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Recently, it was pointed out that quantum orders and the associated projective symmetry groups can produce
and protect massless gauge bosons and massless fermions in local bosonic models. In this paper, we demon-
strate that a state with such kinds of quantum order can be viewed as a condensed state of nets of strings. The
emergent gauge bosons and fermions in local bosonic models can be regarded as a direct consequence of
string-net condensation. The gauge bosons are fluctuations of large closed string nets. The ends of open strings
are the charged particles of the corresponding gauge field. For certain types of strings, the ends of open strings
can even be fermions. According to the string-net picture, fermions always carry gauge charges. This suggests
the existence of a new discrete gauge field that couples to neutrinos and neutrons. We also discuss how chiral
symmetry that protects massless Dirac fermions can emerge from the projective symmetry of quantum order.
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[. INTRODUCTION Second, we would like to clarify what we mean by the
“origin of light and fermions.” We know that everything has
to come from something. So when we ask where light and
We have known about light and fermions for many yearsermions come from, we have assumed that there are some
But we still cannot giVe a Satisfactory answer to the fO”OW'thingS Simp'er and more fundamental than ||ght and fermi_
ing fundamental questions: What are light and fermionsgns. In Sec. II, we define local bosonic models that are sim-
Where do light and fermions come from? Why do light andpjer than models with gauge fields coupled to fermions. We
fermions exist? At the moment, the standard answers to th@”“ regard local bosonic models as more fundamem
above fundamental questions appear to be “light is the parocality principle. We will show that light and fermions can
ticle described by a gauge field” and “fermions are the par-emerge from a local bosonic model if the model contains a
ticles described by anticommuting fields.” Here, we would condensation of nets of stringlike object in its ground state.
like to argue that there is another pOSSible answer to the After the above two C|arificationsy we can state more pre-
above questions: our vacuum is filled with Stringlike ObjeCtSCise|y the meaning Of the statement that String_net Condensa_
that form a network of arbitrary sizes and those string netsion provides another possible answer to the fundamental
form a quantum condensed state. According to the string—mﬁuestions about light and fermions. When we say gauge
picture, light(and other gauge bosonis a vibration of the  hosons and fermions originate from string-net condensation,
condensed string nets, and fermions are the ends of stringge really mean thafnearly masslesgauge bosons and fer-
(or nodes of string netsString-net condensation provides a mions originate from string-net condensation inlacal

A. Fundamental questions about light and fermions

unified origin of light and fermions. bosonic model
Before discussing the above fundamental questions in
more detail, we would like to clarify what we mean by “light B. Gapless phonons and symmetry breaking order

exists” and “fermions exist.” We know that there is a natural
mass scale in physics—the Planck mass. The Planck mass j
so large that any observed particle has a mass at least a fac

6
of 10'® smaller than the Planck mass. So all observed parQUestions about the phonon: What is a phonon? Where do

ticles can be treated as massless when compared with ”E)‘F]onons come from? Why do phonons exist? We know that
Planck mass. When we ask why some particles exist, Weyose are scientific questions and we know their answers. A
really ask why those particles are massl@ssnearly mass-  phonon is a vibration of a crystal. It comes from a spontane-
less when compared with the Planck mas® the real issue ous translation symmetry breaking. It exists because the
is to understand what makes certain excitati@gh as light  translation symmetry breaking phase actually exists in na-
and fermiong massless. We know that symmetry breaking isture. In particular, the gaplessness of the phonon directly
a way to get gapless bosonic excitations. We will see thapriginates from and is protected by the spontaneous transla-
string-net condensation is another way to get gapless excitéion symmetry breaking1,2]. Many other gapless excita-
tions. However, string-net condensations can generate mas#sns, such as spin waves, superfluid modes, etc., also come

Before considering the origin of massless photon and
assless fermions, let us consider a simpler masslass
éples}s excitation—the phonon. We can ask three similar

less gauge bosons and massless fermions. from the condensation of pointlike objects that break certain
symmetries.
It is quite interesting to see that our understanding of a
*URL: http://dao.mit.edut wen gapless excitation—the phonon—is rooted in our under-
Here, by “string-net condensation” we mean the condensation ostanding of phases of matter. According to Landau’s theory
nets of stringlike objects of arbitrary sizes. [3], phases of matter are different because they have different
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broken symmetries. The symmetry description of phases isg theory cannot describe different FQH states, since those
very powerful. It allows us to classify all possible crystals. It states all have theamesymmetry. It has been proposed that
also provides the origin for gapless phonons and many othefQH states contain a new kind of order—topological order
gapless excitations. Until a few years ago, it was believeds]. Topological order is new because it cannot be described
that the condensations of pointlike objects, and the relategy symmetry breaking, long range correlation, and local or-
symmetry breaking and order parameters, can describe aler parameters. None of the usual tools that we use to char-
the types of ordefor phasekin nature. acterize phases applies to topological order. Despite this, to-
pological order is not an empty concept. Topological order
C. The existence of light and fermions implies the existence  can be characterized by a new set of tools, such as the num-
of new kinds of order ber of degenerate ground states, quasiparticle statistics, and
Knowing that light is a massless excitation, one may won-€dge states. It was shown that the ground state degeneracy of
der whether light, just like phonons, is also a Nambu-a topological ordered state is a universal property since the
Goldstone mode from a broken symmetry. However, experidegeneracy is robust against any perturbatigiis Such a
ments tell us that & (1) gauge boson, such as light, is really topological degeneracy demonstrates the existence of topo-
different from a Nambu-Goldstone mode ir3 dimensions. logical order. It can also be used to perform fault tolerant
Therefore it is impossible to use Landau’s symmetry breakguantum computations].
ing theory and condensation of pointlike objects to under- Recently, the concept of topological order was general-
stand the origin and the masslessness of light. Also, Nambuzed to quantum orddi9,10]. Quantum order is used to de-
Goldstone modes are always bosonic; thus it is impossible tgcribe new kinds of order in gapless quantum states. One
use symmetry breaking to understand the origin andahe \yay to understand quantum order is to see how it fits into a
mqsf) masslessness of fe(mions. It seems that.there does Ngkneral classification scheme of types of ortime Fig. L
exist any order that can give rise to massless light and masg;jrs; different types of order can be divided into two classes:
less fermions. Because of this, we put light and electrons int ymmetry breaking order and nonsymmetry breaking order.
a different category from phonons. We regarded them as ek, symmetry breaking orders can be described by a local

ementary and introduced them by hand into our theory ot)rder parameter and can be said to contain a condensation of

nature. T ; . )
However, if we believe that light and electrons, just like pointlike objects.. All kinds of symmetry breaking order can
phonons, exist for a reason, then this reason must be a cert i understood in terms of Landaus symmetry breaking
eory. The nonsymmetry breaking orders cannot be de-

order in our vacuum that protects the masslessness of light . _
and electrons(Here we have assumed that light and elec-Scribed by symmetry breaking, nor by the related local order

trons are not something that we place in an empty Vacuunp_arameters and long range correlations. Thus they are a new
Our vacuum is more like an “ocean” which is not empty. Kind of order. If a quantum systefa state at zero tempera-
Light and electrons are collective excitations that correspondré) contains a nonsymmetry breaking order, then the sys-
to certain patterns of “water” motion.Now the question is temis said to contain a nontrivial quantum order. We see that
what kind of order can give rise to light and electrons anda quantum order is simply a nonsymmetry breaking order in
protect their masslessness. a quantum system.

If we really believe in the equality between light, elec- Quantum order can be further divided into many sub-
trons, and phonons, then the very existence of light and ferlasses. If a quantum state is gapped, then the corresponding
mions indicates that our understanding of the states of matteyuantum order will be called topological order. The low en-
is incomplete. We should deepen and expand our understandrgy effective theory of a topological ordered state will be a
ing of the states of matter. There should be new states dbpological field theornyf11]. The second class of quantum
matter that contain new kinds of order. The new types oforder appears in Fermi liquidsr free fermion systemsThe
order will produce light and electrons and protect their massdifferent kinds of quantum order in Fermi liquids are classi-

lessness. fied by the Fermi surface topolody0,12.
D. Topological order and quantum order E. Quantum order from string-net condensation
After the discovery of the fractional quantum H&HQH) In this paper, we will concentrate on the third class of

effect[4,5], it became clear that the Landau symmetry break-quantum order—the quantum order from condensation of
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nets of strings, or simply string-net condensat{dr3,14]. of gauge bosons and fermions has already been falsified by
This class of quantum order shares some similarities with thexperiments. Here we would like to point out that the string-
symmetry breaking order of “particle” condensation. We net picture of gauge bosons and fermions can still be correct
know that different types of symmetry breaking order can bdaf we assume the existence of a new discrete gauge field,
classified by symmetry groups. Using group theory, we carsuch as &, gauge field, in our universe. In this case, neu-
classify all the 230 kinds of crystal order in three dimen-trons and neutrinos carry a nonzero charge of the discrete
sions. The symmetry also produces and protects gaplegmuge field. Therefore, the string-net picture of gauge bosons
Nambu-Goldstone bosons. Similarly, as we will see later inand fermions predicts the existence of discrete gauge excita-
this paper, different string-net condensati¢asd the corre- tions (such as gauge flux lingén our universe.
sponding quantum ordersan be classified by a mathemati-  We would like to remark that, despite the similarity, the
cal object called the projective symmetry groypSQ above string-net picture of gauge bosons and fermions is
[9,10]. Using the PSG, we can classify over 100 different 2Ddifferent from the picture of standard superstring theory. In
spin liquids that all have the same symmd®Y. Just like the  standard superstring theory, closed strings correspond to
symmetry group, the PSG can also produce and protect gagravitons, and open strings correspond to gauge bosons. All
less excitations. However, unlike the symmetry group, thehe elementary particles correspond to different vibration
PSG produces and protects gapless gauge bosons and gaplessies of small strings in superstring theory. Also, the fermi-
fermions[9,15,16. Because of this, we can say that light andons in standard superstring theory come from the fermion
massless fermions can have a unified origin. They can comigelds on the world sheet. In our string-net picture, the
from string-net condensation. vacuum is filled with large nets of strings. The massless
We used to believe that to have light and fermions in ourgauge bosons correspond to the fluctuations of large closed
theory, we had to introduce by hand a fundamentdll) string nets(i.e., nets of closed stringgnd fermions corre-
gauge field and anticommuting fermion fields, since at thaspond to the ends of open strings in string nets. Anticommut-
time we did not know any collective modes that behave likeing fields are not needed to produgearly massless fermi-
gauge bosons and fermions. Now we know that gaugens. Massless fermions appear as low energy collective
bosons and fermions appear commonly and naturally inmodes in a purely bosonic system.
guantum ordered states, as fluctuations of condensed string The string-net picture for gauge theories has a long his-
nets and the ends of open strings. This raises an issue: dory. The closed-string description of gauge fluctuations is
light and fermions come from a fundamenta(1) gauge intimately related to the Wilson loop in gauge thedfy’—
field and anticommuting fields as in the 123 standard model9]. The relation between dynamical gauge theory and a dy-
or do they come from a particular quantum order in ournamical Wilson-loop theory was suggested in RE29),21).
vacuum? Clearly, it is more natural to assume that light andReference[22] studied the Hamiltonian of a nonlocal
fermions come from a quantum order in our vacuum. Fronmmodel—Ilattice gauge theory. It was found that lattice gauge
the connection between string-net condensation, quantum otheory contains a string-net structure and the gauge charges
der, and massless gauge/fermion excitations, it is very temptan be viewed as the ends of strings. In RE18,24] various
ing to propose the following answers to the fundamentabuality relations between lattice gauge theories and theories
questions about light anghearly) massless fermions. of extended objects were reviewed. In particular, some sta-
What are light and fermions®ight is a fluctuation of tistical lattice gauge models were found to be dual to certain
condensed string nets of arbitrary sizes. Fermions are ends sfatistical membrane moddI85]. This duality relation is di-
open strings. rectly connected to the relation between gauge theory and
Where do light and (nearly) massless fermions comelosed-string-net theoryl3] in quantum models.
from? Light and fermions come from the collective motions  To have emergent gauge bosons at low energies, the string
of nets of stringlike objects that fill our vacuum. nets do not have be a fundamental object in the model. The
Why do light and (nearly) massless fermions exisght  string net can simply be lines of flipped spins in a spin lattice
and the fermions exist because our vacuum chooses to haweodel. Thus deconfined gapless gauge bosons can emerge
a string-net condensation. from a local bosonic model if the Hamiltonian has the right
Had our vacuum chosen to have a “particle” condensa-<couplings[13,15,27,2%
tion, there would be only Nambu-Goldstone bosons at low Emergent fermions from local bosonic models also have a
energies. Such a universe would be very boring. String-netomplicated history. ReferencEg8—3( discovered that fer-
condensation and the resulting light atkarlyy massless mions can emerge from purely bosonic gauge theory. The
fermions provide a much more interesting universe, at leadirst examples of emergent fermions/anyons from local
interesting enough to support intelligent life to study the ori-bosonic models were the fractional quantum Hall states
gin of light and massless fermions. [4,5], where fermionic/anyonic excitations were obtained
The string-net picture of fermions explains why there istheoretically from interacting bosons in a magnetic fi&].
always an even number of fermions in our universe. Thdn 1987, fermion fields and gauge fields were introduced to
string-net picture for gauge bosons and fermions also has axpress the spin-1/2 Hamiltonian in the slave-boson ap-
experimental prediction: all fermions must carry certainproach[32,33. However, writing a bosonic Hamiltonian in
gauge chargefl4]. At first sight, this prediction appears to terms of fermion fields does not imply the appearance of
contradict the known experimental fact that neutrons carryell defined fermionic quasiparticles. Emergent fermionic
no gauge charges. Thus one may think the string-net picturexcitations can appear only in deconfined phases of the
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gauge field. Referencd84—37 constructed several decon- examples among a long list of local boson models
fined phases where the fermion fields do describe well de-8,26,27,33,34,36—38,40,42-J5that contain emergent fer-
fined quasiparticles. However, depending on the property omions and gauge fields.
deconfined phases, those quasiparticles may carry fractional Here we would like to stress that the string-net picture for
statistics(for the chiral spin state§34,35,38 or Fermi sta- the actual gauge bosons and fermions in our universe is only
tistics (for the Z, deconfined state¢$36,37). a proposal at the moment. Although string-net condensation
Also in 1987, in a study of resonating-valence-bondcan produce and protect massless photons, gluons, quarks,
states, emergent fermiorithe spinonswere proposed in a and other charged leptons, we do not know at the moment if
nearest neighbor dimer model on a square laft8®-41.  string-net condensation can produce neutrinos, which are
But, according to the deconfinement picture, the results irthiral fermions, and the weak-interacti®tJ(2) gauge field,
Refs.[39,40 are valid only when the ground state of the which couples chirally to the quarks and the leptons. Also,
dimer model is in th&, deconfined phase. It appears that thewe do not know if string-net condensation can produce an
dimer liquid on a square lattice with only nearest neighborodd number of families of quarks and leptons. The QED and
dimers is not a deconfined stef€0,41], and thus it is not  cp produced by the known string-net condensations all
clear whether or not the nearest neighbor dimer model on gqntain an even number of families so far. The correctness of
square latticg40] has fermionic quasiparticleistl]. HOW- iy net condensation in our vacuum depends on resolving

