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Fuzzy Ginsparg-Wilson algebra: A solution of the fermion doubling problem
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The Ginsparg-Wilson algebra is the algebra underlying the Ginsparg-Wilson solution of the fermion dou-
bling problem in lattice gauge theory. The Dirac operator of the fuzzy sphere is not afflicted with this problem.
Previously, we have indicated that there is a Ginsparg-Wilson operator underlying it also in the absence of
gauge fields and instantons. Here we develop this observation systematically and establish a Dirac operator
theory for the fuzzy sphere with or without gauge fields, and always with the Ginsparg-Wilson algebra. There
is no fermion doubling in this theory. The association of the Ginsparg-Wilson algebra with the fuzzy sphere is
surprising as the latter is not designed with this algebra in mind. The theory reproduces the intdgigied
anomaly and index theory correctly.
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[. INTRODUCTION In this paper we review our previous work and extend it
to cover gauge fields and instanton sectors. This extension
A central task in the lattice approximation to quantumhas a new formulation of the Dirac operator on the fuzzy
field theories(QFT’s) is the treatment of chiral fermions. sphere and is based on an appropriate realization of the
General theorems due to Nielsen and Ninomiya and othereinsparg-Wilson algebra. This Dirac operator has several
[1] reveal a serious obstruction to their rigorous formulationPositive features. Its spectrum in the absence of gauge field
on a lattice. As the standard model involves chiral fermionsfluctuations is precisely that in the continuum below a suit-
there is thus a fundamental difficulty with lattice approxima-2able angular momentum cutoff. There is no correction what-
tions. ever to the spectrum below the cutoff. There is no fermion
Years ago, Ginsparg and Wils¢@] proposed an approxi- doubling, and chiral fermions can be effortlessly treated. The
mate manner to overcome this difficulty. In the original for- U(1)a anomaly in the integrated form is reproduced exactly.
mulation, it is based on a Dirac and chirality operator satis\Ve have not looked at its local form, but its treatment in
fying particular algebraic relations. In the continuum limit, alternative approaches exigts0,11].
anticommuting Dirac and chirality operators can be obtained For other work applying the Ginsparg-Wilson approach to
therefrom. The Ginsparg-Wilson method is an effective toolthe fuzzy sphere, sdd2].
in the theoretical analysis of lattice theories and reproduces While these are points in favor of our approach, it appears
important topological effects such as chiral anomalies in athat the Ginsparg-Wilson approach, in either the lattice or
approximate manner. fuzzy physics context, is not easy to adapt to numerical
Fuzzy physicg3,4] concerns an approach to regulating work. This is a serious difficulty and has to be overcome.
QFT's which can be an alternative to lattice methods. It gives
finite-dimensional matrix approximations to QFT’s and in- Il. AREVIEW OF THE GINSPARG-WILSON ALGEBRA
corporates ideas of noncommutative geom¢¥&y It has a L .
well-articulated theory of a Dirac operator for the fuzzy We_ follow [4'7_] in this p_resentatlo_n.
sphere which approximates the continuum Dirac operator, I_n Its generallty,. the*Gmsparg-WlIson algebraican be
very well and also reproduces the correct index theory angie_fmeq as_the u_nltal alget,)ra ovér generated by two
chiral anomaly. Subtle topological features such as instantons nvariant involutionsl™ andI™:
and complex structures can be formulaiédl Chiral fermi- _ . 2 12 % _ U
ons too can be described with no fermion doubljiy For A=(DI7 To=D75=1 =T, T =T,
fuzzy CPN models as well, the Dirac operator to the extent

investigated[8] seems an excellent approximation to thex denoting the adjoint. The unity off has been indicated
continuum Dirac operator and capable of reproducing sigby 1.

nificant topological features of the continuum. In any such algebra, we can define a Dirac operator
In a previous papdf7], we reported our joint work on the

Dirac operator of9] for the fuzzy sphere. Here we establish 1

that the “free” fuzzy Dirac operator in the absence of instan- D= I{T+I"), 2.2

tons satisfies the defining relations of the Ginsparg-Wilson

algebraic system. This result has a strong element of surprisgherea is the lattice spacing. It satisfies

as fuzzy physics is not consciously designed to satisfy such

relations. D'*=I"D'I', [I'D'],=aD’'I' D". (2.3

(2.1
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Equations(2.2) and (2.3) give the original formulatiorf2]. ~ where the inequality means that the eigenvalue§ pfare
But they are equivalent to Eq2.1), since Egs.(2.2) and accordingly bounded. By Eq2.10, this implies that the

