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We develop the derivative expansion of the one-lddp 4 super Yang-Mills(SYM) effective action de-
pending both on theV=2 vector multiplet and on hypermultiplet background fields. Beginning with the
formulation of /=4 SYM theory in terms of\’=1 superfields, we construct the one-loop effective action with
the help of superfield functional determinants and calculate this effective actigr ih superfield form using
the approximation of constant Abelian stren§th, and corresponding constant hypermultiplet fields. Then we
show that the terms in the supercovariant derivative expansion of the effective action can be rewritten in terms
of N'=2 superfields. As a result, we get a new derivation of the completel supersymmetric low-energy
effective action obtained by Buchbinder and lvanov and find subleading corrections to it.
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[. INTRODUCTION The explicit form of the nonholomorphic potential for the
SU(N) gauge group spontaneously broken down to its maxi-
The N'=4 super Yang-Mills(SYM) theory has attracted mal torus looks like

much attention due to the remarkable properties that allow us

to clarify profound questions concerning quantum dynamics _

in supersymmetric field models and their links with string or HOW W) =c2 In A A ) (1)

brane theory. The maximally extended rigid supersymmetry =

of the N/=4 SYM theory imposes strong restrictions on

: o . where A is an arbitrary scale,l,J=1,... N, and c
guantum dynamics. As a result, the quantities charactenzm& 5 . - ' N .
the theory in the quantum domain can be exactly found or, 1/(477) (for more detail, see Ref.l;]). The expression
studied in great detallsee, e.g.[1-5)) (1) defines the exact low-energy effective potential in leading

T ' . o . . order in the external momentum expansion in the2
This is the first paper in a series in which an attempt 'S auge superfield sectd?,8]. We emphasize that the result
tmhade to (E[alculate ”::/ST'IS?,\F/" kt)r\:v -energy eﬁeé:_nve act|o|r|1 : 1) is so general that it can be obtained entirely on symmetry
Neé guantum gaugev= Vi theory, depending on al grounds from the requirements of scale independenceRand

fields of theA'’=4 vegtor multlplgt. Unfortunately, a mani~;nvariance up to a numerical fact¢7,12]. Moreover, the
festly supersymmetric formulation fo'=4Yang-Mills . potential (1) gets neither perturbative quantum corrections
theory is still unknovv_n._At present, the best2 most symmetncﬁeyond one loop nor instanton correctidisg] (see also the
gnd_adeq.uate, descrlptlonM=4.vector multlplet dynamics - giscussion of the nonholomorphic potential M=2 SYM

is given in terms of unconstrained harmomié=2 super-  yhaqrieg12—15). Al these properties are very important for
fields. From this point of view, th&v=4 SYM theory is a understanding the low-energy quantum dynamics\&# 4
model of V=2 SYM theory coupled to a hypermultiplet in gy theory in the Coulomb phase. In particular, the effec-
the adjoint representation of the gauge group. It is welkj,e notential(1) provides the first subleading terms in the
known that the exact low-energy quantum dynamics\6f  interaction between parallel D3-branes in superstring theory
=4 SYM theory in theN'=2 vector multiplet sector IS con- (see, e.g.[16]). It has been proposed that the full=4
trolled by the nonholomorphic effective potentid(W,V),'  SYM effective action, depending on proper invariants con-
depending on theV=2 strengths/V, W (see Refs[2,7-11). structed from the arbitrary powers of the Abelian strength
Fmn @nd obtained by summing up all the loop quantum cor-
rections, should reprodudevithin certain limitg the Born-

Wl_wJ)l (WI_WJ
n

*Electronic address: atb@math.nsc.ru Infeld action [17] (M=4 SYM-supergravity correspon-
TElectronic address: joseph@tspu.edu.ru dence. These nonlocal contributions have been expanded in
*Electronic address: pletnev@math.nsc.ru a low-energy approximation and expressed as the sum of an

The low-energy effective action in an arbitrasy=2 Sym infinite series of local terms. It is argued that these local
model can contain, in principle, a holomorphic effective potentialexpressions reproduce contributions to the Born-Infeld ac-
[6] but it vanishes inV=4 gauge theory. tion if supersymmetry has to determine its structure. A dis-
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cussion of this correspondence and its two-loop test argagrangianl.s; depending on theV=2 gauge background
given in Ref.[18] (see also the consideration of various as-superfields, their spinor derivatives up to some order, and the
pects of the analogous problems for a non-Abelian backhypermultiplet background superfields using the formulation
ground in Refs[19-21 and the general approach to calcu- of A’=4 SYM theory in terms of\’=1 superfield429,30
lating the higher-loop corrections [1i22]). and exploring derivative expansion techniques\ire 1 su-

In order to clarify the structure of the restrictions on the perspacé31] (see alsd32]). It allows us to obtain the exact
effective action, stipulated byv=4 supersymmetry, and to coefficients at various powers of the covariant spinor deriva-
gain a deeper understanding of the=4 SYM-supergravity tives of the N=2 superfield Abelian strengthy, corre-
correspondence, we have to find an effective action that isponding to a constant space-time background that belongs
not only in the\V=2 vector multiplet sector but also dependsto the Cartan subalgebra of the gauge gr&ug{N) sponta-

on all the fields of the\'=4 vector multiplet(see the discus- neously broken down t&J(1)"! and the constant space-
sion in [23]). This problem remained unsettled for a long time background hypermultiplef®:

time. Recently, the complete leading parE* to the exact

low-energy effective action containing the dependence on W|=®=const, D! W|=\! =const, (3
both '=2 gauge superfields and hypermultiplets has been _ _

discovered 24]. It has been shown that the algebraic restric- q'#=const, D{,DgW =F,z=const,

tions imposed by hiddef/=2 supersymmetry on the struc- _ _ ,

ture of the low-energy effective action in thé=2 harmonic D«DPW|=0, DLg%¥|=0, D:g%|=0,
superspace approach turn out to be so strong that they allow

us to restore the dependence of the low-energy effective asvhere ® =diag(®!,®?, ... ®"), =®'=0. This back-

tion on the hypermultiplets on the basis of the known non-ground is the simplest one allowing exact calculation of the
holomorphic effective potentiall). As a result, the addi- one-loop effective action. We will show that in this case the
tional hypermultiplet-dependent contributions containing theN=1 superspace effective action can be uniquely found on

on-shell W,V and the hypermultipletj [26] superfields the basis of the effective action for a vanishing hypermultip-

have been obtained in the form let [31,33 by means of a simple variable modification. Fol-
lowing this, the result obtained maintaining the complete hy-
In(1—X) permultiplet dependence is rewritten in a manifestly=2
Lq=0) (X=1) ——— +[Li(X)— 1]}, (2)  supersymmetric form. For this purpose we use the same pro-

cedure as in33] and natural prescriptions for reconstruction
terms containing hypermultiplet derivatives. We emphasize

