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Domain wall junction in N'=2 supersymmetric QED in four dimensions
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An exact solution of the domain wall junction is obtained\i= 2 supersymmetri€CSUSY) QED with three
massive hypermultiplets. The junction preserves two out of eight SUSYs. Bttagneti¢ Fayet-lliopoulos
term and complex masses for hypermultiplets are needed to obtain the junction solution. There are zero modes
corresponding to the spontaneously broken translation, SUSYUddd. All broken and unbroken SUSY
charges are explicitly worked out in the Wess-Zumino gaug&/#l superfields as well as in components.
The relation to models in five dimensions is also clarified.
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[. INTRODUCTION The SUSY theories in dimensions higher than 4 are re-
quired to have at least eight supercharges. Theories with
In recent years, models with extra dimensions have ateight SUSYs are often calle¥’=2 SUSY theories even in
tracted much attentiofl,2]. In this brane-world scenario, five or six dimensions, since they have twice as many SUSY
our world is assumed to be realized on extended topologicatharges compared to the simple SUSY theories in four di-
defects such as domain walls or junctions. On the other handnensions. BPS wall solutions have been constructed in the
supersymmetrySUSY) provides the most promising idea to /=2 SUSY nonlinear sigma mode[26—-30. Lump and
build realistic unified theories beyond the standard modeR-lump solutions preserving 1/8 and 1/4 SUSY, respectively,
[3]. The brane-world scenario in supersymmetric theoriediave also been considerg2il,32. On the other hand, a BPS
can provide an opportunity for realistic model building on wall junction has been constructed in lin¢a0,21 and non-
walls and/or junctions. Moreover, it can offer a possible ex-linear sigma modelg24] only in A/=1 SUSY models in four
planation of SUSY breaking#—9], in particular by means of dimensions.
the coexistence of wallgl0,11. SUSY has been useful in The first analytic solution of the BPS junction has been
obtaining solutions of walls and junctions such asobtained for anN=1 U(1)xU(1) gauge theory with six
Bogomol'nyi-Prasad-SommerfielBPS states, which pre- charged and one neutral chiral scalar fields with minimal
serve a part of the SUSM 2]. kinetic termg[20], which was constructed as a toy model for
Domain walls can conserve half of the SUSY, and arethe N=2 SU(2) gauge theory with one flavgB3]. Subse-
called 3 BPS states. They have been extensively studied iguently, it was realized that one can get rid of the vector
globally supersymmetric theorig43,14. More recently, an multiplet by identifying six charged chiral scalar fields pair-
exact BPS wall solution in supergravity theories has beemvise into three chiral scalar fields. One still obtains the same
constructed in four dimensiod4d5] and in five dimensions junction solution as a BPS solutig21] in this model with
[16]. We need to consider topological defects such as juncthree “charged” and one “neutral” chiral scalar fields with
tions of walls to consider a fundamental theory in space-timeninimal kinetic termglinear sigma modg] without a gauge
dimensions higher than 5. Domain wall junctions have beefiield at all (Wess-Zumino model It has also been shown that
studied[17—-24 and can preserve a quarter of the originalone can obtain the same solution in/& 1 nonlinear sigma
SUSY. An exact analytic solution of the junction has beenmodel with only a single “neutral” chiral scalar field, by
obtained inA/=1 SUSY field theories in four dimensions eliminating the other three “charged” chiral scalar fields ap-
[20]. The possibility of a junction solution has also beenpropriately [24]. In all these solutions, one finds that the
explored in supergravity23]. The exact solution has been “neutral” chiral scalar field plays a central role in construct-
useful in unraveling several unexpected properties of domaiing the junction solution. On the other hand, a neutral scalar
wall junctions. The new Nambu-Goldstone fermion modesfield is contained in theév=2 vector multiplet in the case of
associated with the junction are found to be non-A=2 SUSY QED. Therefore it is tempting to embed the
normalizable[21]. The new central charge associated with A’=1 gauge theory and its junction solution into thé=2
the junction was once considered to be a mass of the juncSUSY QED.
tion. However, the exact solution showed that the central The purpose of this paper is to give an exact analytic
charge contributes negatively to the energy of the junctiorsolution for the BPS domain wall junction in avi=2 SUSY
[20,21). Therefore it should more properly be interpreted as @QED with three massive hypermultiplets. This is the first
binding energy of the walls which meet at the junction. Asexample of an exact junction solution ix=2 SUSY theo-
another topological defect with codimension 2, an exact sories. By explicitly working out eight SUSY transformations,
lution of vortices onS? has also been obtained befd@s]. we show that the junction solution preserves two out of eight
SUSYs, namely, it is & BPS state. Although the solution
has many similarities with the previously obtaingdBPS
*Email address: kakimoto@th.phys.titech.ac.jp junction solution inA/=1 SUSY theory, the resulting spec-
TEmail address: nsakai@th.phys.titech.ac.jp trum of the low-energy effective theory is richer. For in-
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stance, we observe that there are zero modes correspondiatyebra. We also show that our model is invariant under the
to spontaneously brokeb (1) global symmetrieg29,30.  eight SUSY transformations and our BPS junction solution
Similarly to our previous solution ilvV=1 theory[20], the  preserves two out of eight SUSYs. Section V is devoted to
Nambu-Goldstone modes on the junction background are ndgelating the eight SUSY transformations in four dimensions
normalizable. As pointed out in RgR1], it may be possible to N=2 SUSY transformations in five dimensions.
to obtain a normalizable wave function when it is embedded
into supergravity as explored in R¢23]. We also show that Il. N'=2 SUSY QED AND BPS EQUATIONS
the same eight SUSY transformations can be derived from a ) ] )
nontrivial dimensional reduction of th&'=2 SUSY QED in As one of the simplest models with eight SUSYs, we
five dimensions. consider an\'=2 SUSY model with local (1) gauge sym-
The N'=2 SUSY theories with vector and hypermultiplets Metry in four dimensions with the gauge coupling consgant
were introduced by Fayet using an automorphism of SUSY! an V=1 SUSY vector superfieldf . is combined with an
algebra[34]. He used bothV'=1 superfield and component V=1 SUSY chiral scalar superfield , an N'=2 SUSY
formalisms. The\'=1 superfield formalism makes only four vector multiplet is obta_m.ed. In order to dlstmgwsh the four
SUSYs manifest, but has been useful also in writing dowrPUSYS from the remaining four SUSYs which will appear
massless nonlinear sigma modgs]. Harmonic superspace ater, we denote tha/=1 superfield here by a subscript.
formalism can make all eight SUSYs manif¢86—39 and  Combining V=1 SUSY chiral scalar superfield3. ; with
has been used to formulateBPS equations to obtain BPS U(1) charge+1 andQ,, with U(1) charge—1 gives an
walls [27,40. Even in the harmonic superspace formalism, /=2 hypermultiplet. The subscrigt=1, ... n denotes fla-
however, it has been useful to use the Wess-Zumino gauge or. The /=2 SUSY allows us to introduce the masg of
clarify the physical field content of the theof27]. The the hypermultiplet for each flavor. Since our gauge symmetry
Wess-Zumino gauge in the component formalism allows ugs U(1), the electric ce R and magneticbe C Fayet-
to construct all the eight SUSY transformations explicitly. lliopoulos (FI) parameters can also be introduced without
We also find that the action in terms of component fields carviolating the/A/=2 SUSY[34]. Assuming a minimal kinetic
be assembled inte/=1 superfield formalisms making four term for the\/=2 vector and hypermultiplets, we thus obtain
out of eight SUSYs manifest in two ways; namely, we canthe A’=2 SUSY massive multiflavor QED. Usinf=1 su-
rewrite the same action in terms of two different superfieldsperfield formalism, the Lagrangian is given'by
One of them makes a set of four SUSYs manifest, and the
other makes the set of remaining four SUSYs manifest. Of 1 - — 1
course we cannot make eight SUSYs manifest in any one of L= 4_gz(W+Wa|02++Wa W+|52+)+ 2—gzq>1q>+
the N=1 superfield formalisms. We shall here employ the o
N=1 superfield formalisnj5,41-44 as well as the compo- n
nent formalism both in the Wess-Zumino gauge. T2V, AT -2V, R
We find it essential to allow complex mass parameters in +a21 (Qhae™ Qua+Qle Qaleze
order to obtain a junction solution. Thé=2 SUSY theories
are often derivable by means of a dimensional reduction
from five and/or six dimensiong5]. In this spirit, we also
show that theséV=2 SUSY transformations can be under-
stood in terms of a massive=2 theory in five dimensions.
Since the massive theory in five dimensions can be obtained
by a nontrivial dimensional reduction in the manner of
Scherk and Schwari6] in one spatial direction, the mass where theN'=1 vector multipletV, and the chiral scalar
parameter should be real. Therefore we find that it is difficultmultiplet ® , are multiplied by the gauge couplimgto make
Fo ex.tend our.Juncuon solution in the e!ghF SUSY.the.ory to athe A’=2 SUSY more easily visible. The coupling df ,
junction solution ofA/=2 SUSY theory in five or six dimen- with the hypermultipletsQ ., ., . in the third line of Eq.

