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Nonuniform symmetry breaking in noncommutative A®* theory
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Spontaneous symmetry breaking in noncommutative cutdff theory has been analyzed by using the
formalism of the effective action for composite operators in the Hartree-Fock approximation. It turns out that
there is no phase transition to a constant vacuum expectation of the field and the broken phase corresponds to
a nonuniform background. By considerigg(x))=A cos@-i) the generated mass gap depends on the angles
among the momentie andQ and the noncommutativity parametérThe order of the transition is not easily
determinable in our approximation.
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I. INTRODUCTION are the coordinate commutators.
The paper is organized as follows. In Sec. Il we briefly

The effects of noncommuting coordinates have recentlyeview the CJT formalism and apply it in the HF approxima-
received renewed attention in relation to string theorieg]  tion to the commutative.®* theory; Sec. Ill is devoted to
and there is a great deal of effort being put forward to try andhe noncommutative case witth=const; in Sec. IV we
understanding the fundamental properties of noncommutastudy the stripe phase; and Sec. V contains the conclusions.
tive field theories. In particular, the phase structure éf*
theory has been recently discusg&d-6] (see alsd7] and Il. COMMUTATIVE A®* THEORY
[8] for numerical studies of the theory in three and two Eu- ) ) . ) )
clidean dimensionsand Gubser and SondH] showed that In th|§ section we sh_aII summarize the effective action for
there are indications for a first order phase transition to £0Mposite operator as introduced by G3&e[9] for detail9
nonuniform ground state due to noncommutativity. and study the spontaneous symmetry breaking in the com-

In this paper we essentially address the problem of sporMutative case. The CJT effective actib¢,G) is given by
taneous symmetry breaking within the formalism of the ef- i i
fective action for composite operators introduced by Corn- T'($,G)=1(d)+=TrINDG 1+ =Tr(A"Y($)G)
wall, Jackiw, and Tombouli§9] (CJT), in the Hartree-Fock 2 2
(HF) approximation. In this approach we have coupled ex- i
tremum equations, for the field and the full propagator, +T,(¢,G)— =Tr(1), 2
which shed new light on the transition from the ordered to 2
the disordered phase.

We work in the cutoff field theory mainly for two reasons.
First of all, it is not yet clear whether the noncommutative
theory is renormalizabl§10-15, and moreover the renor-
malization of the effective potential in the HF approximation
is cumbersome also for the commutative cB&17. Nev- |(q>):f d*xL(x), 3)
ertheless, the proposed approach gives interesting indications
on the.phafse of the theory. In pgrticular we find in the HFG 5 the free propagator,
approximation that(a) the transition from(¢)=0 to (¢)

#0 turns out first order also for the commutative thedby, iD Y(x—y)=— (0%9,+ m?) 84 (x—y), (4)
for the noncommutative theory, the minimization of the ef-

fective action has no solution fof¢)=const=0 and the and

broken phase corresponds to a nonuniform background field,

where ¢(x) is the expectation value of the field on the
ground staté&(x,y) is the full connected propagator of the
theory, | (®) is the classical effective action,

. . . . 2
and (c) in the nonuniform stripe phase, withg(x)) g ) B lint( )
=Acos@Q-X), [4,18], the generated mass gap depends on the 1A (x=y)= = (%9, +m )54 (x=y)+ SPp(X)8h(y)
value ofk,#,,Q,, wherek is the momentum, and (5)
[Xu X, ]=16,, (1) with the interaction terms;,,(¢) at least cubic in the fields.

The termI’,(¢,G) is computed as follows. In the classi-

cal actionl (®) shift the field® by ¢(x). The new action

*Email address: paolo.castorina@ct.infn.it I (P + @) possesses terms cubic and highedinvhich de-
"Email address: dario.zappala@ct.infn.it fine an “interaction” partl;,:(#,®) where the vertices de-
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pend on¢(x). I',(4,G) is given by all two particle irreduc- and
ible vacuum graphs in the theory with vertices determined by

lint(¢,®) and propagator set equal ®(x,y). The usual ¢2_3_M2 (16)
effective action is recovered by extremiziny ¢,G) with SN
respect taG.
We evaluatel'(4,G) for the commutative\x®* theory 1., ., ) 5
with action FMTHut=— M7 InM*. (17)
1 1 A : - -
_ N wyp_ 2,2 N og Now let us consider the second set of solutions which is
'(¢) f d X(Za"d)& ¢ 2m ¢ 4! ¢ © the relevant one for the spontaneous symmetry breaking and

