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Nonuniform symmetry breaking in noncommutative lF4 theory
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Spontaneous symmetry breaking in noncommutative cutofflF4 theory has been analyzed by using the
formalism of the effective action for composite operators in the Hartree-Fock approximation. It turns out that
there is no phase transition to a constant vacuum expectation of the field and the broken phase corresponds to

a nonuniform background. By considering^f(x)&5A cos(QW •xW) the generated mass gap depends on the angles

among the momentakW andQW and the noncommutativity parameteruW . The order of the transition is not easily
determinable in our approximation.
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I. INTRODUCTION

The effects of noncommuting coordinates have rece
received renewed attention in relation to string theories@1,2#
and there is a great deal of effort being put forward to try a
understanding the fundamental properties of noncomm
tive field theories. In particular, the phase structure oflF4

theory has been recently discussed@3–6# ~see also@7# and
@8# for numerical studies of the theory in three and two E
clidean dimensions!, and Gubser and Sondhi@4# showed that
there are indications for a first order phase transition t
nonuniform ground state due to noncommutativity.

In this paper we essentially address the problem of sp
taneous symmetry breaking within the formalism of the
fective action for composite operators introduced by Co
wall, Jackiw, and Tomboulis@9# ~CJT!, in the Hartree-Fock
~HF! approximation. In this approach we have coupled
tremum equations, for the field and the full propagat
which shed new light on the transition from the ordered
the disordered phase.

We work in the cutoff field theory mainly for two reason
First of all, it is not yet clear whether the noncommutati
theory is renormalizable@10–15#, and moreover the renor
malization of the effective potential in the HF approximati
is cumbersome also for the commutative case@16,17#. Nev-
ertheless, the proposed approach gives interesting indica
on the phase of the theory. In particular we find in the H
approximation that:~a! the transition from^f&50 to ^f&
Þ0 turns out first order also for the commutative theory,~b!
for the noncommutative theory, the minimization of the e
fective action has no solution for̂f&5constÞ0 and the
broken phase corresponds to a nonuniform background fi
and ~c! in the nonuniform stripe phase, witĥf(x)&
5A cos(Q•x), @4,18#, the generated mass gap depends on
value ofkmumnQn , wherek is the momentum, and

@xm ,xn#5 iumn ~1!
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are the coordinate commutators.
The paper is organized as follows. In Sec. II we brie

review the CJT formalism and apply it in the HF approxim
tion to the commutativelF4 theory; Sec. III is devoted to
the noncommutative case withf5const; in Sec. IV we
study the stripe phase; and Sec. V contains the conclusi

II. COMMUTATIVE lF4 THEORY

In this section we shall summarize the effective action
composite operator as introduced by CJT~see@9# for details!
and study the spontaneous symmetry breaking in the c
mutative case. The CJT effective actionG(f,G) is given by

G~f,G!5I ~f!1
i

2
Tr ln DG211

i

2
Tr„D21~f!G…

1G2~f,G!2
i

2
Tr~1!, ~2!

where f(x) is the expectation value of the field on th
ground state,G(x,y) is the full connected propagator of th
theory,I (F) is the classical effective action,

I ~F!5E d4xL~x!, ~3!

D is the free propagator,

iD 21~x2y!52~]m]m1m2!d4~x2y!, ~4!

and

iD21~x2y!52~]m]m1m2!d4~x2y!1
d2I int~f!

df~x!df~y!
~5!

with the interaction termsI int(f) at least cubic in the fields
The termG2(f,G) is computed as follows. In the class

cal actionI (F) shift the fieldF by f(x). The new action
I (F1f) possesses terms cubic and higher inF which de-
fine an ‘‘interaction’’ partI int(f,F) where the vertices de
©2003 The American Physical Society08-1
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P. CASTORINA AND D. ZAPPALÀ PHYSICAL REVIEW D 68, 065008 ~2003!
pend onf(x). G2(f,G) is given by all two particle irreduc-
ible vacuum graphs in the theory with vertices determined
I int(f,F) and propagator set equal toG(x,y). The usual
effective action is recovered by extremizingG(f,G) with
respect toG.

