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Auxiliary field method in 4- and 3-dimensional Nambu–Jona-Lasinio models
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In order to check the validity of the auxiliary field method in the Nambu–Jona-Lasinio model, the one-loop
~5 quantum! effects of auxiliary fields on the gap equation are considered withN-component fermion models
in four and three dimensions.N is not assumed very large but is regarded as a loop expansion parameter. To
overcome infrared divergences caused by the Nambu-Goldstone bosons, an intrinsic fermion mass is assumed.
It is shown that the loop expansion can be justified by this intrinsic mass whose lower limit is also given. It is
found that due to quantum effects, chiral symmetry breaking~xSB! is restored inD54 andD53 when the
four-Fermi coupling is large. However,xSB is enhanced in a small coupling region inD53.
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I. INTRODUCTION

The Nambu–Jona-Lasinio~NJL! model@1# is, needless to
say, one of the most famous field theoretical models exh
iting dynamical chiral symmetry breaking~xSB! phenomena.
Owing to its simplicity, there have been many studies us
the NJL model: some of the recent trends are those that
with external disturbances such as background gauge fi
@2–5# or curved spacetime@6# in order to explore the detaile
phase structure. Originally, calculations for dynamicalxSB
were done in a self-consistent manner to yield the gap eq
tion @1#, but later it was revealed that results are more ea
obtained in the path integral formulation with the use of
auxiliary @7# or Hubbard-Stratonovich@8# field. The recipe,
which we shall call the auxiliary field method@9#, becomes
exact whenN, the number of degrees of freedom of the orig
nal dynamical fields, goes to infinity. However, the analy
in lower dimensional bosonic models shows that, even iN
51, we can improve the results toward the true value
taking higher orders in the loop expansion@10#. Therefore it
is desirable to incorporate the quantum~5 loop! effects of
auxiliary fields in the gap equation whenN remains finite.

However, there is an obstacle to performing the loop
pansion in terms of auxiliary fields in the NJL model: b
cause of the massless Nambu-Goldstone bosons that occ
the auxiliary fields, infrared divergences are inevitable
higher loop calculations. Kleinert and Bossche pay atten
to this infrared regime and conclude that there is no pion
the NJL model@11#, that is, there is no room for the auxiliar
fields. Their main contribution is, however, a chiral nonline
model@12#, an effective theory, so more rigorous and care
investigations are needed. Indeed some opposition to
conclusion has occurred@13#.

We follow the standard prescription for the effective a
tion formalism by introducing sources coupled to biline
terms of fermions. In order to control the infrared singulari
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we assume an intrinsic mass of fermions, the so called
rent quark mass. We do not care about the renormalizab
so that an ultraviolet cutoff is introduced to define the mod
We make no approximation other than the loop expansio

There have been attempts to considerO(1/N) terms in
four-fermion models: some calculate the effective poten
for the model with discrete chiral symmetry in order
clarify the renormalizability in 4.D.2 @14#; others check
the Nambu-Goldstone theorem or Gell-Mann–Oake
Renner or Goldberger-Treiman relations in the fou
dimensional NJL model1 to show that O(1/N) effects
weaken the quark condensation^q̄q& obtained at the tree
order@15#. However, there seems to have been no attemp
study the higher loop contribution, paying attention to t
infrared regime, to the vacuum condition, and to the g
equation, in terms of the auxiliary field method. In Sec.
we present a general path integral formalism to obtain
effective potential in the NJL model. We work with th
N-component fermion model inD54 and 3 @16#, but as
stated aboveN is merely a loop expansion parameter to
kept finite. Section III deals with the vacuum condition a
then the gap equation up to one-loop order of the auxili
fields. It is concluded that quantum~5 loop! effects restore
xSB in D54 while the situation inD53 is slightly differ-
ent; xSB is restored in the strong coupling regime but e
hanced in the weak coupling regime. We also find the low
limit of the current quark mass to ensure the loop expans
The final section is devoted to discussion.

II. MODEL AND BASIC FORMALISM

In this section, we develop a general formalism in order
clarify our goal. The NJL model with an intrinsic mass« in
three as well as four dimensions is given by

1It is, however, almost trivial to check these relations under
O(1/N) expansion; since it is well known that those are the con
quences of the Ward-Takahashi relations which are persistent in
loop @5O(1/N)# expansion.
©2003 The American Physical Society02-1
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L52c̄~x!~]”1«!c~x!1Lint , ~1!

