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The construction of dual theories for linearized gravity in four dimensions is considered. Our approach is
based on the parent Lagrangian method previously developed for the massive spin-two case, but now consid-
ered for the zero mass case. This leads to a dual theory described in terms of a rank two symmetric tensor,
analogous to the usual gravitational field, and an auxiliary antisymmetric field. This theory has an enlarged
gauge symmetry, but with an adequate partial gauge fixing it can be reduced to a gauge symmetry similar to the
standard one of linearized gravitation. We present examples illustrating the general procedure and the physical
interpretation of the dual fields. The zero mass case of the massive theory dual to the massive spin-two theory
is also examined, but we show that it only contains a spin-zero excitation.
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I. INTRODUCTION To construct the dual theory we introduce the point transfor-
mationL ,=€,,,,,H""” for the variable_ , , which leads to a

In preceding papers we have discussed the construction alew first order Lagrangian
dual theories for massive fields in a Lagrangian framework,
and in particular we fully developed the case of a massive L(¢,H,,,)=H,,.€*"77d,¢+3H,,H"7"— im2e2+Jo.

spin two theory{1,2]. The purpose of this paper is to extend (2)
the analysis to the massless case, focusing on the linearized
gravitational field in four dimensions. This turns out to be the parent Lagrangian from which both

Let us recall the procedure. Starting from a second ordetheories (original and dual can be obtained. On the one
Lagrangian, the first step is to construct a first order Lagranghand, using the equation of motion fbI, ., we get
ian, with a particular structure defined by the kinetic term. It
contains the derivative of the original field times a new aux- H" " (¢)=5€"7"d ¢, 3
iliary variable, which corresponds to the field strength of the
original theory. The key recipe to construct the dual theory isyhich takes us back to the original second order Lagrangian
to introduce a point transformation in the configuration spacéor ¢ after it is substituted in E¢2). On the other hand, we
for the auxiliary variable which involves the completely an- can eliminate the field> from Lagrangian2) using its own
tisymmetric tensole”””" and leads to the first order parent equation of motion
Lagrangian. From the latter, both the original and the dual
theories are obtained. In fact, the equations of motion for the mlep=— 9,7 H .+ J. (4)
auxiliary variables take us back to our starting action. Alter-
natively, we can eliminate the original field from the parent, this way we obtain the new theory
Lagrangian, using its equations of motion, thus obtaining the

dual theory which is equivalent to the original one through L(H,,.)=%(e*""79 H, )2+3mPH, H""
the transformation defined by such equations of motion. vor moorer rr
Using the well known example of massive scalar-tensor —Je"" "9, H, 132, (5)

duality we will revise the main steps of the procedure sum-

marized above, to point out the new features that will appeawhich is equivalent to the original one through transforma-
in the massless case. Such a duality corresponds to th#n (4). This is a singular Lagrangian for the massive field
equivalence between a free scalar fieldwith field strength  H,__, which is equivalent to a scalar field of mass

f,=d,e, and an antisymmetric potentiéd,,, the Kalb- Following the same parent Lagrangian approach we have
Ramond field, with field strengtH,,,=d,B,,+d,B,, also constructed a family of dual theories for the massive
+3,B,, [3-5]. Starting from the standard second order La-Fierz-Pauli fieldh,,, in terms of the fields,,), satisfying
grangian fore we derive a first order Lagrangian T(unp="Tww, andT,,)"=0. The cyclic identity

L(g,L*)=L"d,p— 3L L, —3m?p?+Je. (1) Tt Tomut Tiowr=0 (6)
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which selectsT,,,, in the spin two irreducible representa- Thus, in the case of massless theories the first order equation
tion, was not assumed as a starting point and arose asad motion for the original variable becomes a constraint, i.e.
dynamical result via the equations of motigh2]. it looks like a Bianchi identity, which states that the dual
We now turn to the massless case. Here a very importarfteld can now be considered as a field strength with an asso-
difference appears, which we still illustrate in the scalar fieldciated potential plus a non-local contribution. Solving the
context. In this case the equation of moti@dn of ¢ becomes constraint we obtain the dual theory, in which this potential
a constraint orH ;.. becomes the basic field. Both theories arise from the same
parent Lagrangian and represent the same physics. This pro-
3,€""H ,;,=J. (7) cedure strongly resembles the electric-magnetic duality of
the Maxwell theory. In fact, it is a generalization of the well
Out of the sources, wher¢,e*"”"H,,,,=0, this constraint known p-form duality to arbitrary tensorial massless fields
tells us that the fieldH,,, can be considered as a field [7].