We evaluateG(f,G) for the commutativelF4 theory
with action

I ~f!5E d4xS 1

2
]mf]mf2

1

2
m2f22

l

4!
f4D ~6!

in the Hartree-Fock approximation which corresponds to
tain only the lowest order contribution in coupling consta
to G2(f,G) ~see@9#!.

The coupled equations for the extrema ofG(f,G) are

dG~f,G!

df
50,

dG~f,G!

dG
50. ~7!

It turns out that in this approximation the propagator c
be conveniently parametrized as@9,16,17#

G~x,y!5 i E d4p

~2p!4

e2 ip(x2y)

p22M2~p2!
~8!

and the two previous equations become

05~]m]m1m2!f~x!1
l

6
f3~x!1

l

2
f~x!G~x,x!, ~9!

M25m21
l

2
f21

l

2
G~x,x!. ~10!

The extrema of the effective action are forf andM con-
stant. The previous equations contain divergences that
regularized by introducing a cutoffL. By requiring that
physical quantities are exponentially decoupled from the c
off we redefine the parameterm2 to cancel terms propor
tional to L2, i.e.,

m25m21
l

2E d4p

~2p!4

i

p2 ~11!

and the coupled equations~in the Euclidean space! become

M25m21
l

2
f21

l

32p2 M2 ln M2, ~12!

05fS l

3
f22M2D , ~13!

where all the dimensional quantities have been rescale
units of the cutoffL. The extremum equations have two se
of solutions:

f50, ~14!

M25m21
l

32p2 M2 ln M2 ~15!
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f25
3M2

l
, ~16!

1

2
M21m252

l

32p2 M2 ln M2. ~17!

Now let us consider the second set of solutions which
the relevant one for the spontaneous symmetry breaking
solve it for various values ofm2, given as follows.

~a! m250: In this case, besides the solutionM250, f
50 obtained form Eqs.~14!, ~15! @19#, one finds two non-
vanishing opposite solutions forf:

f56A3Mo
2

l
~18!

with

Mo
25e2(16p2)/l. ~19!

~b! m2Þ0: To solve Eq.~17! one rescales all quantities i
unit of Mo

2 , the solution form2 50, thus obtaining

m̂252
l

32p2M̂2 ln M̂2, ~20!

where m̂25m2/Mo
2 and M̂25M2/Mo

2 . It is easy to verify

that for m̂2.l/(e32p2) there is no solution of Eq.~20! and
the only solution of Eqs.~14!–~17! is f50 with a nonvan-
ishing massM2 obtained from Eq.~15!. In the region 0
,m̂2,l/(e32p2) there are two solutions of Eq.~20!, M̂1

2

andM̂2
2, and then five extrema corresponding tof50 and to

f̂1,256A3

l
M̂1,2

2 . ~21!

Note that form̂25l/(e32p2) the two solutions forM̂2 co-
incide: M̂1

25M̂2
2 and correspondingly there are three diffe

ent extrema inf. For m̂2,0 there is only one solution inM̂2

which corresponds to two nonvanishing extrema inf.
Let us finally translate the previous information on t

shape of the effective potential as a function off for differ-
ent values ofm2. For m̂2.l/(e32p2) there is only the ex-
tremum atf50 and the potential corresponds to plot~a! in
Fig. 1. Form̂25l/(e32p2) two new nonvanishing extrem
appear and for 0,m̂2,l/(e32p2) there are five extrema
and the shape is as in plot~b!. Note that when loweringm̂2,
the maxima of the potential forfÞ0 decrease and the co
responding values off become smaller and approach ze
and also the minima decrease but the corresponding va
of f increase. Form̂250 the solution corresponding to th
maxima have merged intof50 and there are three extrem
@see plot ~d!#. Then for some critical, finite, and positiv
value ofm̂2 the potential must be of the form reported in pl
8-2
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NONUNIFORM SYMMETRY BREAKING IN . . . PHYSICAL REVIEW D68, 065008 ~2003!
~c!, with three degenerate minima at different values off.
This picture implies a~weak! first order phase transition an
suggests that in this case the HF approximation give
‘‘coarse grain’’ description reliable to establish the occu
rence of the transition but probably not its order@20#.