X=— qla% that the backgroun() is a special supersymmetric solution
WW ' to the classical equations of motion of thé=1 superfield
model representing th&/=4 SYM theory in terms of\/
where Li(X) is the Euler dilogarithm function andis the =1 superfields, and therefore the effective action does not

same constant as in E(L) (see the details and notation in depend on the choice of th&'=1 superfield gauge fixing
Refs.[5,24)). The effective Lagrangia(®), together with the conditions we impose on the theory. Moreover, it can be
nonholomorphic effective potentiél), determines the exact shown that the backgroun@®) is completely formulated in
N=4 supersymmetric low-energy effective potential in theterms of A’=2 superfields, which provides the possibility of
theory under consideration. writing the effective action on this background in a mani-
The leading low-energy effective Lagrangidd) was festly /=2 supersymmetric form. As long as we are inter-
found in Ref.[24] on purely algebraic grounds. It would be ested in theV=2 SYM effective action having special hy-
extremely interesting to derive this Lagrangian and next-topermultiplet matter fields and constructed on this background
leading corrections in external momenta in the framework ofwithout any additional requirements exceépt 2 supersym-
quantum field theoryQFT). This problem seems to be very metry and gauge invariance, we can be sure that it possesses
nontrivial since the expressidR) includes any powers of  the mentioned symmetry properties because the action is
and is singular alV=0; therefore the result cannot be ob- written in terms ofA/=2 superfield strengths.
tained by considering the Feynman diagrams with a fixed However, one should be extremely careful in respect of
number of external hypermultiplet and gauge field legs. Alladditional requirements like hiddeV=2 supersymmetry
such diagrams must be summed up. In a recent p@¥r because of the backgrouri8). As will be shown in Sec. II,
the problem of computing the effective Lagrangi@y was this background is not form invariant under the hidden
solved using covariant harmonic supergraph techniques2 supersymmetry transformations &f=4 supersymme-
[2,28]. The more general problem consists in the QFT orry. Complete on-shelN=4 supersymmetry involves trans-
algebraic derivation of the subleading terms in the effectiveformations between the physical fields from thie= 2 vector
action, depending on all fields of th€=4 supermultiplet, multiplet and those from hypermultiplets. As a general rule
and representation of these terms in a compledéty4 su-  higher-derivative additions to the actions are in general com-
persymmetric form. The present paper is just devoted tgatible with supersymmetry only if the transformation rules
methods for solution of such a problem for the one-loopfor the fields also receive higher-derivative corrections. The
effective action. To be more precise, we discuss the construgroperties of the action obtained related to the hidden sym-
tion of the derivative expansion of the one-loop effectivemetry will be studied in a separate forthcoming work.
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The paper is organized as follows. In the next section we A. N'=4 SYM theory in N'=1 superspace
recall the known properties df/'_:4 SYM theory in the/\/_ The physical field content of the superfisl#*® can be
=1 and =2 formalism and discuss the background field 5ptaineqd by combining threg’= 1 chiral superfields and one
quantization, including the choice of proper gauge flxmgN: 1 vector multiplet superfielf29]. Then the six real sca-
conditions. In Sec. Ill we describe the calculations leading tq, .« \which are the lowest components of the superfehd
an exact one-loop\/_=1 superﬂeld effective action for th_e are represented by the three complex scalar components of
background(&"). Sect!on I'V is devqted to the representation v, chiral\/'= 1 superfieldsb'. The four Weyl fermions from
of this effective action in a manifestif=2 form and a \yAB 4re divided into three plus one. Three of them are con-
discussion of the prescriptions necessary for obtaining S“Chﬁdered as the spinor componentsd@f and the fourth fer-
gqrm. In the ISu(rjnmarb)q we formulate the final results andp,i,, is treated as a gaugino and constitutes, together with
ISCUSS unsolved problems. the real vector, theV=1 vector multiplet superfield. In
such a description, theSsU(3)®U(1) subgroup of the
Il. MINIMAL FORMULATION OF ~ A/=4 SYM THEORY IN  SU(4) Resymmetry group is manifest, and the representa-
N=1,2 SUPERSPACES ANDN/=1 SUPERSYMMETRIC tions of SU(4) are decomposed according 663+ 3, 4
BACKGROUND FIELD METHOD — 3+ 1 so that the chiral superfields' transform in the3 of

. - , _ SU(3), theantichiral ®; transform in the3, and the vector
A formulation of V=4 SYM theory possessing off-shell multiplet superfield is a singlet und&rU(3).

manifestly V=4 supersymmetry is unknown so far. There- The action of theA’'=4 SYM model is formulated in
fore the study of the concrete quantum aspects of this theortyerms of V=1 superspace as follows:

is usually based on its formulation either in terms of physical Persp '
component field¢see, e.g]34]), or in terms ofN'=1 super-

space(see, €.g9.[29]), or in terms of V=2 harmonic super- S= itr(f d4xd20W2+f d4xd40<3ieV<I>‘e*V
spaceg[25,26. In the first case, all four supersymmetries are g2

hidden; in the second case, one of them is manifest and the 1

other three are hidden; in the third case, two supersymme- +— | d*xd?gic;; P [P!, K]

tries are manifest and the other two are hidden. It is worth 3! N

pointing out that in all cases at least some of the supersym- 1

metries are on shell. Taking into account that the presence of + _f d“xdzﬁc”k(fi[q_)j ,qu]}_ (4)
manifest symmetries simplifies the process of calculations in 3!

