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Domain wall junction in NÄ2 supersymmetric QED in four dimensions
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An exact solution of the domain wall junction is obtained inN52 supersymmetric~SUSY! QED with three
massive hypermultiplets. The junction preserves two out of eight SUSYs. Both a~magnetic! Fayet-Iliopoulos
term and complex masses for hypermultiplets are needed to obtain the junction solution. There are zero modes
corresponding to the spontaneously broken translation, SUSY, andU(1). All broken and unbroken SUSY
charges are explicitly worked out in the Wess-Zumino gauge inN51 superfields as well as in components.
The relation to models in five dimensions is also clarified.
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I. INTRODUCTION

In recent years, models with extra dimensions have
tracted much attention@1,2#. In this brane-world scenario
our world is assumed to be realized on extended topolog
defects such as domain walls or junctions. On the other h
supersymmetry~SUSY! provides the most promising idea t
build realistic unified theories beyond the standard mo
@3#. The brane-world scenario in supersymmetric theor
can provide an opportunity for realistic model building o
walls and/or junctions. Moreover, it can offer a possible e
planation of SUSY breaking@4–9#, in particular by means o
the coexistence of walls@10,11#. SUSY has been useful in
obtaining solutions of walls and junctions such
Bogomol’nyi-Prasad-Sommerfield~BPS! states, which pre-
serve a part of the SUSY@12#.

Domain walls can conserve half of the SUSY, and a
called 1

2 BPS states. They have been extensively studie
globally supersymmetric theories@13,14#. More recently, an
exact BPS wall solution in supergravity theories has b
constructed in four dimensions@15# and in five dimensions
@16#. We need to consider topological defects such as ju
tions of walls to consider a fundamental theory in space-t
dimensions higher than 5. Domain wall junctions have be
studied@17–24# and can preserve a quarter of the origin
SUSY. An exact analytic solution of the junction has be
obtained inN51 SUSY field theories in four dimension
@20#. The possibility of a junction solution has also be
explored in supergravity@23#. The exact solution has bee
useful in unraveling several unexpected properties of dom
wall junctions. The new Nambu-Goldstone fermion mod
associated with the junction are found to be no
normalizable@21#. The new central charge associated w
the junction was once considered to be a mass of the ju
tion. However, the exact solution showed that the cen
charge contributes negatively to the energy of the junct
@20,21#. Therefore it should more properly be interpreted a
binding energy of the walls which meet at the junction.
another topological defect with codimension 2, an exact
lution of vortices onS2 has also been obtained before@25#.

*Email address: kakimoto@th.phys.titech.ac.jp
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The SUSY theories in dimensions higher than 4 are
quired to have at least eight supercharges. Theories
eight SUSYs are often calledN52 SUSY theories even in
five or six dimensions, since they have twice as many SU
charges compared to the simple SUSY theories in four
mensions. BPS wall solutions have been constructed in
N52 SUSY nonlinear sigma models@26–30#. Lump and
Q-lump solutions preserving 1/8 and 1/4 SUSY, respective
have also been considered@31,32#. On the other hand, a BPS
wall junction has been constructed in linear@20,21# and non-
linear sigma models@24# only in N51 SUSY models in four
dimensions.

The first analytic solution of the BPS junction has be
obtained for anN51 U(1)3U(1) gauge theory with six
charged and one neutral chiral scalar fields with minim
kinetic terms@20#, which was constructed as a toy model f
the N52 SU(2) gauge theory with one flavor@33#. Subse-
quently, it was realized that one can get rid of the vec
multiplet by identifying six charged chiral scalar fields pa
wise into three chiral scalar fields. One still obtains the sa
junction solution as a BPS solution@21# in this model with
three ‘‘charged’’ and one ‘‘neutral’’ chiral scalar fields wit
minimal kinetic terms~linear sigma model!, without a gauge
field at all~Wess-Zumino model!. It has also been shown tha
one can obtain the same solution in anN51 nonlinear sigma
model with only a single ‘‘neutral’’ chiral scalar field, by
eliminating the other three ‘‘charged’’ chiral scalar fields a
propriately @24#. In all these solutions, one finds that th
‘‘neutral’’ chiral scalar field plays a central role in construc
ing the junction solution. On the other hand, a neutral sca
field is contained in theN52 vector multiplet in the case o
N52 SUSY QED. Therefore it is tempting to embed th
N51 gauge theory and its junction solution into theN52
SUSY QED.

The purpose of this paper is to give an exact analy
solution for the BPS domain wall junction in anN52 SUSY
QED with three massive hypermultiplets. This is the fi
example of an exact junction solution inN52 SUSY theo-
ries. By explicitly working out eight SUSY transformation
we show that the junction solution preserves two out of ei
SUSYs, namely, it is a1

4 BPS state. Although the solutio
has many similarities with the previously obtained1

4 BPS
junction solution inN51 SUSY theory, the resulting spec
trum of the low-energy effective theory is richer. For in
©2003 The American Physical Society05-1
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stance, we observe that there are zero modes correspon
to spontaneously brokenU(1) global symmetries@29,30#.
Similarly to our previous solution inN51 theory@20#, the
Nambu-Goldstone modes on the junction background are
normalizable. As pointed out in Ref.@21#, it may be possible
to obtain a normalizable wave function when it is embedd
into supergravity as explored in Ref.@23#. We also show that
the same eight SUSY transformations can be derived fro
nontrivial dimensional reduction of theN52 SUSY QED in
five dimensions.

TheN52 SUSY theories with vector and hypermultiple
were introduced by Fayet using an automorphism of SU
algebra@34#. He used bothN51 superfield and componen
formalisms. TheN51 superfield formalism makes only fou
SUSYs manifest, but has been useful also in writing do
massless nonlinear sigma models@35#. Harmonic superspac
formalism can make all eight SUSYs manifest@36–39# and
has been used to formulate12 BPS equations to obtain BP
walls @27,40#. Even in the harmonic superspace formalis
however, it has been useful to use the Wess-Zumino gaug
clarify the physical field content of the theory@27#. The
Wess-Zumino gauge in the component formalism allows
to construct all the eight SUSY transformations explicit
We also find that the action in terms of component fields
be assembled intoN51 superfield formalisms making fou
out of eight SUSYs manifest in two ways; namely, we c
rewrite the same action in terms of two different superfiel
One of them makes a set of four SUSYs manifest, and
other makes the set of remaining four SUSYs manifest.
course we cannot make eight SUSYs manifest in any on
the N51 superfield formalisms. We shall here employ t
N51 superfield formalism@5,41–44# as well as the compo
nent formalism both in the Wess-Zumino gauge.

We find it essential to allow complex mass parameters
order to obtain a junction solution. TheN52 SUSY theories
are often derivable by means of a dimensional reduc
from five and/or six dimensions@45#. In this spirit, we also
show that theseN52 SUSY transformations can be unde
stood in terms of a massiveN52 theory in five dimensions
Since the massive theory in five dimensions can be obta
by a nontrivial dimensional reduction in the manner
Scherk and Schwarz@46# in one spatial direction, the mas
parameter should be real. Therefore we find that it is diffic
to extend our junction solution in the eight SUSY theory to
junction solution ofN52 SUSY theory in five or six dimen
sions within the context of our multiflavor QED. If we mak
a nontrivial dimensional reduction to two spatial directio
from six dimensions, we can obtain complex mass para
eters. ThereforeN52 SUSY theories in four dimensions ca
have complex mass parameters which allow the junction
lutions.

