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Auxiliary field method in 4- and 3-dimensional Nambu-Jona-Lasinio models
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In order to check the validity of the auxiliary field method in the Nambu—Jona-Lasinio model, the one-loop
(= quantum effects of auxiliary fields on the gap equation are considered Mitomponent fermion models
in four and three dimensionsl is not assumed very large but is regarded as a loop expansion parameter. To
overcome infrared divergences caused by the Nambu-Goldstone bosons, an intrinsic fermion mass is assumed.
It is shown that the loop expansion can be justified by this intrinsic mass whose lower limit is also given. It is
found that due to quantum effects, chiral symmetry breaky®pB) is restored inD=4 andD =3 when the
four-Fermi coupling is large. HoweveySB is enhanced in a small coupling regionDr= 3.
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[. INTRODUCTION we assume an intrinsic mass of fermions, the so called cur-
rent quark mass. We do not care about the renormalizability
The Nambu—Jona-LasinidNJL) model[1] is, needless to so that an ultraviolet cutoff is introduced to define the model.
say, one of the most famous field theoretical models exhib"e make no approximation other than the loop expansion.
iting dynamical chiral symmetry breakirgSB) phenomena. There have been attempts to consi@1/N) terms in
Owing to its simplicity, there have been many studies usingour-fermion models: some calculate the effective potential
the NJL model: some of the recent trends are those that defr the model with discrete chiral symmetry in order to
with external disturbances such as background gauge fielddarify the renormalizability in 4-D>2 [14]; others check
[2-5] or curved spacetimgs] in order to explore the detailed the Nambu-Goldstone theorem or Gell-Mann—-Oakes—
phase structure. Originally, calculations for dynamigglB ~ Renner or Goldberger-Treiman relations in the four-
were done in a self-consistent manner to yield the gap equalimensional NJL modeél to show that O(1/N) effects
tion [1], but later it was revealed that results are more easilyveaken the quark condensatidgg) obtained at the tree
obtained in the path integral formulation with the use of anorder[15]. However, there seems to have been no attempt to
auxiliary [7] or Hubbard-Stratonovicf8] field. The recipe, study the higher loop contribution, paying attention to the
which we shall call the auxiliary field methd®], becomes infrared regime, to the vacuum condition, and to the gap
exact wherN, the number of degrees of freedom of the origi- equation, in terms of the auxiliary field method. In Sec. II,
nal dynamical fields, goes to infinity. However, the analysiswe present a general path integral formalism to obtain an
in lower dimensional bosonic models shows that, eveN if €ffective potential in the NJL model. We work with the
=1, we can improve the results toward the true value byN-component fermion model D=4 and 3[16], but as
taking higher orders in the loop expansidd]. Therefore it  Stated aboveN is merely a loop expansion parameter to be
is desirable to incorporate the quantum loop) effects of kept finite. Section Il deals with the vacuum condition and
auxiliary fields in the gap equation whéhremains finite. then the gap equation up to one-loop order of the auxiliary
However, there is an obstacle to performing the loop exfields. It is concluded that quantufs- loop) effects restore
pansion in terms of auxiliary fields in the NJL model: be- xSB in D=4 while the situation irD=3 is slightly differ-
cause of the massless Nambu-Goldstone bosons that occurént; xSB is restored in the strong coupling regime but en-
the auxiliary fields, infrared divergences are inevitable inhanced in the weak coupling regime. We also find the lower
higher loop calculations. Kleinert and Bossche pay attentiodimit of the current quark mass to ensure the loop expansion.
to this infrared regime and conclude that there is no pion infhe final section is devoted to discussion.
the NJL mode[11], that is, there is no room for the auxiliary
fields. Their main contribution is, however, a chiral nonlinear
model[12], an effective theory, so more rigorous and careful
investigations are needed. Indeed some opposition to this In this section, we develop a general formalism in order to
conclusion has occurrdd.3]. clarify our goal. The NJL model with an intrinsic massn
We follow the standard prescription for the effective ac-three as well as four dimensions is given by
tion formalism by introducing sources coupled to bilinear
terms of fermions. In order to control the infrared singularity,
LIt is, however, almost trivial to check these relations under an
O(1/N) expansion; since it is well known that those are the conse-
*Electronic address: kashiwa@phys.sci.ehime-u.ac.jp qguences of the Ward-Takahashi relations which are persistent in the
TElectronic address: tomohiko@higgs.phys.kyushu-u.ac.jp loop [ =O(1/N)] expansion.

