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Light-front Schwinger model at finite temperature

Ashok Das and Xingxiang Zhou
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171, USA

~Received 13 May 2003; published 23 September 2003!

We study the light-front Schwinger model at finite temperature following the recent proposal of Alves, Das,
and Perez. We show that the calculations are carried out efficiently by working with the full propagator for the
fermion, which also avoids subtleties that arise with light-front regularizations. We demonstrate this with the
calculation of the zero temperature anomaly. We show that temperature dependent corrections to the anomaly
vanish, consistent with the results from the calculations in conventional quantization. The gauge self-energy is
seen to have the expected nonanalytic behavior at finite temperature, but does not quite coincide with the
conventional results. However, the two structures are exactly the same on shell. We show that the temperature
does not modify the bound state equations and that the fermion condensate has the same behavior at finite
temperature as that obtained in conventional quantization.

DOI: 10.1103/PhysRevD.68.065017 PACS number~s!: 11.10.Wx, 11.10.Kk, 12.38.Lg
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I. INTRODUCTION

In an earlier paper@1#, it was shown that light-front field
theories@2# do not admit a naive generalization to finite tem
perature. A proper thermal description of such theories w
proposed in Ref.@1#, the meaning of which was clarifie
nicely by Weldon@3#. The calculations carried out in Ref
@1,4# showed that the thermal contributions to the self-ene
in scalar theories~in both f4 and f3 theories! at one loop
coincide with the result from conventional calculations.
this paper, we extend such an investigation to fermionic
gauge theories. In particular, we study various question
interest within the context of the Schwinger model@5# at
finite temperature.

As is well known, the Schwinger model which describ
massless QED in 111 dimensions is exactly soluble and h
been widely studied in both conventional@6,7# as well as
light-front quantization@8# at zero temperature. In this pape
we study various questions associated with the Schwin
model in the light-front quantization at finite temperatu
@9–11#. In Sec. II, we briefly recapitulate the finite temper
ture formalism proposed in@1# for light-front quantized theo-
ries. We give explicitly the forms of the scalar as well as t
gauge boson propagators in various gauges, in both
imaginary time as well as the real time formalisms. The f
mion case needs to be discussed carefully and we do
separately in Sec. III, where we give the propagators in b
the imaginary time and real time formalisms. In Sec. IV, w
undertake a detailed study of the light-front Schwing
model at finite temperature. While conventionally in ligh
front quantized theories one works with only the independ
fermion components, we argue that working with the f
theory can be simpler and one can even avoid subtle
generally arising from light-front regularizations. We sho
this by explicitly calculating the anomaly at zero tempe
ture. We then show that the finite temperature correction
the anomaly vanishes, as is also the case in conventi
quantization @11–13#. In the case of the light-fron
Schwinger model, only one of the fermion components th
malizes and, consequently, we show that, while the ther
self-energy for the photon has the expected nonana
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structure@14–16#, it does not quite agree with the conve
tional result@17#. However, these thermal contributions va
ish on shell in both the quantizations, once again showing
equivalence in the observable sector. We also show that
bound state equation@8# remains unchanged at finite tem
perature. We calculate the fermion condensate at finite t
perature@19,20# using the method of bosonization@21# and
show that the result in the light-front formalism coincid
with that obtained using conventional quantization. Fina
we conclude with a brief summary in Sec. V.

II. FORMALISM

In this section, we briefly recapitulate the essential res
from Refs. @1,3# and list the forms of the propagators fo
scalar and gauge fields in light-front quantization at fin
temperature. As was shown by Weldon@3#, the proposal in
@1# corresponds to choosing a coordinate system

xm→ x̄m, m50,1, . . . ,n21, ~1!

such that

x̄05x01xn21,

x̄i5xi , i 51,2, . . . ,n21. ~2!

Such a coordinate redefinition, which does not correspon
a Lorentz transformation, has a unit Jacobian. One can q
tize the theory on the light front,x̄050, and in this coordi-
nate system can preserve all the simple relations of conv
tional light-front quantization as well as have a therm
description of the system with a heat bath at rest.

