PHYSICAL REVIEW D 68, 065022 (2003

Gauge symmetry enhancement in the Hamiltonian formalism
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We study the Hamiltonian structure of the gauge symmetry enhancement in the enlardéd ragtel
coupled with aU(2) Chern-Simons term, which contains a free parameter governing explicit symmetry
breaking and symmetry enhancement. After giving a general discussion of the geometry of constrained phase
space suitable for the enhancement, we explicitly perform the Dirac analysis of our model and compute the
Dirac brackets for the symmetry enhanced and broken cases. We also discuss some related issues.
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[. INTRODUCTION curred in the self-dual limit. Away from this limit, the com-
plex gauge field becomes massive and the symmetry remains
It is well known that the nonlinear sigma models exhibit to beU(1)xU(1).
many interesting physical properties in the lahgdimit [1]. The parameter could be understood as an explicit gauge
One of them is the phenomenon of dynamical generation ofymmetry breaking parameter frobh(2) to U(1)xU(1),
a gauge boson in the CRY model[2], where the auxiliary ~with the mass of thec, field being induced radiatively
U(1) gauge field becomes dynamical through the radiativehrough the loop corrections when the symmetry is broken.
corrections[3]. Recently, some new properties have beenThis could provide a scheme of generating mass of the gauge
explored in relation with this phenomenon. In particular, inbosons. Therefore, it would be worthwhile to study the en-
Ref.[4] the issue of dynamical generation of a gauge bosomtarged CPN) model from different aspects. In this paper, we
has been analyzed in the context of an enlargedNJP( study this model in the Hamiltonian formulation. We first
model in lower dimensions. In this model, two complex pro-recall that the gauge symmetry is realized as the Gauss law
jective spaces with different coupling constants couple withtype of constraints in the Hamiltonian method. In the en-
each other through interactions which preserve the exchangarged model of Refl4], the original gauge fields are auxil-
of the two spaces. In addition to the two auxiliad(1) iary fields which become dynamical through the quantum
gauge fieldgcorresponding to the diagona), andb,, fields  corrections. From the Hamiltonian point of view, these aux-
of Eq. (2.4) below] which represent each complex projective iliary fields could be completely eliminated through the
space, one extra auxiliary complex gauge figlde off- equations of motion from the beginning, and the Gauss law
diagonalc,, field of Eq.(2.4)] is introduced to couple the two constraints could be only implicitly realized. However, in
spaces in the way which preserves the exchange symmetry.dtder to see the structure of gauge symmetry more explicitly,
turns out that when the two coupling constants are equale couple the enlarged CR] model with some external
[which corresponds to the case of1l of Eq. (2.3)], the gauge fields, which we choose to be described bylf2)
classical enlarged model becomes the nonlinear sigma mod€hern-Simons term. Then, we perform the Dirac analy&jis
with the target space of the Grassmannian maniféld It  of the resulting theory. The theory has both first- and second-
was shown in Ref[4] that the additional gauge fiela,, , class constraints, and it is found that for=1 the Gauss
also becomes dynamical through radiative corrections. Moregonstraints satisfyJ(2) symmetry algebra, whereas for
over, in the self-dual limit where the two running coupling #1 only U(1)x U (1) algebra. What happens is that two of
constants become equal, it becomes massless and combinke first-class constraints generating the gauge symmetry be-
with the twoU (1) gauge fields to yield thg(2) Yang-Mills  come second-class constraints away from the self-dual limit,
theory. That is, the gauge symmetry enhancement has oeeducing the resulting gauge symmetry.
However, it turns out that a smooth extrapolation from the
U(1)XU(1) to U(2) gauge symmetry algebra is not pos-