Lint[
l

2N H $@c̄~x!c~x!#21@c̄~x!ig5c~x!#2%, D54,

$@c̄~x!c~x!#21@c̄~x!ig4c~x!#21@c̄~x!ig5c~x!#2%, D53
,

[
l

2N
@c̄~x!Gc~x!#2, ~2!
n-

as
pi

ra-

nal
with

G5Ga[~1,i G5!, G5[H g5 , D54,

~g4 ,g5!, D53,
~3!

where]”[gm]m , N-component fermion fields have been i
troduced, and thegm’s are 434 matrices, even in three
dimensions,2 satisfying

$gm ,gn%52dmn , m,n51,2,3,4,5.

Explicitly,

gm5S sm 0

0 2sm
D , m51,2,3, g45S 0 1

1 0D ,

g55g1g2g3g45S 0 i1

2 i1 0 D . ~4!

The intrinsic mass«, the so called current quark mass, h
been assumed to prevent an infrared divergence in the
loop integrals.~See the following.!

The quantity we should consider is

Z@J#[Tr TS expF2E
0

T

dt H~ t !G D , ~5!

H~ t !5E dD21xF c̄~x!@g"“1«2J~x!•G#

3c~x!2Lint2
N

2l
J2~x!G , ~6!

J~x!5Ja~x![H „J~x!,J5~x!…, D54,

„J~x!,J4~x!,J5~x!…, D53,
~7!

2In three dimensions, we need an additional~N-component! fer-
mion to form the four-component spinor@16,4#

c5Sc1

c2
D, c̄[c†g3[~c̄1 2c̄2![~c1

†s3 2c2
†s3!,

to be able to realize the chiral symmetry~when«50!,

c~x!→eiag4c~x!, c~x!→eibg5c~x!,
which is, therefore, a globalU(2) symmetry, finally broken down
to U(1)3U(1) by the mass term.
06500
on

where theJ(x)’s arec-number sources andT designates the
~imaginary! time-ordered product.~We have introduced the
J2 term just for later notational simplicity@14#.! From this
we can extract the energy of the ground state by puttingJ°0
as well asT°`. The path integral representation reads

Z@J#5E d@c#d@c̄#expS E dDxF2c̄~]”1«2J"G!c

1
l

2N
~ c̄Gc!21

N

2l
J2G D . ~8!

Introducing auxiliary fields in terms of the Gaussian integ
tion

15E d@S#expF2
N

2l E dDxS S~x!1
l

N
c̄~x!Gc~x! D 2G ,

~9!

S~x!5Sa~x![H „s~x!,p~x!…, D54,

„s~x!,p1~x!,p2~x!…, D53,
~10!

to eliminate the four-Fermi interaction, we find

Z@J#5E d@c#d@c̄#d@S#expS E dDxF2
N

2l
S2

2c̄$]”1«1~S2J!•G%c1
N

2l
J2G D . ~11!

The fermion integrations yield

Z5 E d@S#expF2NH E dDx
1

2l
~S22J2!2Tr ln$]”1«

1~S2J!•G%J G
5

S→S1JE d@S#exp~2NI@S,J# ! ~12!

with

I @S,J#[E dDxS 1

2l
S21

1

l
S"JD2Tr ln~]”1«1S"G!,

~13!

where Tr designates the spinorial as well as the functio
trace. Writing

Z@J#[e2NW@J#, ~14!
2-2
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and introducing the ‘‘classical’’ fields

1

l
f[

dW

dJ
5

Eq. ~12! 1

l
^S& 5

Eq. ~8!

2
1

N
^c̄Gc&2

1

l
J, ~15!

with the expectation values being taken under the expres
~12! or under the original one~8!, we perform a Legendre
transformation with respect toW@J# to obtain the effective
action

G@f#5W@J#2
1

l
~J"f!, ~16!

where the shorthand notation,

~A•B![E dDx A~x!B~x! ~17!

has been employed. When theJ’s are set to be constants, th
effective action becomes the effective potential

G@f# ⇒
J°const

VTV~f!, ~18!

with V being the (D21)-dimensional volume.
We calculateW@J# with the help of the saddle poin

method.3 First, we find the classical solutionS0 ,

05
dI

dS~x!
U

S0

5
1

l
~S01J!~x!2tr GS~x,x:S0!, ~19!

where S(x,y:S0) is a fermion propagator under the bac
ground fields

@]”1«1S0~x!•G#S~x,y:S0!5d~x2y!. ~20!

