PHYSICAL REVIEW D 68, 065021 (2003

Chiral symmetry breaking solutions for QCD in the truncated Coulomb gauge
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In this paper we study the powerlike confining potentigls The region of allowedx’s is identified, the
mass-gap equation is constructed for an arbitragnd solved for several values of the latter, and the vacuum
energy and the chiral condensate are calculated. The question of replica solutions to the mass-gap equation for
such potentials is addressed, and it is demonstrated that the number of replicas is infinite for @a
consequence of the peculiar behavior of the quark self-energy in the infrared domain.
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[. INTRODUCTION possessing a clear connection to the QCD string, and so on
(see[5] and references therginlt is also claimed to be
The problem of the spontaneous breaking of chiral symsingled out by lattice calculations. We exclude the region
metry (SBCS and its relation to confinement is one of the >2 since the corresponding mass-gap equation diverges for
cornerstones of QCD. Although the basic ideas of SBCS areucha’s. On the other hand, it would be hard to justify the
already the subject of textbooks, this problem still lies at theuse of such a strong confining force in phenomenological
crossroads of many studies of and approaches to QCD. Imodels for QCD. We solve the mass-gap equation explicitly
this paper we exploit the potential model for QCD, whosefor several values ofr from the allowed region and demon-
origins can be traced back to QCD in the truncated Coulomistrate that the chiral angle, the vacuum energy density, and
gauge and which has proved to be successful in studies of thtee chiral condensate are smooth slow functions of the form
low-energy phenomena in QC@Bee, for exampld1]). This  of the confining potential, so that the results obtained for a
class of models can be indicated as Nambu—Jona-Lasinigotential of a given form—Ilinear confinement being the most
(NJL-)type modelq2] with a current-current quark interac- justified and phenomenologically successful choice — have
tion and the corresponding form factor coming from the bilo-a universal nature for any quark-quark kernel of such a type.
cal gluonic correlator. The standard approximation in such Following the set of recent publications devoted to pos-
types of models is to neglect the retardation and to approxisible multiple solutions for the chirally noninvariant vacuum
mate the gluonic correlator by a confining potential of a cerin QCD [6,7] (see alsd 8], where a similar conclusion was
tain form. Powerlike potentials, which are the most naturalmade in a different approaghwe address the question of
candidates for the role of the confining force, are the subjeateplica existence for various power law& We find that for
of the present investigation. In the course of this paper, wehe whole range of allowed powerssv<2, replica solu-
re-examine the problem of SBCS for powerlike confiningtions do exist, similarly to the case af=2 studied in detail
potentiaIsV(r)zKé*“r“ with «=0, restrict the range of in[3,4]. We give the profiles of several replicas for the linear
alloweda’s and, for several values of the latter, find numeri- confinement and argue that the number of such solutions is
cal solutions to the corresponding mass-gap equation, as waéiifinite for any powera, including the weakest, logarithmic,
as the vacuum energy density and the chiral condensate fpotential which corresponds ta=0. We argue that the
the chirally noninvariant vacuum of the theory, and study insource of replicas is the infrared behavior of the single-quark
detail the problem of the existence of replica solutions to theself-energy the dressed quark dispersive EB\@) which, for
mass-gap equation for power like confining potentials. small values of the quark momentupy becomes a sharp
The problem of the instability of the chirally invariant negative function o, thus enabling fast oscillations of the
vacuum for powerlike confining potentials was studied inchiral angle with the frequency increasing with vanishing
detail in the mid 1980s by the Orsay gro{ig], and this momentunp. Since this property of the quark dispersive law
instability was proved for the rangesOe<<3. For numerical is expected to be an integral part of any confining interaction,
studies, the harmonic oscillator type potentiak=2, was  we confirm the conclusion made fii] that “across all these
chosen by these authors, as well as by the Lisbon giéljp different quark kernels, the existence of vacuum replicas
and a set of results for the hadronic properties was obtaineshould constitute the rule rather than the exception.” We ar-
in the framework of the given model. In this paper, we studygue that, in real QCD, with the confining interaction flatten-
the mass-gap equation for an arbitrary valueaofanging ing at large distances due to the effect of the string breaking,
from 0 to 2, with special attention paid t@'s close to unity, the number of replicas becomes finite. We find that the pa-
since a linearly increasing potential is known to be preferredameter of the SBCS given by the replica solutions decreases
by phenomenology as the most successful candidate for thguickly with increasing number of nodes of the chiral angle,
confining force, giving the correct Regge trajectory behaviorso that one has a well defined perturbative series in replicas
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and, therefore, taking account of only the first replica may beonic states built over this vacuuf8,4]. For application of

