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Quantum gauge theory on the quantum anti–de Sitter space
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Quantum gauge theory on anti–de Sitter space is studied. The quantum Killing metric and the quadratic
quantum Casimir operator are defined. The quantum metrics on the quantum AdS group and the linear trans-
formations leading to them, for bothuqu51 andq real, are found explicitly. The quantum Chern-Simons model
and its quantum gauge invariance are discussed.
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I. INTRODUCTION

Noncommutative geometry started to appear in this c
tury with progress in the research on operator algebras,
use of algebra inK theory, and the results in index theor
The signal to treat these objects as geometries and look
possible physical relevance came in the 1980s from Con
@1#. In another direction, quantum groups@2# provide natural
candidates for noncommutativity. The symmetry is describ
by noncommutative non-cocommutative * Hopf algebr
Quantum groups were connected with noncommutative
ferential geometry by Woronowicz@3#, who introduced the
theory of bicovariant differential calculi. This theory ha
turned out to be the appropriate language to study ga
theories based on noncommutative spaces. Theq-gauge theo-
ries were extensively studied in the early 1990s@4# and re-
cently in @5,6#. Actually, there is a map@7# relating the
q-deformed gauge fields to the ordinary ones. This map is
analogue of the Seiberg-Witten map@8#. We found this map
using the Gerstenhaber product@9# instead of the
Groenewold-Moyal star product@10#.

In this paper, we study quantum gauge theory on
quantum anti–de Sitter space. We compute the quantum
ing metric, which is an important ingredient in the definitio
of a quantum invariant Lagrangian. This quantum metric
incides with the Killing metric of the six scalars of theN
54 super Yang-Mills action in the classical limitq51. We
discuss the quantum anti–de Sitter space and the qua
orthogonal groupSOq(6). Thequantum anti–de Sitter spac
AdS5

q is defined as a real form of the complex sphereSq
5 with

a coaction ofSOq(6) which is a real form of Fun@SOq(6)#.
We explicitly derive the quantum metrics and the line
transformations leading to them for bothuqu51 andq real.
Finally, we discuss the quantum invariance of the quant
Chern-Simons action.

Let us first recall that anti–de Sitter space-time is defin
as an empty space solution to the Einstein field equat
with negative cosmological constant. The metric for fiv
dimensional anti–de Sitter space~AdS! can be obtained by
embedding in a six-dimensional space with two time dir
tions. AdS space-time is homogeneous, has a large isom
group SO(4,2), and leads via a Wigner-Ino¨nü contraction
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@11# to the Poincare´ group. Anti–de Sitter space was firs
considered by Dirac@12#, who discovered the ‘‘remarkable
representation’’ which is now known as the singleton. Ma
other authors@13# have discussed all the representations
the anti–de Sitter group and studied quantum field theory
anti–de Sitter space@14#.

The discovery that gauged supergravity theories h
ground states corresponding to anti–de Sitter space-time
to a study of the stability of these ground states with resp
to fluctuations of the scalar fields@15# as well as a study of
supermultiplets in anti–de Sitter space@16#. Currently there
is intense activity in the study of the AdS conformal fie
theory ~CFT! correspondence@17#. This conjecture states
that type IIB superstring theory withN units ofF5 flux com-
pactified on AdS53S5 is equivalent toN54 supersymmetric
SU(N) Yang-Mills theory defined on the boundary of AdS5.
Recently, it was proposed@18# that quantum fluctuations in
the AdS33S3 backround have the effect of deforming spac
time to a noncommutative manifold. The evidence is ba
on the quantum group interpretation of the cutoff on sin
particle chiral primaries. It is thus worthwhile to look for th
q-deformed analogue of the AdS/CFT correspondence,
all the representations of theq-deformed superconforma
group, and compute theq-deformed correlation functions
We can also generalize the methods used in@19# to the
q-deformed case. We postpone the study ofq-deformed AdS/
CFT correspondence to a future work. This paper is or
nized as follows. In Sec. II, we recall the general propert
for the quantum groupSOq(6) and the bicovariant differen
tial calculus following the general ideas of Woronowicz. W
compute the quantum Killing metric using a precise defi
tion of the quantum trace. In Sec. III, we present the qu
tum anti–de Sitter space and quantum anti–de Sitter gro
We construct the quantum anti–de Sitter metric explicitly
both uqu51 and q real. In Sec. IV, we study the quantum
gauge invariance of the Chern-Simons term present in
low energy effective action of type IIB superstring theory
AdS5.