guantum theory, it is reasonable to consider that at prese
just the /=2 harmonic superspace formulation is the bes
one for quantumV=4 SYM theory. However, the formula-

tion in terms ofA/=1 superspace has its own positive fea'su erfield actions are superconformal invariants. In addition
tures, basically due to the relatively simple structure\of P P '

=1 superspace and the large accumulated experience E)q the _m_amfest/\ff 1_supersymmet_ry f':mEIU(S_) symmetry

work with A’'=1 supergraphs. on thei,j,k, ... |_ndlces ofd and d, it hz_is hidden global
The N'=4 superfield description of th&/=4 vector mul- ~ SUPersymmetry given by the transformations

tiplet can be realized with the help of on-shall=4 super-

E]Ihe notation and conventions correspond to those of Ref.
29]. All superfields here are taken in the adjoint representa-
tion of the gauge group. Both'=1 SYM and the chiral

w2 . ay . g
fieldsWAB, A=1, ... 4[35] satisfying the reality conditions W, == €, VP +i€' V0 Pe,
1 B SW,=— €, V2D L+ieV, D, (5)
WABZESABCD\NCD , WAB:WAB ' ' o L
SD=€e"W,, O6D=e'W,.
and the on-shell constraints The action(4) is also invariant under the transformations

L dDL =MV (D) +i[ D, DL,
DA&WBC=§5,&BDE@WEC], DAWBIC=0, _ e
6P i =Cijk VX' D) +i[ x;PL, D] (6)

All physical fields of theA’'=4 vector multiplet are con- Here the covariant spinor derivativ&s,V,,V?, andV? are
tained in the superfielV*B. We point out also the attempts defined in Ref[29] and x' are theA’=1 superfield param-

to develop an unconstrained formulation in the harmonic sueters forming theSU(3) isospinor as well ad'. These pa-
perspace approa(ﬁﬁﬁ], and discuss the integral invariants in rameters include the central Charge transformation param-
N=4 SYM theory that can be constructed from the fieldeters, supersymmetry transformation parameters, and internal
strengthW”B, which are integrals over fewer than the maxi- Symmetry parameters &U(4)/SU(3). Thetransformations
mum number of odd coordinates but which are still mani-(6) are given in terms of the background covariant super-
festly supersymmetricsee[21]). fields ®,=e®e ?, d.=e e [29]. Further, we use
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only these covariant chiral superfields and the subscript The corresponding equations of motion are
omitted. It is convenient to introduce the new notatidnh

=d,0?=Q,d3=0Q and rewrite the two last terms in Eet) D™ g +ig[V'".q"?]=0, ®
as follows:
DJraD;W:[qua'q;-].
if d4xd20Q[<I>,(~3]+if dAXdZE[a,a], Herea=1,2 is the index of the rigi®U(2) symmetry,q,

=(q",q%), g 2=¢"q,=(q",—q"), Wis the strength of
o . the N'=2 analytic gauge superfieM* * connection in thex
which is theN=1 form of the hypermultiplet and the lowest frame [2526, g is a coupling constant, d®z
pompoqent of the chiraV=2 field strength vector multiplet _ d*xd26" d20-du, dz~*=d*xd?6* 26" du, andduis the
interaction for the/\/=4 model. measure of integration over the harmonic variabiés The
If the gauge group is Abelian, we get a free model. Inthe , ~ . + o
non-Abelian case, the theory has a moduli space of VacugerlvatlvesDa(é)_ do not heed a_ connection in the. frame
parametrized by the vacuum expectation valQég\’s) of V\{hereg analyt|C|ty[25,26]_ is manifest. All other notation is
the six real scalars. The manifold of vacua is determined b@iven in Ref.[26]. Equations(8) present theA'=4 SYM
the conditions of vanishing scalar potenti@ flatness plus field equations of motion written in terms @f=2 super-
D flatness [37]. The solutions to the equations determining fields. The off-shell actioii7) allows us to develop the mani-
the vacuum structure of the theory can be classified accorde€st V=2 supersymmetric quantization. Moreover, this ac-
ing to the phase of the gauge theory they give rise to. In th&ion is invariant under hidden extrt&=2 supersymmetry
pure Coulomb phase, each scalar field can have its speciftcansformationg26] which mix up W, W with g . For our
nonvanishing VEV. As a result, the space of vacuaMit  purpose, it is sufficient to point out that in the Abelian case
=RO/S,, whereS, is the Weyl group of permutations for  the corresponding transformations of hidd&f=2 super-
elements and the unbroken gauge group(&)'. But when  symmetry are defined only on shell and have the form
several VEV's coincide, some non-Abelian grou L .
e SU(N) remains unbroken and some massless gauge A — L A+
bosons appear in the theory. OW=2e"D,ba s OWV=58"D0a, ©
The fact that non-Abelian gauge theories are expected to
describe a stack of coincident D-branes makes the task of R S
writing an effective action much more complicated. A num- 604 :Z(SaDaW”LSaD@ W),
ber of non-Abelian extensions of the Abelian super Born-
Infeld theory were found19,20. However, there seems to 1 o
be no obvious way of selecting out a unique action. There- 5q;=z(s§D;W+ gaD ;. W).
fore the best available way of looking at this problem of
constructing the effective action is to proceed order by orde'rA\

) . s a result, the model under consideration\is=4 super-
in the loop expansion.

symmetric on shell.
The vacuum structure of the mod@&) in the Abelian case
B. N'=4 SYM theory in A/=2 harmonic superspace is defined in terms of solutions to the following equations:

From the N=2 supersymmetry point of view, th&=4
vector multiplet consists of afV=2 vector multiplet and a
hypermultiplet. Therefore theV=4 SYM action can be
treated as some speci&l=2 supersymmetric theory, the ac-
tion of which is the action forvV=2 SYM theory plus the
action describing the hypermultiplgt* in the adjoint repre-

(D)2W=(D")2W=0, D" *q*2=0, (10)

which are simple consequences of E(®. in the Abelian
case. Equation$l0) for physical components of th&/=4
vector multiplet determined by the expansion

sentation coupled to théV=2 vector multiplet. Such a e =Fout + 0T (x)+ 07 k¥ x

theory is formulated inV=2 harmonic superspad@s,26]. A" (Guw=F0ou Yal)+ 0, k(x)