sufficient in many phenomenological applicatiofise de-

this technique to two-dimensional QCD], see the papers

tails of the formalism that allows one to incorporate replicag 10]. We choose the following parametrization:

into quark models can be found in RET)).
The paper is organized as follows. In the second sectio

we give the necessary details of the formalism and derive the
mass-gap equation for a powerlike confining potential, which

is studied in detail in the third section, first, qualitatively,

then quantitatively, and, finally, numerically. The mass-gap

equation is solved numerically for several valuesaofind

the chiral condensate and the excess of the vacuum energy U(5):
density over the trivial solution are calculated for the solu-

3

d P iox N N
(277)38” [bs(p,H)ug(p)

k= D
&=1,1

J

tions found. In the fourth section, devoted to replicas, we

demonstrate how an infinite number of solutions to the mass-
gap equation appears and explicitly build two replicas for v(—p)=
linear confinement. Our conclusions are the subject of the

last section.

Il. THE MASS-GAP EQUATION

The chiral model that we use for our studies is given by a

Hamiltonian with the current-current interaction param-

etrized by the bilocal correlatd(ff,,

H= f A3 (X, 1) (—iy- V) (X,

a
w

1 - I
+5 f d3xdPy (X, HK(X—y) %y, (D)
where the quark current is Ji(i,t)

= y(x,1) 7, (\¥/2)y(x,t), and the gluonic correlator is ap-
proximated by a potential,

K2 (X—Y)=0,09,00"Vo(|X—y]) 2
with
3)

In order to include the logarithmic potential in consider-
ation an obvious modification of the potential is needed:

Vol|x)=Kg x|

(KolxD -1 N
————  =KoIn(Kg|x]).

a—0

VO(|)Z|)—>T/0(|)Z|)=KO
4

+dl(—p.v—p)], (6)
1 , . aa
ﬁ[\/lﬁL sing,+\1-sing, (ap)Ju(0),
- 1 i _ N
E[JH sing,—V1—sing, (ap)]v(0),
@
be(p,t)=€%'by(p,0), dg(—ﬁ,t>=eiEptd§<—5,0>,(8)

where E,, [the shorthand notation fdE(p)] stands for the
dispersive law of the dressed quarks, and the chiral angle
@(p) (we also use the shorthand notatigp for this) varies

in the range— m/2< ¢ ,=</2 with the boundary conditions
¢(0)= /2, p(p—)—0.

The Hamiltonian(1) normally arranged in the basi8)
splits into the vacuum energy and the quadratic and quartic
parts in terms of the quark creation and annihilation opera-
tors. For the vacuum energy density one has

1
Ewad 01= (0| THL¢]]0)
g ®p
-3 (277)3(A(p) sing,+[B(p)+p] cosep),

(€)

where V is the three-dimensional volume; the degeneracy
factor g counts the number of independent quark degrees of
freedom,

g=(2s+1)N¢cN;¢, (10
with s= 3 being the quark spin; the number of colok; , is
put to 3, and the number of light flavors;, is 2. Thus we
find thatg=12. The auxiliary functiong\(p) andB(p) are

The model contains only one dimensional parameter theefined as

strength of the confining forckK,. For further convenience

we shall consider a modified version of the potent&l[3], 1 d3k ..
) ) . A(p)=§CFJ?Vo(P—k) singy, (11
V(X)) =K * x| e, (5) (2m)
wherem plays the role of the regulator for the infrared be- B 1 3 s - -
havior of the interaction. The limin— 0 is understood. B(p)=p+ ECF (2m)3 (p-K)Vo(p—k) cosey,
The standard technique used in such models is the (12)

