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Quantum gauge theory on the quantum anti-de Sitter space
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Quantum gauge theory on anti—de Sitter space is studied. The quantum Killing metric and the quadratic
guantum Casimir operator are defined. The quantum metrics on the quantum AdS group and the linear trans-
formations leading to them, for both|=1 andq real, are found explicitly. The quantum Chern-Simons model
and its quantum gauge invariance are discussed.
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I. INTRODUCTION [11] to the Poincaregroup. Anti—de Sitter space was first
considered by Dira¢12], who discovered the “remarkable
Noncommutative geometry started to appear in this cenrepresentation” which is now known as the singleton. Many
tury with progress in the research on operator algebras, thether authord13] have discussed all the representations of
use of algebra irK theory, and the results in index theory. the anti—de Sitter group and studied quantum field theory in
The signal to treat these objects as geometries and look f@nti—de Sitter spacil4].
possible physical relevance came in the 1980s from Connes The discovery that gauged supergravity theories have
[1]. In another direction, quantum grouf® provide natural ground states corresponding to anti—de Sitter space-time led
candidates for noncommutativity. The symmetry is describedo a study of the stability of these ground states with respect
by noncommutative non-cocommutative * Hopf algebras.to fluctuations of the scalar field45] as well as a study of
Quantum groups were connected with noncommutative difsupermultiplets in anti—de Sitter spads]|. Currently there
ferential geometry by Woronowici3], who introduced the is intense activity in the study of the AdS conformal field
theory of bicovariant differential calculi. This theory has theory (CFT) correspondenc¢l?]. This conjecture states
turned out to be the appropriate language to study gaugghat type IIB superstring theory witR units of F5 flux com-
theories based on noncommutative spaces gigp@uge theo- pactified on Ad$x S° is equivalent toV=4 supersymmetric
ries were extensively studied in the early 19985and re-  SU(N) Yang-Mills theory defined on the boundary of AdS
cently in [5,6]. Actually, there is a mag7] relating the Recently, it was proposeld 8] that quantum fluctuations in
g-deformed gauge fields to the ordinary ones. This map is théhe AdS;x S® backround have the effect of deforming space-
analogue of the Seiberg-Witten mggl. We found this map time to a noncommutative manifold. The evidence is based
using the Gerstenhaber produd9] instead of the on the quantum group interpretation of the cutoff on single
Groenewold-Moyal star produ€10]. particle chiral primaries. It is thus worthwhile to look for the
In this paper, we study quantum gauge theory on they-deformed analogue of the AdS/CFT correspondence, find
guantum anti—de Sitter space. We compute the quantum Killall the representations of thg-deformed superconformal
ing metric, which is an important ingredient in the definition group, and compute thg-deformed correlation functions.
of a quantum invariant Lagrangian. This quantum metric CoO\We can also generalize the methods used1] to the
incides with the Killing metric of the six scalars of the g-deformed case. We postpone the study-dieformed AdS/
=4 super Yang-Mills action in the classical lingt=1. We  CFT correspondence to a future work. This paper is orga-
discuss the quantum anti—de Sitter space and the quantufized as follows. In Sec. II, we recall the general properties
orthogonal groufs 0,(6). Thequantum anti—de Sitter space for the quantum grouQ,(6) and the bicovariant differen-
AdS] is defined as a real form of the complex sph8jevith tia) calculus following the general ideas of Woronowicz. We
a coaction ofSQ,(6) which is a real form of FUSO,(6)].  compute the quantum Killing metric using a precise defini-
We explicitly derive the quantum metrics and the lineartion of the quantum trace. In Sec. Ill, we present the quan-
transformations leading to them for bofilp =1 andq real.  tym anti—de Sitter space and quantum anti—de Sitter group.
Finally, we discuss the quantum invariance of the quantunyve construct the quantum anti—de Sitter metric explicitly for
Chern-Simons action. both |g|=1 andq real. In Sec. IV, we study the quantum
Let us first recall that anti—de Sitter Space-time is deﬁnecbauge invariance Of the Chern_simons term present in the

as an empty space solution to the Einstein field equationgw energy effective action of type 1B superstring theory on
with negative cosmological constant. The metric for five-pgs;.

