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Fuzzy Ginsparg-Wilson algebra: A solution of the fermion doubling problem
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The Ginsparg-Wilson algebra is the algebra underlying the Ginsparg-Wilson solution of the fermion dou-
bling problem in lattice gauge theory. The Dirac operator of the fuzzy sphere is not afflicted with this problem.
Previously, we have indicated that there is a Ginsparg-Wilson operator underlying it also in the absence of
gauge fields and instantons. Here we develop this observation systematically and establish a Dirac operator
theory for the fuzzy sphere with or without gauge fields, and always with the Ginsparg-Wilson algebra. There
is no fermion doubling in this theory. The association of the Ginsparg-Wilson algebra with the fuzzy sphere is
surprising as the latter is not designed with this algebra in mind. The theory reproduces the integratedU(1)A

anomaly and index theory correctly.
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I. INTRODUCTION

A central task in the lattice approximation to quantu
field theories~QFT’s! is the treatment of chiral fermions
General theorems due to Nielsen and Ninomiya and oth
@1# reveal a serious obstruction to their rigorous formulat
on a lattice. As the standard model involves chiral fermio
there is thus a fundamental difficulty with lattice approxim
tions.

Years ago, Ginsparg and Wilson@2# proposed an approxi
mate manner to overcome this difficulty. In the original fo
mulation, it is based on a Dirac and chirality operator sa
fying particular algebraic relations. In the continuum lim
anticommuting Dirac and chirality operators can be obtain
therefrom. The Ginsparg-Wilson method is an effective t
in the theoretical analysis of lattice theories and reprodu
important topological effects such as chiral anomalies in
approximate manner.

Fuzzy physics@3,4# concerns an approach to regulatin
QFT’s which can be an alternative to lattice methods. It giv
finite-dimensional matrix approximations to QFT’s and i
corporates ideas of noncommutative geometry@5#. It has a
well-articulated theory of a Dirac operator for the fuz
sphere which approximates the continuum Dirac opera
very well and also reproduces the correct index theory
chiral anomaly. Subtle topological features such as instan
and complex structures can be formulated@6#. Chiral fermi-
ons too can be described with no fermion doubling@7#. For
fuzzy CPN models as well, the Dirac operator to the exte
investigated@8# seems an excellent approximation to t
continuum Dirac operator and capable of reproducing s
nificant topological features of the continuum.

In a previous paper@7#, we reported our joint work on the
Dirac operator of@9# for the fuzzy sphere. Here we establis
that the ‘‘free’’ fuzzy Dirac operator in the absence of insta
tons satisfies the defining relations of the Ginsparg-Wils
algebraic system. This result has a strong element of surp
as fuzzy physics is not consciously designed to satisfy s
relations.
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In this paper we review our previous work and extend
to cover gauge fields and instanton sectors. This exten
has a new formulation of the Dirac operator on the fuz
sphere and is based on an appropriate realization of
Ginsparg-Wilson algebra. This Dirac operator has seve
positive features. Its spectrum in the absence of gauge
fluctuations is precisely that in the continuum below a su
able angular momentum cutoff. There is no correction wh
ever to the spectrum below the cutoff. There is no ferm
doubling, and chiral fermions can be effortlessly treated. T
U(1)A anomaly in the integrated form is reproduced exac
We have not looked at its local form, but its treatment
alternative approaches exists@10,11#.

For other work applying the Ginsparg-Wilson approach
the fuzzy sphere, see@12#.

While these are points in favor of our approach, it appe
that the Ginsparg-Wilson approach, in either the lattice
fuzzy physics context, is not easy to adapt to numeri
work. This is a serious difficulty and has to be overcome

II. A REVIEW OF THE GINSPARG-WILSON ALGEBRA

We follow @4,7# in this presentation.
In its generality, the Ginsparg-Wilson algebraA can be

defined as the unital * algebra overC generated by two
*-invariant involutionsG andG8:

A5^G,G8: G25G8251, G* 5G, G8* 5G8&,
~2.1!

* denoting the adjoint. The unity ofA has been indicated
by 1.