The dynamic variables in this case are the real unconstrained +2i0" ﬂ§+fi(x)u¢ (11)
analytic gauge superfiel** and the complex uncon- b

strained analytic superfielgi”. The harmonic gauge connec- W= (x)+ 0N\ (x) + 0(+a0_B)Faﬁ(X)

tion V** serves as the potential of th€=2 SYM theory
and g* describes the hypermultipet. The action of the look like
=4 SYM theory looks like
L L bp=bk=0f =0¢=I\'=3,Fn=0. (12)
+4+ Nt N — 8 2
SvVihanatl= zgztrf d"z2v Zgztr The simplest solution to these equations of motion forms a
set of constant background fields

—4 +tamy++ ot ) —
deg 9D M - @) f'=const, ¢=const, k=const, (13
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¢=const, F,,=const, our goals. We take into account the problem of matrix opera-
. . ~ tors mixing the /=2 vector multiplet and hypermultiplet
which transformlinearly through each other under the hid- sectors. Of course, the effective action can be studied using

den =2 supersymmetry transformatiof®): harmonic supergraphs but we expect here to meet with the
standard problem of how to organize the calculations in or-
Sp= Eg—aa;_ 55: }Saal/l der to go beyond the leading low-energy approximatsee
2 aar 2 aar the calculations in leading low-energy approximation in, e.g.,

Refs.[11,18,27,28,3B Therefore, we work within a formu-
lation in terms ofA/=1 superfields and use our experience to
work with theories formulated inN=1 superspace
[22,30,3].

1 _ . , The background field method is based on splitting the
5f'a:Z€§7\L+ZSa£J\'“, oN,=0, 6F,;=0. (14 fields into classical and quantum and imposing the gauge

fixing conditions on quantum fields. Of course, as is often

The solution(13) is the simplest vacuum configuration car- the case, the gauge fixing conditions can break some classi-
rying out a representation o'=4 supersymmetry. We Cal symmetries(for detail see e.g. Ref$39,40).
would calculate theV=4 supersymmetric low-energy effec- ~ We define one-loop effective actidn depending on the
tive action in\’=4 SYM theory from this solution, if we had Packground superfield) by a path integral over quantum

PYR =S e i 12
lllaa 28a af Kaa 28a af

known how to do that. fields in the standard form
It is instructive to compare theV=4 supersymmetric
backgrounds(13) and the background3). The last back- eiF:f DvDeDcDe’ DeDe’ e/ (S2) S| (15)

ground contains the componenmtsandF of the ’'=2 vector
multiplet when the componenis and ¢ of the hypermultip-

let are absent. As a result, the backgrou8ilis not form classical action, including a gauge fixing condition, &g

|_nvar|ant under the hidde: v =2 supersymr_netry transforma- is the corresponding ghost action. A formal calculation of the
tions (14) and therefore this background is not a representa-b hi | lead f ional d .
tion of A’=4 supersymmetry. However, the backgrou@i above path integral leads to a functional determinant repre-
. . " ) sentation of the effective actiofjsee Eq.(23)]. The main

is a representation of manifestiy=2 supersymmetry.

. . technical tool we use in this paper for té=1 superfield
Therefore we can state thatihe effective action found on thy e, ations is the background covariant gauge fixing multi-
background(3) within the A’=1 background field method . iy
; : . : .~ parametric condition
will be manifestlyA’=2 supersymmetric and gauge invariant
but its properties under hiddex=2 supersymmetry should 1
be studied separately. To construct the deformed classical SGF:_a_ng d82(FAFA+bAbA): (16)

where S, is a quadratic in the quantum field part of the

on-shell transformation as well as the compl&fe 4 super-
symmetric effective action that is invariant under this trans-

formation, we can follow the approach developed2d]. hereb,b are the Nielsen-Kallosh ghosts. We choose conve-

nient gauge fixing conditions for the quantum superfields
C. N=1 background field quantization and ¢ in the form

For computation of the effective action we use ke 1

superfield background field methddee, e.g.[29,30) in A o2 A 1 _, .= A
combination with A’'=1 superfield heat kernel techniques FR=VZ7+A D_+V ¢.Pil
[30]. These methods for constructing the effective action in

gauge field theories allow us to preserve a classical gauge A

: , . O — 11—
invariance in the quantum theory and sum, in principle, an FA=V2pA—\| =—V?¢; ,d'
infinite set of Feynman diagrams to a single gauge invariant O-
functional depending on the background fields. As we o

pointed out, the theory under consideration can be formuwhere a,\,\ are arbitrary numerical parameters and ,
lated either in terms of component fields, or in terms\6f [0 _ are the standard notation for Laplace-like operators in
=1 superfields, or in terms of/=2 harmonic superfields. the A/=1 superspace. It is evident that the gauge fixing func-
The evaluation of an effective action in component formula-tions (17) are covariant under background gauge transforma-
tion is extremely complicated even within the backgroundtions. These gauge fixing functiofis7) can be considered as
field method because of a very large number of interacting superfield form of the so-calleR; gauges(see Refs.
fields and the absence of manifest supersymmetry. The effe€41,42) which are usually used in spontaneously broken
tive action can be studied withi'=2 harmonic superspace. gauge theories. Since an Abelian background is a solution to
The correspondingv=2 background field method was pro- classical equations of motion, we will not worry about the
posed in Refs[28]. The aspects of heat kernel techniqueschoice of gauge fixing parameters. Therefore it is convenient
were considered in Reff38]. However, these techniques are to take the gauge fixing which we call the Fermi-DeWitt
undeveloped yet in many details and need to be extended fgauge: a=A=1. Such a choice of the gauge parameters

: 17
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allows us to avoid the known problef3] in the functional (T AT (T a AT
determinant method for calculating the mixed contributionWheref (¢:9.0.0,0.0), F7=(¢:¢,0.0.9.0) ",
which contains vector-chiral superfield propagators circulat-
ing along the loop.