sions within the context of our multiflavor QED. If we make (2.1) is dictated by the requirement of thé=2 SUSY. If the

? nont_nwgl dlmgn5|onal reductlgn to two slpat|al directions oo parameters are absemt=0, the Lagrangian is invari-
rom Six dimensions, we can o .tam COMPIEX MASS paramz i nger the following globdl(n) transformations:
eters. Thereford/=2 SUSY theories in four dimensions can

IPljzii\(/)en;omplex mass parameters which allow the junction so- Q.a—Q42=QupObar Qra— 0% a=(9NaQup,

In Sec. Il, our model of\V=2 SUSY massive multiflavor O, —-d,, V,—V,, geU(n. (2.2
QED is introduced; BPS equations are derived as a minimum
energy condition and are shown to conserve one out of fouThe subgroupJ (1) of U(n)=U(1)XSU(n) is gauged. The
SUSYs in theN=1 superfield formalism. In Sec. Ill, an mass parametens, break the remaining global symmetry
exact junction solution is obtained as a solution;oBPS
equations of V=1 superfield formalism. Zero modes are
also briefly analyzed. In Sec. IV, the remaining SUSY trans- we use mostly the conventions of Wess and Bagd@ for the
formations are found by means of an automorphism of SUSW=1 superfields, spinor, and other notations.

n

2 (@ -m)Q.aQ.als2

— 22 +
2cV.|@2

) (2.1

_b(D+|gi+H.C.
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SU(n) to U(1)" L If b=0 in addition tom,=0, the A’ Vo (X, 04 ,0.)=—0.0™0,0y(X)+i 62 0. N(X)
=1 superfield Lagrangia(®.1) appears to have another glo-

) 1
bal U(1) symmetry: —iEHH\(X)JF geﬁixs(xx 2.5

Q+a_’QLra:elaQ+a: Q+aHQ,+a:elﬁQ+aa
wherev,,, N, andX; are the gauge field, gaugino, and aux-
O, P =g Fep (2.3 lliary field, respectively. TheV=1 chiral scalar superfields
can also be expanded into components usiig=x™

i mp .
with V., invariant. This invariance respect§=1, but is 110+ 0+ as usual47]:

inconsistent with the\/=2 SUSY, since the chiral scalar
field ® . should have the same transformation as the vector _ :

. . . [ ,0.)= +20.[—iy2
multiplet V, to form anA/=2 vector multiplet. Summariz- +(9,02)=$(y) +V26.[-1V20(y)]

ing, our model with generic values of, has the following + 62 [ X1 (y) +iXa(y)], (2.6)
U(1)" symmetries, which are consistent with thé=2
SUSY:

QuralY, 04)=0a(y) + V20, g (y) + O3 F4(y), 2.7)

Q:ia—€"Qia, Qia—e 'Qi,, P —d,,
~ e )~
VooV, 24  Qral00)=0a) T V20, 45,0+ 6 Fa(y), (2.8

The diagonalU(1) (a;=---=a)) is a local gauged sym- where the scalar fields are denoted by a lower-case letter
metry. OthetJ(1)"~* groups constrained by!_,@,=0 are  corresponding to the superfields, such as positively charged
global symmetries. scalarqg, as the first component of the superfi€}d ,. Let

To make the physical content of the theory more transparus note that the subscript is not carried by component
ent, we shall use the Wess-Zumino gauge forahel vec- fields, but is carried only by superfields, which are functions
tor superfieldV, . Then theN'=1 vector superfields can be of the associated Grassmann numBer.

expanded in terms of the Grassmann numéerinto com- In terms of component fields, the bosonic part of this
ponent fields Lagrangian becomes
|
Cpo = 0™ s (X0 0l ~alXe X 3 [P+ [Ful?= Dy Dol
oson 492 mn 292 292 m 292 Fye] a a m+a mHa

n

+ X3(q§ Qa_a;aa)] - CX3+aZl [(¢_ ma)qaﬁa_" ( ¢_ ma)Faaa+ (Xl+ iXZ)Qaaa] - b(X1+ ixz)

+a§1 [(¢* —mE)asFs +(d* —mHFE + (X1 —iX5)a5 % 1= b* (X1 —iXy), (2.9

where the field strength,,, and the covariant derivativd,,  absorbed by shifting the neutral complex scalar fig|dhese
are defined by mass parameters can always be chosen to satisfy

