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One-loop effective action forNÄ4 SYM theory in the hypermultiplet sector:
Leading low-energy approximation and beyond
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We develop the derivative expansion of the one-loopN54 super Yang-Mills~SYM! effective action de-
pending both on theN52 vector multiplet and on hypermultiplet background fields. Beginning with the
formulation ofN54 SYM theory in terms ofN51 superfields, we construct the one-loop effective action with
the help of superfield functional determinants and calculate this effective action inN51 superfield form using
the approximation of constant Abelian strengthFmn and corresponding constant hypermultiplet fields. Then we
show that the terms in the supercovariant derivative expansion of the effective action can be rewritten in terms
of N52 superfields. As a result, we get a new derivation of the completeN54 supersymmetric low-energy
effective action obtained by Buchbinder and Ivanov and find subleading corrections to it.
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I. INTRODUCTION

The N54 super Yang-Mills~SYM! theory has attracted
much attention due to the remarkable properties that allow
to clarify profound questions concerning quantum dynam
in supersymmetric field models and their links with string
brane theory. The maximally extended rigid supersymme
of the N54 SYM theory imposes strong restrictions o
quantum dynamics. As a result, the quantities characteri
the theory in the quantum domain can be exactly found
studied in great detail~see, e.g.,@1–5#!.

This is the first paper in a series in which an attemp
made to calculate the one-loop low-energy effective action
the quantum gaugeN54 SYM theory, depending on al
fields of theN54 vector multiplet. Unfortunately, a man
festly supersymmetric formulation forN54 Yang-Mills
theory is still unknown. At present, the best, most symme
and adequate, description ofN54 vector multiplet dynamics
is given in terms of unconstrained harmonicN52 super-
fields. From this point of view, theN54 SYM theory is a
model ofN52 SYM theory coupled to a hypermultiplet i
the adjoint representation of the gauge group. It is w
known that the exact low-energy quantum dynamics ofN
54 SYM theory in theN52 vector multiplet sector is con
trolled by the nonholomorphic effective potentialH(W,W̄),1

depending on theN52 strengthsW,W̄ ~see Refs.@2,7–11#!.

*Electronic address: atb@math.nsc.ru
†Electronic address: joseph@tspu.edu.ru
‡Electronic address: pletnev@math.nsc.ru
1The low-energy effective action in an arbitraryN52 SYM

model can contain, in principle, a holomorphic effective poten
@6# but it vanishes inN54 gauge theory.
0556-2821/2003/68~6!/065024~13!/$20.00 68 0650
s
s
r
y

g
r

s
in

c

ll

The explicit form of the nonholomorphic potential for th
SU(N) gauge group spontaneously broken down to its ma
mal torus looks like

H~W,W̄!5c(
I ,J

lnS W I2W J

L D lnS W̄ I2W̄ J

L
D , ~1!

where L is an arbitrary scale,I ,J51, . . . ,N, and c
51/(4p)2 ~for more detail, see Ref.@11#!. The expression
~1! defines the exact low-energy effective potential in lead
order in the external momentum expansion in theN52
gauge superfield sector@7,8#. We emphasize that the resu
~1! is so general that it can be obtained entirely on symme
grounds from the requirements of scale independence anR
invariance up to a numerical factor@7,12#. Moreover, the
potential ~1! gets neither perturbative quantum correctio
beyond one loop nor instanton corrections@7,8# ~see also the
discussion of the nonholomorphic potential inN52 SYM
theories@12–15#!. All these properties are very important fo
understanding the low-energy quantum dynamics ofN54
SYM theory in the Coulomb phase. In particular, the effe
tive potential~1! provides the first subleading terms in th
interaction between parallel D3-branes in superstring the
~see, e.g.,@16#!. It has been proposed that the fullN54
SYM effective action, depending on proper invariants co
structed from the arbitrary powers of the Abelian streng
Fmn and obtained by summing up all the loop quantum c
rections, should reproduce~within certain limits! the Born-
Infeld action @17# (N54 SYM-supergravity correspon
dence!. These nonlocal contributions have been expande
a low-energy approximation and expressed as the sum o
infinite series of local terms. It is argued that these lo
expressions reproduce contributions to the Born-Infeld
tion if supersymmetry has to determine its structure. A d

l
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cussion of this correspondence and its two-loop test
given in Ref.@18# ~see also the consideration of various a
pects of the analogous problems for a non-Abelian ba
ground in Refs.@19–21# and the general approach to calc
lating the higher-loop corrections in@22#!.

In order to clarify the structure of the restrictions on t
effective action, stipulated byN54 supersymmetry, and to
gain a deeper understanding of theN54 SYM-supergravity
correspondence, we have to find an effective action tha
not only in theN52 vector multiplet sector but also depen
on all the fields of theN54 vector multiplet~see the discus
sion in @23#!. This problem remained unsettled for a lon
time. Recently, the complete leading part;F4 to the exact
low-energy effective action containing the dependence
both N52 gauge superfields and hypermultiplets has b
discovered@24#. It has been shown that the algebraic restr
tions imposed by hiddenN52 supersymmetry on the struc
ture of the low-energy effective action in theN52 harmonic
superspace approach turn out to be so strong that they a
us to restore the dependence of the low-energy effective
tion on the hypermultiplets on the basis of the known no
holomorphic effective potential~1!. As a result, the addi-
tional hypermultiplet-dependent contributions containing
on-shell W,W̄ and the hypermultipletqia @26# superfields
have been obtained in the form

Lq5cH ~X21!
ln~12X!

X
1@Li2~X!21#J , ~2!

X52
qiaqia

WW̄ ,

where Li2(X) is the Euler dilogarithm function andc is the
same constant as in Eq.~1! ~see the details and notation
Refs.@5,24#!. The effective Lagrangian~2!, together with the
nonholomorphic effective potential~1!, determines the exac
N54 supersymmetric low-energy effective potential in t
theory under consideration.