We want to note once again that in gauge theories not all _ _ = -
rigid symmetries of the classical action can be maintained M= (P;P13+Q13Qi3+Q13Qu), (19
manifestly in the quantum theory, even in the absence of
anomalies. The issue here is that quantization requires gauge
fixing and the latter, as can be shown, breaks some symme-
tries (breaking the classic conformal symmetry is discussed, _M_inwevy e
e.g., in Ref[40]). This is the known general situatidaee, Ov=H=1W Ve =W Vo,
e.g.,[39)]). In our case, the gauge fixind6) obviously also
breaks rigid classigv'=4 symmetry(5), (6) since it is cova-
riant only under =1 supersymmetry transformations. L
Therefore the effective action obtained should be invarianand Wj=W/-Wj, W[j=W—-Wj are the background
under the hidden transformatiotfs deformed in some way. field strengths belonging to the Cartan subalgebra &pd
This deformation can, in principle, be computed by consid-= @, — & ;. The Weyl basis in the space of Hermitian trace-
ering the Ward identities at each loop order but this non{ess matrices from the algebsai(N) was used in order to
trivial problem is beyond the purposes of this work. obtain Eq.(18). We consider the case of the gauge group

After splitting each field into the backgr_oung an_d quan-sy(N) broken down to the maximal torud(1)N=1. The
tum parts(i.e., e'vi=e"e%e”, d—d+¢, —P+¢, Q  constraintl <J arises since the components of the quantum
—Q+q,0—-0+79, Q—Q+q,0—0+q), we can rewrite  superfields that lie in the Cartan subalgebra do not interact
the quadratic part of the sum of the classical actibnand  with the background field and therefore they are completely

gauge fixing actior{16) in the form decoupled. For details of using the Weyl basis to calculate
the effective action, see, e.g11].
S = — E 2 f d*xd* o[ FIH FMH4P(0y—M) o] The operatoH is a matrix depending on covariant deriva-
2) 23 ) v S tives and background fields. The explicit form of this matrix

(18) looks like

_ _VZVZ _ VZVZ o
G.(¢)V?V? 0 — ¢f ivV2 — of —ifv?
0O, 0.
— — I v — — V2?2
0 G_(¢)V?V? ivV? —ifVv? -
(¢) v of B l $v -
_V2y2 — - —V2y2 —
- i f)v2v? 0 YAE
f =R ivV G, (f) fo 0, iV
= = , 20)
_ o 2v2 o VZVZ (
—ivV? — 0 G_(f)V?Vv? V? —
iv fo = (f) i fo =
V2y? _y2y2 _ _
- fv2 —of —ipV2 G, (v)V2V? 0
v =i v 0. +
o o €2v2 _ o €2v2 o
fV? — —ipV? — 0 G_(v)V?V?
i v =l i vf =l (v)
|
where the following notation is used andd. meansV2V2 andV2V?2, respectively. In the space of
(a3) chiral and antichiral superfields these operators act as fol-
aa _ .
G.()=1-=—, ¢=by, ¢=D, lows:
_ IR B
. _ — = 2v2_ — M —iWevw — —
f=Qi;, f=Qu, v=Qy, v=Qy VAVE=L, =0-iWe, Z(VW)'
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i ghost contribution to the one-loop effective action. The ac-
VeV2=0_=0-iweV, - 5 (VW). tion of the Faddeev-Popov ghos$sp for the gauge fixing
functions(17) has the form
It should be noted that, generally speaking, the second varia-
tion of the classical action leads to &7 matrix operator.

But the chosen gauge fixing conditiqd7) allows partial _ sl = Py I
diagonalization to a X 1®6x 6 block matrix and separation SFP_trJ d Z[(C c-¢ C)_(C ® ’D_+[C’q)i]}

of the kinetic operator for the vector fields. This gauge fixing _

condition eliminates the interaction vertices between quan- —| A o=

tum matter fields and quantum vector fields but generates tce ﬁ[c'(b 1. ' (22)

new interaction vertexes between quantum chiral fields and

ghosts. It leads to the following contribution of the ghosts to the
Let us consider now the structure of a Faddeev-Popoeffective action:

M
S PRUATES
0.
In[Det(Hgp)]=2>, Trin , (22)
i<J M\ —
- ( 1- —) v2y? 0
O_
1J
|
whereM was defined in Eq(19). tiplet. Such a situation has been studied in ddisdle, e.g.,

The final result of the integration in the path integisb) Refs.[31,32,43,4%. It should be noted that the form of
over all quantum superfields is given by a formal represeneontaining dressed inverse propagators is directly related to
tation for the one-loop effective action in terms of functional the R, gauge fixing condition17).
determinants On the first stage we divide the matrix into a sum of
two matricesH=H;+Hy where the matrix ;) contains
all blocks with V2V?,V2V? and the matrixHy contains

é'=T] Det }(Oy,—M)Det L(H)DeB(Hgp). (23  blocks withV2 and V2 only. Let us present the logarithm of
I<J the matrix InH) as follows:

Since the strength® andW, belong to the Cartan subalge-

bra, only half of the roots should be taken into account dur-

ing the integration over the quantum fields and the effective In(H)=In(H)+In(1— HalHV).
action looks like

Using the known Frobenius formula for inversion of a block
r=> TI;. type matrix,

Our next purpose is a computation of the above functional
determinants. (A B)

I1l. EVALUATIONS OF SUPERFIELD FUNCTIONAL
TRACES AND ONE-LOOP EFFECTIVE ACTION

In this section we present the basic steps of functional L L L L L L
trace calculations for the operators, which make background- _, (A HATBECAS —ABE"
dependent contributions to the effective acti@f). It is seen H _Elca? E-L '
from Eq. (20) that in the absence of background superfields
Q,0 the matrix operatoH includes only the background-

dependent inverse propagatd@s ,G_ and vertices for the whereE=D—CA 1B, we get by direct calculation the in-
background fieldb interacting with the quantum hypermul- verse matrix forH:

065024-7
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. (¢)V2VZ 0 pf V22 0 dv V2V?2 0
’ Di Uim Di Uim Di
0 gi((b)V?VZ 0 Pf V2V2 0 dv V2V?
02 U-m 0?2 HO-m 0?2
f¢ V2V2 0 . (f)VZVZ 0 fo V2V2 0
L | B o o2 O.v 02
o= 0 T V2V2 0 . (f)_zvz 0 fo V2v2 | 9
O-v 02 - 02 O-m 02
vg V2V2 0 vf V2V2 0 . (0)@ 0
Uiv 02 Uim 02 B 02
0 v V2?2 0 vf V2?2 0 g (U)VZVZ
O-m 02 O-m O? P

