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Gauge symmetry enhancement in the Hamiltonian formalism
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We study the Hamiltonian structure of the gauge symmetry enhancement in the enlarged CP(N) model
coupled with aU(2) Chern-Simons term, which contains a free parameter governing explicit symmetry
breaking and symmetry enhancement. After giving a general discussion of the geometry of constrained phase
space suitable for the enhancement, we explicitly perform the Dirac analysis of our model and compute the
Dirac brackets for the symmetry enhanced and broken cases. We also discuss some related issues.
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I. INTRODUCTION

It is well known that the nonlinear sigma models exhi
many interesting physical properties in the large-N limit @1#.
One of them is the phenomenon of dynamical generation
a gauge boson in the CP(N) model @2#, where the auxiliary
U(1) gauge field becomes dynamical through the radia
corrections@3#. Recently, some new properties have be
explored in relation with this phenomenon. In particular,
Ref. @4# the issue of dynamical generation of a gauge bo
has been analyzed in the context of an enlarged CPN)
model in lower dimensions. In this model, two complex pr
jective spaces with different coupling constants couple w
each other through interactions which preserve the excha
of the two spaces. In addition to the two auxiliaryU(1)
gauge fields@corresponding to the diagonalam andbm fields
of Eq. ~2.4! below# which represent each complex projecti
space, one extra auxiliary complex gauge field@the off-
diagonalcm field of Eq.~2.4!# is introduced to couple the two
spaces in the way which preserves the exchange symmet
turns out that when the two coupling constants are eq
@which corresponds to the case ofr 51 of Eq. ~2.3!#, the
classical enlarged model becomes the nonlinear sigma m
with the target space of the Grassmannian manifold@5#. It
was shown in Ref.@4# that the additional gauge field,cm ,
also becomes dynamical through radiative corrections. Mo
over, in the self-dual limit where the two running couplin
constants become equal, it becomes massless and com
with the twoU(1) gauge fields to yield theU(2) Yang-Mills
theory. That is, the gauge symmetry enhancement has
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curred in the self-dual limit. Away from this limit, the com
plex gauge field becomes massive and the symmetry rem
to beU(1)3U(1).

The parameterr could be understood as an explicit gau
symmetry breaking parameter fromU(2) to U(1)3U(1),
with the mass of thecm field being induced radiatively
through the loop corrections when the symmetry is brok
This could provide a scheme of generating mass of the ga
bosons. Therefore, it would be worthwhile to study the e
larged CP(N) model from different aspects. In this paper, w
study this model in the Hamiltonian formulation. We fir
recall that the gauge symmetry is realized as the Gauss
type of constraints in the Hamiltonian method. In the e
larged model of Ref.@4#, the original gauge fields are auxi
iary fields which become dynamical through the quant
corrections. From the Hamiltonian point of view, these au
iliary fields could be completely eliminated through th
equations of motion from the beginning, and the Gauss
constraints could be only implicitly realized. However,
order to see the structure of gauge symmetry more explic
we couple the enlarged CP(N) model with some externa
gauge fields, which we choose to be described by theU(2)
Chern-Simons term. Then, we perform the Dirac analysis@6#
of the resulting theory. The theory has both first- and seco
class constraints, and it is found that forr 51 the Gauss
constraints satisfyU(2) symmetry algebra, whereas forr
Þ1 only U(1)3U(1) algebra. What happens is that two
the first-class constraints generating the gauge symmetry
come second-class constraints away from the self-dual li
reducing the resulting gauge symmetry.

However, it turns out that a smooth extrapolation from t
U(1)3U(1) to U(2) gauge symmetry algebra is not po
sible in the Dirac analysis. The reason is that in the Di
method we have to compute the inverse of the Dirac ma
which is constructed with second-class constraints only. T
inverse matrix with parameterr becomes singular if we take
©2003 The American Physical Society22-1
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the limit of r→1, because two of the constraints chan
from second class into first class. When this happens,
Dirac matrix becomes degenerate and the inverse does
exist. From a physical point of view, this singular behav
could be associated with the second-order phase trans
which one encounters in going to the limitr 51 @4#.

The organization of the paper is as follows. In Sec. II,
define the enlarged CP(N) model coupled with the Chern
Simons term and perform the canonical analysis. In Sec.
we give a somewhat general discussion of the geometr
the constrained phase space suited for gauge symmetry
hancement. In Sec. IV, we give an explicit computation
the Dirac bracket in the case ofr 51 and rÞ1 separately.
Section V contains conclusion and discussions.

