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Chiral symmetry breaking solutions for QCD in the truncated Coulomb gauge
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In this paper we study the powerlike confining potentialsr a. The region of alloweda ’s is identified, the
mass-gap equation is constructed for an arbitrarya and solved for several values of the latter, and the vacuum
energy and the chiral condensate are calculated. The question of replica solutions to the mass-gap equation for
such potentials is addressed, and it is demonstrated that the number of replicas is infinite for anya, as a
consequence of the peculiar behavior of the quark self-energy in the infrared domain.
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I. INTRODUCTION

The problem of the spontaneous breaking of chiral sy
metry ~SBCS! and its relation to confinement is one of th
cornerstones of QCD. Although the basic ideas of SBCS
already the subject of textbooks, this problem still lies at
crossroads of many studies of and approaches to QCD
this paper we exploit the potential model for QCD, who
origins can be traced back to QCD in the truncated Coulo
gauge and which has proved to be successful in studies o
low-energy phenomena in QCD~see, for example,@1#!. This
class of models can be indicated as Nambu–Jona-Las
~NJL-!type models@2# with a current-current quark interac
tion and the corresponding form factor coming from the bi
cal gluonic correlator. The standard approximation in su
types of models is to neglect the retardation and to appr
mate the gluonic correlator by a confining potential of a c
tain form. Powerlike potentials, which are the most natu
candidates for the role of the confining force, are the sub
of the present investigation. In the course of this paper,
re-examine the problem of SBCS for powerlike confini
potentialsV(r )5K0

11ar a with a>0, restrict the range o
alloweda ’s and, for several values of the latter, find nume
cal solutions to the corresponding mass-gap equation, as
as the vacuum energy density and the chiral condensate
the chirally noninvariant vacuum of the theory, and study
detail the problem of the existence of replica solutions to
mass-gap equation for power like confining potentials.

The problem of the instability of the chirally invarian
vacuum for powerlike confining potentials was studied
detail in the mid 1980s by the Orsay group@3#, and this
instability was proved for the range 0<a,3. For numerical
studies, the harmonic oscillator type potential,a52, was
chosen by these authors, as well as by the Lisbon group@4#,
and a set of results for the hadronic properties was obta
in the framework of the given model. In this paper, we stu
the mass-gap equation for an arbitrary value ofa ranging
from 0 to 2, with special attention paid toa8s close to unity,
since a linearly increasing potential is known to be prefer
by phenomenology as the most successful candidate fo
confining force, giving the correct Regge trajectory behav
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possessing a clear connection to the QCD string, and so
~see @5# and references therein!. It is also claimed to be
singled out by lattice calculations. We exclude the regiona
.2 since the corresponding mass-gap equation diverges
sucha ’s. On the other hand, it would be hard to justify th
use of such a strong confining force in phenomenolog
models for QCD. We solve the mass-gap equation explic
for several values ofa from the allowed region and demon
strate that the chiral angle, the vacuum energy density,
the chiral condensate are smooth slow functions of the fo
of the confining potential, so that the results obtained fo
potential of a given form—linear confinement being the m
justified and phenomenologically successful choice — h
a universal nature for any quark-quark kernel of such a ty

Following the set of recent publications devoted to po
sible multiple solutions for the chirally noninvariant vacuu
in QCD @6,7# ~see also@8#, where a similar conclusion wa
made in a different approach!, we address the question o
replica existence for various power lawsr a. We find that for
the whole range of allowed powers 0<a<2, replica solu-
tions do exist, similarly to the case ofa52 studied in detail
in @3,4#. We give the profiles of several replicas for the line
confinement and argue that the number of such solution
infinite for any powera, including the weakest, logarithmic
potential which corresponds toa50. We argue that the
source of replicas is the infrared behavior of the single-qu
self-energy the dressed quark dispersive lawE(p) which, for
small values of the quark momentump, becomes a sharp
negative function ofp, thus enabling fast oscillations of th
chiral angle with the frequency increasing with vanishi
momentump. Since this property of the quark dispersive la
is expected to be an integral part of any confining interacti
we confirm the conclusion made in@7# that ‘‘across all these
different quark kernels, the existence of vacuum replic
should constitute the rule rather than the exception.’’ We
gue that, in real QCD, with the confining interaction flatte
ing at large distances due to the effect of the string break
the number of replicas becomes finite. We find that the
rameter of the SBCS given by the replica solutions decrea
quickly with increasing number of nodes of the chiral ang
so that one has a well defined perturbative series in repl
©2003 The American Physical Society21-1
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and, therefore, taking account of only the first replica may
sufficient in many phenomenological applications~the de-
tails of the formalism that allows one to incorporate replic
into quark models can be found in Ref.@7#!.