Here we have introduced the notation

gt(¢):1+ ¢¢, DiM:Di‘FM.
Ham

One can note that the combinatibh[Eg. (19)] appeared naturally during the inversion procedure. Then we find the product
Ho'Hy in a remarkably simple form:

_VZ _VZ
0 0 0 iv— 0 —if=
o~ IfD_
2 v2
0 0 iy 0o _it o
0, 0,
_VZ _V2
Ho'Hy= 7 o . (25)
iy 0 0 0 i~ 0
0, 0,
—V2 _VZ
0 — 0 —ip— 0 0
Ifl:], i -
2 2
|fV— 0 —i¢V— 0 0 0
0, 0,

The next stage consists in matrix trace calculations. Let usvthereM was introduced in Eq.19) and Tr means the func-

expand TFIn(1—H5'Hy)] in a series in powers d 5 Hy . tional trace. Also, we have to consider the matrix trace of
The nonzero matrix traces will have only even powers of thdn(H). According to the above strategy, we write the matrix
series, which are grouped into as a diagonal matrix plus the rest, i.Bg=Hqy+ A:
M | 7272 Trin(Ho)=Trin(Hg)+ Trin(1+H5'A), (27)
TrexelIN(1—H5Hy) ]=Tr In( 1- —)
O,/ O,

s where the matri, contains onlyV2v2 and V2V?2 at zero

In( 1— ﬂ) Vv } background fieldsP,Q,Q and therefore can be omjted. The
0 ’ matrix elements oH;'A are blocks with chiraV2v?/0J,

(26) and antichiraV2v2/0] projectors. After permutation of the
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lines and columns, the trace logarithm of the matrix 1

+Hg *A can be reorganized as follows: F:i; Trin(Oy—=M)ys, (32
Trexeln(1+Hg *A) and all background superfield dependence is encodéd. in
— — — For the operator in the above relation, the power expansion
(¢¢) (¢f) (dv))\ over the Grassmann derivatives of the gauge field strength of

—Traysin| 1— (fg) (ff_) (fv_) . the functional trace_ has alreqdy been calculated in_different
_ _ _ | 0% ways for models with one chiral background superfigde
(ve) (vf) (vv) [31-33 and references thergirAs a result, we transformed
a rather complicated problem with a hypermultiplet back-
(28) ground to a known problem. The feature of the theory with
the hypermultiplet background is its dependence on the com-
. . . _ ~ bination(19) M =(®®+QQ+QQ), which is invariant un-
A direct calcul_atlon of the matrix traces for the first terms in ger theR-symmetry group of\V’=4 supersymmetry. That al-
the Taylor series allows us to write the result as lows us to apply the results obtained fok=1 models to the
case under consideration making the corresponding redefini-

v2y2  y2y?
—
02 o2

M | V2V?2 tion of the i
Sl M quantityM.
TroxglN(1+Ho "A) =TT In(l D+) 0. The functional tracg32) can be written as a power ex-
M | T2y pansion of dimensionless combinatio#s¥ of vector and
STl inl 1— 22 (29 hypermultiplet superfields, where
O_) O-
. . . I 2 1 2\p/2 2 1 U 2\\/2
which together with Eq(26) gives L4 =WV We, W= WV W= (33
2g2
In[Det }(H)]=—2 Tr{ In( 1— ﬂ) Vv } In the constant field approximation this expansion is summed
0./ Oy to the following expression for the whole one-loop effective

action (see details in33]):
—2Tr

In| 1 M V2V2 30
Nl-g-)jg—| ©o W22

1 % _
Fz—f dszf dtte™! tw,tW), 34
82 . NE o ) (34

The contribution of the Faddeev-Popov ghosts is deter-

mined by Eq.(22). Extracting and neglecting the expression _
cosht¥)—1 cosht¥)—1

_ T tT) = _
In(( 0 vA? T 122
_v2y2 ! R
AV 0 " tZ(\PZ_\PZ)
we obtain the ghost contribution to the effective action in the coshtW¥) — cosht¥)

form
Equation(34) is our central result. We see that the only dif-

M | V2y2 ference between th&/=4 SYM effective actions with and
InN[Def(Hep) ]=2 Tr In( 1- —) without the hypermultiplet background is stipulated by the
structure of the matrisv defined by Eq(19). In component
M | V2V2
Inf 1— —

form, the closed relation for the one-loop effective action
. (3D (34) has a natural Schwinger-type expansion oFéfM?
0./ Uy powers. The expansion does not include figerm that is a
property of /=4 SYM theory[33,34]. The functionw de-
fined in Eq.(34) (see[33]) has the following expansion:

+2 Tr

which is exactly Eq/(30) with the opposite sign. Therefore
the second and third functional determinants in 8) can-
cel each other. This surprising cancellation between the con- 1 x?y?
tributions of ghost and chiral fields to the one-loop effective  w(x,y)= 5+ TEr |
action in /=4 SYM theory was first noted ih28] in the 2 4.51 1271
harmonic superspace approach. It should be especially 1 1
pointed out that this result is correct only on a constant chiral + 34500(X2y6+x6y2)erox“y“nL e
superfield background.