) ) ) ) solve it for various values o;sz, given as follows.
in the Hartree-Fock approximation which corresponds to re- a) u2=0: In this case, besides the solutif?=0, &

tain only the lowest order contribution in coupling constant_ 4 gptained form Eqs(14), (15) [19], one finds two non-

toI'5(4,C) (see[9). vanishing opposite solutions fa:
The coupled equations for the extremaldfs,G) are
3M?2
oT($G) _ d($.G) _ PR it (19

It turns out that in this approximation the propagator canith
be conveniently parametrized f&16,17

M2=e (167, (19
d4p efip(xfy) .- .
G(x,y)zif % (8 (b) w2+ 0: To solve Eq(17) one rescales all quantities in
(2m)* P*—M*(p?) unit of M2, the solution foru? =0, thus obtaining
and the two previous equations become . N .
,ﬂ:—WMZln M2, (20)

N A
0=(d,d*+m?) p(x)+ g¢3(X)+ 5 $(¥)G(xx), (9)
where u?=u?/M2 and M?=M?/M2. It is easy to verify
s, N\ that for u?>\/(e3272) there is no solution of E¢(20) and
MZ=m"+ 5 ¢"+ 5 G(X.X). (10 the only solution of Eqs(14)—(17) is ¢=0 with a nonvan-
ishing massM? obtained from Eq.(15). In the region 0
The extrema of the effective action are igrandM con- < ,2<)\/(e327?) there are two solutions of Eq20), M2

stant. The previous equations contain divergences that are 4M2. and then five extrema correspondingfte- 0 and to
regularized by introducing a cutofA. By requiring that '

physical quantities are exponentially decoupled from the cut- 3
off we redefine the parameten® to cancel terms propor- &51 == \/—I\7I§2. (22
tional to A?, i.e., ' Ao
N[ dp | Note that foru?=\/(e3272) the two solutions fotM? co-
pur=me+ Ef 2m) (1) incide: M2=M2 and correspondingly there are three differ-

ent extrema inp. For ,&2< 0 there is only one solution it

and the coupled equatiorig the Euclidean spagéecome  Which corresponds to two nonvanishing extremagin
Let us finally translate the previous information on the

M2= 24 £¢2+ M2 In M2 (12) shape of the effectiveA potential as a functiongofor differ-
2 3272 ' ent values ofu?. For u?>\/(e3272) there is only the ex-
tremum at¢=0 and the potential corresponds to plat in
0:¢(£¢2—M2 ’ (13) Fig. 1. Forﬁ2=A/(§32w2) two new nonvanishing extrema
3 appear and for & u?<\/(e3272) there are five extrema

nd the shape is as in pl@i). Note that when Ioweringicz,
the maxima of the potential fopp#0 decrease and the cor-
responding values ofp become smaller and approach zero
and also the minima decrease but the corresponding values

¢=0, (14  of ¢ increase. Fo?=0 the solution corresponding to the
maxima have merged int¢=0 and there are three extrema
[see plot(d)]. Then for some critical, finite, and positive

value of 2 the potential must be of the form reported in plot

where all the dimensional quantities have been rescaled i
units of the cutoffA. The extremum equations have two sets
of solutions:

M?ZInM? (15
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: 1 1 A
2 l($)= J d“X(EMﬁ%—EmZ&— Ew), (22

where the star product is defined byjE1,...,4)

>
™ (X) = (X)* p(X)* B(X)* $(X)
o - - (@) . _
; - EE:))) _:: =exr{|§ > 0,uv95,9x;
| R (d) w0 i<j
X(h(X1) P(X2) p(X3) P(Xa))|x,=x - (23)
()

. ) . The theory has been discussed in the literatses, e.g.,
FIG. 1. The effective potential of the scalar commutative theory,

) L . the review[21]) and the planar approximatiof\2— has
in the HF approximation for various values of the paramgtésee h behavi fth - h ) h
text for details. the same behavior of the commutative theory: a phase tran-

sition for { $) = ¢g=const and a translational invariant full
propagator parametrized as in ) with constantM .
Let us now check whether this behavior survives to the
enuine noncommutative effects, i.e., for finitd 2. With a
ranslational invariant propagator