strength with an associated potential Naively one could think that another possibility to gener-
ate a massless dual theory for the linearized gravity is to take
HVO'T= aVBU'T_l_ [?UBTV+(9TBV0" (8) m=0 in the maSSiVé-(luV)u. Lagrangian of Ref[2] We ex-

plore this possibility in the Appendix, with negative results.
In the region whered#0 this is not valid. Hence it is not The Dirac analysis shows that such a theory describes only a
possible to give a global solution f&,, . because, using EqQ. spin zero excitation. This result corrects our previous pre-
(8), the left-hand sidéLHS) of Eq. (7) is always zero while  iminary calculation of the number of degrees of freedom for
the right-hand sidéRHS) might be non-null in a given do- the massless theory reported in Refs,2], which errone-
main. The problem is similar to that of finding the electro- ously stated that this number was two.

magnetic potential for a magnetic monopole. _ The construction of dual theories is usually based on a
To deal with this situation we introduce a Dirac-type kinematical perspective where the basic dual fields are as-
string singularityf#(x) defined by[6] signed to associated representations of the Poingarep

[8,9]. Some dynamical realizations of duality have also been
) considered in the framework of four dimensional higher de-
rivatives theories of gravity10] and in other gravitational
theories[11]. Our approach is based on a Lagrangian basis,
The pathC begins at infinity, ends up at the poixtand can  where the auxiliary fields are not in irreducible representa-
be chosen as a straight line if considered convenient. Thugons to begin with, but the ensuing Lagrangian constraints
we can write a particular solution to E(f) as warrant that the dynamics develops in an adequate reduced
space, with a well defined spin content.
The paper is organized as follows. In the next section we
e"H vaf(x):J (dy)f4(x=y)J(y), (10 apply the dualization scheme to the Fierz-Pauli theory and
obtain the dual description in terms of two tensors, a sym-

with the general solution being metric one,FnW, and an antisymmetric one,,, . Section Il
contains the analysis of the gauge symmetries of the dual
theory, which clarifies the physical meaning of the dual

Hior=9,Bort d5Br+ 9:Boot g €rorp fields. In Sec. IV we consider two examples which illustrate
the construction and the effect of the dual transformations:
(i) the field describing polarized gravitational waves &ingl
Xf (dy)FA(x=y)J(y), (1D the gravitational field produced by a point mass at rest. The
last section contains a summary and some comments on the
in terms of the potential field and the one dimensional sinwork. Finally, in the Appendix we discuss the massless
gular string. theory for theT,,), field.
The Lagrangian for the potenti8,; is obtained by sub-

stituting Eq. (11) into Eg. (5), which produces the corre- e \jaSSLESS SPIN 2 FIELD PARENT LAGRANGIAN

sponding equations of motion.

The duality transformations are expressed in terms of the The parent Lagrangian fan=0 is[see Eq.39) of Ref.
following nonlocal relation between the field, describing [2] with a=e?=1/4]

the original zero-mass scalar theory, and the poteBial,

which is obtained through the comparisontdf*? in Egs. L:%T(W)UT(“”)”JF%T(W)UT(“”)“F %T(W)of“mﬂf?ahz

(3) and(11)

f#(x)zf:dgﬂcs(“)(g), 3, F4(x) = 8W(x).

+heP0 4, 13

5 €romd ¢=0Byrt 5B, T 9Byt G sy, where the sourc® ,, is symmetric,®,5,=0,, and con-
served,d*®,;=0. The fieldT,,), has zero traceT,,)*

=0. From the equation of motion foF,,,, we can solve
Xf (dy)FP(x=y)J(y). (12 T(uv)o in terms o?h" o
uv)o ’
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T =—¢€, %9 h,zte,,m(d,h—ah?), (14)  equation plus a particular solution for the complete one. The
(nv)B uv a'lop uvBNYa a’r . .
homogenous equation corresponding to &%) tells us that
which indeed has a null trace. Plugging back expres&idh Tt . is a closed 2-form for each, while a particular solu-

in Lagrangian(13) one obtains a Lagrangian fbr*, which tion is given byT# .= 8"A,— 8“A, . Thus the general so-
is the linearized Einstein Lagrangian . = (af) e’ B TR
lution for T (g, in EQ.(22) is