In any such algebra, we can define a Dirac operator

D85
1

a
G~G1G8!, ~2.2!

wherea is the lattice spacing. It satisfies

D8* 5G D8 G, @G,D8#15aD8 G D8. ~2.3!
©2003 The American Physical Society23-1
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A. P. BALACHANDRAN AND G. IMMIRZI PHYSICAL REVIEW D 68, 065023 ~2003!
Equations~2.2! and ~2.3! give the original formulation@2#.
But they are equivalent to Eq.~2.1!, since Eqs.~2.2! and
~2.3! imply that

G85G~aD8!2G ~2.4!

is a *-invariant involution@13,14#.
Each representation of Eq.~2.1! is a particular realization

of the Ginsparg-Wilson algebra. Representations of phys
interest are reducible.

In our work we choose

D5
1

a
~G1G8! ~2.5!

instead ofD8 as our Dirac operator, as it is self-adjoint an
has the desired continuum limit.

From G andG8, we can construct the following elemen
of A:

G05
1

2
@G,G8#1 , ~2.6!

G15
1

2
~G1G8!, ~2.7!

G25
1

2
~G2G8!, ~2.8!

G35
1

2i
@G,G8#. ~2.9!

Let us first look at the centerC(A) of A in terms of these
operators. It is generated byG0 which commutes withG and
G8 and hence with every element ofA. G i

2 , i 51,2,3, also
commute with every element ofA, but they are not indepen
dent ofG0. Rather,

G1
25

1

2
~11G0!, ~2.10!

G2
25

1

2
~12G0!, ~2.11!

→ G1
21G2

251 ~2.12!

G0
21G3

251. ~2.13!

Notice also that

@G i ,G j #150, i , j 51,2,3, iÞ j . ~2.14!

From now on byA we will mean a representation ofA.
The relations~2.10!–~2.13! contain spectral information

From Eq.~2.13! we see that

21<G0<1, ~2.15!
06502
al

where the inequality means that the eigenvalues ofG0 are
accordingly bounded. By Eq.~2.10!, this implies that the
eigenvalues ofG1 are similarly bounded.

We now discuss three cases associated with Eq.~2.15!.
Case 1.G051. Call the subspace whereG051 V11. On

V11 , G1
251 and G25G350 by Eqs.~2.10!–~2.13!. This is

the subspace of the top modes of the operatoruDu.
Case 2.G0521. Call the subspace whereG0521 V21.

On V21 , G2
251 andG15G350 by Eqs.~2.10!–~2.13!. This

is the subspace of zero modes of the Dirac operatorD.
Case 3.G0

2Þ1. Call the subspace whereG0
2Þ1 V. On this

subspace,G i
2Þ0 for i 51,2,3 by Eqs.~2.9!–~2.12!, and

therefore

sgnG i5
G i

uG i u
, uG i u5positive square root ofG i

2 ,

~2.16!

are well defined and by Eq.~2.14! generate a Clifford algebra
on V:

@sgnG i ,sgnG j #152d i j 1. ~2.17!

ConsiderG2. It anticommutes withG1 andD. Also,

Tr G25~TrV1TrV11
1TrV21

!G2 , ~2.18!

where the subscripts refer to the subspaces over which
trace is taken. These traces can be calculated:

TrVG25TrV~sgnG i !G2~sgnG i ! ~ i fixed,Þ2!

52TrVG2 by Eq. ~2.17!

50, ~2.19!

TrV11
G250, as G250 onV11 . ~2.20!

So

Tr G25TrV21
G25TrV21S 11G2

2
2

12G2

2 D5 index of G1 .

~2.21!

Following Fujikawa@14#, we can useG2 as the generator o
chiral transformations. It is not involutive onV% V11:

G2
2512

11G0

2
. ~2.22!