(2.3 imply that eigenvalues of'; are similarly bounded.
We now discuss three cases associated with(E45.
I"=r@b’)-T 2.4 Case 1.I'y=1. Call the subspace whei&g=1V_;. On
. S _ V.1, I'?=1andT,=T3=0 by Egs.(2.10—(2.13. This is
is a *-invariant involution[13,14. the subspace of the top modes of the operHhdr

Each representation of E.1) is a particular realization Case 2I'y=—1. Call the subspace wheig,=—1V_;.
of the Ginsparg-Wilson algebra. Representations of physicah, V_,, T2=1 andT';=T'5=0 by Egs.(2.10—(2.13. This
interest are reducible. is the subspace of zero modes of the Dirac oper@tor

inourwork we ehoose Case 3I'3#1. Call the subspace whefg+1 V. On this
1 subspaceI'’#0 for i=1,2,3 by Egs.(2.9-(2.12, and
D= 5(F+F’) (2.5  therefore
1_‘i . 2
instead ofD’ as our Dirac operator, as it is self-adjoint and Sgnrizm, |T';| = positive square root of"}",
has the desired continuum limit. ! (2.16
FromI" andI'’, we can construct the following elements '
of A: are well defined and by E¢R.14) generate a Clifford algebra
onV:
l !
Io= E[F,F T+ (2.6) [sgnl’;,sgnl’j], =24;]1. (2.17
1 ConsiderT’,. It anticommutes witd™; andD. Also,
Fy=3 @+, @7 Tl o= (Try+ Try +Try_ )T, (2.18
1 ) where the subscripts refer to the subspaces over which the
[o=5@T=T"), (2.8 trace is taken. These traces can be calculated:
1 Tryl',=Try(sgnl;)T"5(sgnl’;) (i fixed#2)
Iy==[I'I""]. 2.
SRPLEL 2.9 =-Tr,[, by Eq. (2.17
Let us first look at the cent&l{(.A) of A in terms of these =0, (2.19
operators. It is generated by, which commutes witd™ and
I'" and hence with every element gf. Fiz, i=1,2,3, also Trv+ll“2=0, asl',=0o0nV,_;. (2.20
commute with every element of, but they are not indepen-
dent of I'y. Rather, So
) 1 . _ 1+F2 ]_Fz .
F1=§(1+F0), (2.10 Trl=Try Ip=Try | - 3 =index of I'y.
(2.2))
2= E(Jl—f‘o) (2.11) Following Fujikawa[14], we can usd’, as the generator of
22 ’ chiral transformations. It is not involutive ov@V, 4:
2, r2_ 1+T
— Ti+I5=1 (2.12 r2=1- . 0 (2.22
r2+Ir3=1. (2.13 o _
But this is not a problem for fuzzy physics. In the fuzzy
Notice also that model below, in the continuum limit],— —1 on all states
with |D|< a fixed “energy” E, independent ofa (and is
[T, T1.=0, i,j=1,23,i+#]. (2.14 —lonV_; whereD=0). We can see this as follow$;
=abD, so that if|D|<Ey, I';—0 asa—0. Hence by Egs.
From now on by.4 we will mean a representation of. (2.10—(2.12, To— —1 andI'3— 1 on these levels.
The relations(2.10—(2.13 contain spectral information. There are of course states, such as thodé,qf on which
From Eq.(2.13 we see that F% does not go td asa—0. But their (Euclidean energy
diverges and their contribution to functional integrals van-
—1=<Ty=1, (2.15 ishes in the continuum limit.
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We can interpret Eq2.22 as follows. The chiral charge There is likewise the projector {1'")/2 coupling the spin
of levels withD #0 gets renormalized in fuzzy physics. For 1/2 of C? and the right angular momentumLiR toL+1/2,
levels with|D|<E,, this renormalization vanishes in the na- where

ive continuum limit.

We note that the last feature is positive: it resolves a prob-
lem in previous work 15], where all the top modes had to be

projected out because of the insistence that chirality squares

tol onV_,,; see below.
For Dirac operators of maximum symmethy, is a func-

tion of the conserved total angular momentdras we shall

show. It increases witd? so thatV., , consists of states of

maximumJ?. This maximum value diverges as-0, as the
general argument above shows.