II. THE MODEL

We start from the Lagrangian written in terms of theN
32 matrix c such that

L5
1

g2
tr@~Dmc!†~Dmc!2l~c†c2R!#1Lcs, ~2.1!

where the field,c, is made of two complexN vectorsc1 and
c2 such that

c5@c1 ,c2#, c†5Fc1
†

c2
†G , ~2.2!

and the Hermitian 232 matrix l is a Lagrange multiplier.
The 232 matrix R is given by

R5F r
0

0
r 21G , ~2.3!

with a real positiver. We will also use the notationRab
5r adab (a,b, . . . 51,2) with r 15r ,r 25r 21. The covariant
derivative is defined asDmc[]mc2cAm with a 232 anti-
Hermitian matrix gauge potentialAm associated with the lo
cal U(2) gauge transformations. The components ofAm can
be explicitly written as follows:

Am52 iF am cm*

cm bmG . ~2.4!

Lcs is the non-Abelian Chern-Simons gauge action given

Lcs52
k

2
emnrtrS ]mAnAr1

2

3
AmAnArD . ~2.5!

The kinetic term of the Lagrangian~2.1! is invariant under
the local U(2) transformation, while the matrixR with r
Þ1 explicitly breaks theU(2) gauge symmetry down to
U(1)3U(1). Thus, the symmetry of our model i
@SU(N)#global3@U(2)# local for r 51, while @SU(N)#global
06502
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3@U(1)3U(1)# local for rÞ1. Therefore, the parameterr
could be regarded as an explicit symmetry breaking par
eter.

Let us perform the canonical analysis using the Dir
method@6#. We first define the conjugate momenta of theca

a

field by Pa
a5]L/]ċa

a , which gives

Pa
a5

1

g2
~ ċa

a†1A0abcb
a†!. ~2.6!

The indicesa,b . . . represent theU(2) indices 1 and 2,
while Latin indicesa,b . . . represent the globalSU(N) in-
dices of c1 and c2. We will occasionally omit the globa
SU(N) indices, when the context is clear. Likewise, the co
jugate momentum of theca

a† field is given by

Pa
a†5

1

g2
~ ċa

a2cb
aA0ba!. ~2.7!

The momentum for the Lagrangian multiplier fieldlab is
constrained to vanish,

Pab
l 50. ~2.8!

The conjugate momentumPab
m for the gauge fieldAmab is

given by

Piab5ke i j Ajba , P0ab50. ~2.9!

In the above, the indicesi , j , . . . represent the spatial one
with 1 and 2. In the following analysis we will not treat th
first equation as a constraint. InsteadPiab is removed from
the beginning and replaced byke i j Ajba @7#. The second
equation, together with Eq.~2.8!, defines the primary con
straint of the theory. The Poisson bracket is defined by

$ca
a~x!,Pb

b~y!%5dabd
abd~x2y!,

$lab~x!,Pcd
l ~y!%5dacdbdd~x2y!,

$A0ab~x!,P0cd~y!%5dacdbdd~x2y!,

$Aiab~x!,Ajcd~y!%52
1

k
e i j daddbcd~x2y!.

~2.10!

After a straightforward Dirac analysis, we find that th
system is described by the canonical Hamiltonian given

H05g2PaPa
†1

1

g2
~Dic!a

†~Dic!a1
1

g2
lab~cb

†ca2Rba!

1~Pacb2ca
†Pb

†1kF12ab!A0ba , ~2.11!

where we denoteFG[FaGa andF12ab is the magnetic field
given by

F12ab5]1A2ab2]2A1ab1@A1 ,A2#ab . ~2.12!
2-2
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Including all secondary constraints, we find that the dyna
ics is governed by the following constraints:

Cab
(0)5Pab

l '0,

Cab
(1)5Pab

0 '0,

Cab
(2)5ca

†cb2Rab'0,

Cab
(3)5Pacb2ca

†Pb
†1kF12ab'0,

Cab
(4)5Pacb1ca

†Pb
†2

1

g2
@A0 ,R#ab'0. ~2.13!

One can check that the time evolution of the above c
straints is closed with a total HamiltonianHT5H0

1(u50
4 Lab

(u)Cab
(u) using the relations~2.10!.