In Sec. II, our model ofN52 SUSY massive multiflavor
QED is introduced; BPS equations are derived as a minim
energy condition and are shown to conserve one out of
SUSYs in theN51 superfield formalism. In Sec. III, an
exact junction solution is obtained as a solution of1

4 BPS
equations ofN51 superfield formalism. Zero modes a
also briefly analyzed. In Sec. IV, the remaining SUSY tra
formations are found by means of an automorphism of SU
06500
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algebra. We also show that our model is invariant under
eight SUSY transformations and our BPS junction solut
preserves two out of eight SUSYs. Section V is devoted
relating the eight SUSY transformations in four dimensio
to N52 SUSY transformations in five dimensions.

II. NÄ2 SUSY QED AND BPS EQUATIONS

As one of the simplest models with eight SUSYs, w
consider anN52 SUSY model with localU(1) gauge sym-
metry in four dimensions with the gauge coupling constang.
If an N51 SUSY vector superfieldV1 is combined with an
N51 SUSY chiral scalar superfieldF1 , an N52 SUSY
vector multiplet is obtained. In order to distinguish the fo
SUSYs from the remaining four SUSYs which will appe
later, we denote theN51 superfield here by a subscript1.
CombiningN51 SUSY chiral scalar superfieldsQ1a with
U(1) charge11 andQ̃1a with U(1) charge21 gives an
N52 hypermultiplet. The subscripta51, . . . ,n denotes fla-
vor. TheN52 SUSY allows us to introduce the massma of
the hypermultiplet for each flavor. Since our gauge symme
is U(1), the electric cPR and magneticbPC Fayet-
Iliopoulos ~FI! parameters can also be introduced witho
violating theN52 SUSY@34#. Assuming a minimal kinetic
term for theN52 vector and hypermultiplets, we thus obta
the N52 SUSY massive multiflavor QED. UsingN51 su-
perfield formalism, the Lagrangian is given by1

L5
1

4g2
(W1

a Wa
1uu

1
2 1W̄ȧ

1
W̄1

ȧ u ū
1
2 )1

1

2g2
F1

† F1U
u

1
2 ū

1
2

1 (
a51

n

~Q1a
† e2V1Q1a1Q̃1a

† e22V1Q̃1a!uu
1
2 ū

1
2

22cV1uu
1
2 ū

1
2 1S (

a51

n

~F12ma!Q1aQ̃1auu
1
2

2bF1uu
1
2 1H.c.D , ~2.1!

where theN51 vector multipletV1 and the chiral scalar
multiplet F1 are multiplied by the gauge couplingg to make
the N52 SUSY more easily visible. The coupling ofF1

with the hypermultipletsQ1a ,Q̃1a in the third line of Eq.
~2.1! is dictated by the requirement of theN52 SUSY. If the
mass parameters are absentma50, the Lagrangian is invari-
ant under the following globalU(n) transformations:

Q1a→Q1a8 5Q1bgba , Q̃1a→Q̃1a8 5~g†!abQ̃1b ,

F1→F1 , V1→V1 , gPU~n!. ~2.2!

The subgroupU(1) of U(n)5U(1)3SU(n) is gauged. The
mass parametersma break the remaining global symmetr

1We use mostly the conventions of Wess and Bagger@47# for the
N51 superfields, spinor, and other notations.
5-2
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SU(n) to U(1)n21. If b50 in addition toma50, the N
51 superfield Lagrangian~2.1! appears to have another glo
bal U(1) symmetry:

Q1a→Q1a8 5eiaQ1a , Q̃1a→Q̃1a8 5eibQ̃1a ,

F1→F18 5e2 ib2 iaF1 , ~2.3!

with V1 invariant. This invariance respectsN51, but is
inconsistent with theN52 SUSY, since the chiral scala
field F1 should have the same transformation as the ve
multiplet V1 to form anN52 vector multiplet. Summariz-
ing, our model with generic values ofma has the following
U(1)n symmetries, which are consistent with theN52
SUSY:

Q1a→eiaaQ1a , Q̃1a→e2 iaaQ̃1a , F1→F1 ,

V1→V1 . ~2.4!

The diagonalU(1) (a15•••5an) is a local gauged sym
metry. OtherU(1)n21 groups constrained by(a51

n aa50 are
global symmetries.

To make the physical content of the theory more transp
ent, we shall use the Wess-Zumino gauge for theN51 vec-
tor superfieldV1 . Then theN51 vector superfields can b
expanded in terms of the Grassmann numberu1 into com-
ponent fields
n

s
b

06500
or

r-

V1~x,u1 ,ū1!52u1smū1vm~x!1 iu1
2 ū1l̄~x!

2 i ū1
2 u1l~x!1

1

2
u1

2 ū1
2 X3~x!, ~2.5!

wherevm , l, andX3 are the gauge field, gaugino, and au
iliary field, respectively. TheN51 chiral scalar superfields
can also be expanded into components usingym5xm

1 iu1smū1 as usual@47#:

F1~y,u1!5f~y!1A2u1@2 iA2c~y!#

1u1
2 @X1~y!1 iX2~y!#, ~2.6!

Q1a~y,u1!5qa~y!1A2u1cqa
~y!1u1

2 Fa~y!, ~2.7!

Q̃1a~y,u1!5q̃a~y!1A2u1c q̃a
~y!1u1

2 F̃a~y!, ~2.8!

where the scalar fields are denoted by a lower-case le
corresponding to the superfields, such as positively char
scalarqa as the first component of the superfieldQ1a . Let
us note that the subscript1 is not carried by componen
fields, but is carried only by superfields, which are functio
of the associated Grassmann numberu1 .

In terms of component fields, the bosonic part of th
Lagrangian becomes
Lboson52
1

4g2
vmnv

mn1
1

2g2
~X3!22

1

2g2
u]mfu1

1

2g2
uX11 iX2u21 (

a51

n

@ uFau21uF̃au22uDmqau22uDmq̃au2

1X3~qa* qa2q̃a* q̃a!#2cX31 (
a51

n

@~f2ma!qaF̃a1~f2ma!Faq̃a1~X11 iX2!qaq̃a#2b~X11 iX2!

1 (
a51

n

@~f* 2ma* !qa* F̃a* 1~f* 2ma* !Fa* q̃a* 1~X12 iX2!qa* q̃a* #2b* ~X12 iX2!, ~2.9!
:

where the field strengthvmn and the covariant derivativesDm
are defined by

vmn5]mvn2]nvm , Dmqa[~]m1 ivm!qa ,

Dmq̃a[~]m2 ivm!q̃a , ~2.10!

respectively. The entire Lagrangian including the fermio
will be given in Sec. IV where the fullN52 SUSY will be
clarified. We see that the scalar fieldsqa with the U(1)
charge11 and qã with charge21 have a complex mas
ma . Since a complex mass common to all the flavors can
s

e

absorbed by shifting the neutral complex scalar fieldf, these
mass parameters can always be chosen to satisfy

(
a51

n

ma50. ~2.11!

The real FI parameterc of the D term is usually called the
electric FI parameter, and the complex parameterb appearing
in the F term is called the magnetic FI parameter@34#.

The SUSY auxiliary fieldsX1 ,X2 ,X3 ,Fa ,F̃a can be
eliminated by solving their algebraic equations of motion
5-3
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X352g2H (
a51

n

~ uqau22uq̃au2!2cJ , ~2.12!

X11 iX2522g2S (
a51

n

qa* q̃a* 2b* D , ~2.13!

Fa52~f* 2ma* !q̃a* , ~2.14!