ever, on a triangular lattice, the dimer quuiq is indeed a the above problems. Nature has four fascinating and some-
deconfined statpd2]. Therefore, the results in Refs39,4Q what strange properties: gauge bosons, Fermi statistics, chi-

are valid for the triangular-latiice dimer model and fermionic fermions, and gravity. The string-net condensation picture
guasiparticles do emerge in a dimer liquid on a triangular

. provides a natural explanation for the first two properties.
lattice. Two more to go

'3" lthe ar?ovetrr’?odels with te][nergent fermu;ns ézgl)? di On the other hand, if we are concerned about the con-
models, where the emergent termions can be Understood fy ooy matter problem of how to use bosons to make artifi-
terms of binding flux to a charged partidlgl]. Recently, it

. . . cial light and artificial fermions, then the string-net picture
was .pomted. out in Re{14] that Fhe key to emergent fermi- and quantum order do provide an answer. To make artificial
ons is a string structure. Fermions can generally appear

. . . gt and artificial fermions, we simply | rtain string n
the ends of open strings. The string picture allows construc—% t and artificial fermions, we simply let certain string nets

. . condense.
tion .of a (3+1)D local bosonic model that has emergent In some recent work, types of quantum order and their
fermions[14].

. . connection to emergent gauge bosons and fermions were
Compared with those previous results, the new feature 9 gaug

discussed in this paper are as follows) Masslessyauge Studied using PSG's, without realizing their connection to
Iscu ' IS pap " -SSgaug string-net condensatid®,15,50. In this paper, we will show
bosons and fermions can emerge frtmoal bosonic models

It of stri ¢ d i6R) Mass| formi that the quantum ordered states described by PSG’s are ac-
as a resutt of stning-net condensatl assiess lermions tually string-net condensed states. The gauge bosons and fer-
are protected by t_he string-net condensatiamd the associ- mions produced and protected by the PSG's have a very
E.teg PfSE' ©) S;_nr;]g-net c?gdednsed_stz(ajtelz_s rzpre,sent a n?vﬁatural string-net interpretatidri3,14]. Quantum order, the

Ind of pnase which cannot be describéd Landaus Symme r%SG, and string-net condensation are different parts of the
breaking .theory. Dllfferent string-net condensed states ACame story. Here we will summarize and expand the previous
grl]aer?;ée;r'éﬁj ;%ggiﬁgﬁfﬁgg&%ﬁg ingichgt[t)ic(e::ar]rh é[/vork and try to present a coherent picture of quantum order,
effective QED and QCD haveNi families of leptons and he PSG, and string-net condensation, as well as the associ-

quarks. Each family has one lepton and two flavors otated emergent gauge bosons and fermions.
quarks.
The bottom line is that, within local bosonic models,
massless fermions do not just emerge by themselves. Emer- Section Il reviews the work in Ref14]. We will study
gent massless fermions, emergent massless gauge bosoas,exactly soluble spin-1/2 model on a square laf&;80].
string-net condensations, and PSG's are intimately related’he model was solved using the slave-boson apprfa@h
They are just different sides of the same coin—quantum orThis allowed us to identify the PSG that characterizes the
der. nontrivial quantum order in the ground std&9]. Here, fol-
According to the picture of quantum order, elementarylowing Ref.[14], we will solve the model from the string-net
particles(such as photons and electrpnsay not be elemen- condensation point of view. Since the ground state of the
tary after all. They may be collective excitations of a localmodel can be described by both string-net condensation and
bosonic system below the Planck scale. Since we cannot dbe PSG, this allows us to demonstrate the direct connection
experiments close to the Planck scale, it is hard to determinketween string-net condensation and the PSG in Sec. IV. The
if photons and electrons are elementary particles or not. Imodel is also one of the simplest models that demonstrates
this paper, we would like to show that the string-net picturethe connection between string-net condensation and the
of light and fermions is at least self-consistent by studyingemergent gauge field and fermiof&14).
some concrete local boson models that produce massless However, the above exact soluble model does not contain
gauge bosons and massless fermions through string-net cogapless gauge boson and gapless fermions. If we regard the
densation. The local boson models studied here are just a felattice scale as the Planck scale, then gauge bosons and fer-

F. Organization
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In this paper, we will consider only local bosonic models. Uterm even plaguette
Local bosonic models are important since they are really
local. We note that fermionic models are in general nonlocal FIG. 2. An open-string excitation on top of the ground state of
since the fermion operators at different sites do not commutes -
even when the sites are well separated. Due to their intrinsic
locality, local bosonic models are natural candidates for thé&trings with or without overlap. We will call a closed-string
fundamental theory of nature. In the following we will give a configuration a closed string net. For every closed string net,
detailed definition of local bosonic models. we assign a quantum state. All those quantum states form a
To define a physical system, we need to spe@fya total ~ basis of the total Hilbert space of the closed-string-net

Hilbert space(B) a definition of a set of local physical op- model. Just as in lattice gauge theory, the closed-string-net
erators, andC) a Hamiltonian. With this understanding, a model is not a local bosonic model since the total Hilbert
local bosonic model is defined to be a model that satisfies thepace cannot be a direct product of local Hilbert spaces. It
following. (A) The total Hilbert space is a direct product of turns out that closed-string-net models and lattice gauge
local Hilbert spaces of finite dimension®) Local physical models are closely related. In fact some closed-string-net
operators are local bosonic operators. By definitimzal =~ models(or statistical membrane modglare equivalent to
bosonic operatorsre operators acting within a local Hilbert lattice gauge modelg22-25.
space or finite products of those operators for nearby local
Hilbert spaces. Those operators are called local bosonic opl. z, SPIN LIQUID AND STRING-NET CONDENSATION

mions do not “exist” in our model in the sense discussed in
Sec. 1 A. In Sec. V, we will discuss an exact soluble local
bosonic model that contains massless Dirac fermions. In
Secs. VIl and VIII, we will discuss local bosonic models that
give rise to massless electrons, quarks, gluons, and photons.
Gauge bosons and fermions “exist” in these latter models.

Il. LOCAL BOSONIC MODELS

erators since they all commute with each other when far ON A SQUARE LATTICE
apart.(C) The Hamiltonian is a sum of local physical opera- o ) _ _
tors. A. Hamiltonians with closed-string-net condensation

A spin-1/2 system on a lattice is an example of local Let us first consider an arbitrary spin-1/2 model on a
bosonic models. The local Hilbert space is two dimensionakquare lattice. The first question that we want to ask is what
and containg]) and||) states. The local physical operators kind of spin interaction can given rise to a low energy gauge
are 02, ool etc., wheres?®, a=x,y,z, are the Pauli theory. If we believe the connection between gauge theory
matrices. and closed-string-net theof3,22—25, then one way to

A free spinless fermion systefin two or higher dimen- obtain a low energy gauge theory is to design a spin interac-
siong is not a local bosonic model even though it has thetion that allows strong fluctuations of large closed string nets,
same total Hilbert space as the spin-1/2 system. This is bdsut forbids other types of fluctuationsuch as local spin
cause the fermion operatacson different sites do not com- flips, open-string-net fluctuations, etc(Note that closed
mute and are not local bosonic operators. More importantlystring nets are nets of strings formed by intersecting/
the fermion hopping Hamiltonian in two and higher dimen- overlapping closed strings, while open string nets are nets of
sions cannot be written as a sum of local bosonic operatorstrings containing at least one open string/e hope the
(Note that in higher dimensions we cannot write all the hop-presence of strong fluctuations of large closed strings will
ping termsc;rcj as products of local bosonic operators. How-lead to condensation of closed strings of arbitrary sizes,
ever, due to the Jordan-Wigner transformation, a 1D fermiowhich in turn gives rise to a low energy gauge theory.
hopping termc!, ;¢; can be written as a local bosonic opera-  Let us start with
tor. Hence, a 1D fermion system can be a local bosonic
model if we excludec; from our definition of local physical Hy=—-J2, o'~J>, o, (1)
operators. even odd

The bosonic field theory without cutoff is not a local
bosonic model. This is because the local Hilbert space doesherei=(i,i,) labels the lattice sitesr*¥* are the Pauli
not have a finite dimension. A lattice gauge theory is not amatrices, an®, e, (Or 2444 iS @ sum over even sites with
local bosonic model. This is because its total Hilbert spacé—)'=(—1)'x"'v=1 [or over odd sites with <)’
cannot be a direct product of local Hilbert spaces. =(—1)x"'y=—1]. The ground state dfl;, |0), has spins

Another counterexample of a local bosonic model is apointing to thex direction on even sites and to thielirection
guantum closed-string-net model. A quantum closed-stringen odd sitegsee Fig. 2 Such a state will be defined as a
net model on a lattice can be defined in the following way.state with no string.

Let us consider only strings that cover nearest neighbor To create a string excitation, we first draw a string that
links. A closed-string configuration may have many closedconnects nearest neighbevenplaquettessee Fig. 2 We
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then flip the spins in the string. Such a string state is created +0O0 : -

by the following string creation operatdor simply string string condense /|\string condense

operatoy: Z >flux Z,
(Z2B,Z2A) (Z2A,Z22A)

W(C)= ) 2
©=11 o 2 MO

where the producll: is over all the sites on the string and g 0

a;=Yy if i is even andy;=x if i is odd. A generic string state

has the form

IC,Cp- - - ) =W(C)W(C,)- - -|0), 3) (z2B,Z2B) (Z2A,Z2B)

Z »fluxcharge Z ;charge

where C,,C,, ..oare strings yvith no overlapping ends. 0 | string condense \|/ string condense

Such a state will be called a string-net state and
O 0 +C0O

W(Cped =W(C1)W(Cp) - - »

will be called a string-net operator. The std@C,- - -) is

an open-string-net state if at least onedpfis an open string.

The corresponding operatoW(C,.) will be called an

open-string-net operator. If alC; are closed loops, then

|C1C,- - -) is a closed-string-net state aWd(C,,.,) a closed-

string-net operator. The Hamiltonian has no string-net con-

densation since its ground std@® contains no string nets. Hy= —g> Fi. (6)

To obtain a Hamiltonian with closed-string-net condensation, odd

we need to first find a Hamiltonian whose ground state con-

tains a lot of closed string nets of arbitrary sizes and does ndf this way, we obtain the Hamiltonian of our spin-1/2 model

contain open string nets. as
Let us first write down a Hamiltonian such that closed

strings cost no energy and any open strings cost a large

amount of energy. One such Hamiltonian has the form

FIG. 3. The proposed phase diagram for the Hy,+Hy+H,
model.J is assumed to be positive. The four string-net condensed
phases are characterized by a pair of PSG's (RgG,PSGortex) -

MO marks a magnetic ordered state.