The leading low-energy effective Lagrangian~2! was
found in Ref.@24# on purely algebraic grounds. It would b
extremely interesting to derive this Lagrangian and next
leading corrections in external momenta in the framework
quantum field theory~QFT!. This problem seems to be ver
nontrivial since the expression~2! includes any powers ofX
and is singular atW50; therefore the result cannot be o
tained by considering the Feynman diagrams with a fix
number of external hypermultiplet and gauge field legs.
such diagrams must be summed up. In a recent paper@27#,
the problem of computing the effective Lagrangian~2! was
solved using covariant harmonic supergraph techniq
@2,28#. The more general problem consists in the QFT
algebraic derivation of the subleading terms in the effect
action, depending on all fields of theN54 supermultiplet,
and representation of these terms in a completelyN54 su-
persymmetric form. The present paper is just devoted
methods for solution of such a problem for the one-lo
effective action. To be more precise, we discuss the const
tion of the derivative expansion of the one-loop effecti
06502
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LagrangianLe f f depending on theN52 gauge background
superfields, their spinor derivatives up to some order, and
hypermultiplet background superfields using the formulat
of N54 SYM theory in terms ofN51 superfields@29,30#
and exploring derivative expansion techniques inN51 su-
perspace@31# ~see also@32#!. It allows us to obtain the exac
coefficients at various powers of the covariant spinor deri
tives of the N52 superfield Abelian strengthW, corre-
sponding to a constant space-time background that belo
to the Cartan subalgebra of the gauge groupSU(N) sponta-
neously broken down toU(1)n21 and the constant space
time background hypermultipletqia:

Wu5F5const, Da
i Wu5la

i 5const, ~3!

qiau5const, D (a
i Db) iWu5Fab5const,

Da( iDa
j )Wu50, Da

i qa ju50, D ȧ
i
qa ju50,

where F5diag(F1,F2, . . . ,Fn), (F I50. This back-
ground is the simplest one allowing exact calculation of
one-loop effective action. We will show that in this case t
N51 superspace effective action can be uniquely found
the basis of the effective action for a vanishing hypermult
let @31,33# by means of a simple variable modification. Fo
lowing this, the result obtained maintaining the complete h
permultiplet dependence is rewritten in a manifestlyN52
supersymmetric form. For this purpose we use the same
cedure as in@33# and natural prescriptions for reconstructio
terms containing hypermultiplet derivatives. We emphas
that the background~3! is a special supersymmetric solutio
to the classical equations of motion of theN51 superfield
model representing theN54 SYM theory in terms ofN
51 superfields, and therefore the effective action does
depend on the choice of theN51 superfield gauge fixing
conditions we impose on the theory. Moreover, it can
shown that the background~3! is completely formulated in
terms ofN52 superfields, which provides the possibility o
writing the effective action on this background in a man
festly N52 supersymmetric form. As long as we are inte
ested in theN52 SYM effective action having special hy
permultiplet matter fields and constructed on this backgro
without any additional requirements exceptN52 supersym-
metry and gauge invariance, we can be sure that it posse
the mentioned symmetry properties because the actio
written in terms ofN52 superfield strengths.

However, one should be extremely careful in respect
additional requirements like hiddenN52 supersymmetry
because of the background~3!. As will be shown in Sec. II,
this background is not form invariant under the hiddenN
52 supersymmetry transformations ofN54 supersymme-
try. Complete on-shellN54 supersymmetry involves trans
formations between the physical fields from theN52 vector
multiplet and those from hypermultiplets. As a general ru
higher-derivative additions to the actions are in general co
patible with supersymmetry only if the transformation rul
for the fields also receive higher-derivative corrections. T
properties of the action obtained related to the hidden s
metry will be studied in a separate forthcoming work.
4-2
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ONE-LOOP EFFECTIVE ACTION FORN54 SYM . . . PHYSICAL REVIEW D68, 065024 ~2003!
The paper is organized as follows. In the next section
recall the known properties ofN54 SYM theory in theN
51 andN52 formalism and discuss the background fie
quantization, including the choice of proper gauge fixi
conditions. In Sec. III we describe the calculations leading
an exact one-loopN51 superfield effective action for th
background~3!. Section IV is devoted to the representati
of this effective action in a manifestlyN52 form and a
discussion of the prescriptions necessary for obtaining su
form. In the Summary we formulate the final results a
discuss unsolved problems.

II. MINIMAL FORMULATION OF NÄ4 SYM THEORY IN
NÄ1,2 SUPERSPACES ANDNÄ1 SUPERSYMMETRIC

BACKGROUND FIELD METHOD

A formulation of N54 SYM theory possessing off-she
manifestlyN54 supersymmetry is unknown so far. Ther
fore the study of the concrete quantum aspects of this the
is usually based on its formulation either in terms of physi
component fields~see, e.g.,@34#!, or in terms ofN51 super-
space~see, e.g.,@29#!, or in terms ofN52 harmonic super-
space@25,26#. In the first case, all four supersymmetries a
hidden; in the second case, one of them is manifest and
other three are hidden; in the third case, two supersym
tries are manifest and the other two are hidden. It is wo
pointing out that in all cases at least some of the supers
metries are on shell. Taking into account that the presenc
manifest symmetries simplifies the process of calculation
quantum theory, it is reasonable to consider that at pre
just theN52 harmonic superspace formulation is the b
one for quantumN54 SYM theory. However, the formula
tion in terms ofN51 superspace has its own positive fe
tures, basically due to the relatively simple structure ofN
51 superspace and the large accumulated experienc
work with N51 supergraphs.

TheN54 superfield description of theN54 vector mul-
tiplet can be realized with the help of on-shellN54 super-
fieldsWAB, A51, . . . ,4@35# satisfying the reality conditions

WAB5
1

2
«ABCDWCD , WAB5W̄AB

and the on-shell constraints

D̄AȧWBC5
1

3
dA

[BD̄EȧWEC] , Da
(AWB)C50.

All physical fields of theN54 vector multiplet are con-
tained in the superfieldWAB. We point out also the attempt
to develop an unconstrained formulation in the harmonic
perspace approach@36#, and discuss the integral invariants
N54 SYM theory that can be constructed from the fie
strengthWAB, which are integrals over fewer than the max
mum number of odd coordinates but which are still ma
festly supersymmetric~see@21#!.
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A. NÄ4 SYM theory in NÄ1 superspace

The physical field content of the superfieldWAB can be
obtained by combining threeN51 chiral superfields and on
N51 vector multiplet superfield@29#. Then the six real sca
lars, which are the lowest components of the superfieldWAB,
are represented by the three complex scalar componen
the chiralN51 superfieldsF i . The four Weyl fermions from
WAB are divided into three plus one. Three of them are c
sidered as the spinor components ofF i and the fourth fer-
mion is treated as a gaugino and constitutes, together
the real vector, theN51 vector multiplet superfieldV. In
such a description, theSU(3)^ U(1) subgroup of the
SU(4) R-symmetry group is manifest, and the represen
tions of SU(4) are decomposed according to6→313̄, 4
→311 so that the chiral superfieldsF i transform in the3 of
SU(3), theantichiral F̄ i transform in the3̄, and the vector
multiplet superfield is a singlet underSU(3).