dimensional anti—de Sitter spa¢&dS) can be obtained by
embedding in a six-dimensional space with two time direc-

tions. AdS space-time is homogeneous, has a large isometryI THE QUANTUM GROUP SO,(6) AND BICOVARIANT
group SO(4,2), and leads via a Wigner-ina contraction ' DIFFERENTIAL CZLCULUS

Let A be the associative unitdl algebra generated by
*Electronic address: Imesref@physik.uni-kl.de M“m (n,m=1,...,6):

0556-2821/2003/68)/0650076)/$20.00 68 065007-1 ©2003 The American Physical Society



L. MESREF

M, ML, M ML, Mg
M%4 M3 M%L MEL M
M3, M3, M3 M3, M3
M4 M4 M4 M4, M4
M5, M35, M3 M5, M5
M8, M6, Mm% M6, MS&

M1g
M2
M3
M4g
M3
M5

The 6X 6 matrix belonging t&5Q,(6) preserves the non-

degenerate bilinear for@,,,,,

ComM" MTM=Cy, C"™MM,=CM, C,,C"=34,
2

0 000 0 g7

0 00 0qgt o
om0 001 0 0 .

0 010 0 O

0 go0oo0 0 O

> 0 00 0 O

The noncommutativity of the elements’, is controlled
by the 36x 36 braiding matrixR:

3 3 3
R=qi23 é‘}®5§+i ]_E . 5§®5jﬁ+q*1i23 o l®ds
i#0 %], ] i#0
3 3
Tk 2 ged- 3 anges). (@)
i>] i>]

where we have used the notati20]
k=g-q~%,
pi=(2,1,0,0;-1,—2). (5)
The R matrix satisfies the Yang-Baxter equation
RIpgR R R gR R ©
and the relation

CnmRiat(T:Ricig: 5ng| : ()

The noncommutativity of the elements"}, is expressed

as

RPAI M MM =MP M9 R (8

The matrixR (=RP, whereP is a permutation operator,
P:A®B=B®A) enters into local representations of the yhere

Birman-Wenzel-Murakami algebf21]. R admits a projector

decompositior] 22]

R=qPs—q 'Pa+q °Pr, (9)
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wherePg, P4, Pt are the projection operators onto the three
eigenspaces oR with dimensions, respectively, 20, 15, 1:
they project the tensor product® x of the fundamental
corepresentatior of SQ,(6) into the corresponding irreduc-
ible corepresentations:

1.
Ps=——[R+q 1= (q7'+q °)Pq],
+q

Pa= [~R+ql—(q+q~%P],

a+q
P13a=(CeiC®) ~'C¥Ceq. (10
The algebra FUr5O,(6)] is a Hopf algebra with comul-
tiplication A, counite, and antipodé&s which are as follows.
The comultiplication(also called the coproducis
AMT ) =M @M . (12)
This coproductA on Furi SQ,(6)] is directly related, foig
=1 (the nondeformed cageto the pullback induced by left
multiplication of the group on itself. The counidtis given by

e(M") =6, (12

and the antipod& (coinverse is
S(M"YM =M"S(M*) = 6", (13
S(M" )=C"M', Cm. (14)

Now we consider the bicovariant bimodulE over
SQ,(6). Let 6% be a left-invariant basis of,,I', the linear
subspace of all left-invariant elementsIof i.e., A (6%) =1
® 6% In theq=1 case the left coactiod, coincides with
the pullback for one-forms. There exists an adjoint represen-
tation M of the quantum group, defined by the right action
on the left-invarianty?®:

Ar(6)=6"aM2, M2ec A, (15)
where A is an associative unital algebra.