Umn=dmUn=Vm, Dmla=(Im+ivm)da,

E m,=0. (2.11
Dmaaz(am_ivm)aav (2.10 at

respectively. The entire Lagrangian including the fermionsThe real FI parameter of the D term is usually called the
will be given in Sec. IV where the fulV=2 SUSY will be  electric Fl parameter, and the complex paramet@ppearing
clarified. We see that the scalar fieldg with the U(1) in the F term is called the magnetic FI paramefa4].

charge+1 andq, with charge—1 have a complex mass  The SUSY auxiliary fieldsX;,X,,X3,F,,F, can be
m, . Since a complex mass common to all the flavors can beliminated by solving their algebraic equations of motion:
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n 5 tinct complex mass parametens,# my, for a#b, we find
X3= —gz[ > (|qa|2—|qa|2)—c], (2.12  preciselyn isolated SUSY vacu&nd no other vacyaWe
a=1 denote the modulus and phase of the magnetic FI parameter
b by two real parameteis>0 andg as

n
Xy +iX,= —292( a; g3 ax —b*) ' (2.13 b=h2e'”. (2.17
Fa=—(¢*—m*)q? (2.14  Theith vacuum is characterized by nonvanishing values of
a; Ga, and¢:
Fa=—(¢*—mi)a; . 219

[NcZ+4h*+c
=m,, = — €',
Then the Lagrangian is given entirely in terms of physical $=Ma. da 2

fields:

1 1 n _ ~ Jc?+4h%—c (8 a)
ﬁboson:__zvmnvmn__2|’9¢|2_2 (|an|2+|an|2) Ga= fel = (2.18
49 29 a=1
n 2 n
—29°? azl Oala—Db —azl |¢—m,%(|gal?+]0aa?)  with vanishing values for the remaining hypermultiples

=Q; =0 (a#b). At the ath vacuum, the phase, is fixed,
g% [ & _ 2 breaking aJ(1) symmetry, which is a linear combination of
5 & (1gal*=[aal®—c (2.19  local gaugedU(1) and other globalJ(1)"" ! generators.
a1 Because of the Higgs mechanism, the gauge boson should
become massive in the vacuum. However, there still remain
A similar model has been considered previously in a differ-y(1)"~* global symmetriesy, , b#a, unbroken as given in
ent contex{28-30. Eq. (2.4).
SUSY vacua are given by vanishing auxiliary fields The Hamiltonian corresponding to the Lagrangi@rl6
=X,=X3=0, andF,=F,=0. In the generic case of dis- is given by

n

1 1
H= 2_92(031+032+U§3+U§2+Ui3+l)§3)+ 2_gz[|f90¢|2+ |91 0|2+ ||+ |53¢|2]+azl [ DoUal®+ | D10l +| D204l

n 2 n 2
~ ~ ~ ~ ~ g ~
+|DSQa|2+ |D0qa|2+ |D1qa|2+ |D2qa|2+|D3qa|2]+a§1 |¢_ma|2(|qa|2+ |qa|2)+ ? 6.21 (|qa|2_ |qa|2)_c

n 2
+297| 2, dala=b (219
|
Since the stgtlc dom_aln w;_all Junctlon_s have n_ontrlwal depen- 90=0, Dyqs=0, Doaa: 0, 2.21)
dence only in two-dimensional spatial coordinates, we shall
look for field configurations as a function &f andx? coor-
; ; ; 14ix2 ~
dinates and introduce the complex coordinates<™+ix<, J36=0, D3q,=0, DsGs=0. (2.22

z=x*—ix?, 9,=3(9,—14d,), and ;= 3(d,+id,). We also
wish to maintain (X 1)-dimensional Lorentz invariance in
the x%,x3 plane. Therefore we need to require In order to find the minimum energy configuration for a
given boundary condition, we form complete squdd320
in the energy density function&lby introducing an arbitrary
vo=03=0, VE=Ve=V0s=v13=V25=0, (220  phaseQ,|Q[=1,
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9,—g°Q

1 " -
= —z{vlﬁngE <|qa|2—|qa|2>—c]
29 a=1

2
+cCcv 12+ (92

n
~ 1
42, | Dba= 5 QST —mi)ay

20*(321 (¢—M,)0.0.— b
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2

. 1
+42 | Dyda= 5 Q" —mi)a}
a=1

n
(2 qxgs —b*

”?{29(;1 (¢* —m)a% o}

n n
—b* ¢* +a§=:1 {5z[q;D2qa_qa(qua)*]+(9z[a;pgaa_aa(pzaa)*]}+a§=:1 {’?E[qa(IDZQa)* —q; DZQa]
~ o~ ~ 1
+5';[qa(qua)* qa zqa]}+ z(¢* (9_¢ ¢‘9_¢*)+ _a_((b&zﬁb* ¢* &zd’)- (2-23
|
The last four lines are total derivatives that give surface 2D,9,=Q(* —m*)q* 2.27
a a - "

terms when integrated over the entitgx? plane. Since all

the remaining terms are complete squares, we find that the

integrated energy over the',x? plane of the field configu-
ration is always larger than the surface terms, which are

completely determined by the boundary condition at spatia

infinity. This bound is called the BPS bound and is saturate
by requiring the complete squares to vanish:

v12=—gz[aZl<|qa|2—|aa|2)—c], (2.24

These first order differential equations are called the BPS
quations. Since the surface terms dependlorthe phase
actor () can be chosen to obtain the best bound. Let us also

note that the minimum energy configurations automatically

satisfy the equations of motidri9,20.
Since the Lagrangiaf®.1) with N=1 superfield exhibits

N=1 SUSY manifestly, we can formulate the condition of
partial conservation of SUSY. We will see that the above

19 minimum energy condition§2.24—(2.27) are precisely the
— —:Q( E qaqa ) , (2.25 conditions to conserve one out of four SUSYs. We need to
9° d consider only the SUSY transformations of fermions, since
o only bosonic fields can have nonvanishing values. e
2D,0,=Q(¢* —m7)az , (226 =1 SUSY transformation of the gaugino is given [E7]
|
5 A= o™y £ iXaE, = vz~ v tiXs Vo1t V13— iv23—1v02|| €41 (2.28
7T Umnsy B v vig—ivastivg  —vestivi+iXs || £o) '
|
If we require that a part of the SUSY corresponding to the 5§+%a:i\/§mpma; £+ \/§|~:a§+ _ (2.32

upper componen{, ; is conserved £, ,=0), we find[20]
v12=X3, v03=0, vV1=V13, V23TV (2.29

Using the algebraic equation of motion for the auxiliary field
(2.12, the minimum energy conditiof?.24) for the vector

For these transformations, we express the derivatives in
terms of complex coordinates, assumixgXx, dependence

only:

1 1
multiplet is precisely the same as the condition of partial am0m=(crl+i02)5(81—ir92)+(01—i02)§(r91+ic72)