*Electronic address: soonhong@ewha.ac.kr sible in the Dirac analysis. The reason is that in the Dirac
TElectronic address: joohan@kerr.uos.ac.kr method we have to compute the inverse of the Dirac matrix
*Electronic address: thlee@physics.ssu.ac.kr which is constructed with second-class constraints only. This
SElectronic address: ploh@newton.skku.ac.kr inverse matrix with parameterbecomes singular if we take
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the limit of r—1, because two of the constraints changex[U(1)X U(1)],,ca for r#1. Therefore, the parameter
from second class into first class. When this happens, theould be regarded as an explicit symmetry breaking param-
Dirac matrix becomes degenerate and the inverse does ngter.
exist. From a physical point of view, this singular behavior et us perform the canonical analysis using the Dirac
could be associated with the second-order phase transitigiethod[6]. We first define the conjugate momenta of e
which one encounters in going to the limit1 [4]. field by [19= 9/ 3y, which gives

The organization of the paper is as follows. In Sec. Il, we a a’
define the enlarged CR model coupled with the Chern- 1
Simons term and perform the canonical analysis. In Sec. I, H§=—2(¢§T+A0ab¢§T)- (2.6)
we give a somewhat general discussion of the geometry of
the constrained phase space suited for gauge symmetry en-

hancement. In Sec. IV, we give an explicit computation of The indicesa,b ... represent th&J(2) indices 1 and 2,
the Dirac bracket in the case of=1 andr#1 separately. While Latin indicese, ... represent the glob&U(N) in-
Section V contains conclusion and discussions. dices of s, and ¢,. We will occasionally omit the global
SU(N) indices, when the context is clear. Likewise, the con-
Il THE MODEL jugate momentum of the:" field is given by
We start from the Lagrangian written in terms of tNe s 1
X 2 matrix ¢ such that 13 :E(lﬁg— 5 Aoba)- 2.7

1 The momentum for the Lagrangian multiplier fiekd,, is
L=—t{(D, )" (D*y) =Ny~ R)]+ Les, (2.1)  constrained to vanish,
9

I3, =0. (2.9
where the fieldy), is made of two compleN vectorsy; and
i, such that The conjugate momenturR%,, for the gauge fieldA ,,p is
given by
. i_[n kA _
=[], ¥'= lﬂz , (2.2 Piab=K€ijAjba,  Poapb=0. (2.9
N o o In the above, the indicesj, ... represent the spatial ones
and the Hermitian X2 matrix A is a Lagrange multiplier. jth 1 and 2. In the following analysis we will not treat the
The 2x2 matrixRis given by first equation as a constraint. InsteRg,, is removed from
the beginning and replaced bye;;Ajp, [7]. The second
r 0 equation, together with Eq2.8), defines the primary con-
R=lg -1 (2.3 straint of the theory. The Poisson bracket is defined by
with a real positiver. We will also use the notatiomR,, {20, IE(y)} = 82p0*PS(x—Y),
=T,6ap (a,b, ...=1,2) withr,=r,r,=r"1. The covariant N
derivative is defined ab , =4,y — A, with a 2x 2 anti- {Nap(X), Hgg(Y)} = Sacbpad(X—Y),
Hermitian matrix gauge potentiél,, associated with the lo-
cal U(2) gauge transformations. The component#pfcan {Aoan(X),Pocd(Y)} = 0achad(X—Y),
be explicitly written as follows: .
. {Aiapb(X), Ajca(y) = — ~ €ij 0adObcO(X—Y).
B Cu (2.10
A, =i c, byl (2.9
After a straightforward Dirac analysis, we find that the

) ) ) ] . system is described by the canonical Hamiltonian given by
L is the non-Abelian Chern-Simons gauge action given by

1 1
K 2 Ho=g?III+ — (D) {(Dith) at — Nan( ¥ ha— R
ﬁcs:—if”””tf(%AyAer ZA AVAp 0= 9 atta gz( |‘/’)a( |’p)a 92 ab(‘pb‘//a ba)

SAAA ] (25

+ (M gthy— YA+ kF 1200) Agpas (2.10
The kinetic term of the Lagrangiaf2.1) is invariant under o= ¥allo 1abiioa

the localU(2) transformation, while the matriR with r where we denot&é G=F“G“ andF ;,,,, is the magnetic field
#1 explicitly breaks theU(2) gauge symmetry down to given by