FIZZF{U‘+I4J4_}49. (7)

B. String condensation and low energy effective theory
Hy=-U> Fi,

even

WhenJ=0 in Eq.(7), the model is exactly soluble since
[Fi,F;]1=0 [8,50. All the eigenstates oH,+H, can be
(4y  obtained from the common eigenstatesof SinceF?=1,

the eigenvalues d?i are simply=1. Thus all the eigenstates
of Hy+Hg are labeled by 1 on each plaquettéNote that
this is not true for finite systems where the boundary condi-
tions introduce additional complicatioi§0].) The energies

of those eigenstates are the sums of the eigenvalués of

E _ Xy X y
I:i_o-iO-i-%—xo-i+x-¢—y0-i-¢—y'

We find that the no-string sta}6) is one of the ground states
of Hy (assumingU>0) with energy —UNg;.. All the
closed-string-net states, such &¥(C,s9|0), are also
ground states ofH, since[H ,W(C;,s9]1=0. An open-
string statéV(C,pen |0) is also an eigenstate bf, but with  weighted byU andg.
energy —UNgjet2U. We see that each end of an open From the results of the exact soluble model, we suggest a
string costs an energy. We also note that the energy of phase diagram of our model as sketched in Fig. 3. We will
closed strings does not depend on the length of the closeshow that the phase diagram contains four different string-
strings. Thus the closed strings kh, have no tension. We net condensed phases and one phase with no string conden-
can introduce a string tension by addiklg to our Hamil-  sation. All the phases have the same symmetry and are dis-
tonian. The string tension will be 2per site(or per seg- tinguished only by their different quantum orders.
meny. We note that any string-net stat€,C,---) is an Let us first discuss the phase withg>0. We will as-
eigenstate oH+H;. Thus, string nets in the model de- sumeJ=0 andU>g. In this limit, all states containing open
scribed byH;+H; do not fluctuate and hence cannot con-strings will have an energy of ordék. The low energy states
dense. To make string nets fluctuate, we neegterm: contain only closed string@r more generally closed string
netg and satisfy

nggzp U(Cp), © 'Ei|i:euen=1- ()

wherep labels the odd plaquettes ady is the closed string For infinite systems, the djfferent low energy states are la-
around the plaquettp. In fact, beled by the eigenvalues &f on odd plaquettes:
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Fili—oda= = 1. €) ® ® ® ® v
. L F.
In particular, the ground state is given by aYy oX oXgYl"
R ® @ o —0
Fili=oda=1. (10 F, =1
All the closed-string-net operatorg/(C,.) commute ® y L J
with H,+Hg. Hence the ground staf@ ) of Hy+Hg sat- o
isfies

FIG. 4. Ahopping of theZ, charge around four nearest neighbor

Thus theU,g>0 ground state has a closed-string-net con-even plaquettes.
densation. The low energy excitations above the ground state

can be obtained by flippin§; from 1 to —1 on some odd of F, on the odd plaquette in the middle of the four even
plaquettes. plaquette$8,14]. This is exactly the relation between charge

If we view F; on odd plaquettes as the flux #y gauge and flux. Thus if we identifyF; on odd plaquettes as 2,
theory, we find that the low energy sector of the model isfjyx, then the ends of strings on even plaquettes will corre-
identical to aZ, lattice gauge theory, at least for infinite gpond to thez, charges. We note that, due to the closed-
systems. This suggests that the low energy effective theorytring condensation, the ends of open strings are not confined
of our model is &, lattice gauge theory. o and have only short ranged interactions between them. Thus

However, one may object to this result by pointing outthe 7, charges behave like quasiparticles with no string at-
that the low energy sector of our model is also identical to afzched.

Ising model with one spin on each odd plaquette. Thus the jyst like thez, charges, a pair o, vortices is also
low energy effective theory should be the Ising model. Wecreated by an open-string operator. Sincezheortices cor-
would like to point out that, although the low energy sectorrespond to fIippedEi on odd plaquettes, the open-string op-

of our model is identical to an Ising modgl f(_nr infinite sys- erator that creates, vortices is also given by Eq2), except
tems, the low energy sector of our model is different from an

Ising model for finite systems. For example, on a finite eve now the product is over a string that connendsi plaquettes.

X ; S - "We will call such a string a T2 stringThe strings connect-
by even lattice with periodic boundary conditions, theing evenplaguettes were called T1 strings.

grounq state of our model has a fourfold degenef&50. We would like to point out that the reference stéte.
The Ising quel does r!ot have such a degenergpy. Also, e no-string stabefor the T2 string is different from that of
model contains an excitation that can be identified & a . ) o ~
charge (see below Therefore, the low energy effective the T1 string. The no-T2-string state is given ) with
spin pointing in they direction on even sites and thiadirec-

theory of our model is &, lattice gauge theory instead of an > X . - g
Ising model Thef .= — 1 excitations on odd plaquettes can tion on odd sites. Since the T1 and T2 strings have dlﬁergnt

‘ ; ! o . ) reference states, we cannot have a dilute gas of the T1 strings
tbhee\onrewed as the, vortex excitations in the, lattice gauge and the T2 strings at the same time. One can easily check

Y- that the T2 string operators also commute wily +Hy.

_ ) Therefore, the ground stately), in addition to the T1
C. Three types of strings and emergent fermions closed-string condensation, also has a T2 closed-string con-
What is theZ, charge excitation? We note that, in the densation.

closed-string-net condensed state, the action of the closed- The hopping of &, vortex is induced by a short T2 open
string operator Eq(2) on the ground state is trivial. This string. Since the T2 open-string operators all commute with
suggests that the action of the open-string operators on treach other, th&, vortices behave like bosons. Similarly, the
ground state depend only on the ends of strings, since twd, charges also behave like bosons. However, T1 open-string
open strings with the same ends differ only by a closedperators and T2 open-string operators do not commute. As a
string. Therefore, an open-string operator creates two paresult, the ends of T1 strings and the ends of T2 strings have
ticles at its ends when acting on the string condensed statgontrivial mutual statistics. As we have already shown that
Since the strings in Ed2) connect only even plaquettes, the moving aZ, charge around &, vortex generates a phase
particle corresponding to the ends of the open strings alwaye Z, charges and th&, vortices have semionic mutual
live on the even plaquettes. We will call such a string a T1statistics.

string. From the commutation relation betweEnand the The T3 strings are defined as bound states of T1 and T2
open-string operators, we find that the open-string operatorg{rings. The T3 string operator has the foW{C) =1I,07",

flip the signs oﬂA:i at its ends. Thus each particle created bywhereC is a string connecting the midpoints of the neigh-
the open-string operators has an enerdy. 2Now, let us  boring links, and,, are sites on the strindj,,=z if the string
consider the hopping of one such particle around four nearestoes not turn at sitg,,. | ,=x ory if the string makes a turn
neighbor even plaquettésee Fig. 4 We see that the prod- at sitei,. | ,=x if the turn forms an upper-right or lower-left
uct of the four hopping amplitudes is given by the eigenvaluecorner.| =y if the turn forms a lower-right or upper-left

<\PO|W(Cnet)|\I,0>:1- (11
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corner.(See Fig. 6 below for these detajl$he ground state Eill ——1, Fili_oqe=—1 (18)

. . ili=even ' ili=odd .
also has a condensation of T3 closed strings. The ends of T3
string, as bound states of tizg pharges and th&, vortices,  There is aZ, charge on each even plaquette amdflux
arefermions The bound state is formed byZ3 charge and  through each odd plaquette. We will call such a phas&the
aZ, vortex on the two plaquettes on the two sides of a linkflux charge phase. The T1 string operator and the T2 string
(i.e.,Fi=—1 on the two sides of the linkThus the fermions operator have the following expectation values:
live on the links. It is interesting to see that string-net con-

densation in our model directly leads t&a gauge structure (Wy(Cyp))=(—)Nodd,  (W,(Cp))=(—)Neven. (19)
and three new types of quasiparticl&s: charge,Z, vortex,
and fermions. Fermions, as the ends of open T3 strings, B. PSG's and the ends of condensed strings

emerge from our purely bosonic model.

Since the ends of T1 string ag® charges, the T1 strings
can be viewed as strings @b “electric” flux. Similarly, the
T2 strings can be viewed as strings&f “magnetic” flux.

From the differenf W,(C,)) and{W,(C,)), we see that
the above four phases have different string-net condensa-
tions. However, they all have the same symmetry. This raises
an issue. Without symmetry breaking, how do we know the
above four phases are really different phases? How do we
IV. CLASSIFICATION OF D'FFERENT, STRING know that it is impossible to change one string-net con-

CONDENSATIONS BY PSG’S densed state to another without a phase transition?

A. Four classes of string-net condensations In the fO”OWing, we will show that the different String-net
condensations can be described by different PS@& as
different symmetry breaking orders can be described by dif-
ferent symmetry groups of ground statel Refs.[9,10],

'A:'|' _1 |3-|- 1 (12) d!fferent types of quantum qrder were introduced via their
ili=even™ & Tili=odd™ = different PSG’s. The connection between string-net conden-
We will call such a phase th&, phase to stress the low sation and the PSG allows us to connect string-net conden-

energyZ, gauge structure. In th&, phase, the T1 string sation to the quantum order introduced in Ré&10]. In

operatorW;(C,) and the T2 string operatdiV,(C,) have particular, the PSG's are shown to be a universal property of
the following expectation values a quantum phase, which can be changed only by phase tran-

sitions. Thus the different PSG's for the different string-net
(Wi (C))=1, (Wy(Cy))=1. (13) condensed states indicate that those different string-net con-
densed states belong to different quantum phases.
WhenU>0, g<0, andJ=0, the ground state is given When closed string nets condense, the ends of open
by strings behave like independent particles. Let us consider
. . two-particle state$p;p,) described by the two ends of a T1
Filiceven=1, Filizoga=—1. (14 string. Note that the ends of the T1 strings, and henc&she
charges, live only on the even plaquettes. Hpreand p,
label the even plaquettes. For our mottg) +Hg, |pip,) is
an energy eigenstate and thg charges do not hop. Here we
would like to add a term

As we saw in the last section, whé&h>0, g>0, andJ
=0, the ground state of our model is given by

We see that there is flux through each odd plaquette. We
will call such a phase th&, flux phase. The T1 string op-
erator and the T2 string operator have the following expec
tation values:

(Wy(Cy))=(—)Nodd,  (W,(Cyp))=1, (15 Ht=t2i (aix+aiy)+t’2i of (20)
whereN,qq is the number of odd plaquettes enclosed by the o
T1 stringC,. to the Hamiltonian. The term t=;(o]+ o)) makes thez,
WhenU<0, g>0, andJ=0, the ground state is charges hop among the even plaquettes with a hopping am-
plitude of ordert. The dynamics of the tw@, charges is
Filicewen=—1, Filicoqa=1. (16)  described by the followindgpw energy effectivélamiltonian

in the two-particle Hilbert space:
The ground state hasz charge on each even plaquette. We
will call such a phase th&, charge phase. The T1 string H=H(p1) +H(p2), (21)

operator and the T2 string operator have the following ex- _ . ' .
pectation values: where H(p,) describes the hopping of the first partige

andH(p,) describes the hopping of the second partjgje
(W1(Cp))=1, (Wy(Cp))=(—)Neven, (17 Now we can define the PSG in a string-net condensed state.
The PSG is nothing but the symmetry group of the hopping
whereNg, e, is the number of even plaquettes enclosed byHamiltonianH(p).

the T2 stringC,. Note that theZ, flux phase and th&, We know that in a symmetry breaking phase the low en-
charge phase, different only by a lattice translation, are esergy effective theory has a lower symmetry than the bare
sentially the same phase. Hamiltnoian at high energies. Thus we can use the symmetry

WhenU <0, g<0, andJ=0, the ground state becomes of the low energy effective Hamiltonian to characterize dif-
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ferent symmetry breaking phases. Here, using the hopping TayGxy TxyCxy= TxyCiy TxyC
Hamiltonian and its PSG to characterize different string-net
condensations is a similar idea. or

Due to the translation symmetry of the underlying model
Hy+Hg+H,, we may naively expect the hopping Hamil- TxyGxy TxyGxy= — TuyGuxy TxyGxy - 27
tonian of theZ, chargeH(p) to also have a translation sym-
metry

Xy’ (26)

The operatord,,G,, and T,;G,; generate a group. Such a
group is the PSG introduced in R¢B]. The two different
HP) =TI H(D) Ty, T =[p+x+y), algebras Eq(26) and Eq.(27) generate two different PSG’s;
(P) =Ty, H(P)Tyy xy| P)=lp % both are consistent with the translation group acting on the
Lt -~ _ two-particle states. We will call the PSG generated by Eq.
H(p)_TxW(p)TXY’ TXW P=lp+tx=y). (22) (26) the Z2A PSG and the PSG generated by E2j)) the