The right coaction Ad is given by

Adg(M;H)=M,*eS(M hMm, ). (16)

The exterior derivativel is defined as
n 1 n ab. n
de:N[XJVIm]f:(X *Mm)eab

= x**(MpIM," G, (17)
X:Cabaab:q—2616+ q_1625+ 034+ 043+ q052
+0265 is the singlet representation éf° and is both left
and right coinvariantN e C is the normalization constant,
which we take purely imaginarfy* = —N, and y° are the
quantum analogues of right-invariant vectors given by
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cedf 3P0 —Cabe). (18

:N(
The x2® functionals close on the quantum Lie algebra

[XaleCd]( . ) Cabcd ef(Mn ) (19)
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To define the quantum anti—de Sitter space we follow the
method of Ref[24] used for Ad§. The quantum anti—de
Sitter space is defined as a real form of the complex quantum
spheresS; .

Let us introduce the quantum Euclidean space E@h(

generated by the elementswith commutation relations

where C3P°? are theg-structure constants. To construct a

guantum- and gauge-invariant Lagrangian, we need a well

defined quantum trace. We require that this trace is invarianyo, we define the coordinates of the quantum spl@’e
under the right adjoint coaction: generated by =xi/r wherer is central:

(Pa){xix;=0. (29)

= .i N
Tr(Ml ) Tr[AdR(M| )] (20) (PA)Ikl|tkt|:o, (30)
Clearly, this equation is satisfied if one defines the quan- ol
tum trace in the right adjoint representation as tt=Cyt't=1. (32)
T AdR(M, ) ]= -CikM; icik, (21)  For|g|=1, we consider the reality structure
The quantum trace allows us to introduce the quantum F:_(_l)EitiCji (32

Killing metric as in the usual nondeformed casp=1):
whereE;=(1,0,0,0,0:-1) fori=1,2,...,6 are theigenval-
ues of energy in the vector representation.

We introduce proper units and define

g =T (M) x M. (22
This quantum metric is an important ingredient in the
definition of a quantum gauge invariant Lagrangian. We can

. . \ . =tR,
also define the symmetric, antisymmetric, and trace parts of y

(33

this Killing metric as

gSabed—Ty[ ySal M, ") xSeqM K], (23
ghabed=Ty[ yAb(M, M) YA M )], (24)
gTabcd=Tr[ xT2B(M, ") x UM 1], (25

where

XSab_ PabdX
XAab pabdX
XTab= P'?'?:dXCd’ (26)

and where the projectoiRg,P,,Pt are defined in Eq(10).
The quadratic quantum Casimir operator is defined as

(27)

C= gab,cd)(ab)(Cd

where g,p cq is the inverse of the quantum Killing metric

ab,cd
g

IIl. QUANTUM ANTI —de SITTER SPACE

y y=y'ylC;j=R? (34)

for a constanRe R 5. We now introduce new real variables
Z' by

g 5 ¥ iz
V2 V2
Jomi 2t +iz? y5=|z —iz
V2 V2
5 2+iz? . 22—iz*
y :IT y'= T (35

Plugging these into Eq.34) gives, forq=1, the classical
AdS space given by Ed28).

Correspondingly, on Fli$O,(2,4)], we can consider the
reality structure

M',=(—)E*ECImM' C)i. (36)

Let us now follow the method of Reff25] used for Ad§.

Let us recall that the classical anti—de Sitter spacesAslS For[q|=1 we consider the conjugatid@?] defined asM™
a five-dimensional manifold with constant curvature and sig-=M. The unique associated quantum space conjugation is

nature ¢,—,—,—
loid into a six-dimensional flat space with signature, (-,
Ty T T _) by

2+ -5- - 72=R?, (28)

whereR will be called the “radius” of the Ad$ space.

,—). It can be embedded as a hyperbo- (x*)“=x2. By this conjugation on the quantum orthogonal

we cannot get the desired quantum AdS space. We introduce
another operation on the quantum orthogonal group as
MT=DMD 1, (37)