III. NONCOMMUTATIVE lF4 THEORY

In this section we shall analyze the extremum equati
for the CJT effective action for the noncommutative theo
defined by the action

φ

V

(a)
(b)
(c)
(d)

FIG. 1. The effective potential of the scalar commutative the
in the HF approximation for various values of the parameterm ~see
text for details!.
06500
a
-
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I ~f!5E d4xS 1

2
]mf]mf2

1

2
m2f22

l

4!
f4* D , ~22!

where the star product is defined by (i , j 51, . . . ,4)

f4* ~x!5f~x!* f~x!* f~x!* f~x!

5expF i

2 (
i , j

umn]xi

m]xj

n G
3~f~x1!f~x2!f~x3!f~x4!!uxi5x . ~23!

The theory has been discussed in the literature~see, e.g.,
the review@21#! and the planar approximationuL2→` has
the same behavior of the commutative theory: a phase t
sition for ^f&5f05const and a translational invariant fu
propagator parametrized as in Eq.~8! with constantM .

Let us now check whether this behavior survives to
genuine noncommutative effects, i.e., for finiteuL2. With a
translational invariant propagator

G~x,y!5E d4p

~2p!4
e2 ip(x2y)G~p!, ~24!

the CJT effective action in momentum space reads

y

G~f,G!5
1

2E d4p

~2p!4 ~p22m2!f~p!f~2p!2
l

4! F )a51

4 E d4pa

~2p!4 f~pa!Gd4S (
a

paD
3expS i

2
p1`p2DexpS i

2
p3`p4D1

i

2
d4~0!E d4p

~2p!4 ln D~p!G21~p!1
1

2
d4~0!

3E d4p

~2p!4 ~p22m2!G~p!2
l

6E d4p

~2p!4E d4q

~2p!4 f~p!f~2p!G~q!F11
1

2
exp~ iq`p!G2

l

12
d4~0!

3E d4p

~2p!4E d4q

~2p!4 G~p!G~q!F11
1

2
exp~ iq`p!G , ~25!

whereq`p[qmumnpn . In the noncommutative case let us parametrize

G~q!5
i

q22M2~q!
, ~26!

whereM2 is a function of the four-momentum.
From Eq.~25! we get two coupled extremum equations forM2(q) andf(q):

d4~0!FM2~q!2m22
l

3E d4p

~2p!4

i

@p22M2~p!# S 11
1

2
exp~ iq`p! D G5

l

3E d4p

~2p!4
f~p!f~2p!S 11

1

2
exp~ iq`p! D , ~27!
8-3
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Fq22m22
l

3E d4p

~2p!4

i

@p22M2~p!# S 11
1

2
exp~ iq`p! D Gf~2q!

5
l

12E d4p

~2p!4E d4k

~2p!4
f~p!f~k2p!f~2q2k!expS i

2
p`kD FexpS i

2
k`qD1expS 2

i

2
k`qD G . ~28!
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With the help of Eq.~27!, one can get rid of the constantm2

in Eq. ~28! which becomes

@q22M2~q!#f~2q!1@d4~0!#21f~2q!
l

3

3E d4p

~2p!4
f~p!f~2p!S 11

1

2
exp~ iq`p! D

5
l

12E d4p

~2p!4E d4k

~2p!4
f~p!f~k2p!f~2q2k!