Z2B PSG.
The above implies that the PSG is the translation symmetry | ot ;5 give a more general definition of a PSG. A PSG is

group. It turns out that Eq22) is too strong. The underlying group. It is an extension of the symmetry grag®), i.e.,

spin model can have translation symmetry even wHEp) 5 pSG contains a normal subgraealled an invariant gauge
does not satisfy Eq(22). However, the possible symmetry group or IG@ such that

groups ofH(p) (the PSG’$ are strongly constrained by the

translation symmetry of the underlying spin model. In the PSG/IGG=SG. (28)

following, we will explain why the PSG can be different

from the symmetry group of the physical spin model, and For our case, the SG is the translation gro&&

what conditions the PSG must satisfy in order to be consist{lyTg('f/),Ti%), ...}. For every element in a SGa®

tent with the translation symmetry of the spin model. € SG, therey are one or several elements in PSEPSG,
We note that a string always has two ends. Thus a physig,,, tham®a=a?. The IGG in our PSG is formed by the

cal'state always has an even numberZQf charge;. The transformationsG, on the single-particle states that satisfy
actions of translation on a two-particle state are given by Go®Go=1. We find that the IGG is generated by

T P1,p2) =% PLPD|py Xy, pp + X +Y), Golp)=—1p). 29

Ti%)|p1,p2>:e‘9x;(p1vp2)|pl+x—y, o+ X—Y). (23)  Go, TyGyy, andT,, G,y generate th&2A andZ2B PSG's.
Now we see that the underlying translation symmetry

The phaseg®(P1-P2 ande®P1-P2 come from the ambigu- d0oes not require the single-particle hopping Hamiltonian

ity of the location of the string that connegts andp,, i.e., ~H(P) to have a translation symmetry. It only requitg¢p)

the phases can be different if the string connecting the twd0 € invariant under th&2A PSG or theZ2B PSG. When

Z, charges has different location{?) and T'! satisfy the H(p) is invariant under th&2A PSG, the hopping Hamil-
algebra of translations y tonian has the usual translation symmetry. Whefp) is
invariant under th&2B PSG, the hopping Hamiltonian has a
TOT@_1@712) (24) magngtic tra_nslation symmetry describing hopping in a mag-
Xy Txy o xy Xy © netic field with 7 flux through each odd plaquette.
T and T%) are direct products of translation operators on

the single-particle states. Thus, in some sense, the single-

particle translations are square roots of two-particle transla- Aftér understand the possible PSG's for the hopping
tions. Hamiltonian of the ends of strings, now we are ready to

The most general form of single-particle translations iscalculate the actual PSG's. Let us con§ider two ground states
given by T,,G,, and T,;G,;, where the actions of the op- Of our modelHy+Hgy+H,. One hasFi_oqq=1 (for g

C. PSG's classify different string-net condensations

eratorsT,, . andG,, ,; are defined as >0) and the other ha§|;_oqq=—1 (for g<0). Both
ground states have the same translation symmetry irxthe
Tylp) =Ip+x+y), +y andx—y directions. However, the corresponding single-
particle hopping Hamiltoniahl (p) has different symmetries.
Talp=Ip+x=y), For the Fi|_,q¢=1 state, there is no flux through odd
' plaquettes an#l(p) has the usual translation symmetry. It is
Gyl p)=€'%P|p), invariant under theZ2A PSG. For theF;|,_,qq=—1 state,
, there isw flux through odd plaquettes ardi(p) has a mag-
Gyylp) =€ Pp). (25 netic translation symmetry. Its PSG is ti@B PSG. Thus

, 2 theF||;_oqq=1 state and th&|,_,qq= — 1 state have differ-
|r1(2())rder for the direct productsyy _Txnyy®Txnyy and  ent orders even though they have the same symmetry. The
Ty = TxyGxy® TGy to reproduce the translation algebra different quantum orders in the two states can be character-
Eq. (24), we only requireT,,G,, andT,;G,; to satisfy ized by their different PSG’s.

065003-9



XIAO-GANG WEN PHYSICAL REVIEW D 68, 065003 (2003

+CO string condense /[\ string condensé TGy =TyByTxGx,
Z 5flux Zy T5Gwy=(T,G,) 'T,G,. (32
(Z2B,Z 2A) (Z2A.Z2A)
Since T,,G,, and T,;G,; are the translations of th&,
EM charge and th&, vortex discussed above, we find
§ 0 % extra translatioh (TxyGXV)_1(TXVGXV)_1TX§GXVTXYGW: 7, (33
7 [symmety; .
N where n=1 for the (Z2A,Z2A) state withF;=1 and =
(22B,228B) (22A,22B) —1 for the @2B,Z2B) state withF;=—1. T,G, andT,G,
Z »fjuxcharge Z ;charge must also satisfy
o0 sfring condense string condense (TyGy)_l(TxGx)_lTyGyTxGx cIGG (34)
O 0 +C0O

git since in the two-particle states

FIG. 5. Th i (TP HTE) M TPT =1, (35)
. 5. The proposed phase diagram for theHy+Hg+H;

model.t=t’ is assumed to be positive. The four string-net CON-Therefore, T.G )71(TXGX)71T G,T,G, may take the pos-
densed phases are characterized by a pair of PSG§jie values >:/L—y1 (—)P, and _y(_y)p_ Only the choices?
(PSGnarge:PSGortex). FM marks a ferromagnetic phase. and — 7P are c’ons’istent'with Eq33) and we have

The above discussion also applies to Mevortex and T2 (T,G,) " XT,G,) "'T,G,T,G,= 7' 7". (36)
. . . y=y X=X y=y X=X

strings. Thus the quantum orders in our model are described

by a pair of PSG’s (PSarge;PSGortex), ONe for thez, We wish to point out that the different choices gf=

charge and one for theZ, vortex. The PSG pairs =+1 do notlead to different PSG's. This is becausg,, is
(PSGharge: PSGortex) allow us to distinguish four different a symmetry of théd(p), thenT,G,(—)P is also a symmetry
string-net condensed states of the modelof the H(p). However, the chang&,— G,(—)P will change

H=Hy+Hy+H,.(See Fig. 5. the sign of»’. Thus »’=1 and’=—1 will lead to the
Now let us assum& =g in our model: same PSG. But the different signs pfwill lead to different
PSG's.
Hy+Hg+ Ht:Ht_VE = (30) (Go,Gp) and (TG4, T,Gy) generate the new PSG. The
i

single-particle HamiltoniarH(p) is invariant under such a
PSG.n»=1 and »=—1 correspond to two different PSG’s
The new physical spin model has a larger translation symthat characterize two different quantum orders. The ground
metry generated byti=x andAi=y (see Fig. 5 Due to the state forV>0 and|V|>t [see Eq.30)] is described by the
enlarged symmetry group, the quantum order in the new sysp=1 PSG. The ground state faf<0 and |V|>t is de-
tem should be characterized by a new PSG. In the followingscribed by thep=—1 PSG. The two ground states have
we will calculate the new PSG. different quantum orders and different string-net condensa-
The single-particle states are given ). Whenp is  tions.
even,|p) corresponds to &, charge and whep is odd,|p)
corresponds to &, vortex. We see that a translation kyor D. Different PSG’s from the ends of different
y) will change aZ, charge to &, vortex or aZ, vortex to a condensed strings
Z, charge. Therefore the effective single-particle hopping ) i ) )
Hamiltonian H(p) contains hops only between even In this section we still assumé=g and consider only the

plaquettes or odd plaquettes. The single-particle Hamiltoniaf{@nslationally invariant model Ec(3f0). In the at:cove we
H(p) is invariant under the following two transformations dls_cus_sed_ the PSG for the e_nds of one type o condensed
G, andGy: string in different states. In this section, we will concentrate

on only one ground state. We know that the ground state of
our spin-1/2 model contains condensations of several types

= — ! =(—)P
GolP) P, Golp)=(=)"Ip). (31) of string. We wish to calculate the different PSG's for the
, , different condensed strings.
We note thaiGo® Go=G,®G,=1. Therefore bottG, and The PSG's for the condensed T1 and T2 strings were ob-

G, correspond to the identity element of the symmetry grougrained above. Here we will discuss the PSG for the T3 string.
of two-particle states.Gy,G() generate the IGG of the new Since the ends of the T3 strings live on the links, the corre-
PSG. The new IGG iZ,X Z,. sponding single-particle hopping Hamiltoniad(l) de-

The translations of single-particle statesxgnd byy are  scribes fermion hopping between links. Clearly, the symme-
generated byl,G, andT,G, . The translations bx+y and  try group (the PSG of H¢(l) can be different from that of
by x—y are given by H(p).
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hopping Hamiltonians for th&/>0 and V<0 states have
different symmetries, or are invariant under different PSG’s.
According to the arguments in RdB], the different PSG’s
imply different quantum orders in th&>0 and V<0
ground states. The PSG’s obtained in R&0] for the V
>0 andV<0 phases agrees exactly with the fermion PSG'’s
that we obtained above. This example shows that the PSG’s
introduced in Refs[10,50 are the symmetry groups of the
hopping Hamiltonian of the ends of condensed strings. The
_ ) PSG description and the string-net condensation description
FIG. 6. Fermlon hopping around a plaquette, around a squargyf quantum order are intimately related.
and around a site. Here we would like to point out that the PSG’s introduced
. ) . in Refs.[9,10] are all fermion PSG's. They are only one of
Let us consider fermion hopping around some smallynany gifferent kinds of PSG’s that can be used to character-
loops. The four hops of a fermion around a sitsee Fig. 6  jze quantum order. In general, a quantum ordered state may
are generated byY, o, of, ando}. The total amplitude  contain condensations of several types of string. The ends of
of a fermion hopping around a site i§ ooYo;=—1. The  each type of condensed string will have their own PSG.
fermion hopping around a site always see$lux. The four

hops of a fermion around a plaquefi€see Fig. § are gen-

CONDENSED STATE

lower left corner of the plaquetie The total amplitude of a
fermion hopping around a plaquette is given by In Refs.[9,16], it was pointed out that the PSG can pro-
o) +y0'ix +X+ygiy+xg;< = |Ei . When V>0, the ground state tect the masslessness of the emergent fermions, just as sym-
02 oo o metry can protect the masslessness of Nambu-Goldstone
ha;Fi=1. Howiaver, since SitR IS ngxt to the end OT the T3 bosons. In this section, we are going to study an exactly
string, we havé~; = —F;=—1. In this case, a fermion hop- spjuble spinji model with string-net condensation and
ping around a plaquette seedlux. For aV<0 ground state, emergent massless fermions. Through this soluble model, we
we find that a fermion hopping around a plaquette sees ndemonstrate how the PSG that characterizes the string-net
flux. condensation can protect the masslessness of the fermions.
Let us define the fermion hoppirdg-|+x as a combina- The exactly soluble model that we are going to study is
tion of two hopsl— I+ x/2—y/2—1+x and the fermion hop- motivated by Kitaev’s exact soluble spin-1/2 model on a
ping |—1+y as a combination of— [+ x/2+y/2—1+y (see  honeycomb latticé52].
Fig. 6). Under such a definition, a fermion hopping around a
square — |+ x—1+x+y—I+y—I corresponds to a fermion
hopping around a site and a fermion hopping around a
plaquette as discussed abdsee Fig. 6. Therefore, the total The exactly soluble model is a local bosonic model on a
amplitude for a fermion hopping around a square is given bysquare lattice. To construct the model, we start with four

the sign ofV: sgn(V). We find that the translation symme- Majorana fermions\2, a:x,;,y,; and one complex fer-

A. Exactly soluble spin-43 model

tries (T Gy, T,G,) of the fermion hoppindH¢(l) satisfy mion . \? satisfy
(T,Gy) " H(TGy) "1TyG, T, Gy=sgn(V), (37 N NP} =26,,8; (39)
which is different from the translation algebra fd{p) [Eq.
(36)]. Hy(1) is also invariant unde®: We note that
Goll)=—I). (38 N - N

Uiisx=—INNGy Uiiey=—INNL, Uy=U;
(Go,TxGx,T,G,) generate the symmetry group—the fer- (40)
mion PSG—ofH;(1). We will call the fermion PSG Eq.37)
for sgn(V)=1 the Z2A PSG and the fermion PSG for form a commuting set of operators. Using such a commuting
sgn(V)=—1 theZ2B PSG. We see that the quantum ordersset of operators, we can construct the following exactly
in the ground state can also be characterized using the fesoluble interacting fermion model:
mion PSG. The quantum order in tNe>0 ground state is
characterized by thE2A PSG and the quantum order in the
V<0 ground state is characterized by #2B PSG. H=92 Fi+tX (100 dioxti0 g ey +H.C),

In Ref. [50], the spin-1/2 model Eq(30) (with t=t’ ' '
=0) was viewed as a hard-core boson model. The model
was solved using the slave-boson approach by splitting the.  ~ - N ~

boson into two fermions. Then it was shown that the fermion " i~ “iiz i11izUiz!i3Ui3’i’ (41)
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Whe[ei1=i+x, i»=i+Xx+y, iz=i+Yy, andt is real. We will where we have used {2¢T,7//: —inn, and (—i)\x)\;)
call Fi 322 flux Operator. To obtain the Hllbgl’t_space within (_i)\y)\)’)(_i 771772) =1 for states with even numbers of fer-

which the HamiltonianH acts, we group\**¥?Y into two  mions. With the above definitions gf and y®, we find that
complex fermion operators