To separate the constraints into first and second clas
we first calculate the commutation relations of Eqs.~2.13! to
yield the nonvanishing Poisson brackets,

$Cab
(1)~x!,Ccd

(4)~y!%5
1

g2
~r c2r d!daddbcd~x2y!,

~2.14!

$Cab
(2)~x!,Ccd

(3)~y!%5~r c2r d!daddbcd~x2y!,
~2.15!

$Cab
(2)~x!,Ccd

(4)~y!%5~r a1r b!daddbcd~x2y!,
~2.16!

$Cab
(3)~x!,Ccd

(3)~y!%5~dbcCad
(3)2dadCcb

(3)!d~x2y!,
~2.17!

$Cab
(3)~x!,Ccd

(4)~y!%5
1

g2
~@A0 ,R#addbc

2@A0 ,R#bcdad!d~x2y!, ~2.18!

$Cab
(4)~x!,Ccd

(4)~y!%5k~F12cbdad

2F12addbc!d~x2y!. ~2.19!

Note that Eq.~2.17! satisfiesU(2) Gauss law algebra. Nev
ertheless,C12

(3) andC21
(3) become second-class constraints

rÞ1, because in this case the right-hand sides of Eqs.~2.15!
and ~2.18! are nonvanishing forcÞd.

Before proceeding to the calculation of the Dirac brack
we briefly review in the next section the structure of t
constrained phase space in a geometric language. This
tion is included mainly to fix our notations, conventions, a
terminology.

III. GEOMETRY OF CONSTRAINED PHASE SPACE

A phase space can be described by a manifoldG with a
nondegenerate closed 2-form,VAB . The capital Roman let-
ters (A,B, . . . ) areused to represent collectively the indic
of the phase-space coordinates. In our casexA
06502
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a ,ca

a ,Aiab ,A0ab,P0ab,lab,Pab
l ). The Poisson bracke

structure onG is defined as follows. For any given two func
tions F, G,

$F,G%5VAB]AF]BG, ~3.1!

whereVAB denotes the inverse ofVAB .
If a theory is constrained by the constraints,Cm̄50, the

space of physical interest will be the submanifoldḠ consist-
ing of all points of G satisfying the constraints. This con
strained subspace inherits a closed 2-form,V̄AB , from VAB

by restriction, i.e., for any two vector fieldsX̄A, ȲB tangent
to Ḡ we defineV̄AB by

V̄ABX̄AȲB[VABX̄AȲB. ~3.2!

Let us divide the discussion in two cases.
~i! V̄AB is nondegenerate. In this case, (Ḡ,V̄AB) is the

reduced phase space and the reduced bracket structure c
defined as before, using the inverse ofV̄AB . For any two
functionsF̄, Ḡ of Ḡ we define

$F̄,Ḡ%D5V̄AB]AF̄]BḠ. ~3.3!

The condition for nondegeneracy ofV̄AB can be stated as

det$Cm̄,Cn̄%Þ0. ~3.4!

This condition, in turn, is equivalent to the fact that none
the vectorsVAB]BCm̄ is tangent toḠ. In this case, the con
straintsCm̄50 are said to form a second class and the res
ing bracket structure onḠ is called the Dirac bracket to
distinguish it from the original Poisson bracket, Eq.~3.1!.

It is well known thatV̄AB, when regarded as a tensor fie
of G, both of whose indices are tangent to the submanif
Ḡ, is related toVAB as follows:

V̄AB5VAB1Qm̄n̄
21

VAM]MCm̄VBN]NCn̄, ~3.5!

whereQm̄n̄[$Cm̄,Cn̄%. In terms of the Poisson bracket, th
Dirac bracket can be written as

$F,G%D5$F,G%2$F,Cm̄%Qm̄n̄
21

$Cn̄,G%. ~3.6!

~ii ! V̄AB is degenerate. The situation in this case is sligh
more complicated because the inverse does not exist. Th
fore, we cannot define the bracket structure on all of
functions ofḠ. However,V̄AB defines for us a nondegene
ate closed 2-form on the quotient manifold ofḠ where any
two points ofḠ are identified if they are related by a curv
which lies along the degeneracy directions everywhere
fact, V̄AB is the pull-back toḠ of a nondegenerate close
2-form on the quotient space under the quotient map. We
interpretV̄AB in both ways, either as a degenerate 2-form
2-3
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Ḡ or as a nondegenerate 2-form on the quotient manifold
this case, the quotient space together with a nondegen
closed 2-form,V̄AB , is the fully reduced phase space a
one can define the bracket structure. Physically, the de
eracy directions represent gauge directions and the quo
space is the space of gauge orbits. Since gauge inva
functions can be identified with the functions on the quoti
manifold, the fact that we have a well-defined bracket str
ture on the quotient space means that the bracket struc
can be well defined only on gauge invariant functions onḠ.

