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Quantum order from string-net condensations and the origin of light and massless fermions

Xiao-Gang Wen*
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

~Received 24 February 2003; published 3 September 2003!

Recently, it was pointed out that quantum orders and the associated projective symmetry groups can produce
and protect massless gauge bosons and massless fermions in local bosonic models. In this paper, we demon-
strate that a state with such kinds of quantum order can be viewed as a condensed state of nets of strings. The
emergent gauge bosons and fermions in local bosonic models can be regarded as a direct consequence of
string-net condensation. The gauge bosons are fluctuations of large closed string nets. The ends of open strings
are the charged particles of the corresponding gauge field. For certain types of strings, the ends of open strings
can even be fermions. According to the string-net picture, fermions always carry gauge charges. This suggests
the existence of a new discrete gauge field that couples to neutrinos and neutrons. We also discuss how chiral
symmetry that protects massless Dirac fermions can emerge from the projective symmetry of quantum order.
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I. INTRODUCTION

A. Fundamental questions about light and fermions

We have known about light and fermions for many yea
But we still cannot give a satisfactory answer to the follo
ing fundamental questions: What are light and fermion
Where do light and fermions come from? Why do light a
fermions exist? At the moment, the standard answers to
above fundamental questions appear to be ‘‘light is the p
ticle described by a gauge field’’ and ‘‘fermions are the p
ticles described by anticommuting fields.’’ Here, we wou
like to argue that there is another possible answer to
above questions: our vacuum is filled with stringlike obje
that form a network of arbitrary sizes and those string n
form a quantum condensed state. According to the string
picture, light ~and other gauge bosons! is a vibration of the
condensed string nets, and fermions are the ends of str
~or nodes of string nets!. String-net condensation provides
unified origin of light and fermions.1

Before discussing the above fundamental questions
more detail, we would like to clarify what we mean by ‘‘ligh
exists’’ and ‘‘fermions exist.’’ We know that there is a natur
mass scale in physics—the Planck mass. The Planck ma
so large that any observed particle has a mass at least a f
of 1016 smaller than the Planck mass. So all observed p
ticles can be treated as massless when compared with
Planck mass. When we ask why some particles exist,
really ask why those particles are massless~or nearly mass-
less when compared with the Planck mass!. So the real issue
is to understand what makes certain excitations~such as light
and fermions! massless. We know that symmetry breaking
a way to get gapless bosonic excitations. We will see t
string-net condensation is another way to get gapless ex
tions. However, string-net condensations can generate m
less gauge bosons and massless fermions.

*URL: http://dao.mit.edu/;wen
1Here, by ‘‘string-net condensation’’ we mean the condensation

nets of stringlike objects of arbitrary sizes.
0556-2821/2003/68~6!/065003~25!/$20.00 68 0650
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Second, we would like to clarify what we mean by th
‘‘origin of light and fermions.’’ We know that everything ha
to come from something. So when we ask where light a
fermions come from, we have assumed that there are s
things simpler and more fundamental than light and ferm
ons. In Sec. II, we define local bosonic models that are s
pler than models with gauge fields coupled to fermions.
will regard local bosonic models as more fundamental~the
locality principle!. We will show that light and fermions can
emerge from a local bosonic model if the model contain
condensation of nets of stringlike object in its ground sta

After the above two clarifications, we can state more p
cisely the meaning of the statement that string-net conde
tion provides another possible answer to the fundame
questions about light and fermions. When we say ga
bosons and fermions originate from string-net condensat
we really mean that~nearly! masslessgauge bosons and fer
mions originate from string-net condensation in alocal
bosonic model.

B. Gapless phonons and symmetry breaking order

Before considering the origin of massless photon a
massless fermions, let us consider a simpler massless~or
gapless! excitation—the phonon. We can ask three simi
questions about the phonon: What is a phonon? Where
phonons come from? Why do phonons exist? We know t
those are scientific questions and we know their answer
phonon is a vibration of a crystal. It comes from a sponta
ous translation symmetry breaking. It exists because
translation symmetry breaking phase actually exists in
ture. In particular, the gaplessness of the phonon dire
originates from and is protected by the spontaneous tran
tion symmetry breaking@1,2#. Many other gapless excita
tions, such as spin waves, superfluid modes, etc., also c
from the condensation of pointlike objects that break cert
symmetries.

It is quite interesting to see that our understanding o
gapless excitation—the phonon—is rooted in our und
standing of phases of matter. According to Landau’s the
@3#, phases of matter are different because they have diffe
f
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Quantum system Classical system

Gapped

NambuGoldstone mode

"Particle" condensation

Orders

Fermi liquids
Fermi surface topology

Gapless Gauge bosons/Fermions
Projective symmetry group

Conformal algebra, ??

Topological field theory

Nonsymmetry breaking ordersSymmetry breaking orders

Topological orders

Quantum orders

Symmetry group

Stringnet condensation

FIG. 1. A classification of dif-
ferent kinds of order in matter
~We view our vacuum as one kind
of matter.!
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broken symmetries. The symmetry description of phase
very powerful. It allows us to classify all possible crystals.
also provides the origin for gapless phonons and many o
gapless excitations. Until a few years ago, it was belie
that the condensations of pointlike objects, and the rela
symmetry breaking and order parameters, can describe
the types of order~or phases! in nature.

C. The existence of light and fermions implies the existence
of new kinds of order

Knowing that light is a massless excitation, one may wo
der whether light, just like phonons, is also a Namb
Goldstone mode from a broken symmetry. However, exp
ments tell us that aU(1) gauge boson, such as light, is rea
different from a Nambu-Goldstone mode in 311 dimensions.
Therefore it is impossible to use Landau’s symmetry bre
ing theory and condensation of pointlike objects to und
stand the origin and the masslessness of light. Also, Nam
Goldstone modes are always bosonic; thus it is impossibl
use symmetry breaking to understand the origin and the~al-
most! masslessness of fermions. It seems that there doe
exist any order that can give rise to massless light and m
less fermions. Because of this, we put light and electrons
a different category from phonons. We regarded them as
ementary and introduced them by hand into our theory
nature.

However, if we believe that light and electrons, just li
phonons, exist for a reason, then this reason must be a ce
order in our vacuum that protects the masslessness of
and electrons.~Here we have assumed that light and ele
trons are not something that we place in an empty vacu
Our vacuum is more like an ‘‘ocean’’ which is not empt
Light and electrons are collective excitations that corresp
to certain patterns of ‘‘water’’ motion.! Now the question is
what kind of order can give rise to light and electrons a
protect their masslessness.

If we really believe in the equality between light, ele
trons, and phonons, then the very existence of light and
mions indicates that our understanding of the states of ma
is incomplete. We should deepen and expand our underst
ing of the states of matter. There should be new state
matter that contain new kinds of order. The new types
order will produce light and electrons and protect their ma
lessness.

D. Topological order and quantum order

After the discovery of the fractional quantum Hall~FQH!
effect@4,5#, it became clear that the Landau symmetry bre
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ing theory cannot describe different FQH states, since th
states all have thesamesymmetry. It has been proposed th
FQH states contain a new kind of order—topological ord
@6#. Topological order is new because it cannot be descri
by symmetry breaking, long range correlation, and local
der parameters. None of the usual tools that we use to c
acterize phases applies to topological order. Despite this
pological order is not an empty concept. Topological ord
can be characterized by a new set of tools, such as the n
ber of degenerate ground states, quasiparticle statistics,
edge states. It was shown that the ground state degenera
a topological ordered state is a universal property since
degeneracy is robust against any perturbations@7#. Such a
topological degeneracy demonstrates the existence of t
logical order. It can also be used to perform fault tolera
quantum computations@8#.

Recently, the concept of topological order was gene
ized to quantum order@9,10#. Quantum order is used to de
scribe new kinds of order in gapless quantum states. O
way to understand quantum order is to see how it fits int
general classification scheme of types of order~see Fig. 1!.
First, different types of order can be divided into two class
symmetry breaking order and nonsymmetry breaking ord
The symmetry breaking orders can be described by a lo
order parameter and can be said to contain a condensatio
pointlike objects. All kinds of symmetry breaking order ca
be understood in terms of Landau’s symmetry break
theory. The nonsymmetry breaking orders cannot be
scribed by symmetry breaking, nor by the related local or
parameters and long range correlations. Thus they are a
kind of order. If a quantum system~a state at zero tempera
ture! contains a nonsymmetry breaking order, then the s
tem is said to contain a nontrivial quantum order. We see
a quantum order is simply a nonsymmetry breaking orde
a quantum system.

Quantum order can be further divided into many su
classes. If a quantum state is gapped, then the correspon
quantum order will be called topological order. The low e
ergy effective theory of a topological ordered state will be
topological field theory@11#. The second class of quantum
order appears in Fermi liquids~or free fermion systems!. The
different kinds of quantum order in Fermi liquids are clas
fied by the Fermi surface topology@10,12#.

E. Quantum order from string-net condensation

In this paper, we will concentrate on the third class
quantum order—the quantum order from condensation
3-2
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QUANTUM ORDER FROM STRING-NET CONDENSATIONS . . . PHYSICAL REVIEW D 68, 065003 ~2003!
nets of strings, or simply string-net condensation@13,14#.
This class of quantum order shares some similarities with
symmetry breaking order of ‘‘particle’’ condensation. W
know that different types of symmetry breaking order can
classified by symmetry groups. Using group theory, we
classify all the 230 kinds of crystal order in three dime
sions. The symmetry also produces and protects gap
Nambu-Goldstone bosons. Similarly, as we will see later
this paper, different string-net condensations~and the corre-
sponding quantum orders! can be classified by a mathema
cal object called the projective symmetry group~PSG!
@9,10#. Using the PSG, we can classify over 100 different
spin liquids that all have the same symmetry@9#. Just like the
symmetry group, the PSG can also produce and protect
less excitations. However, unlike the symmetry group,
PSG produces and protects gapless gauge bosons and g
fermions@9,15,16#. Because of this, we can say that light a
massless fermions can have a unified origin. They can c
from string-net condensation.

We used to believe that to have light and fermions in o
theory, we had to introduce by hand a fundamentalU(1)
gauge field and anticommuting fermion fields, since at t
time we did not know any collective modes that behave l
gauge bosons and fermions. Now we know that ga
bosons and fermions appear commonly and naturally
quantum ordered states, as fluctuations of condensed s
nets and the ends of open strings. This raises an issue
light and fermions come from a fundamentalU(1) gauge
field and anticommuting fields as in the 123 standard mo
or do they come from a particular quantum order in o
vacuum? Clearly, it is more natural to assume that light a
fermions come from a quantum order in our vacuum. Fr
the connection between string-net condensation, quantum
der, and massless gauge/fermion excitations, it is very tem
ing to propose the following answers to the fundamen
questions about light and~nearly! massless fermions.

What are light and fermions?Light is a fluctuation of
condensed string nets of arbitrary sizes. Fermions are en
open strings.

Where do light and (nearly) massless fermions co
from? Light and fermions come from the collective motion
of nets of stringlike objects that fill our vacuum.

Why do light and (nearly) massless fermions exist?Light
and the fermions exist because our vacuum chooses to
a string-net condensation.

Had our vacuum chosen to have a ‘‘particle’’ conden
tion, there would be only Nambu-Goldstone bosons at l
energies. Such a universe would be very boring. String
condensation and the resulting light and~nearly! massless
fermions provide a much more interesting universe, at le
interesting enough to support intelligent life to study the o
gin of light and massless fermions.

The string-net picture of fermions explains why there
always an even number of fermions in our universe. T
string-net picture for gauge bosons and fermions also ha
experimental prediction: all fermions must carry certa
gauge charges@14#. At first sight, this prediction appears t
contradict the known experimental fact that neutrons ca
no gauge charges. Thus one may think the string-net pic
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of gauge bosons and fermions has already been falsified
experiments. Here we would like to point out that the strin
net picture of gauge bosons and fermions can still be cor
if we assume the existence of a new discrete gauge fi
such as aZ2 gauge field, in our universe. In this case, ne
trons and neutrinos carry a nonzero charge of the disc
gauge field. Therefore, the string-net picture of gauge bos
and fermions predicts the existence of discrete gauge ex
tions ~such as gauge flux lines! in our universe.

We would like to remark that, despite the similarity, th
above string-net picture of gauge bosons and fermion
different from the picture of standard superstring theory.
standard superstring theory, closed strings correspond
gravitons, and open strings correspond to gauge bosons
the elementary particles correspond to different vibrat
modes of small strings in superstring theory. Also, the ferm
ons in standard superstring theory come from the ferm
fields on the world sheet. In our string-net picture, t
vacuum is filled with large nets of strings. The massle
gauge bosons correspond to the fluctuations of large clo
string nets~i.e., nets of closed strings! and fermions corre-
spond to the ends of open strings in string nets. Anticomm
ing fields are not needed to produce~nearly! massless fermi-
ons. Massless fermions appear as low energy collec
modes in a purely bosonic system.

The string-net picture for gauge theories has a long h
tory. The closed-string description of gauge fluctuations
intimately related to the Wilson loop in gauge theory@17–
19#. The relation between dynamical gauge theory and a
namical Wilson-loop theory was suggested in Refs.@20,21#.
Reference @22# studied the Hamiltonian of a nonloca
model—lattice gauge theory. It was found that lattice gau
theory contains a string-net structure and the gauge cha
can be viewed as the ends of strings. In Refs.@23,24# various
duality relations between lattice gauge theories and theo
of extended objects were reviewed. In particular, some
tistical lattice gauge models were found to be dual to cert
statistical membrane models@25#. This duality relation is di-
rectly connected to the relation between gauge theory
closed-string-net theory@13# in quantum models.

To have emergent gauge bosons at low energies, the s
nets do not have be a fundamental object in the model.
string net can simply be lines of flipped spins in a spin latt
model. Thus deconfined gapless gauge bosons can em
from a local bosonic model if the Hamiltonian has the rig
couplings@13,15,27,26#.