II. THE QUANTUM GROUP SOq„6… AND BICOVARIANT
DIFFERENTIAL CALCULUS

Let A be the associative unitalC algebra generated b
M m

n (n,m51, . . . ,6):
©2003 The American Physical Society07-1
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D . ~1!

The 636 matrix belonging toSOq(6) preserves the non
degenerate bilinear formCnm ,

CnmM k
n M l

m5Ckl , CnmMn
kMm

l 5Ckl, CknC
nl5dk

l ,
~2!

Cnm5S 0 0 0 0 0 q22

0 0 0 0 q21 0

0 0 0 1 0 0

0 0 1 0 0 0

0 q 0 0 0 0

q2 0 0 0 0 0

D . ~3!

The noncommutativity of the elementsM m
n is controlled

by the 36336 braiding matrixR:

R5q (
i 523
iÞ0

3

d i
i
^ d i

i1 (
i , j 523
iÞ j ,2 j

3

d i
i
^ d j

j1q21 (
i 523
iÞ0

3

d2 i
2 i

^ d i
i

1kS (
i , j 523

i . j

3

d j
i
^ d i

j2 (
i , j 523

i . j

3

qr i2r jd j
i
^ d2 j

2 i D , ~4!

where we have used the notation@20#

k[q2q21,

r i5~2,1,0,0,21,22!. ~5!

The R matrix satisfies the Yang-Baxter equation

R pq
i j R lr

pk R mn
qr 5R pq

jk R rm
ip R lm

rq ~6!

and the relation

CnmR kc
6anR lb

6cm5db
aCkl . ~7!

The noncommutativity of the elementsM m
n is expressed

as

R nm
pq M k

n M l
m5M n

p M m
q R kl

nm . ~8!

The matrixR̂ ([RP, whereP is a permutation operator
P:A^ B5B^ A) enters into local representations of th
Birman-Wenzel-Murakami algebra@21#. R̂ admits a projector
decomposition@22#

R̂5qPS2q21PA1q25PT , ~9!
06500
wherePS ,PA ,PT are the projection operators onto the thr
eigenspaces ofR̂ with dimensions, respectively, 20, 15, 1
they project the tensor productx^ x of the fundamental
corepresentationx of SOq(6) into the corresponding irreduc
ible corepresentations:

PS5
1

q1q21
@R̂1q21I 2~q211q25!PT#,

PA5
1

q1q21
@2R̂1qI2~q1q25!PT#,

PTcd
ab5~Ce fC

e f!21CabCcd . ~10!

The algebra Fun@SOq(6)# is a Hopf algebra with comul-
tiplication D, counite, and antipodeSwhich are as follows.
The comultiplication~also called the coproduct! is

D~M m
n !5M k

n
^ M m

k . ~11!

This coproductD on Fun@SOq(6)# is directly related, forq
51 ~the nondeformed case!, to the pullback induced by lef
multiplication of the group on itself. The counite is given by

«~M m
n !5dm

n , ~12!

and the antipodeS ~coinverse! is

S~M k
n !M m

k 5M k
n S~M m

k !5d m
n , ~13!

S~M m
n !5CnkM k

l Clm . ~14!

Now we consider the bicovariant bimoduleG over
SOq(6). Let ua be a left-invariant basis ofinvG, the linear
subspace of all left-invariant elements ofG, i.e., DL(ua)5I
^ ua. In the q51 case the left coactionDL coincides with
the pullback for one-forms. There exists an adjoint repres
tation Mb

a of the quantum group, defined by the right actio
on the left-invariantua:

DR~ua!5ub
^ Mb

a , Mb
aPA, ~15!

whereA is an associative unitalC algebra.
The right coaction AdR is given by

AdR~Mi
j !5Ml

k
^ S~M i

l !Mk
j . ~16!