The action of theN54 SYM model is formulated in
terms ofN51 superspace as follows:

S5
1

g2
trH E d4xd2uW21E d4xd4uF̄ ie

VF ie2V

1
1

3!E d4xd2u ic i jkF i@F j ,Fk#

1
1

3!E d4xd2ū ic i jkF̄ i@F̄ j ,F̄k#J . ~4!

The notation and conventions correspond to those of R
@29#. All superfields here are taken in the adjoint represen
tion of the gauge group. BothN51 SYM and the chiral
superfield actions are superconformal invariants. In addit
to the manifestN51 supersymmetry andSU(3) symmetry
on the i , j ,k, . . . indices ofF and F̄, it has hidden global
supersymmetry given by the transformations

dWa52ea
i ¹̄2F̄ci1 i e i

ȧ¹aȧFc
i ,

dW̄ȧ52 ē ȧ i¹
2Fc

i 1 i ea i¹aȧF̄ci , ~5!

dFc
i 5ea iWa , dF̄ci5 ē i

ȧW̄ȧ .

The action~4! is also invariant under the transformations

dFc
i 5ci jk¹̄2~ x̄ jF̄ck!1 i @x jF̄c j ,Fc

i #,

dF̄ci5ci jk¹2~x jFc
k!1 i @ x̄ jFc

j ,F̄ci#. ~6!

Here the covariant spinor derivatives¹a ,¹ȧ ,¹2, and¹̄2 are
defined in Ref.@29# and x i are theN51 superfield param-
eters forming theSU(3) isospinor as well asF i . These pa-
rameters include the central charge transformation par
eters, supersymmetry transformation parameters, and inte
symmetry parameters ofSU(4)/SU(3). Thetransformations
~6! are given in terms of the background covariant sup
fields Fc5eV̄Fe2V̄, F̄c5e2VF̄eV @29#. Further, we use
4-3
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only these covariant chiral superfields and the subscriptc is
omitted. It is convenient to introduce the new notationF1

5F,F25Q,F35Q̃ and rewrite the two last terms in Eq.~4!
as follows:

i E d4xd2uQ@F,Q̃#1 i E d4xd2ūQ̄@F̄,Q̃̄#,

which is theN51 form of the hypermultiplet and the lowes
component of the chiralN52 field strength vector multiple
interaction for theN54 model.

If the gauge group is Abelian, we get a free model. In
non-Abelian case, the theory has a moduli space of va
parametrized by the vacuum expectation values~VEV’s! of
the six real scalars. The manifold of vacua is determined
the conditions of vanishing scalar potential (F flatness plus
D flatness! @37#. The solutions to the equations determini
the vacuum structure of the theory can be classified acc
ing to the phase of the gauge theory they give rise to. In
pure Coulomb phase, each scalar field can have its spe
nonvanishing VEV. As a result, the space of vacua isM
5R6r /Sr , whereSr is the Weyl group of permutations forr
elements and the unbroken gauge group isU(1)r . But when
several VEV’s coincide, some non-Abelian groupG
PSU(N) remains unbroken and some massless ga
bosons appear in the theory.

The fact that non-Abelian gauge theories are expecte
describe a stack of coincident D-branes makes the tas
writing an effective action much more complicated. A num
ber of non-Abelian extensions of the Abelian super Bo
Infeld theory were found@19,20#. However, there seems t
be no obvious way of selecting out a unique action. The
fore the best available way of looking at this problem
constructing the effective action is to proceed order by or
in the loop expansion.

B.NÄ4 SYM theory in NÄ2 harmonic superspace

From theN52 supersymmetry point of view, theN54
vector multiplet consists of anN52 vector multiplet and a
hypermultiplet. Therefore theN54 SYM action can be
treated as some specialN52 supersymmetric theory, the ac
tion of which is the action forN52 SYM theory plus the
action describing the hypermultipletqia in the adjoint repre-
sentation coupled to theN52 vector multiplet. Such a
theory is formulated inN52 harmonic superspace@25,26#.
The dynamic variables in this case are the real unconstra
analytic gauge superfieldV11 and the complex uncon
strained analytic superfieldq1. The harmonic gauge connec
tion V11 serves as the potential of theN52 SYM theory
and q1 describes the hypermultipet. The action of theN
54 SYM theory looks like

S@V11,q1,q̆1#5
1

2g2
trE d8zW 22

1

2g2
tr

3E dz24q1aD 11qa
1 . ~7!
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The corresponding equations of motion are

D11q1a1 ig@V11,q1a#50, ~8!

D 1aD a
1W5@q1a,qa

1#.

Here a51,2 is the index of the rigidSU(2) symmetry,qa
1

5(q1,q̆1), q1a5«abqb
15(q̆1,2q1), W is the strength of

theN52 analytic gauge superfieldV11 connection in thel
frame @25,26#, g is a coupling constant, d8z

5d4xd2u1d2u2du, dz245d4xd2u1d2ū1du, anddu is the
measure of integration over the harmonic variablesu6 i . The
derivativesDa(ȧ)

1 do not need a connection in the fram
whereG analyticity @25,26# is manifest. All other notation is
given in Ref. @26#. Equations~8! present theN54 SYM
field equations of motion written in terms ofN52 super-
fields. The off-shell action~7! allows us to develop the mani
fest N52 supersymmetric quantization. Moreover, this a
tion is invariant under hidden extraN52 supersymmetry
transformations@26# which mix upW,W̄ with qa

1 . For our
purpose, it is sufficient to point out that in the Abelian ca
the corresponding transformations of hiddenN52 super-
symmetry are defined only on shell and have the form

dW5
1

2
«̄ ȧaD̄ ȧ

2
qa

1 , dW̄5
1

2
«aaDa

2qa
1, ~9!

dqa
15

1

4
~«a

aDa
1W1 «̄a

ȧD̄ ȧ
1W̄!,

dqa
25

1

4
~«a

aDa
2W1 «̄a

ȧD̄ ȧ
2W̄!.

As a result, the model under consideration isN54 super-
symmetric on shell.

The vacuum structure of the model~7! in the Abelian case
is defined in terms of solutions to the following equations

~D 1!2W5~D̄1!2W̄50, D11q1a50, ~10!

which are simple consequences of Eqs.~8! in the Abelian
case. Equations~10! for physical components of theN54
vector multiplet determined by the expansion

q1~z,u!5 f i~x!ui
11u1aca~x!1 ū ȧ

1
k̄ ȧ~x!