Emergent fermions from local bosonic models also hav
complicated history. References@28–30# discovered that fer-
mions can emerge from purely bosonic gauge theory. T
first examples of emergent fermions/anyons from lo
bosonic models were the fractional quantum Hall sta
@4,5#, where fermionic/anyonic excitations were obtain
theoretically from interacting bosons in a magnetic field@31#.
In 1987, fermion fields and gauge fields were introduced
express the spin-1/2 Hamiltonian in the slave-boson
proach@32,33#. However, writing a bosonic Hamiltonian in
terms of fermion fields does not imply the appearance
well defined fermionic quasiparticles. Emergent fermion
excitations can appear only in deconfined phases of
3-3
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XIAO-GANG WEN PHYSICAL REVIEW D 68, 065003 ~2003!
gauge field. References@34–37# constructed several decon
fined phases where the fermion fields do describe well
fined quasiparticles. However, depending on the propert
deconfined phases, those quasiparticles may carry fracti
statistics~for the chiral spin states! @34,35,38# or Fermi sta-
tistics ~for the Z2 deconfined states! @36,37#.

Also in 1987, in a study of resonating-valence-bo
states, emergent fermions~the spinons! were proposed in a
nearest neighbor dimer model on a square lattice@39–41#.
But, according to the deconfinement picture, the results
Refs. @39,40# are valid only when the ground state of th
dimer model is in theZ2 deconfined phase. It appears that t
dimer liquid on a square lattice with only nearest neighb
dimers is not a deconfined state@40,41#, and thus it is not
clear whether or not the nearest neighbor dimer model o
square lattice@40# has fermionic quasiparticles@41#. How-
ever, on a triangular lattice, the dimer liquid is indeed aZ2
deconfined state@42#. Therefore, the results in Refs.@39,40#
are valid for the triangular-lattice dimer model and fermion
quasiparticles do emerge in a dimer liquid on a triangu
lattice.

All the above models with emergent fermions are~211!D
models, where the emergent fermions can be understoo
terms of binding flux to a charged particle@31#. Recently, it
was pointed out in Ref.@14# that the key to emergent ferm
ons is a string structure. Fermions can generally appea
the ends of open strings. The string picture allows constr
tion of a ~311!D local bosonic model that has emerge
fermions@14#.

Compared with those previous results, the new featu
discussed in this paper are as follows.~A! Masslessgauge
bosons and fermions can emerge fromlocal bosonic models
as a result of string-net condensation.~B! Massless fermions
are protected by the string-net condensation~and the associ-
ated PSG!. ~C! String-net condensed states represent a n
kind of phase which cannot be described Landau’s symm
breaking theory. Different string-net condensed states
characterized by different PSG’s.~D! QED and QCD can
emerge from a local bosonic model on a cubic lattice. T
effective QED and QCD have 4N families of leptons and
quarks. Each family has one lepton and two flavors
quarks.

The bottom line is that, within local bosonic mode
massless fermions do not just emerge by themselves. E
gent massless fermions, emergent massless gauge bo
string-net condensations, and PSG’s are intimately rela
They are just different sides of the same coin—quantum
der.

According to the picture of quantum order, elementa
particles~such as photons and electrons! may not be elemen
tary after all. They may be collective excitations of a loc
bosonic system below the Planck scale. Since we canno
experiments close to the Planck scale, it is hard to determ
if photons and electrons are elementary particles or not
this paper, we would like to show that the string-net pictu
of light and fermions is at least self-consistent by study
some concrete local boson models that produce mas
gauge bosons and massless fermions through string-net
densation. The local boson models studied here are just a
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examples among a long list of local boson mod
@8,26,27,33,34,36–38,40,42–51# that contain emergent fer
mions and gauge fields.

Here we would like to stress that the string-net picture
the actual gauge bosons and fermions in our universe is
a proposal at the moment. Although string-net condensa
can produce and protect massless photons, gluons, qu
and other charged leptons, we do not know at the mome
string-net condensation can produce neutrinos, which
chiral fermions, and the weak-interactionSU(2) gauge field,
which couples chirally to the quarks and the leptons. Al
we do not know if string-net condensation can produce
odd number of families of quarks and leptons. The QED a
QCD produced by the known string-net condensations
contain an even number of families so far. The correctnes
string-net condensation in our vacuum depends on resol
the above problems. Nature has four fascinating and so
what strange properties: gauge bosons, Fermi statistics,
ral fermions, and gravity. The string-net condensation pict
provides a natural explanation for the first two properti
Two more to go.

On the other hand, if we are concerned about the c
densed matter problem of how to use bosons to make a
cial light and artificial fermions, then the string-net pictu
and quantum order do provide an answer. To make artifi
light and artificial fermions, we simply let certain string ne
condense.

In some recent work, types of quantum order and th
connection to emergent gauge bosons and fermions w
studied using PSG’s, without realizing their connection
string-net condensation@9,15,50#. In this paper, we will show
that the quantum ordered states described by PSG’s are
tually string-net condensed states. The gauge bosons and
mions produced and protected by the PSG’s have a v
natural string-net interpretation@13,14#. Quantum order, the
PSG, and string-net condensation are different parts of
same story. Here we will summarize and expand the previ
work and try to present a coherent picture of quantum ord
the PSG, and string-net condensation, as well as the as
ated emergent gauge bosons and fermions.

F. Organization

Section III reviews the work in Ref.@14#. We will study
an exactly soluble spin-1/2 model on a square lattice@8,50#.
The model was solved using the slave-boson approach@50#.
This allowed us to identify the PSG that characterizes
nontrivial quantum order in the ground state@50#. Here, fol-
lowing Ref.@14#, we will solve the model from the string-ne
condensation point of view. Since the ground state of
model can be described by both string-net condensation
the PSG, this allows us to demonstrate the direct connec
between string-net condensation and the PSG in Sec. IV.
model is also one of the simplest models that demonstr
the connection between string-net condensation and
emergent gauge field and fermions@8,14#.

However, the above exact soluble model does not con
gapless gauge boson and gapless fermions. If we regard
lattice scale as the Planck scale, then gauge bosons and
3-4
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QUANTUM ORDER FROM STRING-NET CONDENSATIONS . . . PHYSICAL REVIEW D 68, 065003 ~2003!
mions do not ‘‘exist’’ in our model in the sense discussed
Sec. I A. In Sec. V, we will discuss an exact soluble loc
bosonic model that contains massless Dirac fermions
Secs. VII and VIII, we will discuss local bosonic models th
give rise to massless electrons, quarks, gluons, and pho
Gauge bosons and fermions ‘‘exist’’ in these latter model

II. LOCAL BOSONIC MODELS

In this paper, we will consider only local bosonic mode
Local bosonic models are important since they are re
local. We note that fermionic models are in general nonlo
since the fermion operators at different sites do not comm
even when the sites are well separated. Due to their intri
locality, local bosonic models are natural candidates for
fundamental theory of nature. In the following we will give
detailed definition of local bosonic models.

To define a physical system, we need to specify~A! a total
Hilbert space,~B! a definition of a set of local physical op
erators, and~C! a Hamiltonian. With this understanding,
local bosonic model is defined to be a model that satisfies
following. ~A! The total Hilbert space is a direct product
local Hilbert spaces of finite dimensions.~B! Local physical
operators are local bosonic operators. By definition,local
bosonic operatorsare operators acting within a local Hilbe
space or finite products of those operators for nearby lo
Hilbert spaces. Those operators are called local bosonic
erators since they all commute with each other when
apart.~C! The Hamiltonian is a sum of local physical oper
tors.

A spin-1/2 system on a lattice is an example of loc
bosonic models. The local Hilbert space is two dimensio
and containsu↑& and u↓& states. The local physical operato
are s i

a , s i
as i1x

b , etc., wheresa, a5x,y,z, are the Pauli
matrices.

A free spinless fermion system~in two or higher dimen-
sions! is not a local bosonic model even though it has
same total Hilbert space as the spin-1/2 system. This is
cause the fermion operatorsci on different sites do not com
mute and are not local bosonic operators. More importan
the fermion hopping Hamiltonian in two and higher dime
sions cannot be written as a sum of local bosonic operat
~Note that in higher dimensions we cannot write all the ho
ping termsci

†cj as products of local bosonic operators. Ho
ever, due to the Jordan-Wigner transformation, a 1D ferm
hopping termci 11

† ci can be written as a local bosonic oper
tor. Hence, a 1D fermion system can be a local boso
model if we excludeci from our definition of local physica
operators.!

The bosonic field theory without cutoff is not a loc
bosonic model. This is because the local Hilbert space d
not have a finite dimension. A lattice gauge theory is no
local bosonic model. This is because its total Hilbert sp
cannot be a direct product of local Hilbert spaces.

Another counterexample of a local bosonic model is
quantum closed-string-net model. A quantum closed-stri
net model on a lattice can be defined in the following w
Let us consider only strings that cover nearest neigh
links. A closed-string configuration may have many clos
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strings with or without overlap. We will call a closed-strin
configuration a closed string net. For every closed string
we assign a quantum state. All those quantum states for
basis of the total Hilbert space of the closed-string-
model. Just as in lattice gauge theory, the closed-string
model is not a local bosonic model since the total Hilb
space cannot be a direct product of local Hilbert spaces
turns out that closed-string-net models and lattice ga
models are closely related. In fact some closed-string-
models ~or statistical membrane models! are equivalent to
lattice gauge models@22–25#.

III. Z2 SPIN LIQUID AND STRING-NET CONDENSATION
ON A SQUARE LATTICE

A. Hamiltonians with closed-string-net condensation

Let us first consider an arbitrary spin-1/2 model on
square lattice. The first question that we want to ask is w
kind of spin interaction can given rise to a low energy gau
theory. If we believe the connection between gauge the
and closed-string-net theory@13,22–25#, then one way to
obtain a low energy gauge theory is to design a spin inte
tion that allows strong fluctuations of large closed string ne
but forbids other types of fluctuations~such as local spin
flips, open-string-net fluctuations, etc.!. ~Note that closed
string nets are nets of strings formed by intersecti
overlapping closed strings, while open string nets are net
strings containing at least one open string.! We hope the
presence of strong fluctuations of large closed strings
lead to condensation of closed strings of arbitrary siz
which in turn gives rise to a low energy gauge theory.

Let us start with

HJ52J (
even

s i
x2J(

odd
s i

y , ~1!

where i5( i x ,i y) labels the lattice sites,sx,y,z are the Pauli
matrices, and(even ~or (odd) is a sum over even sites wit
(2) i[(21)i x1 i y51 @or over odd sites with (2) i

[(21)i x1 i y521]. The ground state ofHJ , u0&, has spins
pointing to thex direction on even sites and to they direction
on odd sites~see Fig. 2!. Such a state will be defined as
state with no string.

To create a string excitation, we first draw a string th
connects nearest neighborevenplaquettes~see Fig. 2!. We

σy

σy

σx

σx

σy

σyx

y

σyx

even plaquette

σ
σ
σ

σ
σ

x

x

Uterm

gter m

FIG. 2. An open-string excitation on top of the ground state
HJ .
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then flip the spins in the string. Such a string state is crea
by the following string creation operator~or simply string
operator!:

W~C!5)
C

s i
ai , ~2!

where the product)C is over all the sites on the string an
ai5y if i is even andai5x if i is odd. A generic string state
has the form

uC1C2•••&5W~C1!W~C2!•••u0&, ~3!

where C1 ,C2 , . . . are strings with no overlapping end
Such a state will be called a string-net state and

W~Cnet!5W~C1!W~C2!•••

will be called a string-net operator. The stateuC1C2•••& is
an open-string-net state if at least one ofCi is an open string.
The corresponding operatorW(Cnet) will be called an
open-string-net operator. If allCi are closed loops, then
uC1C2•••& is a closed-string-net state andW(Cnet) a closed-
string-net operator. The Hamiltonian has no string-net c
densation since its ground stateu0& contains no string nets
To obtain a Hamiltonian with closed-string-net condensati
we need to first find a Hamiltonian whose ground state c
tains a lot of closed string nets of arbitrary sizes and does
contain open string nets.

Let us first write down a Hamiltonian such that clos
strings cost no energy and any open strings cost a la
amount of energy. One such Hamiltonian has the form

HU52U (
even

F̂ i ,

F̂ i5s i
xs i1x

y s i1x1y
x s i1y

y . ~4!

We find that the no-string stateu0& is one of the ground state
of HU ~assumingU.0) with energy 2UNsite . All the
closed-string-net states, such asW(Cclose)u0&, are also
ground states ofHU since @HU ,W(Cclose)#50. An open-
string stateW(Copen)u0& is also an eigenstate ofHU but with
energy 2UNsite12U. We see that each end of an op
string costs an energyU. We also note that the energy o
closed strings does not depend on the length of the clo
strings. Thus the closed strings inHU have no tension. We
can introduce a string tension by addingHJ to our Hamil-
tonian. The string tension will be 2J per site~or per seg-
ment!. We note that any string-net stateuC1C2•••& is an
eigenstate ofHU1HJ . Thus, string nets in the model de
scribed byHU1HJ do not fluctuate and hence cannot co
dense. To make string nets fluctuate, we need ag term:

Hg5g(
p

U~Cp!, ~5!

wherep labels the odd plaquettes andCp is the closed string
around the plaquettep. In fact,
06500
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Hg52g(
odd

F̂ i . ~6!

In this way, we obtain the Hamiltonian of our spin-1/2 mod
as

H5HU1HJ1Hg . ~7!

B. String condensation and low energy effective theory

WhenJ50 in Eq. ~7!, the model is exactly soluble sinc

@ F̂ i ,F̂ j#50 @8,50#. All the eigenstates ofHU1Hg can be
obtained from the common eigenstates ofF̂ i . SinceF̂ i

251,

the eigenvalues ofF̂ i are simply61. Thus all the eigenstate
of HU1Hg are labeled by61 on each plaquette.~Note that
this is not true for finite systems where the boundary con
tions introduce additional complications@50#.! The energies
of those eigenstates are the sums of the eigenvalues oF̂ i
weighted byU andg.