(c), with three degenerate minima at different valuesgof
This picture implies dweak first order phase transition and
suggests that in this case the HF approximation gives
“coarse grain” description reliable to establish the occur-
rence of the transition but probably not its ord20].

d* )
lIl. NONCOMMUTATIVE A ®* THEORY G(x,y)=J 2 248_'p(X_V)G(p), (24)
'

In this section we shall analyze the extremum equations
for the CJT effective action for the noncommutative theory
defined by the action the CJT effective action in momentum space reads

d'p,

A3e

i d* 1
+ %5‘%0)[ ﬁln D(p)G Y(p)+ E54(0)

i [
X ex% 5 P2/ pz) eXF{ Eps/\ P4

d4 A d4 d4 1 A
<[ G- moo1-g [ o s motw) i+ Zomiann) - 1010

d* d*

1+%exp(iq/\p)}, (25

whereq/\p=q,6""p, . In the noncommutative case let us parametrize

i
Gg)=————77, 26
(@= e (26)

whereM? is a function of the four-momentum.
From Eq.(25) we get two coupled extremum equations fdf(q) and ¢(q):

N[ d%p 1 .
f(z )4¢(p)¢(—p) 1+§exrl(lq/\p)), (27)

5*0)[M 1+ 1exp(lq/\p))

M2 , N d*p i
(o) —m* f(zw“[p— M%(p)]
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22X s | (1+1 xp(ig/\ )) —a)
A d*p d*k F’(i/\> [{i/\ p( i/\)
") Gmi Wd)(p)cb(k—p)d)(—q—k)ex SP/Ak|lexg skAq|+exp —SkAq)). (28)
|
With the help pf Eq(27), one can get rid of the constamf
in Eq. (28) which becomes Mz(q)em, (34)

A
(9%~ MZ(Q)](ﬁ(—Q)+[54(0)]_1¢(—O|)5

|

A

4

d*p
(2m)*

1
d(p)p(—p)| 1+ Eexp(iqu))

d*k
9P d(k=p)d(—aq—k)

(2m)*
exr{%k/\q +exr< - IEk/\q”.
(29

d*p
12 (2m)*

i
X exr{ip/\k)

Then, analogously to what has been done for the commut
tive case in Eq(11), we cancel the terms proportional A&

in Eq. (27) by defining

and we can directly check whether a constant background

N

3

d*p
(2m)* p°’

wi=m>+ (30

$(a) = bo5*(q) 31)

wherec is a constant and*” is taken of maximal rank and
eigenvaluest 0. For 6+ 0 the singularity appears in the in-
frared limit g>—0. This is a genuine effect of the noncom-
mutative structure of the theory and does not change if one
considers the same equation f¢g# 0 because it is due to
the phase factor in the integral in E@®2).

Let us consider Eq$32) and(33) in the case of constant
finite and nonvanishing backgroumf},# 0. As noted above,
due to the noncommutative ternig,? constant is not a so-
lution of Eq. (32): M?(q) must depend o and moreover
M?2(q) for smallq is singular as in Eq(34). Then the con-
dition ()\/3)¢§—M2(0)=0 from Eq.(33) does not admit a
finite constant solutiorb,. Therefore a finite constant solu-
aEi_on ¢o#0 is ruled out by the analysis of the combined
equations.

It is interesting to note that an indication of the impossi-
bility of finding a constant field solution of our extremum
equations could have been obtained directly from Eg8)
and(28). In fact after substituting in these equations the con-
stant field solution, Eq(31), the terms proportional tc\?
that appear in the two extremum equations cannot be simul-
taneously cancelled by a single counterterm, namafyas
fixed in Eq.(30), and therefore all solutions of the coupled
equations are plagued with integrals that gronAds

In our previous analysis the problem of cancelling the

is a solution of the extremum equations. Indeed, by substiterms proportional ta\? has been hidden by the replacement

tuting Egs.(30) and (31) in Egs.(27) and (29) we get

d*p iM?(p)
(2m)* PLP*—M?(p)]

A A
2 — 24 424

N[ d*% iexpigq/\p)