Such a coordinate system, however, has a nontrivial m
ric structure in the (232) space of ‘‘0-(n21)’’ indices,
namely,

ḡmn5S 0 21

21 21D , ḡmn5S 1 21

21 0D . ~3!
©2003 The American Physical Society17-1
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Furthermore, the energy-momentum, in the new coordina
takes the form

p̄05p0 ,

p̄n2152p01pn21 ,

p̄a5pa , a51,2, . . . ,n22, ~4!

so that with Eq.~3!, the form of the Einstein relation for a
massive particle follows as

~2p̄01 p̄n21! p̄n211 p̄ap̄a1m250,

or 2p̄0p̄n211v p̄
2
50, ~5!

where we have defined

v p̄
2
5 p̄i p̄i1m2, i 51,2, . . . ,n21. ~6!

In this case, the density matrix for a system, interact
with a heat bath at rest, takes the form

r~b!5e2b p̄0, ~7!

whereb51/T in units of the Boltzmann constant.@We note
parenthetically thatp̄05p05(1/A2)(p11p2), which is
what was used in@1#.# The statistical description of quantum
field theories can now be developed in the standard ma
@9–11#. For example, we list below the propagators f
bosonic~scalar and gauge! fields in both imaginary and rea
time ~closed time path! formalisms. The propagators for th
fermions will be discussed separately in the next section

A. Scalar propagator

At zero temperature, the propagator for a scalar field
the form

iG~ p̄!5
i

2~2p̄0p̄n211v p̄
2
!1 i e

. ~8!

The form of the propagator, in the imaginary time formalis
now follows from Eq.~8! as

G(b)~ p̄!5
1

2p̄0p̄n211v p̄
2 ~9!

with p̄052ipn/b, wheren takes integer values.
In the real time formalism, on the other hand, the degr

of freedom are known to double@11#. Here, we note only the
form of the propagator in the closed time path formalism~a
similar form can be derived in a straightforward manner
thermofield dynamics!:
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iG11~ p̄!5
i

2~2p̄0p̄n211v p̄
2
!1 i e

12pnB~ u p̄0u!d~2p̄0p̄n211v p̄
2
!,

iG12~ p̄!52p@u~2 p̄0!1nB~ u p̄0u!#d~2p̄0p̄n211v p̄
2
!,

iG21~ p̄!52p@u~ p̄0!1nB~ u p̄0u!#d~2p̄0p̄n211v p̄
2
!,

iG22~ p̄!5
i

~2p̄0p̄n211v p̄
2
!1 i e

12pnB~ u p̄0u!d~2p̄0p̄n211v p̄
2
!. ~10!

Here,

nB~ u p̄0u!5
1

ebu p̄0u21
~11!

represents the bosonic distribution function.

B. Gauge boson propagator

The propagators for the gauge fields can also be der
in a straightforward manner. Without going into details,
us simply note here that, in the path integral formalism w
a general covariant gauge, the zero temperature propag
has the form

iD mn~ p̄!52
i

p̄2 S ḡmn2~12j!
p̄mp̄n

p̄2 D , ~12!

wherej represents the gauge fixing parameter~the Feynman
prescription is understood! and

p̄2522p̄0p̄n212 p̄i p̄i . ~13!

The finite temperature propagator, in the imaginary time f
malism, has the form

Dmn
(b)~ p̄!5

1

p̄2 S ḡmn
(E)2~12j!

p̄mp̄n

p̄2 D , ~14!

with p̄052ipn/b and ḡmn
(E) the properly rotated Euclidea

metric.
Parenthetically, we note that, as has already been poi

out in @3#, going to oblique coordinates and rotating to imag
nary time do not commute. Nonetheless, once we are in
oblique coordinates, we can go to the imaginary time form
ism and our conventions for this are as follows:

x̄m5~2 i x̄ (E)
0 ,x̄(E)

i !. ~15!