Nopo=92y° (46)
lebl,i:)\r—i_i)\ix’ 2(,02":)\|y+|)\|y (42) and
on each site. The complex fermion operatgis, and ¢ gen- Ny — i_( A4 25) =,
erate an eight-dimensional Hilbert space on each site. g=5 (Vi)=Y s
SinceUij commute with each other, we can find the com- _
; w ; [
mon 'elgenstatesAof the ; operator§,|{sij},n), wheres; is Nyt = E(ya_ Y2y8) =iy T2
the eigenvalue of);, andn labels different degenerate com-
mon eigenstates. Sinc&Jf)?=1 andU;=U;, s; satisfies (ot a7)
sj=*1 ands;=s; . Within the subspace with a fixed set of Y Y '
sj. {l{sj}.n)[n=1,2, ...}, the Hamiltonian has the form  \ye also have
)\a)\b: ,ya,ybE yab_ (48)

H=02 fitt2 (iSj it ioxtiSi iyt iyt H.C),
: : The above relations allows us to wriké in terms of 4x 4
Dirac matrices. For example,

fi=Sii,Si, i,y .i5Sig.i (43) . -
Fi=— y%lxyixzxyiyjr(eryf)’ixzy (49
which is a free fermion Hamiltonian. Thus we can find all the
many-body eigenstates @f, |{s;}, V), and their energies and
E({sj},n) in each subspace. In this way we solve the inter- N + i rxo-X
acting fermion model exactly. Uiiexhi Yix= =17 i

We note that the Hamiltoniall can change the fermion . —
number on each site only by an even number. THuacts Ui iyt thsy= =iy YLy, (50)
within a subspace that has an even number of fermions on . ) ) ) .
each site. We will call this subspace the physical Hilbert Th€ physical states in the physical Hilbert space are in-
space. The physical Hilbert space has only four states p&fariant under local, gauge transformations generated by

site. When defined on the physical spadeyecomes a local

bosonic system which actually describes a sgin-§) sys- G=H Gin‘,

tem (with no spin rotation symmetjy We will call such a '

system a spi3 system. To obtain an expression for ot + +
within the physical Hilbert space, we introduce two Majo- Ni= ot Yo it bidhi,

raha fermions 7y, ar;d 2i to_replesenw_i : . 2= whereG; is an arbitrary function with only two values 1
+17;. We note thah®s,, a=x,X,y,y, act within the four- - andn, is the number of fermions on site We note that the
dimensional physical H|I_beart spac_;ebon each site, and thus a2, gauge transformations changg— G;¢;;. The projection
4x4 matrices. AlSO{—iN"7,,—iA"71}=265p; thus the into the physical Hilbert space with even numbers of fermi-
four 4x 4 matricesh®», satisfy the algebra of Dirac matri- g per site makes our theoryZa gauge theory.

(5

ces. l'herefore we can expresdy; in terms of Dirac matri- Since the Hamiltoniahi in Eq. (41) is Z, gauge invariant,
cesy™ [G,H]=0, the eigenstate dfl within the physical Hilbert
space can be obtained frofs;}, V) by projecting into the

N =iv?, physical Hilbert space|{s;},¥ ). The projected state

Pl{sij},¥n) (or the physical stajeif nonzero, is an eigen-
state of the spik3 model with energyE({s;},n). The Z,
gauge invariance implies that

Y=c*®c*, y'=d'®d",

Y=o'wcX, y=o"sd. (44) Pl{sih W) =Pl{si}, W),
We can also define® as E({s;},n)=E({s;}.n), (52
Vo= Yy Y= — g0 o if s; and's; areZ, gauge equivalent:
= NNNN =717, (45) 5=G(i)5;G()). (53)
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Let us count the states to show that the projected states |
Pl{sj}, V) generate all states in the physical Hilbert space. y

Let us consider a periodic lattice wil;;e=LL sites. First .
there are 2Nsite choices ofs; . We note that there are"gt -

different Z, gauge transformations. But the constant gauge y |
transformationG(i)= —1 does not changs;. Thus there
are Nsite/2 differents;’s in eachZ, gauge equivalent class.

Therefore, there are>22Nsite different Z, gauge equivalent y y y
classes of;'s. We also note that —X—‘—V X—‘-f’ Y—‘-X—
y k v 3|7 I

ey FIG. 7. A particle can hop between different sitgsk,|.

:(—)'—x+Ly1_i[ (—INAD)(—iANY) W(Copen =AU, Ui~ 0i i A2,
T T ~ ~ ~ ~
:(_)Lx+Ly+2i W+ vdwa) (54) W(Copen =9 0,0, -0 i i, (56)

o _ whereC, e is an open oriented strinGopen=iy—iz— - -
Thus, among the 2 2Nsite dlfferLerlthIasses ofi's, 2Vsite of i formed by nearest neighbor linka/(C) corresponds to
them satisfyIl;s; ;. ,s;i+y=(—)™""v and have even num- the open T3 string defined in Sec. Ill C. Just as in the spin-
bers ofyy; andy;; feLrTlLO”S- The other ite of them satisfy  1/2 model Eq.(30), the ends of such strings correspond to
11i8i,i+xSi+y=— (=)~ and have odd numbers ¢, and  ga5564 fermionsif |g|>|t]). The ends ofV strings differ

¥ fermions. from the ends ofV strings only by a local bosonic operator
For each fixed; , there are Ysite many-body states of the s g y by . P '
Thus the ends ofV strings are also fermions.

o fermions, i.e.nin [{s;}, V) runs from 1 to Hsie. Among ~ )
those 2'site many-body states,2it/2 have even numbers of To really prove that the ends &¥ strings areNfermlons,
; fermions and Psite/2 have odd numbers af; fermions. In ~ we need to show that the hopping of the enddAbstrings
order for the projectioﬂD|{sij},\Ifn> to be nonzero, the total satisfies the fermion hopping algebra introduced in Ref]:
number of fermions must be even. A physical state has even

numbers of {/1;,1;) fermions and even numbers ¢f fer- U byt = — Gityty
mions, or it has odd numbers ofi(; , #,;) fermions and odd
numbers of ¢; fermions. Thus there are Ngtex 2Nsite/2 [tij . ta]=0 if i,j,k,1 are all different, (57)

+ 2Nsitexx 2Nsite/2= 4Nsite distinct physical states that can be
produced by the projection. Thus the projection produces alvheret;; describes the hopping from siteto sitej. It was

the states in the physical Hilbert space. shown that the particles are fermions if their hopping satis-
fies the algebra Eq57). We note that the ends of tH&
: ) 11 strings live on the sites. The labelsj, ... in the above
B. Physical properties of the spin; model equation correspond to lattice site§, ... . The hops be-
Let us define a closed-string operator to be tween sites,j,k,| in Fig. 7 are given by
W(Celosd =Uiyi,Uigig~ - Uiy ©9 tivai= ¥aUisaith, a==x=y. (58)

where Coee is @ closed oriented String.qee=ii—i» Note that the hops between nearest neighbors are taken from

— .- —i,—i, formed by nearest neighbor links. Since the Hamiltonian Eq.(41). Since Oij commute with each
Celose CaN intersect with itselfC,;se can also be viewed as other, the algebr_a of the above hopplr]g operators is just that
a closed string net. We will also caW(C .9 a closed- of fermion hopping operators. In particular, the above hop-

string-net operator. ping operators satisfy the fermion hopping algebra ().
The closed-string-net operators act within the physicaHence, the ends of tHé& strings are fermions.

Hilbert space and commute with the Hamiltonian E4fl). For each fixed configuratios; , there are Ysite/2 differ-

Thus there is a string-net condensation sii&C.ose) = ent stategwith even or odd numbers of totat fermions.

+1 in the ground state of E@41). The above strings corre- Their energies are given by the fermion hopping Hamiltonian
spond to the T3 string discussed in Sec. Il C. Unlike theEq. (43). Let Eq({s;}) be the ground state energy of Eq.
spin-1/2 model, we do not have condensed T1 and T2 close@3). The ground state and the ground state energy of our

strings in the spink3 model. spin4 3 model Eq.(61) are obtained by choosing a configu-
We can also define open-string operators that act withimations; that minimizesEq({s;}). We note thaEq({s;}) is
the physical Hilbert space: invariant under th&, gauge transformation E@53).
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When gs|t|, the ground state of Eq41) hasF,=—1, massless fermion excitations regardless of the value of the

continuous parametefas long as they are within a certain

range. This puts the results of Ref$9,16], which were

based on mean-field theory, on a firmer ground.

Siix= (=) Sijey=1 (59) 'I('jh(la exactly soluble local bosonic model is the spin-
mode

which minimizes the dominagX;F; term. The ground state
configuration is given by

The y; fermion hopping Hamiltonian Eq43) for the above

configuration describes fermion hopping with flux per Hil=—g> y*yY
. 57 g - yl F)/I+X

plaquette. The fermion spectrum has the form i

yX Xy
Yi+x+yYity

E.= i2\/t28in2(kx)+'[2$in2(ky). (60) _,_z (t,yi+,x,yi—+,X;+t,yi‘*',y,yi—v>)/’_+ H.c), (61)

+

The low energy excitations of such a hopping Hamiltonian ab L _ _
are described by two two-component massless Dirac fermiwherey®® and y=¢ are given in Eq(48) and Eq.(47). We

ons in (2+1)D. We see that the ends of tW strings are will discuss amore .gener.all Ha}mlltonlan later. )
massless Dirac fermions. The Hamiltonian is not invariant und&r —x parity P, .

Our model also containg, gauge excitations. Th&, Bu.t I has.x—>—x parity SYmme“y IfPy is followed t?y a
spin rotationy*— y*. That is, yp P,H(yp P,) ~*=H with

vortices are created by fIippinEi=—1 to |5i=1 in some

plaquettes. Th&, vortex behaves like a flux to the gapless < X

fermions. Thus the gapless fermions carry a @itcharge. _ sy 62
The low energy effective theory of our model consists of YRTY \/5 '

massless Dirac fermions coupled t&ggauge field.

Similarly, for y—-y parity Py, we have
_1_ .
C. Projective symmetry and massless fermions VPyPyH(VPyPy) =H with
We know that symmetry breaking can produce and protect V_ oy
gapless Nambu-Goldstone modes. In REJs1 ], it was pro- vp =7° Y \/_7 ] (63
y 2

posed that, in addition to symmetry breaking, quantum order
can also produce and protect gapless excitations. The gapless ) ,
excitations produced and protected by quantum order can be !N the fermion representatiope and yp generate the
gapless gauge bosons and/or gapless fermions. In this pagétlowing transformations:

we show that the quantum orders discussed in R6{4.6] —

are due to string-net condensations. Therefore, more pre- TP, NeNS  giey,
cisely it is string-net condensations that produce and protect B
gapless gauge bosons and/or gapless fermions. The string-net o) NN, e lﬂiT ) (64)

condensations and gapless excitations are connected in the

following way. Let us consider a Hamiltonian that has a sym-  Now let us study how the symmetridg,, and yp_ Py

metry described by a symmetry group SG. We assume thgre realized in the hopping Hamiltonian E43) for the ends

ground state has a string-net condensation. Then, the hoppi condensed strings. As discussed in Sec. IV B, the hopping

il_rllignrligcr)l?lir:]o{g: t:elaﬁggrs ;:Oar:)e_iﬁgdgz)sjggﬂ\slg'nsi]m\gvr'rl:e?r?Hamiltonian may not be invariant under the symmetry trans-
group PSG, as discussed in Sec. IV B. The PSG is an exterf](_)rmatlonsTx,y and ypxnyX,y directly. The hopping Hamil-

sion of the symmetry group SG, i.e., the PSG contain a norionian has only a projective symmetry generated by a sym-
mal subgroup IGG such that PSG/IGGG. The relation mgtry transformanon foIIowgd by 32 gauge transformation
between the PSG and gapless gauge bosons is simplg. LefG(1)- Since them-flux configuration does not break any
be the maximum continuous subgroup of the IGG. Then théymmetries, we expect the hopping Hamiltonian for the
gapless gauge bosons are described by a gauge theorg with-flux configuration to be invariant undes, Ty, G,Ty,

as the gauge grou9,15). Sometimes the ends of strings are ©p,7p,Px; andGp vp Py, whereG,, andGp =~ are the
fermions. However, the relation between gapless fermionsorresponding gauge transformations. The actionsT,of
and the PSG is more complicated. Through a case by caswd pryPX,y on the ¢ fermion are given by

study of some PSG'§9,16], we find that certain PSG’s in- ’

deed guarantee the existence of gapless fermions. Ty: zﬁ(ix,iy)—w(ixﬂ,iy),
In this section, we are going to study a large family of
exactly soluble local bosonic models which depends on Tyo W iy—= Wi i1
many continuous parameters. The ground states of the local Y Y
bosonic models have a string-net condensation and do not vo P Wi (_”p’ri_ )
break any symmetry. We will show that the projective sym- Pl X (oly) (Chely)?
metry of the ends of condensed strings protects a massless P - . + 6
fermion. As a result, our exactly soluble model always has YRy Py w('w'y)(_’w(ixfiy)' (65
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For thew-flux configuration Eq(59), we need to choose the ik m
following G, , ande in order for the combined transfor- eo(k)= 2 Xm>

my=even
mationG, , T, , and GP 7P, PX,y to be the symmetries of ’
the hoppin Hamlltonlan E 43): 0
PPing d alk= 3 ekny, (72