L=—3d,h*"d,h5+39%,,d,h*"+3d,h#"d,hs -
Tap)u= (MuaPp= NupPa) T(0:Bp—3dpB,a), (23

—33d,h49°h,+h*P0 4, (15)
where the tensoB,, ; is not necessarily symmetric. It can be
as we proved in a previous pagé. expressed in terms of its symmetric and antisymmetric parts,
The corresponding equations of motion fo, are the { _% andw,,——w,,, respectively,
linearized Einstein equations proe - "
o o “ o o Buy=w,,+thy,. 24
I*9o0 4+ 3,0,05—(9,0,05+3,0,0%) = 5,,(0%9,N5 py— Bpr T (24)
—9 aﬁhaﬁ): ® (16) Finally, taking into account thaT(aE)M must be traceless we
a mv s .
obtain from Eq.(23),
which clearly show thahj is a spin 2 massless field. This 5
Lagrangian has the gauge symmetry A= =5(3PNga— 0 NG+ dPwp,). (25)
h,,—h,,+d,e,+d.6,. (17)  In this way we have found the general solution for the con-

) straint equatior(18) which is
On the other hand the Euler-Lagrange equation for the

Lagrange multiplieh*” in Eq. (13) reduces to a simple con- Tapyu=MuaPp— 1upR0) +(3,Bp— B 0)
straint

1
(90_( eaBUVT(a,B)M-i- EaBU;LT(aB)V) =@~ (18) - EGO‘BU’VJ (dy)f"(X-Y)@MV(y) (26)

Substituting expressiofil4) in the above equation we re- \ye have obtained a description of the theory in terms of the

cover the equation Of. mojuoﬁLG') fpr Ry potentialsh ,, and w,,, together with a Dirac-type string
We face here a situation similar to the one already enbontributionﬂ ®
countered for the scalar field. From constraih8) we are :

. . ! . Considering for simplicity the free field cas®,,,=0,
able to introduce a potential for the fi€ld, 5" only outside - . kY
of the sources. Therefore there is no global solution for and substituting Eq423) and (25) into Lagrangian(13) we

potential. In analogy with the scalar field, we choose the et
particular solutionT " of Eq. (18) as L= %f?aﬁwﬁaﬁ”"— %éﬂﬁ“vﬁaﬁ"— %aﬂ'ﬁaapfﬁa
_ _ 19 Rag Ruv_ 2 9 Ruvqa 1 VU qa
(eaﬁwT(aB)MeaﬁWT(aB)V)(x)=f (dy)F(x—y)O+(y), +30,00, 0 =50,h" w0+ 50,000,
(19 (27)
which leads to In fact only the divergence ab,, appears in the Lagrangian,

which implies thatw,, is an auxiliary field, defined up to an
= . 1 ” v arbitrary exact two form. The equations of motion are
T(aﬁ) __gfaﬁo'vf (dy)f (X_Y) (y) (20)
5a&a(ﬁﬂv_ % UMVEZ) - %&a( 5’,}]3‘*‘ &VEZ) + %(avﬁ,u'ﬁg
Next, we find the solutioﬁ'(aﬁ)” to the homogeneous equa- B 1
tion associated with Eq18), + 7u0a9h ") = 30%(0,0,0 T 0,0,,)=0, (28

070'( Eaﬁgvrrlzlaﬁ’)_F ELYBU'M:‘FE’QB)):O' (21) 0"[3( é’y’ﬁf_ (91/’55)_ (?a(é’,uwva_ 0vw#a)zo' (29)

The above equation implies that the symmetric part of the=quation(29) implies thawawm_ﬁﬁﬁf has zero curl. Thus
tensorkf‘”:&Ue“B‘”’Tf‘am is zero. Furthermore, this tensor
has a vanishing divergencg k#”=0, and thus it can be a“wm—aﬂﬁfzaﬂ), (30)
written ask’=e*"?%) A, leading to

