8~ t !F* 5~ t !

;10u f ~ t !u4a* 2~ t !b* 2~ t !$ua~ t !u2f 8~ t ! f * ~ t !1ub~ t !u2f * 8~ t ! f ~ t !% ~87!

and get

J;
2240i t

uF~ t !u10
u f ~ t !u8ua~ t !u4ub~ t !u4$ua~ t !u22ub~ t !u2%$ f 8~ t ! f * ~ t !2 f * 8~ t ! f ~ t !%. ~88!
nu-
-
rip-
of

it
l
is

ove.
n

ing
ed
But

ua~ t !u22ub~ t !u251, ~89!

f 8~ t ! f * ~ t !2 f * 8~ t ! f ~ t !52 i . ~90!

So

J;
2240t

uF~ t !u10
u f ~ t !u8ua~ t !u4ub~ t !u4,0. ~91!

QED.
The existence of anH theorem at the NLO is as reassu

ing as the absence thereof at the LO. It is also interestin
observe that entropy production is~formally! a quantity of
to

the order ofN22; a strict ~formal! 1/N expansion would
neglect such a quantity, but it would be generated in a
merical solution of the full 1/N equations of motion. There
fore, it is suggestive that the statistical mechanical desc
tion of an interacting quantum field at the NLO level
approximation to a 2PI CTP effective action may perm
‘‘thermalization,’’ as claimed by@15–19# based on numerica
results. Note that our analysis corroborating this claim
predicated upon the restrictive conditions discussed ab
Extension of this work to full field theory in conjunctio
with the reported results of@13# is under investigation.
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APPENDIX A: COMPUTING THE PARTITION FUNCTION

To computeZ, it is best to diagonalizeH0. Introduce new
canonical variables

jA5~coshu!pA1~sinhu!xA , ~A1!

hA5~sinhu!pA1~coshu!xA , ~A2!

so that@jA ,hB#5@pA ,xB#5(2 i\)dAB . Then

pA5~coshu!jA2~sinhu!hA , ~A3!

xA52~sinhu!jA1~coshu!hA , ~A4!
ib

-

s

-

06502
il
d

and

H05S 1

2D $AjBjB1B~hBjB1jBhB!1ChBhB%, ~A5!

where

A5a cosh2 u1g sinh2 u22b coshu sinhu, ~A6!

B52~g1a!coshu sinhu1b~cosh2 u1sinh2 u!,
~A7!

C5a sinh2u1g cosh2u22b coshu sinhu. ~A8!

To diagonalize the Hamiltonian, we requireB50, namely

tanh 2u5
2b

g1a
. ~A9!

Now Z is the usual partition function forN harmonic oscil-
lators with frequencyv25C/A at inverse temperatureA.
APPENDIX B: c„t…

C~ t !5
1

16v4E0

t

dt8$@eiv(t2t8)12n cosv~ t2t8!#42@e2 iv(t2t8)12n cosv~ t2t8!#4%

5
i

8v4E0

t

dt8$32n3 cos3 v~ t2t8!sinv~ t2t8!124n2 cos2 v~ t2t8!sin 2v~ t2t8!

18n cosv~ t2t8!sin 3v~ t2t8!1sin 4v~ t2t8!%

5
i

8v4E0

t

dt8$8~2n313n2!cos2v~ t2t8!sin 2v~ t2t8!18n cosv~ t2t8!sin 3v~ t2t8!1sin 4v~ t2t8!%

5
i

8v4E0

t

dt8$2~2n313n2!@2 sin 2v~ t2t8!1sin 4v~ t2t8!#14n@sin 4v~ t2t8!2sin 2v~ t2t8!#1sin 4v~ t2t8!%

5
i

8v4E0

t

dt8$4 sin 2v~ t2t8!@2n313n22n#1sin 4v~ t2t8!@2~2n313n2!14n11#%. ~B1!
,

ry-
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