From the results of the exact soluble model, we sugge
phase diagram of our model as sketched in Fig. 3. We
show that the phase diagram contains four different stri
net condensed phases and one phase with no string con
sation. All the phases have the same symmetry and are
tinguished only by their different quantum orders.

Let us first discuss the phase withU,g.0. We will as-
sumeJ50 andU@g. In this limit, all states containing ope
strings will have an energy of orderU. The low energy states
contain only closed strings~or more generally closed strin
nets! and satisfy

F̂ iu i5even51. ~8!

For infinite systems, the different low energy states are
beled by the eigenvalues ofF̂ i on odd plaquettes:

(Z2B,Z2B)

MO

(Z2A,Z2B)

(Z2A,Z2A)(Z2B,Z2A)

Z 2

Z 2Z 2

Z 2

string condense

fluxcharge

string condensestring condense

flux

string condense

charge

+

+
g/J
0

0

U
/J

FIG. 3. The proposed phase diagram for theH5HU1Hg1HJ

model.J is assumed to be positive. The four string-net conden
phases are characterized by a pair of PSG’s (PSGcharge,PSGvortex).
MO marks a magnetic ordered state.
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F̂ iu i5odd561. ~9!

In particular, the ground state is given by

F̂ iu i5odd51. ~10!

All the closed-string-net operatorsW(Cnet) commute
with HU1Hg . Hence the ground stateuC0& of HU1Hg sat-
isfies

^C0uW~Cnet!uC0&51. ~11!

Thus theU,g.0 ground state has a closed-string-net co
densation. The low energy excitations above the ground s
can be obtained by flippingF̂ i from 1 to 21 on some odd
plaquettes.

If we view F̂ i on odd plaquettes as the flux inZ2 gauge
theory, we find that the low energy sector of the mode
identical to aZ2 lattice gauge theory, at least for infinit
systems. This suggests that the low energy effective the
of our model is aZ2 lattice gauge theory.

However, one may object to this result by pointing o
that the low energy sector of our model is also identical to
Ising model with one spin on each odd plaquette. Thus
low energy effective theory should be the Ising model. W
would like to point out that, although the low energy sec
of our model is identical to an Ising model for infinite sy
tems, the low energy sector of our model is different from
Ising model for finite systems. For example, on a finite ev
by even lattice with periodic boundary conditions, t
ground state of our model has a fourfold degeneracy@8,50#.
The Ising model does not have such a degeneracy. Also,
model contains an excitation that can be identified as aZ2
charge ~see below!. Therefore, the low energy effectiv
theory of our model is aZ2 lattice gauge theory instead of a
Ising model. TheF̂ i521 excitations on odd plaquettes ca
be viewed as theZ2 vortex excitations in theZ2 lattice gauge
theory.

C. Three types of strings and emergent fermions

What is theZ2 charge excitation? We note that, in th
closed-string-net condensed state, the action of the clo
string operator Eq.~2! on the ground state is trivial. Thi
suggests that the action of the open-string operators on
ground state depend only on the ends of strings, since
open strings with the same ends differ only by a clos
string. Therefore, an open-string operator creates two
ticles at its ends when acting on the string condensed s
Since the strings in Eq.~2! connect only even plaquettes, th
particle corresponding to the ends of the open strings alw
live on the even plaquettes. We will call such a string a
string. From the commutation relation betweenF̂ i and the
open-string operators, we find that the open-string opera
flip the signs ofF̂ i at its ends. Thus each particle created
the open-string operators has an energy 2U. Now, let us
consider the hopping of one such particle around four nea
neighbor even plaquettes~see Fig. 4!. We see that the prod
uct of the four hopping amplitudes is given by the eigenva
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of F̂ i on the odd plaquette in the middle of the four ev
plaquettes@8,14#. This is exactly the relation between charg
and flux. Thus if we identifyF̂ i on odd plaquettes as aZ2
flux, then the ends of strings on even plaquettes will cor
spond to theZ2 charges. We note that, due to the close
string condensation, the ends of open strings are not confi
and have only short ranged interactions between them. T
the Z2 charges behave like quasiparticles with no string
tached.

Just like theZ2 charges, a pair ofZ2 vortices is also
created by an open-string operator. Since theZ2 vortices cor-
respond to flippedF̂ i on odd plaquettes, the open-string op
erator that createsZ2 vortices is also given by Eq.~2!, except
now the product is over a string that connectsoddplaquettes.
We will call such a string a T2 string.~The strings connect-
ing evenplaquettes were called T1 strings.!

We would like to point out that the reference state~i.e.,
the no-string state! for the T2 string is different from that o
the T1 string. The no-T2-string state is given byu0̃& with
spin pointing in they direction on even sites and thex direc-
tion on odd sites. Since the T1 and T2 strings have differ
reference states, we cannot have a dilute gas of the T1 str
and the T2 strings at the same time. One can easily ch
that the T2 string operators also commute withHU1Hg .
Therefore, the ground stateuC0&, in addition to the T1
closed-string condensation, also has a T2 closed-string
densation.

The hopping of aZ2 vortex is induced by a short T2 ope
string. Since the T2 open-string operators all commute w
each other, theZ2 vortices behave like bosons. Similarly, th
Z2 charges also behave like bosons. However, T1 open-st
operators and T2 open-string operators do not commute.
result, the ends of T1 strings and the ends of T2 strings h
nontrivial mutual statistics. As we have already shown t
moving aZ2 charge around aZ2 vortex generates a phasep,
the Z2 charges and theZ2 vortices have semionic mutua
statistics.

The T3 strings are defined as bound states of T1 and
strings. The T3 string operator has the formW(C)5)ns in

l n,

whereC is a string connecting the midpoints of the neig
boring links, andin are sites on the string.l m5z if the string
does not turn at siteim . l m5x or y if the string makes a turn
at siteim . l m5x if the turn forms an upper-right or lower-lef
corner. l m5y if the turn forms a lower-right or upper-lef

σyσx

σxσyσxσy

σy
σx

σx σy

Fi

iF  =1

FIG. 4. A hopping of theZ2 charge around four nearest neighb
even plaquettes.
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corner.~See Fig. 6 below for these details.! The ground state
also has a condensation of T3 closed strings. The ends o
string, as bound states of theZ2 charges and theZ2 vortices,
are fermions. The bound state is formed by aZ2 charge and
a Z2 vortex on the two plaquettes on the two sides of a l
~i.e.,F i521 on the two sides of the link!. Thus the fermions
live on the links. It is interesting to see that string-net co
densation in our model directly leads to aZ2 gauge structure
and three new types of quasiparticles:Z2 charge,Z2 vortex,
and fermions. Fermions, as the ends of open T3 strin
emerge from our purely bosonic model.

Since the ends of T1 string areZ2 charges, the T1 string
can be viewed as strings ofZ2 ‘‘electric’’ flux. Similarly, the
T2 strings can be viewed as strings ofZ2 ‘‘magnetic’’ flux.

IV. CLASSIFICATION OF DIFFERENT STRING
CONDENSATIONS BY PSG’S

A. Four classes of string-net condensations

As we saw in the last section, whenU.0, g.0, andJ
50, the ground state of our model is given by

F̂ iu i5even51, F̂ iu i5odd51. ~12!

We will call such a phase theZ2 phase to stress the low
energyZ2 gauge structure. In theZ2 phase, the T1 string
operatorW1(C1) and the T2 string operatorW2(C2) have
the following expectation values

^W1~C1!&51, ^W2~C2!&51. ~13!

When U.0, g,0, andJ50, the ground state is give
by

F̂ iu i5even51, F̂ iu i5odd521. ~14!

We see that there isp flux through each odd plaquette. W
will call such a phase theZ2 flux phase. The T1 string op
erator and the T2 string operator have the following exp
tation values:

^W1~C1!&5~2 !Nodd, ^W2~C2!&51, ~15!

whereNodd is the number of odd plaquettes enclosed by
T1 stringC1.

WhenU,0, g.0, andJ50, the ground state is

F̂ iu i5even521, F̂ iu i5odd51. ~16!

The ground state has aZ2 charge on each even plaquette. W
will call such a phase theZ2 charge phase. The T1 strin
operator and the T2 string operator have the following
pectation values:

^W1~C1!&51, ^W2~C2!&5~2 !Neven, ~17!

whereNeven is the number of even plaquettes enclosed
the T2 stringC2. Note that theZ2 flux phase and theZ2
charge phase, different only by a lattice translation, are
sentially the same phase.

WhenU,0, g,0, andJ50, the ground state become
06500
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F̂ iu i5even521, F̂ iu i5odd521. ~18!

There is aZ2 charge on each even plaquette andp flux
through each odd plaquette. We will call such a phase theZ2
flux charge phase. The T1 string operator and the T2 st
operator have the following expectation values:

^W1~C1!&5~2 !Nodd, ^W2~C2!&5~2 !Neven. ~19!

B. PSG’s and the ends of condensed strings

From the different̂ W1(C1)& and^W2(C2)&, we see that
the above four phases have different string-net conde
tions. However, they all have the same symmetry. This ra
an issue. Without symmetry breaking, how do we know
above four phases are really different phases? How do
know that it is impossible to change one string-net co
densed state to another without a phase transition?

In the following, we will show that the different string-ne
condensations can be described by different PSG’s~just as
different symmetry breaking orders can be described by
ferent symmetry groups of ground states!. In Refs. @9,10#,
different types of quantum order were introduced via th
different PSG’s. The connection between string-net cond
sation and the PSG allows us to connect string-net cond
sation to the quantum order introduced in Refs.@9,10#. In
particular, the PSG’s are shown to be a universal propert
a quantum phase, which can be changed only by phase
sitions. Thus the different PSG’s for the different string-n
condensed states indicate that those different string-net
densed states belong to different quantum phases.

When closed string nets condense, the ends of o
strings behave like independent particles. Let us cons
two-particle statesup1p2& described by the two ends of a T
string. Note that the ends of the T1 strings, and hence theZ2
charges, live only on the even plaquettes. Herep1 and p2
label the even plaquettes. For our modelHU1Hg , up1p2& is
an energy eigenstate and theZ2 charges do not hop. Here w
would like to add a term

Ht5t(
i

~s i
x1s i

y!1t8(
i

s i
z ~20!

to the Hamiltonian. Thet term t( i(s i
x1s i

y) makes theZ2

charges hop among the even plaquettes with a hopping
plitude of ordert. The dynamics of the twoZ2 charges is
described by the followinglow energy effectiveHamiltonian
in the two-particle Hilbert space:

H5H~p1!1H~p2!, ~21!

where H(p1) describes the hopping of the first particlep1
and H(p2) describes the hopping of the second particlep2.
Now we can define the PSG in a string-net condensed s
The PSG is nothing but the symmetry group of the hopp
HamiltonianH(p).

We know that in a symmetry breaking phase the low e
ergy effective theory has a lower symmetry than the b
Hamiltnoian at high energies. Thus we can use the symm
of the low energy effective Hamiltonian to characterize d
3-8
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QUANTUM ORDER FROM STRING-NET CONDENSATIONS . . . PHYSICAL REVIEW D 68, 065003 ~2003!
ferent symmetry breaking phases. Here, using the hop
Hamiltonian and its PSG to characterize different string-
condensations is a similar idea.

Due to the translation symmetry of the underlying mod
HU1Hg1Ht , we may naively expect the hopping Ham
tonian of theZ2 chargeH(p) to also have a translation sym
metry

H~p!5Txy
† H~p!Txy , Txyup&5up1x1y&,

H~p!5Txȳ
†

H~p!Txȳ , Txȳup&5up1x2y&. ~22!

The above implies that the PSG is the translation symm
group. It turns out that Eq.~22! is too strong. The underlying
spin model can have translation symmetry even whenH(p)
does not satisfy Eq.~22!. However, the possible symmetr
groups ofH(p) ~the PSG’s! are strongly constrained by th
translation symmetry of the underlying spin model. In t
following, we will explain why the PSG can be differen
from the symmetry group of the physical spin model, a
what conditions the PSG must satisfy in order to be con
tent with the translation symmetry of the spin model.

We note that a string always has two ends. Thus a ph
cal state always has an even number ofZ2 charges. The
actions of translation on a two-particle state are given by

Txy
(2)up1 ,p2&5euxy(p1 ,p2)up11x1y,p21x1y&,

Txȳ
(2)up1 ,p2&5euxȳ(p1 ,p2)up11x2y,p21x2y&. ~23!

The phaseseuxy(p1 ,p2) andeuxȳ(p1 ,p2) come from the ambigu-
ity of the location of the string that connectsp1 andp2, i.e.,
the phases can be different if the string connecting the
Z2 charges has different locations.Txy

(2) and Txȳ
(2) satisfy the

algebra of translations

Txy
(2)Txȳ

(2)
5Txȳ

(2)
Txy

(2) . ~24!

Txy
(2) andTxȳ

(2) are direct products of translation operators
the single-particle states. Thus, in some sense, the sin
particle translations are square roots of two-particle tran
tions.

The most general form of single-particle translations
given by TxyGxy and TxȳGxȳ , where the actions of the op
eratorsTxy,xȳ andGxy,xȳ are defined as

Txyup&5up1x1y&,

Txȳup&5up1x2y&,

Gxyup&5eifxy(p)up&,

Gxȳup&5eifxȳ(p)up&. ~25!

In order for the direct productsTxy
(2)5TxyGxy^ TxyGxy and

Txȳ
(2)

5TxȳGxȳ^ TxȳGxȳ to reproduce the translation algeb
Eq. ~24!, we only requireTxyGxy andTxȳGxȳ to satisfy
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TxyGxyTxȳGxȳ5TxȳGxȳTxyGxy , ~26!

or

TxyGxyTxȳGxȳ52TxȳGxȳTxyGxy . ~27!

The operatorsTxyGxy andTxȳGxȳ generate a group. Such
group is the PSG introduced in Ref.@9#. The two different
algebras Eq.~26! and Eq.~27! generate two different PSG’s
both are consistent with the translation group acting on
two-particle states. We will call the PSG generated by E
~26! the Z2A PSG and the PSG generated by Eq.~27! the
Z2B PSG.