3expS i

2
p`kD FexpS i

2
k`qD1expS 2

i

2
k`qD G .

~29!

Then, analogously to what has been done for the comm
tive case in Eq.~11!, we cancel the terms proportional toL2

in Eq. ~27! by defining

m25m21
l

3E d4p

~2p!4

i

p2 , ~30!

and we can directly check whether a constant backgroun

f~q!5fod4~q! ~31!

is a solution of the extremum equations. Indeed, by sub
tuting Eqs.~30! and ~31! in Eqs.~27! and ~29! we get

M2~q!5m21
l

2
fo

21
l

3E d4p

~2p!4

iM 2~p!

p2@p22M2~p!#

1
l

6E d4p

~2p!4

i exp~ iq`p!

@p22M2~p!#
~32!

05foS l

3
fo

22M2~q! D d4~q!. ~33!

We note that in Eq.~33! we can replaceM2(q) with
M2(0) because of the delta functiond4(q). As usual there is
the solutionfo50 andM2(q) given by Eq.~32! ~where the
term proportional to the fieldf0 has been discarded!.

This case has been studied in@4# with the interesting re-
sult that forqmumnunrqr→0 the functionM2(q) has a sin-
gular behavior
06500
a-

ti-

M2~q!→ c

~q2/L2!~uL2!
, ~34!

wherec is a constant andumn is taken of maximal rank and
eigenvalues6u. For uÞ0 the singularity appears in the in
frared limit q2→0. This is a genuine effect of the noncom
mutative structure of the theory and does not change if
considers the same equation forfoÞ0 because it is due to
the phase factor in the integral in Eq.~32!.

Let us consider Eqs.~32! and~33! in the case of constan
finite and nonvanishing backgroundfoÞ0. As noted above,
due to the noncommutative terms,M2 constant is not a so
lution of Eq. ~32!: M2(q) must depend onq and moreover
M2(q) for small q is singular as in Eq.~34!. Then the con-
dition (l/3)fo

22M2(0)50 from Eq. ~33! does not admit a
finite constant solutionfo . Therefore a finite constant solu
tion foÞ0 is ruled out by the analysis of the combine
equations.

It is interesting to note that an indication of the impos
bility of finding a constant field solution of our extremum
equations could have been obtained directly from Eqs.~27!
and~28!. In fact after substituting in these equations the co
stant field solution, Eq.~31!, the terms proportional toL2

that appear in the two extremum equations cannot be sim
taneously cancelled by a single counterterm, namely,m2 as
fixed in Eq. ~30!, and therefore all solutions of the couple
equations are plagued with integrals that grow asL2.

In our previous analysis the problem of cancelling t
terms proportional toL2 has been hidden by the replaceme
performed to get Eq.~29! which apparently made the case
constant background field free of divergences, although
the end we could not find any suitable solution because
the singular behavior ofM2(q) at q50 shown in Eq.~34!.
By looking at Eq.~27!, it is easy to realize that thisq depen-
dent singular behavior is directly related to the incompl
cancellation of the terms proportional toL2 for finite uL2.
Indeed this pathology is not present in the planar limit.

In conclusion, we have to reject the constant solutionfo
Þ0 and look for spontaneous symmetry breaking only in
nonuniform phase.

IV. THE STRIPE PHASE

As pointed out in@18# the phase transition to a nonun
form state is related to a periodic correlation functi
^f(x)f(0)& which oscillates in sign for largex. For this
reason we consider a time independent stripe pattern

^f~xW !&5A cos~QW •xW ! ~35!
8-4
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and calculate the CJT effective action in the Hartree-F
approximation in the static limit@9#. Let us then assume tha
umn has no time componentu0i50 andu i j 5« i jkuk .