F̃a52~f* 2ma* !qa* . ~2.15!

Then the Lagrangian is given entirely in terms of physi
fields:

Lboson52
1

4g2
vmnv

mn2
1

2g2
u]fu22 (

a51

n

~ uDqau21uDq̃au2!

22g2U(
a51

n

qaq̃a2bU2

2 (
a51

n

uf2mau2~ uqau21uq̃au2!

2
g2

2 H (
a51

n

~ uqau22uq̃au2!2cJ 2

. ~2.16!

A similar model has been considered previously in a diff
ent context@28–30#.

SUSY vacua are given by vanishing auxiliary fieldsX1

5X25X350, andFa5F̃a50. In the generic case of dis
en
ha

n

06500
l

-

tinct complex mass parametersmaÞmb for aÞb, we find
preciselyn isolated SUSY vacua~and no other vacua!. We
denote the modulus and phase of the magnetic FI param
b by two real parametersh.0 andb as

b5h2eib. ~2.17!

The i th vacuum is characterized by nonvanishing values
qa , q̃a , andf:

f5ma , qa5AAc214h41c

2
eiaa,

q̃a5AAc214h42c

2
ei (b2aa), ~2.18!

with vanishing values for the remaining hypermultipletsqb*

5q̃b* 50 (aÞb). At the ath vacuum, the phaseaa is fixed,
breaking aU(1) symmetry, which is a linear combination o
local gaugedU(1) and other globalU(1)n21 generators.
Because of the Higgs mechanism, the gauge boson sh
become massive in the vacuum. However, there still rem
U(1)n21 global symmetriesab , bÞa, unbroken as given in
Eq. ~2.4!.

The Hamiltonian corresponding to the Lagrangian~2.16!
is given by
H5
1

2g2
~v01

2 1v02
2 1v03

2 1v12
2 1v13

2 1v23
2 !1

1

2g2
@ u]0fu21u]1fu21u]2fu21u]3fu2#1 (

a51

n

@ uD0qau21uD1qau21uD2qau2

1uD3qau21uD0q̃au21uD1q̃au21uD2q̃au21uD3q̃au2#1 (
a51

n

uf2mau2~ uqau21uq̃au2!1
g2

2 H (
a51

n

~ uqau22uq̃au2!2cJ 2

12g2U(
a51

n

qaq̃a2bU2

. ~2.19!
a

Since the static domain wall junctions have nontrivial dep
dence only in two-dimensional spatial coordinates, we s
look for field configurations as a function ofx1 andx2 coor-
dinates and introduce the complex coordinatesz5x11 ix2,

z̄5x12 ix2, ]z5
1
2 (]12 i ]2), and ] z̄5

1
2 (]11 i ]2). We also

wish to maintain (111)-dimensional Lorentz invariance i
the x0,x3 plane. Therefore we need to require

v05v350, v015v025v035v135v2350, ~2.20!
-
ll

]0f50, D0qa50, D0q̃a50, ~2.21!

]3f50, D3qa50, D3q̃a50. ~2.22!

In order to find the minimum energy configuration for
given boundary condition, we form complete squares@19,20#
in the energy density functionalE by introducing an arbitrary
phaseV,uVu51,
5-4
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E5
1

2g2 Fv121g2H (
a51

n

~ uqau22uq̃au2!2cJ G2

1
2

g2U]zf2g2VS (
a51

n

qa* q̃a* 2b* DU2

14(
a51

n UDzqa2
1

2
V~f* 2ma* !q̃a* U2

14(
a51

n UDzq̃a2
1

2
V~f* 2ma* !qa* U2

1cv121]zF2V* S (
a51

n

~f2ma!qaq̃a2bf D G1] z̄F2VS (
a51

n

~f* 2ma* !qa* q̃a*

2b* f* D G1 (
a51

n

$]z@qa* Dz̄qa2qa~Dzqa!* #1]z@ q̃a* Dz̄q̃a2q̃a~Dzq̃a!* #%1 (
a51

n

$] z̄@qa~Dz̄qa!* 2qa* Dzqa#

1] z̄@ q̃a~D̃z̄q̃a!* 2q̃a* Dzq̃a#%1
1

2g2
]z~f* ] z̄f2f] z̄f* !1

1

2g2
] z̄~f]zf* 2f* ]zf!. ~2.23!
c

t

ar
tia
te

PS

lso
lly

of
ve

to
ce
The last four lines are total derivatives that give surfa
terms when integrated over the entirex1,x2 plane. Since all
the remaining terms are complete squares, we find that
integrated energy over thex1,x2 plane of the field configu-
ration is always larger than the surface terms, which
completely determined by the boundary condition at spa
infinity. This bound is called the BPS bound and is satura
by requiring the complete squares to vanish:

v1252g2H (
a51

n

~ uqau22uq̃au2!2cJ , ~2.24!

1

g2

]f

]z
5VS (

a51

n

qa* q̃a* 2b* D , ~2.25!

2Dzqa5V~f* 2ma* !q̃a* , ~2.26!
th

ld

tia

ts

06500
e

he

e
l
d

2Dzq̃a5V~f* 2ma* !qa* . ~2.27!

These first order differential equations are called the B
equations. Since the surface terms depend onV, the phase
factorV can be chosen to obtain the best bound. Let us a
note that the minimum energy configurations automatica
satisfy the equations of motion@19,20#.

Since the Lagrangian~2.1! with N51 superfield exhibits
N51 SUSY manifestly, we can formulate the condition
partial conservation of SUSY. We will see that the abo
minimum energy conditions~2.24!–~2.27! are precisely the
conditions to conserve one out of four SUSYs. We need
consider only the SUSY transformations of fermions, sin
only bosonic fields can have nonvanishing values. TheN
51 SUSY transformation of the gaugino is given by@47#
dj1
l5smnvmnj11 iX3j15F v032 iv121 iX3 v011v132 iv232 iv02

v012v132 iv231 iv02 2v031 iv121 iX3
GF j11

j12
G . ~2.28!
in
If we require that a part of the SUSY corresponding to
upper componentj11 is conserved (j1250), we find@20#

v125X3 , v0350, v015v13, v235v02. ~2.29!

Using the algebraic equation of motion for the auxiliary fie
~2.12!, the minimum energy condition~2.24! for the vector
multiplet is precisely the same as the condition of par
SUSY conservation condition~2.29!. Similarly, the N51
SUSY transformations of fermions in chiral scalar multiple
are given by@47#

dj1
~2 iA2c!5 iA2sm]m~f2ma!j̄11A2~X11 iX2!j1 ,

~2.30!

dj1
cqa

5 iA2smDmqaj̄11A2Faj1 , ~2.31!
e

l

dj1
c̄ q̃a

5 iA2s̄mDmq̃a* j11A2F̃aj̄1 . ~2.32!

For these transformations, we express the derivatives
terms of complex coordinates, assumingx1 ,x2 dependence
only:

sm]m5~s11 is2!
1

2
~]12 i ]2!1~s12 is2!

1

2
~]11 i ]2!

52s1]z12s2] z̄ , ~2.33!

where s1[(s11 is2)/2, s2[(s11 is2)/2. If we require
conservation of only one out of four SUSYs specified by

2Vs1j̄15 i j1 and s2j̄150, ~2.34!

we obtain@20#
5-5
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dj1
~2 iA2c!5 iA2sm]m~f2ma!j̄11A2~X11 iX2!j1

5 i2A2~s1]z1s2] z̄!~f2ma!j̄1

1A2~X11 iX2!j1

5A2j1V21@2]z~f2ma!1V~X11 iX2!#,

~2.35!

dj1
cqa

5 iA2smDmqaj̄11A2Faj1

5A2j1V21~2Dzqa1VFa!, ~2.36!

dj1
c̄ q̃a

5 iA2s̄mDmq̃a* j11A2F̃a* j̄1

5A2j1V21~2Dzq̃a1VF̃a!. ~2.37!

