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Duality for symmetric second rank tensors. II. The linearized gravitational field
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The construction of dual theories for linearized gravity in four dimensions is considered. Our approach is
based on the parent Lagrangian method previously developed for the massive spin-two case, but now consid-
ered for the zero mass case. This leads to a dual theory described in terms of a rank two symmetric tensor,
analogous to the usual gravitational field, and an auxiliary antisymmetric field. This theory has an enlarged
gauge symmetry, but with an adequate partial gauge fixing it can be reduced to a gauge symmetry similar to the
standard one of linearized gravitation. We present examples illustrating the general procedure and the physical
interpretation of the dual fields. The zero mass case of the massive theory dual to the massive spin-two theory
is also examined, but we show that it only contains a spin-zero excitation.
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I. INTRODUCTION

In preceding papers we have discussed the constructio
dual theories for massive fields in a Lagrangian framewo
and in particular we fully developed the case of a mass
spin two theory@1,2#. The purpose of this paper is to exten
the analysis to the massless case, focusing on the linea
gravitational field in four dimensions.

Let us recall the procedure. Starting from a second or
Lagrangian, the first step is to construct a first order Lagra
ian, with a particular structure defined by the kinetic term
contains the derivative of the original field times a new au
iliary variable, which corresponds to the field strength of t
original theory. The key recipe to construct the dual theory
to introduce a point transformation in the configuration sp
for the auxiliary variable which involves the completely a
tisymmetric tensoremnst and leads to the first order pare
Lagrangian. From the latter, both the original and the d
theories are obtained. In fact, the equations of motion for
auxiliary variables take us back to our starting action. Alt
natively, we can eliminate the original field from the pare
Lagrangian, using its equations of motion, thus obtaining
dual theory which is equivalent to the original one throu
the transformation defined by such equations of motion.

Using the well known example of massive scalar-ten
duality we will revise the main steps of the procedure su
marized above, to point out the new features that will app
in the massless case. Such a duality corresponds to
equivalence between a free scalar fieldw, with field strength
f m5]mw, and an antisymmetric potentialBmn , the Kalb-
Ramond field, with field strengthHmns5]mBns1]nBsm
1]sBmn @3–5#. Starting from the standard second order L
grangian forw we derive a first order Lagrangian

L~w,Lm!5Lm]mw2 1
2 LmLm2 1

2 m2w21Jw. ~1!
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To construct the dual theory we introduce the point transf
mationLm5emnrsHnrs for the variableLm , which leads to a
new first order Lagrangian

L~w,Hnst!5Hnste
mnst]mw13HnstH

nst2 1
2 m2w21Jw.

~2!

This turns out to be the parent Lagrangian from which b
theories ~original and dual! can be obtained. On the on
hand, using the equation of motion forHnst we get

Hnst~w!5 1
6 enstm]mw, ~3!

which takes us back to the original second order Lagrang
for w after it is substituted in Eq.~2!. On the other hand, we
can eliminate the fieldw from Lagrangian~2! using its own
equation of motion

m2w52]memnstHnst1J. ~4!

In this way we obtain the new theory

L~Hnst!5 1
2 ~emnst]mHnst!

213m2HnstH
nst

2Jemnst]mHnst1 1
2 J2, ~5!

which is equivalent to the original one through transform
tion ~4!. This is a singular Lagrangian for the massive fie
Hnst , which is equivalent to a scalar field of massm.

Following the same parent Lagrangian approach we h
also constructed a family of dual theories for the mass
Fierz-Pauli fieldhmn in terms of the fieldsT(mn)r satisfying
T(mn)r52T(nm)r andT(mn)

n50. The cyclic identity

T(mn)r1T(nr)m1T(rm)n50, ~6!
©2003 The American Physical Society11-1
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which selectsT(mn)r in the spin two irreducible representa
tion, was not assumed as a starting point and arose
dynamical result via the equations of motion@1,2#.

We now turn to the massless case. Here a very impor
difference appears, which we still illustrate in the scalar fi
context. In this case the equation of motion~4! of w becomes
a constraint onHnst

]memnstHnst5J. ~7!

Out of the sources, where]memnstHnst50, this constraint
tells us that the fieldHnst can be considered as a fie
strength with an associated potential

Hnst5]nBst1]sBtn1]tBns . ~8!