It is impossible to study the transition to the stripe pha
with the most general class of propagatorsG and we shall
limit ourselves to a Raileigh-Ritz variational approa
where, however a meaningful ansatz forG requires at leas
some physical indications on its asymptotic behaviors.
deed the nonuniform background given in Eq.~35! has a new
typical scaleuxW u;1/uQW u. For smalluQW u ~in cutoff units!, the
effect of the nonuniform background will be relevant on
for large distances and the background will be a slowly va
ing function ofxW .

Then for momentaupW u@uQW u, the breaking of the transla
tional and rotational invariance is expected to be negligi
and a good ansatz for the tridimensional propagator in m
mentum space is

G~pW !5
1

2Ap21Mo
2

, ~36!

where, analogously to the constant background case,Mo
2 is a

constant.
In the regionupW u,uQW u, the previous ansatz is of cours

not reliable, and to obtain further information on the beha
ior of G let us preliminarily assume that the breaking of t
translational invariance appears in the field expectation va
only, i.e., in Eq.~35!, while we consider a general transl
tional invariant form of the propagator with

G~pW !5
1

2Ap21M2~pW !
. ~37!

Then we analyze the extremum equations obtained by m
mizing, with respect toM2(pW ), A and Q2, the quantity
E(f,G) defined as

2d~0!E~f,G!5G~f,G!, ~38!

with G(f,G) computed in the static limit@9#. The three
coupled equation forM2(pW ), A, andQ2, respectively, turn
out as

M2~pW !5m21A2
l

6
S 11

1

2
cos~pW `QW !D

1
l

3
E d3k

~2p!3

1

2Ak21M2~kW !
S 11

1

2
cos~pW `kW !D ,

~39!
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1

l

3
E d3k

~2p!3

1

2Ak21M2~kW !

3S 11
1

2
cos~QW `kW !D G50 ~40!

Q22
l

12
E d3k

~2p!3

1

2Ak21M2~kW !
~kW`QW !sin~kW`QW !50.

~41!

The cancellation of the terms proportional toL2 is now
obtained by defining

m25m21
l

3E d3k

~2p!3

1

2ukW u
. ~42!

Let us first discuss Eq.~41! and look for a smallQ2 so-
lution. Due to the strong oscillating factor, for smallQ the
integration region is dominated by largek and then we can
replaceG with its asymptotic behavior in Eq.~37! or, in
other words,M2(kW );Mo

2 .

By choosing the configurationuW 5(0,0,u) and QW

5(Q/A2,Q/A2,0), the smallQ2 self-consistent solution
turns out as

Q2

L2
5S l

24p2D 1/2 1

uL2
, ~43!

where we consider from now on large but finite values
uL2.

The next step is to consider the gap equation~39!. As
previously discussed for largep2@Q2 one expectsM2(pW )
;Mo

2 . For p2!Q2 the self-consistent behavior ofM2(pW ) is

M2~pW !up→0;a1
A2l

12 F11
1

2
cos„pW •~QW 3uW !…G

1
l

6p2

1

upW 3uW u2
, ~44!

wherea is a constant and3 indicates the usual vector prod
uct. The last term corresponds to the smallp contribution
analogous to the singular behavior in Eq.~34!.

Finally one can qualitatively analyze the phase transit
by looking at the equation forA, Eq.~40!, that can be written
in the form
8-5
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A252
8

l H Q21m21
l

3
E d3k

~2p!3

1

2Ak21M2~kW !

3S 12
Ak21M2~kW !

ukW u
1

1

2
cos„kW•~QW 3uW !…D J .

~45!

Indeed, if the contribution of the integrals in Eq.~45! is
negligible, a solutionA2Þ0 for Q2Þ0 is allowed only for
sufficiently negativem2. Moreover in this approximation the
energy gap between the stripe phase and theA50 phase is
aboutDE;2lA2/64, showing that the broken phase is e
ergetically favored.

On the basis of this preliminary analysis, to establish
occurrence of the spontaneous symmetry breaking one
apply the following settings of self-consistent approxim
tions for the numerical evaluation of the energy defined
Eq. ~38!.