Ge=1, Gy=(—)'x,
We note thateg(k) and €,(k) are periodic functions in the
=(—)x, Gp =(—)v. (66) Brillouin zone. They also satisfy

eo(K)=€o(k+Qy), e(k)=—e(k+Q, (73
The hopping Hamiltonian is also invariant under a glabal
gauge transformation: where Q,= mx and Q,=my. In momentum space, we can

rewrite H as

Go: ¢i—— . (67)
H=> WII(kW,, (74)
The transformation$Go,nyyTX,y,prypryPX,y} generate .
the PSG of the hopping Hamiltonian. where W= (¢, Yi+q). The sum=y is over the reduced
To show that the above PSG protects the masslessness&fmoum zone — 7-r<k < and — ml2<k,<m/2. T'(k) has
the fermions, we consider a more general Hamiltonian b3fhe form
adding

eo(k)  €er(k+Qy)
e1(k)  eo(k+Qy)/

Note that the transformationypx: y— " changes

toH11, whereC; is an open string connecting sitand site SXi Wlﬂj to 2;(”. lﬂiTlﬂj with ")'(ij: — xji- Thus the invariance

j and \7V(Cij) is given in Eq.(56). The new Hamiltonian is underGp yp Py requires that

still exactly soluble. We will choosg C;;) such that the new

Hamiltonian has translation symmetries d@hgd, parity sym- —prj,pxizpr(i)xiijx(j) (76)

metries. In the following, we would like to show that the new

Hamiltonian with these symmetries always has masslessr

Dirac fermion excitationgassuming that(C;) is not too big

compared tay]. X—pm=—(—)™M Moy, (77)
Whent(Cj) is not too large, the ground state is still de-

scribed by the 7r-flux configuration. The new hopping [N Momentum space, the above becomes

Hamiltonian for thew-flux configuration has the more gen eo(P,K) = — eg(K),

(k)= (75)

SHL1=2) [t(CyW(Cy)+H.c] 8
S

eral form
= it
H % (xydi ¢t H.c). (69 Similarly, the invariance unde@PyypyPy requires that
The symmetry of the physical sp§s Hamiltonian requires _XPyj,Pyi:GPy(i)XijGPy(j) (79

the above hopping Hamiltonian to be invariant under the
PSG discussed above. Such an invariance will guarantee t/
existence of massless fermions.

— _ (_\ymmy+m
The invariance undeG,T, andG, T, requires that X=pym= (=) xm. (80)

In momentum space
60( ka) == EO( k+ Qy)a
€1(Pyk) = —€1(k). (81)

Xi,i+m:(_)iymx)(m- (70)

In momentum space,

x(Kq ko) = Ns,tez e ikuitikady, We see that the translatiofy , andx— —x parity yp Py
symmetries of the spi4 Hamiltonian require thaiy(k)

= €o(K2) Ok, —k, T €1(K2) 5k17k2+an (71 =—¢€o(Pyk) and henceso(k)|ky:0=0. Similarly, the trans-

lation T, , andy— —y parity ypyPy symmetries require that

where sl(k)|kX:O=0. Thus theT, , and pr'ny,y symmetries re-
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quire thatl'(K)|o=0. Using Eq.(73), we find thatl'(0)  VII- ARTIFICIAL LIGHT AND ARTIFICIAL MASSLESS
=0 implies thatl'(Q)=0. The spins3 Hamiltonian Eq. ELECTRONS ON A CUBIC LATTICE

(61) has(at least two two-component massless Dirac fermi- In this section, we are going to combine the above 3D

ons if it .has two translatioﬁ.'xyy and two parit;l/yvany,y model and the rotor model discussed in R&6] and Ref.
symmetries. We see that string-net condensation and the %3] to obtain a quasiexactly soluble local bosonic model that
sociated projective symmetry produce and protect massles®ntains massless Dirac fermions coupled to mas&lé4d
Dirac fermions. gauge bosons.

VI. MASSLESS FERMIONS AND STRING-NET A. 3D rotor model and artificial light

CONDENSATION ON A CUBIC LATTICE ) . A
Arotor is described by an angular variatsleThe angular
The above calculation and the 2D model can be generaly,omentum ofy, denoted a§, is quantized as integers. The
ized to a 3D cubic lattice. We introduce six Majorana fermi-3p yotor model under consideration has one rotor on every
ons\f, wherea=x,x,y,y,z,z. One set of commuting op- ik of a cubic lattice. We usg to label the nearest neighbor
erators on a square lattice has the form links. ij andji label the same links. For convenience, we will
. - define ;= — #; and S{=—S}. The 3D rotor Hamiltonian
Uiitx= ~IN Ay, has the form

O o= — NN, 2 1
ii+ty i Nty Hrotor:UZ (2; SﬁHa +§J§ (SZ‘Ha)Z

lAJi,iJrz: —iNN 2,

iol3

e +012> COL B+ B + 0, +6;,). (85
Ui,j:Uj,i . (82) P
Herei=(iy,iy,i,) label the sites of the cubic lattice, aiad

=*X,ty,=z TheX, sum over all the square faces of the
cubic lattice.iq, iy, i3, andi, label the four corners of the

Using Ui,j and a complex fermion;, we can construct an
exactly soluble interacting Hamiltonian on a cubic lattice:

squarep.
Hill= gE FortX X (00 thiatHe), WhenJ=g,=0 andU>0, the state with al§;=0 is the
Ioasxy.z ground state. Such a state will be regarded as a state with no
PO - . " strings. We can create a string or a string net from the no-
Fp=Ui i,Ui, Ui, Ui, i (83  string state using the following strin@r string-net opera-

tor:
whereZX, sums over all the square faces of the cubic lattice.

i1, i, i3, andi, label the four corners of the squape The
Hilbert space of the system is generated by the complex fer-
mion operators); and

WU(l)(C):lc_:[ e, (86)

whereC is a string(or a string net formed by the nearest

zll,l'i:)\ixjui)\i;, neighbor links, andI¢ is the product over all the nearest
neighbor linksij on the string(or string net. Since the
2¢2i:)\y+i)\§ closed-string-net operatoWVy1)(Ccosd COmMmutes with
| [

Hiotor WhenJ=g,=0, Wy 1)(C¢josd g€NErates a large set
of degenerate ground states. The degenerate ground states
are described by closed string nets.

There is another way to generate the degenerate ground
ﬁtates We note that all the degenerate ground states satisfy

2= NFHINE, (84)

and there are 16 states per site.

The physical Hilbert space is defined as a subspace wit
even numbers of fermions per site. The physical H|Ibert2asn+a 0. Let |{6;}) be the common eigenstate @f :
space has eight states per site. When restncted to the phyﬁUI{H.,}) 0;l{6}). Then the projection onto th&,S/;. ,

cal Hilbert spaceiH 111 defines our spi-3 3 system, which =0 subspacé’l{au}) gives us a degenerate ground state. We
is alocal bosonic system note that

When g>|t|, our spin333 model has two four-
component massless Dirac fermions as its low lying excita- ex 3
tions. The model also h&, gauge excitations and the mass- 2 g 2 Siita @7

less Dirac fermions carry uni, gauge charge. Again, the

model has a string-net condensation in its ground state. Bothjenerates aU(1) gauge transformatiod{aij}>—>|{79ij}>,
the Z, gauge excitation and the massless fermion are prowhere

duced and protected by the string-net condensation and the 3

associated PSG. 0= 0+ ¢i— ¢;. (89
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Thus twoU(1) gauge equivalent configuratior and?ij

give rise to the same projected state Hhop:gl% COS{(DPHQEP fo
Pl 65} =P{0;}). (89 +t2i a;yz(iem”si,wal//rkﬂwa*‘ H.c), (91

We find that the degenerate ground states are described Myhich is a free fermion hopping model. Lg®; ,s;}, ¥r) be
U(1) gauge equivalent classes@yf. The degenerate ground the many-fermion eigenstate of the above fermion hopping
states also have ld(1) gauge structure. model and let E({6;,s;},n) be its energy. Then

When J=0 but g;#0, the degeneracy in the ground [{8i.Sj}, W) is also an eigenstate ¢iqep|;—ou=o With
states is lifted. One can show that, in this ca8ég;}) isan  €nergyE({6; s}.n).
energy eigenstate with energy;=.cos@ ;,+ 6,,+ 6., We note that
+ 0i4i1). Clearly, twoU(1) gauge equivalent configurations

~ S ot

g; and @; have the same energy. A nonzegp makes the Ni= i ¢i+za Sita (92)
closed string nets fluctuate, and vanishihgneans that the
strings in the string nets have no tension. Thus Jke0 commute with each other and commute withyzp. Thus

ground state has strong fluctuations of Iarge closed stringhe eigenstates ¢ oep| ;- o can be obtained from the eigen-
nets, and the ground state has a closed-string-net condensgstes oHoeol3-0u—o by projecting onto the subspace with

tion [13]. Ri=N: -
WhenJ#0, P|{6;}) is no longer an eigenstate. The fluc- ™" "
tuations of6;; describe a dynamical(1) gauge theory with P{Ni}Haij St V). (93)

¢; as the gauge potentifl 3,26

The ends of open strings carry a unit charge ofithé)
gauge field. Since th&J(1) gauge field is compact, our
model also has monopole excitations with magnetic charge
1/2 (i.e., the monopole generates Zlux). Both charges and UZ N+ E({ 6;,s}.n). (94)
monopoles are bosons. However, according to ], a :
bound state of a unit charge and a monopole of magneti
charge 1/2 is a fermion. Thus the 3D rotor model also ha
emergent massive fermions.

The above state is an eigenstateHfgp| ;o With energy

quations(93) and(94) are our exact solution dfl gepl;-o-
We have implicitly assumed tha®y, also performs the

projection onto the physical Hilbert space of even numbers
_ _ of fermions per sitg.
B. (Quasiexactly soluble QED on a cubic lattice WhenU is positive and large, the low energy excitations

To obtain massless Dirac fermions amd(1) gauge appear only in the sectdd;=0. Those low energy eigen-

bosons from a local bosonic model, we mix the spis  States are given bp[{6;,s;}, ¥ ,) whereP is the projection
model and the rotor model to get onto the N;=0 subspace and the even-fermion subspace.

Their energy isE({ 6 ,Sj},n).

2] Let us further assume thatg,>|t| and g>|t|. In this
_ t 1
HQED_Uzi (lﬁi ¢i+2a Siita +§% (Shiva)? limit, the ground state ha$,=—1 and ®,=0. We can
' choose
+912p COE{‘i)p)+92p Fo 0.i1a=0, a=x,y,2,
T N Si,i+x=1,
+t> X (i€ iat He), (90
i a=x\y,z _ i
Siity=(—)",

where® =6, ; + 6, + 6;;,+ 6,,; . If we restrict ourselves Siic= (=)'t (95)

within the physical Hilbert space with even numbers of fer-
mions per site, the above model is a local bosonic model.

Let us first setl=0. In this case, the above model can be . . :

i . R The ground state wave functidd{{ ¢; ,s;},¥,) is an eigen-
s:olved exactly. .Flrst let us also 9dt=0. IQ this case;; and st_ate (_)f theU (1) clos_ed-string-ngt operatoly1y(Cejosd
Ujj commute withHqep and commute with each other. Let with eigenvalue 1. It is also an eigenstate of heclosed-
|{0ij ,Sji},N) be the common eigenstates@fandU;;, where  string-net operatoW/(Cos¢ With eigenvalue )N where

to describe such a configuration. For this configuration, Eqg.
(91) describes a staggered fermion Hamiltonj24,53,54.

ijo

n=1,2,... 25k labels different degenerate common eigen-N, is the number of square plaquettes enclosedpys.
states. Within the subspace expanded [bg;,s;},n), n  We see that there is a condensation of closgd) andZ,
=1,2,... s, Hoep reduces to string nets in theJ=0 ground state. In such a string-net
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condensed state, there are gapless fermionic excitationgauge field. If thg3+1)D U(1) gauge theory is in the Cou-
which are described by fermion hopping in theflux phase. lomb phase where the artificial light is gapless, it was found
In momentum space, the fermion hopping Hamiltonianthat[18]

Eq. (92) for the -flux configuration has the form
<W(Cclose)>:A(C)e_ LC/S, (100

Hhop:Z "Wl (W, +const, (96)  whereA(C) depends on the shape of the closed stag.
even in the large string limit. Thus the closed strings in our
where model do not exactly condense. TH¢1) Coulomb phase is,
in some sense, similar to the algebraic long range order
‘I’;,k:(lﬂa,ky¢a,k+QX'¢a,k+Qy,¢a,k+Qx+Qy), phase of the(1+1)D interacting boson model, where the
bosons do not exactly condense but the boson operator has
I'(k)= 2t[sin(k,)T'1 +sin(ky) T+ sin(k,) T3], an algebraic long range correlation.