In the region whereJÞ0 this is not valid. Hence it is no
possible to give a global solution forBst because, using Eq
~8!, the left-hand side~LHS! of Eq. ~7! is always zero while
the right-hand side~RHS! might be non-null in a given do
main. The problem is similar to that of finding the electr
magnetic potential for a magnetic monopole.

To deal with this situation we introduce a Dirac-typ
string singularityf m(x) defined by@6#

f m~x!5E
C

x

djmd (4)~j!, ]m f m~x!5d (4)~x!. ~9!

The pathC begins at infinity, ends up at the pointx and can
be chosen as a straight line if considered convenient. T
we can write a particular solution to Eq.~7! as

emnstHnst~x!5E ~dy! f m~x2y!J~y!, ~10!

with the general solution being

Hnst5]nBst1]sBtn1]tBns1
1

6
enstr

3E ~dy! f r~x2y!J~y!, ~11!

in terms of the potential field and the one dimensional s
gular string.

The Lagrangian for the potentialBab is obtained by sub-
stituting Eq. ~11! into Eq. ~5!, which produces the corre
sponding equations of motion.

The duality transformations are expressed in terms of
following nonlocal relation between the fieldw, describing
the original zero-mass scalar theory, and the potentialBab ,
which is obtained through the comparison ofHmnr in Eqs.
~3! and ~11!

1

6
enstm]mw5]nBst1]sBtn1]tBns1

1

6
enstr

3E ~dy! f r~x2y!J~y!. ~12!
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Thus, in the case of massless theories the first order equa
of motion for the original variable becomes a constraint,
it looks like a Bianchi identity, which states that the du
field can now be considered as a field strength with an a
ciated potential plus a non-local contribution. Solving t
constraint we obtain the dual theory, in which this potent
becomes the basic field. Both theories arise from the sa
parent Lagrangian and represent the same physics. This
cedure strongly resembles the electric-magnetic duality
the Maxwell theory. In fact, it is a generalization of the we
known p-form duality to arbitrary tensorial massless fiel
@7#.

Naively one could think that another possibility to gene
ate a massless dual theory for the linearized gravity is to t
m50 in the massiveT(mn)s Lagrangian of Ref.@2#. We ex-
plore this possibility in the Appendix, with negative resul
The Dirac analysis shows that such a theory describes on
spin zero excitation. This result corrects our previous p
liminary calculation of the number of degrees of freedom
the massless theory reported in Refs.@1,2#, which errone-
ously stated that this number was two.

The construction of dual theories is usually based o
kinematical perspective where the basic dual fields are
signed to associated representations of the Poincare´ group
@8,9#. Some dynamical realizations of duality have also be
considered in the framework of four dimensional higher d
rivatives theories of gravity@10# and in other gravitationa
theories@11#. Our approach is based on a Lagrangian ba
where the auxiliary fields are not in irreducible represen
tions to begin with, but the ensuing Lagrangian constrai
warrant that the dynamics develops in an adequate redu
space, with a well defined spin content.

The paper is organized as follows. In the next section
apply the dualization scheme to the Fierz-Pauli theory a
obtain the dual description in terms of two tensors, a sy
metric one,h̃mn , and an antisymmetric one,vmn . Section III
contains the analysis of the gauge symmetries of the d
theory, which clarifies the physical meaning of the du
fields. In Sec. IV we consider two examples which illustra
the construction and the effect of the dual transformatio
~i! the field describing polarized gravitational waves and~ii !
the gravitational field produced by a point mass at rest. T
last section contains a summary and some comments on
work. Finally, in the Appendix we discuss the massle
theory for theT(mn)s field.

II. THE MASSLESS SPIN 2 FIELD PARENT LAGRANGIAN

The parent Lagrangian form50 is @see Eq.~39! of Ref.
@2# with a5e251/4]

L5 1
8 T(mn)sT(mn)s1 1

4 T(mn)sT(ms)n1 1
2 T(mn)semnab]ahb

s

1habQab , ~13!

where the sourceQab is symmetric,Qab5Qba , and con-
served,]aQab50. The fieldT(mn)r has zero trace,T(mn)

m

50. From the equation of motion forT(mn)s we can solve
T(mn)s in terms ofhb

s ,
1-2
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T(mn)b52emn
as]ahsb1emnbl~]ahal2]lha

a!, ~14!

which indeed has a null trace. Plugging back expression~14!
in Lagrangian~13! one obtains a Lagrangian forhsk, which
is the linearized Einstein Lagrangian

L52]mhmn]ahn
a1 1

2 ]ahmn]ahmn1]mhmn]nha
a

2 1
2 ]ahm

m]ahn
n1habQab , ~15!

as we proved in a previous paper@2#.
The corresponding equations of motion forhmn are the

linearized Einstein equations

]a]ahmn1]m]nha
a2~]m]ahn

a1]n]ahm
a !2hmn~]a]ahb

b

2]a]bhab!5Qmn , ~16!

which clearly show thathb
s is a spin 2 massless field. Th

Lagrangian has the gauge symmetry

hmn→hmn1]m«n1]n«m . ~17!