. FUZZY MODELS
A. The basic algebra

The algebra for the fuzzy sphere characterized by cutoff a?

2L is the full matrix algebra Mat(R+1)=M, ., of (2L
+1)X (2L +1) matrices. OM,, . 1, theSU(2) Lie algebra

- —&.ER+1/2_F,* I a6
- L+12 o 3.6
The algebrad is generated by’ andI'’.
The fuzzy Dirac operator of Grosst al.[9] is
_ll'* I‘,_ZF__) “L "R —
D—a( + )—5 1=o-(L-—L")+1, a—L+—1/2.
3.7

Thus the Dirac operator is in this case an element of the
Ginsparg-Wilson algebral.

We can calculatd’, in terms ofJ= £+ o/2:

FOZ_

5 (3.9

. 1
Po2L(L+1)- .

acts either on the left or on the right. Call the operators forThys the eigenvalues df, increase monotonically with the

left actionL| and those for right actiohX. We have

Lia=Lia, Lfa=al;, aeMy 1,

[Lg_aL}_]:iEijkLIIZ! [LiRvLjR]:_ieijkLEv

(LH)2=(LP2=L(L+1)1, (3.1

whereL,; is the standard matrix for theh component of the
angular momentum in the (2+1)-dimensional irreducible

representatiorflRR). The orbital angular momentum which

becomes—i(r/AV), asL—® is

Li=Li-LF,  La=[L;.al. (32
As L—o, bothL'/L andLR/L approach the unit vector

with commuting components:

EL,R

__7X,

L

x-x=1, [¥,%]=0. (3.3

L—ow
X labels a point on the sphe®? in the continuum limit.

B. The fuzzy Dirac operator (no instantons or gauge fieldp

ConsiderM,, ,,®C2. (2 is the carrier of the spin 1/2

representation oSU(2) with generators;o;, o= Pauli

matrices. We can couple its spin 1/2 and the angular momen-

tum L of LiL to the valueL +1/2. If (1+1')/2 is the corre-
sponding projector, thefv,16]

oLt s
- L+1/2 S

I' is a self-adjoint involution,
r*=r, TI2=l. (3.5

eigenvaluesj (j+1) of J?, starting with a minimum foxj
=1/2 and attaining a maximum of 1 fgr=2L+ 1/2.

I', is the chirality. It anticommutes witD. For fixedj, as
L—o, I'p——1 and ngll, as expected. In facl;, in the
naive continuum limit is the standard chirality for fixgedAs
L—o, I',—o-X. As mentioned earlier, use %, as chiral-
ity resolves a difficulty addressed elsewhérel5|, where
sgn(l’,) was used as the chirality. That necessitates project-
ing outV, ; and creates a very inelegant situation.

Finally, we note that there is a simple reconstruction’ of
andI'’ from their continuum limitg17]. If X is not normal-
ized, o-x= (o xI|o-X|),|o-X|=|[ (- x)2]"¥. As X can be
represented bﬁL orLRin fuzzy physics, natural choices for
I andl'’ are sgng-L") and —sgn(o-LR). The first opera-
tor is +1 on vectors having;. L'>0 and—1 if insteado
Lt<0. But if (L + ¢/2)2=(L+1/2)(L+3/2), theno-L"
=L>0, while if (L*+0/2)?=(L—1/2)(L+1/2), o-L'=
—(L+1)<0.T is +1 on the former states andl on the
latter states. Thus

sgrio-LY=T, (3.9

and similarly

sgrio-LR)y=—T". (3.10
We omit the calculation of the spectrum bBf as it has
been done beforésee[9,7] and references thereWe em-
phasize that this spectrum agrees completely with the spec-
trum of the continuum Dirac operator, except at fhre(2L
+1/2) level.