SUSY conservation conditio2.29. Similarly, the N=1
SUSY transformations of fermions in chiral scalar multiplets
are given by[47]

S, (—iN2) =120 o p—ma) €.+ V2(Xy+iXp) €y,
(2.30

B¢, Y, =1V20 ™Dy, +\2F 6, (2.31

06500

=20%9,+207 5, (2.33

where o™ =(ot+i02)/2, 0" =(ot+ic?)/2. If we require
conservation of only one out of four SUSYs specified by

~Qo*é, =i, and o &, =0, (2.34
we obtain[20]
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8, (—1N20) =120 (= My) €. +V2(X1+iX,) €, o

=i2\2(07 9t 0" ) (p—my)E, vacuum 1|

V(X1 +iX) € ™
=V2£,07Y20,(—my) + QX1 +iXy)], \Va‘“‘“m 3

o //

Vacuum 2 |

8¢, Y, =1V20 ™ Db s + V2F &,

=\2¢,0712D,q,+ QF,), (2.36

FIG. 1. Vacua in complex) plane.

O g, =iV20™ D0} £+ V2F 5,

. ~ ~ Then theath vacuum values of fields in E§2.18 become
=\2¢,071 (2D, + OF ). (2.3

— —haa N —heaia
Therefore we find that the condition of conservation of one ¢=Ma, Gp=h€%dy,, Op=he'%dy,. (3.2

out of four SUSYs is given by Since the known junction solution was obtaif@@] with the

Z5; symmetry for SUSY vacua and with a relation between

1 d¢ . ) o~
o e —Q(X1+iXy), 2D,q,=—-QF,, the vacuum values of the charged chiral scal_ar fields,
and the neutral scalar fields, we should requiren=3 fla-
~ ~ vors with Z; symmetry, and a relation between the mass
2D9a=—QF,. (2.38 scales ofm, and the Fayet-lliopoulos terim Altogether we
: . . . , assume the following particular values for the parameters of
The algebraic equations of motion for auxiliary fields areg . model:
given in terms of the superpotenti@i '
2gh .
X (ap)* . apP )* = ( P | mb=%e'<27f’3>b, b=1,2,3. (3.3
| ==\ , ==\ === . 3
! 2 ¢ é d0a a o
(239  The resulting vacua are illustrated in the compieplane in
Fig. 1.

This superpotentidP as a function of scalar fields is given in

our case by Combined with the algebraic equation of motion for the

auxiliary field X5 Eq. (2.12 for a vector superfield, we can
n satisfy the BPS equation&.29 trivially by choosing
P=2, (¢—ma)ds0a—bg. (240

vo(X"x%) =v3(x5x%) =0,  |gp(x"x?)|=[ap(x"x?)].

Using the superpotentigPl.40 and the algebraic equations 34

of motion for auxiliary fields(2.39, we see that the mini- Suggested by this condition, we assume the following rela-
mum energy condition€2.25—(2.27) are precisely the same tion between values of the hypermultipl¢20]:
as the conditions for the conservation of one out of four

SUSYS(2.38). qb(xl,xz)e‘i“b=ab(x1,x2)ei“be R, (35)

I1l. DOMAIN WALL JUNCTION in accordance with the vacuum valu@s?2) which should be
reached at infinity. This assumption will be justifiagoste-
riori after finding solutions. We are interested in a BPS junc-

. . . . Stion configuration separating three vacuum domamns
equations2.24~(2.27 for our N=2 SUSY massive multi-  _ 1,2,3 withZ; symmetry, where the third vacuum is placed

flavor QED. We are making one complex structure manlfestat infinity along the positive real axis as illustrated in Fig. 2.

OhUt ofhthk:ee hby using thev=1 supfrfield formaliim. Al This configuration corresponds to the choice of the phase
though the three FI parametecsb, =Reb, andb,=Imb 06 )=~ 1 [20,21. Now the remaining BPS equations

form anSU(2)r triplet, the choice of a particular complex ¢, chiral scalar multipletghypermultiplets and the chiral
structure made th&U(2)g symmetry not visible. In this scalar in the A'=2 vector multiplet read
circumstance, we find it convenient to choose the FI param-

etersc andb in Eq. (2.17) as

In order to obtain an exact solution for the junctions, we

dqp 2gh (23 *
— = ——g!(e7¥)h , 3.6
c=0, b=hZ2eR (B=0). (3.0 Iz ( 7] b 0

V3
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B f % gl(@m3ps
Vacuum 1 db= b . = (3.19
fi+f+15 fi+f+15
These solutions can be rewritten in terms of our original
Vacuum 3 variablesq,, ¢, andz
hee_—° 3.1
R Y 319
Vacuum 2
Go—he im0 (3.16
9o fi+f+fg '
FIG. 2. TheZ, junction in real space=x'+ix?.
3 i(27T/3)bf
1 ¢ e b
20 ane= S a2 @) P L (317
g YA b=1 \/§ f1+f2+f3 ’
We define a dimensionless complex coordinagnd real
dimensionless fieldg, and ¢ by rescaling with the normal- Where
ization factor associated with the vacuum values as oah
_ ghi —i(2m/3)b i(27/3)b* _
_\/5 1. s 2 . s fb—exp( 3 2(e z+e z¥)|, b=123.
7= 2 th, dp,=heq,, ¢= \/gg o. 8 (3.18
Then the BPS equations become By rotating the field configuration by+2/3, we find that

the solution(3.18 is precisely the same field configuration
- o A as in the previous junction solution in th&=1 SUSY
2—=(e'C™P_gpy*q,, gyeR, (3.9  theory[20] provided the dimensionful parameteis related
9z to the parametei throughh=2A. The field ¢ of the
~ junction configuration takes values inside the triangle con-
dp 3 -3 & 31 necting the three vacua as illustrated in Fig. 1. The straight
5_ 2 = % |- (3.10 line segments between vacua on theplane correspond to

spatial infinity in real space—«. As an illustration of the

We can now recognize the familiar form of the BPS equatiorASymptotic behavior of the junction configuration, the values
allowing the junction as an exact soluti§f0,24). Let us  Of the fieldsq,, a=1,2,3, choosingr,=0 are shown along