_ _ where® is a scalar field. The divergence of E§0) leads to

dy( e“ﬁ‘”Tf‘a 8~ e“ﬁ""T(”a 8) = 2eM7%) As. (22
~ 9"dght=—9"9,9. (32

In fact, Eq.(22) is a linear equation foll {5, whose solu-
tion consists of the general solution for the homogeneou&eplacing expressio(80) for 9“w,, in Eq. (28), we obtain
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99 h, .0 —a,0. R 100 Ret+iy (3.0 (39 fixes W without constraining “. Thus the equations of
alpy. Cplally TvTalp T30l a T3 TpiTeth motion (32) can be rewritten as
—3P95h%)—359,0,9=0. (32 - - - -
&aﬁahw—(ﬁﬂ&ah;’—k avaah;)wyaﬂhg:o, (42
Note that the trace of the the above equation does not yield

9*h2—*9Ph,z=0, at difference with the case of the linear- where we have explicitly used the trace conditiehd). In
@ ; . . this way we have recovered the linearized Einstein equations
ized sourceless Einstein equations.

Contracting Eq(14) with e, ., we have for h,,, thus describing spin two massless excitations. In
) particular the gauge conditioch = —713 leads toA,=0, ac-
3 €anvad @™=D,=(d,hf—3dght). (83)  cording to expression&25) and (30). Therefore, we have
i _ _ i ) shown that the dual theory here obtained, described by La-
This equation gives the curl of the antisymmetric Compone”_tgrangian(ﬂ), is a gauge description where & orbit is

and also shows that it is a topologically conserved current ik ynformed by a set of theories which are gauge equivalent to
TR ? .
the dual descriptiong“D,=0. This conservation law can he jinearized Einstein theory. In what follows we will al-
also be derived from the equation of motion fof* when . L Fa
ways work in the gaugd = —hy,.

the energy momentum tensor is traceless. It expresses that in . .
this caseg)t/he scalar curvature vanishes P From Egs.(14) and(23), the duality relation among the
' potential fields is

ll. GAUGE SYMMETRIES eNP(9,h5— dghg) — e P hg
I 1 I i i i ~ ~
The T(aﬁ) field is invariant under the following local = (R — PR + (K0 — P w*). (43
transformations:
B B At this stage we can completely determine the fields of the
duPp=3dgV¥, OuB,p=17,p5V, (34 dual theory. A standard gauge choice in the linearized spin
SAz=0, 6B, z=0,fs, (35 two theory via the functiong” givesﬁaﬁ, which in turn
A RB=CuTR fixes the divergence ab,,, through Eq.(40), and the curl of
which in terms ofh,,, andw,,, read ,y through Eq.(33), thus yieldingw,, .
We can now obtain the relationship between the corre-
ow,,=—(d,f,—3d,1,), (36) sponding Riemann tensors. Recalling its definition
= _ R . =3[d,(a.h —a,h—a.h,,—a,h,)],
6h,u.V_ ﬂMV\I"F(ﬁMfV‘F(?VfM) (37) MUK 2[ /.l.( Ky v K) ( k' uv v ,u,K)] (44)

The induced transformation upon the auxiliary fidd in-

troduced in Eq(30), is and using Eqgs(43) and (33) we have

D OAk_ K o
sb=—1—24,f°, (38) R, ™M=3€" 4R, 7, (45)

which shows that it is pure gauge. which exhibits the local transformation between the field

The dual theory we have constructed exhibits two kindss_trengths arising from the nonlocal relation among the poten-
of gauge symmetries, one of them similar to that of thet'als; . ) ]
Fierz-Pauli spin two theory. Next we show that an adequate Finally, it is interesting to explore the relation among the
gauge fixing for the additional’ symmetry reduces our 9auge transformations in both theories. The gauge freedom
theory to a standard massless spin two form. We can use tif1€ toe* in the original theory is mapped into gauge trans-

freedom in¥ to set formations of the antisymmetric tensaer,,,
®=-Fhe. (39) 00 =~ €upoid"e”, (46)
With this choice Eq(30) becomes while the new gauge freedom &f** due tof* is indepen-
dent from them. Thus the dual Lagrangian is invariant under
9w, — IghP=—a,h%, (40)  Ed.(46) because it depends only on the divergenceof,