Let us give a more general definition of a PSG. A PSG
a group. It is an extension of the symmetry group~SG!, i.e.,
a PSG contains a normal subgroup~called an invariant gauge
group or IGG! such that

PSG/IGG5SG. ~28!

For our case, the SG is the translation groupSG
5$1,Txy

(2) ,Txȳ
(2) , . . . %. For every element in a SG,a(2)

PSG, there are one or several elements in PSG,aPPSG,
such thata^ a5a(2). The IGG in our PSG is formed by th
transformationsG0 on the single-particle states that satis
G0^ G051. We find that the IGG is generated by

G0up&52up&. ~29!

G0 , TxyGxy , andTxȳGxȳ generate theZ2A andZ2B PSG’s.
Now we see that the underlying translation symme

does not require the single-particle hopping Hamilton
H(p) to have a translation symmetry. It only requiresH(p)
to be invariant under theZ2A PSG or theZ2B PSG. When
H(p) is invariant under theZ2A PSG, the hopping Hamil-
tonian has the usual translation symmetry. WhenH(p) is
invariant under theZ2B PSG, the hopping Hamiltonian has
magnetic translation symmetry describing hopping in a m
netic field withp flux through each odd plaquette.

C. PSG’s classify different string-net condensations

After understand the possible PSG’s for the hopp
Hamiltonian of the ends of strings, now we are ready
calculate the actual PSG’s. Let us consider two ground st
of our model HU1Hg1Ht . One hasF̂ iu i5odd51 ~for g

.0) and the other hasF̂ iu i5odd521 ~for g,0). Both
ground states have the same translation symmetry in thx
1y andx2y directions. However, the corresponding sing
particle hopping HamiltonianH(p) has different symmetries
For the F̂ iu i5odd51 state, there is no flux through od
plaquettes andH(p) has the usual translation symmetry. It
invariant under theZ2A PSG. For theF̂ iu i5odd521 state,
there isp flux through odd plaquettes andH(p) has a mag-
netic translation symmetry. Its PSG is theZ2B PSG. Thus
the F̂ iu i5odd51 state and theF̂ iu i5odd521 state have differ-
ent orders even though they have the same symmetry.
different quantum orders in the two states can be charac
ized by their different PSG’s.
3-9
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The above discussion also applies to theZ2 vortex and T2
strings. Thus the quantum orders in our model are descr
by a pair of PSG’s (PSGcharge,PSGvortex), one for theZ2
charge and one for theZ2 vortex. The PSG pairs
(PSGcharge,PSGvortex) allow us to distinguish four differen
string-net condensed states of the mo
H5HU1Hg1Ht .~See Fig. 5.!

Now let us assumeU5g in our model:

HU1Hg1Ht5Ht2V(
i

F̂ i . ~30!

The new physical spin model has a larger translation s
metry generated byD i5x andD i5y ~see Fig. 5!. Due to the
enlarged symmetry group, the quantum order in the new
tem should be characterized by a new PSG. In the follow
we will calculate the new PSG.

The single-particle states are given byup&. When p is
even,up& corresponds to aZ2 charge and whenp is odd,up&
corresponds to aZ2 vortex. We see that a translation byx ~or
y) will change aZ2 charge to aZ2 vortex or aZ2 vortex to a
Z2 charge. Therefore the effective single-particle hopp
Hamiltonian H(p) contains hops only between eve
plaquettes or odd plaquettes. The single-particle Hamilton
H(p) is invariant under the following two transformation
G0 andG08 :

G0up&52up&, G08up&5~2 !pup&. ~31!

We note thatG0^ G05G08^ G0851. Therefore bothG0 and
G08 correspond to the identity element of the symmetry gro
of two-particle states. (G0 ,G08) generate the IGG of the new
PSG. The new IGG isZ23Z2.

The translations of single-particle states byx and byy are
generated byTxGx andTyGy . The translations byx1y and
by x2y are given by

extra translation
symmetry

FM

(Z2B,Z 2A) (Z2A,Z2A)

(Z2A,Z2B)(Z2B,Z2B)

Z 2

Z 2Z 2

Z 2

string condense

fluxcharge

string condensestring condense

flux

string condense

charge

+

+0

0

g/t

U
/t

FIG. 5. The proposed phase diagram for theH5HU1Hg1Ht

model. t5t8 is assumed to be positive. The four string-net co
densed phases are characterized by a pair of PS
(PSGcharge,PSGvortex). FM marks a ferromagnetic phase.
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TxyGxy5TyGyTxGx ,

TxȳGxȳ5~TyGy!21TxGx . ~32!

Since TxyGxy and TxȳGxȳ are the translations of theZ2
charge and theZ2 vortex discussed above, we find

~TxȳGxȳ!
21~TxyGxy!

21TxȳGxȳTxyGxy5h, ~33!

whereh51 for the (Z2A,Z2A) state withF̂ i51 andh5

21 for the (Z2B,Z2B) state withF̂ i521. TxGx andTyGy
must also satisfy

~TyGy!21~TxGx!
21TyGyTxGxPIGG ~34!

since in the two-particle states

~Ty
(2)!21~Tx

(2)!21Ty
(2)Tx

(2)51. ~35!

Therefore, (TyGy)
21(TxGx)

21TyGyTxGx may take the pos-
sible values 1,21, (2)p, and2(2)p. Only the choiceshp

and2hp are consistent with Eq.~33! and we have

~TyGy!21~TxGx!
21TyGyTxGx5h8hp. ~36!

We wish to point out that the different choices ofh85
61 do not lead to different PSG’s. This is because ifTxGx is
a symmetry of theH(p), thenTxGx(2)p is also a symmetry
of theH(p). However, the changeGx→Gx(2)p will change
the sign ofh8. Thus h851 and h8521 will lead to the
same PSG. But the different signs ofh will lead to different
PSG’s.

(G0 ,G08) and (TxGx ,TyGy) generate the new PSG. Th
single-particle HamiltonianH(p) is invariant under such a
PSG.h51 andh521 correspond to two different PSG’
that characterize two different quantum orders. The grou
state forV.0 anduVu@t @see Eq.~30!# is described by the
h51 PSG. The ground state forV,0 and uVu@t is de-
scribed by theh521 PSG. The two ground states hav
different quantum orders and different string-net conden
tions.

D. Different PSG’s from the ends of different
condensed strings

In this section we still assumeU5g and consider only the
translationally invariant model Eq.~30!. In the above we
discussed the PSG for the ends of one type of conden
string in different states. In this section, we will concentra
on only one ground state. We know that the ground state
our spin-1/2 model contains condensations of several ty
of string. We wish to calculate the different PSG’s for th
different condensed strings.

The PSG’s for the condensed T1 and T2 strings were
tained above. Here we will discuss the PSG for the T3 stri
Since the ends of the T3 strings live on the links, the cor
sponding single-particle hopping HamiltonianH f( l) de-
scribes fermion hopping between links. Clearly, the symm
try group ~the PSG! of H f( l) can be different from that of
H(p).

-
’s
3-10
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Let us consider fermion hopping around some sm
loops. The four hops of a fermion around a sitei ~see Fig. 6!
are generated bys i

y , s i
x , s i

y , ands i
x . The total amplitude

of a fermion hopping around a site iss i
ys i

xs i
ys i

x521. The
fermion hopping around a site always seesp flux. The four
hops of a fermion around a plaquettep ~see Fig. 6! are gen-
erated bys i0

x , s i01x
y , s i01x1y

x , and s i01y
y , where i0 is the

lower left corner of the plaquettep. The total amplitude of a
fermion hopping around a plaquette is given
s i01y

y s i01x1y
x s i01x

y s i0
x 5F̂ i0

. When V.0, the ground state

hasF̂ i51. However, since sitei0 is next to the end of the T3
string, we haveF̂ i0

52F̂ i521. In this case, a fermion hop

ping around a plaquette seesp flux. For aV,0 ground state,
we find that a fermion hopping around a plaquette sees
flux.

Let us define the fermion hoppingl→ l1x as a combina-
tion of two hopsl→ l1x/22y/2→ l1x and the fermion hop-
ping l→ l1y as a combination ofl→ l1x/21y/2→ l1y ~see
Fig. 6!. Under such a definition, a fermion hopping around
squarel→ l1x→ l1x1y→ l1y→ l corresponds to a fermion
hopping around a site and a fermion hopping around
plaquette as discussed above~see Fig. 6!. Therefore, the tota
amplitude for a fermion hopping around a square is given
the sign ofV: sgn(V). We find that the translation symme
tries (TxGx ,TyGy) of the fermion hoppingH f( l) satisfy

~TyGy!21~TxGx!
21TyGyTxGx5sgn~V!, ~37!

which is different from the translation algebra forH(p) @Eq.
~36!#. H f( l) is also invariant underG0:

G0u l&52u l&. ~38!

(G0 ,TxGx ,TyGy) generate the symmetry group—the fe
mion PSG—ofH f( l). We will call the fermion PSG Eq.~37!
for sgn(V)51 the Z2A PSG and the fermion PSG fo
sgn(V)521 theZ2B PSG. We see that the quantum orde
in the ground state can also be characterized using the
mion PSG. The quantum order in theV.0 ground state is
characterized by theZ2A PSG and the quantum order in th
V,0 ground state is characterized by theZ2B PSG.

In Ref. @50#, the spin-1/2 model Eq.~30! ~with t5t8
50) was viewed as a hard-core boson model. The mo
was solved using the slave-boson approach by splitting
boson into two fermions. Then it was shown that the ferm

σyσx

σxσy

σx σz σz σz
σz

σy
1

3 2

4

4 3

21

23
4

1

Fi

FIG. 6. Fermion hopping around a plaquette, around a squ
and around a site.
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hopping Hamiltonians for theV.0 and V,0 states have
different symmetries, or are invariant under different PSG
According to the arguments in Ref.@9#, the different PSG’s
imply different quantum orders in theV.0 and V,0
ground states. The PSG’s obtained in Ref.@50# for the V
.0 andV,0 phases agrees exactly with the fermion PSG
that we obtained above. This example shows that the PS
introduced in Refs.@10,50# are the symmetry groups of th
hopping Hamiltonian of the ends of condensed strings. T
PSG description and the string-net condensation descrip
of quantum order are intimately related.

Here we would like to point out that the PSG’s introduc
in Refs. @9,10# are all fermion PSG’s. They are only one o
many different kinds of PSG’s that can be used to charac
ize quantum order. In general, a quantum ordered state
contain condensations of several types of string. The end
each type of condensed string will have their own PSG.

V. MASSLESS FERMION AND PSG IN STRING-NET
CONDENSED STATE

In Refs.@9,16#, it was pointed out that the PSG can pr
tect the masslessness of the emergent fermions, just as
metry can protect the masslessness of Nambu-Golds
bosons. In this section, we are going to study an exa
soluble spin-12

1
2 model with string-net condensation an

emergent massless fermions. Through this soluble model
demonstrate how the PSG that characterizes the string
condensation can protect the masslessness of the ferm
The exactly soluble model that we are going to study
motivated by Kitaev’s exact soluble spin-1/2 model on
honeycomb lattice@52#.

A. Exactly soluble spin-12
1
2 model

The exactly soluble model is a local bosonic model on
square lattice. To construct the model, we start with fo
Majorana fermionsl i

a , a5x,x̄,y,ȳ, and one complex fer-
mion c. l i

a satisfy

$l i
a ,l j

b%52dabd ij . ~39!

We note that

Û i,i1x52 il i
xl i1x

x̄ , Û i,i1y52 il i
yl i1y

ȳ , Û ij5Û ji
~40!

form a commuting set of operators. Using such a commut
set of operators, we can construct the following exac
soluble interacting fermion model:

H5g(
i

F̂ i1t(
i

~ iÛ i,i1xc i
†c i1x1 iÛ i,i1yc i

†c i1y1H.c.!,

F̂ i5Û i,i1
Û i1 ,i2

Û i2 ,i3
Û i3 ,i , ~41!

e,
3-11
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wherei15 i1x, i25 i1x1y, i35 i1y, andt is real. We will
call F̂ i a Z2 flux operator. To obtain the Hilbert space with
which the HamiltonianH acts, we grouplx,x̄,y,ȳ into two
complex fermion operators

2c1,i5l i
x1 il i

x̄ , 2c2,i5l i
y1 il i

ȳ ~42!

on each site. The complex fermion operatorsc1,2 andc gen-
erate an eight-dimensional Hilbert space on each site.

SinceÛ ij commute with each other, we can find the co
mon eigenstates of theÛ ij operators,u$sij%,n&, wheresij is
the eigenvalue ofÛ ij , andn labels different degenerate com
mon eigenstates. Since (Û ij)

251 and Û ij5Û ji , sij satisfies
sij561 andsij5sji . Within the subspace with a fixed set o
sij , $u$sij%,n&un51,2, . . .%, the Hamiltonian has the form

H5g(
i

f i1t(
i

~ isi,i1xc i
†c i1x1 isi,i1yc i

†c i1y1H.c.!,

f i5si,i1
si1 ,i2

si2 ,i3
si3 ,i , ~43!

which is a free fermion Hamiltonian. Thus we can find all t
many-body eigenstates ofc i , u$sij%,Cn&, and their energies
E($sij%,n) in each subspace. In this way we solve the int
acting fermion model exactly.

We note that the HamiltonianH can change the fermion
number on each site only by an even number. ThusH acts
within a subspace that has an even number of fermions
each site. We will call this subspace the physical Hilb
space. The physical Hilbert space has only four states
site. When defined on the physical space,H becomes a loca

bosonic system which actually describes a spin-(1
2 3 1

2 ) sys-
tem ~with no spin rotation symmetry!. We will call such a
system a spin-12

1
2 system. To obtain an expression forH

within the physical Hilbert space, we introduce two Maj
rana fermionsh1,i and h2,i to representc i : 2c i5h1,i

1 ih2,i . We note thatlah1 , a5x,x̄,y,ȳ, act within the four-
dimensional physical Hilbert space on each site, and thus
434 matrices. Also,$2 ilah1 ,2 ilbh1%52dab ; thus the
four 434 matriceslah1 satisfy the algebra of Dirac matri
ces. Therefore we can expresslah1 in terms of Dirac matri-
cesga:

lah15 iga,

gx5sx
^ sx, g x̄5sy

^ sx,

gy5sz
^ sx, g ȳ5s0

^ sy. ~44!