The energy-momentum vector, on the other hand, is rota
as

p̄m5~ i p̄0
(E) ,p̄i !, ~16!
7-2
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which is required from the analytic structure of the propa
tor ~so that we do not cross a singularity!. Under the rotation
in Eq. ~15!, it is easy to check that the component of t
metric @in the 0-(n21) space# transforms as~the other com-
ponents of the metric do not change!

ḡmn(E)5S 0 2 i

2 i 21D , ḡmn
(E)5S 21 i

i 0D . ~17!

We note that, in an oblique coordinate system, the upper
lower index tensors can be different, which is reflected in
~17!. The transformation of other vectors and tensors can
determined from the rotation in Eq.~15!.

In the real time formalism, the degrees of freedom w
double and the propagator will have the form@once again,
the Feynman prescription is understood as in Eq.~10!#

iD mn,11
(b) ~ p̄!52S ḡmn2~12j!

p̄mp̄n

p̄2 D
3S i

p̄2
12pnB~ u p̄0u!d~ p̄2!D ,

iD mn,12
(b) ~ p̄!52S ḡmn2~12j!

p̄mp̄n

p̄2 D 2p~u~2 p̄0!

1nB~ u p̄0u!!d~ p̄2!,

iD mn,21
(b) ~ p̄!52S ḡmn2~12j!

p̄mp̄n

p̄2 D 2p~u~ p̄0!

1nB~ u p̄0u!!d~ p̄2!,

iD mn,22
(b) ~ p̄!52S ḡmn2~12j!

p̄mp̄n

p̄2 D
3S 2

i

p̄2
12pnB~ u p̄0u!d~ p̄2!D . ~18!

On the other hand, in a general axial gauge, the zero t
perature propagator in the path integral formalism takes
form

iD mn~ p̄!52
i

p̄2 S ḡmn2
n̄mp̄n1n̄np̄m

n̄• p̄
1

n̄2p̄mp̄n

~ n̄• p̄!2

1
j p̄2p̄mp̄n

~ n̄• p̄!2 D , ~19!

wheren̄m represents an arbitrary vector~not necessarily nor-
malized!. The finite temperature propagator, in this case
the imaginary time formalism takes the form

Dmn
(b)~ p̄!5

1

p̄2 S ḡmn
(E)2

n̄mp̄n1n̄np̄m

n̄• p̄
1

n̄2p̄mp̄n

~ n̄• p̄!2
1

j p̄2p̄mp̄n

~ n̄• p̄!2 D ,

~20!
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with p̄052ipn/b andnm representing the appropriately ro
tated Euclidean vectors. In the real time formalism, the
grees double and we simply note here the (11) component
of the propagator~the other components can be determin
much like the forms given above!:

iD mn,11
(b) ~ p̄!

52S ḡmn2
n̄mp̄n1n̄np̄m

n̄• p̄
1

n̄2p̄mp̄n

~ n̄• p̄!2
1

j p̄2p̄mp̄n

~ n̄• p̄!2 D
3S i

p̄2
12pnB~ u p̄0u!d~ p̄2!D . ~21!

The gauge propagators in other gauges can, of course
easily derived, but these are the two most commonly u
gauges in light-front field theories, which is why we ha
listed their forms.

III. FERMIONS

In light-front theories, the handling of the fermions is
little tricky. This is because one of the components of t
fermion field becomes constrained. To see this, let us n
that, under the coordinate redefinition in Eq.~2!, the Dirac
gamma matrices transform as

ḡ05g01gn21,

ḡ i5g i , i 51,2, . . . ,n21. ~22!

The transformed Dirac matrices satisfy the algebra

$ḡm,ḡn%52ḡmn. ~23!

This implies, in particular, from Eq.~3! that

~ ḡ0!250, ~ ḡn21!2521,

ḡ0ḡn211ḡn21ḡ0522. ~24!

With these matrices, we can define the projection operat

P152
1

2
ḡn21ḡ0, P252

1

2
ḡ0ḡn21,

~P6!†5P6, P11P251, ~25!

which allows us to decompose the fermion field as

c65P6c. ~26!