Il. MODEL AND BASIC FORMALISM
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with where theJ(x)’s arec-number sources antl designates the
(imaginary time-ordered productWe have introduced the
Vs, D=4, J? term just for later notational simplicity14].) From this

=I'=(1il's), TIs= D=3 (3 we can extract the energy of the ground state by putling

(74:75). as well asT—. The path integral representation reads

whered=1y,d,,, N-component fermion fields have been in-

troduced, and they,’s are 4<4 matrices, even in three Z[J]=f d[lp]d[l]ex;{fdf’x —J(ﬁ+s—‘]-l“)¢
dimensiong satisfying
{Vu vt=26,,, m,v=12345. (l,/ff‘llf)2 —JZD ®
Explicitly, Introducing auxiliary fields in terms of the Gaussian integra-
i
(UM 0 ) . (o 1) on N 2
= , =1,2,3, = , N —
o o) M “7l1 0 1=fd[2]ex;{—ﬁjde<E(x)+N¢(X)F¢(X)) ,
( 0 il) " 9
V5= Y1Y2V3Y4~T ; . =
-i1 0 (o(x), (X)), D=4,
10
H0=2a00= [(a(x) m(0,m(x), p=3,

The intrinsic mass, the so called current quark mass, has o . _ _
been assumed to prevent an infrared divergence in the pid® eliminate the four-Fermi interaction, we find
loop integrals(See the following.

The quantity we should consider is Z[J]:f d[z//]d[Z]d[E]ex;{f dPx| — %22
T
_ The fermion integrations yield
H(t)zf dP | () [V +e—I(x)-T]
N = f d[z]exp[ [J dPx — 22 ) =Trin{h+e
XY(X) = Lin— 53 (%), (6)
+(2—J)-F}H
J(X):J (X)z[ (J(X),J5(X)), D=41 (7)
T 1000.3400,95(x)), D=3, Eﬁwf d[S]exp(—NI[S,3]) (12
2 ) . i with
In three dimensions, we need an additioffsicomponent fer-
mion to form the four-component spinft6,4] 1 1
b — o |[2,J]Ef dPx 522+ XE-J)—TrIn(ﬁJrerE-F),
Y= %), U=y'y=(  —P)=(los —yhoy),

(13

where Tr designates the spinorial as well as the functional
trace. Writing

to be able to realize the chiral symmetwhene=0),

POO—EThx),  hx)—EPsy(x),
which is, therefore, a global(2) symmetry, finally broken down
to U(1)XU(1) by the mass term. Z[J]=e "WJI, (14)
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and introducing the “classical” fields 1 1
=t — @4 ol —
2y e . WLI]=lo+ 5 Trinig+0 NZ)’ (24)
= - n® = —grn-3 a9
A 6J A N A where
with the expectation values being taken under the expression 1 1
(12) or under the original on€8), we perform a Legendre o= ﬁ(z(fzo)"' X(EO’J)_T”H(&'FS"-EO'F),
transformation with respect t@/[J] to obtain the effective (25)
action
2
1 (|(2)) :L
Fle]=Wll= (- 4). (16) 20 7% s3a(x) 530(y) %

where the shorthand notation, 1
= 5 OX=Y) Sapttr TaS(X,y: 2) I'pS(y, X 2).