Degeneracies are in fact associated with the existenc
the so-called first-class constraints. LetkA be an arbitrary
vector field onḠ which points in some degeneracy directio
Then, for all vector fields,tB, tangent toḠ,

05V̄ABkAtB5VABkAtB, ~3.7!

which implies that

VABkA5lm̄]BCm̄5]B~lm̄Cm̄! ~3.8!

for some nontriviallm̄ . Such a linear combination of th
constraints,lm̄Cm̄, is called a first-class constraint and i
Poisson bracket with all other constraints vanishes, i.e.,

$lm̄Cm̄,Cn̄%50. ~3.9!

Conversely, whenQm̄n̄[$Cm̄,Cn̄% is degenerate, there exis
a nontriviallm̄ such thatlm̄Qm̄n̄50 and it can be shown tha
lm̄Cm̄ generates a degeneracy ofV̄AB . That is, kA

5VAB]B(lm̄Cm̄) is tangent toḠ andV̄ABkAtB50 for all tB

tangent toḠ. Other linear combinations of the constrain
independent of all first-class constraints belong to the sec
class. Therefore, in the degenerate case one can decom
the constraints into two classes, (Cm̄)5(Cā,Cī ), whereCā

denotes the first-class constraints andCī the second-class
constraints, and they satisfy

$Cā,Cm̄%50, det$Cī ,Cj̄ %Þ0. ~3.10!

Unlike V̄AB , which can be regarded either as a nondege
ate 2-form on the quotient manifold or as a degener
2-form on Ḡ, V̄AB has a well-defined meaning only as
tensor field on the quotient space. In order to compare it w
VAB, we choose a gauge slice. Then, using this one-to-
map between the space of gauge orbits and the gauge
one obtains the corresponding nondegenerate closed 2-
and its inverse on the gauge slice. Note that the 2-form
the gauge slice obtained this way is just the induced 2-fo
from VAB by restriction to the gauge slice. Therefore, o
can obtain the relations betweenV̄AB and VAB by treating
the gauge slicing conditions as additional constraints. W
these are included all constraints form a second class, as
can see from the fact that the induced 2-form on the ga
slice is nondegenerate. LetGā50 represent a choice o
gauge slice. For this to be a good choice of gauge slic
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Wāb̄[$Gā,Cb̄% should be invertible. Then, from Eq.~3.6!
one obtains, after a straightforward calculation,

$F,G%D8 [V̄AB]AF]BG

5$F,G%1Wām̄
21

Wb̄n̄
21

~$Gm̄,Gn̄%

1$Gm̄,Cī %$Gn̄,Cj̄ %Q ī j̄
21

!$Cā,F%$Cb̄,G%

1Wāb̄
21

$Cā,F%$Gb̄,G%2Wāb̄
21

$Gb̄,F%$Cā,G%

1Wāb̄
21

$Gb̄,Cī %Q ī j̄
21

$Cj̄ ,F%$Cā,G%

2Wāb̄
21

$Gb̄,Cī %Q ī j̄
21

$Cā,F%$Cj̄ ,G%

1Q ī j̄
21

$Cī ,F%$Cj̄ ,G%, ~3.11!

where Q ī j̄ 5$Cī ,Cj̄ %. When the functionsF,G are gauge
invariant, the above equation reduces to the usual D
bracket constructed using the second-class constraints o

From a geometric point of view what happens in o
model can be explained as follows. The vector fields wh
are ~Poisson-!generated by the nondiagonal part ofU(2)
constraints point in fixed directions inG. When rÞ1, they
are not tangent toḠ. As the parameter,r, approaches 1, the
constraints change gradually andḠ becomes tangent to thos
vector fields atr 51. Initially second-class constraints be
come first class, the gauge symmetry being enlarged f
U(1)3U(1) to U(2).