U(1)XU(1). Thus, the symmetry of our model is

[SU(N)]globaIX[U(Z)]Iocal for r=1, while [SU(N)]global F12a0= 91A2ap— J2A1apT [A1,A2]ab - (2.12
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Including all secondary constraints, we find that the dynam-= (1T, Aiab Aoan:Poan-Aan.115). The Poisson bracket
ics is governed by the following constraints: structure o’ is defined as follows. For any given two func-

ionsF
cg%>=ngb~o, tionsF, G, -
Cw-po, 0, {F,G}=Q""0,F 95G, (3.1
o) where QB denotes the inverse @l ,g. B
Cab = ‘ﬂa‘ﬂb Rap~0, If a theory is constrained by the constrain@;=0, the
c®_1 ot _ space of physical interest will be the submanifblatonsist-
Cab =athp~ Yallp+ (F1220~0, ing of all points of I' satisfying the constraints. This con-
1 strained subspace inherits a closed 2- fof_mB, from Qg
ab =114+ :p —Z[AO,R]abmo. (2.13 by restriction, i.e., for any two vector fields®, YB tangent
9 tol we defmeQAB by
One can check that the time evolution of the above con- - S
straints is closed with a total Hamiltoniart;="H, QapX"YP=0 X Y5, 32
+38_AWCY using the relation$2.10.

To separate the constraints into first and second classeset Us divide the discussion in two cases.

we first calculate the commutation relations of E@13) to (i) Qap is nondegenerate. In this casd;,(ag) is the
yield the nonvanishing Poisson brackets, reduced phase space and the reduced bracket structure can be

defined as before, using the inverse®fg. For any two

1 functionsF, G of T" fi
{cg?(x),cg‘.‘j%y)}:?(rc—rd>5ad5bc5<x—y>, unctionsF, G of I we define
(2.14 {F.G}p=0"B3,Fa5G. (3.3
2 3 _ —
{CR0,CE Y} =(re=ra) Saadpcd(X—Y), 215 The condition for nondegeneracy 6,5 can be stated as
defC*,C"} 0. (3.4)

{CH00,CE(Y}=(ratp) audped(x—Y),
(2.19 This condition, in turn, is equivalent to the fact that none of

1C8)(x),CE)(y)t = (6,CE)— 5,8 8(x—y), the vectors)*BazC# is tangent ta. In this case, the con-
(2.1 straintsC*=0 are said to form a second class and the result-

ing bracket structure of’ is called the Dirac bracket to
distinguish it from the original Poisson bracket, £8§.1).

It is well known thatQ*®, when regarded as a tensor field
of I, both of whose indices are tangent to the submanifold

T, is related toQ”®B as follows:

{c;%’<x>,c<“)<y>}——([Ao RladSbe

_[AOvR]bc5ad) 5(x—y), (2-18)
{CWx),C88(y)} = k(F 12044
—F12240bc) O(X—Y). (2.19

Note that Eq(2.17) satisfiesU(2) Gauss law algebra. Nev-
erthelessC{3 andC$3) become second-class constraints for
r#+1, because in this case the right-hand sides of Eg%5
and(2.18 are nonvanishing foc# d.

Before proceeding to the calculation of the Dirac brackets __
we briefly review in the next section the structure of the(ii) Qg is degenerate. The situation in this case is slightly
constrained phase space in a geometric language. This séBore complicated because the inverse does not exist. There-
tion is included mainly to fix our notations, conventions, andfore, we cannot define the bracket structure on all of the

0"B=0"8+ 010~ CrOBNACY, (3.5

where@“TE{C;,C;}. In terms of the Poisson bracket, the
Dirac bracket can be written as

{F.G}o={F.G}-{F.C"OC"G}. (3.6

terminology. functions ofT". However,ﬁAB defines for us a nondegener-
ate closed 2-form on the quotient manifold Iofwhere any
Ill. GEOMETRY OF CONSTRAINED PHASE SPACE two points of " are identified if they are related by a curve