(A- B)EJ dPx A(X)B(X) (17) (26)

has been employed. When tfis are set to be constants, the Here the trace is taken only for the spinor spdcgé. is a
effective action becomes the effective potential matrix in theX spaceg2x2inD =4, 3x3inD=3).1, is the
“tree” part while Trin I{?) is the “one-loop” part of the aux-

J>const iliary fields. Using Eq.(15) we find
I'l¢] = VTV ¢), (18
B NS o 34(x)
with V being the D —1)-dimensional volume. P)=Zo(X)+ 55 53(X) (Trin1g™)=Zo(X) + —§—-
We calculateW[J] with the help of the saddle point (27)

method® First, we find the classical solutia,, ) )
Note that the difference betweaf and X, is O(1/N). In-

ol 1 serting Eq.(27) into the effective actioril6) with the use of
0= 53(X)|. X(EOJ“])(X)_” I'S(x,x:%o), (19  Egs.(24), (25), and(26), we obtain
20

1
where S(x,y:3,) is a fermion propagator under the back- 'l ®]1= 5 (¢¢)=Trin(4+e+¢I')
ground fields

1 I
[0+&+30(x) - TIS(X,y:Z)=8(x~y).  (20) + mTrln(xé(x—y)Hr I'S(x,y: ) I'Sly,x: ¢)
Second, we expanddaroundZ: 1
+0 ) (28)

1 (2) 2 1 (3) 3
I=lo+ 5 [17- (2=20)°]+ 57 (1§ (2= %0)*]+-+, | _ _
: By setting thel's constant, the effective potenti€l8) reads

(21
1 1 1
= - — .
where V() X 0] VTTrIn(/)+s+ o)+ 2NV_I_Trln
) _ S |
lo'=—= (22) X| = 8(x—y)+tTS(X,y: @) TS(Y,X: @)
8% 5, N
" +0 ! ) (29
(|g“>-2”)zf d®x,- --dPx, N2)
6%71(Xy)" -+ 6% %n(Xp)
a a In Eq. (29) the first two terms are the tree part and the third
XZA(Xp) - Z(Xp). (23 is the one-loop part of the auxiliary fields, whose functional
. trace should also be taken for tBespace. The vacuum is
Third, we put &—30)—3/\/N and then perform the Gauss- chosen by P
ian integration with respect t& to obtain
idd =0 (30)
I J=0 .

3The result becomes exact whahgoes to infinity, which, how-
ever, is not the case in this analysiéis a mere expansion param- Armed with these results, we now proceed to a detailed cal-
eter that is finally put to unity. culation.
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IIl. VACUUM AND THE GAP EQUATION

We write the “classical” fields atl=0 as

3 _ T, D=4,
¢_(m127'r)! 277= (77_1,772), D:3, (31)
and B
d=(m+¢e,X ) (32

to study the vacuum conditio(80) on the tree part of the
effective potentia(29),

1
Vo= (m 24+32)— —Trln(ﬁ+¢ I

(m +32) ——J In(p2+¢2) (33)
giving
07V0_ _m
%_0_ 4(m+e )f(zw)D aet (34)
(7V0_ _2,., de 1
7z, 0N ”f (2m)° p2+ ¢? (39

(Recall that td =4 for bothD=4 andD = 3.) Therefore the
solution is
(36)

(37

m_4 +f
N Ame) 27T)Dp+(m+s)2

PHYSICAL REVIEW D 68, 065002 (2003

1 W
o T 5(x), (38)
where
€ (m+eg) 5
€= X I e“<sx=<1), (39
0) 1+X
g, (X)=1-xIn ~ (40
1
g (x)=2| 1— Jxtan 1—|, (42)
N
and
AAP~2
Ap= (42)

4D/2— 177'D/2F( D/Z) !

with I'(D/2) being the gamma functiom'(2)=1, I'(3/2)
= \[@r/2. In view of Eq.(398),

(43

which implies the trivial fact that the mass déseven in the
free theoryn=0.
The one-loop parV; of the effective potential29) reads

(44)

