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Light-front Schwinger model at finite temperature
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We study the light-front Schwinger model at finite temperature following the recent proposal of Alves, Das,
and Perez. We show that the calculations are carried out efficiently by working with the full propagator for the
fermion, which also avoids subtleties that arise with light-front regularizations. We demonstrate this with the
calculation of the zero temperature anomaly. We show that temperature dependent corrections to the anomaly
vanish, consistent with the results from the calculations in conventional quantization. The gauge self-energy is
seen to have the expected nonanalytic behavior at finite temperature, but does not quite coincide with the
conventional results. However, the two structures are exactly the same on shell. We show that the temperature
does not modify the bound state equations and that the fermion condensate has the same behavior at finite
temperature as that obtained in conventional quantization.
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I. INTRODUCTION structure[14-14, it does not quite agree with the conven-
tional result{17]. However, these thermal contributions van-
In an earlier papefl], it was shown that light-front field ish on shell in both the quantizations, once again showing the
theories2] do not admit a naive generalization to finite tem- €quivalence in the observable sector. We also show that the
perature. A proper thermal description of such theories wagound state equatiof8] remains unchanged at finite tem-
proposed in Ref[1], the meaning of which was clarified Perature. We calculate the fermion condensate at finite tem-
nicely by Weldon[3]. The calculations carried out in Refs. perature[19,2Q using the method of bosonizati¢@1] and
[1,4] showed that the thermal contributions to the self-energyshow that the result in the light-front formalism coincides
in scalar theoriegin both ¢* and ¢° theories at one loop  With that obtained using conventional quantization. Finally,
coincide with the result from conventional calculations. Inwe conclude with a brief summary in Sec. V.
this paper, we extend such an investigation to fermionic and

gauge theories. In particular, we study various questions of Il. FORMALISM
interest within the context of the Schwinger modB] at . . _ _ .
finite temperature. In this section, we briefly recapitulate the essential results

As is well known, the Schwinger model which describesfrom Refs.[1,3] and list the forms of the propagators for
massless QED in+1 dimensions is exactly soluble and has scalar and gauge fields in light-front quantization at finite
been widely studied in both convention#,7] as well as témperature. As was shown by Weldf8], the proposal in
light-front quantizatiori8] at zero temperature. In this paper, [1] corresponds to choosing a coordinate system
we study various questions associated with the Schwinger
model in the light-front quantization at finite temperature XE X, u=01,...n—-1, (1)
[9-11]. In Sec. I, we briefly recapitulate the finite tempera-
ture formalism proposed ifi] for light-front quantized theo- gych that
ries. We give explicitly the forms of the scalar as well as the
gauge boson propagators in various gauges, in both the 0= 04 yn-1
imaginary time as well as the real time formalisms. The fer- '
mion case needs to be discussed carefully and we do this o
separately in Sec. lll, where we give the propagators in both x'=x, i=12,...n-1. (2
the imaginary time and real time formalisms. In Sec. IV, we
undertake a detailed study of the light-front Schwingersych a coordinate redefinition, which does not correspond to

model at finite temperature. While conventionally in light- 3 | orentz transformation, has a unit Jacobian. One can quan-
front quantized theories one works with only the mdependenﬁze the theory on the light fronk®=0, and in this coordi-

fermion components, we argue that working with the full nate system can preserve all the simple relations of conven-

theory can .b.e S|mpler.and one can e\'/en'av0|d SUbtletIelsl‘onal light-front quantization as well as have a thermal
generally arising from light-front regularizations. We show description of the system with a heat bath at rest

this by explicitly calculating the_ anomaly at zero tempera- Such a coordinate system, however, has a nontrivial met-
ture. We then show that the finite temperature correction tqig structure in the (X2) space of *0-f—1)” indices,

the anomaly vanishes, as is also the case in conventionﬂ mely
guantization [11-13. In the case of the light-front '
Schwinger model, only one of the fermion components ther-
malizes and, consequently, we show that, while the thermal EMV:(

self-energy for the photon has the expected nonanalytic
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Furthermore, the energy-momentum, in the new coordinates, i