which does not change under this gauge transformation.
which leads to
IV. EXAMPLES
9*9Ph 5~ *h%=0. (42) _ _ _ o
In this section we discuss two examples which illustrate
As we have mentioned previously, the above equation is th#1e construction and effects of the proposed dual transforma-
trace of the sourceless Einstein equati¢h§). Let us also tions. The first one refers to the behavior of the polarization
remark that Eq(40) is invariant under the remaining gauge components of a gravitational wave. The second one dis-
transformations generated by the functidisin Egs. (36) ~ cusses the field produced by a point mass and shows how it
and (37). This is because, according to E&8), the gauge is mapped into the potentialsy; andhy,; , that have a form
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analogous to the electromagnetic potential of a magnetito Egs.(55), which interchanges the labels and X of the
monopole. basis tensors. Comparing with the corresponding terms of the
RHS we obtain the relations

A. Gravitational waves

: : : h,=h,, hy=h..
In this case the gauge can be fixed using the transverse A (56)
traceless gauge TT. Working in the momentum space th&,mmarizing, the net result of the dualization procedure is to

gravitational field is interchange the helicity states.
h,(K)=h*(k)e} (k)+h*(k)e’ (k), 4
w(K)=h"(k)e, (k)+h”(k)e,,(k) (47) B, Point mass
wherek*= (k% k), with ko= k|, and the two possible helici-  In the de Donder gaugéh,,,=1/27,h",, the linearized
ties have polarization tensors gravitational field produced by a point magksis
e’ (ky=m,m,—n,n,, e (ky=my,n,+n,m,. (48 2M
/.w( ) w' 'ty J7ARY ,uy( ) w' 'y AR % ( ) h,uV:_T(S,uJH (57)

The spacelike quadrivectons*=(0,m), n“=(0,n) are such o _
that where the metric isp,,,=diag(+,—,—,—). Note thath ,, is
proportional tos,,,, and not toz,,,. The trace of the gravi-

Mm-m=h-A=1 M-A=0, m-K=h-K=0. (49 tational field is

That is to saym, n, andk=k/|k| form an orthonormal triad h=7""h, :ﬂ, (58)
with n=mxk. Thus, the properties that define the TT gauge

v__ Ov_ P N
are 9*h,,,=h =h . In this gauge we hav®"=0 sO ¢4 that we can rewriteﬂ =126,

that Eq.(33) leads to The curl of 0™ is fixed by the or|g|nal gravitational field

€. P =0. (50) h,, through Eq.(33) which yields

Given the field of a gravitational wave as in E47), we e Ko =D = —4Mx _ (59)
will now find the dual fields. To begin with we also choose Khow
the TT gauge for the fielﬁaﬂ, which implies _ ) _ )

To solve this equation we must specify the divergence of
*w,,=0, (51) ", which we do by choosing

according to Eq(40). Thus we obtainw,,=0. In the chosen aﬂﬁwz a,h%, (60)
gauge we have the following expression ?qjy(k): 5

B B B as the gauge in which the dual fietq, is described. In this
h.(K)=h,e; (k)+h.e}, (k). (52)  way Eq.(40) yields

According to Eq.(43) the duality relations between both *w,,=0. (62)

theories are _ N
We solve Eq.(59) as usual. The zero divergence condition

’DKM:_%GK)\aBDMB, (53 (61 yi_elds wﬂv=0 for the reg_ular solutions of the corre-
sponding homogeneous equation. As we see from(&d), it
whereD?*=g"h7*— 5*h®*. The properties ¢*1%°= +1) is not possible to give a global particular solution fof*,
because the divergence of the RHS is always zero, while the
€a5" "KM, = (Keng—Kgn,), divergence of the RHS gives 4#145(r). The problem is
similar to finding the electromagnetic potential for a mag-
€,5" KN, = — (Komg—kgm,), (54)  netic monopole. Using a Dirac string of the forfi(x)