Therefore we find that the condition of conservation of o
out of four SUSYs is given by

1

g2

]f

]z
52V~X11 iX2!, 2Dzqa52VFa ,

2Dzq̃a52VF̃a . ~2.38!

The algebraic equations of motion for auxiliary fields a
given in terms of the superpotentialP:

X11 iX252S ]P

]f D *
, Fa52S ]P

]qa
D *

, F̃a52S ]P

]q̃a
D *

.

~2.39!

This superpotentialP as a function of scalar fields is given i
our case by

P5 (
a51

n

~f2ma!qaq̃a2bf. ~2.40!

Using the superpotential~2.40! and the algebraic equation
of motion for auxiliary fields~2.39!, we see that the mini-
mum energy conditions~2.25!–~2.27! are precisely the sam
as the conditions for the conservation of one out of fo
SUSYs~2.38!.

III. DOMAIN WALL JUNCTION

In order to obtain an exact solution for the junctions, w
shall embed the known solution into a solution of the B
equations~2.24!–~2.27! for our N52 SUSY massive multi-
flavor QED. We are making one complex structure manif
out of three by using theN51 superfield formalism. Al-
though the three FI parametersc, b15Reb, and b25Im b
form an SU(2)R triplet, the choice of a particular comple
structure made theSU(2)R symmetry not visible. In this
circumstance, we find it convenient to choose the FI para
etersc andb in Eq. ~2.17! as

c50, b5h2PR ~b50!. ~3.1!
06500
e

r

t

-

Then theath vacuum values of fields in Eq.~2.18! become

f5ma , qb5heiaadba , q̃b5he2 iaadba . ~3.2!

Since the known junction solution was obtained@20# with the
Z3 symmetry for SUSY vacua and with a relation betwe
the vacuum values of the charged chiral scalar fieldsqa ,q̃a
and the neutral scalar fieldsf, we should requiren53 fla-
vors with Z3 symmetry, and a relation between the ma
scales ofmb and the Fayet-Iliopoulos termh. Altogether we
assume the following particular values for the parameters
our model:

mb5
2gh

A3
ei (2p/3)b, b51,2,3. ~3.3!

The resulting vacua are illustrated in the complexf plane in
Fig. 1.

Combined with the algebraic equation of motion for t
auxiliary field X3 Eq. ~2.12! for a vector superfield, we can
satisfy the BPS equations~2.29! trivially by choosing

v0~x1,x2!5v3~x1,x2!50, uqb~x1,x2!u5uq̃b~x1,x2!u.
~3.4!

Suggested by this condition, we assume the following re
tion between values of the hypermultiplets@20#:

qb~x1,x2!e2 iab5q̃b~x1,x2!eiabPR, ~3.5!

in accordance with the vacuum values~3.2! which should be
reached at infinity. This assumption will be justifieda poste-
riori after finding solutions. We are interested in a BPS jun
tion configuration separating three vacuum domainsa
51,2,3 withZ3 symmetry, where the third vacuum is place
at infinity along the positive real axis as illustrated in Fig.
This configuration corresponds to the choice of the ph
factor V521 @20,21#. Now the remaining BPS equation
for chiral scalar multiplets~hypermultiplets and the chira
scalarf in the N52 vector multiplet! read

2
]qb

]z
5S 2gh

A3
ei (2p/3)b2f D *

qb , ~3.6!

Vacuum 3

Vacuum 1

Vacuum 2

Vacuum 3

φ

FIG. 1. Vacua in complexf plane.
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1

g2

]f

]z
5h22 (

b51

3

uqbu2. ~3.7!

We define a dimensionless complex coordinateẑ and real
dimensionless fieldsq̂b andf̂ by rescaling with the normal
ization factor associated with the vacuum values as

z5
A3

2

1

gh
ẑ, qb5heiabq̂b , f5

2

A3
ghf̂. ~3.8!

Then the BPS equations become

2
]q̂b

] ẑ
5~ei (2p/3)b2f̂ !* q̂b , q̂bPR, ~3.9!

2
]f̂

] ẑ
5

3

2 S 12(
b

q̂b
2D . ~3.10!

We can now recognize the familiar form of the BPS equat
allowing the junction as an exact solution@20,24#. Let us
define the following auxiliary quantitiesf b :

f b5expS 1

2
~e2 i (2p/3)bẑ1ei (2p/3)bẑ* ! D , b51,2,3.

~3.11!

The following identities can be derived for these auxilia
quantities@20,24#:

2
]

] ẑ
S f b

f 11 f 21 f 3
D5S e2 i (2p/3)b2

(
c

e2 i (2p/3)cf c

f 11 f 21 f 3

D
3

f b

f 11 f 21 f 3
, ~3.12!

2
]

] ẑ
S (

b
ei (2p/3)bf b

f 11 f 21 f 3

D 5
3

2
S 12

(
b

f b
2

~ f 11 f 21 f 3!2
D .

~3.13!

Therefore we find the solutions for the BPS equations

Vacuum 3

Vacuum 1

Vacuum 2

Vacuum 3

FIG. 2. TheZ3 junction in real spacez5x11 ix2.
06500
n

q̂b5
f b

f 11 f 21 f 3
, f̂5

(
b

ei (2p/3)bf b

f 11 f 21 f 3
. ~3.14!

These solutions can be rewritten in terms of our origin
variablesqb , f, andz,

qb5heiab
f b

f 11 f 21 f 3
, ~3.15!

q̃b5he2 iab
f b

f 11 f 21 f 3
, ~3.16!

f5
2gh

A3

(
b

ei (2p/3)bf b

f 11 f 21 f 3
, ~3.17!

where

f b5expS 2gh

A3

1

2
~e2 i (2p/3)bz1ei (2p/3)bz* !D , b51,2,3.

~3.18!

By rotating the field configuration by 2p/3, we find that
the solution~3.18! is precisely the same field configuratio
as in the previous junction solution in theN51 SUSY
theory@20# provided the dimensionful parameterh is related
to the parameterL through h5A2L. The field f of the
junction configuration takes values inside the triangle c
necting the three vacua as illustrated in Fig. 1. The stra
line segments between vacua on thef plane correspond to
spatial infinity in real space,z→`. As an illustration of the
asymptotic behavior of the junction configuration, the valu
of the fieldsqa , a51,2,3, choosingaa50 are shown along
the real axis in Fig. 3. The energy density computed anal
cally in our previous solution of theN51 SUSY model@20#
can easily be converted into our case ofN52 SUSY QED.
The energy density of the junction solution in ourN52
SUSY model is shown in Fig. 4.