takes the form G (p)=—== N
—(2p0pn_1+w5)+|e
Po=Po. +27mNg(Pol) 8(2PoPa- 1+ @),
Pn-1=~PotPn-1, G, _(p) =27 6(—po) +na(|pol)18(2poPn-1+ w3),
Pa=Par @=12,...n-2, @) iG_ . (p)=2m{ 6(po) + na(lpo)) 18(2popy- 1+ @),
so that with Eq.(3), the form of the Einstein relation for a _ i
massive particle follows as iIG__(p)= == N
(2poPn-1t wp) tie
- S - - L
(2po+ Pn-1)Pn-11PaPet M =0, +27TnB(|p0|)5(2p0pn_1+a)%). (10)
or  2pgpy- 1+ wi=0, (5) Here,
. — 1
where we have defined - -
nB(|p0|) eBlpO‘—l (11)
el S _
@p=Pipitms, 12,...n—1. ©) represents the bosonic distribution function.

In this case, the density matrix for a system, interacting

) B. Gauge boson propagator
with a heat bath at rest, takes the form

The propagators for the gauge fields can also be derived
in a straightforward manner. Without going into details, let
us simply note here that, in the path integral formalism with
a general covariant gauge, the zero temperature propagator
has the form

p(B)=e PP, (7)

where 8= 1/T in units of the Boltzmann constarji\e note
parenthetically thatpy=po=(1/\2)(p*+p~), which is
what was used ifl].] The statistical description of quantum . _ i PP,

field theories can now be developed in the standard manner iD,(P)==—=| 09— (1-8§ =/ (12
[9-11]. For example, we list below the propagators for P P
bosonic(scalar and gaugdields in both imaginary and real
time (closed time pathformalisms. The propagators for the
fermions will be discussed separately in the next section.

whereé represents the gauge fixing paramétee Feynman
prescription is understogpand

P>=—2PoPn- 1~ PiPi - (13)
A. Scalar propagator
The finite temperature propagator, in the imaginary time for-

At zero temperature, the propagator for a scalar field haﬁwalism has the form

the form

- (B) _ | AE) 1 M
iG(p)= : D,w(p)—az(gw (1-§ > ) (14)

— —. 8
_(Zpopn—1+w%)+|f

with po=2im7n/B and g'f) the properly rotated Euclidean
The form of the propagator, in the imaginary time formalism, metric.

now follows from Eq.(8) as Parenthetically, we note that, as has already been pointed
out in[3], going to oblique coordinates and rotating to imagi-
_ 1 nary time do not commute. Nonetheless, once we are in the
GA(p)= — 3 C) oblique coordinates, we can go to the imaginary time formal-
2p0pn,1+w5 ism and our conventions for this are as follows:
with po=2imn/ B, wheren takes integer values. XH=(—iX{g) X(g))- (15

In the real time formalism, on the other hand, the degrees )
of freedom are known to doubf&1]. Here, we note only the The energy-momentum vector, on the other hand, is rotated
form of the propagator in the closed time path formali@n aS
similar form can be derived in a straightforward manner for e
thermofield dynamigs p.=(ipy”’,pi), (16)
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which is requlred from the analyth structure of the propaga-yith po 2i /n-n/B andn represennng the appropr|ate|y ro-
tor (so that we do not cross a singulajitynder the rotation  tated Euclidean vectors. In the real time formalism, the de-
in Eq. (15), it is easy to check that the component of thegrees double and we simply note here the) component
metric[in the 0-(h— 1) spacgtransforms asthe other com-  of the propagatotthe other components can be determined

ponents of the metric do not change much like the forms given aboye
_ 0 —i 1 i 0:)
gMV(E):(_i _1>, E(E)—( i 0)_ (17) iD ++(P)
. . . _ = _nuPtnps npup.  €P%P,P,
We note that, in an oblique coordinate system, the upper and =7 Guo— Tt =
lower index tensors can be different, which is reflected in Eq. n-p (n-p) (n-p)
(17). The transformation of other vectors and tensors can be i
determined from the rotation in E(L5). X :2+27rn3(|50|)5(52)). (21)
In the real time formalism, the degrees of freedom will p
double and the propagator will have the fofonce again, )
the Feynman prescription is understood as in @Q)] The gauge propagators in other gauges can, of course, be
easily derived, but these are the two most commonly used
_ DD gauges in light-front field theories, which is why we have
'D(B)++(p)— = Gu»— listed their forms.