12iu1]” ū1 f i~x!ui
2 , ~11!

W5f~x!1u2ala
1~x!1u (1au2b)Fab~x!

look like

]”c5]” k̄5h f i5hf5]”l i5]mFmn50. ~12!

The simplest solution to these equations of motion form
set of constant background fields

f i5const, c5const, k̄5const, ~13!
4-4
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f5const, Fmn5const,

which transformlinearly through each other under the hid
denN52 supersymmetry transformations~9!:

df5
1

2
«̄ ȧak̄ ȧa , df̄5

1

2
«aacaa ,

dcaa5
1

2
«a

bFab , dk̄ȧa5
1

2
«̄a

ḃF ȧḃ ,

d f a
i 5

1

4
«a

ala
i 1

1

4
«̄aȧl̄ i ȧ, dla

i 50, dFab50. ~14!

The solution~13! is the simplest vacuum configuration ca
rying out a representation ofN54 supersymmetry. We
would calculate theN54 supersymmetric low-energy effec
tive action inN54 SYM theory from this solution, if we had
known how to do that.

It is instructive to compare theN54 supersymmetric
backgrounds~13! and the background~3!. The last back-
ground contains the componentsf andF of theN52 vector
multiplet when the componentsk̄ andc of the hypermultip-
let are absent. As a result, the background~3! is not form
invariant under the hiddenN52 supersymmetry transforma
tions ~14! and therefore this background is not a represen
tion of N54 supersymmetry. However, the background~3!
is a representation of manifestlyN52 supersymmetry.
Therefore we can state that the effective action found on
background~3! within the N51 background field method
will be manifestlyN52 supersymmetric and gauge invaria
but its properties under hiddenN52 supersymmetry should
be studied separately. To construct the deformed class
on-shell transformation as well as the completeN54 super-
symmetric effective action that is invariant under this tra
formation, we can follow the approach developed in@24#.

C.NÄ1 background field quantization

For computation of the effective action we use theN51
superfield background field method~see, e.g.,@29,30#! in
combination withN51 superfield heat kernel technique
@30#. These methods for constructing the effective action
gauge field theories allow us to preserve a classical ga
invariance in the quantum theory and sum, in principle,
infinite set of Feynman diagrams to a single gauge invar
functional depending on the background fields. As
pointed out, the theory under consideration can be form
lated either in terms of component fields, or in terms ofN
51 superfields, or in terms ofN52 harmonic superfields
The evaluation of an effective action in component formu
tion is extremely complicated even within the backgrou
field method because of a very large number of interac
fields and the absence of manifest supersymmetry. The e
tive action can be studied withinN52 harmonic superspace
The correspondingN52 background field method was pro
posed in Refs.@28#. The aspects of heat kernel techniqu
were considered in Refs.@38#. However, these techniques a
undeveloped yet in many details and need to be extende
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our goals. We take into account the problem of matrix ope
tors mixing theN52 vector multiplet and hypermultiple
sectors. Of course, the effective action can be studied u
harmonic supergraphs but we expect here to meet with
standard problem of how to organize the calculations in
der to go beyond the leading low-energy approximation~see
the calculations in leading low-energy approximation in, e
Refs. @11,18,27,28,38#. Therefore, we work within a formu-
lation in terms ofN51 superfields and use our experience
work with theories formulated in N51 superspace
@22,30,31#.

The background field method is based on splitting
fields into classical and quantum and imposing the ga
fixing conditions on quantum fields. Of course, as is oft
the case, the gauge fixing conditions can break some cla
cal symmetries.~for detail see e.g. Refs.@39,40#!.

We define one-loop effective actionG depending on the
background superfields~3! by a path integral over quantum
fields in the standard form

eiG5E DvDwDcDc8Dc̄Dc̄8ei (S(2)1SFP), ~15!

where S(2) is a quadratic in the quantum field part of th
classical action, including a gauge fixing condition, andSFP
is the corresponding ghost action. A formal calculation of t
above path integral leads to a functional determinant rep
sentation of the effective action@see Eq.~23!#. The main
technical tool we use in this paper for theN51 superfield
calculations is the background covariant gauge fixing mu
parametric condition

SGF52
1

ag2E d8z~FAF̄A1bAb̄A!; ~16!

hereb,b̄ are the Nielsen-Kallosh ghosts. We choose con
nient gauge fixing conditions for the quantum superfieldsv
andw in the form

F̄A5¹2vA1lF 1

h1
¹2w i ,F̄ i GA

,

FA5¹̄2vA2l̄F 1

h2
¹̄2w̄ i ,F i GA

, ~17!

where a,l,l̄ are arbitrary numerical parameters andh1 ,
h2 are the standard notation for Laplace-like operators
theN51 superspace. It is evident that the gauge fixing fu
tions ~17! are covariant under background gauge transform
tions. These gauge fixing functions~17! can be considered a
a superfield form of the so-calledRj gauges~see Refs.
@41,42#! which are usually used in spontaneously brok
gauge theories. Since an Abelian background is a solutio
classical equations of motion, we will not worry about th
choice of gauge fixing parameters. Therefore it is conven
to take the gauge fixing which we call the Fermi-DeW
gauge:a5l51. Such a choice of the gauge paramet
4-5
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allows us to avoid the known problem@43# in the functional
determinant method for calculating the mixed contributi
which contains vector-chiral superfield propagators circu
ing along the loop.

We want to note once again that in gauge theories no
rigid symmetries of the classical action can be maintain
manifestly in the quantum theory, even in the absence
anomalies. The issue here is that quantization requires g
fixing and the latter, as can be shown, breaks some sym
tries ~breaking the classic conformal symmetry is discuss
e.g., in Ref.@40#!. This is the known general situation~see,
e.g.,@39#!. In our case, the gauge fixing~16! obviously also
breaks rigid classicN54 symmetry~5!, ~6! since it is cova-
riant only under N51 supersymmetry transformation
Therefore the effective action obtained should be invari
under the hidden transformations~5! deformed in some way
This deformation can, in principle, be computed by cons
ering the Ward identities at each loop order but this n
trivial problem is beyond the purposes of this work.