Let us discuss zero modes in this junction solution. F
we notice that we have two massless bosons correspon
to spontaneously broken translation in two directionsx1,x2.
As for the two globalU(1) symmetries, both of them ar
broken in the junction solution, and there are two cor
sponding Nambu-Goldstone bosons. For each domain w
only two hypermultiplets have nontrivial field configuration
Therefore only one of the twoU(1) global symmetries is
spontaneously broken and only one Nambu-Goldstone bo
associated with theU(1) phase rotation appears@29,30#.
Since the brokenU(1) symmetry on each wall is a differen
combination of the twoU(1) global symmetries, the assoc
ated Nambu-Goldstone boson on each wall is also a diffe
linear combination of these two. This situation is very simi
to the property of the Nambu-Goldstone fermions on
junction that was observed previously@20,21#. As for fermi-
ons, six out of eight SUSYs are spontaneously brok
Therefore we have six Nambu-Goldstone fermions. On e
5-7
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wall, only four SUSYs are broken. Therefore there are fo
Nambu-Goldstone fermions on each wall. These fo
Nambu-Goldstone fermions on each wall are different lin
combinations of the six Nambu-Goldstone fermions in
junction as a whole, since different linear combinations
the SUSY charges are broken on each wall. This situatio
analogous to the previously obtained junction solution inN
51 theory @20,21#. It has been pointed out that the wa
provides a model to ‘‘localize’’ gauge bosons@29#. In this
context, one should note that one out of two Namb
Goldstone bosons associated with the twoU(1)’s mixes with
theU(1) gauge boson. We postpone a more detailed ana
of walls and junctions involving the gauge field for subs
quent publications.

Let us discuss possible junction configurations in ot
models. We have obtained an analytic solution for the ju
tion provided the mass parametersmi are tuned to the gaug
coupling g and the Fayet-Iliopoulos parameterb5h2 as in
Eq. ~3.3!. However, it is almost clear from continuity tha
junction configurations should exist even if the mass para
eters are perturbed infinitesimally away from the tuned v
ues. On the other hand, a junction configuration is not

-10

-5

0

5x1 -10

-5

0

5

10

x2

0

1

2

3

4

5

6

7

E

FIG. 4. Energy density of theZ3 junction configuration ofN
52 SUSY QED.
06500
r
r
r

e
f
is
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is
-

r
-

-
l-
l-

lowed if the masses are on a straight line in the comp
mass plane, for instance, if all masses are aligned on the
axis. Since the tension is given by the absolute value of
difference of the superpotentials, the possible junction c
figuration cannot satisfy the condition of mechanical stabi
@19# if the masses are on a straight line. We conjecture t
there should exist a ‘‘line of marginal stability’’ somewhe
between theZ3 symmetric mass parameters and the m
parameters on a straight line. The junction should beco
unstable across the line of marginal stability. An interest
example of the line of marginal stability for domain wal
has been explicitly demonstrated for a similar Wess-Zum
model @49#. Lines of marginal stability for monopoles an
dyons are well studied inN52 gauge theories@50#.

It is also likely that there exist junctions ofn-walls, al-
though it is difficult to work out explicit solutions except i
particular nonlinear sigma models@24#.

Similarly to our previous solution@21#, the Nambu-
Goldstone bosons and fermions on our junction solution
not normalizable. Therefore the usual wisdom of a lo
energy effective Lagrangian approach cannot be applied
ily to our junction solution. However, it has been observ
that a graviton zero mode is localized at the junction, if t
bulk space-time is warped@51#. This is due to a suppressio
factor produced by the bulk AdS~-like! space-time. It may
also be possible to exploit this mechanism to obtain norm
izable zero modes localized at the junction. The gene
properties of possible junction solutions have been studie
the presence of gravity@23#, although no explicit solution
has been obtained. This is an interesting subject for the
ture.

IV. EIGHT SUSY TRANSFORMATIONS

In this and the following sections, we return to the gene
case ofn flavors. There have been a number of studies
formulateN52 SUSY field theories in five dimensions i
terms of theN51 superfield formalism@5,41–44#. Inspired
by these studies@5,41,42#, we will redefine the auxiliary
5-8
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fields of chiral scalar fields for a hypermultiplet~2.7! and
~2.8! in order to identify all eight supersymmetry transform
tions

Fa5Fa82~f* 2ma* !q̃a* , F̃a52F̃a82qa* ~f* 2ma* !.
~4.1!

Instead of Eqs.~2.5!–~2.8!, the component expansions of th
superfields in powers of the Grassmann numberu1 now read

V152u1smū1vm1 iu1
2 ū1l̄2 i ū1

2 u1l1
1

2
u1

2 ū1
2 X3 ,

~4.2!
-

s-
n
t

fo
-

06500
F15f1A2u1~2 iA2c!1u1
2 ~X11 iX2!, ~4.3!

Q1a5qa1A2u1cqa
1u1

2 @Fa82~f* 2ma* !q̃a* #, ~4.4!

Q̃1a5q̃a1A2u1c q̃a
1u1

2 @2F̃a82qa* ~f* 2ma* !#. ~4.5!

In terms of these component fields, the full Lagrangi
~2.1! is given by
L52
1

4g2
vmnv

mn2
1

g2
ilsm]ml̄1

1

2g2
~X3!21

1

2g2
uX11 iX2u22

1

2g2
u]mfu22

1

g2
i c̄s̄m]mc2cX32b~X11 iX2!

2b* ~X12 iX2!1 (
a51

n

$@Fa8* 2q̃a~f2ma!#@Fa82~f* 2ma* !q̃a* #2uDmqau22 i c̄qa
s̄mDmcqa

2 iA2~ c̄qa
l̄qa2cqa

lqa* !

1X3uqau2%1 (
a51

n

$@2F̃a82qa* ~f* 2ma* !#@2F̃a8* 2~f2ma!qa#2uDmq̃au22 ic q̃a
smDmc̄ q̃a

1 iA2~ c̄ q̃a
l̄q̃a2c q̃a

lq̃a* !

2X3uq̃au2%1 (
a51

n

„~f2ma!$q̃a@Fa82~f* 2ma* !q̃a* #1@2F̃a82qa* ~f* 2ma* !#qa%1~X11 iX2!q̃aqa2c q̃a
~f2ma!cqa

1 iA2c q̃a
cqa1 iA2cqa

cq̃a…1 (
a51

n

„~f* 2ma* !$qa* @2F̃a8* 2~f2ma!qa#1@Fa8* 2q̃a~f2ma!#q̃a* %1~X12 iX2!qa* q̃a*

2c̄qa
~f* 2ma* !c̄ q̃a

2 iA2c̄ q̃a
c̄qa* 2 iA2c̄qa

c̄q̃a* …. ~4.6!
les
This is the full Lagrangian including fermion terms com
pared to the bosonic one in Eq.~2.9!.

To obtain theN51 SUSY transformations in the Wes
Zumino gauge, one has to combine an ordinary SUSY tra
formation with an accompanying gauge transformation
preserve the Wess-Zumino gauge. Let us consider the
SUSY transformationsdj1

given by an infinitesimal Grass

mann numberj1 in the direction ofu1 in Eqs.~4.2!–~4.5!.
The N52 vector multiplet represented by superfields~4.2!
and~4.3! transforms under the infinitesimal SUSYdj1

along

the left-handed spinoru1 in the Wess-Zumino gauge as@47#

dj1
vm5 i j̄1s̄ml1 i j1sml̄, ~4.7!

dj1
l5smnvmnj11 iX3j1 , ~4.8!

dj1
X35 j̄1s̄m]ml2j1sm]ml̄, ~4.9!

dj1
f5A2j1~2 iA2c!, ~4.10!
s-
o
ur

dj1
~2 iA2c!5 iA2sm]mfj̄11A2~X11 iX2!j1 ,

~4.11!

dj1
~X11 iX2!5 iA2j̄1s̄m]m~2 iA2c!. ~4.12!