Ill. FERMIONS

i _
o 2
x 52+27rn5(|p0|)5(p ))’ In light-front theories, the handling of the fermions is a

little tricky. This is because one of the components of the

PP, o fermion field becomes constrained. To see this, let us note
iD®, (p=—|0,,—(1- 5) == | 27r(6(— po) that, under the coordinate redefinition in Hg), the Dirac
gamma matrices transform as
_ - B
+ng(|pol)) 8(p?), =04 1,
N p pV —_ _i: i | = —
'DL@Ap):—(gW (1-924" )2w<0(po) y=7, i=12..p-1. (22

. . The transformed Dirac matrices satisfy the algebra
+ng(|pol)) 8(p?),

{r 7} =29"". (23
iDEfV),W(E): _(g/w (1-¢) pﬂpy) This implies, in particular, from Eq3) that
. ()?=0, (" H?=-1,
i _ _
X| —=+2mn a(p?) |. 18 L
( p2 v B(|p0|) (p )) ( ) ‘yoyn,l+’yn,170: -2 (24)

On the other hand, in a general axial gauge, the zero tem/ith these matrices, we can define the projection operators
perature propagator in the path integral formalism takes the

form | - o P+:_%?171?)’ sz_%;oyn—l,
Dulp)= ‘é(iv Mp;. ;Vpﬂ ’ ?Fp%; (PH)'=P%, P"+P =1, (25
M) 19 which allows us to decompose the fermion field as
(n-p)® )’ Yo=P*y. (26)

wheren* represents an arbitrary vect@rot necessarily nor- In terms of these components, the Lagrangian density for a
malized. The finite temperature propagator, in this case, irfree massive fermion takes the form
the imaginary time formalism takes the form o .

L= 200+ dn-) s =1 00 1p_

Pl Ty Gt M) — T Y T Ny, MYy
(20 27

mem e e
L[ DR oty
n-p (n-p) (n-p)
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where, as defined earlie=1,2, ... n—2. . 1
This shows that, while the fermion componeft is dy-  SP(p)= ———
namical, the component_ is constrained and is related to 2poPn-1t Wy
the dynamical component, . Because of this, the conven- — —y, ——
tional practice in calculations using light-front quantization “Pn-1 =y (= YPatm)
is to eliminate the constrained variable, which in some cases (=5, +m) ZEOJFE_l '

introduces additional contact interactions into the theory for

the dynamical component. From the point of view of thermal (32)
field theory, however, we find that it is more appropriate to o

work in the full Dirac space without eliminating the depen- with py=_2iw(n+1)/3.

dent components. Even in the zero temperature case, we find In the real time formalism, the four components of the
that this simplifies the calculation@ this case, of course, matrix propagator take the forms

one does not have to worry about additional contact interac-

tions which is certainly an advantages we will demonstrate —E _;n—l( _;aa +m)
with the calculation of the anomaly in the Schwinger model iS(f)+(5)= (_ _”__1 e
in the next section. Y =y p,tm) 2potPn-1

forms of the projection operators in E@®5), we see that i

From the fact thaE0 is nilpotent[see Eq.(24)] and the
X (

—(2poPn-1+ @) Fie
b=yl yP=0. (28 o
_ZW”F(|po|)5(2popn—1+wg) ,

As a result, in such a theory, it is more appropriate to define
the fermion propagator as — — i, ——
~Pn-1 =Y (= ¥*Patm)