IV. DIRAC BRACKETS

In this section, we explicitly construct the Dirac bracke
~3.6! of our model. It turns out that transition fromrÞ1 to
r 51 is singular and we have to carry out the cases ofr 51
and rÞ1 separately. The reason is that in the Dirac meth
we have to compute the inverse of the Dirac matrixQ ī j̄ of
Eq. ~3.5!, which is constructed with second-class constrai
only. This inverse matrix becomes singular in the limit ofr
→1, because part of the constraints change from sec
class into first class in the limit, and the determinant of t
Dirac matrix becomes zero.

A. rÄ1 case

For the case ofr 51, we haveRab5dab , and it is easy to
infer from the constraints algebra~2.14!–~2.19! that only
Cab

(2) andCab
(4) are second-class constraints. All of theCab

(3)’s
are the first-class constraints whose Gauss law satisfies
U(2) algebra~2.17!. Cab

(0) and Cab
(1) completely decouple

from the theory and can be set equal to zero.
One can thus obtain the following Poisson brack

relationsQ ī j̄ 5$Cī ,Cj̄ % among the second-class constrain
Cī 5(C11

(2) ,C12
(2) ,C21

(2) ,C22
(2) ,C11

(4) ,C12
(4) ,C21

(4) ,C22
(4)) ( ī

51,2, . . . ,8),

Q5F O M

2MT N G , ~4.1!
2-4
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where

M5F 2g11 0 0 0

0 0 2g11 0

0 2g11 0 0

0 0 0 2g11

G ,

N5F 0 2 f 12 f 21 0

f 12 0 2d f 2 f 12

2 f 21 d f 0 f 21

0 f 12 2 f 21 0
G . ~4.2!

Here we have definedg11[uc1u25r , g22[uc2u25r 21, f ab

5kF12ab , and d f 5 f 112 f 22. For r 51, we haveg115g22
51.

The inverse matrix ofQ is given by

Q215FMT21NM21 2MT21

M 21 O G , ~4.3!

with
06502
M 2153
1

2g11
0 0 0

0 0
1

2g11
0

0
1

2g11
0 0

0 0 0
1

2g11

4 ,

MT21NM2153
0

f 21

4g11
2

2
f 12

4g11
2

0

2
f 21

4g11
2

0
d f

4g11
2

f 21

4g11
2

f 12

4g11
2

2
d f

4g11
2

0 2
f 12

4g11
2

0 2
f 21

4g11
2

f 12

4g11
2

0
4 .

~4.4!

The Dirac brackets~3.6! are then given by

$ca
a~x!,Pb

b~y!%D5S dabd
ab2

cc
acc

b†

2g11
da1db11~1↔2! D d~x

2y!,

$ca
a†~x!,Pb

b~y!%D5S 2
c1

a†c1
b†

2g11
da1db12

c2
a†c1

b†

2g11
da1db2

1~1↔2! D d~x2y!,
$Pa
a~x!,Pb

b~y!%D5F S P1
ac1

b†2c1
a†P1

b

2g11
1

c2
a†c1

b†2c1
a†c2

b†

2g11

f 12

2g11
D da1db11S P2

ac1
b†2c2

a†P1
b

2g11
1

c1
a†c1

b†

2g11

f 21

2g11

2
c2

a†c2
b†

2g11

f 12

2g11
2

c2
a†c1

b†

2g11

d f

2 D da1db21~1↔2!Gd~x2y!,

$Pa
a~x!,Pb

b†~y!%D5F S Pc
acc

b2cc
a†Pc

b†

2g11
1

c2
a†c1

b†

2g11

f 12

2g11
1

c1
a†c2

b†

2g11

f 21

2g11
2

c2
a†c2

b

2g11

d f

2 D da1db12
cc

a†cc
b

2g11

f 12

2g11
da1db2

1~1↔2!Gd~x2y!,

$lab~x!,Pcd
l ~y!%D5dacdbdd~x2y!,

$A0ab~x!,P0cd~y!%D5dacdbdd~x2y!,

$Aiab~x!,Ajcd~y!%D52
1

k
e i j daddbcd~x2y!. ~4.5!
2-5
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B. rÅ1 case

In this case, we first note that two of the constraintsC12
(3)

andC21
(3) which were first-class in the case ofr 51 become

second-class, because the gauge symmetry is reduce
U(1)3U(1). This is evident from Eq.~2.14!, whose right-
hand side is nonvanishing forr cÞr d . Therefore, we have al
together 12 second-class constraints (C12

(1) ,C21
(1) ,C11

(2) ,C12
(2) ,

C21
(2) ,C22

(2) ,C12
(3) ,C21

(3) ,C11
(4) ,C12

(4) ,C21
(4) ,C22

(4)). One could pro-
ceed to the computation of the Dirac bracket with these
constraints, which is quite involved. However, it greatly sim
plifies the computation if one observes that the constra
C12

(4) andC21
(4) can be eliminated from the list by solving the

explicitly with the variablesA0ab (aÞb) given by

A0ab5
g2

r b2r a
~Pacb1ca

†Pb
†!~aÞb!. ~4.6!