The paper is organized as follows. In the second sec
we give the necessary details of the formalism and derive
mass-gap equation for a powerlike confining potential, wh
is studied in detail in the third section, first, qualitative
then quantitatively, and, finally, numerically. The mass-g
equation is solved numerically for several values ofa and
the chiral condensate and the excess of the vacuum en
density over the trivial solution are calculated for the so
tions found. In the fourth section, devoted to replicas,
demonstrate how an infinite number of solutions to the ma
gap equation appears and explicitly build two replicas
linear confinement. Our conclusions are the subject of
last section.

II. THE MASS-GAP EQUATION

The chiral model that we use for our studies is given b
Hamiltonian with the current-current interaction para
etrized by the bilocal correlatorKmn

ab ,

H5 E d3xc̄~xW ,t !~2 igW •,W !c~xW ,t !

1
1

2 E d3xd3yJm
a ~xW ,t !Kmn

ab~xW2yW !Jn
b~yW ,t !, ~1!

where the quark current is Jm
a (xW ,t)

5c̄(xW ,t)gm(la/2)c(xW ,t), and the gluonic correlator is ap
proximated by a potential,

Kmn
ab~xW2yW !5gm0gn0dabV0~ uxW2yW u! ~2!

with

V0~ uxW u!5K0
a11uxW ua. ~3!

In order to include the logarithmic potential in conside
ation an obvious modification of the potential is needed:

V0~ uxW u!→Ṽ0~ uxW u!5K0

~K0uxW u!a21

a
U

a→0

5K0 ln ~K0uxW u!.

~4!

The model contains only one dimensional parameter
strength of the confining forceK0. For further convenience
we shall consider a modified version of the potential~3! @3#,

V0~ uxW u!5K0
a11uxW uae2muxW u, ~5!

wherem plays the role of the regulator for the infrared b
havior of the interaction. The limitm→0 is understood.

The standard technique used in such models is
Bogoliubov-Valatin transformation from bare to dress
quarks parametrized by the chiral angle the main entity
fining the chiral symmetry breaking, the structure of the B
vacuum of the theory, as well as the properties of the h
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ronic states built over this vacuum@3,4#. For application of
this technique to two-dimensional QCD@9#, see the papers
@10#. We choose the following parametrization:

c~xW ,t !5 (
j5↑,↓

E d3p

~2p!3
eipW xW@bj~pW ,t !uj~pW !

1dj
†~2pW ,t !vj~2pW !#, ~6!

u~pW !5
1

A2
@A11 sinwp1A12 sinwp ~aW pŴ !#u~0!,

v~2pW !5
1

A2
@A11 sinwp2A12 sinwp ~aW pŴ !#v~0!,

~7!

bj~pW ,t !5eiEptbj~pW ,0!, dj~2pW ,t !5eiEptdj~2pW ,0!,
~8!

whereEp @the shorthand notation forE(p)] stands for the
dispersive law of the dressed quarks, and the chiral an
w(p) ~we also use the shorthand notationwp for this! varies
in the range2p/2,wp<p/2 with the boundary conditions
w(0)5p/2, w(p→`)→0.

The Hamiltonian~1! normally arranged in the basis~8!
splits into the vacuum energy and the quadratic and qua
parts in terms of the quark creation and annihilation ope
tors. For the vacuum energy density one has

Evac@w#5
1

V
^0uTH@w#u0&

52
g

2 E d3p

~2p!3
~A~p! sinwp1@B~p!1p# coswp!,

~9!

where V is the three-dimensional volume; the degenera
factor g counts the number of independent quark degree
freedom,

g5~2s11!NCNf , ~10!

with s5 1
2 being the quark spin; the number of colors,NC , is

put to 3, and the number of light flavors,Nf , is 2. Thus we
find thatg512. The auxiliary functionsA(p) andB(p) are
defined as

A~p!5
1

2
CF E d3k

~2p!3
V0~pW 2kW ! sinwk , ~11!

B~p!5p1
1

2
CF E d3k

~2p!3
~pŴ •kŴ !V0~pW 2kW ! coswk ,

~12!

whereCF5 4
3 is theSU(3)C Casimir operator in the funda

mental representation. The actual form of the chiral angle
such that the quadratic part of the normally ordered Ham
1-2
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tonian diagonalizes, or, alternatively, the vacuum ene
takes its minimal value. The corresponding equation

dEvac@w#

dwp
50, ~13!

known as the mass-gap equation, reads

A~p! coswp2B~p! sinwp50. ~14!

For the generalized power like potential~5! one can find

A~p!52CFG~a11!
K0

a11

p

3E
2`

` dk

2p

k cos$~a11!arctan@~k2p!/m#%

@m21~k2p!2# (a11)/2
sinwk ,

~15!