P =Pt m)  2pe+png

- is(f”(ﬁ)zzw(

iS(x—x")=(T((x)¢"(x"))), (29)
X[6(=po) ~Ne(|Pol) 18(2popn -1+ @),

whereT represents ordering with respectxt. We will be

working in the path integral formalism, where the propagator . —Pr1 — "= 5"p,+m)

would simply represent the inverse of the two-point function. iS(ﬂ(p) =2m

In the momentum space, this then leads to the complete
propagator for a massive fermion at zero temperafiaréhe

Y= y%pa+m)  2po+pnog

path integral formalismas X[6(Po) ~ne(|Pol)18(2PoPy-1+ “’%)'
i ca(B) [ _En—l _;n_l(_;aaa+m)
iS(p)= ISEM=| o =
Y= ¥ Pt M) 2potPn-1

—(2poPy-1t w3) i€

_ — —— i
" ~Pn-1 =" =y patm) X((z__ v
— —— - Ph-1tw))+le
Y =y Pt m) 2po+Pn-1 PoPn-17p
30 — ——
0 —2wnF(|pol>6(2popn_1+w§>), 33
It can be easily checked that this reduces to the conventional
propagator for the dynamical independent component whe@here
restricted to the proper projectidid,22]. We note here that
this propagator can also be written as B 1
nF(|p0|): eﬂ|po‘+1 (34)

i(p+m)(y0— "1

iS(p)= ——== _
P Zpopy 1+ wditie

(31

represents the fermion distribution function. We note here
that the propagators in E¢33) can be checked to reduce to
the ones iM1] when restricted to the dynamically indepen-
It now follows from Eq.(30) that the fermion propagator dent components only. However, as we will show next with
at finite temperature in the imaginary time formalism takesthe Schwinger model as an example, in actual calculations, it
the form may be more efficient to use the full form of the propagator.
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IV. SCHWINGER MODEL k
The Schwinger model describes quantum electrodynamics
in 1+1 dimensions for massless fermions and represents an v
exactly soluble model. The Lagrangian density in the new
coordinates takes the form P
L=iyl(200+d) . —iyp oy k+p
+ EIﬂT(;O_;l);’uIﬁKM , u=01. (35 FIG. 1. One-loop graph contributing to the anomaly in the chiral

current. The solid lines represent fermions, the wavy line a photon,

. . and the cross the divergence of the chiral current.
We note that we have not separated out the interaction term Verg et cu

into componentgalthough one can do so easily and the in-

teraction is diagonal in the Dirac spagast to demonstrate iS(0)= P 0
that calculations with the full propagator may be more effi- 1S(p)= _(250+31)31 0 25 +H
cient. In 1+1 dimensions, some further simplifications oc- ot
cur. First of all, in this case, we can show that, under the i
coordinate transformation, the Levi-Civitansor remains in- —— 0
variant (the magnitude of the determinant of the metric is _ 2P0t P1
unity) and we can identify 0 i
P1
Ys=—5€w ¥y (¥6)°=1 {7s5,¥}=0. (36) i i
=——P"'—=P". (40)
2po+ Py P1

It follows then, from the definitions of the projection opera- , . .
tors in Eq.(25) as well as the algebraic relations in Ea4) As in Eqg.(31), we note here that this propagator can also be
that written as

 Hg (P
is(p):w Pu(y —7)

1 vl T (41)
pfzz(li%)_ (37) —(2po+Pp1)P1

which reflects the propagator relations between conventional
Furthermore, the usual duality relations continue to hold induantization and light-front quantization from the point of
this case, namely, view of a coordinate transformation.
The zero temperature anomaly can be calculated using the
o component fieldgwhich is what is conventionally done in
Y5y =€""y,, yr=€""ysv,. (38 light-front studie$. However, we wish to point out that it is
equally convenient to carry out the light-front calculations
In this case, from the invariances of the theory as well as E¢¢SINg the full propagator and the complete vertex of the
(38), we can identify heo_ry. Both lead to the same result, however, using the fu_II
fermion propagator and the complete vertex, one can avoid
. o . o the subtleties arising from regularization. To demonstrate
JE=yT (P = vy, JE=yT (= Y ysyre=€*"y,. this, let us calculate the zero temperature anomaly in the
(39 Schwinger model using the full propagator in E4l) and
the complete vertex in Eq35). We note from Fig. 1 that the