Ef (2m)* [PP—M2(p)] 32
A 2 2

0=¢o<§¢o—M (q) | 5*%(a). (33

We note that in Eq(33) we can replaceM?(q) with
M?(0) because of the delta functi@(q). As usual there is
the solutiong,=0 andM?(q) given by Eq.(32) (where the
term proportional to the field, has been discarded

This case has been studied[#] with the interesting re-
sult that forq, 6*"0,,q°—0 the functionM 2(q) has a sin-
gular behavior

performed to get Eq29) which apparently made the case of
constant background field free of divergences, although in
the end we could not find any suitable solution because of
the singular behavior of1?(q) at q=0 shown in Eq.(34).
By looking at Eq.(27), it is easy to realize that thig depen-
dent singular behavior is directly related to the incomplete
cancellation of the terms proportional 1 for finite 9AZ.
Indeed this pathology is not present in the planar limit.

In conclusion, we have to reject the constant solutdgn
#0 and look for spontaneous symmetry breaking only in a
nonuniform phase.

IV. THE STRIPE PHASE

As pointed out in[18] the phase transition to a nonuni-
form state is related to a periodic correlation function
(#(x) ¢(0)) which oscillates in sign for large. For this
reason we consider a time independent stripe pattern

(p(X))=AcogQ-X) (35)
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and calculate the CJT effective action in the Hartree-Fock

3
approximation in the static lim{9]. Let us then assume that A Q2+m2+A2£+ EJ Ik !
6** has no time componer® =0 and 'l =¢'1*g, . 8 3J) (2m)% 2k M2(K)

It is impossible to study the transition to the stripe phase
with the most general class of propagat@sand we shall
limit ourselves to a Raileigh-Ritz variational approach
where, however a meaningful ansatz ®mrequires at least
some physical indications on its asymptotic behaviors. In-
deed the nonuniform background given in E8f) has a new
typical scale|x|~1/Q|. For small|Q| (in cutoff units, the N d%k 1
effect of the nonuniform background will be relevant only Q2— —
for large distances and the background will be a slowly vary- 12J° 2m)3 2vk2+ M2(K)
ing function ofx. (41

Then for momentdp|>|Q|, the breaking of the transla-
tional and rotational invariance is expected to be negligible
and a good ansatz for the tridimensional propagator in mo-
mentum space is

1
x| 1+ Ecos(@/\lZ) ) (40)

(KAQ)sin(kN\Q) =

The cancellation of the terms proportional AG is now
obtained by defining

1 2 )\J’ d®k 1 42
NV ME=m = — .
MPN v (30 3) 2?2
where, analogously to the constant background degds a Let us first discuss E¢41) and look for a smalQ?® so-
constant. lution. Due to the strong oscillating factor, for sm&ll the

integration region is dominated by lar¢geand then we can

In the region|p|<|Q), the previous ansatz is of course replaceG with its asymptotic behavior in Eq37) or, in

not reliable, and to obtain further information on the behav- ) 2
ior of G let us preliminarily assume that the breaking of theOther wordsM (k) ~M3

translational invariance appears in the field expectation value By choosing the conflguratlona (0,00) and Q
only, i.e., in Eq.(35), while we consider a general transla- =(Q/\/2,Q/1/2,0), the smallQ? self-consistent solution

tional invariant form of the propagator with turns out as
1 QZ A 1/2 1
G(p)= —F— (37) —2=( 2) —., (43)
2,lp2+M2(p) A 24w 0A

Then we analyze the extremum equations obtained by mm'where we consider from now on large but finite values of

h M?(p), A 2, th ;
E(If;ng) \évgfmégsgsct 0 (p) and Q°, the quantity The next step is to consider the gap equati8f). As

previously discussed for large?>Q? one expectdV?(p)
~M2. For p?<Q? the self-consistent behavior M2(p) is

—8(0)E(¢,G)=T'(¢,G), (39)
: _ o A\ 1
with I'(¢,G) computed in the static limif9]. The three M (p)|FHO at+ —— 12 1+ = cos(p (Qx 6))
coupled equation foM2(p), A, andQ?, respectively, turn
out as N1
t o=, 44
677 5 i “

. N 1 .
Mz(p)=m2+A2€ 1+ Ecos{p/\Q))
wherea is a constant an& indicates the usual vector prod-

uct. The last term corresponds to the snaltontribution

3
* if - - 1+ Ecos(|5/\|2)) analogous to the singular behavior in Eg4).
(2m)% 2\Kk2+M2(K) Finally one can qualitatively analyze the phase transition

by looking at the equation fok, Eq. (40), that can be written
(39 in the form
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8 N d3k
A= — N Q%+ u?+ —f