B~p!5p2CFG~a!
K0

a11

p2 E
2`

` dk

2p

3Fapk cos$~a11!arctan@~k2p!/m#%

@m21~k2p!2# (a11)/2

2
cos$~a21!arctan@~k2p!/m#%

~a21!@m21~k2p!2# (a21)/2

2
~k2p! sin$aarctan@~k2p!/m#%

@m21~k2p!2#a/2 G coswk , ~16!

where, for the sake of convenience, we continued the inte
to negative values ofk, assuming cosw2k ,52 coswk ,
sinw2k5 sinwk ~the most natural realization of these cond
tions can be achieved in terms of some even functionmp ,
such that sinwp5mp /Ap21mp

2, coswp5p/Ap21mp
2, which

plays the role of the effective mass of the quark!. Conse-
quently, the mass-gap equation~14! takes the form

p3 sinwp5CFK0
a11G~a! E

2`

` dk

2p

3H apk cos$~a11!arctan@~k2p!/m#%

@m21~k2p!2# (a11)/2

3sin@wp2wk#

1S cos$~a21!arctan@~k2p!/m#%

~a21!@m21~k2p!2# (a21)/2

1
~k2p! sin$a arctan@~k2p!/m#%

@m21~k2p!2#a/2 D
3coswk sinwpJ , ~17!

and this is the main object of our studies.
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III. INVESTIGATION OF THE GENERAL FORMULA

A. Qualitative analysis

As the first step in studies of the general formula~17!, we
perform its simple qualitative analysis. Using the techniqu
described in@6#, we assume that a solutionw (0)(p) to this
equation exists, and the vacuum energy is minimal on
solution. If the functionw (0)(p/A) with an arbitrary stretch-
ing parameter 0<A,` is substituted into the vacuum en
ergy ~9!, then the functionEvac(A) must reveal a minimum
for A51. Moreover, the corresponding minimum should
lower than the one for the trivial solutionw(p)[0, when
there is no dressing of quarks and the chiral symmetry
unbroken. If the regulatorm is removed from the vacuum
energy functional, then the strength of the potential rema
the only dimensional parameter in the theory, so that, afte
proper rescaling of the integration variables, one arrives
the simple formula, for an arbitrary number of spatial dime
sionsd,

Evac~A!5C1Ad111C2K0
a11Ad2a, ~18!

whereC1 andC2 are two constants independent ofA which
are interrelated by the constraint]Evac(A)/]AuA5150. The
first term in Eq. ~18! comes from the kinetic energy, th
second term is due to the interaction. The following fo
situations are possible:~i! 0,a,d, ~ii ! a.d, and two
boundary cases,~iii ! a5d, and ~iv! a50. In the first case
the vacuum energy has a double-well form with two minim
trivial for A50 and nontrivial for A51. The difference
Evac(A51)2Evac(A50) is negative, so that the chirally non
symmetric nontrivial solution is energetically preferable. F
the second case one has an interaction term in Eq.~18! con-
taining negative powers ofA and, as a result, the trivial so
lution, with unbroken chiral symmetry and which corr
sponds toA50, possesses an infinite energy and theref
does not exist. In the meantime, a nontrivial solution w
A51 may still be present. The boundary case ofa5d leads
to a logarithmic dependence of the vacuum energy on
parameterA,

Evac~A!5C1Ad111C2K0
d11 ln

A

K0
, ~19!

so that qualitatively the same conclusion holdsthe the
possesses only a chirally nonsymmetric phase. Tw
dimensional QCD@9# is an example of a theory with such
logarithmic dependence~see@6# for the details!.

Finally, for the case~iv!, that is, for the logarithmic po-
tential ~4!, one has

Evac~A!5C1Ad111C2K0Ad ln
A

K0
, ~20!

where the logarithmic growth of the energy, when approa
ing the trivial solution limitA50, is canceled by the powe
factorAd, so that both chirally symmetric and nonsymmet
solutions coexist in this case, similarly to other potenti
with 0,a,d.
1-3
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Thus we conclude that once the power of the poten
reaches a critical value equal to the number of spatial dim
sions the behavior of the theory changes drastically,
chirally symmetric phase being swept off. Meanwhile, t
qualitative analysis performed above ignored the problem
convergence of the integrals in the expression for
vacuum energy and in the corresponding mass-gap equa
It also fails to answer the question of how many solutions
the mass-gap equation exist. In what follows we turn to
quantitative and numerical analyses of these problems.

B. Quantitative analysis

Now we turn to a detailed analysis of the mass-gap eq
tion ~17!, such as the problem of convergence, the allow
region for thea ’s, the dependence on the regulatorm, and so
on.