~1! Slowly changing background, i.e.,

Q2

L2
5S l

24p2D 1/2 1

uL2
!1 ~46!

with small l and large, finiteuL2.
~2! G(x,y) translational invariant withG(pW ) as in Eq.

~37! with M2(pW ) given by

M2~pW !5Mo
21

A2l

12 F11
1

2
cos„pW •~QW 3uW !…G

1
l

6p2

1

upW 3uW u2
for p2<Q2, ~47!

M2~pW !5Mo
2 for p2>Q2. ~48!

This choice is motivated by the self-consistent asympto
solution of Eq.~39! @which is displayed in Eq.~44!# and,
above all, by the previous observation that the transition
mainly driven byQ2Þ0 and depends weakly on the oth
details of our ansatz forM2(pW ) in the smallp region.

By means of Eqs.~25! and ~46!–~48!, we computed, in
cutoff units,

DE~A,Mo
2 ,u!5E~A,Mo

2 ,u!2E~0,0,0! ~49!

for l anduL2 fixed and studied the occurrence of the pha
transition by changing the mass parameterm2.

For m250 there is no spontaneous symmetry breaki
Figure 2 showsDE for m250, l51022, anduL25100 for
different values ofM0

2 in the range between 1022 and 1026.
For values ofm2 below a negative threshold, we obser

spontaneous symmetry breaking. In Fig. 3 different plots
DE are reported form252531024 and againM0

2 in the
06500
-

e
an
-
n

c

is

e

.

f

range between 1022 and 1026. l anduL2 are the same as in
the previous case and the absolute minimum is forA
;0.55.

To follow the behavior ofDE as a function ofm2, in Fig.
4 we giveDE for fixed Mo

251022 and different values of
m2. The absolute minimum goes slowly to zero aroundm2

;2231024. The qualitative picture does not strongly d
pend on the particular values taken forl anduL2 as long as
we stay in the lowQ2 region where the whole approach
self-consistent.

V. CONCLUSIONS

The variational Raileigh-Ritz approximation to the CJ
effective action shows that for largeuL2, i.e., smallQ2 the
transition to a broken stripe phase occurs. The mass ge
ated by the gap equation depends on the mutual direc
amonguW , QW , and the momentum vectorpW . This phenomenon
occurs also in noncommutative electrodynamics@22,23#
where for the electromagnetic waves the modified dispers
relation

v

c
5ukW u~12bW T•uW T! ~50!

0 0.2 0.4
A

0

∆Ε

(a)
(b)
(c)
(d)

2x10-5

1x10-5

FIG. 2. DE vs A with l51022, u5100, m250, and Mo
2

51026 ~a!, Mo
251023 ~b!, Mo

25831023 ~c!, Mo
25431022 ~d!.

0 0.4 0.8
A

0

∆Ε

(a)
(b)
(c)
(d)

2x10-5

FIG. 3. DE vs A with l51022, u5100, m252531024, and
Mo

251026 ~a!, Mo
251023 ~b!, Mo

251.231022 ~c!, Mo
25431022

~d!.
8-6
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depends on the angles among the wave vectorkW and the
transverse components~ with respect tokW ) of the background
magnetic fieldbW and of the vectoruW .

In our approximated numerical analysis we checked t
the occurrence of spontaneous symmetry breaking is we

0 0.2 0.4

A
0

∆Ε
(a)
(b)
(c)
(d)

1x10-5

1x10-6

FIG. 4. DE vs A with l51022, u5100, M0
251022, and m2

521024 ~a!, m252231024 ~b!, m2522.531024 ~c!, m2523
31024 ~d!.
rg

J.

g
,

gh

06500
t
ly

related to the ansatz made onM2(pW ) in the smallp region.
The transition essentially depends onQ2Þ0 and this is thea
posteriorimain motivation to believe that also a translation
invariant approximation for the propagator can reproduce
qualitative features of the transition also of the noncomm
tative theory. On the other hand, due to our coarse grai
ansatz on the propagator, we are not able to make a pre
statement on the order of the phase transition which, in tu
depends on the dynamical details of the theory.