Second, we expandI aroundS0 :

I 5I 01
1

2
@ I0

~2!
•~S2S0!2#1

1

3!
@ I0

~3!
•~S2S0!3#1¯,

~21!

where

I0
~n![

dnI

dSnU
S0

, ~22!

~ I0
~n!"Sn![E dDx1¯dDxn

dnI

dSa1~x1!¯dSan~xn!

3Sa1~x1!¯San~xn!. ~23!

Third, we put (S2S0)°S/AN and then perform the Gauss
ian integration with respect toS to obtain

3The result becomes exact whenN goes to infinity, which, how-
ever, is not the case in this analysis:N is a mere expansion param
eter that is finally put to unity.
06500
on

W@J#5I 01
1

2N
Tr ln I0

~2!1OS 1

N2D , ~24!

where

I 05
1

2l
~S0"S0!1

1

l
~S0"J!2Tr ln~]”1«1S0"G!,

~25!

~ I0
~2!!ab5

d2I

dSa~x!dSb~y!
U

S0

5
1

l
d~x2y!dab1tr GaS~x,y:S0!GbS~y,x:S0!.

~26!

Here the trace is taken only for the spinor space.I0
(2) is a

matrix in theS space~232 in D54, 333 in D53). I 0 is the
‘‘tree’’ part while Tr ln I0

(2) is the ‘‘one-loop’’ part of the aux-
iliary fields. Using Eq.~15! we find

f~x!5S0~x!1
l

2N

d

dJ~x!
~Tr ln I0

~2!![S0~x!1
S1~x!

N
.

~27!

Note that the difference betweenf and S0 is O(1/N). In-
serting Eq.~27! into the effective action~16! with the use of
Eqs.~24!, ~25!, and~26!, we obtain

G@f#5
1

2l
~f"f!2Tr ln~]”1«1f"G!

1
1

2N
Tr lnS I

l
d~x2y!1tr GS~x,y:f!GS~y,x:f! D

1OS 1

N2D . ~28!

By setting theJ’s constant, the effective potential~18! reads

V~f!5
1

2l
f22

1

VT
Tr ln~]”1«1f"G!1

1

2NVT
Tr ln

3S I

l
d~x2y!1trGS~x,y:f!GS~y,x:f! D

1OS 1

N2D . ~29!

In Eq. ~29! the first two terms are the tree part and the th
is the one-loop part of the auxiliary fields, whose function
trace should also be taken for theS space. The vacuum is
chosen by

]V
]f

U
J50

50. ~30!

Armed with these results, we now proceed to a detailed
culation.
2-3
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III. VACUUM AND THE GAP EQUATION

We write the ‘‘classical’’ fields atJ50 as

f5~m,Sp!, Sp[H p, D54,

~p1 ,p2!, D53,
~31!

and
f̃[~m1«,Sp! ~32!

to study the vacuum condition~30! on the tree part of the
effective potential~29!,

V05
1

2l
~m21Sp

2 !2
1

VT
Tr ln~]”1f̃"G!

5
1

2l
~m21Sp

2 !2
tr I

2 E dDp

~2p!D
ln~p21f̃2!, ~33!

giving

]V0

]m
505

m

l
24~m1«!E dDp

~2p!D

1

p21f̃2
, ~34!

]V0

]Sp
505

Sp

l
24SpE dDp

~2p!D

1

p21f̃2
. ~35!

~Recall that trI54 for bothD54 andD53.) Therefore the
solution is

Sp50, ~36!

m

l
54~m1«!E dDp

~2p!D

1

p21~m1«!2
, ~37!

where the second relation, called the gap equation at the
order, reads
06500
ee

1

lD
5

Ax

Ax2e
gD

~0!~x!, ~38!

where

e[
«

L
, x[

~m1«!2

L2
~e2<x<1!, ~39!

g4
~0!~x![12x lnS 11x

x D , ~40!

g3
~0!~x![2F12Ax tan21

1

Ax
G , ~41!

and

lD[
lLD22

4D/221pD/2G~D/2!
, ~42!

with G(D/2) being the gamma functionG~2!51, G(3/2)
5Ap/2. In view of Eq.~38!,

l 5
Ax°e

O~Ax2e!, ~43!

which implies the trivial fact that the mass is« even in the
free theoryl50.