First of all, one can easily check that the casea50 causes
no difficulties—the right-hand side~RHS! vanishes if the
limit a→0 is taken naively, whereas to arrive at the ma
gap equation for the logarithmic potential one has to div
the RHS bya @see Eq.~4!#, which leads to a finite resul
after taking the limita→0.

For a51 the divergent term proportional to 1/(a21)
vanishes on the RHS of Eq.~17!, since the cosine of the
chiral angle is odd. An accurate expansion of this term
a→1 brings about logarithmic terms.

Now let us check the largest value ofa that does not lead
to divergences in the mass-gap equation. When the regu
m tends to zero, the first term in the large curly brackets
Eq. ~17!, formally, is the most singular term fork;p, and it
can be written as

E
2`

` dk

2p

pk cos$~a11!arctan@~k2p!/m#%

@m21~k2p!2# (a11)/2
sin@wp2wk#.

~21!

In the regionk;p the integrand admits an expansion in t
powers (k2p)n:

cos$~a11!arctan@~k2p!/m%

2p@m21~k2p!2# (a11)/2 H p2~k2p!wp8

1~k2p!2Fpwp81
1

2
p2wp9G . . . J , ~22!

where the first term in the large curly brackets is odd a
therefore, it vanishes in the integral ink aroundk5p. The
remaining expression, as well as other terms on the RHS
Eq. ~17!, behaves asuk2pu12a, and the corresponding con
tribution to the mass-gap equation converges fora,2,
which is the upper limit of the range of valid powersa. For
sucha8s,
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arctan
k2p

m
→

m→0

p

2
sgn~k2p!1O~m!, ~23!

and the regulatorm can be removed from the mass-gap equ
tion. For the case ofa52 the entire RHS of Eq.~17! van-
ishes after the substitution~23!. To be more precise, one ha
to keep the next the terms in the expansion~23!, with posi-
tive powers of the regulatorm, reproducing the well-known
representation of the delta function

d~p2k!5 lim
m→0

1

p

m

m21~k2p!2

and its derivatives. We shall consider this special case s
rately.

Notice that the proof of the chirally symmetric vacuu
instability given in@3# was based on a consideration of th

self-energy functionalF(pW )5 * @d3k/(2p)3#V0(pW 2kW )(pŴ kŴ )
}1/pa, which gives an infrared divergent contribution to in
tegrals ind3p if a>3. In the meantime, as demonstrat
above, the requirement of finiteness of the mass-gap equa
imposes a stronger restriction ona: a<2.

One encounters no more difficulties fora8s within the
interval 0<a,2 and, when the regulatorm is removed, one
arrives at the mass-gap equation in the ultimate form:

p3 sinwp5CFK0
a11G~a11! sin

pa

2

3E
2`

` dk

2p H pk sin@wk2wp#

up2kua11

1
coswk sinwp

a21 F 1

up2kua21
2

1

la21G J .

~24!

We introduced the term 1/la21, with an arbitrary mass
parameterl, in order to emphasize the convergence of t
integral fora51. This extra term does not contribute to th
integral due to the parity of coswk .

In particular, the mass-gap equation for the logarithm
potential follows from Eq.~24! in the limit a→0, if the
proper modification of the potential, given in Eq.~4!, is ap-
plied:

p3 sinwp5
CFK0

4 E
2`

` dk

up2ku @pk sin~wk2wp!

2~p2k!2 coswk sinwp#. ~25!

For the case ofa51, that is, for linear confinement, th
formula well-known in the literature is readily reproduce
~see, for example,@6#!:
1-4
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FIG. 1. The solutions to the mass-gap equation~24! for a50.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, 1.7, 1.9, and 2.0~a!; ~the curves

localized closer to the origin correspond to smallera ’s!, the mass parameters defining the chiral condensate, as^q̄q&52Lx
3 , and the excess

of the vacuum energy density over the trivial vacuum, for two quark flavors and three colors, asDEvac52LE
4 , ~b!. All dimensional quantities

are given in units ofK0.
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p3 sinwp5CFK0
2 E

2`

` dk

2p H pk

~p2k!2
sin@wk2wp#

2 ln
up2ku

l
coswk sinwpJ ~26!

5CFK0
2 E

0

` dk

2p H 4p2k2

~p22k2!2
sin@wk2wp#

2F 2pk

~p1k!2
1 ln Up2k

p1kUG coswk sinwpJ .

To complete our investigation, let us consider the case
the harmonic oscillator potential,a52. The Fourier trans-
form of the potentialV(r )5K0

3r 2 is the Laplacian of the
three-dimensional delta function, so that the resulting ma
gap equation becomes differential@3#:

p3 sinwp5
1

2
CFK0

3@p2wp912pwp81 sin2wp#. ~27!