. . — zero temperature amplitude has the form
Let us next calculate the anomaly in the chiral currghtt P P

both zero temperature as well as at finite temperature. 2
The calculation of the anomaly is best carried out in the —ezf

real time formalism. First, we note that, in the case of the m)?
Schwinger model, we cannot simply take over the form of 4K 1
the fermion propagator from. Eq33). This is because, for a — g2 f Tr yepky'(k+p) =————. (42)
massless fermion in 41 dimensions, the nondynamical )2 k?(k+p)?
component of the fermion is, in fact, decoupled from the

dynamical one, as is obvious from E&5). As a result, even Here, we have used the form of the full propagator in Eg.
at zero temperature, the form of the propagator has the forrt#1), the notation

[with the Feynman prescription understood; see also Eq. o o

(30)] k?=—(2ko+ky)ky, (43)

Tr (Y= 7Y spS(K) (¥°— 71 y"S(k+p)

065017-5



A. DAS AND X. ZHOU PHYSICAL REVIEW D 68, 065017 (2003

as well as the identity that the propagator in E@49) also results if we start with a
. massive fermion propagator as in E§3) (for 1+ 1 dimen-
(Y= yhH2=1. (44  sion9 and take the limitm—0.

. , With the form of the propagator in E¢49), we can now
There are several things to note from E42). First, the  .5cylate the temperature dependence of the amplitude in
form of the integrand is the same as would be obtained iEig. 1. Once again, the calculations can be done in compo-
conventional quantization except for barred quantities. HOWsanis or with the full propagator, and both yield the same
ever, since scalar quantities are unchanged under the coordlisgit. If we take the full propagator and the vertex, the tem-
nate transformatiori2) and vectors transform in a simple perature dependent part of the amplitude can be calculated

manner, we expect the results to be quite similar to the stanery easily. The terms linear in the fermion distribution func-
dard result. In fact, the fermion trace leads to the same resuffyn, (with a little algebra take the form

in the barred variables. Normally, the light-front integrals

have to be treated with care, but with the full propagator, we r o
note that we can make a change of variables of integration ~ ek, ne(ko|) 8(k?)=0. (50
i X o 2 w 'F 0
[basically, the inverse redefinition of E(®)] (2m)
E): Ko ?3: —Ko+Ks (45) Similarly, the terms in the amplitude quadratic in the fermion

distribution function giveleven before doing the Dirac trace
which allows us to use the standard dimensional regulariza-

tion (in this case, of course, the result turns out to be finite d%k SOk (024 25 Nk
because of gauge invariandeading to the value of the am- ") 2m? Tr (1+y5)ky"(p*+2p-K)ne(kol )Ne
plitude S
2 X ([ko+pol) 8(k?) 8((k+ p)?)=0. (51)
- —et’p,, (46) . :
T m This shows that the anomaly is unchanged by temperature

) ) ) ) corrections, which is, of course, well known in conventional
which determines that the anomaly in the chiral current, agyantization{11-13, but holds true also in light-front quan-

zero temperature, is given by tization. Since the chiral anomaly is directly related to the
2 mass of the photon in the Schwinger model, this also implies
[ — ec— —— .
J,)t=—-—€e"F,,. (47) that_ the photon mass is unchanged by the temperature cor-
2m rections.

To calculate the thermal correction to the anomaly. we Let us next calculate the temperature dependent correc-
note that in the imaginary time formalism. the ferr):;ion tion to the self-energy of the photon. The photon self-energy
ginary ' is a second rank symmetric tensor, and it is easy to see from

propagator has the forfisee Eq.(40)]

the form of the amplitude that

_ 1 1 — - B - _
SB(p)=— ——P +—=P", (48) 1906 (p) = 2I19B) (p) = 2IT1°B) (p) = 4TT11B) (p),
2pot Py P1 (52)

with po=(2n+1)i=/B. For the calculation of the anomaly, SO that only one independent component needs to be calcu-
however, the real time formalism is more suitable and thdated. The calculation is straightforward and leads to
propagator, in this case, is given bye give only the+ +