31 (2m)3 2\Kk2+ M2(K)

2x10°
VK2+M2(k) 1
X 1—f+ cogk-(Qx 6)) '-<'|J
N
5
(45) 1x10
Indeed, if the contribution of the integrals in E@5) is
negligible, a solutiomA?+#0 for Q?+0 is allowed only for o} L L
sufficiently negativew?. Moreover in this approximation the TOA

energy gap between the stripe phase andAtke® phase is

aboutAE~ —\A?/64, showing that the broken phase is en-  FIG. 2. AE vs A with A=10"2, §=100, x2=0, and M2

ergetically favored. =10"° (a), M2=10"2 (b), M2=8x10"2 (c), M2=4x10"2 (d).
On the basis of this preliminary analysis, to establish the

occurrence of the spontaneous symmetry breaking one caange between 1¢ and 10 ®. A\ and#A? are the same as in

apply the following settings of self-consistent approxima-the previous case and the absolute minimum is Aor

tions for the numerical evaluation of the energy defined in~0.55.

Eq. (39). To follow the behavior oAE as a function ofu?, in Fig.
(1) Slowly changing background, i.e., 4 we give AE for fixed M§=1O‘2 and different values of
2. The absolute minimum goes slowly to zero aroyrd
Q2 N \12 1 ~—2x10* The qualitative picture does not strongly de-
PI (W) w<l (46) pend on the particular values taken foand #A? as long as

we stay in the lowQ? region where the whole approach is
) - self-consistent.
with small\ and large, finitegA2.

(2) G(x,y) translational invariant withG(p) as in Eq. V. CONCLUSIONS

. h M2 g .
(37) wit (p) given by The variational Raileigh-Ritz approximation to the CJT

effective action shows that for largg\?, i.e., smallQ? the

2
M2(p)= M2+ —— |1+ Ecos(ﬁ-((ﬁx 6)) transition to a broken stripe phase occurs. The mass gener-
12 ated by the gap equation depends on the mutual direction
N 1 amongd, Q, and the momentum vectpr This phenomenon

+— 5 for p?<Q?, (470  occurs also in noncommutative electrodynam{@2,23

67" |px 4] where for the electromagnetic waves the modified dispersion
relation
M2(p)=M2 for p?=QZ. (48) 5
< =IKl(1-br-dp) (50)

This choice is motivated by the self-consistent asymptotic
solution of EQ.(39) [which is displayed in Eq(44)] and,
above all, by the previous observation that the transition is
mainly driven byQ?#0 and depends weakly on the other
details of our ansatz fov?(p) in the smallp region. 2x10°

By means of Egs(25) and (46)—(48), we computed, in
cutoff units,

AE

AE(AM2,0)=E(A,M2,6)—E(0,0,0 (49)

for A and #A? fixed and studied the occurrence of the phase
transition by changing the mass parameiér

For u?=0 there is no spontaneous symmetry breaking. |
Figure 2 shows\E for x?=0, A=10"2, and#A?=100 for 0 N 0t
different values of\/lg in the range between 168 and 10°°.

For values ofu? below a negative threshold, we observe  FIG. 3. AE vs A with A=10"2, =100, u’=—-5x10"4, and
spontaneous symmetry breaking. In Fig. 3 dlfferent plots 0iM2=107° (a), M2=10"2 (b), M2=1.2x10"2 (c), M2=4x 102
AE are reported foru?=—-5x10"* and agalnM in the (d)
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1x10° I o 7 related to the ansatz made 8t%(p) in the smallp region.
’ The transition essentially depends @A+ 0 and this is the
posteriorimain motivation to believe that also a translational
invariant approximation for the propagator can reproduce the
qualitative features of the transition also of the nhoncommu-
tative theory. On the other hand, due to our coarse grained
ansatz on the propagator, we are not able to make a precise
statement on the order of the phase transition which, in turn,
depends on the dynamical details of the theory.

Finally we considered a simplest periodic structure for the
background field in Eq(35) because no qualitative changes
o | | are exp_ected for more complicated superpositions as sug-
0 0.2 0.4 gested in4].

L
<

1x10°
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