Formally, Eqs.~17!, ~24! remain valid for 21,a,0,
and an ultraviolet divergence is encountered fora521, that
is, for the Coulomb potential. We disregard this region sin
the resulting force fails to be confining. Thus the valid co
fining potentials, in momentum space, range symbolically
(2p)3K0d (3)(pW ),V(pW )<(2p)3K0

3Dd (3)(pW ), that is, from a
constant to the harmonic oscillator potential, respectively

For numerical investigation of the mass-gap equation~24!
it is convenient to evaluate analytically the contribution
the stripuk2pu,l to the integral on the RHS,
06502
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CFK0

2p

l

22a
G~a11! sin

pa

2
@p2wp912pwp8

1 sin2wp#, ~28!

where this integral admits an extra contribution if the wid
of the strip is chosen different froml. For a52 the depen-
dence of the strip integral~28! on l disappears, and the ful
mass-gap equation~27! is readily reproduced as a cons
quence of the delta functional form of the Fourier transfo
of the harmonic oscillator potential.

C. Numerical analysis

In this subsection we present the results of numer
studies of the mass-gap equation~24! with 0<a<2. The
equation for the harmonic oscillator potential~27! is studied
in detail in the literature, so the interested reader can find
details, for example, in Refs.@3,4#. In Fig. 1~a! we plot the
profile of the nontrivial solutionsw0(p) to the mass-gap
equation~24! for several values ofa. The solution fora
52, found in Refs.@3,4#, is also depicted for the sake o
completeness. In Fig. 1~b! we present the results for the ch
ral condensatêqq&52(3/p2) *0

` dpp2 sinw0(p)[2Lx
3 and

for the excess of the vacuum energyDEvac5Evac@w0#
2Evac@w[0#[2L«

4 over the trivial vacuum as functions o
a. From Fig. 1~b! one can see thatLx'LE in the whole
range of alloweda8s, and that their dependence on the fo
of the potential is smooth, solutions fora around unity being
quite close to one another@see Fig. 1~a!#. Thus we conclude
that the concrete form of the confining potential does
play a crucial role in the physics of chiral symmetry brea
ing, resulting in only minor numerical changes. In particul
one can see that the qualitative behavior of the solution
1-5
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very stable against deviations of the potential from the pur
linear form, usually adopted in phenomenological mod
and declared to be confirmed by lattice calculations. The
fore, at least SBCS and the spectrum of low-lying hadro
will not be strongly affected if the behavior of the confinin
potential is slightly changed, deviating from linearity, as su
gested in@11#.

IV. THE REPLICAS

As argued in a sequence of recent papers@6,7#, it is pos-
sible that ‘‘same ultraviolet behavior, for instance for t
quark propagator, bifurcates to different solutions when
go to the low-energy domain’’ in QCD, and such a repli
was discovered for a phenomenology inspired potential
addition, the whole infinite tower of excited solutions for th
mass-gap equation~27! for the harmonic oscillator potentia
was found in Ref.@3# and also confirmed in@6#. With the
general form of the mass-gap equation~17! and~24!, we are
in the position to investigate the problem of replica existen
for various powerlike confining potentials. We find thatany
powerlike potentialr a, with the power 0<a<2, maintains
replicas. In @3# a detailed analysis was performed for t
harmonic oscillator potential mass-gap equation~27! and the
existence of an infinite tower of solutions was proved a
lytically. We failed to repeat this analysis for the gene
form of the mass-gap equation~24! since, in contrast to Eq
~27!, Eq. ~24! is integral, with the coefficients tuned to pro
vide overall convergence of the integral, but leaving no ho
of using any expansions under the integral. Instead, let us
an approximate method in order to demonstrate how rep
solutions occur for the mass-gap equation~24!. To this end
we use the parametrization of the chiral angle through
effective quark mass and introduce a new functioncp :

sinwp5mpDp , coswp5pDp , cp5p sinwp ,

Dp
21[Ap21mp

2. ~29!

It is also convenient to use the following integral:

E
2`

` dk

2p

ck2cp

uk2pua11

52
1

2G~a11! sin~pa/2!
E

2`

`

dxuxuacxe
ipx.

~30!

Then the mass-gap equation~24! can be rewritten in a simple
physically transparent form:

@2E~ p̂!1CFK0
a11uxua#cx50, ~31!

where the operatorE( p̂) has the meaning of the quark se
energy and is given by the following expression:
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E~p!5
1

Dp
2

CFK0
a11

p2Dp

G~a11! sin
pa

2

3E
2`

` dk

2p F p2Dp2k2Dk

up2kua11
1

pkDpDk

~a21!up2kua21G .

~32!