component which is relevant ﬁOl(ﬁ)(a):_EZ(g(zaﬁal)f dk, sgr(k,)sgr(k,+p;)
- i — — —
i) (p)=7"p,(y°— ¥* ( — |y |ki+p4
T+ (P)=7puly = 7))  Zpatpopitic el | e 2
- o) S(2Pat PP, | (fa+p:
P+2wnF<|pol>6«2po+p1>p1)), (49) —2nF(%)nF ksl } -

whereng represents the fermion distribution function definedThere are several things to note from EEg2), (53). First of

in Eq. (34). The interesting thing to note from E@19) isthe g it is clear that the self-energy is gauge invariémans-
presence of the projection operaf®t in the thermal term. verse. Second, taking the dudin one of the indicesand

This simply reflects the fact that the fermion compongnt  contracting with the external momentum gives zero, which
is nondynamical and, as a consequence, does not thermalizghows again that the anomaly has no temperature dependent
This is also reflected in the form of the propaga®#) inthe  contribution. The presence of the delta function structure in
imaginary time formalism, where the component involvingthe amplitude is a reflection of the nonanalyticity in ampli-
P~ has nopy dependence and, consequently, does not haviide at finite temperature, and the amplitude in &3) re-

any temperature dependence. We would like to emphasizéects the structure found in the conventionally quantized
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theory[17]. However, there is a difference in the sense that
the amplitude in Eq(53) shows only one delta function H= f
structure, whereas in the conventionally quantized theory,

there are two independent delta function structures present.

This difference can be traced back to the fact that, in the —2e2yt 4
light-front quantization of the Schwinger model, only one of * +( 1)2

the fermion components thermaliz@ghich is how one delta

function structure arises and which also reflects the fact thafhe self-energy term depends onElll)(z, which does not
light-front quantization inherently breaks parity invariancechange at finite temperature. As a result, the bound state
[18]). Thus it would seem that there is finally a difference equation as well as the solution remain unchanged at finite
between the light-front and conventionally quantized theotemperature.

ries. Let us recall, however, that the photon is massive in the Another interesting quantity that can be calculated in this
Schwinger model, whereas the thermal self-energies in Eqsnodel is the fermion condensate. There are various ways of
(52), (53) as well as those ifiL7] contribute nontrivially only  calculating this at finite temperatufé9,20. However, we
when 200+ p;=0 (or po=p,=0 in[17]). Consequently, for follow, for simplicity, the method in[20], which uses

a massive photon on shell, the thermal self-energies vanish iposonization and is relatively straightforward. The bosonized
both conventional as well as light-front quantizations. On theversion of the Schwinger model describes a free, massive
other hand, they are nonvanishing and distinct in the twescalar field
guantizations away from the physical mass shell. This calcu-

Latlon can easily be generalized to the thernr_mbmt _ampl|- _ L=23 darp— 242, (57)
udes for the photon, completely along the lines discussed in 27K 2

[17]. Without going into technical details, we simply sum-

marize our result here. The nonvanishing components of theshere

thermaln-point amplitude have an identical structure to that

in [17] except that we find only a single product of delta €
functions of the kind in Eq(53) (which again reflects that mPh_J_;'
only one fermion component thermalize®©nce again, this

shows that these thermal amplitudes vanish on shell for Fhe correspondence between the bosonic and fermionic de-

massive photon as is the case[i7], but off shell the two  grees of freedom, among other things, leads to the identifi-
results are quite distinct. cation

An important aspect of the light-front quantization is that
it allows for a simpler description of questions involving — mph
bound states. From our discussion above, since the on-shell
thermal self-energy for the photon vanishes, the equation for
the bound state of fermiong&nd, therefore, the solutibn Here y represents Euler’s constant and the colons stand for
should not change at finite temperature. This can also be se@ormal ordering with respect to the scalar annihilation and
quantitatively as follows. In the axial gaugehich is con-  creation operators. It is straightforward to calculate from this
ventionally used in the study of bound states in this problemthe value of the fermion condensate at zero temperature:
A;1=0, the photon equation becomes a constraint. In fact, the
Lagrangian density for a massive fermi@he mass param- <E¢>T 0=—
eter can be taken to zermteracting with an electromagnetic
potential in the axial gauge takes the form