where the matridD is given by
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1 =UMU™? such that the new coordinates andM’ are real
1 and the new metri€’ = (U~ })!'CU ! is diagonal in theg
—1 limit, C'|4-,=diag(1;-1,—1,—1,—1,1). We find the
-1 following U matrix:
D= . (39
-1
1 1 0O 0 0 o0 1
1 -1 0 0 1
We can easily prove that tH& matrix is a special element U= i 0 0 1 -100 (39)
of the quantum orthogonal groU@3]. The quantum AdS V2| O 0O i i 00O
group is obtained by the combined operatibh =M*T 0 =10 0 1 0
=DMD 1. The induced conjugation on the quantum space
is x* =x*T=Dx. We can check that the conjugation really 6 1 0 0 1290
gives the quantum AdS group and quantum AdS space. We
should find a linear transformation—x'=Ux, M—M’ and the corresponding quantum metric is
1 1 1 1
o — —Zg+— 0 0 0 0
2q 202 2q 292
1 1 1 1
—P—-— —-g*-— O 0 0 0
2 2q2 2 2q2
C'= 0 0 -1 0 0 0 _ (40)
0 0 0 -1 0 0
0 0 0 1 1 1 1
"2975 297
0 0 0 0 ! + L1 +— !
29729 297 2q

For q real we consider the second conjugation given inquantum space is**=C'Ax. To prove that this combination
[22] and realized via the metric, i.eV)*=C'MC!. The con- really gives the quantum AdS group and quantum AdS space
dition on the braidingR matrix isR=R. To get the quantum We ShOlj|d find a linear transformatiof-x"=Vx,M—M’

AdS group and the quantum AdS space we have to consider VMV~ such that the new coordmatgs andM’ are real

another operation on the quantum orthogonal space as ~ and the new metri€’=(V~1)'CV~* is diagonal in theg
—1 limit, C'|4-;=diag(1-1,—-1,—-1,—1,1). We find the

M*f=AMA™! (41)  following V matrix:

where the matriXA is given by

1 1 0 0 q°
-1 0 —i —iqg O
. Vzi 0 0 1 -1 0 © 3
A= _1 : (42 2 o o i i o of
1 0 qtt -1 0
1 ig7?2 0 —i

We obtain the AdS quantum group by using the conjuga-
tion M**=AC'MC'A™L. The induced conjugation on the and the quantum metric’ is given by

065007-4



QUANTUM GAUGE THEORY ON THE QUANTUM ANTI-ce . .. PHYSICAL REVIEW D 68, 065007 (2003

1+ ! 0 0O o0 0 ! 2+ L]
2" 5 29 2
0 1 1 0 0 1 1li 0
2 o 2'97 29
, 0 0 -1 0 0 0
c' = . (44)
0 0 0 -1 0 0
0 Lasil o o -1 lp 0
“2'9% 29 “272¢
1, 1i 0 0 0 0 1,1
2972 ¢ 2973
|
IV. QUANTUM GAUGE THEORY ON QUANTUM AdS { Indeed, we can easily prove that this action is quantum
SPACE gauge invariant;
Let us first recall that the infinitesimal quantum gauge , i
transformations are defined E5 (Hrr*Hng) (M)
= Io* / . ]
5.A= — daraix®+ gy arca x*°® ) Adi, U

e A = (Hrr®T)AdR(M; ) (Hys® T)Adp(M()
O F=Fap- acq(x?°® x*%)Adg, .
a e " = (Hrg* Hys® T)AdR(M, ), (49)
8.B=Bap- acd x*"® x°)Adg. (45)
whereT is a finite gauge transformatidb]. The quantum
The low energy effective action of type IIB superstring trace is invariant and is given by

theory on Ad$ contains the Chern-Simons term for the ' .
SL(2,2) doublet two-form fieldsBys and Brg [28]. The TIHRRH (M) ]=Tr(Hgrr Hys® T)AdDR(M; )
guantum analogue of the Chern-Simons term is given by .
=(HrrtHns® ) T AdR(M; )]

Scszz— SgTr(BRR*dBNS), (46) =(HrrrHns® TTH(M; ) @14
T Jad
=Tr(Hgrr* Hns® 1), (49

where d is the exterior derivative, BigdBys
=BrRrab dBnscd X2 x°%), and where () denotes the prod- Where we have useti(1 ) =1x. _
uct of an element ofQ®?(AdSY) with an element of The infinitesimal quantum gauge transformation reads
QC)(AdS)), giving an element of)®)(AdSY). , .