In terms of these components, the Lagrangian density fo
free massive fermion takes the form

L5 ic1
† ~2]̄01 ]̄n21!c12 ic2

† ]̄n21c2

1c1
† ḡn21~ i ḡa]̄a1m!c22c2

† ḡn21~ i ḡa]̄a1m!c1 ,

~27!
7-3
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where, as defined earlier,a51,2, . . . ,n22.
This shows that, while the fermion componentc1 is dy-

namical, the componentc2 is constrained and is related t
the dynamical componentc1 . Because of this, the conven
tional practice in calculations using light-front quantizati
is to eliminate the constrained variable, which in some ca
introduces additional contact interactions into the theory
the dynamical component. From the point of view of therm
field theory, however, we find that it is more appropriate
work in the full Dirac space without eliminating the depe
dent components. Even in the zero temperature case, we
that this simplifies the calculations~in this case, of course
one does not have to worry about additional contact inte
tions which is certainly an advantage! as we will demonstrate
with the calculation of the anomaly in the Schwinger mod
in the next section.

From the fact thatḡ0 is nilpotent@see Eq.~24!# and the
forms of the projection operators in Eq.~25!, we see that

c̄15c1
† ḡ050. ~28!

As a result, in such a theory, it is more appropriate to de
the fermion propagator as

iS~ x̄2 x̄8!5^T~c~ x̄!c†~ x̄8!!&, ~29!

whereT represents ordering with respect tox̄0. We will be
working in the path integral formalism, where the propaga
would simply represent the inverse of the two-point functio
In the momentum space, this then leads to the comp
propagator for a massive fermion at zero temperature~in the
path integral formalism! as

iS~ p̄!5
i

2~2p̄0p̄n211v p̄
2
!1 i e

3S 2 p̄n21 2ḡn21~2ḡap̄a1m!

ḡn21~2ḡap̄a1m! 2p̄01 p̄n21
D .

~30!

It can be easily checked that this reduces to the conventi
propagator for the dynamical independent component w
restricted to the proper projection@1,22#. We note here tha
this propagator can also be written as

iS~ p̄!5
i ~p”̄1m!~ ḡ02ḡn21!

2~2p̄0p̄n211v p̄
2
!1 i e

. ~31!

It now follows from Eq.~30! that the fermion propagato
at finite temperature in the imaginary time formalism tak
the form
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S(b)~ p̄!5
1

2p̄0p̄n211v p̄
2

3S 2 p̄n21 2ḡn21~2ḡap̄a1m!

ḡn21~2ḡap̄a1m! 2p̄01 p̄n21
D ,

~32!

with p̄052ip(n11)/b.
In the real time formalism, the four components of t

matrix propagator take the forms

iS11
(b) ~ p̄!5S 2 p̄n21 2ḡn21~2ḡap̄a1m!

ḡn21~2ḡap̄a1m! 2p̄01 p̄n21
D

3S i

2~2p̄0p̄n211v p̄
2
!1 i e

22pnF~ u p̄0u!d~2p̄0p̄n211v p̄
2
!D ,

iS12
(b) ~ p̄!52pS 2 p̄n21 2ḡn21~2ḡap̄a1m!

ḡn21~2ḡap̄a1m! 2p̄01 p̄n21
D

3@u~2 p̄0!2nF~ u p̄0u!#d~2p̄0p̄n211v p̄
2
!,

iS21
(b) ~ p̄!52pS 2 p̄n21 2ḡn21~2ḡap̄a1m!

ḡn21~2ḡap̄a1m! 2p̄01 p̄n21
D

3@u~ p̄0!2nF~ u p̄0u!#d~2p̄0p̄n211v p̄
2
!,

iS22
(b) ~ p̄!5S 2 p̄n21 2ḡn21~2ḡap̄a1m!