The even functionm(p) takes its maximal value atp
50 and then decreases rapidly. Thus, for momenta la
than somep0;m(0), Eq. ~31! can be linearized by putting
Dp

21'upu in the expression~32!. Then the integral on the
RHS of Eq.~32! is easily evaluated, and the self-energy tak
the form

E~p!'upu2
2CFK0

a11G~a11! sin~pa/2!

pa~22a!upua
. ~33!

Notice that forany confining potential, a>0, the second
term on the RHS of the expression~33! dominates in the
low-momentum region, bringing a large negative contrib
tion to the quark self-energy@the corresponding term be
comes logarithmic,;K0 ln (K0 /upu), for the potential~4!#.
This general feature of the quark self-energy in a confin
potential has been discussed in the literature several ti
~see, for example,@3,4#, or @10#, where the case of two
dimensional QCD is discussed in detail!, and it is known to
play a crucial role for the properties of the theory. In ad
tion, replicas exist in the theory also due to this feature of
quark self-energyE(p). In order to demonstrate this let u
write the linearized mass-gap equation~31! in the form of a
Schrödinger-type equation in momentum space,

FCFK0
a11ux̂ua12upu2

4CFK0
a11G~a! sin~pa/2!

p~22a!upua
Gcp

5«cp , ~34!

and notice that the linearization suppresses the first, posi
term on the RHS of Eq.~32! and enhances the second, neg
tive, term. As a result, we are interested in theodd @see the
definition ~29!# eigenstates of the linear equation~34! with
negativeeigenvalues. Each such state indicates a solutio
the full nonlinear mass-gap equation~24! and can be used a
the starting anzatz for the iterative numerical method to so
the latter. Therefore, in order to find the number of solutio
to the mass-gap equation~24!, it is sufficient to count the odd
eigenstates, with negative eigenvalues, of the linear equa
~34!. If the Bohr-Sommerfeld quantization procedure is a
plied directly to Eq.~34!, then the quasiclassical integra
I WKB5*pmin

pmaxx(p)dp diverges logarithmically at p50,

where the chiral angle is no longer small and the approxim
tion Dp

21'upu obviously fails. In this region, the sharp be
havior of the self-energy is smeared by the effective qu
massm;mp(p→0), which plays the role of the effective
regulator, so that we modify Eq.~34! accordingly:
1-6
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FCFK0
a11ux̂ua12Ap21m22

4CFK0
a11G~a! sin~pa/2!

p~22a!~p21m2!a/2 Gcp

5«cp . ~35!

The spectrum of eigenstates of Eq.~35! starts, forn50,
at the bottom of the deep well described by the effect
potential V(p)52E(p), «0'V(p50);2K0

11a/ma, and,
for somenmax, reaches zero from below. Then the spectr
continues for positive eigenvalues up to infinity. Since t
last negative eigenenergy«nmax

is small, we expand the qua
siclassical integral accordingly and find

«n '
n'nmax

K0S CFG~1/2!G„~42a!/2…

G„~11a!/2… D 1/(11a)

3
G„@1/a~11a!#…

G~1/a!G„a~11a!… FpnS ApG„~42a!/2…

2aG„~11a!/2…
D 1/a

2 ln
K0

m G , ~36!

where we expressed sin (pa/2) through the Euler Gamm
functions as

sin
pa

2
52a21

G~1/2!G„~11a!/2…

G~a!G„22a/2…
. ~37!

Notice that in actuality the regulatorm itself is not a con-
stant, but rapidly decreases with increasingn, and it is such
that all eigenvalues of Eq.~35! vanish for alln8s. Then the
corresponding eigenfunctionscn provide, according to the
definition ~29!, the solutions to the exact mass-gap equat
~24!. From Eq.~36! one can easily see that

mn~a!5K0exp~2Capn!, Ca5FApG„~42a!/2…

2aG„~11a!/2…
G 1/a

.

~38!

Using a more accurate expansion in Eq.~36!, one can find
the correction da to the leading regime~38!, mn(a)
5K0exp@2Ca(pn1da)#, as was done in@3#. Unlike the lead-
ing logarithmic term, this correction is sensitive to the co
crete form of the regularization of the potentialV(p), and
we do not give it here.

From the formula~38! we conclude that, for anya, the
mass-gap equation~24! supports an infinite number of solu
tions which, in the low-momentum region (p!K0), behave
as

wn~p;0!5
p

2
2

p

K0
eCa(pn1da)1•••, ~39!

then oscillaten times, and, finally, approach zero for infinit
momentum. The constantCa is a monotonically decreasin
06502
e

e

n

-

function of a in the whole interval 0<a<2 and it varies

from C05 1
2 exp$1

2@g212c(1
2)#%'1.08 to C251/A2'0.71.