We can also defineg5 as

g5[gxg x̄gyg ȳ52s0
^ sz

5lxl x̄lyl ȳ5 ih1h2 , ~45!
06500
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where we have used 122c†c52 ih1h2 and (2 ilxl x̄)
(2 ilyl ȳ)(2 ih1h2)51 for states with even numbers of fe
mions. With the above definitions ofga andg5, we find that

lah25gag5 ~46!

and

lac5
i

2
~ga1gag5![ ig2,a,

lac†5
i

2
~ga2gag5![ ig1,a,

g2,a5~g1,a!†. ~47!

We also have

lalb5gagb[gab. ~48!

The above relations allows us to writeH in terms of 434
Dirac matrices. For example,

F̂ i52g i
yxg i1x

x̄y g i1x1y
ȳx̄ g i1y

xȳ ~49!

and

Û i,i1xc i
†c i1x52 ig i

1,xg i1x
2,x̄ ,

Û i,i1yc i
†c i1y52 ig i

1,yg i1y
2,ȳ . ~50!

The physical states in the physical Hilbert space are
variant under localZ2 gauge transformations generated by

G5)
i

Gi
ni ,

ni5c1,i
† c1,i1c2,i

† c2,i1c i
†c i , ~51!

whereGi is an arbitrary function with only two values61
andni is the number of fermions on sitei. We note that the
Z2 gauge transformations changec I i→Gic I i . The projection
into the physical Hilbert space with even numbers of ferm
ons per site makes our theory aZ2 gauge theory.

Since the HamiltonianH in Eq. ~41! is Z2 gauge invariant,
@G,H#50, the eigenstate ofH within the physical Hilbert
space can be obtained fromu$sij%,Cn& by projecting into the
physical Hilbert space:Pu$sij%,Cn&. The projected state
Pu$sij%,Cn& ~or the physical state!, if nonzero, is an eigen-
state of the spin-12

1
2 model with energyE($sij%,n). The Z2

gauge invariance implies that

Pu$sij%,Cn&5Pu$s̃ij%,Cn&,

E~$sij%,n!5E~$s̃ij%,n!, ~52!

if sij and s̃ij areZ2 gauge equivalent:

s̃ij5G~ i!sijG~ j!. ~53!
3-12
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Let us count the states to show that the projected st
Pu$sij%,Cn& generate all states in the physical Hilbert spa
Let us consider a periodic lattice withNsite5LxLy sites. First
there are 22Nsite choices ofsij . We note that there are 2Nsite

different Z2 gauge transformations. But the constant gau
transformationG( i)521 does not changesij . Thus there
are 2Nsite/2 differentsij ’s in eachZ2 gauge equivalent class
Therefore, there are 232Nsite different Z2 gauge equivalen
classes ofsij ’s. We also note that

)
i

si,i1xsi,i1y

5~2 !Lx1Ly)
i

~2 il i
xl i

x̄!~2 il i
yl i

ȳ!

5~2 !Lx1Ly1(
i

(c1,i
† c1,i1c2,i

† c2,i). ~54!

Thus, among the 232Nsite different classes ofsij ’s, 2Nsite of
them satisfy) isi,i1xsi,i1y5(2)Lx1Ly and have even num
bers ofc1,i andc2,i fermions. The other 2Nsite of them satisfy
) isi,i1xsi,i1y52(2)Lx1Ly and have odd numbers ofc1,i and
c2,i fermions.

For each fixedsij , there are 2Nsite many-body states of the
c i fermions, i.e.,n in u$sij%,Cn& runs from 1 to 2Nsite. Among
those 2Nsite many-body states, 2Nsite/2 have even numbers o
c i fermions and 2Nsite/2 have odd numbers ofc i fermions. In
order for the projectionPu$sij%,Cn& to be nonzero, the tota
number of fermions must be even. A physical state has e
numbers of (c1,i ,c2,i) fermions and even numbers ofc i fer-
mions, or it has odd numbers of (c1,i ,c2,i) fermions and odd
numbers of c i fermions. Thus there are 2Nsite32Nsite/2
12Nsite32Nsite/254Nsite distinct physical states that can b
produced by the projection. Thus the projection produces
the states in the physical Hilbert space.

B. Physical properties of the spin-12
1
2 model

Let us define a closed-string operator to be

W~Cclose!5Û i1i2
Û i2i3

•••Û ini1
, ~55!

where Cclose is a closed oriented stringCclose5 i1→ i2
→•••→ in→ i1 formed by nearest neighbor links. Sinc
Cclose can intersect with itself,Cclose can also be viewed a
a closed string net. We will also callW(Cclose) a closed-
string-net operator.

The closed-string-net operators act within the physi
Hilbert space and commute with the Hamiltonian Eq.~41!.
Thus there is a string-net condensation since^W(Cclose)&5
61 in the ground state of Eq.~41!. The above strings corre
spond to the T3 string discussed in Sec. III C. Unlike t
spin-1/2 model, we do not have condensed T1 and T2 clo
strings in the spin-12

1
2 model.

We can also define open-string operators that act wi
the physical Hilbert space:
06500
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W~Copen!5l i1
a Û i1i2

Û i2i3
•••Û in21in

l in
b ,

W̃~Copen!5c i1
† Û i1i2

Û i2i3
•••Û in21in

c in
, ~56!

whereCopen is an open oriented stringCopen5 i1→ i2→•••

→ in formed by nearest neighbor links.W(C) corresponds to
the open T3 string defined in Sec. III C. Just as in the sp
1/2 model Eq.~30!, the ends of such strings correspond
gapped fermions~if ugu@utu). The ends ofW̃ strings differ
from the ends ofW strings only by a local bosonic operato
Thus the ends ofW̃ strings are also fermions.

To really prove that the ends ofW̃ strings are fermions,
we need to show that the hopping of the ends ofW̃ strings
satisfies the fermion hopping algebra introduced in Ref.@14#:

t j l tk jt j i 52t j i tk jt j l ,

@ t i j ,tkl#50 if i , j ,k,l are all different, ~57!

where t j i describes the hopping from sitei to site j. It was
shown that the particles are fermions if their hopping sa
fies the algebra Eq.~57!. We note that the ends of theW̃
strings live on the sites. The labelsi , j , . . . in the above
equation correspond to lattice sitesi,j, . . . . The hops be-
tween sitesi,j,k,l in Fig. 7 are given by

t i1a,i5c i1a
† Û i1a,ic i , a56x,6y. ~58!

Note that the hops between nearest neighbors are taken
the Hamiltonian Eq.~41!. Since Û ij commute with each
other, the algebra of the above hopping operators is just
of fermion hopping operators. In particular, the above ho
ping operators satisfy the fermion hopping algebra Eq.~57!.
Hence, the ends of theW̃ strings are fermions.

For each fixed configurationsij , there are 2Nsite/2 differ-
ent states~with even or odd numbers of totalc fermions!.
Their energies are given by the fermion hopping Hamilton
Eq. ~43!. Let E0($sij%) be the ground state energy of E
~43!. The ground state and the ground state energy of
spin-12

1
2 model Eq.~61! are obtained by choosing a configu

ration sij that minimizesE0($sij%). We note thatE0($sij%) is
invariant under theZ2 gauge transformation Eq.~53!.

i

j lk

y

y
x x

xx

y

y

y
xx

y

x x
y

y

FIG. 7. A particle can hop between different sitesi,j,k,l.
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When g@utu, the ground state of Eq.~41! has F̂ i521,
which minimizes the dominang( iF̂ i term. The ground state
configuration is given by

si,i1x5~2 ! i y, si,i1y51. ~59!

The c i fermion hopping Hamiltonian Eq.~43! for the above
configuration describes fermion hopping withp flux per
plaquette. The fermion spectrum has the form

Ek562At2sin2~kx!1t2sin2~ky!. ~60!

The low energy excitations of such a hopping Hamilton
are described by two two-component massless Dirac fe
ons in ~211!D. We see that the ends of theW̃ strings are
massless Dirac fermions.

Our model also containsZ2 gauge excitations. TheZ2

vortices are created by flippingF̂ i521 to F̂ i51 in some
plaquettes. TheZ2 vortex behaves like ap flux to the gapless
fermions. Thus the gapless fermions carry a unitZ2 charge.
The low energy effective theory of our model consists
massless Dirac fermions coupled to aZ2 gauge field.

C. Projective symmetry and massless fermions

We know that symmetry breaking can produce and pro
gapless Nambu-Goldstone modes. In Refs.@9,16#, it was pro-
posed that, in addition to symmetry breaking, quantum or
can also produce and protect gapless excitations. The ga
excitations produced and protected by quantum order ca
gapless gauge bosons and/or gapless fermions. In this p
we show that the quantum orders discussed in Refs.@9,16#
are due to string-net condensations. Therefore, more
cisely it is string-net condensations that produce and pro
gapless gauge bosons and/or gapless fermions. The strin
condensations and gapless excitations are connected in
following way. Let us consider a Hamiltonian that has a sy
metry described by a symmetry group SG. We assume
ground state has a string-net condensation. Then, the hop
Hamiltonian for the ends of the condensed string will
invariant under a larger group—the projective symme
group PSG, as discussed in Sec. IV B. The PSG is an ex
sion of the symmetry group SG, i.e., the PSG contain a n
mal subgroup IGG such that PSG/IGG5SG. The relation
between the PSG and gapless gauge bosons is simple.G
be the maximum continuous subgroup of the IGG. Then
gapless gauge bosons are described by a gauge theory wG
as the gauge group@9,15#. Sometimes the ends of strings a
fermions. However, the relation between gapless fermi
and the PSG is more complicated. Through a case by
study of some PSG’s@9,16#, we find that certain PSG’s in
deed guarantee the existence of gapless fermions.

In this section, we are going to study a large family
exactly soluble local bosonic models which depends
many continuous parameters. The ground states of the l
bosonic models have a string-net condensation and do
break any symmetry. We will show that the projective sy
metry of the ends of condensed strings protects a mas
fermion. As a result, our exactly soluble model always h
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massless fermion excitations regardless of the value of
continuous parameters~as long as they are within a certa
range!. This puts the results of Refs.@9,16#, which were
based on mean-field theory, on a firmer ground.

The exactly soluble local bosonic model is the spin-1
2

1
2

model

H1
2

1
2
52g(

i
g i

yxg i1x
xȳ g i1x1y

ȳx̄ g i1y
xȳ

1(
i

~ tg i
1,xg i1x

2,x̄1tg i
1,yg i1y

2,ȳ1H.c.!, ~61!

wheregab andg6,a are given in Eq.~48! and Eq.~47!. We
will discuss a more general Hamiltonian later.

The Hamiltonian is not invariant underx→2x parity Px .
But it hasx→2x parity symmetry ifPx is followed by a
spin rotationgx↔g x̄. That is,gPx

PxH(gPx
Px)

215H with

gPx
5g5

gx2g x̄

A2
. ~62!

Similarly, for y→2y parity Py , we have
gPy

PyH(gPy
Py)

215H with

gPy
5g5

gy2g ȳ

A2
. ~63!

In the fermion representationgPx
and gPy

generate the
following transformations:

gPx
: l i

x↔l i
x̄ , c i↔c i

† ,

gPy
: l i

y↔l i
ȳ , c i↔c i

† . ~64!

Now let us study how the symmetriesTx,y andgPx,y
Px,y

are realized in the hopping Hamiltonian Eq.~43! for the ends
of condensed strings. As discussed in Sec. IV B, the hopp
Hamiltonian may not be invariant under the symmetry tra
formationsTx,y and gPx,y

Px,y directly. The hopping Hamil-
tonian has only a projective symmetry generated by a s
metry transformation followed by aZ2 gauge transformation
G( i). Since thep-flux configuration does not break an
symmetries, we expect the hopping Hamiltonian for t
p-flux configuration to be invariant underGxTx , GyTy ,
GPx

gPx
Px , and GPy

gPy
Py , where Gx,y and GPx,y

are the

corresponding gauge transformations. The actions ofTx,y
andgPx,y

Px,y on thec fermion are given by

Tx : c ( i x ,i y)→c ( i x11,i y) ,

Ty : c ( i x ,i y)→c ( i x ,i y11) ,

gPx
Px : c ( i x ,i y)↔c (2 i x ,i y)

† ,

gPy
Py : c ( i x ,i y)↔c ( i x ,2 i y)

† . ~65!
3-14
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For thep-flux configuration Eq.~59!, we need to choose th
following Gx,y andGPx,y

in order for the combined transfor

mationGx,yTx,y andGPx,y
gPx,y

Px,y to be the symmetries o
the hopping Hamiltonian Eq.~43!:

Gx51, Gy5~2 ! i x,

GPx
5~2 ! i x, GPy

5~2 ! i y. ~66!

The hopping Hamiltonian is also invariant under a globalZ2
gauge transformation:

G0 : c i→2c i . ~67!

The transformations$G0 ,Gx,yTx,y ,GPx,y
gPx,y

Px,y% generate
the PSG of the hopping Hamiltonian.

To show that the above PSG protects the masslessne
the fermions, we consider a more general Hamiltonian
adding

dH1
2

1
2
5(

Cij

@ t~Cij !W̃~Cij !1H.c.# ~68!

to H 1
2

1
2

, whereCij is an open string connecting sitei and site
j and W̃(Cij) is given in Eq.~56!. The new Hamiltonian is
still exactly soluble. We will chooset(Cij) such that the new
Hamiltonian has translation symmetries andPx,y parity sym-
metries. In the following, we would like to show that the ne
Hamiltonian with these symmetries always has mass
Dirac fermion excitations@assuming thatt(Cij) is not too big
compared tog].