After splitting each field into the background and qua
tum parts~i.e., eVtot5eVegveV̄, F→F1w, F̄→F̄1w̄, Q

→Q1q,Q̃→Q̃1q̃, Q̄→Q̄1q̄,Q̃̄→ Q̃̄1 q̄̃), we can rewrite
the quadratic part of the sum of the classical action~4! and
gauge fixing action~16! in the form

S(2)52
1

2 (
I ,J

E d4xd4u@F IJHIJF †IJ1 v̄ IJ~OV2M ! IJv IJ#,

~18!
06502
t-

ll
d
of
ge
e-

d,

t

-
-

-

whereF5(w̄,w,q̄,q,q̄̃,q̃), F †5(w,w̄,q,q̄,q̃,q̄̃)T,

MIJ5~F̄ IJF IJ1Q̄IJQIJ1 Q̃̄IJQ̃IJ!, ~19!

OV5h2 iWIJ
a ¹a2 iW̄IJ

ȧ ¹̄ȧ ,

and WIJ
a 5WI

a2WJ
a , W̄IJ

ȧ 5W̄I
ȧ2W̄J

ȧ are the background
field strengths belonging to the Cartan subalgebra andF IJ

5F I2FJ . The Weyl basis in the space of Hermitian trac
less matrices from the algebrasu(N) was used in order to
obtain Eq.~18!. We consider the case of the gauge gro
SU(N) broken down to the maximal torusU(1)N21. The
constraintI ,J arises since the components of the quant
superfields that lie in the Cartan subalgebra do not inte
with the background field and therefore they are complet
decoupled. For details of using the Weyl basis to calcul
the effective action, see, e.g.,@11#.

The operatorH is a matrix depending on covariant deriv
tives and background fields. The explicit form of this matr
looks like
¨

G1~f!¹2¹̄2 0 2f f̄
¹2¹̄2

h1

i v̄¹2
2f f

¹2¹̄2

h1

2 i f̄ ¹2

0 G2~f!¹̄2¹2 iv¹̄2 f̄ f
¹̄2¹2

h2

2 i f ¹̄2
2f̄v

¹̄2¹2

h2

2 f f̄
¹2¹̄2

h1

i v̄¹2 G1~ f !¹2¹̄2 0 f v̄
¹2¹̄2

h1

i f̄¹2

2 iv¹̄2
2 f̄ f

¹̄2¹2

h2

0 G2~ f !¹̄2¹2 if¹̄2
2 f̄ v

¹̄2¹2

h2

2vf̄
¹2¹̄2

h1

f̄ ¹2
2v f̄

¹2¹̄2

h1

2 i f̄¹2 G1~v !¹2¹̄2 0

i f ¹̄2
2 v̄f

¹̄2¹2

h2

2 if¹̄2
2 v̄ f

¹̄2¹2

h2

0 G2~v !¹̄2¹2

©
, ~20!
f
fol-
where the following notation is used

G6~a!512
~aā!

h6
, f5F IJ , f̄5F̄ IJ ,

f 5QIJ , f̄ 5Q̄IJ , v5Q̃IJ , v̄5 Q̃̄IJ
andh6 means¹2¹̄2 and¹̄2¹2, respectively. In the space o
chiral and antichiral superfields these operators act as
lows:

¹2¹̄25h15h2 iW̄ȧ¹̄ȧ2
i

2
~¹̄W̄!,
4-6
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¹̄2¹25h25h2 iWa¹a2
i

2
~¹W!.

It should be noted that, generally speaking, the second va
tion of the classical action leads to a 737 matrix operator.
But the chosen gauge fixing condition~17! allows partial
diagonalization to a 131% 636 block matrix and separatio
of the kinetic operator for the vector fields. This gauge fixi
condition eliminates the interaction vertices between qu
tum matter fields and quantum vector fields but genera
new interaction vertexes between quantum chiral fields
ghosts.

Let us consider now the structure of a Faddeev-Po
en
a

-
u
tiv

na

na
n

ld
-

l-

06502
ia-

-
s
d

v

ghost contribution to the one-loop effective action. The a
tion of the Faddeev-Popov ghostsSFP for the gauge fixing
functions~17! has the form

SFP5trE d8zH ~ c̄8c2c8c̄!2S c8FF i ,
l

h1
@ c̄,F̄ i #G

1 c̄8F l̄

h2
@c,F i #,F̄ i G D J . ~21!

It leads to the following contribution of the ghosts to th
effective action:
ln@Det~HFP!#52(
I ,J

Tr lnS 0 S 12
M

h1
D¹2¹̄2

2S 12
M

h2
D ¹̄2¹2 0

D
IJ

, ~22!
d to

f

ck

-

whereM was defined in Eq.~19!.
The final result of the integration in the path integral~15!

over all quantum superfields is given by a formal repres
tation for the one-loop effective action in terms of function
determinants

eiG5)
I ,J

Det21~OV2M !Det21~H!Det2~HFP!. ~23!

Since the strengthsF andWa belong to the Cartan subalge
bra, only half of the roots should be taken into account d
ing the integration over the quantum fields and the effec
action looks like

G5(
I ,J

G IJ .

Our next purpose is a computation of the above functio
determinants.

III. EVALUATIONS OF SUPERFIELD FUNCTIONAL
TRACES AND ONE-LOOP EFFECTIVE ACTION

In this section we present the basic steps of functio
trace calculations for the operators, which make backgrou
dependent contributions to the effective action~23!. It is seen
from Eq. ~20! that in the absence of background superfie
Q,Q̃ the matrix operatorH includes only the background
dependent inverse propagatorsG1 ,G2 and vertices for the
background fieldF interacting with the quantum hypermu
-
l

r-
e

l

l
d-

s

tiplet. Such a situation has been studied in detail~see, e.g.,
Refs. @31,32,43,44#!. It should be noted that the form ofH
containing dressed inverse propagators is directly relate
the Rj gauge fixing conditions~17!.

On the first stage we divide the matrixH into a sum of
two matricesH5Hh1H¹ where the matrix (Hh) contains
all blocks with ¹2¹̄2,¹̄2¹2 and the matrixH¹ contains
blocks with¹̄2 and¹2 only. Let us present the logarithm o
the matrix ln(H) as follows:

ln~H!5 ln~Hh!1 ln~12Hh
21H¹!.