C. The fuzzy gauged Dirac operator(no instanton fieldy

We adopt the convention that gauge fields are built from
operators on Mat(R+1) which act by left multiplication.
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For U(k) gauge theory, we start from Mat(2-1)® C¥. The
fuzzy gauge fieldsA- are kx k matrices[(A")mn] Where
each entry is the operator of left multiplication by;fn
eMat(2L+1) on Mat(Z+1). A" thus acts on¢

=(&q, ...,&), &§e Mat(2L+1), according to
(AT E) m= (A makn (3.1
The gauge-covariant derivative is then
Vi(AY=Li+Ar=L—LR+AF. (3.12

Note how only the left angular momentum is augmented byo

a gauge field.
The Hermiticity condition orA" is
(AD*=AF, (3.13

where

(AD* Om= (A ) nmén . (3.14

(A¥)nm being the Hermitian conjugate ofA(),,. To sim-
plify the notation we shall limit ourselves to ti(1) case in
the following. The corresponding field strendj is defined
by

[(L+A)(L+A)T=igi(L+A)+iF;. (319

PHYSICAL REVIEW D 68, 065023 (2003

o-(LY+AhH+1/2
I‘(AL)_

= . T(AH*=T(Ab),
lo- (L + AN +1/2 (A7) (A7)

['(AY)2=1. (3.19
It is the gauged involution that reduceslie=1"(0) for zero
AL,

As for the second involutiol’’ (Al), we can set

I''(AH=T"(0)=TI". (3.20
n following Egs.(2.6)—(2.9), these idempotents generate
the Ginsparg-Wilson algebra with operatdig(AL), where
F)\(O):F}\ . .

The operatord "R do not individually have continuum
limits as their squarels(L + 1) diverge ag — . In contrast
£ andA" do have continuum limits. This was remarked ear-
lier on for the latter, whilel just becomes orbital angular
momentum.

To see more precisely hol(A'), the Dirac operator for
the gauge field\" [D(0) beingD of Eq. (3.7)], andI",(A%)
behave in the continuum limit, we can use E(3.18 to
derive the expansions

1 2
lo-(CE+AY+1/2 =

fm dse Slo (L-+AY +17217
0

There is a further point to attend to. We need a gauge-

invariant condition which in the continuum limit eliminates
the component of; normal toS?. There are different such

conditions, the following one being due [b8]:

(LE+AH2=(Lh2=L(L+1). (3.16

This condition is gauge invariant, and looks simple, althoughp (al)= (2L +1)I;(AY)
it represents a rather complicated quadratic equation among

matrices in Mat(2 +1). For largel it gives

AR)?
[xiL,AiL]++( L) =0. (3.17)

Al is to remain bounded as— . Also xF—Xx;, the unit
normal to the sphere at. So in the limit, if A}-—>Ai,
x-A(X)=0, as required.

The Ginsparg-Wilson system can be introduced as fol-

lows. AsT" squares td, there are no zero modes fbrand
hence fora- L-+1/2. But from Egs(3.15),(3.16)

2 2

— 5 6ikoiFij
(3.18

L+1
2

e a1
(0'~(LL+AL)+§

which shows that for generid" its gauged versiomr- (L*

+Ab) + 1 also has no zero modes unless we chodssuch
that the norm ofe;joiFj; grows like L2, which is unphysi-
cal. Hence we can set

1 1
ez’ 173 kPt
+§)
(3.22)
e e y (L4 Ab +1/2
+o,
AL o (LM +AY+12 —o- LR+ 172
2(A)= 2(L+12  2(L+1/2
o-(L-+AH +1/2
+ EijkO'iij+"'-
8(L+1/2)3
(3.22

So in the continuum limitD(AY)—o-(£+A)+1 and
Fz(A)*)(;";(, exactly as we want.
It is remarkable that even in the presence of gauge field,

there is the operator

. 1 . .
To(AY)= §[F(AL),F’(AL)]+ , (3.23

065023-4



FUZZY GINSPARG-WILSON ALGEBRA: A SOLUTION . .. PHYSICAL REVIEW 68, 065023 (2003

which is in the center ofd. It assumes the role af in the  L-—LR+ /2, butC"+T— LR+ /2. The addition ofT here
presence oA". In the continuum limit, it has the following is the algebraic analogue of the “mixing of spin and isospin”
meaning: sgiD(A")] andI',(A") generate a Clifford alge- [20]. Such a term is essential ihsince "~ LR+ ¢/2, not
bra in that limit and the Hilbert space splits into a direct sumcommuting withP-="), would not preserve the modules. It
of subspaces, each carrying its IRRy(A') is a label for is interesting that a mixing of “spin and isospin” already

these subspaces. occurs in our finite-dimensional matrix model and does not
need noncompact spatial slices and spontaneous symmetry
IV. THE BASIC INSTANTON COUPLING breaking.
The instanton sectors o8 correspond tdJ(1) bundles B. The spectrum of the Dirac operator

thereon. The connection on these bundles is not unique. (L) ] )