=n#f(x), with the constant vecton"=(0,ﬁ), we obtain
that the only nonzero components of* are w® = — o'°
=H" with

lead to

eK}\””(kVe —k,er)=+2[ker —ker ],

Mmooy

~ -

EK}\V”(kVe;M k e ) Z[k eg_)\ k)\e

Loy (55) H=(H!,H2 H3=2M , (62

O'K]

r(r+n-r)
The next step is to substitute Eq4.7) and (52) in relation

(53). The elementse ande s of the tensor basis in the Which are singular on the negatweams The reader can
LHS of Eq.(53) are mlxed by the epsilon symbol according verify that we haveV-H=0 outside the singularity line.
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Now we determine the dual ﬁeﬁjﬂy. To this end we use lution for the potentials. The general solution for the con-

the duality relationg43) between the field$,, andﬁw.
Going back to the notatio“™ for the LHS of Eq.(43)

and using Eq(57) we can show that the only non-zero con-

tribution is
TGio= — &ijok 9*h. (63)
In this way, the explicit expressions for Eqd4.3) are
0=9;h%— %R0 (64)
0=0,(N%+ /%) — 4%, (65
0=(d'h" - a'hk), (66)
€ijkodh=("h% = Jh) + (§' 0¥ — g ). (67)

Equation (66), together with the symmetry di*l, implies
thath¥i=g*9lU for a scalarU. At this point we note that to

implement condition(61) we have made use of the gauge

transformations ob ,,, which depend on the curl df, . We
still have the gauge freedom given by=4,A, which only

involves a scalar functiod. The corresponding transforma-
is 5'F1W=2(9Mﬁ,,A. We can make use of this

tion of h,,
gauge freedom to sé@*=0. Equation(65) then gives place

straint leads to a dual description in terms of an auxiliary
field w,, , Which enters only through its divergence, together

with FW. The resulting theory has the standard gauge sym-
metry of linearized gravity plus an addition# symmetry,
according to Eqs(34). By an adequate gauge fixing of the
latter symmetry one recovers the Einstein equation:*ﬁ)fgr
together with the standard symmetries. They still affect the
field w,, [see Eqgs(36) and (37)], which becomes deter-
mined through the gauge fixing of the gravitational fiefigs

andﬁ,w. In fact, such gauge fixing determines the curl and
divergence ofw,,, respectively, as can be seen from Egs.
(33) and (40). The relation between the dual theories is es-
tablished at the level of the nonlocal equati@s) involving

the corresponding potentials,,, h,, andw,,. We show
that this equation translates into the somewhat expected local
relation between the corresponding linearized Riemann ten-
sors (45), thus providing further evidence for the auxiliary
character of the field,,, .

Two examples have been considered which illustrate the
construction of the dual theory together with the physical
significance of the dual gravitational fiélqu. In the case of
a gravitational wave, duality just interchanges the polariza-
tions. When considering the field produced by a point mass,
the dual configuration is a Dirac-type string. This last ex-
ample shows that the duality transformation interchanges the
role of gravitoelectric and gravitomagnetic fields, defined as

to h%= — wi®, where we are discarding constant solutionsProportional to the gradient of the Newtonian potential and
that do not go to zero at infinity. In consequence, the seconthe curl of theh® field, respectively. Such a possibility was

term in Eq.(64) vanishes and we haye®®=0. Thus, from
the first three equations we get

h=0, =0, %= -wl° (68)
The remaining equatiof67) is
(9iw0j_(9ja)0i: _%GOijk &kh, (69)

which the reader can verify is only a rewriting of E&9),
which 0® indeed satisfies.

conjectured on the basis of the formal similarity between

Maxwell equations for the electromagnetism and Einstein

equations in the context of the parametrized post-Newtonian
expansion for gravitatiohl2]. This duality relation also has

a geometrical motivation because, in the same way as the
original Newtonian potential for a point mass is the weak

field approximation for the Schwarzschild metric, the dual

field h*” we found is the weak field approximation for the
massless Taub-NUT metri¢13], which corresponds to
spaces where gravitomagnetic charges can be defigd
Following the analogy with the original work of Dirac on

Summarizing, we see that the duality introduced hergnagnetic monopoles, the possibility of a mass quantization

maps the field of a point source inéd andh®, which have

due to the existence of a gravitomagnetic charge has also

the form of the electromagnetic potential of a magneticheen considerefl2,15.

monopole with its corresponding Dirac string singularity.

Finally we have explored an alternative possibility to ob-

The potentiaﬁ breaks the rotational symmetry of the prob- tain a dual theory for massless spin-two fields. The idea is to

lem, but this is a gauge artifact, and as E4p) shows the

take the zero mass case of the masdiyg,, theory previ-

gauge invariant quantities are symmetric under spatial rotaeusly developed, which is dual to massive Fierz-Pauli. Du-

tions.