3 1,23 .
andT';=7°®7° I'=r'7 andl3=r'© 7. Herer C. Emergent chiral symmetry from the PSG

are the Pauli matrices and is the 2< 2 identity matrix. The _ ) .
momentum summationS, is over the range K, Equation(98) describes the low energy dynamics of the

e (= ml2,712), k e (—m/2,m/2), andk,e(— 7). Since ends of open stringé&he fermion) and the “condensed”

(I, T}=26, . i,j=1,2,3, we find that the fermions have closed string netfthe U(1) gauge field The fermions and
thelz ,diJsperskI)Jn, ’ e gauge boson are massless and interact with each other. Here

we would like to address an important question: after inte-
E(k)= t2t\/sinz(kx)+sin2(ky)+sin2(kz)_ (97) grating out high energy fermions and gauge fluctuations, do
the fermions and gauge bosons remain massless? In general,
We see that the dispersion has two nodeskaD andk interactions between massless excitations will generate a
=(0,0,7). Thus, Eq(91) will give rise to two massless four- mass term for them, unless the masslessness is protected by
component Dirac fermions in the continuum limit. symmetry or something else. We know that, due tolttfe )

After including theU (1) gauge fluctuations described by gauge invariance, the radiative Correctio_ns cf'innot generate
¢; and theZ, gauge fluctuations described by, the mass- ~counterterms that break the(1) gauge invariance. Thus
less Dirac fermions interact with tHé(1) and theZ, gauge radiative corrections cannot generate mass for lthe)
fields as fermions with unit charge. Therefore the total lowgauge boson. For the fermions, if the theory has a chiral
energy effective theory of our model is a QED with two symmetrywl—>e'97 o, v°=v"y1y?y3, then the radiative
families of Dirac fermions of unit charg@lus an extraZ,  corrections cannot generate counterterms that break the chi-
gauge fielgl We will call these fermions artificial electrons. ral symmetry and thus cannot generate mass for the fermi-
The continuum effective theory has the form ons. Although the low energy effective theory E§8) ap-

pears to have chiral symmetry, in fact it does not. This is

because Eq98) is derived from a lattice model. It contains

many other higher order terms summarized by the ellipsis in
(98 Eqg. (98). Those higher order terms do not have chiral sym-
) ) ) metry. To see this, we note that the actloméfon WY,y is
where |, is the lattice constant,=1,2, Dy=4,+iaq, D; realized by a &4 matrix Y%« ;I 5@ 2. We also
=ditiaili—12a, Uf—2|0t Y|u=0123are &4 Dirac ma-  pote that the periodic boundary conditions Wi, in the

- .0 - C 2
L= Doy i +viDiy ’/f|+J_|OE —109:B°+

trices, andw. 70 reduced Brillouin zone are given by
We wish to pomt out the constafitis Eq.(98) is of order
1. Thus the coefficient of th&? term C/Jly— whenJ Vakio =707 ay, Vakiq,= =T PP
=0. For a finiteJ, the U(1) gauge field will have a non- (101

trivial dynamics. We also point out that, without fine-tuning, _ . 5. ) _ )

the speed of artificial lightc,~1,\Jg;, and the speed of We find that the action ol is |r15compat|ble with the peri-

artificial electronsp;, do not have to be the same in our 09'0 lgound%ry clondltlons sincg” does not commute with

model. Thus Lorentz symmetry is not guaranteed. T ®7;_) and7’® 7. Thgrefore the chlral symmetry generated
We would like to remark that, for finiteJ, the U(1) by »> cannot be realized on a lattice. Due to the lack of

closed-string operators no longer condense. A necegsaty chiral symmetry, it appears that the radiative corrections can

not sufficien condition for closed strings to condense is thatgenerate a mass term

the ground state expectation value of the closed-string opera- —

tor satisfy the perimeter law OL=th MY 4, (102

<WU(1)(C0|059)>:Ae_LC/§1 (99)  Which is allowed by the symmetry.

The lack of chiral symmetry on the lattice makes it very
where L. is the length of the closed string and\,§) are  difficult to study massless fermions/quarks in lattice gauge
constants for large closed strings. We note that the closedheory. In the last few years, this problem was solved using
string operators are the Wilson-loop operators of thel)  the Ginsparg-Wilson relatiof65—-58. In the following, we
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would like to show that there is another way to solve the Yo Pxl Wi i iye zp( Y
massless-fermion/chiral-symmetry problem. We will show X hely l xlylz

that our model has an emergent chiral symmetry that appears P g ol .

only at low energies. The low energy chiral symmetry comes YRy holy ia) 7 Wi =iy i)

from the nontrivial quantum order and the associated PSG in

the string-net condensed ground stp¢l5,16. The Dirac 7PyPy: ‘ﬂ(lX i) lﬂ(l —iy) - (106

operator in our model satisfies the linear relation ] )
For thew-flux configuration Eq(95), we need to choose the

WDW'=D, WePSG, (103  following Gy ,, pr'y’z, andexy’yZ‘ZX in order for the com-
_ _ _ _ _ bined transformation G, Ty, pr’ypr‘yPX,y, and
in contrast to the nonlinear Ginsparg-Wilson relation Gp o Pyy.yz2x 10 be the symmetries of the hop-

—(_)iytiy —( )iy —
Because of the low energy chiral symmetry, the two families Cx=(—)v""% Gy=(-)7 G=1,
of Dirac fermions remain massless even after we include the — (=), Gp=(—)y, Gp=(—)
radiative corrections from the interaction with thé(1) ’ Py P ’

gauge bosons. Gp =(—)iy, GPyz:(_)iyiz’

To see how the string-net condensation and the related xy
PSG protect the massless fermions, we follow closely the e
discussion in Sec. V C. The Hamiltonian E§O) is a mix- Gp, =(—)XyTyizmizx, (107)

ture of the rotor model and the spj%3 model. The sym- . o o
metry properties of the rotor part are simple. Here, we will The hopping Hamiltonian is also invariant under a glabal
concentrate on the spihi 3 part. Equatior(90) is not invari- ~ gauge transformation
ant under the six parity transformatioRy , , and Py y, .« )
that generatex«s —X, y« —Y, Z«—2, XY, y«2z, and Go:  thi——ihi. (108
z—Xx. Butitis invariant under the paritPy y , andPyy y2,x  The
followed by the spin rotation and , respec-

y P FPryz ANA VP o TOSP vp P,y.yz2Go} generate a PS@ part of the

tively. In the fermion representati and en- Pxyyzzx " Pxyyz2x
y he followi pf . Oﬂ?x%z TPayyean full PSG) of the hopping Hamiltonian.
erate the following transformations: To study the robustness of massless fermions, we consider

a more general Hamiltonian by adding

transformations {Gyy ,Txyz» Gp . ¥p . Pxyz

xy,z° "xy,z

Yp,: )\ix(_’)\i;a byl
5H=; [t(Ci)Wy(a)(Cj) +H.c] (109
ij

Yo, MeN. giodl,

to Hoep, whereCj is an open string connecting siteand

. z z T ~
Yo MONL ey, sitej andWy1)(C;)) an open-string operator
Yp. i N, )\i;<—>)\i;, Wy (1)(Copen = '/fiTlei Hilizoiliz' - 0in-1in0in,1in¢in-
Y (110
ve,s MM, Mo, The new Hamiltonian is still exactly soluble, whér0. We
- will chooset(C;) such that the new Hamiltonian has trans-
yp 1 NN, Nl (105 lation symmetne_s an@x,y,z parity symmetnes. We find that.
zx the resulting projective symmetry imposes enough constraint

The symmetrieq P and = on the hopping Hamiltonian for the ends of condensed
Y xyr VPyyzl xy.z: YPuyyzax XVyz2x strings such that the Hamiltonian always has massless Dirac

are realized in the hoppmg Ham|lt0n|an EQ1) through the fermions[assuming that(C;) is not too big compared tg

PSG. The hopping Hamiltonian is invariant only under sym-5,4 g.].  Although Ithe PSG  transformations

metry transformations followed by propgs gauge transfor- Ve Pyy.yz2x @€ Not needed for the existence of

PXYYyZ,ZX XY,yZ,zX
rlnatlonsG(l) Since ther-flux configurations; of the spin- the massless fermions, we will still include them in the fol-
737 sector and the zero-flux configuratia) of the rotor
lowing discussion.

sector do not break any symmetries, we expect the hopping For smallt(C;), the ground state is still described by the

gamlltomanp Eq. (gi)ndtOG be invariant gndeﬁx'yﬁ%ﬁgygé_ ar-flux configuration. The new hopping Hamiltonian for the
PyyzPryz X¥i2? P Ye Xy,yz,zx: ar-flux configuration has the more general form

XY,z XY,yzZ,zX XY,yzZ,zZX

tions of T, , and ypxyyzzxpxy,yzyzx on theys fermion are stan-
dard coordinate transformations. The actionyq;,fxszxyy,z
on they fermion is given by

H:% (xi¥ g+ H.c). (112
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The symmetry of the generalizeld ogp requires that the em
above hopping Hamiltonian be invariant under the PSG gen- €10(k) = > € " Xm,

m,+m,=odd,m,=even
erated by {GO,Gx,y,sz,y,zv pr,y,zypx,y,sz’y’z' T ’

Gny,yz,zxypxy,yz,zxpxy'yz'Zx}'

The invariance unde@, , , Ty, requires that €0y(k) = > elkmy
. _ my+m,=evenm,=odd
Xijiem=(—)y"a( =) XMy Ty (112
In momentum space, e(k) = ek Mym. (114

my+m,=odd,m,=odd
_n-1 —iky itk ]
x(kp k) =Ng o>, e haitikedy, .. . . . )
site< ! We note that, (k) are periodic functions in the lattice Bril-
louin zone— m<Kk, , , <. They also satisfy

= 2 €ap(ka) g iyraqipg, (113

£ €ap(K)=(—)"€ap(k+Q,+Qy),
where
€ap(K)=(—)Peop(k+Q,). (119
k)= ik-m m
ol k) my+m2:ev2en,m2:euen X TheI'(k) in Eqg. (96) now has the form
|
€ooK)  €10k+ Q)  €0i(k+Qy)  €12(k+Q+Qy)
€10K)  €ook+ Q)  €11(k+Qy)  €pa(k+Q+Qy)
I'(k)= 116
7 el enk+Q) egktQ) enk+Qt Q) (119
€11(K)  €01(k+Qy)  €10(k+Qy)  €oolk+Q+Qy)
|
Just as discussed in Sec. VC, the invariance under €ool — PyK) = — €0o(K),
prprPX requires that
€10 —Pyk) = €10(k+Qy),
—xp,i.pi=Gp ()xiGp () (117
€01(—Pyk) = —€p1(K),
or
€11(—Pyk) = —€11(k+Qy). (121
X—pm=— ()™M MMM )My (118)

The invariance undd?;pzyszz requires that

In momentum space, the above becomes X p=— (— )™Myt mymatmam_ymy (122

z

€00l — Pxk) = — oo k+ Q) In momentum space

€10( — Pxk) = —€10(K), €00 — P2K) = — €00(K),

€o( — Pyk) = €oy(k+Qy), €10l ~PK) =~ €1k Qo).

exs(— Pk) = — exy(K), (119 €oi( ~ P2k) =~ €or(K),
where Q,=xz Similarly, the invariance undeGp yp Py €11(— PK) = €13(k+Qy). (123
requires that The invariance unde@Pnypxnyy requires that

X—pym=— (=)™ T Iy MM( —)Myy, . (120) Xp,j.p,i=Gp, (DXiGp, (i) (124)

In momentum space or
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Xnym:(_)mxmme- (125 VIIl. QED AND QCD FROM A BOSONIC MODEL
ON A CUBIC LATTICE
In momentum space In this section, we are going to generalize the results in
P.oK) = enr(k Ref.[59] and Ref.[15] and use a bosonic model on a cubic
€00l Pxyk) = €09(k), ; . o
lattice to generate QED and QCD witiN2 families of mass-
€10 Pyyk) = €19(k+ Q). less quarks and leptons. To describe the local Hilbert space
Y on sitei in our bosonic model, it is convenient to introduce
€01(PyyK) = €01(k+Qy), fermions A} and ¢, where a=1,...N¢, n
=1,...,2;, anda=1,2,3.\{ is in the fundamental repre-
€11(PyyK) = €11(K). (1260  sentation of anSU(N;) group. ¢ is in the fundamental
. . . representation of aisU(3) color group and arsU(2Ny)
The invariance unde@PyzypszyZ requires that group. The Hilbert space of fermions is bigger than the Hil-
o \mm, 12 bert space of our boson model. Only the physical subspace of
XPyzm_( )™ e xm (127 the fermion Hilbert space becomes the Hilbert space of our
boson model. The physical state on each site is formed by
or color singlet states that satisfy
€00l Pyzk) = €0o(K),
3
erdPy k)=~ e1g(k), NN O Py TyiP = 6P SN || @pny9 =0, (132
€01( Py K) = — €01(K),
whereNs is assumed to be even. Once restricted within the
€11(PyK) = €11(K). (128 physical Hilbert space, the fermion model becomes our local
) ) ) bosonic model.
The invariance unde®p, yp, P, requires that In the fermion representation, the local physical operators
gy + My + mym in our bosonic model are given by
Xp, m= (=)™ TR (129
or Smn_ l//maTllllna 1 5mn IaTlﬁ:a,
€00l P2xK) = €00(K),
P,K) = €19 k+ 1
€10 P2xK) = €1 Q) M?b:)\?f)\ib_ N_féab)\ff)\i(;'
€01(PK) = — €01(K),
e11(PK) = ena(k+ Q). (130 L= N Yy €y - (133

We see that Eq119) requires thatslo(k)|ky:kZ:0=0 and
ell(k)|ky:kZ:0=0. Equation (123 requires that
EOO(k)lkX=ky=0=0 and 601(k)|kx=ky=0=0- Thus €,4(0)
=0. When combined with Eq(115), Eq. (119, and Eq.