Bogoliubov-Valatin transformation from bare to dressed

quarks parametrized by the chiral angle the main entity dewhereCr=1% is the SU(3) Casimir operator in the funda-
fining the chiral symmetry breaking, the structure of the BCSmental representation. The actual form of the chiral angle is
vacuum of the theory, as well as the properties of the hadsuch that the quadratic part of the normally ordered Hamil-
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tonian diagonalizes, or, alternatively, the vacuum energy

takes its minimal value. The corresponding equation

0&ad ¢] _

0, 13
o 13

known as the mass-gap equation, reads
A(p) cosg,—B(p) sing,=0. (14

For the generalized power like potenti&) one can find

a+1l
0

A(p)=—C¢l'(at1)

Jm dk k cos{(a+1)arctaf(k—p)/m]}
X — singy,
_o 27T [m2+(k_p)2](a+l)/2
(19
a+1
0
p2

= dk

e

» { apkcos{(a+1)arctaf(k—p)/m]}

B(p)=p—Cel'(@)

[P+ (k—p)2)( D72

B cos{(a—1)arctaf(k—p)/m]}
(a,_ 1)[m2+(k— p)2](a—l)/2

B (k—p) sin{aarctaf(k—p)/m]}
[m?+ (k—p)2]"2

oSy, (16)
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lll. INVESTIGATION OF THE GENERAL FORMULA

A. Qualitative analysis

As the first step in studies of the general form(l&), we
perform its simple qualitative analysis. Using the techniques
described in6], we assume that a solutiapt®)(p) to this
equation exists, and the vacuum energy is minimal on this
solution. If the functione(®)(p/A) with an arbitrary stretch-
ing parameter &cA<o is substituted into the vacuum en-
ergy (9), then the functiort, ,{A) must reveal a minimum
for A=1. Moreover, the corresponding minimum should lie
lower than the one for the trivial solutiop(p)=0, when
there is no dressing of quarks and the chiral symmetry is
unbroken. If the regulatom is removed from the vacuum
energy functional, then the strength of the potential remains
the only dimensional parameter in the theory, so that, after a
proper rescaling of the integration variables, one arrives at
the simple formula, for an arbitrary number of spatial dimen-
sionsd,

Evad A)=C, A1+ C K IAT (18
whereC,; andC, are two constants independentAfvhich
are interrelated by the constraitif,,{ A)/JAa-1=0. The
first term in Eq.(18) comes from the kinetic energy, the
second term is due to the interaction. The following four
situations are possible(i) 0<a<d, (i) a«>d, and two
boundary casegjii) a=d, and(iv) a=0. In the first case
the vacuum energy has a double-well form with two minima:
trivial for A=0 and nontrivial forA=1. The difference
Evad A=1)— &, {A=0) is negative, so that the chirally non-
symmetric nontrivial solution is energetically preferable. For

where, for the sake of convenience, we continued the integrdf’® Seécond case one has an interaction term in(E8).con-

to negative values ofk, assuming co&_,,=— COS¢y,
sing_ = singy (the most natural realization of these condi-
tions can be achieved in terms of some even functign
such that sirp,=m,/\/p2+m2, cosg,=p/\/p>+ mzp, which
plays the role of the effective mass of the quar€onse-
quently, the mass-gap equati@i¥) takes the form

dk

o 27T

oo

p3sing,=CeK§ ™' (@)

.
Xsin[ep— @kl
{

N (k—=p) sin{a arctaf(k—p)/m]}
[m?+(k—p)?]*?

apkcos{(a+1)arctaf(k—p)/m]}
[m2+ (k_ p)Z](a+1)/2

cos{(a—1)arctaf(k—p)/m]}
(a,_ l)[m2+(k— p)Z](afl)IZ

X COS@y Singop}, (17

and this is the main object of our studies.

taining negative powers & and, as a result, the trivial so-
lution, with unbroken chiral symmetry and which corre-
sponds toA=0, possesses an infinite energy and therefore
does not exist. In the meantime, a nontrivial solution with
A=1 may still be present. The boundary caserefd leads

to a logarithmic dependence of the vacuum energy on the
paramete,

A
Evad A)=C,AM 1+ C,KIHE |nK—O, (19

so that qualitatively the same conclusion holdsthe theory
possesses only a chirally nonsymmetric phase. Two-
dimensional QCO9] is an example of a theory with such a
logarithmic dependencesee[6] for the details.