Those with maximum symmetry have a particular simplicity "€ Spectrum of’y and D™= can be derived simply

and are therefore important for analysis. by angular momentum addition, confirming the results of
In a similar way, onS2, there are projective modules Sec. II. .

which in the algebraic approach substitute for sections of On the P-*DMat(2L +1)?™* modules, [-+T)? has

bundles[5,4,19,6. There are particular connections on thesethe fixed valuesl(=T)(L=T+1), and

modules with maximum symmetry and simplicity. In this 2

section we build the Ginsparg-Wilson system for such con- (1 )2 ! [L+T= [R.&;

nections. The Dirac operator is then also simple. It has zero [2(L=T)+1](2L+1) 2

modes which are responsible for the axial anomaly. Their 1

presence will also be shown by simple reasoning. + ——TZ}, (4.3
To build the projective module for Chern numberF,2T 4

>0, introduceC?™ "1 carrying the angular momentutrep-

resentation o8U(2). LetT,, a=1,2,3, be the angular mo- [C-+ T+ (120 —(L=T)(L=T+1)—1/4

mentum operators in this representation with standard com- I'== (L=T)+1/2 '
mutation relations. Let Mat(2+1)?""1=Mat(2L + 1) (4.4)
®C2T+1 We letP-*T) be the projector coupling left angu-

lar momentum operators" with T to produce maximum [—LR+(1/2¢)?—L(L+1)—1/4

angular momentumL+T. Then the projective module I'= L+1/2 . (4.5

PL+DMat(2L +1)%" 1 is the fuzzy analogue of sections of
U(1) bundles 0[132 with Chern number >0 [6]. If in-  Comparing Eq(4.3) with Eq. (2.10 we see that the “total
stead we couplé- and T to produce the least angular mo- angular momentum” §)2=(L-+T—LR+1¢)2 is linearly
mentum ( —T) using the projectoP™ D, PE"DMat(2L  related tol ;= 3[I'*,I" ] . The eigenvaluesy;)? of (I';)?
+1) corresponds to Chern number2T (we assume are determined by those ijz. call themj(j+1).
thatL=T). . . For j=jmax=L*T+L+3 we have (;)?=1, so this is
We go about as follows to set up the Gmsparg-WHsonVH, and the degeneracy i§ 2.+ 1=2(2L+T+1). The
system. Foil” we now choose maximum value of can be achieved only if

F:_&.(EL+T*)+1/2 a1 I 1 3
=T 12 4.1 L 4T+ 50 =(LiT+§ L=T+5),

The domain ofl'* is P(t*DMat(2L+1)2" 1@ (? with o 1.2 1 3

acting on (2. On this module {*+T)?=(L*T)(L*T (‘LR+§U =(L+§ L+35]. (4.6)

+1) and *)%=1.
As for I'', we choose it to be the same as in E6). Replacing these values in Edg.4),(4.5) we see that oV ;
I'> andI'" generate the new Ginsparg-Wilson system.\ye havey,=1 andI',=0.

The operatord’, are defined as before, as also is the new The casa=0 has been treated befdi@6,7]. So we here
Dirac operatoD("* "= (2/a)l';. For T>0 it is convenient assume thal>0. In that case, for either modufg,in=T

to choose — 1, which gives an eigenvaluey()2=0 with degeneracy
2T; we are inV_,, the space of the zero modes. To realize
A 1 4.2 this minimum value of we must have
JILF12)(L=T+1/2) ' 12 1 1
L+ T+ S0 =<LiT1§> L:Tw5+1),
A. Mixing of spin and isospin
> 2
The total angular momenturd which commutes with I T R P T
PL=T) and hence acts oR-*PMat(2L+1)®C? is not ( L g0 L=5)|bxgtL)- “.7
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Replacing these values in Edg.4),(4.5) we find that on the
corresponding eigenstat€s= 7 1: they are all either chiral

left or chiral right. These are the results needed by con-

tinuum index theory and axial anomaly.