A phase space can be described by a manifoldith a which lies along the degeneracy directions everywhere. In

nondegenerate closed 2-forfl,s. The capital Roman let- fact, Qag is the pull-back tol’ of a nondegenerate closed
ters (A,B, ...) areused to represent collectively the indices 2-form on the quotient space under the quotient map. We will
of the phase-space coordinates. In our casé interpret() 55 in both ways, either as a degenerate 2-form on
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Torasa nondegenerate 2-form on the quotient manifold. INVEE{G;,CE} should be invertible. Then, from Ed3.6)
this case, the quotient space together with a nondegeneradee obtains, after a straightforward calculation,

closed 2-form,Q g, is the fully reduced phase space and . =B
one can define the bracket structure. Physically, the degeI{F’G}D=Q InF G
eracy directions represent gauge directions and the quotient T o
space is the space of gauge orbits. Since gauge invariant ={F.G}+ W Wy {G™.GT}
functions can be identified with the functions on the quotient

manifold, the fact that we have a well-defined bracket struc-

ture on the quotient space means that the bracket structure

can be well defined only on gauge invariant functionsTon

+{G",C'H{G",C}OH){C? F}{C’,G}

+ W;Abl{cg, F}{GE, G)— W;T,l{GE, F}{CE,G}

. . . . . 1 - -1 - -

Degeneramgs are in fact assc_)mated with the existence of _i_WAb{Gb’CI}@W{CJ'F}{Ca’G}
the so-called first-class constraints. L€t be an arbitrary o B B
vector field onl" which points in some degeneracy direction. —vv;—bl{Gb,Ci}Goﬁl{Ca,F}{Cj ,G}
Then, for all vector fieldst®, tangent tal’, L —

B +®W{C',F}{CJ,G}, (3.1)
0=0 gk t®= 05k t?, (3.7 - = =
where ®''={C',C!}. When the functions,G are gauge
which implies that invariant, the above equation reduces to the usual Dirac
- _ bracket constructed using the second-class constraints only.
QABkAz)\gﬁBC“:&B()\;C“) (3.8 From a geometric point of view what happens in our

model can be explained as follows. The vector fields which
for some nontrivial\;;. Such a linear combination of the are (Poisson)generated by the nondiagonal part G{2)
constraints \,,C*, is called a first-class constraint and its constraints point in fixed directions ii. Whenr#1, they
Poisson bracket with all other constraints vanishes, i.e., are not tangent td'. As the parameter, approaches 1, the
- = constraints change gradually ahdbecomes tangent to those
{ruCH.C"}=0. (3.9  vector fields atr=1. Initially second-class constraints be-
— - = come first class, the gauge symmetry being enlarged from
Conversely, whe®*"={C*,C"} is degenerate, there exists y(1)x U(1) to U(2).
a nontrivial\; such that ,®#”=0 and it can be shown that
A,C* generates a degeneracy @b,g. That is, k* IV. DIRAC BRACKETS

=0"B95(\,C*) is tangent td" and,gk”t®=0 for all t° In this section, we explicitly construct the Dirac brackets
tangent tol’. Other linear combinations of the constraints (3.6) of our model. It turns out that transition from# 1 to
independent of all first-class constraints belong to the second=1 is singular and we have to carry out the cases=of
class. Therefore, in the degenerate case one can decompes®ir +1 separately. The reason is that in the Dirac method
the constraints into two classeA)=(C?C'), whereC?*  we have to compute the inverse of the Dirac ma®i¥ of
denotes the first-class constraints aBt the second-class Ed.(3.5), which is constructed with second-class constraints

constraints, and they satisfy only. This inverse matrix becomes singular in the limitrof
o o —1, because part of the constraints change from second
{c3,c*}=0, de{C',Cl}+0. (3.10 class into first class in the limit, and the determinant of the

Dirac matrix becomes zero.