ḡn21~2ḡap̄a1m! 2p̄01 p̄n21
D

3S i

~2p̄0p̄n211v p̄
2
!1 i e

22pnF~ u p̄0u!d~2p̄0p̄n211v p̄
2
!D , ~33!

where

nF~ u p̄0u!5
1

ebu p̄0u11
~34!

represents the fermion distribution function. We note h
that the propagators in Eq.~33! can be checked to reduce t
the ones in@1# when restricted to the dynamically indepe
dent components only. However, as we will show next w
the Schwinger model as an example, in actual calculation
may be more efficient to use the full form of the propagat
7-4
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IV. SCHWINGER MODEL

The Schwinger model describes quantum electrodynam
in 111 dimensions for massless fermions and represent
exactly soluble model. The Lagrangian density in the n
coordinates takes the form

L5 ic1
† ~2]̄01 ]̄1!c12 ic2

† ]̄1c2

1ec†~ ḡ02ḡ1!ḡmcĀm , m50,1. ~35!

We note that we have not separated out the interaction t
into components~although one can do so easily and the
teraction is diagonal in the Dirac space! just to demonstrate
that calculations with the full propagator may be more e
cient. In 111 dimensions, some further simplifications o
cur. First of all, in this case, we can show that, under
coordinate transformation, the Levi-Civita` tensor remains in-
variant ~the magnitude of the determinant of the metric
unity! and we can identify

ḡ552
1

2
ēmnḡmḡn, ~ ḡ5!251, $ḡ5 ,ḡm%50. ~36!

It follows then, from the definitions of the projection oper
tors in Eq.~25! as well as the algebraic relations in Eq.~24!
that

P65
1

2
~16ḡ5!. ~37!

Furthermore, the usual duality relations continue to hold
this case, namely,

ḡ5ḡm5 ēmnḡn , ḡm5 ēmnḡ5ḡn . ~38!

In this case, from the invariances of the theory as well as
~38!, we can identify

̄m5c†~ ḡ02ḡ1!ḡmc, ̄5
m5c†~ ḡ02ḡ1!ḡ5ḡmc5 ēmn ̄n .

~39!

Let us next calculate the anomaly in the chiral current̄5
m at

both zero temperature as well as at finite temperature.
The calculation of the anomaly is best carried out in

real time formalism. First, we note that, in the case of
Schwinger model, we cannot simply take over the form
the fermion propagator from Eq.~33!. This is because, for a
massless fermion in 111 dimensions, the nondynamica
component of the fermion is, in fact, decoupled from t
dynamical one, as is obvious from Eq.~35!. As a result, even
at zero temperature, the form of the propagator has the f
@with the Feynman prescription understood; see also
~30!#
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iS~ p̄!5
i

2~2p̄01 p̄1! p̄1
S 2 p̄1 0

0 2p̄01 p̄1
D

5S i

2p̄01 p̄1

0

0 2
i

p̄1

D
5

i

2p̄01 p̄1

P12
i

p̄1

P2. ~40!

As in Eq. ~31!, we note here that this propagator can also
written as

iS~ p̄!5
i ḡmp̄m~ḡ02ḡ1!

2~2p̄01 p̄1!p̄1

, ~41!

which reflects the propagator relations between conventio
quantization and light-front quantization from the point
view of a coordinate transformation.

The zero temperature anomaly can be calculated using
component fields~which is what is conventionally done in
light-front studies!. However, we wish to point out that it is
equally convenient to carry out the light-front calculatio
using the full propagator and the complete vertex of
theory. Both lead to the same result, however, using the
fermion propagator and the complete vertex, one can av
the subtleties arising from regularization. To demonstr
this, let us calculate the zero temperature anomaly in
Schwinger model using the full propagator in Eq.~41! and
the complete vertex in Eq.~35!. We note from Fig. 1 that the
zero temperature amplitude has the form

2e2 E d2k̄

~2p!2
Tr ~ ḡ02ḡ1!ḡ5p”̄S~ k̄!~ ḡ02ḡ1!ḡnS~ k̄1 p̄!

52e2 E d2k̄

~2p!2
Tr ḡ5p”̄ k”̄ ḡn~k”̄1p”̄ !

1

k̄2~ k̄1 p̄!2
. ~42!