The exterior derivatived is defined as

dMm
n5

1

N @X,Mm
n#25~xab* Mm

n!uab

5xab~Mm
k!Mk

nuab , ~17!

where X5Cabu
ab5q22u161q21u251u341u431qu52

1q2u61 is the singlet representation ofuab and is both left
and right coinvariant,NPC is the normalization constant
which we take purely imaginary,N* 52N, andxab are the
quantum analogues of right-invariant vectors given by
7-2
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xab5
1

N ~Ccdf Adcd
ab 2Cabe!. ~18!

The xab functionals close on the quantum Lie algebra

@xab,xcd#~Mn
m!5Ce f

abcdxe f~Mn
m!, ~19!

where Ce f
abcd are theq-structure constants. To construct

quantum- and gauge-invariant Lagrangian, we need a
defined quantum trace. We require that this trace is invar
under the right adjoint coaction:

Tr~Mi
j !5Tr@AdR~Mi

j !#. ~20!

Clearly, this equation is satisfied if one defines the qu
tum trace in the right adjoint representation as

Tr@AdR~Mi
j !#52CjkMi

jCik. ~21!

The quantum trace allows us to introduce the quant
Killing metric as in the usual nondeformed case (q51):

gab,cd5Tr@xab~Mi
k!xcd~Mk

j !#. ~22!

This quantum metric is an important ingredient in t
definition of a quantum gauge invariant Lagrangian. We c
also define the symmetric, antisymmetric, and trace part
this Killing metric as

gSab,cd5Tr@xSab~Mk
n!xScd~Mm

k!#, ~23!

gAab,cd5Tr@xAab~Mk
n!xAcd~Mm

k!#, ~24!

gTab,cd5Tr@xTab~Mk
n!xTcd~Mm

k!#, ~25!

where

xSab5PScd
ab xcd,

xAab5PAcd
ab xcd,

xTab5PTcd
ab xcd, ~26!

and where the projectorsPS ,PA ,PT are defined in Eq.~10!.
The quadratic quantum Casimir operator is defined as

C5gab,cdx
abxcd, ~27!

where gab,cd is the inverse of the quantum Killing metri
gab,cd.

III. QUANTUM ANTI –de SITTER SPACE

Let us recall that the classical anti–de Sitter space AdS5 is
a five-dimensional manifold with constant curvature and s
nature (1,2,2,2,2). It can be embedded as a hyperb
loid into a six-dimensional flat space with signature (1,1,
2,2,2,2) by

z0
21z5

22z1
22z2

22z3
22z4

25R2, ~28!

whereR will be called the ‘‘radius’’ of the AdS5 space.
06500
ll
nt

-

n
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-
-

To define the quantum anti–de Sitter space we follow
method of Ref.@24# used for AdS4

q . The quantum anti–de
Sitter space is defined as a real form of the complex quan
sphereSq

5 .
Let us introduce the quantum Euclidean space Fun(Eq

6)
generated by the elementsxi with commutation relations

~PA!kl
i j xixj50. ~29!

Now we define the coordinates of the quantum sphereSq
5

generated byt i5xi /r wherer is central:

~PA!kl
i j tkt l50, ~30!

t•t[Cklt
kt l51. ~31!

For uqu51, we consider the reality structure

t̄ i52~21!Eit jCji ~32!

whereEi5(1,0,0,0,0,21) for i 51,2, . . . ,6 are theeigenval-
ues of energy in the vector representation.

We introduce proper units and define

yi[t iR, ~33!

y•y5yiyjCi j 5R2 ~34!

for a constantRPR.0. We now introduce new real variable
zi by

y15
z01 iz5

A2
, y65

z02 iz5

A2
,

y25 i
z11 iz2

A2
, y55 i

z12 iz2

A2
,

y35 i
z31 iz4

A2
, y45 i

z32 iz4

A2
. ~35!