define the following auxiliary quantitief, : the real axis in Fig. 3. The energy density computed analyti-
cally in our previous solution of th&/=1 SUSY mode[20]
B 1 (23S (2l 3 can easily be converted into our caseNsf2 SUSY QED.
fo=exp (e zte z*)], b=123. The energy density of the junction solution in oif=2
(3.1)  SUSY model is shown in Fig. 4.
Let us discuss zero modes in this junction solution. First
The following identities can be derived for these auxiliary we notice that we have two massless bosons corresponding
quantities[20,24: to spontaneously broken translation in two directiahsc.
As for the two globalU(1) symmetries, both of them are
E o-i(2mi3)cs broken in the junction solution, and there are two corre-
S ¢ sponding Nambu-Goldstone bosons. For each domain wall,
W only two hypermultiplets have nontrivial field configurations.
Therefore only one of the twdJ(1) global symmetries is
fy spontaneously broken and only one Nambu-Goldstone boson
XW’ (3.12  associated with théJ(1) phase rotation appeaf9,30.
1riens Since the broket (1) symmetry on each wall is a different
combination of the twdJ(1) global symmetries, the associ-
2 gl (2mi3bg 2 ft2) ated Nambu-Goldstone boson on each wall is also a different
21 b il I b linear combination of these two. This situation is very similar
gz \ fit+f+1; 2 (fi+f,+f5)2/) to the property of the Nambu-Goldstone fermions on the
(3.13  lunction that was observed previousB0,21. As for fermi-
ons, six out of eight SUSYs are spontaneously broken.
Therefore we find the solutions for the BPS equations Therefore we have six Nambu-Goldstone fermions. On each

2

d

9z

fo

__ b e-i(2m3)b_
fi+f+13
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09 Gg - B
08 N
0.7 4
06 - g FIG. 3. Alongz— +% one ob-
g tains the vacuum 3, where onty
o 05 B

takes nonzero values. Alorng—
—o one obtains the middle point
of the wall between the first and
J second vacua, whete|=1q,|.

0.4

03 [

02

0.1 |

-10 10

wall, only four SUSYs are broken. Therefore there are foudowed if the masses are on a straight line in the complex
Nambu-Goldstone fermions on each wall. These foumass plane, for instance, if all masses are aligned on the real
Nambu-Goldstone fermions on each wall are different lineamlaxis. Since the tension is given by the absolute value of the
combinations of the six Nambu-Goldstone fermions in thedifference of the superpotentials, the possible junction con-
junction as a whole, since different linear combinations offiguration cannot satisfy the condition of mechanical stability
the SUSY charges are broken on each wall. This situation if19] if the masses are on a straight line. We conjecture that
analogous to the previously obtained junction solutiooMin  there should exist a “line of marginal stability” somewhere
=1 theory[20,21. It has been pointed out that the wall between theZ; symmetric mass parameters and the mass
provides a model to “localize” gauge bosof29]. In this  parameters on a straight line. The junction should become
context, one should note that one out of two Nambu-unstable across the line of marginal stability. An interesting
Goldstone bosons associated with the tWd.)’s mixes with ~ example of the line of marginal stability for domain walls
theU (1) gauge boson. We postpone a more detailed analysisas been explicitly demonstrated for a similar Wess-Zumino
of walls and junctions involving the gauge field for subse-model[49]. Lines of marginal stability for monopoles and
guent publications. dyons are well studied iv=2 gauge theoriegs0].
Let us discuss possible junction configurations in other It is also likely that there exist junctions afwalls, al-
models. We have obtained an analytic solution for the juncthough it is difficult to work out explicit solutions except in
tion provided the mass parametensare tuned to the gauge particular nonlinear sigma modél24].
coupling g and the Fayet-lliopoulos parameterh? as in Similarly to our previous solutiof21], the Nambu-
Eg. (3.39). However, it is almost clear from continuity that Goldstone bosons and fermions on our junction solution are
junction configurations should exist even if the mass paramnot normalizable. Therefore the usual wisdom of a low-
eters are perturbed infinitesimally away from the tuned valenergy effective Lagrangian approach cannot be applied eas-
ues. On the other hand, a junction configuration is not alily to our junction solution. However, it has been observed
that a graviton zero mode is localized at the junction, if the
bulk space-time is warpgd1]. This is due to a suppression
factor produced by the bulk Ad$ike) space-time. It may
also be possible to exploit this mechanism to obtain normal-
izable zero modes localized at the junction. The general
properties of possible junction solutions have been studied in
the presence of gravit}23], although no explicit solution

10 has been obtained. This is an interesting subject for the fu-
ture.

....;,;‘

mml' '
mm"

I

O RPN WA o N

10 IV. EIGHT SUSY TRANSFORMATIONS
In this and the following sections, we return to the general
case ofn flavors. There have been a number of studies to
formulate /=2 SUSY field theories in five dimensions in
FIG. 4. Energy density of th&, junction configuration of\"  terms of theN'=1 superfield formalisni5,41—-44. Inspired
=2 SUSY QED. by these studie$5,41,43, we will redefine the auxiliary

Xl -10

065005-8



DOMAIN WALL JUNCTION IN N'=2 SUPERSYMMETRC . .. PHYSICAL REVIEW D 68, 065005 (2003

fields of chiral scalar fields for a hypermultiplé2.7) and D, =p+20.(—i2)+ 62 (X +iXy), (4.3
(2.8) in order to identify all eight supersymmetry transforma-
tions

Qia=0at 20, g + O2[F,—(¢* —mi)as], (4.4

Fa=F.i—(¢*—m})at, Fa=—F.—ai(¢*—m}).
(4.1

Instead of Eqs(2.5—(2.8), the component expansions of the = _= 120 LR —F —a* (& —m*
superfields in powers of the Grassmann numbenow read Q+a=0a G B ULV B

_ _ 1
Vi=—0,0"0, 0 +i6% 0, N—16% 0, N+ = 6%6°Xs,

2 In terms of these component fields, the full Lagrangian

(4.2 (2.1) is given by

L= o™ o — (X )2+i|x +iX |2—i|a |2—£i_m(9 —cXg—b(X;+iXy)
= 492Umnv gz 0 Om 292( 3 292 1 2 292 m® 92 Yo o 3 1 2
n
—b*(Xy=iXg)+ 2 {[F" ~Ga(¢—ma) J[Fa— (¢* ~M3) U3 1~ DinGal = 00,0 Pmifg, =1 V2( g M2~ g, \3)
n
+X3|qa|2}+a21 {[_ Fé_q;((ﬁ* _m;)][_ F;* _(¢_ ma)qa]_ |qua|2_i%aompm‘ﬁaa+i\/E(‘ﬁaa)\qa_ %J‘q;)

- X3|aa|2}+ agl (( b— ma){aa[Fé\_ ( d)* - m; )a;]+ [ _F'Ef;\_ q;(d)* - m; )]qa}+ (X1+ iXZ)aaQa_ (r//aa(d’_ ma) l//qa

FiN25, 000t IN20, 00 + 2 (6" —mD{R[ —Fo* = (6= ma)da] +[F2* ~Ga( = ma)Ja3} + (X1~ iX2) 43 G

— g, (% — M) g — N2y Ak — N2y ay). 4.6
|
This is the full Lagrangian including fermion terms com- 5§+(—i\/Z//):i\/Eam&m¢§++\/§(xl+ixz)§+,

pared to the bosonic one in E®.9).