Using the known Frobenius formula for inversion of a blo
type matrix,

H5S A B

C DD ,

H215S A211A21BE21CA21 2A21BE21

2E21CA21 E21, D ,

whereE5D2CA21B, we get by direct calculation the in
verse matrix forHh :
4-7



Hh
215

¨

g1~f!
¹2¹̄2

h1
2

0
f f̄

h1M

¹2¹̄2

h1
2

0
f v̄

h1M

¹2¹̄2

h1
2

0

0 g2~f!
¹̄2¹2

h2
2

0
f̄ f

h2M

¹̄2¹2

h2
2

0
f̄v

h2M

¹̄2¹2

h2
2

f f̄

h1M

¹2¹̄2

h1
2

0 g1~ f !
¹2¹̄2

h1
2

0
f v̄

h1M

¹2¹̄2

h1
2

0

0
f̄ f

h2M

¹̄2¹2

h2
2

0 g2~ f !
¹̄2¹2

h2
2

0
f̄ v

h2M

¹̄2¹2

h2
2

vf̄

h1M

¹2¹̄2

h1
2

0
v f̄

h1M

¹2¹̄2

h1
2

0 g1~v !
¹2¹̄2

h1
2

0

v̄f ¹̄2¹2 v̄ f ¹̄2¹2 ¹̄2¹2

©
. ~24!

duct

BANIN, BUCHBINDER, AND PLETNEV PHYSICAL REVIEW D68, 065024 ~2003!
0
h2M h2

2
0

h2M h2
2

0 g2~v !
h2

2

Here we have introduced the notation

g6~f!511
ff̄

h6M
, h6M5h61M .

One can note that the combinationM @Eq. ~19!# appeared naturally during the inversion procedure. Then we find the pro
Hh

21H¹ in a remarkably simple form:

Hh
21H¹5

¨

0 0 0 i v̄
¹2

h2

0 2 i f̄
¹2

h2

0 0 iv
¹̄2

h1

0 2 i f
¹̄2

h1

0

0 2 i v̄
¹2

h2

0 0 0 i f̄
¹2

h2

2 iv
¹̄2

h1

0 0 0 if
¹̄2

h1

0

0 i f̄
¹2

h2

0 2 i f̄
¹2

h2

0 0

i f
¹̄2

h1

0 2 if
¹̄2

h1

0 0 0

©
. ~25!
t u

th

-
of

rix

e

The next stage consists in matrix trace calculations. Le
expand Tr@ ln(12Hh

21H¹)# in a series in powers ofHh
21H¹ .

The nonzero matrix traces will have only even powers of
series, which are grouped into

Tr636@ ln~12Hh
21H¹!#5TrF lnS 12

M

h1
D ¹2¹̄2

h1
G

1TrF lnS 12
M

h2
D ¹̄2¹2

h2
G ,

~26!
06502
s

e

whereM was introduced in Eq.~19! and Tr means the func
tional trace. Also, we have to consider the matrix trace
ln(Hh). According to the above strategy, we write the mat
as a diagonal matrix plus the rest, i.e.,Hh5H01D:

Tr ln~Hh!5Tr ln~H0!1Tr ln~11Hh
21D!, ~27!

where the matrixH0 contains only¹2¹̄2 and ¹̄2¹2 at zero
background fieldsF,Q,Q̃ and therefore can be omitted. Th
matrix elements ofHh

21D are blocks with chiral¹2¹̄2/h1

and antichiral¹̄2¹2/h2 projectors. After permutation of the
4-8
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lines and columns, the trace logarithm of the matrix
1H0

21D can be reorganized as follows:

Tr636ln~11H0
21D!

5Tr333lnS 12S ~ff̄! ~f f̄ ! ~f v̄ !

~ f f̄ ! ~ f f̄ ! ~ f v̄ !

~vf̄ ! ~v f̄ ! ~vv̄ !

D ¹2¹̄2

h1
2 D

1S ¹2¹̄2

h1
2

→ ¹̄2¹2

h2
2 D . ~28!

A direct calculation of the matrix traces for the first terms
the Taylor series allows us to write the result as

Tr636ln~11H0
21D!5TrF lnS 12

M

h1
D ¹2¹̄2

h1
G

1TrF lnS 12
M

h2
D ¹̄2¹2

h2
G , ~29!

which together with Eq.~26! gives

ln@Det21~H!#522 TrF lnS 12
M

h1
D ¹2¹̄2

h1
G

22 TrF lnS 12
M

h2
D ¹̄2¹2

h2
G . ~30!

The contribution of the Faddeev-Popov ghosts is de
mined by Eq.~22!. Extracting and neglecting the expressi

lnS S 0 ¹2¹̄2

2¹̄2¹2 0
D D ,

we obtain the ghost contribution to the effective action in
form

ln@Det2~HFP!#52 TrF lnS 12
M

h2
D ¹̄2¹2

h2
G

12 TrF lnS 12
M

h1
D ¹2¹̄2

h1
G , ~31!

which is exactly Eq.~30! with the opposite sign. Therefor
the second and third functional determinants in Eq.~23! can-
cel each other. This surprising cancellation between the c
tributions of ghost and chiral fields to the one-loop effect
action in N54 SYM theory was first noted in@28# in the
harmonic superspace approach. It should be espec
pointed out that this result is correct only on a constant ch
superfield background.

Finally, due to the cancellation between Eqs.~31! and
~30!, the whole one-loop contribution to the effective acti
~23! has an extremely simple form and is determined only
the vector loop contribution
06502
r-

e

n-

lly
l

y

G5 i(
I ,J

Tr ln~OV2M ! IJ , ~32!

and all background superfield dependence is encoded inM.
For the operator in the above relation, the power expans
over the Grassmann derivatives of the gauge field strengt
the functional trace has already been calculated in differ
ways for models with one chiral background superfield~see
@31–33# and references therein!. As a result, we transformed
a rather complicated problem with a hypermultiplet bac
ground to a known problem. The feature of the theory w
the hypermultiplet background is its dependence on the c

bination~19! M5(F̄F1Q̄Q1 Q̃̄Q̃), which is invariant un-
der theR-symmetry group ofN54 supersymmetry. That al
lows us to apply the results obtained forN51 models to the
case under consideration making the corresponding rede
tion of the quantityM.

The functional trace~32! can be written as a power ex
pansion of dimensionless combinationsC,C̄ of vector and
hypermultiplet superfields, where

C̄25
1

M2
¹2W2, C25

1

M2
¹̄2W̄2. ~33!

In the constant field approximation this expansion is summ
to the following expression for the whole one-loop effecti
action ~see details in@33#!:

G5
1

8p2E d8zE
0

`

dtte2t
W2W̄2

M2
v~ tC,tC̄!, ~34!

v~ tC,tC̄!5
cosh~ tC!21

t2C2

cosh~ tC̄!21

t2C̄2

3
t2~C22C̄2!

cosh~ tC!2cosh~ tC̄!
.