Numerically, the same behavior of the solutions to the ma
gap equation~24! is observed for smallera8s and highern8s
the chiral angle becomes steeper at the origin, in accorda
with the obvious identificationwnup508 521/mn}exp(Ca@pn
1da#) @see Figs. 1~a! and 2#.

The formula~38! is approximate since the dependence
m in Eq. ~35! reproduces only the gross features of the qu
self-energy, whereas the exact dependence of the self-en
on the chiral angle is, in turn, a consequence of the mass
equation, and the problem becomes self-consistent. To
mate the accuracy of the formula~38! we continue it toa
52 and compare our result with the result found in@3#:

C25
1

A2
'0.71, C2~Ref. @3# !5

2

A7
'0.76,

that is, the error is about 6–7%.
As an indirect confirmation of the conclusion made abo

let us mention that no critical phenomena are observed in
mass-gap equation for anya, as well as in the limita→2,
so that all properties of the mass-gap equation, including
infinite number of solutions, may be continued froma52 to
smallera ’s.

In Fig. 2 we give the profiles of the ground state, as w
as of the first two replica solutions for the linear confin
ment,a51. Solutions with larger numbers of nodes are a
available for numerical study, but the method has to be v
precise since each new solution possesses oscillat
squeezed to zero and seen only with the help of meth
with a sufficiently high resolution. According to the formu
~39!, the behavior of these solutions at the origin can
approximated as

ϕ

FIG. 2. The first three solutions to the mass-gap equation~26!
corresponding to the ground state BCS vacuum (n50) and to the
first two replica states (n51,2). The momentump is given in units
of K0.
1-7
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wn~p;0!5
p

2
2

p

K0
expFp4 ~pn1d1!G1•••, ~40!

so thatmn11(1)/mn(1)'exp(p2/4);10, that is, the param
eter of SBCS decreases about ten times for each succe
replica.

In Ref. @7# a method is proposed which allows one to ta
the vacuum replicas into account in quark models. The g
eralization of this approach to the case of many replica
straightforward and assumes a summation over the contr
tions of all replicas. On the other hand, since the mass
rameter of the solution, for example,mn , decreases fast~ap-
proximately ten times for linear confinement! for each
successive solution, then one has a sort of perturbative s
a the well defined convergence parameter. Therefore it m
be sufficient to consider only the first replica, neglecting
contribution of higher replicas, starting from the second o
which are hard to distinguish numerically from the trivi
solutionwp[0. To have a good phenomenological descr
tion of quarkonia one should supply the purely confini
potential with the short-range Coulomb interaction and, p
sibly, with a constant term in order to fit for the right value
the chiral condensate~an attempt to evaluate this consta
from first principles was undertaken in@12#!. Such a poten-
tial was considered in@6,7#, and the solutions for the groun
state BCS vacuum as well as for one vacuum replica w
found numerically.

V. CONCLUSIONS

In this paper we complete the study of power like pote
tials K0

a11r a from the point of view of SBCS and the num
ber of nontrivial solutions of the mass-gap equation. We
a constructive method to prove the chirally symmet
vacuum instability for such potentials, solving the mass-g
equation explicitly and calculating the vacuum energy for
corresponding solution. We establish the region of allow
powers ofa for such confining potentials that lead to a co
vergent mass-gap equation and a finite excess of the vac
energy density over the trivial solution with unbroken chi
symmetry. Thus, using simple qualitative arguments,
demonstrate that for 0<a,d, d being the number of spatia
dimensions, at least two~chirally symmetric and nonsym
metric! solutions should exist, whereas fora>d the trivial
solution possesses an infinite energy density and disapp
In the meantime, a restriction for the parametera exists, 0
ir

al
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<a<2, which comes from the fact that the correspondi
mass-gap equation should be convergent. We find nume
solutions to the mass-gap equation for various values oa
from the allowed region and, for the solutions found, eva
ate the vacuum energy density and the chiral condens
which are given by the same scaleL«;Lx and turn out to be
slow functions of the parametera.

We address the question of the existence of the sec
third, and higher chirally nonsymmetric solutions of th
mass-gap equation for powerlike confining potentials a
find that any potential with 0<a<2 supports such solution
sthe replicaswhich is rather the rule for confining potenti
and comes from the peculiar behavior of the quark s
energy in the infrared domain. We find that the number
such replicas is infinite for anya and estimate the slopes o
the solutions to the mass-gap equation at the origin.