Here, we have used the form of the full propagator in E
~41!, the notation

k̄252~2k̄01 k̄1!k̄1 , ~43!

k

k p+  

p

ν  

FIG. 1. One-loop graph contributing to the anomaly in the chi
current. The solid lines represent fermions, the wavy line a pho
and the cross the divergence of the chiral current.
7-5
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A. DAS AND X. ZHOU PHYSICAL REVIEW D 68, 065017 ~2003!
as well as the identity

~ ḡ02ḡ1!251. ~44!

There are several things to note from Eq.~42!. First, the
form of the integrand is the same as would be obtained
conventional quantization except for barred quantities. Ho
ever, since scalar quantities are unchanged under the co
nate transformation~2! and vectors transform in a simpl
manner, we expect the results to be quite similar to the s
dard result. In fact, the fermion trace leads to the same re
in the barred variables. Normally, the light-front integra
have to be treated with care, but with the full propagator,
note that we can make a change of variables of integra
@basically, the inverse redefinition of Eq.~2!#

k̄05k0 , k̄352k01k3 , ~45!

which allows us to use the standard dimensional regular
tion ~in this case, of course, the result turns out to be fin
because of gauge invariance! leading to the value of the am
plitude

2
e2

p
ēmnp̄m , ~46!

which determines that the anomaly in the chiral current
zero temperature, is given by

]̄m ̄5
m52

e2

2p
ēmnF̄mn . ~47!

To calculate the thermal correction to the anomaly,
note that in the imaginary time formalism, the fermio
propagator has the form@see Eq.~40!#

S(b)~ p̄!52
1

2p̄01 p̄1

P11
1

p̄1

P2, ~48!

with p̄05(2n11)ip/b. For the calculation of the anomaly
however, the real time formalism is more suitable and
propagator, in this case, is given by~we give only the11
component which is relevant!

iS11
(b) ~ p̄!5ḡmp̄m~ḡ02ḡ1!S i

2~2p̄01 p̄1!p̄11 i e

2P12pnF~ u p̄0u!d„~2p̄01 p̄1! p̄1…D , ~49!

wherenF represents the fermion distribution function defin
in Eq. ~34!. The interesting thing to note from Eq.~49! is the
presence of the projection operatorP1 in the thermal term.
This simply reflects the fact that the fermion componentc2

is nondynamical and, as a consequence, does not therm
This is also reflected in the form of the propagator~48! in the
imaginary time formalism, where the component involvi
P2 has nop̄0 dependence and, consequently, does not h
any temperature dependence. We would like to empha
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that the propagator in Eq.~49! also results if we start with a
massive fermion propagator as in Eq.~33! ~for 111 dimen-
sions! and take the limitm→0.

With the form of the propagator in Eq.~49!, we can now
calculate the temperature dependence of the amplitud
Fig. 1. Once again, the calculations can be done in com
nents or with the full propagator, and both yield the sa
result. If we take the full propagator and the vertex, the te
perature dependent part of the amplitude can be calcul
very easily. The terms linear in the fermion distribution fun
tion ~with a little algebra! take the form

; E d2k̄

~2p!2
ēmnk̄m nF~ uk̄0u!d~ k̄2!50. ~50!

Similarly, the terms in the amplitude quadratic in the fermi
distribution function give~even before doing the Dirac trace!

; E d2k̄

~2p!2
Tr ~11ḡ5!k”̄ ḡn~ p̄212p̄• k̄!nF~ uk̄0u!nF

3~ uk̄01 p̄0u!d~ k̄2!d„~ k̄1 p̄!2
…50. ~51!

This shows that the anomaly is unchanged by tempera
corrections, which is, of course, well known in convention
quantization@11–13#, but holds true also in light-front quan
tization. Since the chiral anomaly is directly related to t
mass of the photon in the Schwinger model, this also imp
that the photon mass is unchanged by the temperature
rections.

Let us next calculate the temperature dependent cor
tion to the self-energy of the photon. The photon self-ene
is a second rank symmetric tensor, and it is easy to see f
the form of the amplitude that

P̄00(b)~ p̄!52P̄01(b)~ p̄!52P̄10(b)~ p̄!54P̄11(b)~ p̄!,
~52!

so that only one independent component needs to be ca
lated. The calculation is straightforward and leads to

P̄01(b)~ p̄!52e2d~2p̄01 p̄1! E dk̄1 sgn~ k̄1!sgn~ k̄11 p̄1!