V. SUMMARY AND FINAL COMMENTS

ality in this construction is realized in terms of constraints
that enforce a reduced phase space with the correct spin con-
tent. It is by no means an obvious matter how these con-
straints and their classification into first and second class

Using a parent Lagrangian approach we have constructeslbsetgwhich determines the count of degrees of freeflom
dual theories for linearized gravity. The starting point is thewill be modified by the zero mass condition. Hence it is
zero mass case of the parent Lagrangian for massive spiulifficult to know in advance which will be the spin content of

two theories developed in Rgf2]. The equation of motion

the resulting theory. We have studied this case in the Appen-

for the original fieldh,,, leads to a constraint implying that dix, concluding that the resulting massless theory describes
the dual fieldT,,), can be written as the field strength of a spin-zero excitations. This result corrects our previous pre-
potential. The presence of sources required the introductioliminary calculation of the number of degrees of freedom of
of Dirac-type line singularities in order to have a global so-the massless theory reported in Réflsl and[2], which er-
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roneously stated that this number was two. This phenomenon

provides a clear manifestation of the van Dam-Veltman— Ho=——1—5-=(9,h"), Ij=—7F—=0, (A3)
Zakharov[16] zero mass discontinuity, which leads to mass- d(d°h") a(a’h')
less theories having different spin content with respect to tr;ﬁ di Vel
original massive cases. We can understand our result in termg2ding. respectively, to
of irreducible representations &0(3). Since we basicall . -
o ot eyt e forme embodded. o= (ITo— 2,1, (nd)

start from four antisymmetric two forms embedded in

T , we are dealing with the product (2,9 1,0) which ; : e .
(ur)p . : - together with the primary constraidi;=0. The Hamil-

decomposes into (3,8)(2,1). Previous resultf9,17] indi- g_ H=TI h°—L5)-)\‘H y '

cate that the representation (2,1) carries zero degrees of frefemanH =1l i 1S

dom, while the representation (3,0) corresponds to the Kalb- 2

; 1 . m ) .
Ramond field. H= EH§+ higIT,+ 7(hoho+ h'h,)+\1I;. (A5)
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Antonio Garcia. This work was partially supported by =0=0=0=dllo+cmh. (AB)
CONICET-Argentina and CONACYT-Meéco. L.F.U. ac- The tertiary constraints
knowledges support from DGAPA-UNAM project IN-
117000, as well as CONACYT project 40745-F. 0=0,=m?(3cho— N (A7)
APPENDIX: THE MASSLESS THEORY FOR T (., finalize the Dirac procedure in both cases. Whe# O they

determine the Lagrange multiplias,. Whenm=0 the con-

There is still another possibility we can explore whengjstency is automatically satisfied. Summarizing, we have the
constructing massless theories. In an earlier paper we diggpnstraints

cussed dual Lagrangians for massive spin two fig&jsIn
this approach the fields were not in irreducible representa- I1;=0, O,=4lly+cm’h,=0, (A8)
tions of the Poincargroup at the Lagrangian level, but the
Euler-Lagrange equations lead to constraints that reduced th¢ghose classification in terms of first or second class strongly
configuration space to the adequate representation. We ca&epends upon the theory being massive or massless. In the
take m=0 in these theories with the hope of obtaining ancase m#0 the six constraints are second class, yielding
alternative massless spin-two formulation. Moreover, it is not; (2x4—6)=1 true degrees of freedom, thus reproducing
obviousa priori how the constraints will be modified by this the standard scalar field. However, the situation changes
choice and hence, which will be the spin content of the redrastically in the casen=0. Here, the secondary constraint
sulting theory. In this appendix we explore these matters andyllo=0 reduces to only ond],=cte, and the remaining
show how the van Dam—\Veltman—Zakhafd6] zero mass four constraints are first class. This leavg@x 4—2x4)
discontinuity, which leads to massless theories having differ=0 true degrees of freedom. This is in accordance with the
ent spin content with respect to the original massive cases, results of Refs[17] and[9].
realized. Next we study the zero mass case of the dual massive