Finally, for the casdiv), that is, for the logarithmic po-
tential (4), one has

A
Euiad A)=C1AY 14 CoKoA I —, (20)
0

where the logarithmic growth of the energy, when approach-
ing the trivial solution limitA=0, is canceled by the power
factor AY, so that both chirally symmetric and nonsymmetric
solutions coexist in this case, similarly to other potentials
with 0<a<d.
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Thus we conclude that once the power of the potential k-p =
reaches a critical value equal to the number of spatial dimen- arctan—_— — 5sgrik—p)+0(m), (23
sions the behavior of the theory changes drastically, the m-0
chirally symmetric phase being swept off. Meanwhile, the
qualitative analysis performed above ignored the problem oftnd the regulatom can be removed from the mass-gap equa-
convergence of the integrals in the expression for thdion. For the case oi=2 the entire RHS of Eq(17) van-

vacuum energy and in the corresponding mass-gap equatioiﬁ'.hlfS aftehr the suk;ftitutic(lis_). Tr? be more precis.ek,] one has
It also fails to answer the question of how many solutions 1@ keep the next the terms in the equns@ﬁﬁ), with posi-
ive powers of the regulatan, reproducing the well-known

the mass-gap equation exist. In what follows we turn to th - epresentation of the delta function
guantitative and numerical analyses of these problems. P

B. Quantitative analysis S(p—k)= lim E m

. . 0™ m?+(k—p)?
Now we turn to a detailed analysis of the mass-gap equa- m=0 (k=p)

tion (17), such as the problem of convergence, the allowed ) o ) } ]
region for thea's, the dependence on the regulatorand so and its derivatives. We shall consider this special case sepa-
' rately.
on. : . .
First of all, one can easily check that the caseO causes . Not_u;e that th.e proof of the chirally symmetric vacuum
no difficulties—the right-hand sidéRHS) vanishes if the instability given in[3] was based on a consideration of the

limit «—0 is taken naively, whereas to arrive at the massself-energy functionaF (p)= [ [d3k/(27)3]Vo(p—K)(pKk)
gap equation for the logarithmic potential one has to dividex1/p®, which gives an infrared divergent contribution to in-
the RHS bya [see Eq.(4)], which leads to a finite result tegrals ind®p if @=3. In the meantime, as demonstrated
after taking the limita—0. above, the requirement of finiteness of the mass-gap equation
For =1 the divergent term proportional to &/ 1) imposes a stronger restriction an a<2.
vanishes on the RHS of Eq17), since the cosine of the One encounters no more difficulties far's within the
chiral angle is odd. An accurate expansion of this term foiinterval 0<a<2 and, when the regulaton is removed, one
a—1 brings about logarithmic terms. arrives at the mass-gap equation in the ultimate form:
Now let us check the largest value @fthat does not lead
to divergences in the mass-gap equation. When the regulator
m tends to zero, the first term in the large curly brackets in
Eq. (17), formally, is the most singular term fée~ p, and it
can be written as

a4

p3sing,=CeK§ T (a+1) sin >

XF dk | pksin[¢y— ¢p]
—2T lp—k|o*?

« dk pkcos{(a+1)arctarﬁ(k—p)/m]}Sin[(P o]
- o= il

—2 [m?+ (k—p)2]le+ D2 cosgy Sing,
(1) * a—1

1 1
|p_k|a71 )\afl

(24)
In the regionk~ p the integrand admits an expansion in the
powers k—p)™ We introduced the term 1~ 1, with an arbitrary mass
parametemn, in order to emphasize the convergence of the
integral fore=1. This extra term does not contribute to the

_ integral due to the parity of cas;.
cos{(a+1)arcta(k p)/m}( 2( -p)e) In particular, the mass-gap equation for the logarithmic
2m[m?+ (k—p)?](a+)r potential follows from Eq.(24) in the limit «—0, if the