When t(Cij) is not too large, the ground state is still d
scribed by thep-flux configuration. The new hopping
Hamiltonian for thep-flux configuration has the more gen
eral form

H5(̂
ij &

~x ijc i
†c j1H.c.!. ~69!

The symmetry of the physical spin-1
2

1
2 Hamiltonian requires

the above hopping Hamiltonian to be invariant under
PSG discussed above. Such an invariance will guarantee
existence of massless fermions.

The invariance underGxTx andGyTy requires that

x i,i1m5~2 ! i ymxxm . ~70!

In momentum space,

x~k1 ,k2![Nsite
21 (

ij
e2 ik1• i1 ik2• jx ij

5e0~k2!dk12k2
1e1~k2!dk12k21Qy

, ~71!

where
06500
of
y

ss

e
the

e0~k!5 (
mx5even

eik•mxm ,

e1~k!5 (
mx5odd

eik•mxm . ~72!

We note thate0(k) and e1(k) are periodic functions in the
Brillouin zone. They also satisfy

e0~k!5e0~k1Qx!, e1~k!52e1~k1Qx!, ~73!

where Qx5px and Qy5py. In momentum space, we ca
rewrite H as

H5(
k

Ck
†G~k!Ck , ~74!

where Ck
T5(ck ,ck1Qy

). The sum(k is over the reduced

Brillouin zone 2p,kx,p and 2p/2,ky,p/2. G(k) has
the form

G~k!5S e0~k! e1~k1Qy!

e1~k! e0~k1Qy!
D . ~75!

Note that the transformationgPx
: c↔c† changes

(x ijc i
†c j to (x̃ ijc i

†c j with x̃ ij52x ji . Thus the invariance
underGPx

gPx
Px requires that

2xPxj,Pxi5GPx
~ i!x ijGPx

~ j! ~76!

or

x2Pxm52~2 !mxmy1mxxm . ~77!

In momentum space, the above becomes

e0~Pyk!52e0~k!,

e1~Pyk!5e1~k1Qy!. ~78!

Similarly, the invariance underGPy
gPy

Py requires that

2xPyj,Pyi5GPy
~ i!x ijGPy

~ j! ~79!

or

x2Pym52~2 !mxmy1myxm . ~80!

In momentum space

e0~Pxk!52e0~k1Qy!,

e1~Pxk!52e1~k!. ~81!

We see that the translationTx,y andx→2x parity gPx
Px

symmetries of the spin-1
2

1
2 Hamiltonian require thate0(k)

52e0(Pyk) and hencee0(k)uky5050. Similarly, the trans-

lation Tx,y andy→2y parity gPy
Py symmetries require tha

e1(k)ukx5050. Thus theTx,y and gPx,y
Px,y symmetries re-
3-15
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quire thatG(k)uk5050. Using Eq.~73!, we find thatG(0)
50 implies thatG(Qx)50. The spin-12

1
2 Hamiltonian Eq.

~61! has~at least! two two-component massless Dirac ferm
ons if it has two translationTx,y and two paritygPx,y

Px,y

symmetries. We see that string-net condensation and the
sociated projective symmetry produce and protect mass
Dirac fermions.

VI. MASSLESS FERMIONS AND STRING-NET
CONDENSATION ON A CUBIC LATTICE

The above calculation and the 2D model can be gene
ized to a 3D cubic lattice. We introduce six Majorana ferm
ons l i

a , wherea5x,x̄,y,ȳ,z,z̄. One set of commuting op
erators on a square lattice has the form

Û i,i1x52 il i
xl i1x

x̄ ,

Û i,i1y52 il i
yl i1y

ȳ ,

Û i,i1z52 il i
zl i1z

z̄ ,

Û i,j
† 5Û j,i . ~82!

Using Û i,j and a complex fermionc i , we can construct an
exactly soluble interacting Hamiltonian on a cubic lattice

H1
2

1
2

1
2
5g(

p
F̂p1t(

i
(

a5x,y,z
~ iÛ i,i1ac i

†c i1a1H.c.!,

F̂p5Û i1 ,i2
Û i2 ,i3

Û i3 ,i4
Û i4 ,i1

, ~83!

where(p sums over all the square faces of the cubic latti
i1 , i2 , i3, and i4 label the four corners of the squarep. The
Hilbert space of the system is generated by the complex
mion operatorsc i and

2c1,i5l i
x1 il i

x̄ ,

2c2,i5l i
y1 il i

ȳ ,

2c3,i5l i
z1 il i

z̄ , ~84!

and there are 16 states per site.
The physical Hilbert space is defined as a subspace

even numbers of fermions per site. The physical Hilb
space has eight states per site. When restricted to the p
cal Hilbert space,H 1

2
1
2

1
2

defines our spin-12
1
2

1
2 system, which

is a local bosonic system.
When g@utu, our spin-12

1
2

1
2 model has two four-

component massless Dirac fermions as its low lying exc
tions. The model also hasZ2 gauge excitations and the mas
less Dirac fermions carry unitZ2 gauge charge. Again, th
model has a string-net condensation in its ground state. B
the Z2 gauge excitation and the massless fermion are p
duced and protected by the string-net condensation and
associated PSG.
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VII. ARTIFICIAL LIGHT AND ARTIFICIAL MASSLESS
ELECTRONS ON A CUBIC LATTICE

In this section, we are going to combine the above
model and the rotor model discussed in Ref.@26# and Ref.
@13# to obtain a quasiexactly soluble local bosonic model t
contains massless Dirac fermions coupled to masslessU(1)
gauge bosons.

A. 3D rotor model and artificial light

A rotor is described by an angular variableû. The angular
momentum ofû, denoted asSz, is quantized as integers. Th
3D rotor model under consideration has one rotor on ev
link of a cubic lattice. We useij to label the nearest neighbo
links. ij andji label the same links. For convenience, we w
define û ij52 û ji and Sij

z52Sji
z . The 3D rotor Hamiltonian

has the form

Hrotor5U(
i

S (
a

Si,i1a
z D 2

1
1

2
J(

i,a
~Si,i1a

z !2

1g1(
p

cos~ û i1i2
1 û i2i3

1 û i3i4
1 û i4i1

!. ~85!

Here i5( i x ,i y ,i z) label the sites of the cubic lattice, anda
56x,6y,6z. The (p sum over all the square faces of th
cubic lattice.i1 , i2 , i3, and i4 label the four corners of the
squarep.

WhenJ5g150 andU.0, the state with allSij
z50 is the

ground state. Such a state will be regarded as a state wit
strings. We can create a string or a string net from the
string state using the following string~or string-net! opera-
tor:

WU(1)~C!5)
C

ei û ij, ~86!

whereC is a string~or a string net! formed by the neares
neighbor links, and)C is the product over all the neare
neighbor links ij on the string~or string net!. Since the
closed-string-net operatorWU(1)(Cclose) commutes with
Hrotor when J5g150, WU(1)(Cclose) generates a large se
of degenerate ground states. The degenerate ground s
are described by closed string nets.

There is another way to generate the degenerate gro
states. We note that all the degenerate ground states sa
(aSi,i1a

z 50. Let u$u ij%& be the common eigenstate ofû ij :

û iju$u ij%&5u iju$u ij%&. Then the projection onto the(aSi,i1a
z

50 subspacePu$u ij%& gives us a degenerate ground state.
note that

expS i(
i

f i(
a

Si,i1a
z D ~87!

generates aU(1) gauge transformationu$u ij%&→u$ũ ij%&,
where

ũ ij5u ij1f i2f j . ~88!
3-16
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Thus twoU(1) gauge equivalent configurationsu ij and ũ ij
give rise to the same projected state

Pu$u ij%&5Pu$ũ ij%&. ~89!

We find that the degenerate ground states are describe
U(1) gauge equivalent classes ofu ij . The degenerate groun
states also have aU(1) gauge structure.

When J50 but g1Þ0, the degeneracy in the groun
states is lifted. One can show that, in this case,Pu$u ij%& is an
energy eigenstate with energyg1(pcos(ui1i2

1u i2i3
1u i3i4

1u i4i1
). Clearly, twoU(1) gauge equivalent configuration

u ij and ũ ij have the same energy. A nonzerog1 makes the
closed string nets fluctuate, and vanishingJ means that the
strings in the string nets have no tension. Thus theJ50
ground state has strong fluctuations of large closed st
nets, and the ground state has a closed-string-net conde
tion @13#.

WhenJÞ0, Pu$u ij%& is no longer an eigenstate. The flu
tuations ofu ij describe a dynamicalU(1) gauge theory with
u ij as the gauge potential@13,26#.

The ends of open strings carry a unit charge of theU(1)
gauge field. Since theU(1) gauge field is compact, ou
model also has monopole excitations with magnetic cha
1/2 ~i.e., the monopole generates 2p flux!. Both charges and
monopoles are bosons. However, according to Ref.@30#, a
bound state of a unit charge and a monopole of magn
charge 1/2 is a fermion. Thus the 3D rotor model also
emergent massive fermions.

B. „Quasi…exactly soluble QED on a cubic lattice

To obtain massless Dirac fermions andU(1) gauge
bosons from a local bosonic model, we mix the spin-1

2
1
2

1
2

model and the rotor model to get

HQED5U(
i

S c i
†c i1(

a
Si,i1a

z D 2

1
J

2 (
i,a

~Si,i1a
z !2

1g1(
p

cos~F̂p!1g(
p

F̂p

1t(
i

(
a5x,y,z

~ iei û ijÛ i,i1ac i
†c i1a1H.c.!, ~90!

whereF̂p5 û i1i2
1 û i2i3

1 û i3i4
1 û i4i1

. If we restrict ourselves
within the physical Hilbert space with even numbers of f
mions per site, the above model is a local bosonic mode

Let us first setJ50. In this case, the above model can
solved exactly. First let us also setU50. In this caseû ij and
Û ij commute withHQED and commute with each other. Le
u$u ij ,sij%,n& be the common eigenstates ofû ij andÛ ij , where
n51,2, . . . ,2Nsite labels different degenerate common eige
states. Within the subspace expanded byu$u ij ,sij%,n&, n
51,2, . . . ,2Nsite, HQED reduces to
06500
by

g
sa-

e

ic
s

-

-

Hhop5g1(
p

cos~Fp!1g(
p

f p

1t(
i

(
a5x,y,z

~ ieiu ijsi,i1ac i
†c i1a1H.c.!, ~91!

which is a free fermion hopping model. Letu$u ij ,sij%,Cn& be
the many-fermion eigenstate of the above fermion hopp
model and let E($u ij ,sij%,n) be its energy. Then
u$u ij ) ,sij%,Cn& is also an eigenstate ofHQEDuJ50,U50 with
energyE($u ij ,sij%,n).

We note that

N̂i5c i
†c i1(

a
Si,i1a

z ~92!

commute with each other and commute withHQED . Thus
the eigenstates ofHQEDuJ50 can be obtained from the eigen
states ofHQEDuJ50,U50 by projecting onto the subspace wit
N̂i5Ni :

P$Ni%
u$u ij ,sij%,Cn&. ~93!

The above state is an eigenstate ofHQEDuJ50 with energy

U(
i

Ni1E~$u ij ,sij%,n!. ~94!

Equations~93! and~94! are our exact solution ofHQEDuJ50.
~We have implicitly assumed thatP$Ni%

also performs the
projection onto the physical Hilbert space of even numb
of fermions per site.!

WhenU is positive and large, the low energy excitatio
appear only in the sectorNi50. Those low energy eigen
states are given byPu$u ij ,sij%,Cn& whereP is the projection
onto the Ni50 subspace and the even-fermion subspa
Their energy isE($u ij ,sij%,n).

Let us further assume that2g1@utu and g@utu. In this
limit, the ground state hasf p521 and Fp50. We can
choose

u i,i1a50, a5x,y,z,

si,i1x51,

si,i1y5~2 ! i x,

si,i1z5~2 ! i x1 i y ~95!

to describe such a configuration. For this configuration,
~91! describes a staggered fermion Hamiltonian@24,53,54#.
The ground state wave functionPu$u ij ,sij%,C0& is an eigen-
state of theU(1) closed-string-net operatorWU(1)(Cclose)
with eigenvalue 1. It is also an eigenstate of theZ2 closed-
string-net operatorW(Cclose) with eigenvalue (2)Np where
Np is the number of square plaquettes enclosed byCclose.
We see that there is a condensation of closedU(1) andZ2
string nets in theJ50 ground state. In such a string-n
3-17
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condensed state, there are gapless fermionic excitat
which are described by fermion hopping in thep-flux phase.

In momentum space, the fermion hopping Hamiltoni
Eq. ~91! for the p-flux configuration has the form

Hhop5( 8
k

Ca,k
† G~k!Ca,k1const, ~96!

where

Ca,k
T 5~ca,k ,ca,k1Qx

,ca,k1Qy
,ca,k1Qx1Qy

!,

G~k!52t@sin~kx!G11sin~ky!G21sin~kz!G3#,

and G15t3
^ t0, G25t1

^ t3, and G35t1
^ t1. Here t1,2,3

are the Pauli matrices andt0 is the 232 identity matrix. The
momentum summation (k8 is over the range kx

P(2p/2,p/2), kyP(2p/2,p/2), and kzP(2p,p). Since
$G i ,G j%52d i j , i , j 51,2,3, we find that the fermions hav
the dispersion

E~k!562tAsin2~kx!1sin2~ky!1sin2~kz!. ~97!

We see that the dispersion has two nodes atk50 and k
5(0,0,p). Thus, Eq.~91! will give rise to two massless four
component Dirac fermions in the continuum limit.