. 1
dx* —leal«/fmmzwig—m
1

vl llf+l (56)

(58)

- cos\4m . (59)

myre”
27

(60)

since the normal ordered fields lead to trivial vacuum expec-
tation values at zero temperature. At finite temperature, on
1 o o o the other hand, the condensate has the form
L= 5 (1A >+l (200+ d) i =iyl orp+mylyty _ s
(pr= (W)= € #TCTOCON - (61)
Using the representation for the scalar propagator in(Eg).

(in 1+ 1 dimensions and using only the+ componen it
is easy to see that

—myl Yt +2eyl g A, (54)

leading to equation for the photon of the form
1 (=dk 1
iG(9(0)~iG(0)= 5 f C
0 k eBkitmy/ki) _ 1
yh, . (55 (62)

The integral in Eq.(62) cannot be evaluated in closed
form in general. However, for low temperatur@dsrge ), it
Eliminating this constraint, the Hamiltonian takes the form has the fornm{ 23]

Ao=

((71)
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< dk _ _
~1 efﬁ(kﬁmfm/kl)

1
iG(0)-iG(0)~ 5~ >
0 K

1
= —Ko(Bmyn)

[ T
s e—mph/T.
ZﬂTmph

On the other hand, at high temperatutesiall 8), we have
[23]

(63

iG<ﬁ>(0)—iG(0)=2iZ " K gt i
mn=1 Jo ky

1 oo
= ;ngl Ko(nNBMgy)

(64)

Using Eq.(63) in Eqg. (61), we obtain the value of the con-
densate at low temperatures as

_ _ 27T
<l/fl/’>T*<¢l/f>T—o<1_ Y, miphemph”), (65)

PHYSICAL REVIEW D 68, 065017 (2003

shown, with the calculation of the anomaly at zero tempera-
ture, that it may be more efficient to calculate with the full
theory when fermions are involved. We have shown that the
thermal corrections to the anomaly vanish, consistent with
the expectation from the calculations with conventional
quantization. The thermal photon self-energy is shown to
have the expected nonanalytic behavior, but coincides with
the result from conventional quantization only on shell. We
have shown that the bound state equations are unchanged at
nonzero temperature and that the fermion condensate has the
same value at finite temperature as in conventional quantiza-
tion. In fact, if light-front quantization is viewed as quanti-
zation in a general coordinate systef8], the physical
Smatrix elements will be naively expected to be the same in
both light-front and conventional quantizations. At zero tem-
perature, particularly, such an equivalence in the physical
sector, even though expectigt], is hard to prove rigorously
owing to subtleties involving regularization of ultraviolet di-
vergenceg25]. However, the thermal contributions are free
from ultraviolet divergences and, consequently, one may ex-
pect equivalence of the physical thermal amplitudes in the
two quantizations. Our calculations, in the Schwinger model,
explicitly exhibit this feature in this model and furthermore
show that off-shell Green’s functions in the two quantiza-
tions need not be the same.

Note added.ln a later paper[26], complete thermal
equivalence between conventional quantization and light-
front quantization is claimed where the general proof is
based on formal arguments. In this paper, on the other hand,

whereas Eq(64) leads to the high temperature value of thewe have explicitly evaluated the thermal amplitudes in a

condensate as

(Yp)r~—2Te ™M, (66)

given theory, namely, the Schwinger model, and our calcula-
tion shows that the off-shell thermal Green’s functions, in
this theory, are different in the two quantizations. It is quite
likely, therefore, that some of the assumptions that go into

These are precisely the values of the condensates obtainggk general proof are violated in this model, as our calcula-

earlier using conventional quantizatiph9,20, and we see

tion seems to suggest.

once again that the results in the two quantizations coincide

even at finite temperature.

V. CONCLUSION
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