1 d°p (1
V=55t J'(ZW)DIn X+11(p)),

where tr should be taken for the spinorial space as well as the
3. In Eq. (44) the argument of the logarithm is nothing but a

where the second relation, called the gap equation at the tré@o-point function of the auxiliary fields; therefore, we call

order, reads

IT the vacuum polarization matrix,

n )=J d°! tr ! r ! r)
an(P)= 2mP \i(t+prR)+ oI Sig+p2)+dT °
d®I 1
(2m)° [(1+p/2)2+ 21[(1 - p/2)+ ¢]
2
_(|2_pz)+(m+8)2_772 2(m+e)m
) , D=4,
2(m+eg)m —(IZ—%)—(m+s)2+w2
2
X —(Iz—pz +(m+£)2—2i 2(m+eg)m, 2(m+eg)m,
2
2(m+eg)m, _<|2_ pz)—(m-l-s)z-}-'n'i—'n'g 2y, ,D=3
I:)2
2(m+eg)m, 2mymy _(lz_z)—(m-i‘s)z_’ﬂi-i"ﬂ%
(45)
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By noting that

('—+H)l n ]—(2 )3(-++) (46)
A I )2 "

I dPl 1
J--4)
I, (2P (14 p/2)%+ (m+¢)?

d®I
+8f (27)P

tr

. f dPI 1
(2m)P (I-p/2)?+(m+e)?
and the tree relatiof85), the vacuum condition faX ., up to

(m+e)?+p2a
one loop is p%/4
{(1+p/2)%+ (m+8)2{(I—p/2)?>+(m+8)?}
2% 1 51
%, :Ew(v“' “n !
713=0 Shifting the momentunfalthough we are in a cutoff world
we obtain
with V=V,+V,, allowing us to chooseX,=0 as the 5
vacuum. Also, in the one-loop part of the gap equation, Hl] _ J' d-l 1
1T, (2m)P 12+ (m+¢)?
2% 2, 2
oV (48) . (m+s)2+p/4
Jm J=03 =0 +8 172 dtf d”I p</4
~12 ) (2m)P [124+ pA(U4—t3) + (m+e)2]%
we can utilize the tree resul87). (52
Therefore in the gap equation we @it =0 in the expres- . ) .
sion (45) to find the diagonal matrix Using the tree result for the gap equati@?Y), we obtain
1+[H1_1 4J d®I 1 +8f1/2dt
(Hl 0 ) D=4, AR PEIDN (2m)P 12+ (m+¢)? ~12
0 I (M+ )2+ p2/4
HlEﬁ:O: I, 0 0 (49 d®| p2/4
= X
0 Il 0, D=3 j (2m)° [124 pX(L/4—12) + (m+e)?]?
o o0 I,
1 0) X+s
:X 1_)\DgD (X)+4)\DqD(X!S) s ’ (53)
with
where
D
gl]z J dl s 1| 1+x  142x+2s JI+x+s+4/s
D x,8)==|In n
2 (2m) e 2|7 X 2\s(1+x+s) l+x+s—ys
1 X+s
% - X+s+1s
{(1+p/2)2+ (m+e)2H(1 - p/2)2+ (m+e)2) Vixts)fsin-r—=—7| (54
2
—<|2—pZ +(m+g)? 1 1 1
x,8)= | dt tan 1
L P K U fo Krs1—1)  xrs1-1)
-1 -7 —(m+e)
1 J1+x+s+4s
- n (55)
. 2VJs(1+x+s) | J1+x+s—ys
Writing
with
2 p> (I+p2)*+(1—-p/2)*> p? 02 1
4 2 2 Sfm, Ossgz, (56)
then

and\ given by Eq.(42).
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FIG. 1. g5(x) (solid line) andg$?(x) (dotted ling are plotted withe set at 0.05left) and 0.1(right). x=(m+&)?/A? ande=&/A. Note
that g{?(x) is positive butg{(x) is negative everywhere.

It should be noticed that in Eq44) the I's part of 1A Qs(x,8)=In[1— X395 (X) + 4\ 3(x+5)q3(X,8)]
+1I1I,, the (inversg propagator of pions, vanishes when
e—0 and s—0; that is, pions are the massless Nambu- +21IM 1230 (X) + 4N 38 05(x,5)],  (59)

Goldstone particles). The quantitye, therefore, plays the
role of an infrared cutoff.