The one-loop partV1 of the effective potential~29! reads

V15
1

2N
tr E dDp

~2p!D
lnS I

l
1P~p! D , ~44!

where tr should be taken for the spinorial space as well as
S. In Eq. ~44! the argument of the logarithm is nothing but
two-point function of the auxiliary fields; therefore, we ca
P the vacuum polarization matrix,
Pab~p![E dDl

~2p!D
trS 1

i ~ ł 1p” /2!1f̃"G
Ga

1

i ~ ł 1p” /2!1f̃"G
GbD

54E dDl

~2p!D

1

@~ l 1p/2!21f̃2#@~ l 2p/2!21f̃2#

3

¦

S 2S l 22
p2

4 D1~m1«!22p2 2~m1«!p

2~m1«!p 2S l 22
p2

4 D2~m1«!21p2
D , D54,

S 2S l 22
p2

4 D1~m1«!22Sp
2 2~m1«!p1 2~m1«!p2

2~m1«!p1 2S l 22
p2

4 D2~m1«!21p1
22p2

2 2p1p2

2~m1«!p2 2p1p2 2S l 22
p2

4 D2~m1«!22p1
21p2

2

D , D53.

~45!
2-4
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By noting that

trF S I

l
1PD 21

•

]P

]~Sp!aG5~Sp!a~¯ ! ~46!

and the tree relation~35!, the vacuum condition forSp up to
one loop is

]V
]Sp

U
J50

5SpS 1

l
1¯ D ~47!

with V5V01V1 , allowing us to chooseSp50 as the
vacuum. Also, in the one-loop part of the gap equation,

]V1

]mU
J50,Sp50

~48!

we can utilize the tree result~37!.
Therefore in the gap equation we putSp50 in the expres-

sion ~45! to find the diagonal matrix

PuSp5055 S P1 0

0 P2
D , D54,

S P1 0 0

0 P2 0

0 0 P2

D , D53,

~49!

with

P1

P2
J [4E dDl

~2p!D

3
1

$~ l 1p/2!21~m1«!2%$~ l 2p/2!21~m1«!2%

3H 2S l 22
p2

4 D1~m1«!2

2S l 22
p2

4 D2~m1«!2
. ~50!

Writing

l 22
p2

4
5

~ l 1p/2!21~ l 2p/2!2

2
2

p2

2
,

then
06500
P1

P2
J 522F E dDl

~2p!D

1

~ l 1p/2!21~m1«!2

1E dDl

~2p!D

1

~ l 2p/2!21~m1«!2G18E dDl

~2p!D

3

H ~m1«!21p2/4
p2/4

$~ l 1p/2!21~m1«!2%$~ l 2p/2!21~m1«!2%
.

~51!

Shifting the momentum~although we are in a cutoff world!,
we obtain

P1

P2
J 524E dDl

~2p!D

1

l 21~m1«!2

18E
21/2

1/2

dtE dDl

~2p!D

H ~m1«!21p2/4
p2/4

@ l 21p2~1/42t2!1~m1«!2#2
.

~52!

Using the tree result for the gap equation~37!, we obtain

1

l
1 HP1

P2
5

1

l
24E dDl

~2p!D

1

l 21~m1«!2
18E

21/2

1/2

dt

3E dDl

~2p!D

H ~m1«!21p2/4
p2/4

@ l 21p2~1/42t2!1~m1«!2#2

5
1

l
S 12lDgD

~0!~x!14lDqD~x,s!H x1s
s D , ~53!

where

q4~x,s![
1

2 F ln
11x

x
1

112x12s

2As~11x1s!
ln

A11x1s1As

A11x1s2As

2A~x1s!/s ln
Ax1s1As

Ax1s2As
G , ~54!

q3~x,s![E
0

1

dt
1

Ax1s~12t2!
tan21

1

Ax1s~12t2!

2
1

2As~11x1s!
lnS A11x1s1As

A11x1s2As
D ~55!

with

s[
p2

4L2
, 0<s<

1

4
, ~56!

andlD given by Eq.~42!.
2-5
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FIG. 1. g4
(0)(x) ~solid line! andg4

(1)(x) ~dotted line! are plotted withe set at 0.05~left! and 0.1~right!. x[(m1«)2/L2 ande[«/L. Note
that g4

(0)(x) is positive butg4
(1)(x) is negative everywhere.
n
u

g

It should be noticed that in Eq.~44! the G5 part of 1/l
1P2 , the ~inverse! propagator of pions, vanishes whe
e°0 and s°0; that is, pions are the massless Namb
Goldstone particle~s!. The quantitye, therefore, plays the
role of an infrared cutoff.