To obtain theA’=1 SUSY transformations in the Wess-
Zumino gauge, one has to combine an ordinary SUSY trans- o
formation with an accompanying gauge transformation to  &; (X;+iXp)=i2&, cMm(—iV2y). (4.12)
preserve the Wess-Zumino gauge. Let us consider the four

SUSY transformations$; given by an infinitesimal Grass- _. . . .
£, 9 y Similarly, we obtain the supersymmetry transformation rules

mann numbeg ., in the direction ofd, in Egs.(4.2—-(4.5. ¢, hypermultiplets in the Wess-Zumino gauge as
The N'=2 vector multiplet represented by superfields?)

and(4.3) transforms under the infinitesimal SUS¥Y along

(4.1

the left-handed spinof, in the Wess-Zumino gauge §47] 0, da= V2¢, Yag 413
S¢ v =1, TN FiE oM\, 4.7 8¢ Yo, =IN20™ Dl s +\2[F)
—(¢*—marlEs, (41
Se A= 0ok HiXaE (4.9) (7 —M)Ga e, (419
_ _ 8¢ [Fa—(¢* —m3)a3]1=iV2¢, 0™ Dyifig + 21 €, 00,
8¢ Xa= & oM Ik — &, ™I\, (4.9 (4.15
8¢ p=\2&.(—iN2y), (4.10 8¢ Ga=\2&, Y, (4.16

065005-9
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5§+ Waa: i \/EUmDmaag+ + \/E[ _T:a,\ —X tiX2 - " > X +1X,
(¢ -miailes, (417 VR /
~ e —_— = ‘\ \‘
8¢ [—Fa—(¢* —my)ai]=iV2¢, 0 Dl — 20 £\l AN,
( 4 . 18 / \\\ / \\‘\
Let us now consider the remaining four SUSY transfor- ¢ Y
mationsd, also along the left-handed spin@r , which are X3 < > —X3

not manifest by the abov&/=1 superfield formalisni2.1)

or the associated component formaligf6) in the Wess-

Zumino gauge. Please note that the Grassmann numbers g —> & - >

& ,0_ are left-handed chiral spinors, similarly & ,6. , ) i

and are not to be confused with the right-handed spinors. To ~ FIG. 5. The transformation laws for vector multiplets.
work out 5, , we shall follow the classical method of Fayet

pe * 1% ~

[34]. The two sets of left-handed chiral spinor Grassmann ~Ga(Mz —¢*)—Fa [ 70 (4.24

numbersd, and#_ should form a doublet under an internal qx(m* — ¢*)_'~:é ai ' '

SU(2)r transformation?dt whose representation matrix is

denoted by a X2 matrix M: By applying the discret&U(2)g internal transformation
(4.20 with the assignment4.21)—(4.24) to the first four

. " SUSYs(4.7)—(4.18 represented by an infinitesimél , we
M -=M 0| (419 can find another four SUS¥, corresponding to an infini-

B tesimal Grassmann numbér . We obtainé, transforma-
It is enough to consider a discrete transformation, for in-tions of the N=2 vector multiplet in the Wess-Zumino

0

o’

stance, ar8U(2)g rotation around the second axis ky gauge:
. . 0 1 S vM=iE_oMYHiE o™y (4.25
Mo=expiml,), Mo=io,= 1 o) (4.20
O¢ Y= o™ meé - —iX3é, (4.26
Following Fayet, we demand that,, ¢, . and i, be e — = —
SU(2)g singlets, and that ¢ (=Xg)=—&- 0" omp+ &0 Imy
(4.27
A\ _q .
( ) (if) ( qa) (4.21) 8; d=\2& (V2in), (4.28
¥ da da _
_ _ 8¢ (N2IN)=iN20Mmpé_+2(— X +iXp) €,
be SU(2)g doublets. The equations of motig2.12 and (4.29
(2.13 show that '
« 8¢ (—Xy+iXp)=iV2€_ oMn(V2iN). (4.30
1
-X, (422  The transformation laws for theV=2 vector multiplet
X (4.7—(4.12 with respect to the Grassmann numbérsand
3

(4.25—(4.30 with respect to the Grassmann numbérsare

transforms as aBU(2)g triplet. The equations of motion for lllustrated in Fig. 5. For a hypermultiplet, th& _transfor-

auxiliary fields in Eqs(2.14), (2.15 for the hypermultiplets Mations in the Wess-Zumino gauge are given by
become

S U5 =\2¢_yq, (4.31)
FIX=Ff+(¢—myQ,=0, Fi=—F,—qi(¢*—m%)=0, ~— ~
a at(o 2)Ja a a—0Ua(¢ a(ll.ZS) 5§,¢qa:i\/§Umqu;§—+\/§[Fé‘*

which suggest that the auxiliary fields in hypermultiplets T(p*—mz)g.lé-, (432

generateSU(2)g doublets =4 . N ) — ——
55_[Fa +(¢* —m3)qa]=iV2¢ o meqadl_z'éflﬂqa’
(M} — ¢*)da—FL* (qa) (4.33
(mi—g*)aE+F, ) \a3)’ 8¢ A5 =V2E (—yg), (4.3

065005-10
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B¢ (—5,)=IN20™Dualz é- V. =0 0"0 v, +i620 g—i020 g+ %035%(—x3),
+V2[—FF +(¢* —mE) Q)€ (4.37)
(439 D_=p+20_(V2iN) + 02 (— X +iX5), (4.39

S¢ [—Fi* +(¢* —m})0al ) )
J— . Q a=0% +120 g+ 2[FX+(¢* —mi)da],  (4.39
=iV2¢ o™D(— ) —2ié yay . (4.39

The transformation laws for the\V'=2 hypermultiplet _ . ) e~ s .
(4.13—(4.18 with respect to the Grassmann numbers Qfa:qa+\/§‘9*(_‘/'ﬁa)+‘97[_':a +0a(¢* —my)].

and(4.34),(4.33 with respect to the Grassmann numbérs (4.40
are illustrated in Fig. 6.