The one-loop part of the gap equation is derived from ao give
restricted(one-loop effective potential obtained by putting
3,.=0in Eq. (44),

1 AP 1/4 V. 1 AP 14 dQp(X,s
Vils 0= 5y 7] ds sP~22Q,(x,s) — - f ds D-2)12 Qo(x,9)
= 2N zPr(pr2) Jo IX |y _gs=0 2N #P2r(D/2) Jo IxX
+Xx-independent terms, (57) 1 AD

gy'(x), (60

where 2N gP2=17D2P(Dj2)

Qa(%,8)=IN[1=N,4g (X) + AN 4(X+5)q4(X,5)]
+IN[1— A0 (X) +4N,su(x,5)], (58  where

05 s

-0.5 1 05

-1 " " " L x -1 " " " L x
0e? 0.2 04 08 08 1 o€ 0.2 04 08 08 1

FIG. 2. gQ(x) (solid line) andg§" (x) (dotted ling are plotted withe set at 0.05left) and 0.1(right). Note thatg§"(x) has a zero at
x=0.241 (€=0.05) or atx=0.276 (¢=0.1).
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9.5

N=1---
N=5——
e=0.1

05

-1

xr

0 e

L
02

L L N
04 0.6 0.8 1

FIG. 3. The ratio[g{(x)/N1/g5”(x): the left graphs are foe=0.05 and the right for 0.1. The dotted line stands b1 and the
dash-dotted line foN=5. It is recognized that the ratio remains less than unity evéw=at.

0

1/4 —NaQ)+ 4N +(x+s
gal)(x)z_‘lf dss( 494 x 4(da+( )0ax) N

(0)

1-N4g0+ 4N 4(x+9)q,

+4(q4+ (X+5)0sx)

— N4Qip + AN4S Uy
1-Nag0 + 4N 504

€9 +4(\x— €)(x+5)qy

€g'” +4(x— €)sqy

-9 +4s
9\ + 450, ) -

g’ (x)=-2| dsys
0

14 (—)\39(3%2+47\3(q3+(x+ S)03zx)

1/4
=—2<&—e>f0 dsJE(

with

_ 9%
qD,x_ IX .

show the shape af¥)(x) as well asg’(x) for 0<x=(m

e =¢/A, 0.05 and 0.1.

iary fields, therefore, is found to be

1
= Y O+ =gD(x)],
)\D \/;_E gD( ) NgD( )

1—N3g +4N5(x+5)qs

— g5+ 4(0s+ (X+5)Gay)

—N3gly + 4N 3S Oy
11390+ 4N 3505

(64)

(63

whose right hand side diverges @ =€, implying that\p

since we have the current quark maseven in a freex=0

£=0 (e=0) the right hand side reads

+
egs” +4(Vx—e)(x+5)0;

—gQ+4s
g3,x q3,x ) (62)

€9 +4(Vx—€)sqg

1
g5’ (x)+ Ng&“(x))

e=0

whose second term becomes infinjtdote that in Eqs(61)
and(62) qp y is singular atx=0 undere=0.] Thus the sec-
In Egs.(61) and(62), we have replacell by the tree value ond term surpasses the first, causing a breakdown of the loop
(Vx— ) I[Vxg@(x)] in the first terms. In Figs. 1 and 2 we expansion. On the contrary, é#0, the second term is much
smaller in the dangerous regiofx~ e owing to the factor
+e)2/A2<1. We choose two cases for the infrared cutoff VX— € in front of the integrals in Eqg61) and(62).
In Figs. 3 and 4, we plot the ratiosggl)/N)/g(DO) in D
The gap equation, up to the one-loop order of the auxil-=4 and 3, respectively. It is recognized that everNat 1
(dotted ling the loop expansion is legitimate, since the ratio
remains less than unity. It is also shown that the smaldler
becomes the greater the ratio goes. The critical values that
cause the ratio to exceed unity =1 are then found such
thate=0.0326 ax=1 in D=4 ande=0.040 atx=0.0052 in
D=3. The values ok can be set smaller wheX is larger.
Finally we plot the right hand side of the gap equation
=0. As was discussed before, this is physically reasonabléé4) for D=4 and 3 in Figs. 5 and 6. The horizontal line
again stands for the value ®f (m+ £)?/A? and the vertical
theory. In view of Eq.(64), an important role of the current line for 1\p. The solid line is for yxg(x)/(Vx—e),
quark mass: under the loop expansion is recognized: whennamely, the tree oN= case. The dotted and the dash-
dotted lines includeé(1/N) contributions withN=1 and 5,
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(68°/N)/ 6" (68°/N)/ 6"
1 T T T T 1