For jmin<i<imax, that is, onV, we have G<(y,)?<1,
and by Eq.(2.12 I',#0. Since[I';,[';], =0, to each state
¢ such thatl'; 4= vy,¢ corresponds a stat¢’=I",¢ such
thatl' o' = — v,

For any value ofj we can writej=n-+T—3 with n
=0,1,...,2+1 when the projector isP(-*T, and n
=0,1,...,2L—T)+1 when the projector i®-~T, while
correspondingly

. n(n+2T)
N VTS S Tk

4.9

With the choice(4.2) for a this gives for the squared Dirac
operator the eigenvaluep?=n(n+2T). This spectrum
agreesexactly with what one finds in the continuuf21],
except at the top value aof. Such a result is true also fdr
=0[7,6]. For the top value of, I',=0, and we get only the
eigenvaluey,=1, whereas in the continuuni},#0, and
both eigenvalues; = =1 occur. This result7,6], valid also
for T=0, has been known for a long time.

Finally, we can check that, summing the degeneracies o
the eigenvalues we have found, we get exactly the dimensiol

of the corresponding module. In fact,

2L

2T+2 > |2 +2(2L+T+1)
n=1

Tl 1
n-+ E'F

—2(2L+1)[2(L+T)+1],

2(L-T)
2T+2 D,

n=1

+1|+2(2L—-T+1)

2

1
2(n+T——

—2(2L+1)[2(L—T)+1]. (4.9

We show below that the axial anomaly &3 is stable

against perturbations compatible with the chiral properties of I'=

the Dirac operator and is hence a “topological” invariant.

V. GAUGING THE DIRAC OPERATOR
IN INSTANTON SECTORS

The operato’ + T commutes witiP(-* ) and hence pre-

PHYSICAL REVIEW D 68, 065023 (2003

o (L-4+T+AYH +1/2

I'(Ab)= —
(A lo- (LE+T+ANH +1/2

(5.2

and thel'’ of Eq. (3.6), I['(0) beingl" of Eq. (4.1). o-(L"
+T)+1/2 has no zero modes, and therefore Gp) is well

defined for generioﬁiL. We can now use Sec. Il to construct
the Dirac theory.
We have a continous number of Ginsparg-Wilson algebras

labeled byAl. For each, Eq(2.21) holds:

TrT,(Ab)=n(Ab). (5.3

Here, am(Al) e Z, it is in fact a constant by continuity. The
index of the Dirac operator and the axial anomedy3) are
thus independent oAl as previously indicated.

The expansion$3.18—(3.22 are easily extended to the

instanton sectors and imply the continuum limit of
DE=EN(ALY) and chiralityl,(AL):
DLE=D(AY - (L+T+A)+1,
[ (AYY—a-x. (5.9

hirality is thus independent of the gauge field in the limit-

ing case, where thdt dependence is suppressed by 1/
factors[cf. Eqg.(3.22], but not otherwise.

VI. REMARKS

The Ginsparg-Wilson system developed above can be
generalized to any number of productsS¥. For example,
consider S2® SZ. Its algebra is Mat(R+1)® Mat(2L'
+1), wherel, andL’ can differ. There is a Ginsparg-Wilson
system for each factor with its andI"’. Denote themwith
or without instantons and/or gauge fields by
I'(1),I''(1),I'(2), andl'’(2). Thel andT"’ for SZ® SZ are

F()+T(D)I(2) 1,,_F’(1)+F3(1)F’(2)
[V1+T3(1)7 [V1+T5(2)

1 1
Ia(1)=5 [T, I"(D)],  Ts(2)=5[1'(2),I"(2)].
(6.9

serves the projective modules. It is important to preserve thighey square to unity sindd’(j),I's(j)]+=0. Since the de-

feature on gauging as well. So the gauge figldis taken to

be a function ofC+T (which remains bounded ak
—o). For L—oo, it becomes a function of. The limiting

transversality off + Al can be guaranteed by imposing the

condition
(C+T+AD2= (L4 TP=(LET)(LETHY) (5.

which generalizes E(3.16).

nominators in Eq(6.1) commute with the operators in the
numerators, there is no ordering problem in these equations.
Generalizations of the present investigation to fuzzy
spaces such &P} await future work.
We have already treated the integratédl) , anomaly. Its
local form has not been treated in the present approach; see,
however,[10-17. As for gauge anomalies, the central and

familiar problem is that noncommutative algebras allow

gauging only by the particular group(N), and that too by

their particular representatiof40]. This is so in a naive

We can now construct the Ginsparg-Wilson system usin@pproach. There are clever methods to overcome this prob-
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