But this is not a problem for fuzzy physics. In the fuzz
model below, in the continuum limit,G0→21 on all states
with uDu< a fixed ‘‘energy’’ E0 independent ofa ~and is
21 on V21 whereD50). We can see this as follows.G1
5aD, so that if uDu<E0 , G1→0 asa→0. Hence by Eqs.
~2.10!–~2.12!, G0→21 andG2

2→ 1 on these levels.
There are of course states, such as those ofV11, on which

G2
2 does not go to1 as a→0. But their ~Euclidean! energy

diverges and their contribution to functional integrals va
ishes in the continuum limit.
3-2
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We can interpret Eq.~2.22! as follows. The chiral charge
of levels withDÞ0 gets renormalized in fuzzy physics. F
levels withuDu<E0, this renormalization vanishes in the n
ive continuum limit.

We note that the last feature is positive: it resolves a pr
lem in previous work@15#, where all the top modes had to b
projected out because of the insistence that chirality squ
to 1 on V11; see below.

For Dirac operators of maximum symmetry,G0 is a func-
tion of the conserved total angular momentumJW as we shall
show. It increases withJW2 so thatV11 consists of states o
maximumJW2. This maximum value diverges asa→0, as the
general argument above shows.

III. FUZZY MODELS

A. The basic algebra

The algebra for the fuzzy sphere characterized by cu
2L is the full matrix algebra Mat(2L11)[M2L11 of (2L
11)3(2L11) matrices. OnM2L11, theSU(2) Lie algebra
acts either on the left or on the right. Call the operators
left actionLi

L and those for right actionLi
R . We have

Li
La5Lia, Li

Ra5aLi , aPM2L11 ,

@Li
L ,L j

L#5 i e i jkLk
L , @Li

R,L j
R#52 i e i jkLk

R,

~Li
L!25~Li

R!25L~L11!1, ~3.1!

whereLi is the standard matrix for thei th component of the
angular momentum in the (2L11)-dimensional irreducible
representation~IRR!. The orbital angular momentum whic
becomes2 i (rW`¹W ) i asL→` is

Li5Li
L2Li

R , Lia5@Li ,a#. ~3.2!

As L→`, bothLW L/L andLW R/L approach the unit vectorx̂
with commuting components:

LW L,R

L
→

L→`

x̂, x̂• x̂51, @ x̂i ,x̂ j #50. ~3.3!

x̂ labels a point on the sphereS2 in the continuum limit.

B. The fuzzy Dirac operator „no instantons or gauge fields…

ConsiderM2L11^ C2. C2 is the carrier of the spin 1/2
representation ofSU(2) with generators1

2 s i , s i5 Pauli
matrices. We can couple its spin 1/2 and the angular mom
tum L of Li

L to the valueL11/2. If (11G)/2 is the corre-
sponding projector, then@7,16#

G5
sW •LW L11/2

L11/2
. ~3.4!

G is a self-adjoint involution,

G* 5G, G251. ~3.5!
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There is likewise the projector (11G8)/2 coupling the spin
1/2 of C2 and the right angular momentum2Li

R to L11/2,
where

G85
2sW •LW R11/2

L11/2
5G8* , G8251. ~3.6!

The algebraA is generated byG andG8.
The fuzzy Dirac operator of Grosseet al. @9# is

D5
1

a
~G1G8!5

2

a
G15sW •~LW L2LW R!11, a5

1

L11/2
.

~3.7!

Thus the Dirac operator is in this case an element of
Ginsparg-Wilson algebraA.

We can calculateG0 in terms ofJW5LW 1sW /2:

G05
a2

2 FJW222L~L11!2
1

4G . ~3.8!

Thus the eigenvalues ofG0 increase monotonically with the
eigenvaluesj ( j 11) of JW2, starting with a minimum forj
51/2 and attaining a maximum of 1 forj 52L11/2.

G2 is the chirality. It anticommutes withD. For fixedj, as
L→`, G0→21 and G2

251, as expected. In fact,G2 in the
naive continuum limit is the standard chirality for fixedj. As
L→`, G2→s• x̂. As mentioned earlier, use ofG2 as chiral-
ity resolves a difficulty addressed elsewhere@7,15#, where
sgn(G2) was used as the chirality. That necessitates proj
ing out V11 and creates a very inelegant situation.