The one-loop part of the gap equation is derived from
restricted~one-loop! effective potential obtained by puttin
Sp50 in Eq. ~44!,

V1uSp505
1

2N

LD

pD/2G~D/2!
E

0

1/4

ds s~D22!/2QD~x,s!

1x-independent terms, ~57!

where

Q4~x,s![ ln@12l4g4
~0!~x!14l4~x1s!q4~x,s!#

1 ln@12l4g4
~0!~x!14l4sq4~x,s!#, ~58!
06500
-

a

Q3~x,s![ ln@12l3g3
~0!~x!14l3~x1s!q3~x,s!#

12 ln@12l3g3
~0!~x!14l3sq3~x,s!#, ~59!

to give

]V1

]x U
(p50,J50

5
1

2N

LD

pD/2G~D/2!
E

0

1/4

ds s~D22!/2
]QD~x,s!

]x

[2
1

2N

LD

4D/221pD/2G~D/2!
gD

~1!~x!, ~60!

where
FIG. 2. g3
(0)(x) ~solid line! andg3

(1)(x) ~dotted line! are plotted withe set at 0.05~left! and 0.1~right!. Note thatg3
(1)(x) has a zero at

x50.241 (e50.05) or atx50.276 (e50.1).
2-6
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g4
~1!~x![24E

0

1/4

ds sS 2l4g4,x
~0!14l4~q41~x1s!q4,x!

12l4g4
~0!14l4~x1s!q4

1
2l4g4,x

~0!14l4sq4,x

12l4g4
~0!14l4sq4

D
524~Ax2e!E

0

1/4

ds sS 2g4,x
~0!14~q41~x1s!q4,x!

eg4
~0!14~Ax2e!~x1s!q4

1
2g4,x

~0!14sq4,x

eg4
~0!14~Ax2e!sq4

D , ~61!

g3
~1!~x![22E

0

1/4

dsAsS 2l3g3,x
~0!14l3~q31~x1s!q3,x!

12l3g3
~0!14l3~x1s!q3

12
2l3g3,x

~0!14l3sq3,x

12l3g3
~0!14l3sq3

D
522~Ax2e!E

0

1/4

dsAsS 2g3,x
~0!14~q31~x1s!q3,x!

eg3
~0!14~Ax2e!~x1s!q3

12
2g3,x

~0!14sq3,x

eg3
~0!14~Ax2e!sq3

D ~62!

FIG. 3. The ratio@g4
(1)(x)/N#/g4

(0)(x): the left graphs are fore50.05 and the right for 0.1. The dotted line stands forN51 and the
dash-dotted line forN55. It is recognized that the ratio remains less than unity even atN51.
e

of

xi

b

t
en

loop
h

tio
r
that

on
e

h-
with

qD,x[
]qD

]x
. ~63!

In Eqs.~61! and~62!, we have replacedlD by the tree value
(Ax2e)/@AxgD

(0)(x)# in the first terms. In Figs. 1 and 2 w
show the shape ofgD

(0)(x) as well asgD
(1)(x) for 0<x[(m

1«)2/L2<1. We choose two cases for the infrared cut
e [«/L, 0.05 and 0.1.

The gap equation, up to the one-loop order of the au
iary fields, therefore, is found to be

1

lD
5

Ax

Ax2e
S gD

~0!~x!1
1

N
gD

~1!~x! D , ~64!

whose right hand side diverges atAx5e, implying thatlD
50. As was discussed before, this is physically reasona
since we have the current quark mass« even in a freel50
theory. In view of Eq.~64!, an important role of the curren
quark mass« under the loop expansion is recognized: wh
«50 ~e50! the right hand side reads
06500
f

l-

le

S gD
~0!~x!1

1

N
gD

~1!~x! D U
e50

,

whose second term becomes infinite.@Note that in Eqs.~61!
and ~62! qD,x is singular atx50 undere50.# Thus the sec-
ond term surpasses the first, causing a breakdown of the
expansion. On the contrary, ifeÞ0, the second term is muc
smaller in the dangerous regionAx;e owing to the factor
Ax2e in front of the integrals in Eqs.~61! and ~62!.