On the other hand the Euler-Lagrange equation for
Lagrange multiplierhmn in Eq. ~13! reduces to a simple con
straint

]s~eabsnT(ab)
m1eabsmT(ab)

n!5Qmn. ~18!

Substituting expression~14! in the above equation we re
cover the equation of motion~16! for hmn .

We face here a situation similar to the one already
countered for the scalar field. From constraint~18! we are
able to introduce a potential for the fieldT(ab)

m only outside
of the sources. Therefore there is no global solution fo
potential. In analogy with the scalar field, we choose
particular solutionT̄(ab)

m of Eq. ~18! as

~eabsnT̄(ab)
m1eabsmT̄(ab)

n!~x!5E ~dy! f s~x2y!Qmn~y!,

~19!

which leads to

T̄(ab)
m52

1

6
eabsnE ~dy! f s~x2y!Qmn~y!. ~20!

Next, we find the solutionT̃(ab)
n to the homogeneous equa

tion associated with Eq.~18!,

]s~eabsnT̃(ab)
m 1eabsmT̃(ab)

n !50. ~21!

The above equation implies that the symmetric part of
tensorkmn5]seabsnT̃(ab)

m is zero. Furthermore, this tenso
has a vanishing divergence]nkmn50, and thus it can be
written askmn5emnsd]sAd , leading to

]s~eabsnT̃(ab)
m 2eabsmT̃(ab)

n !52emnsd]sAd . ~22!

In fact, Eq.~22! is a linear equation forT̃(ab)
m , whose solu-

tion consists of the general solution for the homogene
06501
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equation plus a particular solution for the complete one. T
homogenous equation corresponding to Eq.~22! tells us that
T̃(ab)

m is a closed 2-form for eachm, while a particular solu-

tion is given byT̃(ab)
m 5da

mAb2db
mAa . Thus the general so

lution for T̃(ab)m in Eq. ~22! is

T̃(ab)m5~hmaAb2hmbAa!1~]aBmb2]bBma!, ~23!

where the tensorBmb is not necessarily symmetric. It can b
expressed in terms of its symmetric and antisymmetric pa
h̃mn5h̃nm andvmn52vnm , respectively,

Bmn5vmn1h̃mn . ~24!

Finally, taking into account thatT̃(ab)m must be traceless we
obtain from Eq.~23!,

Aa52 1
3 ~]bh̃ba2]ah̃b

b1]bvba!. ~25!

In this way we have found the general solution for the co
straint equation~18! which is

T(ab)m5~hmaAb2hmbAa!1~]aBmb2]bBma!

2
1

6
eabsnE ~dy! f s~x2y!Qmn~y!. ~26!

We have obtained a description of the theory in terms of
potentialsh̃mn and vmn , together with a Dirac-type string
contribution.

Considering for simplicity the free field case,Qmn50,
and substituting Eqs.~23! and ~25! into Lagrangian~13! we
get

L5 1
2 ]ah̃mn]ah̃mn2 2

3 ]mh̃mn]ah̃n
a2 1

6 ]mh̃a
a]mh̃a

a

1 1
3 ]mh̃a

a]nh̃mn2 2
3 ]mh̃mn]avna1 1

3 ]mvnm]avna .

~27!

In fact only the divergence ofvna appears in the Lagrangian
which implies thatvna is an auxiliary field, defined up to an
arbitrary exact two form. The equations of motion are

]a]a~ h̃mn2 2
3 hmnh̃s

s!2 2
3 ]a~]mh̃n

a1]nh̃m
a !1 1

3 ~]n]mh̃a
a

1hmn]a]bh̃ab!2 1
3 ]a~]mvna1]nvma!50, ~28!

]b~]mh̃n
b2]nh̃m

b !2]a~]mvna2]nvma!50. ~29!

Equation~29! implies that]avna2]bh̃n
b has zero curl. Thus

]avna2]bh̃n
b5]nF, ~30!

whereF is a scalar field. The divergence of Eq.~30! leads to

]n]bh̃n
b52]n]nF. ~31!