1 proper modification of the potential, given in Ed), is ap-
+(k— D)Z[p<p£,+ Engog} . ] (22)  plied:

p° singp=—,— 7$W[pk3in(¢k_ ®p)

where the first term in the large curly brackets is odd and,
therefore, it vanishes in the integral knaroundk=p. The
remaining expression, as well as other terms on the RHS of —(p—k)? cosgysingy]. (25
Eq. (17), behaves agk—p|~¢, and the corresponding con-

tribution to the mass-gap equation converges §ox2, For the case ofx=1, that is, for linear confinement, the
which is the upper limit of the range of valid powets For  formula well-known in the literature is readily reproduced

sucha's, (see, for exampld,6]):

CFKO fm dk
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(b)

FIG. 1. The solutions to the mass-gap equatia#) for «=0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, 1.7, 1.9, and(®.0(the curves

localized closer to the origin correspond to smatiés), the mass parameters defining the chiral condensa(e_ma? — A2, and the excess
of the vacuum energy density over the trivial vacuum, for two quark flavors and three colAi§, gs —Ag, (b). All dimensional quantities

are given in units oK.

» dk

. pk
p3sing,=CeK3 f_wﬂ

(p—k)?

sin[ox— ¢p]

|

| [p—kK| .
—1In X cosgy Sine, (26)
=C.K?2 f“dk 4p%k®
=Ceko ) 24 (pz_—kz)zsm[‘Pk_‘Pp]
2pk o p—K| _
- n COS@y SN, | -
(prkz  |pTk| T

CCeKgTh Az e
27

L T 2. n ’
N I'la+1) smT[p ept2pe,

-

+ sin2¢,], (28
where this integral admits an extra contribution if the width
of the strip is chosen different from. For =2 the depen-
dence of the strip integrdl8) on \ disappears, and the full
mass-gap equatiof?) is readily reproduced as a conse-
quence of the delta functional form of the Fourier transform
of the harmonic oscillator potential.

C. Numerical analysis

To complete our investigation, let us consider the case of N this subsection we present the results of numerical

the harmonic oscillator potentialy=2. The Fourier trans-
form of the potentiaIV(r)zKSr2 is the Laplacian of the
three-dimensional delta function, so that the resulting mas
gap equation becomes differentjal:

2.n

. 1 L,
p3smqpp=§CFK8[p ept2pe,t sin2e,].  (27)

Formally, Egs.(17), (24) remain valid for —1<a<0,
and an ultraviolet divergence is encounteredder — 1, that
is, for the Coulomb potential. We disregard this region sinc
the resulting force fails to be confining. Thus the valid con

studies of the mass-gap equati@¥) with 0<a<2. The
equation for the harmonic oscillator potent{@l7) is studied

dn detail in the literature, so the interested reader can find the
details, for example, in Ref$3,4]. In Fig. 1(a) we plot the
profile of the nontrivial solutionspy(p) to the mass-gap
equation(24) for several values ofr. The solution fora
=2, found in Refs[3,4], is also depicted for the sake of
completeness. In Fig.(f) we present the results for the chi-
ral condensatéqq)=—(3/7?) [ dpp®singy(p)=—A3 and

for the excess of the vacuum energy& .= Evad ol
—&ad o=0]= —A;‘ over the trivial vacuum as functions of
€. From Fig. 1b) one can see thak ,~A, in the whole
“range of allowedr’s, and that their dependence on the form

fining potentials, in momentum space, range symbolically agf the potential is smooth, solutions fararound unity being

(2m)°K o8P (p)<V(p)=<(27)°K3A 5%)(p), that is, from a
constant to the harmonic oscillator potential, respectively.
For numerical investigation of the mass-gap equatitsh

guite close to one anothgsee Fig. 1a)]. Thus we conclude
that the concrete form of the confining potential does not
play a crucial role in the physics of chiral symmetry break-

it is convenient to evaluate analytically the contribution ofing, resulting in only minor numerical changes. In particular,

the strip|k—p|<\ to the integral on the RHS,

one can see that the qualitative behavior of the solution is
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very stable against deviations of the potential from the purely 1 CFKgH o

linear form, usually adopted in phenomenological models E(p)=—— I'(a+1)sin—

and declared to be confirmed by lattice calculations. There- Dy p’D 2

fore, at least SBCS and the spectrum of low-lying hadrons ) )