Similarly, we obtain the supersymmetry transformation ru
for hypermultiplets in the Wess-Zumino gauge as

dj1
qa5A2j1cqa

, ~4.13!

dj1
cqa

5 iA2smDmqaj̄11A2@Fa8

2~f* 2ma* !q̃a* #j1 , ~4.14!

dj1
@Fa82~f* 2ma* !q̃a* #5 iA2j̄1s̄mDmcqa

12i j̄1l̄qa ,
~4.15!

dj1
q̃a5A2j1c q̃a

, ~4.16!
5-9
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dj1
c q̃a

5 iA2smDmq̃aj̄11A2@2F̃a8

2~f* 2ma* !qa* #j1 , ~4.17!

dj1
@2F̃a82~f* 2ma* !qa* #5 iA2j̄1s̄mDmc q̃a

22i j̄1l̄q̃a .
~4.18!

Let us now consider the remaining four SUSY transf
mationsdj2

also along the left-handed spinoru2 , which are

not manifest by the aboveN51 superfield formalism~2.1!
or the associated component formalism~4.6! in the Wess-
Zumino gauge. Please note that the Grassmann num
j2 ,u2 are left-handed chiral spinors, similarly toj1 ,u1 ,
and are not to be confused with the right-handed spinors
work out dj2

, we shall follow the classical method of Fay
@34#. The two sets of left-handed chiral spinor Grassma
numbersu1 andu2 should form a doublet under an intern
SU(2)R transformationM whose representation matrix
denoted by a 232 matrix M:

MS u1

u2
DM215M S u1

u2
D . ~4.19!

It is enough to consider a discrete transformation, for
stance, anSU(2)R rotation around the second axis byp:

M05exp~ ipI 2!, M05 is25S 0 1

21 0D . ~4.20!

Following Fayet, we demand thatvm , f, cqa
, andc q̃a

be

SU(2)R singlets, and that

S l

c D , S qa

q̃a*
D , S 2q̃a

qa*
D ~4.21!

be SU(2)R doublets. The equations of motion~2.12! and
~2.13! show that

S X1

2X2

X3

D ~4.22!

transforms as anSU(2)R triplet. The equations of motion fo
auxiliary fields in Eqs.~2.14!, ~2.15! for the hypermultiplets
become

Fa8* 5Fa* 1~f2ma!q̃a50, F̃a852F̃a2qa* ~f* 2ma* !50,
~4.23!

which suggest that the auxiliary fields in hypermultiple
generateSU(2)R doublets

S ~ma* 2f* !qa2F̃a8*

~ma* 2f* !q̃a* 1Fa8
D ;S qa

q̃a*
D ,
06500
-

ers

o

n

-

S 2q̃a~ma* 2f* !2Fa8*

qa* ~ma* 2f* !2F̃a8
D ;S 2q̃a

qa*
D . ~4.24!

By applying the discreteSU(2)R internal transformation
~4.20! with the assignment~4.21!–~4.24! to the first four
SUSYs~4.7!–~4.18! represented by an infinitesimalj1 , we
can find another four SUSYdj2

corresponding to an infini-

tesimal Grassmann numberj2 . We obtaindj2
transforma-

tions of the N52 vector multiplet in the Wess-Zumino
gauge:

dj2
vm5 i j2smc̄1 i j̄2s̄mc ~4.25!

dj2
c5smnvmnj22 iX3j2 , ~4.26!

dj2
~2X3!52j2sm]mc̄1 j̄2s̄m]mc

~4.27!

dj2
f5A2j2~A2il!, ~4.28!

dj2
~A2il!5 iA2sm]mfj̄21A2~2X11 iX2!j2 ,

~4.29!

dj2
~2X11 iX2!5 iA2j̄2s̄m]m~A2il!. ~4.30!

The transformation laws for theN52 vector multiplet
~4.7!–~4.12! with respect to the Grassmann numbersu1 and
~4.25!–~4.30! with respect to the Grassmann numbersu2 are
illustrated in Fig. 5. For a hypermultiplet, thedj2

transfor-
mations in the Wess-Zumino gauge are given by

dj2
q̃a* 5A2j2cqa

, ~4.31!

dj2
cqa

5 iA2smDmq̃a* j̄21A2@ F̃a8*

1~f* 2ma* !qa#j2 , ~4.32!

dj2
@ F̃a8* 1~f* 2ma* !qa#5 iA2j̄2s̄mDmcqa

12i j̄2c̄q̃a* ,
~4.33!

dj2
qa* 5A2j2~2c q̃a

!, ~4.34!

FIG. 5. The transformation laws for vector multiplets.
5-10
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dj2
~2c q̃a

!5 iA2smDmqa* j̄2

1A2@2Fa8* 1~f* 2ma* !q̃a#j2 ,

~4.35!

dj2
@2Fa8* 1~f* 2ma* !q̃a#

5 iA2j̄2s̄mDm~2c q̃a
!22i j̄2c̄qa* . ~4.36!

The transformation laws for theN52 hypermultiplet
~4.13!–~4.18! with respect to the Grassmann numbersu1

and~4.34!,~4.33! with respect to the Grassmann numbersu2

are illustrated in Fig. 6.
To summarize the transformation properties~4.25!–~4.33!

under dj2
, it is convenient to define the following supe

fields using another set of Grassmann numbersu2 :
th
c-

06500
V252u2smū2vm1 iu2
2 ū2c̄2 i ū2

2 u2c1
1

2
u2

2 ū2
2 ~2X3!,

~4.37!

F25f1A2u2~A2il!1u2
2 ~2X11 iX2!, ~4.38!

Q2a5q̃a* 1A2u2cqa
1u2

2 @ F̃a8* 1~f* 2ma* !qa#, ~4.39!

Q̃2a5qa* 1A2u2~2c q̃a
!1u2

2 @2Fa8* 1q̃a~f* 2ma* !#.
~4.40!

We can now rewrite the Lagrangian~4.6! to make the
second set of four SUSY transformationsdj2

~4.25!–~4.33!
manifest:
L52
1

4g2
vmnv

mn2
1

g2
i c̄s̄m]mc1

1

2g2
~2X3!21

1

2g2
uX12 iX2u22

1

2g2
u]mfu22

1

g2
ilsm]ml̄1c~2X3!1b~2X12 iX2!

1b* ~2X11 iX2!1 (
a51

n

$@2F̃a82qa* ~f2ma!#@2F̃a8* 2~f* 2ma* !qa#2uDmq̃au22 i c̄qa
s̄mDmcqa

2 iA2~ c̄qa
c̄q̃a*

2cqa
cq̃a!1~2X3!uq̃au2%1 (

a51

n

$@Fa8* 2q̃a~f* 2ma* !#@Fa82~f2ma!q̃a* #2uDmqau22 ic q̃a
smDmc̄ q̃a

1 iA2~2c̄ q̃a
c̄qa* 1c q̃a

cqa!2~2X3!uqau2%1 (
a51

n

„~f2ma!$qa* @2F̃a8* 2~f* 2ma* !qa#1@Fa8* 2q̃a~f* 2ma* !#q̃a* %

1~X12 iX2!qa* q̃a* 2c q̃a
~f2ma!cqa

2 iA2c q̃a
lq̃a* 1 iA2cqa

lqa* …1 (
a51

n

„~f* 2ma* !$q̃a@Fa2~f2ma!q̃* #

1@2F̃a82qa* ~f2ma!#qa%1~X11 iX2!q̃aqa2c̄qa
~f* 2ma* !c̄ q̃a

1 iA2c̄ q̃a
l̄q̃a2 iA2c̄qa

l̄qa…. ~4.41!
the
i-
SY
ur

re-
t

med
h
ns

or

en

of
We can finally assemble the above component form of
Lagrangian in anN51 superfield formalism using the se
ond set of Grassmann numbersu2 in Eqs.~4.37!–~4.40!, in
contrast to those superfields withu1 in Eqs.~4.2!–~4.5!:

L5
1

4g2
(W2

a Wa
2uu

2
2 1W̄ȧ

2
W̄2

ȧ u ū
2
2 )1

1

2g2
F2

† F2U
u

2
2 ū

2
2

1 (
a51

n

~Q2a
† e2V2Q2a1Q̃2a

† e22V2Q̃2a!uu
2
2 ū

2
2

12cV2uu
2
2 ū

2
2 1S (

a51

n

~F22ma!Q2aQ̃2auu
2
2

1b* F2uu
2
2 1H.c.D . ~4.42!
e Let us note that the Lagrangian is not invariant under
automorphismSU(2)R if FI parameters are present. Obv
ously, the Lagrangian is invariant under the eight SU
transformations when it is invariant under the first set of fo
SUSYs and the discreteSU(2)R transformationM0. How-
ever, it is important to realize that the Lagrangian rep
sented by Eqs.~4.6! and~4.42! is invariant under all the eigh
SUSY transformations~4.7!–~4.18! and ~4.25!–~4.33! irre-
spective of the values of the FI parametersc andb. This is
because the difference between the Lagrangian transfor
by M0 and the original one is given by the FI terms whic
are transformed to total derivatives by SUSY transformatio
dj1

and dj2
. Therefore the action is invariant as usual f

the SUSY theories.
Theories with eight SUSYs like our model have be

shown to possess three complex structures@26,48#. Our for-
mulation in terms of two sets of Grassmann numbersu1 ,u2

does not make this property manifest. In fact, our choice
5-11



-
ul
he

il
S

w
n
o
l-

in-

ry

on-

ers

a-

ee
ann

s

re-

ul
o

-
r-
,
ntz
l-
ry

K. KAKIMOTO AND N. SAKAI PHYSICAL REVIEW D 68, 065005 ~2003!
c50, bPR breaksSU(2)R symmetry and a particular com
plex structure has been selected. However, this partic
choice of complex structure will turn out to be useful for t
analysis of our model and solution. For instance, we w
show that we can choose one of the two conserved SU
directions fromu1 and the other fromu2 .

Since all the eight SUSY transformations are clarified,
are now in a position to determine precisely how ma
SUSY charges out of these eight are conserved by our s
tion ~3.15!–~3.17! of the domain wall junction. We have a
ready found in Eq.~2.34! that one out of four SUSYdj2

is

conserved. We need to examine another four SUSYdj2
. Let

us first consider the fermionsc q̃a
andcqa

in theN51 chiral

scalar superfieldsQ̃2a in Eq. ~4.39! and Q2a in Eq. ~4.40!
for the hypermultiplets

dj2
cqa

5 iA2sm]mq̃a* j̄21A2~f* 2ma* !qaj2

5 i2A2S s1]zq̃a* j̄21s2] z̄q̃a* j̄2

2 i
1

2
~f* 2ma* !qaj2D

5 i2A2~s1j̄21 i j2!]zq̃a* 1 i2A2s2j̄2] z̄q̃a* ,

~4.43!

dj2
~2c q̃a

!5 iA2sm]mqa* j̄21A2~f* 2ma* !q̃a)j2

5 i2A2S s1]zqa* j̄21s2] z̄qa* j̄2

2 i
1

2
~f* 2ma* !q̃aj2D

5 i2A2s2j̄2] z̄qa* 1 i2A2~s1j̄21 i j2!]zqa* .

~4.44!

Therefore the conserved SUSY direction is given by

s1j̄252 i j2 and s2j̄250. ~4.45!

FIG. 6. The transformation laws for hypermultiplets.
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We have to study the SUSY transformation of the rema
ing fermionsl and c̄ in the N51 chiral scalar superfields
F2 andV2 using the BPS equations~2.29! and ~2.38! with
V521 and algebraic equations of motion for the auxilia
fields ~2.39!. Moreover, we note thatX25X350 in our so-
lution. Then we find that the same SUSY directions are c
served forl:

dj2
~ iA2l!5 iA2sm]mfj̄21A2~2X11 iX2!j2 ,

5 i2A2~s1]z1s2] z̄!fj̄2

1A2~2X11 iX2!j2 ,

5 i2A2~s1j̄21 i j2!]zf1 i2A2s2j̄2] z̄f50,

~4.46!

with the same infinitesimal SUSY transformation paramet
~4.45!. The right-hand side of thej2 transformation ofc in
Eq. ~4.26! involves only vm and X3, which vanish in our
solution. Therefore they conserve all the SUSY transform
tions trivially.

Summarizing our results for all the eight SUSYs, we s
that there are two conserved directions in the Grassm
parameter:

s1j̄15 i j1 and s2j̄150, ~4.47!

s1j̄252 i j2 and s2j̄250. ~4.48!

That is, we have determined the two conserved direction

j115 i ~j11!* , j1250, j2152 i ~j21!* , j2250,
~4.49!

where we set

j15S j11

j12
D , j̄15S j̄1

1̇

j̄1
2̇ D 5S ~j12!*

2~j11!* D , ~4.50!

j25S j21

j22
D , j̄25S j̄2

1̇

j̄2
2̇ D 5S ~j22!*

2~j21!* D . ~4.51!

We have now established that our domain wall solution p
serves two out of eight SUSYs.

V. DIMENSIONAL REDUCTION FROM FIVE
DIMENSIONS

The N51 superfield formalism is of course most usef
to studyN51 SUSY theories in four dimensions. It can als
be used to describe theN52 SUSY theories in four dimen
sions making only four out of eight SUSYs manifest. In o
der to describeN52 SUSY theories in five dimensions
however, we need to sacrifice the five-dimensional Lore
invariance@5,41–44#. In terms of components, we can a
ways express theN52 SUSY theories with all the necessa
5-12
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auxiliary fields to close the algebra off shell in the Wes
Zumino gauge.

The highest dimension allowed by theN52 SUSY is 6.
The hypermultiplet in six dimensions cannot have mass
The five-dimensional theories can be obtained by a dim
sional reduction from six dimensions. If we perform a no
trivial dimensional reduction, allowing the momenta in t
sixth dimension, we obtain a massive hypermultiplet@45#.
Therefore the hypermultiplets in five dimensions can ha
only real mass parameters. TheN52 SUSY theories in four
dimensions can be obtained by dimensionally reducing
five-dimensional theories. The real scalar fieldS in five di-
mensions comes originally from the sixth component of
gauge field, and the combinationS1 iv5 becomes a complex
scalar in four dimensions, when we consider the reductio
four dimensions. To obtain the four-dimensional theory w
complex mass parameters, we should perform a nontri
dimensional reduction in thex5 direction. In this process, th
mass terms arise as momenta in the fifth dimension. C
versely, we can recover the five-dimensional theory by
storing the fifth dimension from the imaginary part of th
complex mass parameterma[maR1 imaI as

]5qa52 imaIqa , ]5cqa
52 imaIcqa

. ~5.1!

The imaginary part of the complex scalar fieldf can also be
identified as the fifth component of the vector fieldv5 as

f5S1 iv5 . ~5.2!