Replacing expression~30! for ]avna in Eq. ~28!, we obtain
1-3
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]a]ah̃mn2]m]ah̃n
a2]n]ah̃m

a1 1
3 ]n]mh̃a

a1 1
3 hmn~]a]bh̃ab

2]b]bh̃a
a!2 2

3 ]m]nF50. ~32!

Note that the trace of the the above equation does not y
]2h̃a

a2]a]bh̃ab50, at difference with the case of the linea
ized sourceless Einstein equations.

Contracting Eq.~14! with eklsa we have

1
2 eklsa]kvsl[Da5~]ahb

b2]bha
b!. ~33!

This equation gives the curl of the antisymmetric compone
and also shows that it is a topologically conserved curren
the dual description,]aDa50. This conservation law can
also be derived from the equation of motion forhsk when
the energy momentum tensor is traceless. It expresses th
this case the scalar curvature vanishes.

III. GAUGE SYMMETRIES

The T(ab)
m field is invariant under the following loca

transformations:

dCAb5]bC, dCBmb5hmbdC, ~34!

d fAb50, d fBmb5]m f b , ~35!

which in terms ofh̃mn andvmn read

dvmn52~]m f n2]n f m!, ~36!

dh̃mn5hmnC1~]m f n1]n f m!. ~37!

The induced transformation upon the auxiliary fieldF, in-
troduced in Eq.~30!, is

dF52C22]a f a, ~38!

which shows that it is pure gauge.
The dual theory we have constructed exhibits two kin

of gauge symmetries, one of them similar to that of t
Fierz-Pauli spin two theory. Next we show that an adequ
gauge fixing for the additionalC symmetry reduces ou
theory to a standard massless spin two form. We can use
freedom inC to set

F52h̃a
a . ~39!

With this choice Eq.~30! becomes

]avna2]bh̃n
b52]nh̃a

a , ~40!

which leads to

]a]bh̃ab2]2h̃a
a50. ~41!

As we have mentioned previously, the above equation is
trace of the sourceless Einstein equations~16!. Let us also
remark that Eq.~40! is invariant under the remaining gaug
transformations generated by the functionsf n in Eqs. ~36!
and ~37!. This is because, according to Eq.~38!, the gauge
06501
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~39! fixes C without constrainingf a. Thus the equations o
motion ~32! can be rewritten as

]a]ah̃mn2~]m]ah̃n
a1]n]ah̃m

a !1]n]mh̃a
a50, ~42!

where we have explicitly used the trace condition~41!. In
this way we have recovered the linearized Einstein equat
for h̃mn , thus describing spin two massless excitations.
particular the gauge conditionF52h̃a

a leads toAa50, ac-
cording to expressions~25! and ~30!. Therefore, we have
shown that the dual theory here obtained, described by
grangian~27!, is a gauge description where aC orbit is
conformed by a set of theories which are gauge equivalen
the linearized Einstein theory. In what follows we will a
ways work in the gaugeF52h̃a

a .
From Eqs.~14! and ~23!, the duality relation among the

potential fields is

eklsb~]ahb
a2]bha

a!2eklab]ahb
s

5~]kh̃sl2]lh̃sk!1~]kvsl2]lvsk!. ~43!

At this stage we can completely determine the fields of
dual theory. A standard gauge choice in the linearized s
two theory via the functionsf n gives h̃ab , which in turn
fixes the divergence ofvmn through Eq.~40!, and the curl of
vmn through Eq.~33!, thus yieldingvmn .

We can now obtain the relationship between the cor
sponding Riemann tensors. Recalling its definition

R mnk
l 5 1

2 @]m~]khn
l2]nhk

l!2]l~]khmn2]nhmk!#,
~44!

and using Eqs.~43! and ~33! we have

R̃m
slk5 1

2 ekl
abRm

sab , ~45!

which exhibits the local transformation between the fie
strengths arising from the nonlocal relation among the pot
tials.

Finally, it is interesting to explore the relation among t
gauge transformations in both theories. The gauge freed
due to«m in the original theory is mapped into gauge tran
formations of the antisymmetric tensorvsk ,

dvsk52emnsk]m«n, ~46!

while the new gauge freedom ofh̃mn due to f m is indepen-
dent from them. Thus the dual Lagrangian is invariant un
Eq. ~46! because it depends only on the divergence ofvsk ,
which does not change under this gauge transformation.