Plugging these into Eq.~34! gives, for q51, the classical
AdS space given by Eq.~28!.

Correspondingly, on Fun@SOq(2,4)#, we can consider the
reality structure

M̄ j
i 5~2 !Ei1EjCjmM m

l Cli . ~36!

Let us now follow the method of Ref.@25# used for AdS4
q .

For uqu51 we consider the conjugation@22# defined asM 3

5M . The unique associated quantum space conjugatio
(xa)35xa. By this conjugation on the quantum orthogon
we cannot get the desired quantum AdS space. We introd
another operation on the quantum orthogonal group as

M†5DMD21, ~37!

where the matrixD is given by
7-3
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D5S 1

1

21

21

1

1

D . ~38!

We can easily prove that theD matrix is a special elemen
of the quantum orthogonal group@23#. The quantum AdS
group is obtained by the combined operationM* [M 3†

5DMD21. The induced conjugation on the quantum spa
is x* [x3†5Dx. We can check that the conjugation rea
gives the quantum AdS group and quantum AdS space.
should find a linear transformationx→x85Ux, M→M 8
in

id

ga
e

06500
e

e

5UMU21 such that the new coordinatesx8 andM 8 are real
and the new metricC85(U21) tCU21 is diagonal in theq
→1 limit, C8uq515diag(1,21,21,21,21,1). We find the
following U matrix:

U5
1

A2 S 1 0 0 0 0 1

21 0 0 0 0 1

0 0 1 21 0 0

0 0 i i 0 0

0 21 0 0 1 0

0 1 0 0 1 0

D ~39!

and the corresponding quantum metric is
C851
1

2
q21

1

2q2
2

1

2
q21

1

2q2
0 0 0 0

1

2
q22

1

2q2
2

1

2
q22

1

2q2
0 0 0 0

0 0 21 0 0 0

0 0 0 21 0 0

0 0 0 0 2
1

2
q2

1

2q

1

2
q2

1

2q

0 0 0 0 2
1

2
q1

1

2q

1

2
q1

1

2q

2 . ~40!
ace

For q real we consider the second conjugation given

@22# and realized via the metric, i.e.,M !5CtMCt. The con-
dition on the braidingR matrix is R̄5R. To get the quantum
AdS group and the quantum AdS space we have to cons
another operation on the quantum orthogonal space as

M‡5AMA21 ~41!

where the matrixA is given by

A5S 1

21

21

21

21

1

D . ~42!

We obtain the AdS quantum group by using the conju
tion M !‡5ACtMCtA21. The induced conjugation on th
er

-

quantum space isx!‡5CtAx. To prove that this combination
really gives the quantum AdS group and quantum AdS sp
we should find a linear transformationx→x85Vx,M→M 8
5VMV21 such that the new coordinatesx8 andM 8 are real
and the new metricC85(V21) tCV21 is diagonal in theq
→1 limit, C8uq515diag(1,21,21,21,21,1). We find the
following V matrix:

V5
1

A2 S 1 0 0 0 0 q2

0 2 i 0 0 2 iq 0

0 0 1 21 0 0

0 0 i i 0 0

0 q21 0 0 21 0

iq22 0 0 0 0 2 i

D , ~43!

and the quantum metricC8 is given by
7-4



C851
1

2
1

1

2q4
0 0 0 0 2

1

2
iq21

1

2

i

q2

0 2
1

2
2

1

2q2
0 0

1

2
iq2

1

2

i

q
0

0 0 21 0 0 0

0 0 0 21 0 0

0 2
1

2
iq1

1

2

i

q
0 0 2

1

2
2

1

2
q2 0 2 . ~44!
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IV. QUANTUM GAUGE THEORY ON QUANTUM AdS 5
q

SPACE

Let us first recall that the infinitesimal quantum gau
transformations are defined as@5#

daA52daabx
ab1Aab•acd~xab

^ xcd!AdR ,

daF5Fab•acd~xab
^ xcd!AdR ,

daB5Bab•acd~xab
^ xcd!AdR . ~45!