To summarize the transformation propertid25—(4.33 We can now rewrite the Lagrangia@d.6) to make the
under &, , it is convenient to define the following super- second set of four SUSY transformatiodg (4.25-(4.33
fields using another set of Grassmann numlgers manifest:

|
L=y iilﬁ_O'mo" Y+ i(—xg)2+ i|x1—ix2|2— i|a B|%— Linem™ A+ c(—Xz)+b(=X;—iXy)
492 mn gz m 2g2 292 292 m gz m

n

B (= Xy +iXo) + 2 [ -Famag(¢=ma)]l —Fa* — (6" —m3)dal = [Dntlal” =1 1,0 Db, ~ i V2(1hq, 1
- l/fqalr/faa) + ( - X3)|aa|2}+azl {[F;* _aa( d’* - m; )][F;_((ﬁ_ ma)a; ] - |DmQa|2_ [ l/faao'mpm%a
V2= Y5, 03 + ¥5,90a) ~ (= Xa)|Aal?H+ 2, (6= mal{ag[—F3" = (¢* ~m{)aal +[F3* ~Ga(6* —my)]a3}

(X XD 05 03 — Y, (6= Ma)trg, — I V205 N3 +1V20g M)+ 2, (&% —mE){Qu[Fa— (¢~ ma)a*]

+[=Fa= 0% (6= mMa)]da} + (X1 +iX2)Gala— tho (¢* — M%) g +1V205 Nda— i V24 N Cla). (4.41)

We can finally assemble the above component form of the Let us note that the Lagrangian is not invariant under the
Lagrangian in an\V=1 superfield formalism using the sec- automorphismSU(2)g if FI parameters are present. Obvi-
ond set of Grassmann numbets in Eqgs.(4.37—(4.40, in  ously, the Lagrangian is invariant under the eight SUSY
contrast to those superfields with in Eqgs.(4.2—(4.5): transformations when it is invariant under the first set of four
SUSYs and the discret8 U(2)g transformation)t,. How-
ever, it is important to realize that the Lagrangian repre-

L= %(W‘iwﬂgz W, W)+ %(I)T_qn_ sented by Eq94.6) and(4.42) is invariant under all the eight
49 B T 29 2R SUSY transformationg4.7)—(4.18 and (4.25—(4.33) irre-
o spective of the values of the FI parameterandb. This is
" + oy <t oy because the difference between the Lagrangian transformed
+a§1 (QLe7-Q a+Qle “Y-Q a2 by 91, and the original one is given by the FI terms which
are transformed to total derivatives by SUSY transformations
n _ 0¢ and o, . Therefore the action is invariant as usual for
+2cV_|pz@ + 321 (®_—my)Q Q4|2 the SUSY theories.

Theories with eight SUSYs like our model have been

shown to possess three complex structlig&g48. Our for-

. (4.42  mulation in terms of two sets of Grassmann numbrse_
does not make this property manifest. In fact, our choice of

+b*®_|2 +H.c.
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Fr + (¢* — mE)go «——F' — (¢* — m¥) " We have to study the SUSY transformation of the remain-
‘\. ing fermions\ and ¢ in the N=1 chiral scalar superfields
. @ _ andV_ using the BPS equatior2.29 and(2.38 with
‘wq =-1 and algebraic equations of motion for the auxiliary
Vb %\\ fields (2.39. Moreover, we note thaX,=X;=0 in our so-
Qo <> g, lution. Then we find that the same SUSY directions are con-
\1/; rd served for\:
o
/ ST 8 (IN2N)=I\20™ b +2(~ Xy HiX)E
. RN _
—Flr — (¢ — my)gee——> —F, + (¢ — ma){; =i2\2(ot 9,40~ 7)) pé_
FIG. 6. The transformation laws for hypermultiplets. + \/E(—x1+ iX5)€&_,
—i e i i ¢ —
c=0, beR breaksSU(2)z symmetry and a particular com- =i2V2(0" € +iE)dp+i2207 6 00,
plex structure has been selected. However, this particular (4.40

choice of complex structure will turn out to be useful for the
analysis of our model and solution. For instance, we willwith the same infinitesimal SUSY transformation parameters

show that we can choose one of the two conserved SUS¥4.45. The right-hand side of thé_ transformation of/ in
directions from@_ and the other frondg_ . Eqg. (4.26 involves onlyv,, and X3, which vanish in our
Since all the eight SUSY transformations are clarified, wesolution. Therefore they conserve all the SUSY transforma-
are now in a position to determine precisely how manytions trivially.
SUSY charges out of these eight are conserved by our solu- Summarizing our results for all the eight SUSYs, we see
tion (3.15—(3.17 of the domain wall junction. We have al- that there are two conserved directions in the Grassmann
ready found in Eq(2.34) that one out of four SUSY, is  parameter:
conserved. We need to examine another four SUgY Let

us first consider the fermiong; andy,_in the /=1 chiral

scalar superfield®_, in Eq. (4.39 andQ_, in Eq. (4.40 Yo = _ 4.4
for the hypermultiplets o é 16~ and o7£-=0. (4.49

ot ¢, =i&, and o £,.=0, (4.47)

That is, we have determined the two conserved directions

5 =iV20M0,0% £_+ \2(d* —m¥) g , _
éid/qa I\/_U Ba s \/_(¢ Ma)at E=i(éL)*, €.,=0, & =—-i(é_p*, &_,=0,

=122 o 0T o IE (449
where we set
1 _
—i—(¢*—m§)qa§) N & )
2 £ = £41 F= §_ _ _(§ 2) 1. wso
I _ — ~ §+2 EZ (§+1)
=i2\2(ctE_+iE) a0k +i2V20 ok, +
(4.43 ¢ :(fl) E _ E :< (E-2)* (4.51
e 2] et T

S (=) =120 & +2($* —mi)aa)é-
We have now established that our domain wall solution pre-

=i2 \/5( A R = serves two out of eight SUSYs.
1 - V. DIMENSIONAL REDUCTION FROM FIVE
—iz(¢r - mz)qaé) DIMENSIONS

. ks Rl * The N=1 superfield formalism is of course most useful

=i2V20 E_ Uk +i2\2(o T E-+iE) a0k . to studyA’=1 SUSY theories in four dimensions. It can also
(4.44 be used to describe the=2 SUSY theories in four dimen-

sions making only four out of eight SUSYs manifest. In or-
der to describeN/=2 SUSY theories in five dimensions,
however, we need to sacrifice the five-dimensional Lorentz

. . invariance[5,41-44. In terms of components, we can al-
octé_=—ié. and o £_=0. (4.45 ways express th&/=2 SUSY theories with all the necessary

Therefore the conserved SUSY direction is given by
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auxiliary fields to close the algebra off shell in the Wess-
Zumino gauge.