We can recover the covariant derivative along the fifth dir
tion as

i ~v52maI!qa5~]51 iv5!qa5D5qa . ~5.3!

Therefore the mass terms associated with the quark fields
reduced to covariant derivatives in the fifth dimension,

~f2ma!qa5@~S2maR!1 i ~v52maI!#qa

5@~S2maR!1D5#qa . ~5.4!

In the spirit of theN51 superfield formalism, we can
express theN52 vector and hypermultiplets in five dimen
sions by two kinds of superfields, similarly to our resu
~4.2!–~4.5! and ~4.37!–~4.40! for four-dimensionalN52
theories. Theu1 superfields are given by
06500
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V1~x,u1 ,ū1!52u1smū1vm1 iu1
2 ū1l̄2 i ū1

2 u1l

1
1

2
u1

2 ū1
2 ~X32]5S!, ~5.5!

F1~y,u1!5~S1 iv5!1A2u1~2 iA2c!

1u1
2 ~X11 iX2!, ~5.6!

Q1a~y,u1!5qa1A2u1cqa
1u1

2 @Fa81D5q̃a*

2~S2maR!q̃* #, ~5.7!

Q̃1a~y,u1!5q̃a1A2u1c q̃a
1u1

2 @2F̃a82D5qa*

2qa* ~S2maR!#. ~5.8!

The u2 superfields are given by

V2~x,u2 ,ū2!52u2smū2vm1 iu2
2 ū2c̄2 i ū2

2 u2c

1
1

2
u2

2 ū2
2 ~2X32]5S!, ~5.9!

F2~y,u2!5~S1 iv5!1A2u2~A2il!

1u2
2 ~2X11 iX2!, ~5.10!

Q2a~y,u2!5q̃a* 1A2u2cqa
1u2

2 @ F̃a8* 2D5qa

1~S2maR!qa#, ~5.11!

Q̃2a~y,u2!5qa* 1A2u2~2c q̃a
!1u2

2 @2Fa8* 1D5q̃a

1q̃~S2maR!#. ~5.12!

Please note that all the fields depend on the coordinatex5 in
five dimensions, in spite of having almost the same app
ance as the four-dimensional superfields.

Since the mass term in five dimensions can be obtaine
a nontrivial dimensional reduction from six dimensions, w
can have only real mass parameters in the LagrangianmaR
@42,45#. Therefore we find the Lagrangian in terms of theu1

N51 superfields in Eqs.~5.5!–~5.8! as
L5
1

4g2
(W1

a Wa
1uu

1
2 1W̄ȧ

1
W̄1

ȧ u ū
1
2 )1

1

g2 S ]5V2
F1

† 1F1

2 DU
u

1
2 ū

1
2

1 (
a51

n

~Q1a
† e2V1Q1a1Q̃1a

† e22V1Q̃1a!uu
1
2 ū

1
2

22cV1uu
1
2 ū

1
2 1S (

a51

n

Q̃1a~]51F12ma!Q1auu
1
2 2bF1uu

1
2 1H.c.D . ~5.13!

The same Lagrangian is given in terms of theu2 N51 superfields in Eqs.~5.9!–~5.12! as
5-13
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L5
1

4g2
(W2

a Wa
2uu

2
2 1W̄ȧ

2
W̄2

ȧ u ū
2
2 )1

1

g2 S ]5V2
F2

† 1F2

2 DU
u

2
2 ū

2
2

1 (
a51

n

~Q2a
† e2V2Q2a1Q̃2a

† e22V2Q̃2a!uu
2
2 ū

2
2 12cV2uu

2
2 ū

2
2

1S (
a51

n

Q̃2a~]51F22ma!Q2auu
2
2 1b* F2uu

2
2 1H.c.D . ~5.14!

In terms of components, we can express the Lagrangian more symmetrically with respect to theSU(2)R symmetry:

L5Lboson1Lfermion, ~5.15!

Lboson52
1

4g2
FMNFMN2

1

2g2
~]MS!21

1

2g2
$~X1!21~X2!21~X3!2%1c~2X3!1b~2X12 iX2!1b* ~2X11 iX2!

1 (
a51

n

@2uDMqau22uDMq̃au21uF8u21uF̃8u22~S2maR!2~ uqau21uq̃au2!1X3~ uqau22uq̃au2!

1~X11 iX2!q̃aqa1~X12 iX2!qa* q̃a* #, ~5.16!

Lfermion52
1

g2
ls̄m]ml̄2

1

g2
c̄s̄m]mc2

1

g2
c]5l2

1

g2
c̄]5l̄1 (

a51

n

@2 i c̄qa
s̄mDmcqa

2 ic q̃a
smDmc̄ q̃a

2c q̃a
D5cqa

2c̄ q̃a
D5c̄qa

2c q̃a
~S2maR!cqa

2c̄ q̃a
~S2maR!c̄qa

1 iA2$~c q̃a
c2c̄qa

l̄ !qa2~c q̃a
l1c̄qa

c̄ !q̃a*

1~cqa
l2c̄ q̃a

c̄ !qa* 1~cqa
c1c̄ q̃a

l̄ !q̃a%#

52
1

2g2
l̄ ig

M]Ml i1 (
a51

n

@2c̄agM]Mca2c̄a~S2maR!ca2 iA2c̄al ie i j qa
j 1 iA2l̄ icae i j qja* #, ~5.17!
e
e

ze

r

the
ent

s-

s for
xtra

-
ast
tion
s of
lize
where the capitalized indicesM ,N, . . . run over 0,1,2,3,5.
The gamma matrices in five dimensions are given by 434
matrices as

gM5S S 0 sm

s̄m 0 D ,S 2 i 0

0 i D D , ~5.18!

wheresm5(1,sW ) and s̄m5(1,2sW ) @47#. To achieve theN
52 SUSY off-shell formalism, it is convenient to mak
SU(2)R manifest. In the case of a vector multiplet, th
spinors in five dimensions are most conveniently organi
in terms of the symplectic@SU(2)# Majorana spinorsl i , i
51,2, transforming as doublets under theSU(2)R symmetry.
The SU(2) Majorana spinor is defined by

l i5e i j Cl̄ j
T , ~5.19!

where the charge conjugation matrixC in five dimensions
satisfiesCgMC215(gM)T, CT52C, andCC†51. An ex-
plicit form may be given byC5diag(is2,is2). The spinors
in the N52 vector multiplet can be assembled into a fou
componentSU(2) Majorana spinorl i as

l15S la

c̄ȧD , l25S ca

2l̄ ȧD , ~5.20!
06500
d

-

l̄15~ca l̄ȧ!, l̄25~2la c̄ȧ!. ~5.21!

The spinors in the hypermultiplets are singlets under
SU(2)R symmetry and are assembled into a four-compon
spinorca for each flavor:

c5S cqa

c̄ q̃a
D , c̄5~c q̃a 2c̄qa!. ~5.22!

The scalars and auxiliary fields in the hypermultiplet tran
form as doublets underSU(2)R as given in Eqs.~4.21! and
~4.24!.

The above five-dimensional Lagrangian~5.15!–~5.17!
makes it clear that we can have only real mass parameter
a hypermultiplet that is obtained as a momentum in one e
dimension ~the sixth dimension! through a nontrivial
~Scherk-Schwarz! @46# dimensional reduction from six di
mensions@45#. On the other hand, we need to have at le
three discrete vacua in the complex field plane. This situa
can be realized in our model through the complex masse
hypermultiplets. This is the reason why we cannot genera
our junction solution to five or six dimensions.
5-14
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