Anti—de Sitter space is nothing but the quantum spigre ~ Tr(Hrg*Hns/\ @) (M; ) =(Hrrat Husca @e) (X @ x°
with a suitable reality structure. As expected, the integral on of i
AdS! can be obtained from the integral over the Euclidean @ X ) TIAR(M; )]

sphereS; by analytic continuation ing [24]. The integral = (HrRrat Hnsed @er) (x2°® x©°
oversg is written in terms of the Haar measure on the quan- of j _
tum groupO,(6,R) [26]. We recall that there is a unique ®x“)TAdR(M;H@1,]=0,
invariant integral over the quantum Euclidean spH&r&. (50)

As in the undeformed case the Chern-Simons term is not

manifestly quantum gauge invariant. However, it can b&ynere we have useg®’(1,)=0. In quantizing the quantum

written as follows[29]. If AdS{ is the boundary of a quan- Chern-Simons term, one must introduce, in additiorBto
tum six-manifoldX over which the twaB fields extend, and  certain extra fields: anticommuting ghosts and antighosts
we wnFeB asH :dBZ ther_1 we can write the above action in andc and a scalar auxiliary fielth (sometimes called the
a manifestly gauge invariant way as Nielsen-Lautrup auxiliary field all in the adjoint represen-
. tation of the group. The-deformed Chern-Simons action is

Seom —2le Tr(Hpgt Hys). (47) then separately invaria.nt under thedeform_ed BRST and

T Jx anti-BRST transformationg5]. The quantization of the
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g-deformed Chern-Simons model can be done following theduced an appropriate quantum trace in the adjoint represen-
path integral approach developed[B0] using braided inte- tation of the quantum group, leading us to define a quantum
gration[31]. Killing metric and a quadratic quantum Casimir operator.
Finally, we studied the quantum gauge invariance of the
guantum Chern-Simons action defined on the quantum

) ] anti—de Sitter space.
Exploration of the connection between quantum groups

and AdS/CFT correspondence is an interesting problem,
which will certainly shed light on still open questions in
guantum gravity and quantum gauge theory. In this paper we

V. CONCLUDING REMARKS

ACKNOWLEDGMENTS

began by explicitly constructing the metrics of the quantum
for encouragment. This work was supported by DAAD.

anti—de Sitter space for botlg|=1 andq real. We intro-

| am indebted to W. Rul for reading the manuscript and

[1] A. Connes, Publ. Math. Inst. Hautes Etud. $&, 257(1985;
Noncommutative Geomettcademic, San Diego, 1994

[14] S.J. Avis, C.J. Isham, and D. Storey, Phys. Revi&) 3565
(1978.

[2] V.G. Drinfeld, in Proceedings of the International Congress of[15] P. Breitenlohner and D.Z. Freedman, Ann. Phis.Y.) 144

Mathematicians, Berkeley, California, 1986, p. 798.
[3] S.L. Woronowicz, Commun. Math. Phy411, 613 (1987);

122, 125(1989; U. Carow-Watamura, M. Schlieker, S. Wata-

mura, and W. Weich,ibid. 142 605 (1991); U. Carow-
Watamura and S. Watamuribjd. 151, 487 (1993; B. Jurm,
Lett. Math. Phys22, 177(199J); P. Aschieri and L. Castellani,
Int. J. Mod. Phys. A8, 1667(1993.
[4] D. Bernard, Prog. Theor. Phys. SupfD2 49 (1990; I.Ya.
Aref’eva and 1.V. Volovich, Mod. Phys. Lett. &, 893(199J);
L. Castellani, Phys. Lett. B92 93(1992; Mod. Phys. Lett. A
9, 2835(1994); Phys. Lett. B327, 22 (1994; M. Hirayama,
Prog. Theor. Phys88, 111 (1992; Y. Frishman, J. Lukiersky,
and W.J. Zakrzewski, J. Math. 26, 301 (1993; M. Lagraa,
Int. J. Mod. Phys. Al1, 699(1996; A.P. Isaev and Z. Popow-
icz, Phys. Lett. B307, 353 (1993; K. Wu and R.J. Zhang,
Commun. Theor. Physl7, 175 (1992; S. Watamura, Com-
mun. Math. Phys158 67 (1993; Bo-Yan Hou and Zhong-Qi
Ma, J. Math. Phys36, 5110(1999; A.P. Isaev and O.V. Ogie-
vetsky, Nucl. Phys. BProc. Supp). 102 306 (2001); Theor.
Math. Phys.129 1558(2002J.
[5] L. Mesref, Int. J. Mod. Phys. A8, 209 (2003.
[6] L. Mesref, Int. J. Mod. Phys. A7, 4777(2002.
[7] L. Mesref, New J. Phys5, 7 (2003.
[8] N. Seiberg and E. Witten, J. High Energy Phy9, 032
(1999.
[9] M. Gerstenhaber, Ann. Matf79, 59 (1964).
[10] H.J. Groenewold, PhysiceAmsterdam 12, 405 (1946; J.E.
Moyal, Math. Proc. Cambridge Philos. Sat5, 99 (1990.
[11] E. Inonu and E.P. Wigner, Proc. Natl. Acad. Sci. U.S.29,
510(1953.