Finally, we note that there is a simple reconstruction ofG

andG8 from their continuum limits@17#. If xW is not normal-
ized, sW • x̂5(sW •xW /usW •xW u),usW •xW u[u@(sW •xW )2#1/2u. As xW can be
represented byLW L or LW R in fuzzy physics, natural choices fo
G andG8 are sgn(sW •LL) and2sgn(sW •LR). The first opera-
tor is 11 on vectors havingsW •LW L.0 and21 if insteadsW

•LW L,0. But if (LW L1sW /2)25(L11/2)(L13/2), thensW •LW L

5L.0, while if (LW L1sW /2)25(L21/2)(L11/2), sW •LW L5
2(L11),0. G is 11 on the former states and21 on the
latter states. Thus

sgn~sW •LW L!5G, ~3.9!

and similarly

sgn~sW •LW R!52G8. ~3.10!

We omit the calculation of the spectrum ofD as it has
been done before~see@9,7# and references there!. We em-
phasize that this spectrum agrees completely with the s
trum of the continuum Dirac operator, except at thej 5(2L
11/2) level.

C. The fuzzy gauged Dirac operator„no instanton fields…

We adopt the convention that gauge fields are built fr
operators on Mat(2L11) which act by left multiplication.
3-3



b

ge
s

g
o

fo

te

ar-
r

eld,

A. P. BALACHANDRAN AND G. IMMIRZI PHYSICAL REVIEW D 68, 065023 ~2003!
For U(k) gauge theory, we start from Mat(2L11)^ Ck. The
fuzzy gauge fieldsAi

L are k3k matrices@(Ai
L)mn# where

each entry is the operator of left multiplication by (Ai)mn

PMat(2L11) on Mat(2L11). Ai
L thus acts on j

5(j1 , . . . ,jk), j iP Mat(2L11), according to

~Ai
Lj!m5~Ai !mnjn . ~3.11!

The gauge-covariant derivative is then

¹i~AL!5Li1Ai
L5Li

L2Li
R1Ai

L . ~3.12!

Note how only the left angular momentum is augmented
a gauge field.

The Hermiticity condition onAi
L is

~Ai
L!* 5Ai

L , ~3.13!

where

„~Ai
L!* j…m5~Ai* !nmjn , ~3.14!

(Ai* )nm being the Hermitian conjugate of (Ai)nm . To sim-
plify the notation we shall limit ourselves to theU(1) case in
the following. The corresponding field strengthFi j is defined
by

@~L1A! i
L ,~L1A! j

L#5 i e i jk~L1A!k
L1 iF i j . ~3.15!

There is a further point to attend to. We need a gau
invariant condition which in the continuum limit eliminate
the component ofAi normal toS2. There are different such
conditions, the following one being due to@18#:

~Li
L1Ai

L!25~Li
L!25L~L11!. ~3.16!

This condition is gauge invariant, and looks simple, althou
it represents a rather complicated quadratic equation am
matrices in Mat(2L11). For largeL it gives

@xi
L ,Ai

L#11
~Ai

L!2

L
50. ~3.17!

Ai
L is to remain bounded asL→`. Also xi

L→ x̂i , the unit

normal to the sphere atx̂. So in the limit, if Ai
L→Ai ,

x̂•AW ( x̂)50, as required.
The Ginsparg-Wilson system can be introduced as

lows. As G squares to1, there are no zero modes forG and
hence forsW •LW L11/2. But from Eqs.~3.15!,~3.16!

S sW •~LW L1AW L!1
1

2D 2

5S L1
1

2D 2

2
1

2
e i jks iFi j ,

~3.18!

which shows that for genericAW L its gauged versionsW •(LW L

1AW L)1 1
2 also has no zero modes unless we chooseAW L such

that the norm ofe i jks iFi j grows likeL2, which is unphysi-
cal. Hence we can set
06502
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G~AL!5
sW •~LW L1AW L!11/2

usW •~LW L1AW L!11/2u
, G~AL!* 5G~AL!,

G~AL!251. ~3.19!