os5b N=5— 1 05 N=5—

-0.5 RS 1 050 T~

-1 . . . N x -1 . . . N x
o€ 02 04 08 08 1 0é 02 04 08 08 1

FIG. 4. The ratio[ g{"(x)/N1/g{(x): the left graphs are foe=0.05 and the right for 0.1. The dotted line stands o1 and the
dash-dotted line foN=5. It is recognized that the ratio remains less than unity evéw=at.

respectively. We have set=0.05 (left graph$ and e=0.1  fermion mass at zero but it is at the order 100 when
(right graphs. In D=4 magnified figures for &x<0.15are N=1, in order to overcome the infrared divergences and to
shown together with the whole plots as insets. ensure the loop expansion. =4 the dynamical massis

It is seen that for a fixed four-Fermi coupling, , thatis, a monotonically increasing function o at any fixed four-
with respect to dsupposetihorizontal line, the massis a  Fermi coupling constant. But il =3 x is monotonically
monotonically increasing function dfl in D=4, but inD decreasindincreasing in the small(large mass or coupling
=3 the dependence is not so simple because of the zeros iagion. In other words, the dynamical mass shrinks by means
g§(x) (see Figs. 1 and)2x is monotonically decreasing Of quantum effects in the strong coupling regimeBor-3 as
(increasing in the small(large mass or four-Fermi coupling Well as forD=4. In contrast, it swells in the weak coupling
region. Physically speaking, due to quantum effeg®B is  regime inD =3. We have already encountered a similar situ-
restored inD=4 at any coupling: Meanwhile, iD=3 itis  ation inD=3 in Ref.[5]; the dynamical mass is a compli-

restored(enhancegin the strong(weak coupling region. cated function of the magnitude of the background magnetic
fields (MBMFs) under the influence of quantum gluons. In
IV. DISCUSSION the small mass or coupling region, it is a monotonically in-

creasing function of the MBMFs, but a decreasing function
In this paper we have examined the higher orderin the larger mass or coupling region.
(= quantum effect of auxiliary fields on the gap equation in  In this way, we recognize that the auxiliary field method
the NJL model. Contrary to the observation by Kleinert andfor the NJL model can survive with an infrared cutoff. The
Bosschd11], we find that auxiliary fields still play a signifi- power of the auxiliary field method is shown in R¢L0],
cant role for nonvanishing current quark massPions can  using zero- and one-dimensional examples. The case has
still survive” in the NJL model. We cannot set the intrinsic been made, however, only for bosonic models, so that an

1/ 1/
3 T 3

25T 25T

0.1 0.12 0.14 0 & o002 0.04 0.06 0.08 0.1 0.12 0.14

FIG. 5. The right hand side of the gap equationDr-4: the solid line designates the tree ordeMbr o, while the dotted and the
dash-dotted ones include the one-loop effects Withl andN=5, respectivelye is set at 0.05left) and 0.1(right). Graphs with G=x
<0.15 are shown; the insets are the whole shapeg91. x is recognized as a monotonically increasing functiorNafith respect to a
(supposeghorizontal line, namely, a fixed four-Fermi coupling.
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0 1 H 1 L L 1 H 1 L L
ael 02 0241 04 0.6 0.8 1 a¢ 02 0.276 0.4 0.6 0.8 1

FIG. 6. The right hand side of the gap equationDr=3: the solid line designates the tree ordeM\br, while the dotted and the
dash-dotted lines include the one-loop effects witl=1 and N=5, respectively.e is set at 0.05(left) and 0.1 (right). For x
=<0.241(0.276) is a monotonically decreasing functiongffor a fixed coupling, but on the contraryat-0.241 (0.276) it is an increasing
function.

analysis for fermionic models is necessary. The zero- ACKNOWLEDGMENTS
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