We note that by definitiotM2*=S""=0. The Hamiltonian
of our boson model is given by

J1

; J
(123, we find H= L mngnm_ “2 N \rabygba
N o SR 2 MM
Eaﬁ(axQx+ayQy+azQz):Oa ax,ay,aZZO,l.( 31
131 J
+ 2 > rpmTEmt L e (134
Thereforel' (k) =0 whenk 0.Q,. The two translatiorT, , Nf (i)

and the three pantyyp Py.y,z Symmetries ofHogp guar-

antee the existence of at least two four-component massleget us assume, for the time being, thht=0. In terms of
Dirac fermions, or, more precisely, no symmetric local per-fermions, the above Hamiltonian can be rewritten as
turbations in the local bosonic modélgep can generate
mass terms for the two massless Dirac fermions in the un- 3
- - 2 b b
perturbed Hamiltonian. . o - E Yyt ey et — 2= X N\ ATAPAPT
Since the mass term in the continuum effective field Nt ) Ni
theory is not allowed by the underlying lattice PSG, we say
. + const. (135
that our model has an emergent chiral symmetry. The mass-
lessness of the Dirac fermion is protected by the quantum
order and the associated PSG.
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_ Certainly, if the ground state is known to have certain

Z:f D(y")D(h) D(ao) D(u)D(y)e' T, gauge fluctuations, then writing the Hamiltonian in terms of
a particular gauge theory that happens to have the same
gauge group will help us to derive the low energy effective

L=y"ila+iagD1vf— 2 (¢f'uyyf+H.c) theory. Even when we do not know the low energy gauge
<”> fluctuations in the ground state, we can still try to write the
+)\?Ti[6t+i Trag(i)]A? Hamiltonian in a form that contains a certain gauge theory

and try to derive the low energy effective gauge theory. Most
of the time, we find that the gauge fluctuations in the low
energy effective theory are so strong that the gauge theory is
in the confining phase. This indicates that we have chosen
\P T the wrong form of the Hamiltonian. However, if we are
- E % XiiXij » (136 lucky enough to choose the right form of the Hamiltonian
with the right gauge group, then the gauge fluctuations in the
where (") T= (,/,{1,1,(/,{1'2,9/,?13), andao(i) andu; are 3x3 low energy effective theory will be weak and the gauge fields

N
—2 ()\laTX”)\Ja‘i‘ H.C.)_ J_ 2 Tr(uijui}.)
(i) 1 (i)

complex matrices that satisfy o, xjj» andu; will be almost like classical fields. In _this.
case, we can say that the ground state of the Hamiltonian
ui‘}= Uji » ao(i)=a$(i). (137 contains low energy gauge fluctuations describedgyy;; ,

_ . . and u;. In the following, we will show that theU(1)
WhenJ;#0, the Lagrangian may contain terms that itix < SU(3) fermion model Eq(136) is the right form for us to

andu;: write the Hamiltonian Eq(134) of our bosonic model.
After integrating out the fermions, we obtain the follow-
L:,p?’ri[(;tﬂao(i)]wp_% (lﬂinTUijwj"Jr H.c.) ing effective theory fory(i), xj, anduj:
zZ= f D(ay) D(u)e dtNikerv.a0), (141

PN TraghI =3 (Vg +Hee)

N N whereL ¢ does not depend ;. We see that, in the large
_ > Tr(ugul)— _f > xixd N¢ limit, x;, uj, anda, indeed become classical fields with
Ji @ ! Jo Gy 7MY weak fluctuations.
In the semiclassical limit, the ground state of the system is

+ CNfE [ xjdetu;)+H.c], (138 given by the ansatzx-j U,J ,go(i)) that minimizes the energy
(i)

—Less. We will assume that such an ansatz hadlux on

whereC is anO(1) constant. We note that the above La- €Very plaquette and takes the form

grangian describes &(1)XSU(3) lattice gauge theory — . — . :

coupled to fermions. Xii+x=~1X, Xijity=—1(=)™x,
The fieldag(i) in the Lagrangian is introduced to enforce ; o= (= )ty

the constraint ’

Ui i+x= —iU, Uiivy=—i(—)"u,

nat nB_ ynBynat  yatyagep_yayatgep_q —_ oL .
i i bi" i N i\ (139 ui,i+i:_i(_)lxﬂyu’ ay(i)=0. (142
As in standard gauge theory, the above constraint reallf!f the 7-flux ansatz does not minimize the energy, we can

means a constraint on physical states, i.e., all physical statédways modify the Hamiltonian of our bosonic model to
must satisfy make thew-flux ansatz have the minimal energyespite

thei dependence, the above ansatz actually describes trans-
aty acap ., ynat ng a,83 3 lation, rotation, parity, and charge conjugation symmetric
MNP Y P = 075 Ny [Ppny9=0. (140 states. This is because the symmetry transformed ansatz, al-
though not equal to the original ansatz, is gauge equivalent to
The above is the constraint needed to obtain the Hilberthe original ansatz.

space of our bosonic model. The mean-field Hamiltonian for fermions has the form
Here we would like to stress that writing a bosonic model
in terms of a gauge theory does not imply the existence of H= nt; n,yat ya
. : o = Ui N xiNT+HH.C). 143
physical gauge bosons at low energy. Using projective con- % (U + N x| ) (143

struction, we can write any model in terms of a gauge theory

of any gauge group33,60. The existence of low energy The fermion dispersion has two nodes let=0 and k
gauge fluctuations is a property of the ground state. It has=(0,0,7). Thus there are ;X7 massless four-component
nothing to do with how we write the Hamiltonian in terms of Dirac fermions in the continuum limit. They correspond to
this or that gauge theory. quarks and leptons of N different families. Each family
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contains six quark&wo flavors times three colorshat carry  ized (and, hopefully, classifigdby the projective symmetry
SU(3) colors and charge 1/3 for thé(1) gauge field, and in the hopping Hamiltonian for the ends of condensed
one lepton that carries ®U(3) colors and charge 1 for the strings. Similar to symmetry breaking stat@s “particle”

U(1) gauge field. condensed statgsstring-net condensed states can also pro-
Including the collective fluctuations of the ansatz, theduce and protect gapless excitations. However, unlike sym-
U(1)xXSU(3)=U(3) fermion theory has the form metry breaking states, which can only produce and protect

gapless scaler bosoiisr Nambu-Goldstone modgsstring-
_ net condensed states can produce and protect gapless gauge
L=2 oi[a+iao() ]+ > gl uzeigl+ 2\ bosons and gapless fermions. It is amazing to see that gap-
' ! ' less fermions can even appear in local bosonic models.
_ _ Motivated by the above results, we propose the following
Xi[a+i Trag()IN+ 2 M Ty;de(e@)\?, (144  |ocality principle: The fundamental theory for our universe is
! a local bosonic modelJsing several local bosonic models as
. , o examples, we try to argue that the locality principle is not
wherea; are 3<3 Hermitian matrices, describind(1) and  opyiously wrong, if we assume that there is a string-net con-
SU(3) gauge fields. In the continuum limit, the above be-gensation in our vacuum. The string-net condensation can

comes naturally produce and protect massless phot@sswell as
. . . gluong and(nearly) massless electrons/quarks. However, to
L= Doy’ nt v nDi¥' 1t N aDoYON 4 really prove the string-net condensation in our vacuum, we
o . need to show that string-net condensation can generate chiral
+viN aD{ ¥\ a (145 fermions. Also, the above locality principle has not taken
quantum gravity into account. It may need to be generalized
with  vi~lgdy, v{~lgd,, D,=d,+ia,, D,=d, to include quantum gravity. In any case, we can say thalt we
+iTra,, 1=12, and y* are 4x4 Dirac matrices have a plausible understanding of where light and fermions
[24,53,54. \, , and 4, ,, are Dirac fermion fieldsy, , forms ~ come from. The existence of light and fermions is no longer
a fundamental representation of coBU(3). ’ mysterious once we realize that they can come from local
If we integrate outa, and a;; in Eq. (144) first, we will bosonic models via string-net condensations.
recover the bosonic model E€L34). If we integrate out the The string-net condensation and the associated PSG also

high energy fermions first, the (1)< SU(3) gauge fielca,, provide a new splutior] to the chiral symmetry and fermion
will acquire a dynamics. We obtain the following low energy Mass problems in lattice QED and lattice QCD. We show
effective theory in the continuum limit: that the symmetry of the lattice bosonic model leads to the

PSG of the hopping Hamiltonian for the ends of condensed
strings. If the ends of condensed strings are fermions, then

_ 0 m i N 1.0
L=41aDoy ¥1ntvihnDiv' i nt N aDoy Mg the PSG can sometimes protect the masslessness of the fer-
. _ 1 _ ) mions, even though the chiral symmetry in the continuum
+0iN aD! YN o+ —[TrFiFO +c2Tr FiF' ]+, limit cannot be generalized to the lattice. Thus the PSG can
, A" e

lead to an emergent chiral symmetry that protects massless
(1460  Dirac fermions.

In this paper, we have been stressing that string-net con-
where the velocity of théJ(3) gauge bosons is,~oJ; 5, densation and the associated PSG can protect the massless-
and the ellipsis represents higher derivative terms and thaess of fermions. However, most fermions in nature do have
coupling constantrg is of order 1N; . masses, although very small compared to the Planck mass.

In the largeN; limit, fluctuations of the gauge fields are One may wonder where those small masses come from. Here

weak. The model Eq146) describes &J(1)xX SU(3) gauge We would like to point out thaF the PSG argument for mass-
theory coupled weakly to!2, families of massless fermions. Iessness_ works only for radlat!ve corrections. In pther words,
Therefore, our bosonic model can generate massless artificiflé fermions protected by string-net condensation and PSG
quarks and artificial leptons that couple to artificial light andcannot gain any mass from additive radiative corrections
artificial gluons. As discussed in Rdfl5], the PSG of the Caused by high energy fluctuations. However, if the model
ansatz Eq(142 protects the masslessness of the artifician@s infrared divergence, then infrared divergence can give

quarks and the artificial leptons. Our model has an emergerfi€ Would-be-massless fermions some mass. The acquired
chiral symmetry. mass should have the scale of the infrared divergence. The

(3+1)D QED model studied in this paper does not have any
infrared divergence. Thus, the artificial electrons in the
IX. CONCLUSION model are exactly massless. But in the bosonic model dis-
In this paper, we studied a new class of ordered states-cUssed in Sec. VIl th&U(3) gauge couplingys runs as
string-net condensed states—in local bosonic models. The
new kind of order does not break any symmetry and cannot -1 _
be described by Landau’s symmetry breaking theory. We dag — 1 (2/3)(2Nf),
show that different string-net condensation can be character- dIn(M?) 4

(147)
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whereM is the cutoff scale. Thus, wheN;<8, ag has a infrared divergence. In this case, if a string-net condensation
logarithmic infrared divergence. In general, for models withproduces massless fermions, those fermions will remain
U(1) andSU(3) gauge interactions and the right content ofmassless down to zero energy. (R+-1)D, the gauge inter-
fermions, theSU(3) gauge interactions can have a weakaction between massless fermions is so strong that one can-
logarithmic infrared divergence it3+1)D [61,62. This  not have fermionic quasiparticles at low enerdig3—645. It
weak divergence could generate mass of ordefs amazing to see thattl is the only space-time dimension
e”“*sMPIMp, whereMp is the Planck mass or the grand where the gauge bosons and fermions produced by string-net
unified theory(GUT) scale (the cutoff scale of the lattice condensation have weak enough interactions so that they can
theory, C=0(1), andag(Mp) is the dimensionless gauge pe identified at low energies and, at the same time, have
coupling constant at the Planck scaleCAxg(Mp)~40 can  strong enough interactions to have a rich nontrivial structure
produce the desired separation between the Planck masg/ low energies.
GUT scale and the masses of the observed fermions. It is

interesting to see that, in order to use the string-net conden-

sation picture to explain the origin of gauge bosons and

nearly massless fermions, it is important to have a four-

dimensional space-time. When space-time has five or more This research is supported by NSF Grant No. DMR-01-
dimensions, the gauge-fermion interactions do not have ang3156 and by NSF-MRSEC Grant No. DMR-02-13282.
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