will not be strongly affected if the behavior of the confining « fw ﬂ( P"Dp—k"Dy PkDpDy
potential is slightly changed, deviating from linearity, as sug- —227| |p—K|*"!  (a—1)|p—k[o? '

gested in11]. (32

IV. THE REPLICAS . . .
The even functionm(p) takes its maximal value ab

As argued in a sequence of recent paérg], it is pos- =0 and then decreases rapidly. Thus, for momenta larger
sible that “same ultraviolet behavior, for instance for thethan somep,~m(0), Eg.(31) can be linearized by putting
quark propagator, bifurcates to different solutions when weD’;1~|p| in the expression(32). Then the integral on the
go to the low-energy domain” in QCD, and such a replicaRHS of Eq.(32) is easily evaluated, and the self-energy takes
was discovered for a phenomenology inspired potential. Inhe form
addition, the whole infinite tower of excited solutions for the

mass-gap equatiof27) for the harmonic oscillator potential 2CFK6’“F(a+ 1) sin(wal2)

was found in Ref[3] and also confirmed if6]. With the E(p)~|p|- . (33
general form of the mass-gap equatida) and(24), we are ma(2—a)|pl®

in the position to investigate the problem of replica existence

for various powerlike confining potentials. We find theaty Notice that forany confining potentiale=0, the second

powerlike potentiak “, with the power 8=a<2, maintains  term on the RHS of the expressid@3) dominates in the
replicas. In[3] a detailed analysis was performed for the |ow-momentum region, bringing a large negative contribu-
harmonic oscillator potential mass-gap equati®f and the  tjon to the quark self-energfthe corresponding term be-
existence of an infinite tower of solutions was proved anaggomes logarithmic,~K In (Ko/|p|), for the potential(4)].
lytically. We failed to repeat this analysis for the generalThis general feature of the quark self-energy in a confining
form of the mass-gap equatid@4) since, in contrast to EQ. potential has been discussed in the literature several times
(27), Eq. (24) is integral, with the coefficients tuned to pro- (see, for example[3,4], or [10], where the case of two-
vide overall convergence of the integral, but leaving no hop&jimensional QCD is discussed in detaind it is known to

of using any expansions under the integral. Instead, let us Uslay a crucial role for the properties of the theory. In addi-
an approximate method in order to demonstrate how replicgon, replicas exist in the theory also due to this feature of the
solutions occur for the mass-gap equati@). To this end  quark self-energyE(p). In order to demonstrate this let us
we use the parametrization of the chiral angle through thyrite the linearized mass-gap equati@1) in the form of a

sinpp=myD,, cosp,=pD,, Py=psing,, e ACEKE T (@) sin(mal2)
CeK§ ™ [x|*+2|p| - (2—a)|p|® p
D, '=p?+m:. (29)
p SV =&y, (34)

It is also convenient to use the following integral: . . L . "
9 9 and notice that the linearization suppresses the first, positive,

term on the RHS of Eq.32) and enhances the second, nega-

foo dk =y tive, term. As a result, we are interested in tidd [see the
om k—p|et deflnlt_lon _(29)] eigenstates of the Ilnea_r eguatl()fm) Wlth_
negativeeigenvalues. Each such state indicates a solution of
1 o _ the full nonlinear mass-gap equati@¥) and can be used as
= T (at 1) sin(mald) f_w dx|x|“y,e'P. the starting anzatz for the iterative numerical method to solve

the latter. Therefore, in order to find the number of solutions
(300  tothe mass-gap equatid®4), it is sufficient to count the odd
eigenstates, with negative eigenvalues, of the linear equation

Then the mass-gap equatit@¥) can be rewritten in a simple (34). If the Bohr-Sommerfeld quantization procedure is ap-

physically transparent form: plied directly to Eq.(34), then the quasiclassical integral
IWKBzfgm_axx(p)dp diverges logarithmically atp=0,
[2E(f))+CFK“+1lx|“]a// -0 (31) where the chiral angle is no longer small and the approxima-
0 X M

tion D, *~|p| obviously fails. In this region, the sharp be-
. havior of the self-energy is smeared by the effective quark
where the operatdE(p) has the meaning of the quark self- massu~m,(p—0), which plays the role of the effective
energy and is given by the following expression: regulator, so that we modify E¢34) accordingly:
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ACKG T (a) sin(mal2)
7(2— a)(p*+ u?)*?