Finally, due to the cancellation between E@31) and (35
(30), the whole one-loop contribution to the effective action
(23) has an extremely simple form and is determined only byEquation(35) allows us to expand the effective actit#¥) in
the vector loop contribution series in powers o2, W¥? as follows:

(X4y2 + X2y4)
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=T+ T+ T+, (36) cients to the initial V=1 superspace integrand by hand,
o since they did not appear in the process of computation. If
where the ternd’ ;) contains the termsm,ﬁlfzm\lfz' with m  we calculate the effective action in terms/gf= 1 superfields
+1=n. In the bosonic sector, this expansion corresponds toot on the special backgrouri@) but on the proper back-
an expansion in powers of the strengfh namely, I, ground(13), these terms, which are absent in E8f7), will

~F42YM2F2 M= (DD +f2f,,), where®,®, andf'2  be presented automaticaflyThen the derivativesV3V5
are physical bosonic fields of th€=2 vector multiplet and could be formed in theV=1 superspace integrand and, as a

hypermultiplets. result, we would obtain the integral ovaf=2 superspace.
Further, we use evident enough assumptions about the
IV. TRANSEORMATION OF THE AN=1 properties of the effective action. The effective action is
SUPERSYMMETRIC EFFECTIVE ACTION TO A manifestly /=2 supersymmetric and, hence, each term in its
MANIFESTLY AN=2 SUPERSYMMETRIC FORM expansion in derivatives can be written as an integral over

_ _ ] _ ] N=2 superspace of a function depending &2 super-
~ The effective actior{34) and its expansio(6) are given  fie|d strengths, hypermultiplet superfields, and their spinor
in terms of V=1 superfields. Our next purpose is to find a gerjvatives. It allows us to argue as follows. Using integra-
manifestly /=2 form of each term in the expansi¢86). To  tjon by parts in the integrals oveY’=2 superspace for the
do that, we extract fronM the /=1 form of X=—(QQ effective action derivative expansion terms, we transfer all

+6(~3)/‘3‘1’. [which was defined in Eq2) in terms of A/ derivatives from hypermultiplets to th&v=2 superfield
—2 superfield} writing M=®®(1—X), and then expand strengths and then one makes the reductiowtel form.
the denpominator (M)"gfrom Eq.(34) in a’ power seriesFi)DK As a result, we see that all terms in the derivative expansion

. . . .of /=2 functionals can be written in a form similar Ig,
tTer;lri g;(;t)r?gsslgrri]elsgads to the following form for a 9ENENC yefined in Eq(36), i.e., without derivatives of the hypermul-

tiplet superfields. It means that we can act in reverse order
W2W2 beginning with the givenV=1 form and restoring the cor-
J d8z——————— (V2W3)™(V2WR) respondingV'=2 form. Also, we take into account that the
(O P)2(mitkl) derivative expansion at vanishing hypermultiplet superfields
is presented in terms df/=2 superconformal scalaf83]:

X[~ (QQ+0QQ) 1. 37)

Further, usingfd‘%z= [d®z(V,)%(V,)? and definitions of\/
=1 projections for theN=2 on-shell vector multiplet
W=®,V, W=-W,,VsW|=V2d=0, we can recon-
struct theA/=2 form of the above generic term. It is worth
pointing out that the reconstruction procedure has some offand will search for hypermultiplet dependence compatible
shell ambiguity(see[45]) even for vanishing hypermultiplet With this property.

\F’Zziv“ln W \IfzziV“ln W (39)
WZ t W2 ’

fields, but this ambiguity is inessential on shell. Further, we demonstrate how the use of the above pre-
The derivative expansiof84) of the effective action con- Scription allows us to obtain the functionals
tains the known nonholomorphic potential as a first tesee ' (0):'(2). I3y, - - - [EQ.(36)] in terms of V=2 superfields.

Eq. (42]. It can be unambiguously rewritten in aki=2  Let us  begin  with the  functional I'(,
form, following from A/=1 calculations on the background =[1/(47)?]fd®zWPW?/M? (which is ~F*) and rewrite it
(3). This unique term is automatically’=4 supersymmetric in the form Eq.(37) using 1/(1- X)?=3;_(k+ 1)X¥:
since it does not contain the derivatives of the hypermultiplet

and vector strengths. Recovering the other terms in the de-

rivative expansion of the effective action is not so evident 1 8 W2W2 -
and needs special prescriptions. (4W)2f z PYTY: +k21 (k+1)
The calculation of the above effective action was done on
the constant backgroun), but for recovering the\/=2 W2W2 o
form such a background is insufficient. We must take into XW[—(QQvLQQ)]k . (39

account the derivatives of th&=1 hypermultiplet fields.

The procedure for restoring th&=2 supersymmetric ex-

pressions, based on the correspondig 1 reduction, al-

ways implies forming theN'=2 integral measure/d*%z 2To get such an effective action i'=1 formalism we have to
=fd82(V2)2(V2)2. Therefore, to get an integral over=2 carry out the calculations keeping the spinor derivatives of the

superspace from an integral ovkk=1 superspace. we must background chiral superfields. The only example of these calcula-
persp 9 . persp ’ tions was given within the Wess-Zumino model for finding the ef-

form the full derivatives ¥,)%(V,)? in the initial N=1 su-  fective potential of auxiliary fields in Ref§31,44. In particular,
perspace integrand. In order to obtain such total derivativesuch a potential for chira\'=1 superfields of the\V'=2 vector
in the integrand(37), we have to add all necessaW,;q'®  multiplet arises from the self-dual requirement for the=4 SYM
derivative-containing terms with specified numerical coeffi-effective action(see Ref[46]).
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It is natural to identify the quadratic combinatioQQ  effective action(2). Further, we present a few of these cor-

+ 6@) of /=1 superfields with thév=1 projection of the rec_}_lﬁgj\;z 2m fa:) r;lr;e‘z?ﬁ: ﬁe‘:’(l:?:rr;y:lgﬁt{:]ctacgr:éne <36

qguadratic combination of Fayet-Sohnius hypermultiplets. . ) 5

0'?q;, . Such an identification can be checked, e.g., by com:> reconstructed using E¢10) and the expansion of (W)
ia- , e.0., -

arison of the component structures. Then we apply the ral X. Direct analysis, analogous to that in the previous case,
IF;tions P ' pply Seads to the following expression fdl,) in Eq. (36):

1 [ 1 4
WW,, o= J di2p2ap2 +
VianI=—( . )+ @72 (4m)25 (1-x)2 (1=X)

" 6X—4 X—-1

, 1 m(m+1) wew, +———In(1—-X)+4—-|. (44)
2 - T 4. X X

Wm (Dm (I)Z

(400 The X-independent part of this term was given[B8]. Ap-

lying the same procedure to the third term K% in Eq.

where the ellipses mean the terms involving the derivative 36), one obtains

of ® which can be omitted in our on-shell analysis. Thus, the
N=1 integrand(39) can be written via\’'=2 vector multip-

let superfields and hypermultiplets as [3)=— ° f d122( WA 2 4 Pt
6(41)?
2 21 A 1 2 1
VINAWVIN W+ >, ———V5—V? 1 2X
k=1 k%(k+1) ‘W X| =57+ 57 (56— 116X+84xX2—21X°) |
Sb 7t (1-x)4
1 :
X— - (—q2qa) + - - -, (41) (45
)/Vk q qla

Thus, we have found the hypermultiplet-dependent terms
where the ellipses mean all terms involving hypermultipletcomplementary td" o), I'(2), andI'(g) for the effective ac-
derivatives of the form tion obtained in[33] in the N=2 vector multiplet sector.