IV. EXAMPLES

In this section we discuss two examples which illustra
the construction and effects of the proposed dual transfor
tions. The first one refers to the behavior of the polarizat
components of a gravitational wave. The second one
cusses the field produced by a point mass and shows ho
is mapped into the potentialsv0i and h̃0i , that have a form
1-4
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analogous to the electromagnetic potential of a magn
monopole.

A. Gravitational waves

In this case the gauge can be fixed using the transv
traceless gauge TT. Working in the momentum space
gravitational field is

hmn~k!5h1~k!emn
1 ~k!1h3~k!emn

3 ~k!, ~47!

wherekm5(k0,kW ), with k05ukW u, and the two possible helici
ties have polarization tensors

emn
1 ~k!5mmmn2nmnn , emn

3 ~k!5mmnn1nmmn . ~48!

The spacelike quadrivectorsmm5(0,m̂), nm5(0,n̂) are such
that

m̂•m̂5n̂•n̂51, m̂•n̂50, m̂•kW5n̂•kW50. ~49!

That is to say,m̂, n̂, andk̂5kW /ukW u form an orthonormal triad
with n̂5m̂3 k̂. Thus, the properties that define the TT gau
are ]mhmn5hn

n5h0n50. In this gauge we haveDl50 so
that Eq.~33! leads to

elska]lvsk50. ~50!

Given the field of a gravitational wave as in Eq.~47!, we
will now find the dual fields. To begin with we also choo
the TT gauge for the fieldh̃ab , which implies

]mvmn50, ~51!

according to Eq.~40!. Thus we obtainvmn50. In the chosen
gauge we have the following expression forh̃mn(k):

h̃mn~k!5h̃1emn
1 ~k!1h̃3emn

3 ~k!. ~52!

According to Eq.~43! the duality relations between bot
theories are

D̃ksl52 1
2 ekl

abDasb , ~53!

whereDlsk[]lhsk2]khsl. The properties (e0123511)

eab
mnkmmn5~kanb2kbna!,

eab
mnkmnn52~kamb2kbma!, ~54!

lead to

ekl
nm~knesm

1 2kmesn
1 !512@kkesl

3 2klesk
3 #,

ekl
nm~knesm

3 2kmesn
3 !522@kkesl

1 2klesk
1 #. ~55!

The next step is to substitute Eqs.~47! and ~52! in relation
~53!. The elementseab

1 and eab
3 of the tensor basis in the

LHS of Eq. ~53! are mixed by the epsilon symbol accordin
06501
ic
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to Eqs.~55!, which interchanges the labels1 and3 of the
basis tensors. Comparing with the corresponding terms of
RHS we obtain the relations

h̃15h3 , h̃35h1 . ~56!

Summarizing, the net result of the dualization procedure i
interchange the helicity states.

B. Point mass

In the de Donder gauge]nhmn51/2]mha
a , the linearized

gravitational field produced by a point massM is

hmn52
2M

r
dmn , ~57!

where the metric ishmn5diag(1,2,2,2). Note thathmn is
proportional todmn and not tohmn . The trace of the gravi-
tational field is

h5hmnhmn5
4M

r
, ~58!

so that we can rewritehmn521/2hdmn .
The curl ofvsl is fixed by the original gravitational field

hmn through Eq.~33! which yields

2eklsa]kvsl5Da524
M

r 3
xa . ~59!

To solve this equation we must specify the divergence
vsl, which we do by choosing

]mh̃mn5]nh̃a
a , ~60!

as the gauge in which the dual fieldh̃mn is described. In this
way Eq.~40! yields

]mvmn50. ~61!

We solve Eq.~59! as usual. The zero divergence conditio
~61! yields vmn

H 50 for the regular solutions of the corre
sponding homogeneous equation. As we see from Eq.~59!, it
is not possible to give a global particular solution forvsl,
because the divergence of the RHS is always zero, while
divergence of the RHS gives 16pMd(rW). The problem is
similar to finding the electromagnetic potential for a ma
netic monopole. Using a Dirac string of the formf m(x)
5nm f (x), with the constant vectornm5(0,n̂), we obtain
that the only nonzero components ofvsl are v0i52v i0

5Hi with

HW 5~H1,H2,H3!52M
n̂3rW

r ~r 1n̂•rW !
, ~62!

which are singular on the negativen̂ axis. The reader can
verify that we have“•HW 50 outside the singularity line.
1-5
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Now we determine the dual fieldh̃mn . To this end we use
the duality relations~43! between the fieldshmn and h̃mn .
Going back to the notationT(kl)s for the LHS of Eq.~43!
and using Eq.~57! we can show that the only non-zero co
tribution is

T( i j )052e i j 0k ]kh. ~63!