3FnFS uk̄1u
2

D 1nFS uk̄11 p̄1u
2

D
22nFS uk̄1u

2
D nFS uk̄11 p̄1u

2
D G . ~53!

There are several things to note from Eqs.~52!, ~53!. First of
all, it is clear that the self-energy is gauge invariant~trans-
verse!. Second, taking the dual~in one of the indices! and
contracting with the external momentum gives zero, wh
shows again that the anomaly has no temperature depen
contribution. The presence of the delta function structure
the amplitude is a reflection of the nonanalyticity in amp
tude at finite temperature, and the amplitude in Eq.~53! re-
flects the structure found in the conventionally quantiz
7-6
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LIGHT-FRONT SCHWINGER MODEL AT FINITE TEMPERATURE PHYSICAL REVIEW D68, 065017 ~2003!
theory @17#. However, there is a difference in the sense t
the amplitude in Eq.~53! shows only one delta function
structure, whereas in the conventionally quantized the
there are two independent delta function structures pres
This difference can be traced back to the fact that, in
light-front quantization of the Schwinger model, only one
the fermion components thermalizes~which is how one delta
function structure arises and which also reflects the fact
light-front quantization inherently breaks parity invarian
@18#!. Thus it would seem that there is finally a differen
between the light-front and conventionally quantized th
ries. Let us recall, however, that the photon is massive in
Schwinger model, whereas the thermal self-energies in E
~52!, ~53! as well as those in@17# contribute nontrivially only
when 2p̄01 p̄150 ~or p06p150 in @17#!. Consequently, for
a massive photon on shell, the thermal self-energies vanis
both conventional as well as light-front quantizations. On
other hand, they are nonvanishing and distinct in the t
quantizations away from the physical mass shell. This ca
lation can easily be generalized to the thermaln-point ampli-
tudes for the photon, completely along the lines discusse
@17#. Without going into technical details, we simply sum
marize our result here. The nonvanishing components of
thermaln-point amplitude have an identical structure to th
in @17# except that we find only a single product of de
functions of the kind in Eq.~53! ~which again reflects tha
only one fermion component thermalizes!. Once again, this
shows that these thermal amplitudes vanish on shell fo
massive photon as is the case in@17#, but off shell the two
results are quite distinct.

An important aspect of the light-front quantization is th
it allows for a simpler description of questions involvin
bound states. From our discussion above, since the on-
thermal self-energy for the photon vanishes, the equation
the bound state of fermions~and, therefore, the solution!
should not change at finite temperature. This can also be
quantitatively as follows. In the axial gauge~which is con-
ventionally used in the study of bound states in this proble!

Ā150, the photon equation becomes a constraint. In fact,
Lagrangian density for a massive fermion~the mass param
eter can be taken to zero! interacting with an electromagneti
potential in the axial gauge takes the form

L5
1

2
~ ]̄1Ā0!21 ic1

† ~2]̄01 ]̄1!c12 ic2
† ]̄1c21mc1

† ḡ1c2

2mc2
† ḡ1c112ec1

† c1Ā0 , ~54!

leading to equation for the photon of the form

Ā05
2e

~ ]̄1!2
c1

† c1 . ~55!

Eliminating this constraint, the Hamiltonian takes the form
06501
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H5 E dx̄1F2 ic1
† ]̄1c11 im2c1

† 1

]̄1

c1

22e2c1
† c1

1

~ ]̄1!2
c1

† c1G . ~56!

The self-energy term depends on 1/(]̄1)2, which does not
change at finite temperature. As a result, the bound s
equation as well as the solution remain unchanged at fi
temperature.

Another interesting quantity that can be calculated in t
model is the fermion condensate. There are various way
calculating this at finite temperature@19,20#. However, we
follow, for simplicity, the method in @20#, which uses
bosonization and is relatively straightforward. The bosoniz
version of the Schwinger model describes a free, mas
scalar field

L5
1

2
]̄mf]̄mf2

mph
2

2
f2, ~57!

where

mph5
e

Ap
. ~58!