Unlike STAB, which can be regarded either as a nondegener-

ate 2-form on the quotient manifold or as a degenerate A.r=1 case

2-form onT, Q"B has a well-defined meaning only as a  For the case of =1, we haveR,,= 8,p,, and it is easy to

tensor field on the quotient space. In order to compare it witinfer from the constraints algebr@.14—(2.19 that only

QO”B, we choose a gauge slice. Then, using this one-to-on€'Z) and C{}) are second-class constraints. All of tB&})'s

map between the space of gauge orbits and the gauge sliare the first-class constraints whose Gauss law satisfies the

one obtains the corresponding nondegenerate closed 2-forn(2) algebra(2.17). Cg%) and Cglb) completely decouple

and its inverse on the gauge slice. Note that the 2-form ofrom the theory and can be set equal to zero.

the gauge slice obtained this way is just the induced 2-form One can thus obtain the following Poisson bracket

from Qg by restriction to the %uBge sI|ceA.BTherefore, ON€relations® 1={C',CI} among the second-class constraints
i i i i_(e(2 2 2 2) ~(4) ~4) ~B) ~@ T

can obtain the_ relatlon_s_ betweé* _a_mdQ by treating C'—(C(u),C(lz),C(zB,C(zz)VC‘u)1C‘12’,C‘21’,C‘zz’) (i

the gauge slicing conditions as additional constraints. When.q o 8)

these are included all constraints form a second class, asone = "7’

can see from the fact that the induced 2-form on the gauge (0] M
slice is nondegenerate. L&®=0 represent a choice of 0= _MT NI 4.1
gauge slice. For this to be a good choice of gauge slicing
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where

29, 0 0 0O
0 0 2 O

M=l 0 29, O o |-
0 0 0 29n

(4.2)

Here we have defined,1=|¢n|%=r, go=|v,|?=r"1, fap

:KFIZBb' and 5f:f11_f22. FOI‘I’=1, we haVegllzgzz
=1.
The inverse matrix of) is given by
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[ 1 0 0 0 ]
2011
1
0o
) 2911
M~ = 1 ,
— 0
2911
0 0 0 1
2011
[, fa T ]
4951 4951
for of o1
T 42 0 2 2
- ) 497, 4913 491,
MENME=1 ) Sf fis
2 a2 0 T2
4971, 491 491
f f
o -2 = 0
4911 491
) .9

The Dirac bracket$3.6) are then given by

I g WU
{42, 15(y) o= apd™F— 2001 0a10p1 T (12) | 5(x
MT—lNM—l MT—l
0 1= M1 o , (4.3 -vY),
at Bt at , Bt
ot P A Y
x),1I1 = —_ ——— 0410,
12 (), 15 (Y) }p 2011 a19b1 2011 a19h2
with +(1<—>2)>5(X—Y),
|
OO L L P P17 N
artihh P 2011 2011 2011 alfbt 2011 2011 2011
at BT at Bt
2 ¥y fip 2 ¥ 5f)
— — — 104105+ (1=2)|0(X—VY),
2911 2911 2911 2 alPh2 ( hd ) ( y)
1900 T (Y} = (Hé‘wf—wé”ﬂf* AR A A P A 6_f) W o
arthh b 2011 2011 2011 2011 2911 2011 2 alfbt 2011 2911 alfb2
+(1-2)[6(x—y),
N ab(X) TIE4(Y)} o= BacBpad(X—Y),
{A0an(X),Pocd(Y) }p = Gaclpad(X—Y),
1
{Aiap(X),Ajca(Y) o=~ Pl 0adOpcd(X—Y). (4.9
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B.r#1 case 0 0 2g,;, O
In this case, we first note that two of the constra'ﬁﬁ%’ 0 59 O 0
and C$Y which were first-class in the case bt 1 become M= _ 4.9
. g O 0 o |-
second-class, because the gauge symmetry is reduced to
U(1)xU(1). This is evident from Eq(2.14), whose right- 0O 0 0 2