Coky I+ 257 -

p
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1.6

1.4

=eiy. (35
The spectrum of eigenstates of E85) starts, forn=0, [

at the bottom of the deep well described by the effective ¢ g

potential V(p)=2E(p), so~V(p=0)~—K3**/u® and,

for somen,,,, reaches zero from below. Then the spectrum 0-6

1.2

1.0

continues for positive eigenvalues up to infinity. Since the g ,

last negative eigenenergpy]max is small, we expand the qua-
siclassical integral accordingly and find

( Cel (12T ((4— a)/Z)) 1(1+a)
0

o T(1+)/2)
I(Ua(l+a)]) ﬁr((4—a)/2))1’“
T(Ua)T(a(1+ )| " | 29T (1+ a)/2)
— In& , (36)
M

where we expressed sin¢/2) through the Euler Gamma
functions as

ma

| L, T(RT(1+a)/2)
SIN—/—=
2 ()T (2= al2)

37

Notice that in actuality the regulatar itself is not a con-
stant, but rapidly decreases with increasmand it is such
that all eigenvalues of Ed35) vanish for alln’s. Then the
corresponding eigenfunctiong, provide, according to the

0.2

0.0

-0.2

FIG. 2. The first three solutions to the mass-gap equaén
corresponding to the ground state BCS vacuurs Q) and to the
first two replica statesn=1,2). The momenturp is given in units
of K.

function of @ in the whole interval 8=a<2 and it varies
from Co=exp{i[y—1—¥(})]}=1.08 to C,=1//2~0.71.
Numerically, the same behavior of the solutions to the mass-
gap equatior24) is observed for smallet’s and highen’s
the chiral angle becomes steeper at the origin, in accordance
with the obvious identificatiomor’”p:o: — U, cexpC,lmn
+65,]) [see Figs. (@) and 2.

The formula(38) is approximate since the dependence on
w in Eq. (35) reproduces only the gross features of the quark
self-energy, whereas the exact dependence of the self-energy
on the chiral angle is, in turn, a consequence of the mass-gap
equation, and the problem becomes self-consistent. To esti-

definition (29), the solutions to the exact mass-gap equatiormate the accuracy of the formu(&@8) we continue it toa

(24). From Eq.(36) one can easily see that

1

Jal ((4— a)/2)

Mn(a):KOqu_Caﬂ-n)l Ca 2“F((l+a)/2)

(39

Using a more accurate expansion in E2f), one can find
the correction 5, to the leading regime(38), u,(a)
=Kexd —C,(7n+38,)], as was done ifi3]. Unlike the lead-

=2 and compare our result with the result found 3

1 2
C,=—=~0.71, Cy(Ref. [3])=—=~0.76,
2 2(Ref. [3]) G

V2

that is, the error is about 6—7%.
As an indirect confirmation of the conclusion made above

crete form of the regularization of the potentM{p), and
we do not give it here.

From the formula(38) we conclude that, for any, the
mass-gap equatiof24) supports an infinite number of solu-
tions which, in the low-momentum regiop{&K,), behave
as

TP cmtsy
en(p 0)—2 Koe +-- (39

mass-gap equation for any, as well as in the limita— 2,

so that all properties of the mass-gap equation, including the
infinite number of solutions, may be continued frans 2 to
smallera’s.

In Fig. 2 we give the profiles of the ground state, as well
as of the first two replica solutions for the linear confine-
ment,a=1. Solutions with larger numbers of nodes are also
available for numerical study, but the method has to be very
precise since each new solution possesses oscillations
squeezed to zero and seen only with the help of methods
with a sufficiently high resolution. According to the formula

then oscillaten times, and, finally, approach zero for infinite (39), the behavior of these solutions at the origin can be

momentum. The consta@, is a monotonically decreasing

approximated as
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<a<2, which comes from the fact that the corresponding
+---, (40 mass-gap equation should be convergent. We find numerical
solutions to the mass-gap equation for various valuea of
from the allowed region and, for the solutions found, evalu-
ate the vacuum energy density and the chiral condensate,
Yhich are given by the same scale~A | and turn out to be

low functions of th rameter.