[12] P.A.M. Dirac, Ann. Math.36, 657 (1935; J. Math. Phys4,
901 (1963.

[13] C. Fronsdal, Rev. Mod. Phy87, 221(1965; Phys. Rev. D10,
589 (1974; C. Fronsdal and R.B. Haugeibid. 12, 3810
(1979; C. Fronsdaljbid. 12, 3819(1975.

249 (1982.

[16] M. Gunaydin, P. van Nieuwenhuizen, and N.P. Warner, Nucl.
Phys.B255, 63 (1985.

[17] J. Maldacena, Adv. Theor. Math. Phyg,. 231 (1998; S.S.
Gubser, I.K. Klebanov, and A.M. Polyakov, Phys. Lett4Bg,
105(1998; E. Witten, Adv. Theor. Math. Phy®, 253(1998.

[18] A. Javicki and S. Ramgoolam, J. High Energy Phy4,. 032
(1999.

[19] L. Hoffmann, L. Mesref, A. Meziane, and W. 'Rij Nucl.
Phys.B641, 188(2002; L. Hoffmann, T. Leonhardt, L. Mes-
ref, and W. Ral, in New Developments in Fundamental Inter-
action Theoriesedited by Jerzy Likierski and Jakub Rembie-
linski, AIP Conf. Proc. No. 58%9AIP, Melville, NY, 2001, pp.
367-376, hep-th/0102162; L. Hoffmann, L. Mesref, and W.
Ruhl, Nucl. Phys.B608, 177 (2001); B589, 337 (2000.

[20] G. Fiore, Commun. Math. Phy&69, 475(1995.

[21] N. Reshetikhin, “Quantized Universal Enveloping Algebras,
the Yang-Baxter Equation and Invariants of Links. |,” LOMI
Report No. E-4-87 Leningrad, 1988.

[22] L. Faddeev, N. Reshetikhin, and L. Takhtajan, Leningrad
Math. J.1, 193(1990.

[23] P. Aschieri, Lett. Math. Phys19, 1 (1999.

[24] H. Steinacker, Ph.D. thesis, Berkeley, 1997, hep-th/9705211.

[25] Z. Chang, Eur. Phys. J. €7, 527 (2000.

[26] S.L. Woronowicz, Commun. Math. Phy%11, 613 (1987; P.
Podles, Publ. RIMS, Kyoto Uni\28, 709 (1992.

[27] J. Fuchs,Affine Lie Algebras and Quantum Groyp8&am-
bridge Monographs on Mathematical Physi€ambridge Uni-
versity Press, Cambridge, England, 1992 C. JantzenMod-
uln mit einem hohsten Gewicht Lecture Notes in
Mathematics Vol. 75QSpringer, Berlin, 1979 V. Kac and D.
Kazhdan, Adv. Math34, 97 (1979.

[28] D.J. Gross and H. Ooguri, Phys. Rev.58, 106002(1998.

[29] E. Witten, J. High Energy Physl2, 012 (1998; J. Geom.
Phys.22, 103(1997.

[30] R. Oeckl, Commun. Math. Phy&17, 451 (2001).

[31] A. Kempf and S. Majid, J. Math. Phy85, 6802(1994).

065007-6