It is the gauged involution that reduces toG5G(0) for zero
AW L.

As for the second involutionG8(AL), we can set

G8~AL!5G8~0![G8. ~3.20!

On following Eqs.~2.6!–~2.9!, these idempotents genera
the Ginsparg-Wilson algebra with operatorsGl(AL), where
Gl(0)5Gl .

The operatorsLW L,R do not individually have continuum
limits as their squaresL(L11) diverge asL→`. In contrast
LW andAW L do have continuum limits. This was remarked e
lier on for the latter, whileLW just becomes orbital angula
momentum.

To see more precisely howD(AL), the Dirac operator for
the gauge fieldAL @D(0) beingD of Eq. ~3.7!#, andG2(AL)
behave in the continuum limit, we can use Eqs.~3.18! to
derive the expansions

1

usW •~LW L1AW L!11/2u
5

2

Ap
E

0

`

dse2s2[sW •(LW L1AW L)11/2]2

5
1

L11/2
1

1

4S L1
1

2D 3 e i jks iF jk1•••,

~3.21!

D~AL!5~2L11!G1~AL!

5sW •~LW L2LW R1AW L!111
sW •~LW L1AW L!11/2

4~L11/2!2
e i jks iF jk

1•••,

G2~AL!5
sW •~LW L1AW L!11/2

2~L11/2!
2

2sW •LW R11/2

2~L11/2!

1
sW •~LW L1AW L!11/2

8~L11/2!3
e i jks iF jk1•••.

~3.22!

So in the continuum limit D(AL)→sW •(LW 1AW )11 and
G2(A)→sW • x̂, exactly as we want.

It is remarkable that even in the presence of gauge fi
there is the operator

G0~AW L!5
1

2
@G~AW L!,G8~AW L!#1 , ~3.23!
3-4
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which is in the center ofA. It assumes the role ofJW2 in the
presence ofAW L. In the continuum limit, it has the following
meaning: sgn@D(AL)# andG2(AL) generate a Clifford alge
bra in that limit and the Hilbert space splits into a direct su
of subspaces, each carrying its IRR.G0(AL) is a label for
these subspaces.

IV. THE BASIC INSTANTON COUPLING

The instanton sectors onS2 correspond toU(1) bundles
thereon. The connection on these bundles is not uniq
Those with maximum symmetry have a particular simplic
and are therefore important for analysis.

In a similar way, onSF
2 , there are projective module

which in the algebraic approach substitute for sections
bundles@5,4,19,6#. There are particular connections on the
modules with maximum symmetry and simplicity. In th
section we build the Ginsparg-Wilson system for such c
nections. The Dirac operator is then also simple. It has z
modes which are responsible for the axial anomaly. Th
presence will also be shown by simple reasoning.

To build the projective module for Chern number 2T, T
.0, introduceC2T11 carrying the angular momentumT rep-
resentation ofSU(2). LetTa , a51,2,3, be the angular mo
mentum operators in this representation with standard c
mutation relations. Let Mat(2L11)2T11[Mat(2L11)
^ C2T11. We let P(L1T) be the projector coupling left angu
lar momentum operatorsLW L with TW to produce maximum
angular momentumL1T. Then the projective module
P(L1T)Mat(2L11)2T11 is the fuzzy analogue of sections o
U(1) bundles onS2 with Chern number 2T.0 @6#. If in-
stead we coupleLW L andTW to produce the least angular mo
mentum (L2T) using the projectorP(L2T), P(L2T)Mat(2L
11)2T11 corresponds to Chern number22T ~we assume
that L>T).

We go about as follows to set up the Ginsparg-Wils
system. ForG we now choose

G65
sW •~LW L1TW !11/2

L6T11/2
. ~4.1!

The domain ofG6 is P(L6T)Mat(2L11)2T11
^ C2 with s

acting on C2. On this module (LW L1TW )25(L6T)(L6T
11) and (G6)251.