In Ref.[7] a m_ethogl is proposeq which allows one to takeS OWeuagd?esss?che :up:sﬁoneoefrthe existence of the second,
the vacuum rep!lcas into account in quark models. Th_e 9€Mhird, and higher chirally nonsymmetric solutions of the
eralization of this approach to the case of many replicas '?hass-gap equation for powerlike confining potentials and
straightforward and assumes a summation over the contribys, 4 that any potential with & a<2 supports such solution-

tions of alfl rhepllczlas.. Onfthe otherlham(jj, since thef MasS Pthe replicaswhich is rather the rule for confining potentials
rameter Olt e solution, ?r e)lgampﬁn, fgcreasets a$apr—1 and comes from the peculiar behavior of the quark self-
proximately ten times for linear confinemgntor eac _energy in the infrared domain. We find that the number of

) i €tch replicas is infinite for ang and estimate the slopes of
a the well defined convergence parameter. Therefore it mMay o solutions to the mass-gap equation at the origin

be sufficient to consider only the first replica, neglecting the Thus we dare predict the existence of replicas regardless
contribution of higher_ rgplicgs, starting from the second_ ON€xt the explicit form of the confinement and of the details of
wh|ch are hard to distinguish numerically frO”? the tnwgl the model used in calculations. In real QCD, with light quark
;olutmn ¢p=0. To have a good phenomenological des.c,r'p'flavors and the quark-quark potential flattening at large dis-
tion of quarkonia one should supply the purely confining;onces due to the effect of QCD string breakifsgich an
potential with the short-range Coulomb interaction and, POSggtect can be taken into account in the interquark potential
sibly, with a constant term in order to fit for the right value of through a coordinate dependence of the effective string ten-
the chiral condensaté@n attempt to evaluate this constant sion [13]), the number of replicas is expected to be finite.

f_rom first prin_ciples was undertaken [nz_]). Such a poten- Indeed, the distance at which the string starts to bréak,
tial was considered if6,7], and the solutions for the ground will play the role of the infrared regulator in a formula simi-
state BCS vacuum as well as for one vacuum replica werg, 1, Eq.(35), instead ofw. Therefore, as follows from Eq.
found numerically. (36), Nmax~ In (KgL)~1, where we considet. ~Ky!. In
other words, confinement becomes less “binding” due to
V. CONCLUSIONS string breaking and the corresponding mass-gap equation

tials K(D)z+lra from the point of view of SBCS and the num- analysis of the QCD inspired interaction, including the

ber of nontrivial solutions of the mass-gap equation. We us@OPer string dynamics, from the point of view of replicas is
a constructive method to prove the chirally symmetric'n Progress now and will be the subject of future publica-

vacuum instability for such potentials, solving the mass-gap'°"S:
equation explicitly and calculating the vacuum energy for the
corresponding solution. We establish the region of allowed
powers ofa for such confining potentials that lead to a con-  The authors are grateful to A. A. Abrikosov, Jr., for fruit-
vergent mass-gap equation and a finite excess of the vacuuful discussions, as well as to Yu. S. Kalashnikova and J. E.
energy density over the trivial solution with unbroken chiral Ribeiro for reading the manuscript and valuable comments.
symmetry. Thus, using simple qualitative arguments, weDne of the author§A.V.N.) would like to thank the staff of
demonstrate that for€ «<d, d being the number of spatial the Centro de Bica das Intera@es Fundamentai€CFIF-
dimensions, at least twéchirally symmetric and nonsym- IST) for cordial hospitality during his stay in Lisbon, where
metrig) solutions should exist, whereas fat=d the trivial  this work was originated and to acknowledge the financial
solution possesses an infinite energy density and disappeassipport of INTAS grants OPEN 2000-110 and YSF 2002-49,
In the meantime, a restriction for the parameteexists, 0  as well as the grant NS-1774.2003.2.

0=2-PenZ 5
en(p~ )—g—K—OeX Z(WFH‘ 1)

so thatu, 1(1)/un(1)~exp@?/4)~10, that is, the param-

eter of SBCS decreases about ten times for each success
replica.
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