The highest dimension allowed by thé=2 SUSY is 6.
The hypermultiplet in six dimensions cannot have masses.
The five-dimensional theories can be obtained by a dimen-
sional reduction from six dimensions. If we perform a non-
trivial dimensional reduction, allowing the momenta in the
sixth dimension, we obtain a massive hypermultighe].
Therefore the hypermultiplets in five dimensions can have
only real mass parameters. Th&=2 SUSY theories in four
dimensions can be obtained by dimensionally reducing the
five-dimensional theories. The real scalar figldn five di-
mensions comes originally from the sixth component of the
gauge field, and the combinati@t-ivs becomes a complex
scalar in four dimensions, when we consider the reduction to
four dimensions. To obtain the four-dimensional theory with
complex mass parameters, we should perform a nontrivial
dimensional reduction in the> direction. In this process, the

PHYSICAL REVIEW D 68, 065005 (2003
2 V= iy .
V(X604 ,0.)=—0,0"0,0m+i160%0,N—i6260,\

1
+ 5 6565 (X3— 33), (5.5

D (y,0,)=(S+ivs)+ 20, (—i\2y)
+ 62 (X +iX,), (5.6

Q. a(y,04)=0at 20, ¢hq + 65 [F 4+ D5
—(2-map)a* ], (5.7

Q. aly,0,)=0at V20, yg_+ 03[ ~F,—Dsa

0z (X —maR)]. (5.8

mass terms arise as momenta in the fifth dimension. Co he 6_ superfields are given by

versely, we can recover the five-dimensional theory by re-
storing the fifth dimension from the imaginary part of the
complex mass parametar,=myg+im,, as

J50a= —1Mg 0, aS(ﬂqa:_imallpqa- (5.7

The imaginary part of the complex scalar fiegbdcan also be
identified as the fifth component of the vector fielgl as

d=3+ivs. (5.2

We can recover the covariant derivative along the fifth direc-
tion as

i(Vs—My)0a=(d5+1v5)0a=Ds0, . (5.3

Therefore the mass terms associated with the quark fields are

V_(X,0_,60.)=—0_0"0_ v, +i6%6_y—i6°6_y

1
+502_§2_(—x3—352), (5.9

D_(y,0-)=(S+ivs)+20_(V2iN)
+ 6% (=X, +iX,), (5.10

Q_alY,0-) =0} +\20_ g + 60> [F1* —Dsq,

+(E_maR)qa]1 (5-1])

Q_a(y,0-)=05+V260_(— 45 )+ 0°[~F* +Ds0a

reduced to covariant derivatives in the fifth dimension, +a(2 —mur ] (5.12
(6= Ma)qa=[(X = Map) +i(v5~Ma)]da Please note that all the fields depend on the coordixaie
=[(3—m,Rr) +Ds]d,. (5.4  five dimensions, in spite of having almost the same appear-

ance as the four-dimensional superfields.

In the spirit of theA’=1 superfield formalism, we can

Since the mass term in five dimensions can be obtained as

express theV=2 vector and hypermultiplets in five dimen- a nontrivial dimensional reduction from six dimensions, we
sions by two kinds of superfields, similarly to our resultscan have only real mass parameters in the Lagrangign
(4.2—(4.5 and (4.37—(4.40 for four-dimensional N=2 [42,45. Therefore we find the Lagrangian in terms of the
theories. Thed, superfields are given by N=1 superfields in Eqg5.5—(5.8) as

ol +d,

IV~ ——

1 a\p+ NVARYY: 1
L= 4_g2(W+Wa |2 + W, WS [52) + e

— 2
2¢Vy |22 +

n
Y Qualds+ P —my)Quale —b®, |2 +H.c.
a=1 + +

n
t 2V At a2V R
+ 2 (QL.#+Q,a+Qle 20402 72
,— a=1 +
6+9+

. (5.13

The same Lagrangian is given in terms of the N=1 superfields in Eqg5.9—(5.12 as
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1 L 1 o'+ A ~ ~
L=—(WIW, |2 +W W[2)+ —| dsV— —F— +2 (Q1.6-Q ,+Q e Q@ +2cV_ |27
4g - g 2 | pp &1 - -
n
D Q_y(ds+P_—m)Q_gl2 +b*d_|,2 +H.c.|. (5.14
a=1 - -
In terms of components, we can express the Lagrangian more symmetrically with respecBtd(#)g symmetry:
L= Eboson"“ »Cfermionr (5.13

Liosor= — ! FunFMN— i(f7M2)2"‘ i{(xl)z—k(X2)2+(X3)2}+C(—X3)+b(—X1—iX2)+b*(—X1+iX2)
29?2 292

4g?
n

+a§1 [— | DmGal®— | Dual?+ |F' 2+ [F'[2— (2 — map)(|dal?+ [0a)®) + X3(|da > —[9al?)

+ (X1 +iXp)Galat (X1 —iX2)a5 05 1, (5.16
N 1 1— — & — — _ _
Lrermion=— Examamx - gwomamw— 2" @t 2 [~ i1, 0™Prifg, ~145,0 ™ Duni,
- %apswqa_%apsgqa_ Wﬁa(z - maR) 'r/fqa_aaa(2 - maR)an"' [ \/E{( Wﬁa'//_Ean)Qa_ ( ‘/faa)\ +Eqa%a;
+ (g N — Y5 005 + (g ¥+ Y5 \)0a}]

1 o = — , . )
== 2_g27\i7M(9M)\|+a§=:l [_‘//ayMO”M'pa_ wa(z_maR)’pa_l \/Zwa)\leijqf{H sziwafqu}ka]y (5.17
|
where the capitalized indiced®,N, ... runover 0,1,2,3,5. E:('/’a y) EZ(_)\Q J‘). (5.21)
The gamma matrices in five dimensions are given by44 “ “
matrices as
0 o™ /—i 0 The spinors in the hypermultiplets are singlets under the
M= = ( ) (5.18 SU(2)g symmetry and are assembled into a four-component
o 0\ 0 i)’ spinor i, for each flavor:
whereo™=(1,6) and ¢™=(1,— o) [47]. To achieve the\/
=2 SUSY off-shell formalism, it is convenient to make Uqa — _
SU(2)g manifest. In the case of a vector multiplet, the = S’ Y=Y, —qa)- (5.22

spinors in five dimensions are most conveniently organized
in terms of the symplectiESU(2)] Majorana spinors\', i
=1,2, transforming as doublets under ®6(2)g symmetry.

The SU(2) Majorana spinor is defined by The scalars and auxiliary fields in the hypermultiplet trans-

form as doublets unde8U(2)g as given in Eqs(4.21) and

i T (4.24.
N=€lChj, (5.19 The above five-dimensional Lagrangia5.19—(5.17)
makes it clear that we can have only real mass parameters for
a hypermultiplet that is obtained as a momentum in one extra
dimension (the sixth dimension through a nontrivial
(Scherk-Schwanz[46] dimensional reduction from six di-
mensiong45]. On the other hand, we need to have at least
three discrete vacua in the complex field plane. This situation

" can be realized in our model through the complex masses of

o) %)

where the charge conjugation mati&in five dimensions
satisfiesCyMC 1= (yM)T, CT=-C, andCC"=1. An ex-
plicit form may be given byC=diag(io?,i0?). The spinors

in the N'=2 vector multiplet can be assembled into a four-
componeniSU(2) Majorana spinoi' as

(5.20 hypermultiplets. This is the reason why we cannot generalize
our junction solution to five or six dimensions.

A\
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