Thus we dare predict the existence of replicas regard
of the explicit form of the confinement and of the details
the model used in calculations. In real QCD, with light qua
flavors and the quark-quark potential flattening at large d
tances due to the effect of QCD string breaking~such an
effect can be taken into account in the interquark poten
through a coordinate dependence of the effective string
sion @13#!, the number of replicas is expected to be fini
Indeed, the distance at which the string starts to breakL,
will play the role of the infrared regulator in a formula sim
lar to Eq.~35!, instead ofm. Therefore, as follows from Eq
~36!, nmax; ln (K0L);1, where we considerL;K0

21. In
other words, confinement becomes less ‘‘binding’’ due
string breaking and the corresponding mass-gap equa
supports fewer solutions‘‘bound states.’’ A more detail
analysis of the QCD inspired interaction, including th
proper string dynamics, from the point of view of replicas
in progress now and will be the subject of future public
tions.

ACKNOWLEDGMENTS

The authors are grateful to A. A. Abrikosov, Jr., for frui
ful discussions, as well as to Yu. S. Kalashnikova and J
Ribeiro for reading the manuscript and valuable comme
One of the authors~A.V.N.! would like to thank the staff of
the Centro de Fı´sica das Interacc¸ões Fundamentais~CFIF-
IST! for cordial hospitality during his stay in Lisbon, wher
this work was originated and to acknowledge the financ
support of INTAS grants OPEN 2000-110 and YSF 2002-
as well as the grant NS-1774.2003.2.
tt.
s,
@1# P. Bicudo, S. Cotanch, F. Llanes-Estrada, P. Maris, E. Ribe
and A. Szczepaniak, Phys. Rev. D65, 076008~2002!.

@2# Y. Nambu and G. Jona-Lasinio, Phys. Rev.122, 345 ~1961!.
@3# A. Amer, A. Le Yaouanc, L. Oliver, O. Pene, and J.-C. Rayn

Phys. Rev. Lett.50, 87 ~1983!; A. Le Yaouanc, L. Oliver, O.
Pene, and J.-C. Raynal, Phys. Lett.134B, 249 ~1984!; Phys.
Rev. D29, 1233~1984!.

@4# P. Bicudo and J. E. Ribeiro, Phys. Rev. D42, 1611~1990!; 42,
1625 ~1990!; 42, 1635~1990!; P. Bicudo, Phys. Rev. Lett.72,
o,

,

1600 ~1994!; Phys. Rev. C60, 035209~1999!.
@5# S. L. Adler and A. C. Davis, Nucl. Phys.B244, 469~1984!; Y.

L. Kalinovsky, L. Kaschluhn, and V. N. Pervushin, Phys. Le
B 231, 288 ~1989!; P. Bicudo, J. E. Ribeiro, and J. Rodrigue
Phys. Rev. C52, 2144~1995!; R. Horvat, D. Kekez, D. Palle,
and D. Klabucar, Z. Phys. C68, 303 ~1995!; Yu. A. Simonov,
Yad. Fiz.60, 2252 ~1997! @Phys. At. Nucl.60, 2069 ~1997!#;
N. Brambilla and A. Vairo, Phys. Lett. B407, 167 ~1997!; Yu.
A. Simonov and J. A. Tjon, Phys. Rev. D62, 014501~2000!; P.
1-8



B
ys

s

s.

CHIRAL SYMMETRY BREAKING SOLUTIONS FOR QCD . . . PHYSICAL REVIEW D68, 065021 ~2003!
Bicudo, N. Brambilla, E. Ribeiro, and A. Vairo, Phys. Lett.
442, 349~1998!; F. J. Llanes-Estrada and S. R. Cotanch, Ph
Rev. Lett.84, 1102~2000!.

@6# P. J. A. Bicudo, A. V. Nefediev, and J. E. F. T. Ribeiro, Phy
Rev. D65, 085026~2002!.

@7# A. V. Nefediev and J. E. F. T. Ribeiro, Phys. Rev. D67,
034028~2003!.

@8# A. A. Osipov and B. Hiller, Phys. Lett. B539, 76 ~2002!.
@9# G. ’t Hooft, Nucl. Phys.B75, 461 ~1974!.
06502
.

.

@10# I. Bars and M. B. Green, Phys. Rev. D17, 537 ~1978!; Ming
Li, ibid. 34, 3888~1986!; Ming Li, L. Wilets, and M. C. Birse,
J. Phys. G13, 915 ~1987!; Yu. S. Kalashnikova and A. V.
Nefediev, Usp. Fiz. Nauk172, 378 ~2002! @Physica~Utrecht!
45, 347 ~2002!#.

@11# D. Diakonov and V. Petrov, Phys. Scr.61, 536 ~2000!.
@12# Yu. A. Simonov, Phys. Lett. B515, 137 ~2001!.
@13# A. M. Badalian, B. L. G. Bakker, and Yu. A. Simonov, Phy

Rev. D66, 034026~2002!.
1-9