The correspondence between the bosonic and fermionic
grees of freedom, among other things, leads to the iden
cation

c̄c52
mphe

g

2p
: cosA4pf:. ~59!

Hereg represents Euler’s constant and the colons stand
normal ordering with respect to the scalar annihilation a
creation operators. It is straightforward to calculate from t
the value of the fermion condensate at zero temperature

^c̄c&T5052
mphe

g

2p
, ~60!

since the normal ordered fields lead to trivial vacuum exp
tation values at zero temperature. At finite temperature,
the other hand, the condensate has the form

^c̄c&T5^c̄c&T50 e22ip[G(b)(0)2G(0)]. ~61!

Using the representation for the scalar propagator in Eq.~10!
~in 111 dimensions and using only the11 component!, it
is easy to see that

iG (b)~0!2 iG~0!5
1

2p E
0

` dk̄1

k̄1

1

eb( k̄11mph
2 / k̄1)21

.

~62!

The integral in Eq.~62! cannot be evaluated in close
form in general. However, for low temperatures~largeb), it
has the form@23#
7-7
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iG (b)~0!2 iG~0!'
1

2p E
0

` dk̄1

k̄1

e2b( k̄11mph
2 / k̄1)

5
1

p
K0~bmph!

→A T

2pmph
e2mph /T. ~63!

On the other hand, at high temperatures~small b), we have
@23#

iG (b)~0!2 iG~0!5
1

2p (
n51

` E
0

` dk̄1

k̄1

e2nb( k̄11mph
2 / k̄1)

5
1

p (
n51

`

K0~nbmph!

→ T

2mph
1

1

2p
ln

mph

4pT
1

g

2p
.

~64!

Using Eq.~63! in Eq. ~61!, we obtain the value of the con
densate at low temperatures as

^c̄c&T'^c̄c&T50S 12A2pT

mph
e2mph /TD , ~65!

whereas Eq.~64! leads to the high temperature value of t
condensate as

^c̄c&T'22Te2pT/mph. ~66!

These are precisely the values of the condensates obta
earlier using conventional quantization@19,20#, and we see
once again that the results in the two quantizations coinc
even at finite temperature.

V. CONCLUSION

In this paper, we have studied the light-front Schwing
model in detail following the recent proposal@1#. We have
lly
h
M

’’
n-

06501
ed

e

r

shown, with the calculation of the anomaly at zero tempe
ture, that it may be more efficient to calculate with the fu
theory when fermions are involved. We have shown that
thermal corrections to the anomaly vanish, consistent w
the expectation from the calculations with convention
quantization. The thermal photon self-energy is shown
have the expected nonanalytic behavior, but coincides w
the result from conventional quantization only on shell. W
have shown that the bound state equations are unchang
nonzero temperature and that the fermion condensate ha
same value at finite temperature as in conventional quan
tion. In fact, if light-front quantization is viewed as quant
zation in a general coordinate system@3#, the physical
S-matrix elements will be naively expected to be the same
both light-front and conventional quantizations. At zero te
perature, particularly, such an equivalence in the phys
sector, even though expected@24#, is hard to prove rigorously
owing to subtleties involving regularization of ultraviolet d
vergences@25#. However, the thermal contributions are fre
from ultraviolet divergences and, consequently, one may
pect equivalence of the physical thermal amplitudes in
two quantizations. Our calculations, in the Schwinger mod
explicitly exhibit this feature in this model and furthermo
show that off-shell Green’s functions in the two quantiz
tions need not be the same.

Note added.In a later paper@26#, complete thermal
equivalence between conventional quantization and lig
front quantization is claimed where the general proof
based on formal arguments. In this paper, on the other h
we have explicitly evaluated the thermal amplitudes in
given theory, namely, the Schwinger model, and our calcu
tion shows that the off-shell thermal Green’s functions,
this theory, are different in the two quantizations. It is qu
likely, therefore, that some of the assumptions that go i
the general proof are violated in this model, as our calcu
tion seems to suggest.
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