Finally we considered a simplest periodic structure for
background field in Eq.~35! because no qualitative change
are expected for more complicated superpositions as
gested in@4#.

ACKNOWLEDGMENTS

We are indebted to S.-Y. Pi for constant advice and
many remarks about the manuscript. We thank Rom
Jackiw for many fruitful suggestions. We are also grateful
M. Consoli and L. Griguolo for helpful discussions. Th
work, started during a visit of the authors to the Center
Theoretical Physics, MIT, is supported in part by funds p
vided by the U.S. Department of Energy~DOE! under coop-
erative research agreement Grant No. DF-FC02-94ER40
lli,

ur
tain

ys.
@1# A. Connes, M.R. Douglas, and A. Schwarz, J. High Ene
Phys.02, 003 ~1998!.

@2# N. Seiberg and E. Witten, J. High Energy Phys.09, 032
~1999!.

@3# B.A. Campbell and A. Kaminsky, Nucl. Phys.B581, 240
~2000!.

@4# S.S. Gubser and S.L. Sondhi, Nucl. Phys.B605, 395 ~2001!.
@5# Guang-Hong Chen and Yong-Shi Wu, Nucl. Phys.B622, 189

~2002!.
@6# H.O. Girotti, M. Gomes, A.Yu. Petrov, V.O. Rivelles, and A.

da Silva, Phys. Rev. D67, 125003~2003!.
@7# W. Bietenholz, F. Hofheinz, and J. Nishimura, ‘‘Simulatin

noncommutative field theory,’’ HU-EP-02-35
hep-lat/0209021.

@8# J. Ambjorn and S. Catterall, Phys. Lett. B549, 253~2002!; W.
Bietenholz, F. Hofheinz, and J. Nishimura, Fortschr. Phys.51,
745 ~2003!.

@9# J.M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D10,
2428 ~1974!.

@10# S. Minwalla, M. Van Raamsdonk, and N. Seiberg, J. Hi
Energy Phys.02, 020 ~2000!.

@11# M. Van Raamsdonk and N. Seiberg, J. High Energy Phys.03,
035 ~2000!.
y@12# I. Chepelev and R. Roiban, J. High Energy Phys.03, 001
~2001!.

@13# L. Griguolo and M. Pietroni, J. High Energy Phys.05, 032
~2001!.

@14# D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacite
Phys. Lett. B533, 178 ~2002!.

@15# F. Ruiz Ruiz, Nucl. Phys.B637, 143 ~2002!.
@16# So Young Pi and M. Samiullah, Phys. Rev. D36, 3128~1987!.
@17# V. Branchina, P. Castorina, M. Consoli, and D. Zappala`, Phys.

Rev. D42, 3587~1990!.
@18# S.A. Brazovskii, Zh. Eksp. Teor. Fiz.68, 175 ~1975!.
@19# It should be noted that there is a solution of Eq.~15!, M2

.1, both for vanishing and nonvanishingm2, which means a
mass larger than the ultraviolet cutoff. Since we require o
parameters to be smaller than the cutoff, we shall not re
this solution in our analysis.

@20# J. Polchinski, Nucl. Phys.B231, 269 ~1984!.
@21# M. Douglas and N. Nekrasov, Rev. Mod. Phys.73, 977~2001!.
@22# Z. Guralnik, R. Jackiw, S.Y. Pi, and A.P. Polychronakos, Ph

Lett. B 517, 450 ~2001!.
@23# P. Castorina, A. Iorio, and D. Zappala`, ‘‘Noncommutative syn-

chrotron,’’ MIT-CTP-3336, hep-th/0212238.
8-7