In Figs. 3 and 4, we plot the ratios (gD
(1)/N)/gD

(0) in D
54 and 3, respectively. It is recognized that even atN51
~dotted line! the loop expansion is legitimate, since the ra
remains less than unity. It is also shown that the smallee
becomes the greater the ratio goes. The critical values
cause the ratio to exceed unity atN51 are then found such
thate50.0326 atx51 in D54 ande50.040 atx50.0052 in
D53. The values ofe can be set smaller whenN is larger.

Finally we plot the right hand side of the gap equati
~64! for D54 and 3 in Figs. 5 and 6. The horizontal lin
again stands for the value ofx5(m1«)2/L2 and the vertical
line for 1/lD . The solid line is forAxgD

(0)(x)/(Ax2e),
namely, the tree orN5` case. The dotted and the das
dotted lines includeO(1/N) contributions withN51 and 5,
2-7
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FIG. 4. The ratio@g3
(1)(x)/N#/g3

(0)(x): the left graphs are fore50.05 and the right for 0.1. The dotted line stands forN51 and the
dash-dotted line forN55. It is recognized that the ratio remains less than unity even atN51.
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respectively. We have sete50.05 ~left graphs! and e50.1
~right graphs!. In D54 magnified figures for 0<x,0.15 are
shown together with the whole plots as insets.

It is seen that for a fixed four-Fermi couplinglD , that is,
with respect to a~supposed! horizontal line, the massx is a
monotonically increasing function ofN in D54, but in D
53 the dependence is not so simple because of the zer
g3

(1)(x) ~see Figs. 1 and 2!; x is monotonically decreasing
~increasing! in the small~large! mass or four-Fermi coupling
region. Physically speaking, due to quantum effects,xSB is
restored inD54 at any coupling: Meanwhile, inD53 it is
restored~enhanced! in the strong~weak! coupling region.

IV. DISCUSSION

In this paper we have examined the higher ord
~5 quantum! effect of auxiliary fields on the gap equation
the NJL model. Contrary to the observation by Kleinert a
Bossche@11#, we find that auxiliary fields still play a signifi
cant role for nonvanishing current quark mass«. ‘‘Pions can
still survive’’ in the NJL model. We cannot set the intrins
06500
in

r

d

fermion mass at zero but it is at the order ofL/100 when
N51, in order to overcome the infrared divergences and
ensure the loop expansion. InD54 the dynamical massx is
a monotonically increasing function ofN at any fixed four-
Fermi coupling constant. But inD53 x is monotonically
decreasing~increasing! in the small~large! mass or coupling
region. In other words, the dynamical mass shrinks by me
of quantum effects in the strong coupling regime forD53 as
well as forD54. In contrast, it swells in the weak couplin
regime inD53. We have already encountered a similar si
ation in D53 in Ref. @5#; the dynamical mass is a compl
cated function of the magnitude of the background magn
fields ~MBMFs! under the influence of quantum gluons.
the small mass or coupling region, it is a monotonically
creasing function of the MBMFs, but a decreasing functi
in the larger mass or coupling region.

In this way, we recognize that the auxiliary field metho
for the NJL model can survive with an infrared cutoff. Th
power of the auxiliary field method is shown in Ref.@10#,
using zero- and one-dimensional examples. The case
been made, however, only for bosonic models, so that
FIG. 5. The right hand side of the gap equation inD54: the solid line designates the tree order orN5`, while the dotted and the
dash-dotted ones include the one-loop effects withN51 andN55, respectively.e is set at 0.05~left! and 0.1~right!. Graphs with 0<x
,0.15 are shown; the insets are the whole shapes 0<x<1. x is recognized as a monotonically increasing function ofN with respect to a
~supposed! horizontal line, namely, a fixed four-Fermi coupling.
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FIG. 6. The right hand side of the gap equation inD53: the solid line designates the tree order orN5`, while the dotted and the
dash-dotted lines include the one-loop effects withN51 and N55, respectively.e is set at 0.05~left! and 0.1 ~right!. For x
<0.241 (0.276)x is a monotonically decreasing function ofN for a fixed coupling, but on the contrary atx.0.241 (0.276) it is an increasing
function.
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analysis for fermionic models is necessary. The ze
dimensional fermionic model, the Grassmann integrat
model, is studied to fulfill our expectation that inclusion
higher-loop effects of auxiliary fields will make the resu
much better@17#. The one-dimensional, quantum mechani
case is now under study.
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