Then, from Eqs.~2.14!–~2.19!, C12
(1) andC21

(1) commute with
the rest of the costraints, and the number of second-c
constraints become eight;Cī 5(C11

(2) ,C12
(2) ,C21

(2) ,C22
(2) ,C12

(3) ,

C21
(3) ,C11

(4) ,C22
(4)) ( ī 51, . . . ,8).

We now find an 838 matrix Q ī j̄ 5$Cī ,Cj̄ % of the form

Q5F O M

2MT 0 G , ~4.7!

whereM is given by
et

b
he

06502
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2
-
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M5F 0 0 2g11 0

0 dg 0 0

2dg 0 0 0

0 0 0 2g22

G , ~4.8!

with dg5g112g22. The inverse matrix ofQ is given by

Q215F O 2~M 21!T

M 21 0 G , ~4.9!

with

M 2153
0 0 2

1

dg
0

0
1

dg
0 0

1

2g11
0 0 0

0 0 0
1

2g22

4 . ~4.10!

The Dirac bracket is then given by
$ca
a~x!,Pb

b~y!%D5Fdabd
ab1S 2

c1
ac1

b†

2g11
1

c2
ac2

b†

dg D da1db11~1↔2!Gd~x2y!,

$ca
a†~x!,Pb

b~y!%D5F2
c1

a†c1
b†

2g11
da1db11

c2
a†c1

b†

dg
da1db21~1↔2!Gd~x2y!,

$Pa
a~x!,Pb

b~y!%D5FP1
ac1

b†2c1
a†P1

b

2g11
da1db11

P2
ac1

b†1c2
a†P1

b

dg
1~1↔2!Gd~x2y!,

$Pa
a~x!,Pb

b†~y!%D5F S P1
ac1

b2c1
a†P1

b†

2g11
1

P2
ac2

b2c2
a†P2

b†

dg D da1db11~1↔2!Gd~x2y!,

$Aiab~x!,Ajcd~y!%D52
1

k
e i j daddbcd~x2y!. ~4.11!

We note that not only is the structure of the constraints different from ther 51 case, but alsor→1 is not defined in the above
algebra~4.11!.
con-
la-
was
ires
ith
hen
V. CONCLUSION

We performed canonical analysis of the gauge symm
enhancement in the enlarged CP(N) model coupled with the
U(2) Chern-Simons term. We discussed the transition
tweenr 51 andrÞ1 cases in terms of the degeneracy of t
ry

e-

constrained phase-space geometry. We found that the
ventional Dirac method does not allow a smooth extrapo
tion of the symmetry enhanced and broken phases. This
essentially due to the fact that the Dirac procedure requ
an inverse of the Dirac matrix, which is constructed w
second-class constraints only, and becomes singular w
2-6
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some of the second-class constraints become first c
Physically, a second-order phase transition occurring as
symmetry breaking parameterr approaches the critical valu
1 could be responsible for the nonsmooth transition.

We conclude with a couple of remarks. We have co
puted the Dirac bracket of Eq.~3.6! without gauge fixing and
thus are considering only gauge invariant functions wh
commute with the first-class constraints. Instead one co
try to fix the gauge first, thereby rendering all the constrai
second class, and then proceed to the Dirac bracket~3.11!.
This would involve technically more difficult steps; for ex
ample, in the case ofr 51, we need four gauge-fixing con
ditions corresponding to theU(2) gauge symmetry, which
could be chosen as the Lorentz gauge. Then the ma
would become 16316. For the gauge conditions correspon
,

.

06502
ss.
he

-

h
ld
s

ix
-

ing to U(1)3U(1) in the case ofrÞ1, we have to evaluate
the inverse of 12312. Finally, it would be interesting to
perform other quantization methods of our model. For e
ample, in the BRST-BFV method@8#, which avoids the
second-class constraints from the beginning by enlarging
phase space, the issue of the connection betweenr 51 and
rÞ1 values could be reexamined.
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