Equation~34! is our central result. We see that the only d
ference between theN54 SYM effective actions with and
without the hypermultiplet background is stipulated by t
structure of the matrixM defined by Eq.~19!. In component
form, the closed relation for the one-loop effective acti
~34! has a natural Schwinger-type expansion overF2/M2

powers. The expansion does not include theF6 term that is a
property ofN54 SYM theory@33,34#. The functionv de-
fined in Eq.~34! ~see@33#! has the following expansion:

v~x,y!5
1

2
1

x2y2

4•5!
2

5

12•7!
~x4y21x2y4!

1
1

34500
~x2y61x6y2!1

1

86400
x4y41•••.

~35!

Equation~35! allows us to expand the effective action~34! in
series in powers ofC2,C̄2 as follows:
4-9
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G5G (0)1G (2)1G (3)1•••, ~36!

where the termG (n) contains the termscm,lC
2mC̄2l with m

1 l 5n. In the bosonic sector, this expansion correspond
an expansion in powers of the strengthF, namely, G (n)

;F412n/M212n, M5(FF̄1 f ia f ia), where F,F̄, and f ia

are physical bosonic fields of theN52 vector multiplet and
hypermultiplets.

IV. TRANSFORMATION OF THE NÄ1
SUPERSYMMETRIC EFFECTIVE ACTION TO A
MANIFESTLY NÄ2 SUPERSYMMETRIC FORM

The effective action~34! and its expansion~36! are given
in terms ofN51 superfields. Our next purpose is to find
manifestlyN52 form of each term in the expansion~36!. To
do that, we extract fromM the N51 form of X52(Q̄Q

1 Q̃̄Q̃)/F̄F, @which was defined in Eq.~2! in terms ofN
52 superfields#, writing M5FF̄(12X), and then expand
the denominator (1/M )k from Eq.~34! in a power series inX.
This expansion leads to the following form for a gene
term of the series:

E d8z
W2W̄2

~FF̄!2(m1 l 1k11)
~¹2W2!m~¹̄2W̄2! l

3@2~Q̄Q1 Q̃̄Q̃!#k. ~37!

Further, using*d12z5*d8z(¹2)2(¹̄2)2 and definitions ofN
51 projections for theN52 on-shell vector multiplet
Wu5F,¹2aWu52Wa ,¹2

2Wu5¹̄2F̄50, we can recon-
struct theN52 form of the above generic term. It is wort
pointing out that the reconstruction procedure has some
shell ambiguity~see@45#! even for vanishing hypermultiple
fields, but this ambiguity is inessential on shell.

The derivative expansion~34! of the effective action con-
tains the known nonholomorphic potential as a first term@see
Eq. ~42!#. It can be unambiguously rewritten in anN52
form, following from N51 calculations on the backgroun
~3!. This unique term is automaticallyN54 supersymmetric
since it does not contain the derivatives of the hypermultip
and vector strengths. Recovering the other terms in the
rivative expansion of the effective action is not so evide
and needs special prescriptions.

The calculation of the above effective action was done
the constant background~3!, but for recovering theN52
form such a background is insufficient. We must take in
account the derivatives of theN51 hypermultiplet fields.
The procedure for restoring theN52 supersymmetric ex
pressions, based on the correspondingN51 reduction, al-
ways implies forming theN52 integral measure*d12z

5*d8z(¹2)2(¹̄2)2. Therefore, to get an integral overN52
superspace from an integral overN51 superspace, we mus
form the full derivatives (¹2)2(¹̄2)2 in the initial N51 su-
perspace integrand. In order to obtain such total derivat
in the integrand~37!, we have to add all necessary¹a jq

ia

derivative-containing terms with specified numerical coe
06502
to

ff-

t
e-
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cients to the initialN51 superspace integrand by han
since they did not appear in the process of computation
we calculate the effective action in terms ofN51 superfields
not on the special background~3! but on the proper back
ground~13!, these terms, which are absent in Eq.~37!, will
be presented automatically.2 Then the derivatives¹2

2¹̄2
2

could be formed in theN51 superspace integrand and, as
result, we would obtain the integral overN52 superspace.

Further, we use evident enough assumptions about
properties of the effective action. The effective action
manifestlyN52 supersymmetric and, hence, each term in
expansion in derivatives can be written as an integral o
N52 superspace of a function depending onN52 super-
field strengths, hypermultiplet superfields, and their spi
derivatives. It allows us to argue as follows. Using integ
tion by parts in the integrals overN52 superspace for the
effective action derivative expansion terms, we transfer
derivatives from hypermultiplets to theN52 superfield
strengths and then one makes the reduction toN51 form.
As a result, we see that all terms in the derivative expans
of N52 functionals can be written in a form similar toG (n)
defined in Eq.~36!, i.e., without derivatives of the hypermu
tiplet superfields. It means that we can act in reverse or
beginning with the givenN51 form and restoring the cor
respondingN52 form. Also, we take into account that th
derivative expansion at vanishing hypermultiplet superfie
is presented in terms ofN52 superconformal scalars@33#:

C̄25
1

W̄2
¹4ln W, C25

1

W 2
¹̄4ln W̄, ~38!

and will search for hypermultiplet dependence compati
with this property.

Further, we demonstrate how the use of the above p
scription allows us to obtain the functiona
G (0) ,G (2) ,G (3) , . . . @Eq. ~36!# in terms ofN52 superfields.
Let us begin with the functional G (0)

5@1/(4p)2#*d8zW2W̄2/M2 ~which is ;F4) and rewrite it
in the form Eq.~37! using 1/(12X)25(k50

` (k11)Xk:

1

~4p!2E d8zS W2W̄2

F2F̄2
1 (

k51

`

~k11!

3
W2W̄2

F21kF̄21k
•@2~Q̄Q1 Q̃̄Q̃!#kD . ~39!

2To get such an effective action inN51 formalism we have to
carry out the calculations keeping the spinor derivatives of
background chiral superfields. The only example of these calc
tions was given within the Wess-Zumino model for finding the
fective potential of auxiliary fields in Refs.@31,44#. In particular,
such a potential for chiralN51 superfields of theN52 vector
multiplet arises from the self-dual requirement for theN54 SYM
effective action~see Ref.@46#!.
4-10
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It is natural to identify the quadratic combination (Q̄Q

1 Q̃̄Q̃) of N51 superfields with theN51 projection of the
quadratic combination of Fayet-Sohnius hypermultipl
qiaqia . Such an identification can be checked, e.g., by co
parison of the component structures. Then we apply the
lations

¹2
2lnWu52S WaWa

F2 D 1•••,

¹2
2 1

W m
u5

m~m11!