After including theU(1) gauge fluctuations described b
u ij and theZ2 gauge fluctuations described bysij , the mass-
less Dirac fermions interact with theU(1) and theZ2 gauge
fields as fermions with unit charge. Therefore the total l
energy effective theory of our model is a QED with tw
families of Dirac fermions of unit charge~plus an extraZ2
gauge field!. We will call these fermions artificial electrons
The continuum effective theory has the form

L5c̄ ID0g0c I1v f c̄ IDig
ic I1

C

Jl0
E22 l 0g1B21•••,

~98!

where l 0 is the lattice constant,I 51,2, D05] t1 ia0 , Di
5] i1 iai u i 51,2,3, v f52l 0t, gmum50,1,2,3 are 434 Dirac ma-
trices, andc̄ I5c I

†g0.
We wish to point out the constantC is Eq.~98! is of order

1. Thus the coefficient of theE2 term C/Jl0→` when J
50. For a finiteJ, the U(1) gauge field will have a non
trivial dynamics. We also point out that, without fine-tunin
the speed of artificial light,ca; l 0AJg1, and the speed o
artificial electrons,v f , do not have to be the same in o
model. Thus Lorentz symmetry is not guaranteed.

We would like to remark that, for finiteJ, the U(1)
closed-string operators no longer condense. A necessary~but
not sufficient! condition for closed strings to condense is th
the ground state expectation value of the closed-string op
tor satisfy the perimeter law

^WU(1)~Cclose!&5Ae2LC /j, ~99!

where LC is the length of the closed string and (A,j) are
constants for large closed strings. We note that the clos
string operators are the Wilson-loop operators of theU(1)
06500
s,

t
ra-

d-

gauge field. If the~311!D U(1) gauge theory is in the Cou
lomb phase where the artificial light is gapless, it was fou
that @18#

^W~Cclose!&5A~C!e2LC /j, ~100!

whereA(C) depends on the shape of the closed stringCclose
even in the large string limit. Thus the closed strings in o
model do not exactly condense. TheU(1) Coulomb phase is
in some sense, similar to the algebraic long range or
phase of the~111!D interacting boson model, where th
bosons do not exactly condense but the boson operator
an algebraic long range correlation.

C. Emergent chiral symmetry from the PSG

Equation~98! describes the low energy dynamics of th
ends of open strings~the fermionc) and the ‘‘condensed’’
closed string nets@the U(1) gauge field#. The fermions and
gauge boson are massless and interact with each other.
we would like to address an important question: after in
grating out high energy fermions and gauge fluctuations,
the fermions and gauge bosons remain massless? In gen
interactions between massless excitations will generat
mass term for them, unless the masslessness is protecte
symmetry or something else. We know that, due to theU(1)
gauge invariance, the radiative corrections cannot gene
counterterms that break theU(1) gauge invariance. Thu
radiative corrections cannot generate mass for theU(1)
gauge boson. For the fermions, if the theory has a ch
symmetryc I→eiug5

c I , g55g0g1g2g3, then the radiative
corrections cannot generate counterterms that break the
ral symmetry and thus cannot generate mass for the fe
ons. Although the low energy effective theory Eq.~98! ap-
pears to have chiral symmetry, in fact it does not. This
because Eq.~98! is derived from a lattice model. It contain
many other higher order terms summarized by the ellipsis
Eq. ~98!. Those higher order terms do not have chiral sy
metry. To see this, we note that the action ofg5 on Ca,k is
realized by a 434 matrix g5}G1G2G3}t3

^ t2. We also
note that the periodic boundary conditions ofCa,k in the
reduced Brillouin zone are given by

Ca,k1Qx
5t1

^ t0Ca,k , Ca,k1Qy
5t0

^ t1Ca,k .
~101!

We find that the action ofg5 is incompatible with the peri-
odic boundary conditions sinceg5 does not commute with
t1

^ t0 andt0
^ t1. Therefore the chiral symmetry generate

by g5 cannot be realized on a lattice. Due to the lack
chiral symmetry, it appears that the radiative corrections
generate a mass term

dL5c̄ I ,amc I ,a , ~102!

which is allowed by the symmetry.
The lack of chiral symmetry on the lattice makes it ve

difficult to study massless fermions/quarks in lattice gau
theory. In the last few years, this problem was solved us
the Ginsparg-Wilson relation@55–58#. In the following, we
3-18
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would like to show that there is another way to solve t
massless-fermion/chiral-symmetry problem. We will sho
that our model has an emergent chiral symmetry that app
only at low energies. The low energy chiral symmetry com
from the nontrivial quantum order and the associated PSG
the string-net condensed ground state@9,15,16#. The Dirac
operator in our model satisfies the linear relation

WDW†5D, WPPSG, ~103!

in contrast to the nonlinear Ginsparg-Wilson relation

Dg51g5D5aDg5D. ~104!

Because of the low energy chiral symmetry, the two famil
of Dirac fermions remain massless even after we include
radiative corrections from the interaction with theU(1)
gauge bosons.

To see how the string-net condensation and the rela
PSG protect the massless fermions, we follow closely
discussion in Sec. V C. The Hamiltonian Eq.~90! is a mix-
ture of the rotor model and the spin-1

2
1
2

1
2 model. The sym-

metry properties of the rotor part are simple. Here, we w
concentrate on the spin-1

2
1
2

1
2 part. Equation~90! is not invari-

ant under the six parity transformationsPx,y,z and Pxy,yz,zx
that generatex↔2x, y↔2y, z↔2z, x↔y, y↔z, and
z↔x. But it is invariant under the parityPx,y,z andPxy,yz,zx
followed by the spin rotationsgPx,y,z

and gPxy,yz,zx
, respec-

tively. In the fermion representationgPx,y,z
andgPxy,yz,zx

gen-
erate the following transformations:

gPx
: l i

x↔l i
x̄ , c i↔c i

† ,

gPy
: l i

y↔l i
ȳ , c i↔c i

† ,

gPz
: l i

z↔l i
z̄ , c i↔c i

† ,

gPxy
: l i

x↔l i
y , l i

x̄↔l i
ȳ ,

gPyz
: l i

y↔l i
z , l i

ȳ↔l i
z̄ ,

gPzx
: l i

z↔l i
x , l i

z̄↔l i
x̄ . ~105!

The symmetriesTx,y , gPx,y,z
Px,y,z , andgPxy,yz,zx

Pxy,yz,zx

are realized in the hopping Hamiltonian Eq.~91! through the
PSG. The hopping Hamiltonian is invariant only under sy
metry transformations followed by properZ2 gauge transfor-
mationsG( i). Since thep-flux configurationsij of the spin-
1
2

1
2

1
2 sector and the zero-flux configurationu ij of the rotor

sector do not break any symmetries, we expect the hop
Hamiltonian Eq. ~91! to be invariant underGx,y,zTx,y,z ,
GPx,y,z

gPx,y,z
Px,y,z , and GPxy,yz,zx

gPxy,yz,zx
Pxy,yz,zx . The ac-

tions ofTx,y andgPxy,yz,zx
Pxy,yz,zx on thec fermion are stan-

dard coordinate transformations. The action ofgPx,y,z
Px,y,z

on thec fermion is given by
06500
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gPx
Px : c ( i x ,i y ,i z)

↔c (2 i x ,i y ,i z)
† ,

gPy
Py : c ( i x ,i y ,i z)

↔c ( i x ,2 i y ,i z)
† ,

gPy
Py : c ( i x ,i y ,i z)

↔c ( i x ,i y ,2 i z)
† . ~106!

For thep-flux configuration Eq.~95!, we need to choose th
following Gx,y,z , GPx,y,z

, andGPxy,yz,zx
in order for the com-

bined transformation Gx,yTx,y , GPx,y
gPx,y

Px,y , and

GPxy,yz,zx
gPxy,yz,zx

Pxy,yz,zx to be the symmetries of the hop
ping Hamiltonian Eq.~91!:

Gx5~2 ! i y1 i z, Gy5~2 ! i z, Gz51,

GPx
5~2 ! i x, GPy

5~2 ! i y, GPz
5~2 ! i z,

GPxy
5~2 ! i xi y, GPyz

5~2 ! i yi z,

GPzx
5~2 ! i xi y1 i yi z1 i zi x. ~107!

The hopping Hamiltonian is also invariant under a globalZ2
gauge transformation

G0 : c i→2c i . ~108!

The transformations $Gx,y,zTx,y,z , GPx,y,z
gPx,y,z

Px,y,z ,

GPxy,yz,zx
gPxy,yz,zx

Pxy,yz,zx ,G0% generate a PSG~a part of the
full PSG! of the hopping Hamiltonian.

To study the robustness of massless fermions, we cons
a more general Hamiltonian by adding

dH5(
Cij

@ t~Cij !W̃U(1)~Cij !1H.c.# ~109!

to HQED , whereCij is an open string connecting sitei and
site j andW̃U(1)(Cij) an open-string operator

W̃U(1)~Copen!5c i1
† eiu i1i2Û i1i2

•••eiu in21inÛ in21in
c in

.

~110!

The new Hamiltonian is still exactly soluble, whenJ50. We
will chooset(Cij) such that the new Hamiltonian has tran
lation symmetries andPx,y,z parity symmetries. We find tha
the resulting projective symmetry imposes enough constr
on the hopping Hamiltonian for the ends of condens
strings such that the Hamiltonian always has massless D
fermions@assuming thatt(Cij) is not too big compared tog
and g1]. Although the PSG transformation
GPxy,yz,zx

gPxy,yz,zx
Pxy,yz,zx are not needed for the existence

the massless fermions, we will still include them in the fo
lowing discussion.

For smallt(Cij), the ground state is still described by th
p-flux configuration. The new hopping Hamiltonian for th
p-flux configuration has the more general form

H5(̂
ij &

~x ijc i
†c j1H.c.!. ~111!
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The symmetry of the generalizedHQED requires that the
above hopping Hamiltonian be invariant under the PSG g
erated by $G0 ,Gx,y,zTx,y,z , GPx,y,z

gPx,y,z
Px,y,z ,

GPxy,yz,zx
gPxy,yz,zx

Pxy,yz,zx%.

The invariance underGx,y,zTx,y,z requires that

x i,i1m5~2 ! i ymz~2 ! i x(my1mz)xm . ~112!

In momentum space,

x~k1 ,k2![Nsite
21 (

ij
e2 ik1• i1 ik2• jx ij

5 (
a,b50,1

eab~k2!dk12k21aQx1bQy
, ~113!

where

e00~k!5 (
my1mz5even,mz5even

eik•mxm ,
d

06500
n- e10~k!5 (
my1mz5odd,mz5even

eik•mxm ,

e01~k!5 (
my1mz5even,mz5odd

eik•mxm ,

e11~k!5 (
my1mz5odd,mz5odd

eik•mxm . ~114!

We note thateab(k) are periodic functions in the lattice Bril
louin zone2p,kx,y,z,p. They also satisfy

eab~k!5~2 !aeab~k1Qy1Qz!,

eab~k!5~2 !beab~k1Qz!. ~115!

The G(k) in Eq. ~96! now has the form
G~k!5S e00~k! e10~k1Qx! e01~k1Qy! e11~k1Qx1Qy!

e10~k! e00~k1Qx! e11~k1Qy! e01~k1Qx1Qy!

e01~k! e11~k1Qx! e00~k1Qy! e10~k1Qx1Qy!

e11~k! e01~k1Qx! e10~k1Qy! e00~k1Qx1Qy!

D . ~116!
Just as discussed in Sec. V C, the invariance un
GPx

gPx
Px requires that

2xPxj,Pxi5GPx
~ i!x ijGPx

~ j! ~117!

or

x2Pxm52~2 !mxmy1mymz1mzmx~2 !mxxm . ~118!

In momentum space, the above becomes

e00~2Pxk!52e00~k1Qx!,

e10~2Pxk!52e10~k!,

e01~2Pxk!5e01~k1Qx!,

e11~2Pxk!52e11~k!, ~119!

where Qz5pz. Similarly, the invariance underGPy
gPy

Py

requires that

x2Pym52~2 !mxmy1mymz1mzmx~2 !myxm . ~120!

In momentum space
er e00~2Pyk!52e00~k!,

e10~2Pyk!5e10~k1Qx!,

e01~2Pyk!52e01~k!,

e11~2Pyk!52e11~k1Qx!. ~121!

The invariance underGPz
gPz

Pz requires that

x2Pzm
52~2 !mxmy1mymz1mzmx~2 !mzxm . ~122!

In momentum space

e00~2Pzk!52e00~k!,

e10~2Pzk!52e10~k1Qx!,

e01~2Pzk!52e01~k!,

e11~2Pzk!5e11~k1Qx!. ~123!

The invariance underGPxy
gPxy

Pxy requires that

xPxyi,Pxyj5GPxy
~ i!x ijGPxy

~ j! ~124!

or
3-20
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xPxym5~2 !mxmyxm . ~125!

In momentum space

e00~Pxyk!5e00~k!,

e10~Pxyk!5e10~k1Qx!,

e01~Pxyk!5e01~k1Qx!,

e11~Pxyk!5e11~k!. ~126!

The invariance underGPyz
gPyz

Pyz requires that

xPyzm
5~2 !mymzxm ~127!

or

e00~Pyzk!5e00~k!,

e10~Pyzk!52e10~k!,

e01~Pyzk!52e01~k!,

e11~Pyzk!5e11~k!. ~128!

The invariance underGPzx
gPzx

Pzx requires that

xPzxm
5~2 !mxmy1mymz1mzmxxm ~129!

or

e00~Pzxk!5e00~k!,

e10~Pzxk!5e10~k1Qx!,

e01~Pzxk!52e01~k!,

e11~Pzxk!5e11~k1Qx!. ~130!

We see that Eq.~119! requires thate10(k)uky5kz5050 and

e11(k)uky5kz5050. Equation ~123! requires that

e00(k)ukx5ky5050 and e01(k)ukx5ky5050. Thus eab(0)

50. When combined with Eq.~115!, Eq. ~119!, and Eq.
~123!, we find

eab~axQx1ayQy1azQz!50, ax ,ay ,az50,1.
~131!

ThereforeG(k)50 whenk50,Qz . The two translationTx,y
and the three paritygPx,y,z

Px,y,z symmetries ofHQED guar-
antee the existence of at least two four-component mass
Dirac fermions, or, more precisely, no symmetric local p
turbations in the local bosonic modelHQED can generate
mass terms for the two massless Dirac fermions in the
perturbed Hamiltonian.