As for G8, we choose it to be the same as in Eq.~3.6!.
G6 and G8 generate the new Ginsparg-Wilson syste

The operatorsGl are defined as before, as also is the n
Dirac operatorD (L6T)5(2/a)G1. For T.0 it is convenient
to choose

a5
1

A~L11/2!~L6T11/2!
. ~4.2!

A. Mixing of spin and isospin

The total angular momentumJW which commutes with
P(L6T) and hence acts onP(L6T)Mat(2L11)^ C2 is not
06502
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LW L2LW R1sW /2, butLW L1TW 2LW R1sW /2. The addition ofTW here
is the algebraic analogue of the ‘‘mixing of spin and isospi
@20#. Such a term is essential inJW sinceLW L2LW R1sW /2, not
commuting withP(L6T), would not preserve the modules.
is interesting that a mixing of ‘‘spin and isospin’’ alread
occurs in our finite-dimensional matrix model and does
need noncompact spatial slices and spontaneous symm
breaking.

B. The spectrum of the Dirac operator

The spectrum ofG1 and D (L6T) can be derived simply
by angular momentum addition, confirming the results
Sec. II.

On the P(L6T)Mat(2L11)2T11 modules, (LW L1TW )2 has
the fixed values (L6T)(L6T11), and

~G1!25
1

@2~L6T!11#~2L11! F S LW L1T2W LW R1
1

2
sW D 2

1
1

4
2T2G , ~4.3!

G65
@LW L1TW 1~1/2!sW #22~L6T!~L6T11!21/4

~L6T!11/2
,

~4.4!

G85
@2LW R1~1/2!sW #22L~L11!21/4

L11/2
. ~4.5!

Comparing Eq.~4.3! with Eq. ~2.10! we see that the ‘‘total

angular momentum’’ (JW )25(LW L1TW 2LW R1 1
2 sW )2 is linearly

related toG05 1
2 @G6,G8#1 . The eigenvalues (g1)2 of (G1)2

are determined by those of (JW )2; call them j ( j 11).
For j 5 j max5L6T1L1 1

2 we have (G1)251, so this is
V11, and the degeneracy is 2j max1152(2L6T11). The
maximum value ofj can be achieved only if

S LW L1TW 1
1

2
sW D 2

5S L6T1
1

2D S L6T1
3

2D ,

S 2LW R1
1

2
sW D 2

5S L1
1

2D S L1
3

2D . ~4.6!

Replacing these values in Eqs.~4.4!,~4.5! we see that onV11
we haveg151 andG250.

The caseT50 has been treated before@9,6,7#. So we here
assume thatT.0. In that case, for either modulej min5T
2 1

2 , which gives an eigenvalue (g1)250 with degeneracy
2T; we are inV21, the space of the zero modes. To reali
this minimum value ofj we must have

S LW L1TW 1
1

2
sW D 2

5S L6T7
1

2D S L6T7
1

2
11D ,

S 2LW R1
1

2
sW D 2

5S L6
1

2D S L6
1

2
11D . ~4.7!
3-5
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Replacing these values in Eqs.~4.4!,~4.5! we find that on the
corresponding eigenstatesG2571: they are all either chira
left or chiral right. These are the results needed by c
tinuum index theory and axial anomaly.

For j min, j , j max, that is, onV, we have 0,(g1)2,1,
and by Eq.~2.12! G2Þ0. Since@G1 ,G2#150, to each state
c such thatG1c5g1c corresponds a statec85G2c such
that G1c852g1c8.

For any value ofj we can write j 5n1T2 1
2 with n

50,1, . . . ,2L11 when the projector isP(L1T), and n
50,1, . . . ,2(L2T)11 when the projector isP(L2T), while
correspondingly

~g1!25
n~n12T!

@2~L6T!11#~2L11!
. ~4.8!

With the choice~4.2! for a this gives for the squared Dira
operator the eigenvaluesr25n(n12T). This spectrum
agreesexactly with what one finds in the continuum@21#,
except at the top value ofn. Such a result is true also forT
50 @7,6#. For the top value ofn, G250, and we get only the
eigenvalueg151, whereas in the continuum,G2Þ0, and
both eigenvaluesg1561 occur. This result@7,6#, valid also
for T50, has been known for a long time.