First we give a brief review of the well-known case of the spin-two theory previously developed. Taking=0 in Eq.
Kalb-Ramond field, from the perspective of the Dirac (61) of Ref.[2], the resulting Lagrangian is
method, in order to provide a unified description of the mas- . )
sive and massless cases, which clearly shows the differencé= §F(a6y)vF(aﬁy)V+ §F(aﬂv)vF(a'By)y_ F(aﬁu)MF(aﬁy)w
in the final counting of the true degrees of freedom. Subse- (A9)
qguently we present a more detailed account of the zero magsy,
case corresponding to the massive spin-two theory fog, ,
previously develope¢?]. FlaBv= gaT(BNv 4 ghT(va)v 4 gyT(@B)r  (A10)

The massive Kalb-Ramond theory fdr,,, considered in
Ref.[17] can be more conveniently described in terms of theLagrangian(A9) dynamically fixesT(*#) =0, and therefore

field it is not necessary to impose this constraint through a
Lagrange multiplier. The corresponding equations of motion
bo=75 €apmnH*"™, (A1) are
with Lagrangian —49,Fl*r0)0 =29, Flarr 429 Flaralv—24 F 0
1 L +397Fm) =0, (A11)
L= =(d,h%)(d5h")— —=h“h,. A2
2( <N (96N"%) 2 “ (A2) In order to analyze the constraints following the Dirac pro-

cedure we start by rewriting LagrangidA9) in terms of
The momenta are spatial and temporal components
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. ok N
L= F(Oij)OF(OIJ)O_ 2|:(0lJ)0|:(ijk)_ ZF(Oij)JF(OIk)k
+ 3F (01 )kF N+ F (01)F @) + £F gy P 1°

+3F iyt F + §F (151 oF 100, (A12)

The primary constraints arising from the definition of the

momenta are

Q'=1100, =0, (A13)
Ii=1000=q, (A14)
ri=moi=o, (A15)
A= € (DK —44'TOKO) =0, (A16)

The Hamiltonian is
H = 2TTODOTT 3+ 31T, TR+ TIODOF
— ZFUROF 0+ 2T (0yodi ITO— 27T g, 0 TT 01K

(A7)
A NITOO04 €\ TTOVT 4 N (IT— 4F0) + 4, 110K
(A18)
with
I=—Je; 10k FO=—1¢,dTUNO.  (A19)

We see thafT ;) and Tgj)p act as Lagrange multipliers,
stating thataiHe”)kzo and ¢,I11°=0. Therefore the de-
grees of freedom must be iR, -

The time evolution of the primary constraints yields an

additional set of secondary constraints

310=g,110M0, (A20)
31 = g, kDI (A21)
3= € (' TIUNO 4 29, F IR (A22)

There are no tertiary constraints.
Our set of constraints contains the first class subset

Q=100 =0, — 3, (A23)
r'=1109=0, — 3, (A24)
ri=mi=0, — 9, (A25)

PHYSICAL REVIEW D 68, 065011 (2003

o i
310=¢,110N%=0,
(3,9,10N°=0) — 3-1=2, (A26)
Sii= g, 1ki=0,
(o1, =0, 4,9 J1KV=0) — 9-3-1=5.
(A27)

In parentheses we have indicated the identities that must be
subtracted when counting the number of independent con-
straints, which is shown to the right of each equation. Their
total number is 22. The second class subset is

A=— L (ITIDK— $EGK0) = _ 1 e (T g kT ()0),
(A28)

2: €ijk(0"iH(jk)0+ %arF(ijk)r): Gijkai(H(jk)O‘f‘ 45rT(]k)r)
(A29)

In this way the standard count of the independent degrees of
freedomN gives
N=3(2X24—2X22—-2)=1, (A30)
showing that the massless dual theory describes a spin zero
excitation.
The above count is most clearly seen in a plane wave

configuration withk#= (k,0 0Kk). In this case the constraints
become

[M090=p, 11%i=0, i=1,2,3, (A31)
1310 [1(32)0— . (A32)
[1122= [12H1i-q (A33)
H(31)2=H(32)1:H(31)12H(32)2=01 (A34)
13- [1(323= (A35)

with
T(12)0_ _ %H(H)S, [T(120=4k 7123 (A36)

The canonical pair that remains iF {23, 11(323), which
means that there is only one degree of freedom, correspond-
ing to a spin zero field.
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