hand side is nonvanishing fog#r 4. Therefore, we have all
together 12 second-class constraingy,cY,c{? ,c(?,

c<221>,c<222>,cg>,cg?,cg@,cg@,cgﬁ)_,cg@). One could pro-
ceed to the computation of the Dirac bracket with these 12

with §g=g1;—0,,. The inverse matrix of is given by

—I\T
constraints, which is quite involved. However, it greatly sim- L o —-(M)
plifies the computation if one observes that the constraints 0 =M1 0 ' (4.9
c{¥ andC? can be eliminated from the list by solving them
explicitly with the variablesAq,, (a#b) given by with

gz
Aoan=7— (It + Yl (a#b). (4.6 . . ;
b a 0 = 0
Then, from Egs(2.14—(2.19, C{}) andC§} commute with o9
the rest of the costraints, and the number of second-class 0 1 0
constraints become eigh¢'=(C{?,c{?,c{?,c .cfy, B o9
c®.cW.c (=1...8. M™=| 1 o o (4.10
We now find an &8 matrix®'/={C',CJ} of the form 2011
1
o M O 0 0 -—
0= _mT ol 4.7 2922
whereM is given by The Dirac bracket is then given by
|
. ' pivd'  uses!
{ya(x),I5(y)}p= 5ab5aﬁ+(_ T 01011 (12) | 8(x—Y),
I g1 69
Ty 5yt
{aT00, I (Y}o=| = =~ Sardor+ — 5 — a1+ (12) | S(x—Y),
L 201 69
iy — gy Mg yg+ys'1g
{300, I (W}p=|——5—— Sarfpt ———5——— +(1=2) | 8(x—Y),
] 2011 69
r e B_ aTHBT e B_ aTHBT
(MO0 o= | AL T2 T2 |y bk (102) | x-y),
I 2011 o9
1
1Aiab(X),Ajca(Y) o=~ ~ €l 0adObcO(X—Y). (4.1

We note that not only is the structure of the constraints different fromn thk case, but also—1 is not defined in the above

algebra(4.11).

V. CONCLUSION

constrained phase-space geometry. We found that the con-
ventional Dirac method does not allow a smooth extrapola-

We performed canonical analysis of the gauge symmetryion of the symmetry enhanced and broken phases. This was
enhancement in the enlarged GP(model coupled with the essentially due to the fact that the Dirac procedure requires
U(2) Chern-Simons term. We discussed the transition bean inverse of the Dirac matrix, which is constructed with
tweenr =1 andr # 1 cases in terms of the degeneracy of thesecond-class constraints only, and becomes singular when
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some of the second-class constraints become first clasmg toU(1)XU(1) in the case of #1, we have to evaluate
Physically, a second-order phase transition occurring as thiée inverse of 12 12. Finally, it would be interesting to
symmetry breaking parameteapproaches the critical value perform other quantization methods of our model. For ex-
1 could be responsible for the nonsmooth transition. ample, in the BRST-BFV methodi8], which avoids the
We conclude with a couple of remarks. We have com-second-class constraints from the beginning by enlarging the

puted the Dirac bracket of E3.6) without gauge fixing and  phase space, the issue of the connection betweeh and
thus are considering only gauge invariant functions whichy -1 values could be reexamined.

commute with the first-class constraints. Instead one could
try to fix the gauge first, thereby rendering all the constraints
second class, and then proceed to the Dirac bra@kéf).
This would involve technically more difficult steps; for ex-
ample, in the case af=1, we need four gauge-fixing con- S.T.H. would like to acknowledge financial support in part
ditions corresponding to th&/(2) gauge symmetry, which from the Korea Science and Engineering Foundation Grant
could be chosen as the Lorentz gauge. Then the matriko. R01-2000-00015. P.O. was supported by a Korea Re-
would become 18 16. For the gauge conditions correspond-search Foundation grant NGKRF-2002-042-C00010
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