The low energy effective action of type IIB superstrin
theory on AdS5 contains the Chern-Simons term for th
SL(2,Z) doublet two-form fieldsBNS and BRR @28#. The
quantum analogue of the Chern-Simons term is given by

SCS5
2 iN

2p E
AdS5

q
Tr~BRR* dBNS!, ~46!

where d is the exterior derivative, BRR* dBNS

5BRRab•dBNScd(x
ab* xcd), and where (•) denotes the prod

uct of an element ofV (2)(AdS5
q) with an element of

V (3)(AdS5
q), giving an element ofV (5)(AdS5

q).
Anti–de Sitter space is nothing but the quantum sphereSq

5

with a suitable reality structure. As expected, the integral
AdS5

q can be obtained from the integral over the Euclide
sphereSq

5 by analytic continuation inq @24#. The integral
overSq

5 is written in terms of the Haar measure on the qu
tum groupOq(6,R) @26#. We recall that there is a uniqu
invariant integral over the quantum Euclidean sphere@27#.

As in the undeformed case the Chern-Simons term is
manifestly quantum gauge invariant. However, it can
written as follows@29#. If AdS5

q is the boundary of a quan
tum six-manifoldX over which the twoB fields extend, and
we writeB asH5dB, then we can write the above action
a manifestly gauge invariant way as

SCS5
2 iN

2p E
X
Tr~HRR* HNS!. ~47!
06500
n
n

-

ot
e

Indeed, we can easily prove that this action is quant
gauge invariant:

~HRR* HNS!8~Mi
j !

5~HRR8 * HNS8 !~Mi
j !

5~HRR^ T!AdR~Mi
k!~HNS^ T!AdR~Mk

j !

5~HRR* HNS^ T!AdR~Mi
j !, ~48!

whereT is a finite gauge transformation@5#. The quantum
trace is invariant and is given by

Tr@HRR8 * HNS8 ~Mi
j !#5Tr~HRR* HNS^ T!AdR~Mi

j !

5~HRR* HNS^ T!Tr@AdR~Mi
j !#

5~HRR* HNS^ T!@Tr~Mi
j ! ^ 1A#

5Tr~HRR* HNS^ 1X!, ~49!

where we have usedT(1A)51X .
The infinitesimal quantum gauge transformation reads

Tr~HRR* HNS̀ a!~Mi
j !5~HRRab•HNScd•ae f!~xab

^ xcd

^ xe f!Tr@AdR~Mi
j !#

5~HRRab•HNScd•ae f!~xab
^ xcd

^ xe f!Tr@AdR~Mi
j ! ^ 1A#50,

~50!

where we have usedxe f(1A)50. In quantizing the quantum
Chern-Simons term, one must introduce, in addition toB,
certain extra fields: anticommuting ghosts and antighosc

and c̄ and a scalar auxiliary fieldb ~sometimes called the
Nielsen-Lautrup auxiliary field!, all in the adjoint represen
tation of the group. Theq-deformed Chern-Simons action
then separately invariant under theq-deformed BRST and
anti-BRST transformations@5#. The quantization of the
7-5
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q-deformed Chern-Simons model can be done following
path integral approach developed in@30# using braided inte-
gration @31#.

V. CONCLUDING REMARKS

Exploration of the connection between quantum grou
and AdS/CFT correspondence is an interesting probl
which will certainly shed light on still open questions
quantum gravity and quantum gauge theory. In this paper
began by explicitly constructing the metrics of the quant
anti–de Sitter space for bothuqu51 and q real. We intro-
o

-

,

-

06500
e

s
,

e

duced an appropriate quantum trace in the adjoint repre
tation of the quantum group, leading us to define a quan
Killing metric and a quadratic quantum Casimir operat
Finally, we studied the quantum gauge invariance of
quantum Chern-Simons action defined on the quan
anti–de Sitter space.
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