Finally, we can check that, summing the degeneracie
the eigenvalues we have found, we get exactly the dimen
of the corresponding module. In fact,

2T12 (
n51

2L F2S n1T2
1

2D11G12~2L1T11!

52~2L11!@2~L1T!11#,

2T12 (
n51

2(L2T) F2S n1T2
1

2D11G12~2L2T11!

52~2L11!@2~L2T!11#. ~4.9!

We show below that the axial anomaly onSF
2 is stable

against perturbations compatible with the chiral properties
the Dirac operator and is hence a ‘‘topological’’ invariant.

V. GAUGING THE DIRAC OPERATOR
IN INSTANTON SECTORS

The operatorLW 1TW commutes withP(L6T) and hence pre-
serves the projective modules. It is important to preserve
feature on gauging as well. So the gauge fieldAW L is taken to
be a function of LW L1TW ~which remains bounded asL
→`). For L→`, it becomes a function ofx. The limiting
transversality ofTW 1AW L can be guaranteed by imposing th
condition

~LW L1TW 1AW L!25~LW L1TW !25~L6T!~L6T11! ~5.1!

which generalizes Eq.~3.16!.
We can now construct the Ginsparg-Wilson system us
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of
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f

is

g

G~AL!5
s•~LW L1TW 1AW L!11/2

us•~LW L1TW 1AW L!11/2u
~5.2!

and theG8 of Eq. ~3.6!, G(0) beingG of Eq. ~4.1!. s•(LW L

1TW )11/2 has no zero modes, and therefore Eq.~5.2! is well
defined for genericAW L. We can now use Sec. II to constru
the Dirac theory.

We have a continous number of Ginsparg-Wilson algeb
labeled byAW L. For each, Eq.~2.21! holds:

Tr G2~AL!5n~AL!. ~5.3!

Here, asn(AL)PZ, it is in fact a constant by continuity. Th
index of the Dirac operator and the axial anomaly~5.3! are
thus independent ofAW L as previously indicated.

The expansions~3.18!–~3.22! are easily extended to th
instanton sectors and imply the continuum limit
D (L6T)(AW L) and chiralityG2(AW L):

D (L6T)~AW L!→sW •~LW 1TW 1AW !11,

G2~AL!→sW • x̂. ~5.4!

Chirality is thus independent of the gauge field in the lim
ing case, where theAW L dependence is suppressed by 1L
factors@cf. Eq. ~3.22!#, but not otherwise.

VI. REMARKS

The Ginsparg-Wilson system developed above can
generalized to any number of products ofSF

2 . For example,
consider SF

2
^ SF

2 . Its algebra is Mat(2L11)^ CMat(2L8
11), whereL, andL8 can differ. There is a Ginsparg-Wilso
system for each factor with itsG andG8. Denote them~with
or without instantons and/or gauge fields! by
G(1),G8(1),G(2), andG8(2). TheG andG8 for SF

2
^ SF

2 are

G5
G~1!1G3~1!G~2!

uA11G3~1!2u
, G85

G8~1!1G3~1!G8~2!

uA11G3~2!2u
,

G3~1!5
1

2i
@G~1!,G8~1!#, G3~2!5

1

2i
@G~2!,G8~2!#.

~6.1!

They square to unity since@G( j ),G3( j )#150. Since the de-
nominators in Eq.~6.1! commute with the operators in th
numerators, there is no ordering problem in these equati

Generalizations of the present investigation to fuz
spaces such asCPF

N await future work.
We have already treated the integratedU(1)A anomaly. Its

local form has not been treated in the present approach;
however,@10–12#. As for gauge anomalies, the central a
familiar problem is that noncommutative algebras allo
gauging only by the particular groupsU(N), and that too by
their particular representations@10#. This is so in a naive
approach. There are clever methods to overcome this p
3-6
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lem on the Moyal planes@22# using the Seiberg-Witten ma
@23#, but they too have failed us for the fuzzy spaces. Th
gauge anomalies can be studied for fuzzy spaces only
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