In this way, the explicit expressions for Eqs.~43! are

05] i h̃
002]0h̃0i , ~64!

05] i~ h̃ j 01v j 0!2]0h̃i j , ~65!

05~] i h̃k j2] j h̃ki!, ~66!

e i jk0]kh5~] i h̃0 j2] j h̃0i !1~] iv0 j2] jv0i !. ~67!

Equation~66!, together with the symmetry ofh̃k j, implies
that h̃k j5]k] jU for a scalarU. At this point we note that to
implement condition~61! we have made use of the gaug
transformations ofvmn , which depend on the curl off m . We
still have the gauge freedom given byf m5]mD, which only
involves a scalar functionD. The corresponding transforma
tion of h̃mn is dh̃mn52]m]nD. We can make use of thi
gauge freedom to seth̃ jk50. Equation~65! then gives place
to h̃ j 052v j 0, where we are discarding constant solutio
that do not go to zero at infinity. In consequence, the sec
term in Eq.~64! vanishes and we haveh̃0050. Thus, from
the first three equations we get

h̃0050, h̃i j 50, h̃ j 052v j 0. ~68!

The remaining equation~67! is

] iv0 j2] jv0i52 1
2 e0i jk ]kh, ~69!

which the reader can verify is only a rewriting of Eq.~59!,
which v0i indeed satisfies.

Summarizing, we see that the duality introduced h
maps the field of a point source intov0i andh̃0i , which have
the form of the electromagnetic potential of a magne
monopole with its corresponding Dirac string singulari
The potentialh̃ breaks the rotational symmetry of the pro
lem, but this is a gauge artifact, and as Eq.~45! shows the
gauge invariant quantities are symmetric under spatial r
tions.

V. SUMMARY AND FINAL COMMENTS

Using a parent Lagrangian approach we have constru
dual theories for linearized gravity. The starting point is t
zero mass case of the parent Lagrangian for massive s
two theories developed in Ref.@2#. The equation of motion
for the original fieldhmn leads to a constraint implying tha
the dual fieldT(mn)r can be written as the field strength of
potential. The presence of sources required the introduc
of Dirac-type line singularities in order to have a global s
06501
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lution for the potentials. The general solution for the co
straint leads to a dual description in terms of an auxilia
field vmn , which enters only through its divergence, togeth
with h̃mn . The resulting theory has the standard gauge sy
metry of linearized gravity plus an additionalC symmetry,
according to Eqs.~34!. By an adequate gauge fixing of th
latter symmetry one recovers the Einstein equations forh̃mn
together with the standard symmetries. They still affect
field vmn @see Eqs.~36! and ~37!#, which becomes deter
mined through the gauge fixing of the gravitational fieldshmn

and h̃mn . In fact, such gauge fixing determines the curl a
divergence ofvmn , respectively, as can be seen from Eq
~33! and ~40!. The relation between the dual theories is e
tablished at the level of the nonlocal equation~43! involving
the corresponding potentialshmn , h̃mn and vmn . We show
that this equation translates into the somewhat expected l
relation between the corresponding linearized Riemann
sors ~45!, thus providing further evidence for the auxiliar
character of the fieldvmn .

Two examples have been considered which illustrate
construction of the dual theory together with the physi
significance of the dual gravitational fieldh̃mn . In the case of
a gravitational wave, duality just interchanges the polari
tions. When considering the field produced by a point ma
the dual configuration is a Dirac-type string. This last e
ample shows that the duality transformation interchanges
role of gravitoelectric and gravitomagnetic fields, defined
proportional to the gradient of the Newtonian potential a
the curl of theh0i field, respectively. Such a possibility wa
conjectured on the basis of the formal similarity betwe
Maxwell equations for the electromagnetism and Einst
equations in the context of the parametrized post-Newton
expansion for gravitation@12#. This duality relation also has
a geometrical motivation because, in the same way as
original Newtonian potential for a point mass is the we
field approximation for the Schwarzschild metric, the du
field h̃mn we found is the weak field approximation for th
massless Taub-NUT metric@13#, which corresponds to
spaces where gravitomagnetic charges can be defined@14#.
Following the analogy with the original work of Dirac o
magnetic monopoles, the possibility of a mass quantiza
due to the existence of a gravitomagnetic charge has
been considered@12,15#.