Clearly, every term in the expansion of the effective action

ot S S W = 1 (36) can be written inV=2 supersymmetric form. For ex-
\F: WVZa(_q qia)vzﬁvwvz(_q Qia)VZW’ ample, theX-dependent part of the fourth term-E*?) in
Eq. (36) contains two parts. The first one is
which, according to the above prescriptions, should be added

in order to obtain the fullvV=2 integration measuré3V3 in Fay= 11 4127 W2+ WOp2) 12X
the integral overA’=1 superspacé40). As a result, the Y (44)% 17250 (1-X)®

b ipti lead to th i
above prescriptions lead to the expression X (450— 1545K + 2284X2— 17793+ 720X *

_ = 1 _ 5
_ k 120X°) (46)
F(O)_(477)2J’ dlzz( InWIln W+ kgl mx s
(42) and the second part is given as follows:
whereX = (—q"@q;,/WW) was defined in Eq(2). The sec- 11 f JRESWE 12(5X—-4) In(1-X)
ond term in Eq(42) can be transformed to the for{B) using (42~ 5.6 (41)2 X5

the power series for the Euler dilogarithm function and the
relation 1k?(k+1)=1/k?>—1/k+ 1/(k+1). We see that the
expression42) is just the effective Lagrangiaf?) found in
[24,27:

- m(zmy 1620X +4610K%— 7120¢3

+6363X*—4878X%+6135X6— 7560X "+ 56708

1 " _ In(1—X)
F(O)=(4-T)2f d~Z{ InWIn W+ (X—-1) —x
—2268K°+378X19) |. (47)
+[Li2(X)—1]]. (43
Since in the on-shell description tﬁe hypermultiplet super-

Thus, ourA’=1 superfield approach automatically repro- 1€1dS dia and superfield strengthe/, )V are independent of
duces the complete low-energy effective actigh All other ~ the harmonic variables;”, one can insert a harmonic inte-
terms in the expansion of the effective acti@4) define the gral Jdu into the expressions fof'(g),I'(2),I'(3), ... and
subleading higher derivative corrections to the low-energywrite the variablesX as X=(—2q*2q, /WW). This allows
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study of the variation of the effective action under the hidderAll other terms in the derivative expansion of the effective
supersymmetry transformatiorf) using the harmonic su- action describe the next-to-leading corrections.
perspace formalism. As we have already pointed out, the quantization proce-
Thus, we see that thi&/=2 reconstruction procedure be- dure is noninvariant under the hiddéfi=2 supersymmetry
ing applied to the effective actio(84), which is written in  forming together with manifestiy\/=2 supersymmetry a
terms of /=1 superfields, can actually be realized for anycomplete on-shellvV=4 supersymmetry of the classical ac-
terms in the expansio(86) by completing these terms with tion (7). Therefore, it is natural to expect that the higher-
the corresponding complementary terms containing the hyderivative corrections to the effective action can also be non-

permultiplet superfields. invariant. Moreover, the rigid classical symmetry
transformations in quantum field theory can be deformed by
V. SUMMARY quantum loop corrections. Hence, in the case under consid-

) ] o eration one can expect that the classical hiddén2 super-

We have studied the one-loop effective actionN=4  symmetry transformations should get some quantum correc-
SYM theory, depending o'=2 vector multiplet and hyper- tions and the effective action will be invariant under
multiplet fields. The theory under consideration was formu-geformed hidden supersymmetry transformations. In forth-
lated in V=1 superspace and quantized in the framework of:oming work we are going to study the structure of quantum
the background field method with the use of special gaug@leformations of the classical hiddevi=2 supersymmetry.
fixing conditions preserving manifedf=1 supersymmetry.
The effective action is given by superfield functional deter-
minants. The concrete calculations of these determinants are
done on a specifid/=1 superfield background correspond-  |.L.B. would like to thank E. A. lvanov, S. M. Kuzenko,
ing to constant Abelian strength,,, and constant hypermul- A. Yu. Petrov, and A. A. Tseytlin for numerous discussions
tiplet fields. We have proved that the effective action dependen the problem of effective action in extended supersymmet-
ing on all fields of the\'=4 vector multiplet is restored on ric field theories. The work was supported in part by INTAS
the basis of calculations in only th&=2 vector multiplet grant INTAS-00-00254 and RFBR Project No. 03-02-16193.
sector by a special change of the functional argumgs#e  I.L.B. is grateful for RFBR Project No. 02-02-04002, DFG
Egs.(32) and(34)]. Project No. 436 RUS 113/669, and for a grant for Leading

We have examined the possibility of presenting the effecRussian Scientific Schools, Project No. 1252.2003.2, for par-
tive action obtained in a manifestljy'=2 supersymmetric tial support. The work of N.G.P. and A.T.B. was supported in
form. Analyzing the effective action as an expansion inpart by RFBR Project No. 02-02-17884. |.L.B. is grateful to
spinor covariant derivatives, we have shown that the terms dhe Center of String and Particle Theory at the University of
this expansion can be expressed via integrals &e2 su- Maryland, where part of this work was done for partial sup-
perspace of the functions depending/Ui 2 strengths, their port and to S. J. Gates for kind hospitality. He is also grateful
spinor derivatives, and hypermultiplet superfields. As one ofor partial support to INFN, Laboratori Nazionali di Frascati,
the results, we rederived the compléte=4 supersymmetric where the work was finalized, and to S. Bellucci for warm
low-energy effective action, which was discovered[24|.  hospitality.
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