Since the mass term in the continuum effective fie
theory is not allowed by the underlying lattice PSG, we s
that our model has an emergent chiral symmetry. The m
lessness of the Dirac fermion is protected by the quan
order and the associated PSG.
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VIII. QED AND QCD FROM A BOSONIC MODEL
ON A CUBIC LATTICE

In this section, we are going to generalize the results
Ref. @59# and Ref.@15# and use a bosonic model on a cub
lattice to generate QED and QCD with 2Nf families of mass-
less quarks and leptons. To describe the local Hilbert sp
on sitei in our bosonic model, it is convenient to introduc
fermions l i

a and c i
na , where a51, . . . ,Nf , n

51, . . . ,2Nf , anda51,2,3.l i
a is in the fundamental repre

sentation of anSU(Nf) group. c i
na is in the fundamental

representation of anSU(3) color group and anSU(2Nf)
group. The Hilbert space of fermions is bigger than the H
bert space of our boson model. Only the physical subspac
the fermion Hilbert space becomes the Hilbert space of
boson model. The physical state on each site is formed
color singlet states that satisfy

S l i
a†l i

adab1c i
na†c i

nb2dab
3

2
Nf D uFphys&50, ~132!

whereNf is assumed to be even. Once restricted within
physical Hilbert space, the fermion model becomes our lo
bosonic model.

In the fermion representation, the local physical operat
in our bosonic model are given by

Si
mn5c i

ma†c i
na2

1

2Nf
dmnc i

la†c i
la ,

M i
ab5l i

a†l i
b2

1

Nf
dabl i

c†l i
c ,

G i
a,lmn5l i

a†c i
lac i

mbc i
ngeabg . ~133!

We note that by definitionM i
aa5Si

nn50. The Hamiltonian
of our boson model is given by

H5
J1

Nf
(̂

ij &
Si

mnSj
nm1

J2

Nf
(̂

ij &
M i

abM j
ba

1
J3

Nf
3 (̂

ij &
@G i

a,lmnG j
a,lmn†1H.c.#. ~134!

Let us assume, for the time being, thatJ350. In terms of
fermions, the above Hamiltonian can be rewritten as

H52
J1

Nf
(̂

ij &
c j

nbc i
na†c i

mac j
mb†2

J2

Nf
(̂

ij &
l j

al i
a†l i

bl j
b†

1const. ~135!

Using the path integral, we can rewrite the above model
3-21
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Z5E D~c†!D~c!D~a0!D~u!D~x!ei *dtL,

L5c i
n†i @] t1 ia0~ i!#c i

n2(̂
ij &

~c i
n†uijc j

n1H.c.!

1l i
a†i @] t1 i Tr a0~ i!#l i

a

2(̂
ij &

~l i
a†x ijl j

a1H.c.!2
Nf

J1
(̂

ij &
Tr~uijuij

†!

2
Nf

J2
(̂

ij &
x ijx ij

† , ~136!

where (c i
n)T5(c i

n,1 ,c i
n,2 ,c i

n,3), anda0( i) and uij are 333
complex matrices that satisfy

uij
†5uji , a0~ i!5a0

†~ i!. ~137!

WhenJ3Þ0, the Lagrangian may contain terms that mixx ij
anduij :

L5c i
n†i @] t1 ia0~ i!#c i

n2(̂
ij &

~c i
n†uijc j

n1H.c.!

1l i
a†i @] t1 i Tr a0~ i!#l i

a2(̂
ij &

~l i
a†x ijl j

a1H.c.!

2
Nf

J1
(̂

ij &
Tr~uijuij

†!2
Nf

J2
(̂

ij &
x ijx ij

†

1CNf(̂
ij &

@x ijdet~uji !1H.c.#, ~138!

whereC is an O(1) constant. We note that the above L
grangian describes aU(1)3SU(3) lattice gauge theory
coupled to fermions.

The fielda0( i) in the Lagrangian is introduced to enforc
the constraint

c i
na†c i

nb2c i
nbc i

na†1l i
a†l i

adab2l i
al i

a†dab50.
~139!

As in standard gauge theory, the above constraint re
means a constraint on physical states, i.e., all physical s
must satisfy

S l i
a†l i

adab1c i
na†c i

nb2dab
3

2
Nf D uFphys&50. ~140!

The above is the constraint needed to obtain the Hilb
space of our bosonic model.

Here we would like to stress that writing a bosonic mod
in terms of a gauge theory does not imply the existence
physical gauge bosons at low energy. Using projective c
struction, we can write any model in terms of a gauge the
of any gauge group@33,60#. The existence of low energ
gauge fluctuations is a property of the ground state. It
nothing to do with how we write the Hamiltonian in terms
this or that gauge theory.
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Certainly, if the ground state is known to have certa
gauge fluctuations, then writing the Hamiltonian in terms
a particular gauge theory that happens to have the s
gauge group will help us to derive the low energy effecti
theory. Even when we do not know the low energy gau
fluctuations in the ground state, we can still try to write t
Hamiltonian in a form that contains a certain gauge the
and try to derive the low energy effective gauge theory. M
of the time, we find that the gauge fluctuations in the lo
energy effective theory are so strong that the gauge theo
in the confining phase. This indicates that we have cho
the wrong form of the Hamiltonian. However, if we ar
lucky enough to choose the right form of the Hamiltoni
with the right gauge group, then the gauge fluctuations in
low energy effective theory will be weak and the gauge fie
a0 , x ij , and uij will be almost like classical fields. In this
case, we can say that the ground state of the Hamilton
contains low energy gauge fluctuations described bya0 , x ij ,
and uij . In the following, we will show that theU(1)
3SU(3) fermion model Eq.~136! is the right form for us to
write the Hamiltonian Eq.~134! of our bosonic model.

After integrating out the fermions, we obtain the follow
ing effective theory fora0( i), x ij , anduij :

Z5E D~a0!D~u!ei *dtNf L̃e f f(u,a0), ~141!

whereL̃e f f does not depend onNf . We see that, in the large
Nf limit, x ij , uij , anda0 indeed become classical fields wit
weak fluctuations.

In the semiclassical limit, the ground state of the system
given by the ansatz (x̄ ij ,ūij ,ā0( i)) that minimizes the energy
2L̃e f f . We will assume that such an ansatz hasp flux on
every plaquette and takes the form

x̄ i,i1 x̂52 ix, x̄ i,i1 ŷ52 i ~2 ! i xx,

x̄ i,i1 ẑ52 i ~2 ! i x1 i yx,

ūi,i1 x̂52 iu, ūi,i1 ŷ52 i ~2 ! i xu,

ūi,i1 ẑ52 i ~2 ! i x1 i yu, a0~ i!50. ~142!

~If the p-flux ansatz does not minimize the energy, we c
always modify the Hamiltonian of our bosonic model
make thep-flux ansatz have the minimal energy.! Despite
the i dependence, the above ansatz actually describes tr
lation, rotation, parity, and charge conjugation symmet
states. This is because the symmetry transformed ansat
though not equal to the original ansatz, is gauge equivalen
the original ansatz.

The mean-field Hamiltonian for fermions has the form

H5(̂
ij &

~c i
n†ūijc j

n1l i
a†x̄ ijl j

a1H.c.!. ~143!

The fermion dispersion has two nodes atk50 and k
5(0,0,p). Thus there are 2Nf37 massless four-componen
Dirac fermions in the continuum limit. They correspond
quarks and leptons of 2Nf different families. Each family
3-22
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contains six quarks~two flavors times three colors! that carry
SU(3) colors and charge 1/3 for theU(1) gauge field, and
one lepton that carries noSU(3) colors and charge 1 for th
U(1) gauge field.

Including the collective fluctuations of the ansatz, t
U(1)3SU(3)5U(3) fermion theory has the form

L5(
i

c i
n†i @] t1 ia0~ i!#c j

n1(
ij

c i
n†ūije

ia ijc j
n1(

i
l i

a†

3 i @] t1 i Tr a0~ i!#l j
a1(

ij
l i

a†x̄ ijdet~eia ij!l j
a , ~144!

whereaij are 333 Hermitian matrices, describingU(1) and
SU(3) gauge fields. In the continuum limit, the above b
comes

L5c̄ I ,nD0g0c I ,n1v f c̄ I ,nDig
ic I ,n1l̄ I ,aD08g

0l I ,a

1v f8l̄ I ,aDi8g
il I ,a ~145!

with v f; l 0J1 , v f8; l 0J2 , Dm5]m1 iam , Dm8 5]m

1 i Tr am , I 51,2, and gm are 434 Dirac matrices
@24,53,54#. l I ,a andc I ,n are Dirac fermion fields.c I ,n forms
a fundamental representation of colorSU(3).

If we integrate outa0 and aij in Eq. ~144! first, we will
recover the bosonic model Eq.~134!. If we integrate out the
high energy fermions first, theU(1)3SU(3) gauge fieldam
will acquire a dynamics. We obtain the following low energ
effective theory in the continuum limit:

L5c̄ I ,nD0g0c I ,n1v f c̄ I ,nDig
ic I ,n1l̄ I ,aD08g

0l I ,a

1v f8l̄ I ,aDi8g
il I ,a1

1

aS
@Tr F0iF

0i1ca
2Tr Fi j F

i j #1•••,

~146!

where the velocity of theU(3) gauge bosons isca; l 0J1,2,
and the ellipsis represents higher derivative terms and
coupling constantaS is of order 1/Nf .

In the largeNf limit, fluctuations of the gauge fields ar
weak. The model Eq.~146! describes aU(1)3SU(3) gauge
theory coupled weakly to 2Nf families of massless fermions
Therefore, our bosonic model can generate massless arti
quarks and artificial leptons that couple to artificial light a
artificial gluons. As discussed in Ref.@15#, the PSG of the
ansatz Eq.~142! protects the masslessness of the artific
quarks and the artificial leptons. Our model has an emerg
chiral symmetry.

IX. CONCLUSION

In this paper, we studied a new class of ordered state
string-net condensed states—in local bosonic models.
new kind of order does not break any symmetry and can
be described by Landau’s symmetry breaking theory.
show that different string-net condensation can be charac
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ized ~and, hopefully, classified! by the projective symmetry
in the hopping Hamiltonian for the ends of condens
strings. Similar to symmetry breaking states~or ‘‘particle’’
condensed states!, string-net condensed states can also p
duce and protect gapless excitations. However, unlike s
metry breaking states, which can only produce and pro
gapless scaler bosons~or Nambu-Goldstone modes!, string-
net condensed states can produce and protect gapless g
bosons and gapless fermions. It is amazing to see that
less fermions can even appear in local bosonic models.

Motivated by the above results, we propose the followi
locality principle:The fundamental theory for our universe
a local bosonic model.Using several local bosonic models a
examples, we try to argue that the locality principle is n
obviously wrong, if we assume that there is a string-net c
densation in our vacuum. The string-net condensation
naturally produce and protect massless photons~as well as
gluons! and ~nearly! massless electrons/quarks. However,
really prove the string-net condensation in our vacuum,
need to show that string-net condensation can generate c
fermions. Also, the above locality principle has not tak
quantum gravity into account. It may need to be generali
to include quantum gravity. In any case, we can say that
have a plausible understanding of where light and fermi
come from. The existence of light and fermions is no long
mysterious once we realize that they can come from lo
bosonic models via string-net condensations.

The string-net condensation and the associated PSG
provide a new solution to the chiral symmetry and fermi
mass problems in lattice QED and lattice QCD. We sh
that the symmetry of the lattice bosonic model leads to
PSG of the hopping Hamiltonian for the ends of conden
strings. If the ends of condensed strings are fermions, t
the PSG can sometimes protect the masslessness of th
mions, even though the chiral symmetry in the continuu
limit cannot be generalized to the lattice. Thus the PSG
lead to an emergent chiral symmetry that protects mass
Dirac fermions.

In this paper, we have been stressing that string-net c
densation and the associated PSG can protect the mas
ness of fermions. However, most fermions in nature do h
masses, although very small compared to the Planck m
One may wonder where those small masses come from. H
we would like to point out that the PSG argument for ma
lessness works only for radiative corrections. In other wor
the fermions protected by string-net condensation and P
cannot gain any mass from additive radiative correctio
caused by high energy fluctuations. However, if the mo
has infrared divergence, then infrared divergence can g
the would-be-massless fermions some mass. The acqu
mass should have the scale of the infrared divergence.
~311!D QED model studied in this paper does not have a
infrared divergence. Thus, the artificial electrons in t
model are exactly massless. But in the bosonic model
cussed in Sec. VIII theSU(3) gauge couplingaS runs as

daS
21

d ln~M2!
5

112~2/3!~2Nf !

4p
, ~147!
3-23
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where M is the cutoff scale. Thus, whenNf<8, aS has a
logarithmic infrared divergence. In general, for models w
U(1) andSU(3) gauge interactions and the right content
fermions, theSU(3) gauge interactions can have a we
logarithmic infrared divergence in~311!D @61,62#. This
weak divergence could generate mass of or
e2C/aS(M P)M P , whereM P is the Planck mass or the gran
unified theory~GUT! scale ~the cutoff scale of the lattice
theory!, C5O(1), andaS(M P) is the dimensionless gaug
coupling constant at the Planck scale. AC/aS(M P);40 can
produce the desired separation between the Planck m
GUT scale and the masses of the observed fermions.
interesting to see that, in order to use the string-net cond
sation picture to explain the origin of gauge bosons a
nearly massless fermions, it is important to have a fo
dimensional space-time. When space-time has five or m
dimensions, the gauge-fermion interactions do not have
et

.
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infrared divergence. In this case, if a string-net condensa
produces massless fermions, those fermions will rem
massless down to zero energy. In~211!D, the gauge inter-
action between massless fermions is so strong that one
not have fermionic quasiparticles at low energies@63–65#. It
is amazing to see that 311 is the only space-time dimensio
where the gauge bosons and fermions produced by string
condensation have weak enough interactions so that they
be identified at low energies and, at the same time, h
strong enough interactions to have a rich nontrivial struct
at low energies.
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