Finally we have explored an alternative possibility to o
tain a dual theory for massless spin-two fields. The idea i
take the zero mass case of the massiveT(mn)r theory previ-
ously developed, which is dual to massive Fierz-Pauli. D
ality in this construction is realized in terms of constrain
that enforce a reduced phase space with the correct spin
tent. It is by no means an obvious matter how these c
straints and their classification into first and second cl
subsets~which determines the count of degrees of freedo!
will be modified by the zero mass condition. Hence it
difficult to know in advance which will be the spin content
the resulting theory. We have studied this case in the App
dix, concluding that the resulting massless theory descr
spin-zero excitations. This result corrects our previous p
liminary calculation of the number of degrees of freedom
the massless theory reported in Refs.@1# and @2#, which er-
1-6
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roneously stated that this number was two. This phenome
provides a clear manifestation of the van Dam–Veltma
Zakharov@16# zero mass discontinuity, which leads to mas
less theories having different spin content with respect to
original massive cases. We can understand our result in te
of irreducible representations ofSO(3). Since we basically
start from four antisymmetric two forms embedded
T(mn)r , we are dealing with the product (2,0)3(1,0) which
decomposes into (3,0)1(2,1). Previous results@9,17# indi-
cate that the representation (2,1) carries zero degrees of
dom, while the representation (3,0) corresponds to the K
Ramond field.
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APPENDIX: THE MASSLESS THEORY FOR T
„µn…s

There is still another possibility we can explore wh
constructing massless theories. In an earlier paper we
cussed dual Lagrangians for massive spin two fields@2#. In
this approach the fields were not in irreducible represe
tions of the Poincare´ group at the Lagrangian level, but th
Euler-Lagrange equations lead to constraints that reduced
configuration space to the adequate representation. We
take m50 in these theories with the hope of obtaining
alternative massless spin-two formulation. Moreover, it is
obviousa priori how the constraints will be modified by thi
choice and hence, which will be the spin content of the
sulting theory. In this appendix we explore these matters
show how the van Dam–Veltman–Zakharov@16# zero mass
discontinuity, which leads to massless theories having dif
ent spin content with respect to the original massive case
realized.

First we give a brief review of the well-known case of th
Kalb-Ramond field, from the perspective of the Dir
method, in order to provide a unified description of the m
sive and massless cases, which clearly shows the differ
in the final counting of the true degrees of freedom. Sub
quently we present a more detailed account of the zero m
case corresponding to the massive spin-two theory forT(ab)m
previously developed@2#.

The massive Kalb-Ramond theory forHmnl considered in
Ref. @17# can be more conveniently described in terms of
field

ba5 1
6 eamnlHmnl, ~A1!

with Lagrangian

L5
1

2
~]aha!~]bhb!2

m2

2
haha . ~A2!

The momenta are
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P05
]L

]~]0h0!
5~]aha!, P i5

]L

]~]0hi !
50, ~A3!

leading, respectively, to

ḣ05~P02] ih
i !, ~A4!

together with the primary constraintP i50. The Hamil-
tonianH5P0ḣ02L1l iP i is

H5
1

2
P0

21hi] iP01
m2

2
~h0h01hihi !1l iP i . ~A5!

The secondary constraints are

Ṗk50⇒05Qk5]kP01cm2hk . ~A6!

The tertiary constraints

05Q̇k5m2~]kh02lk! ~A7!

finalize the Dirac procedure in both cases. WhenmÞ0 they
determine the Lagrange multiplierlk . Whenm50 the con-
sistency is automatically satisfied. Summarizing, we have
constraints

P i50, Qk5]kP01cm2hk50, ~A8!

whose classification in terms of first or second class stron
depends upon the theory being massive or massless. In
case mÞ0 the six constraints are second class, yield
1
2 (23426)51 true degrees of freedom, thus reproduci
the standard scalar field. However, the situation chan
drastically in the casem50. Here, the secondary constrai
]kP050 reduces to only one,P05cte, and the remaining
four constraints are first class. This leaves1

2 (2342234)
50 true degrees of freedom. This is in accordance with
results of Refs.@17# and @9#.