Fm

WaWa

F2
1•••,

~40!

where the ellipses mean the terms involving the derivati
of F which can be omitted in our on-shell analysis. Thus,
N51 integrand~39! can be written viaN52 vector multip-
let superfields and hypermultiplets as

¹2
2lnW¹̄2

2ln W̄1 (
k51

`
1

k2~k11!
¹2

2 1

W k
¹̄2

2

3
1

W̄k
•~2qiaqia!1•••, ~41!

where the ellipses mean all terms involving hypermultip
derivatives of the form

¹2
a 1

W k
¹2a~2qiaqia!¹̄2

2 1

W̄k
,

1

W k
¹2

2~2qiaqia!¹̄2
2 1

W̄k
,

which, according to the above prescriptions, should be ad
in order to obtain the fullN52 integration measure¹2

2¹̄2
2 in

the integral overN51 superspace~40!. As a result, the
above prescriptions lead to the expression

G (0)5
1

~4p!2E d12zS ln W ln W̄1 (
k51

`
1

k2~k11!
XkD ,

~42!

whereX5(2qiaqia /WW̄) was defined in Eq.~2!. The sec-
ond term in Eq.~42! can be transformed to the form~2! using
the power series for the Euler dilogarithm function and
relation 1/k2(k11)51/k221/k11/(k11). We see that the
expression~42! is just the effective Lagrangian~2! found in
@24,27#:

G (0)5
1

~4p!2E d12zH ln W ln W̄1~X21!
ln~12X!

X

1@Li2~X!21#J . ~43!

Thus, our N51 superfield approach automatically repr
duces the complete low-energy effective action~2!. All other
terms in the expansion of the effective action~34! define the
subleading higher derivative corrections to the low-ene
06502
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s
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effective action~2!. Further, we present a few of these co
rections in manifestlyN52 supersymmetric form.

TheN52 form of the next term (;F8) in the series~36!
is reconstructed using Eq.~40! and the expansion of (1/M )6

in X. Direct analysis, analogous to that in the previous ca
leads to the following expression forG (2) in Eq. ~36!:

G (2)5
1

2~4p!25!
E d12zC2C̄2S 1

~12X!2
1

4

~12X!

1
6X24

X3
ln~12X!14

X21

X2 D . ~44!

The X-independent part of this term was given in@33#. Ap-
plying the same procedure to the third term (;F10) in Eq.
~36!, one obtains

G (3)52
5

6~4p!2E d12z~C4C̄21C2C̄4!

3S 2
1

5!
1

1

7!

2X

~12X!4
~562116X184X2221X3!D .

~45!

Thus, we have found the hypermultiplet-dependent ter
complementary toG (0) , G (2) , andG (3) for the effective ac-
tion obtained in@33# in the N52 vector multiplet sector.
Clearly, every term in the expansion of the effective acti
~36! can be written inN52 supersymmetric form. For ex
ample, theX-dependent part of the fourth term (;F12) in
Eq. ~36! contains two parts. The first one is

G (41)5
1

~4p!2

1

17250E d12z~C2C̄61C6C̄2!
12X

~12X!6

3~45021545X12284X221779X31720X4

2120X5! ~46!

and the second part is given as follows:

G (42)5
1

5•6!

1

~4p!2E d12zC4C̄4S 12~5X24!

X5
ln~12X!

2
1

5X4~12X!6
~24021620X14610X227120X3

16363X424878X516135X627560X715670X8

22268X91378X10!D . ~47!

Since in the on-shell description the hypermultiplet sup
fields qia and superfield strengthsW,W̄ are independent o
the harmonic variablesui

6 , one can insert a harmonic inte
gral *du into the expressions forG (0) ,G (2) ,G (3) , . . . and
write the variablesX asX5(22q1aqa

2/WW̄). This allows
4-11
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study of the variation of the effective action under the hidd
supersymmetry transformations~9! using the harmonic su
perspace formalism.

Thus, we see that thisN52 reconstruction procedure be
ing applied to the effective action~34!, which is written in
terms ofN51 superfields, can actually be realized for a
terms in the expansion~36! by completing these terms wit
the corresponding complementary terms containing the
permultiplet superfields.

V. SUMMARY

We have studied the one-loop effective action inN54
SYM theory, depending onN52 vector multiplet and hyper
multiplet fields. The theory under consideration was form
lated inN51 superspace and quantized in the framework
the background field method with the use of special ga
fixing conditions preserving manifestN51 supersymmetry.
The effective action is given by superfield functional det
minants. The concrete calculations of these determinants
done on a specificN51 superfield background correspon
ing to constant Abelian strengthFmn and constant hypermul
tiplet fields. We have proved that the effective action depe
ing on all fields of theN54 vector multiplet is restored on
the basis of calculations in only theN52 vector multiplet
sector by a special change of the functional arguments@see
Eqs.~32! and ~34!#.

We have examined the possibility of presenting the eff
tive action obtained in a manifestlyN52 supersymmetric
form. Analyzing the effective action as an expansion
spinor covariant derivatives, we have shown that the term
this expansion can be expressed via integrals overN52 su-
perspace of the functions depending onN52 strengths, their
spinor derivatives, and hypermultiplet superfields. As one
the results, we rederived the completeN54 supersymmetric
low-energy effective action, which was discovered in@24#.
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All other terms in the derivative expansion of the effecti
action describe the next-to-leading corrections.

As we have already pointed out, the quantization pro
dure is noninvariant under the hiddenN52 supersymmetry
forming together with manifestlyN52 supersymmetry a
complete on-shellN54 supersymmetry of the classical a
tion ~7!. Therefore, it is natural to expect that the highe
derivative corrections to the effective action can also be n
invariant. Moreover, the rigid classical symmet
transformations in quantum field theory can be deformed
quantum loop corrections. Hence, in the case under con
eration one can expect that the classical hiddenN52 super-
symmetry transformations should get some quantum cor
tions and the effective action will be invariant und
deformed hidden supersymmetry transformations. In for
coming work we are going to study the structure of quant
deformations of the classical hiddenN52 supersymmetry.
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