Next we study the zero mass case of the dual mas
spin-two theory previously developed. Takingm50 in Eq.
~61! of Ref. @2#, the resulting Lagrangian is

L5 4
9 F (abg)nF (abg)n1 2

3 F (abg)nF (abn)g2F (abm)
mF (abn)

n ,

~A9!

with

F (abg)n5]aT(bg)n1]bT(ga)n1]gT(ab)n. ~A10!

Lagrangian~A9! dynamically fixesT(ab)
b50, and therefore

it is not necessary to impose this constraint through
Lagrange multiplier. The corresponding equations of mot
are

24]aF (anr)s22]aF (ans)r12]aF (ars)n22]aF (nrs)a

13]sF (nrm)
m50. ~A11!

In order to analyze the constraints following the Dirac pr
cedure we start by rewriting Lagrangian~A9! in terms of
spatial and temporal components
1-7



he

,

an

t be
on-
eir

s of

zero

ave
s

ond-

CASINI, MONTEMAYOR, AND URRUTIA PHYSICAL REVIEW D 68, 065011 ~2003!
L5F (0i j )0F (0i j )022F (0i j )0F ( i jk )
k 22F (0i j )

jF (0ik)
k

1 4
3 F (0i j )kF

(0i j )k1 4
3 F (0i j )kF

(0ik) j1 4
3 F (0i j )kF

( i jk )0

1 1
3 F ( i jk ) lF

( i jk ) l1 4
9 F ( i jk )0F ( i jk )0. ~A12!

The primary constraints arising from the definition of t
momenta are

V i5P ( ik)
k50, ~A13!

G i5P ( i0)050, ~A14!

G i j 5P (0i ) j50, ~A15!

L5e i jk~P ( i j )k24] iT( jk)0!50. ~A16!

The Hamiltonian is

H5 1
4 P ( i j )0P ( i j )01 1

8 P ( i j )kP
( i j )k1P ( i j )0F ( i jk )

k

2 2
3 F ( i jk )0F ( i jk )012T( j 0)0] iP

( i j )022T(0 j )k] iP
( i j )k

~A17!

1l iP
( i0)01l i j P

(0i ) j1l~P24F0!1m iP
( ik)

k ,
~A18!

with

P52 1
2 e i jkP ( i j )k, F052 1

2 e i jk] iT( jk)0. ~A19!

We see thatT(0 j )k and T(0 j )0 act as Lagrange multipliers
stating that] iP

( i j )k50 and ] iP
( i j )050. Therefore the de-

grees of freedom must be inT( i j )m .
The time evolution of the primary constraints yields

additional set of secondary constraints

S i05] jP
( j i )0, ~A20!

S i j 5]kP
(ki) j , ~A21!

S5e i jk~] iP ( jk)01 4
3 ] rF

( i jk )r !. ~A22!

There are no tertiary constraints.
Our set of constraints contains the first class subset

V i5P ( ik)
k50, → 3, ~A23!

G i5P ( i0)050, → 3, ~A24!

G i j 5P (0i ) j50, → 9, ~A25!
B

D

06501
S i05] jP
( j i )050,

~] i] jP
( j i )050! → 32152, ~A26!

S i j 5]kP
(ki) j50,

~]kP
(ki)

i50, ] i]kP
(ki) j50! → 9232155.

~A27!

In parentheses we have indicated the identities that mus
subtracted when counting the number of independent c
straints, which is shown to the right of each equation. Th
total number is 22. The second class subset is

L52 1
2 e i jk~P ( i j )k2 4

3 F ( i jk )0!52 1
2 e i jk~P ( i j )k24]kT( i j )0!,

~A28!

S5e i jk~] iP ( jk)01 4
3 ] rF

( i jk )r !5e i jk] i~P ( jk)014] rT
( jk)r !.

~A29!

In this way the standard count of the independent degree
freedomN gives

N5 1
2 ~23242232222!51, ~A30!

showing that the massless dual theory describes a spin
excitation.

The above count is most clearly seen in a plane w
configuration withkm5(k,0 0k). In this case the constraint
become

P ( i0)050, P (0i ) j50, i 51,2,3, ~A31!

P (31)05P (32)050, ~A32!

P (12)25P (21)150, ~A33!

P (31)25P (32)15P (31)15P (32)250, ~A34!

P (31)35P (32)350, ~A35!

with

T(12)052
1

4k
P (12)3, P (12)054k T(12)3. ~A36!

The canonical pair that remains is (T(12)3, P (12)3), which
means that there is only one degree of freedom, corresp
ing to a spin zero field.
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