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Regularization of brane induced gravity

Marko Kolanovic,* Massimo Porrati,† and Jan-Willem Rombouts‡
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We study the regularization of theories of ‘‘brane induced’’ gravity in codimensionN.1. The brane can be
interpreted as a thin dielectric with a large dielectric constant, embedded in a higher dimensional space. The
kinetic term for the higher dimensional graviton is enhanced over the brane. A four dimensional gravitation is
found on the brane at distances smaller than a critical distancer ,r c , and is due to the exchange of a massive
resonant graviton. The crossover scaler c is determined by the mass of the resonance. The suppression of the
couplings of light Kaluza-Klein modes to brane matter results in a higher dimensional force law at large
distances. We show that the resulting theory is free of ghosts or tachyons.
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I. INTRODUCTION

Brane world theories with large or infinite extra dime
sions provide insight into a number of problems of high e
ergy physics, cosmology, and the possible relations betw
them@1–5#. Those models may ultimately emerge as part
a fundamental higher dimensional theory such as st
theory.1

The idea that our Universe may have infinite extra dim
sions was rejected for a long time as being incompatible w
the observed 4D nature of gravity. Since gravity probes
dimensions, the force between objects localized on a
11)-dimensional hypersurface would be higher dime
sional. Nevertheless, it was pointed out in@1# that, in the
presence of a brane in 5D space, the ordinary 5D actio
gravity is modified by a 4D Einstein-Hilbert action on th
brane. This term is compatible with all the symmetries of
theory and, therefore, can be generated by quantum co
tions. This model, also known as the DGP~Dvali-
Gabadadze-Porrati! model, is an example of a theory o
‘‘brane induced gravity.’’ There, gravity is 4D below a ce
tain scaler c , ranging from galactic to horizon size. On
major problem of this scenario, related to the existence
1/r c

2 singularities in off-shell trilinear interactions of longitu
dinal gravitons@7#, was pointed out in@8# ~see also@9#!.
There, it was shown that radiative corrections to the D
model become uncontrollably large at a very low ene
scale (LPlr c

2)21/3. This scale is essentially a cutoff beyon
which the DGP model needs a UV completion. A simil
problem should arise also in codimensions greater than 1
analogy with the UV behavior of massive gravity@10#. We
will not address this problem in this paper, but we will co
centrate on another, simpler one; namely, the proper de
tion and regularization of induced gravity in codimensi
N.1.

*Email address: mk679@nyu.edu
†Email address: mp9@SCIRES.ACF.nyu.edu
‡Email address: jwr218@nyu.edu
1A first attempt toward realizing them in string theory was pr

posed in@6#.
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Setting aside the strong-coupling problem just mention
here, brane induced gravity in five dimensions is compati
with all present measurement and observations@2# and al-
lows the scale of 5D quantum gravityM* to be as low as
1023 eV @3#. Choosingr c to be the horizon radius,M* is
instead 108 eV. In higher codimensions,M* depends on the
UV regularization scale, i.e., on the thickness of the brane
is natural to choose this thickness to beO(1/M* ); in this
caseM* becomesO(1023 eV).

The investigation of brane induced gravity in a space w
more than one infinite extra dimension is interesting beca
that framework may provide a solution to the cosmologi
constant problem@5,11#.

Brane induced gravity in space withN transverse dimen-
sions is described by the action

S5M
*
21NE d4xdNYAGR41N

1M P
2E d4xdNYdN~Y!AgR4 , ~1!

whereYi , i 51, . . . ,N, are the coordinates of theN infinite
extra dimensions, and the brane is taken to be infinitesim
thin and located at the origin.R41N is the (41N)D curva-
ture, GMN is the (41N)D metric, andR4 is the 4D curva-
ture constructed from the induced metric on the branegmn

[GMN(y50)dm
Mdn

N . The philosophy behind brane induce
gravity is that there are two scales in the theory, a scale
bulk gravityM* , and a much higher scaleM P , which char-
acterizes the physics on the brane, i.e., the standard m
and possible extensions like supersymmetry and grand
fied theories. In order to obtain the correct value of Newto
constant,M P is taken to be;1019 GeV.

Calculating the Green’s function and Kaluza-Klein~KK !
spectrum of Eq.~1! for the caseN51 is straightforward. The
task is less clear forN.1 due to singularities that appea
because of the zero thickness of the brane, and the resu
singularities in the Green’s functions forN.1 @12#.

In this paper we study a simple regularization of the a
tion Eq. ~1!. We propose to consider an action fo
(41N)-dimensional gravity, reminiscent of the action for
dielectric in electrodynamics:
©2003 The American Physical Society18-1
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S

M
*
21N

5eE
r,D

d41NxAG41NR41N

1E
r.D

d41NxAG41NR41N , ~2!

with e a large dimensionless quantity~to be defined more
precisely in the text!, r the radial coordinate in theN trans-
verse dimensions, andD the width of the brane.

The brane in this theory is a thin ‘‘gravitational’’ dielec
tric. We will prove that, at distances smaller than a cert
critical scaler c and forN.1, the gravitational interaction is
mediated by a massive resonant graviton, whereas at la
distances one rediscovers (41N)-dimensional gravitation.

We will also investigate smooth versions of this scena
This is achieved by taking a varying ‘‘dielectric constant.’’
scalar action of this kind was considered in@13#, where it
was pointed out that this kind of action can be realized ph
cally in a dilaton gravity theory.

We thus consider the action of@13# generalized to arbi-
trary codimensions:

S

M
*
21N

5E d4xdNYAG@11eF~r/D!#R41N , ~3!

whereF(r/D) is the shape of the brane, which we take
depend only on the radial coordinater of the N transverse
dimensions. Again,D is the width of the brane ande is a
large, dimensionless parameter. The action Eq.~2! is ob-
tained from Eq.~3! by choosing for the profile the step func
tion F5u(r2D).

The action Eq.~3! describes a smooth three-brane in
(41N)-dimensional space. We will show that for suffi
ciently large values ofe, the effect of this brane ‘‘dielectric’’
constant is to convert the higher dimensional laws of grav
to four-dimensional laws at short distances.

On physical grounds one does not expect that the in
duction of a ‘‘medium’’~i.e., a brane! into the higher dimen-
sional vacuum will result in the appearance of ghosts or
chyons and make the theory inconsistent. We will explici
show this for the model~2!. A brane with smoothly changing
permeabilityeF can be thought of as a sequence of sm
regions of constante, and hence the proof should also ho
for smoothF.

The action Eq.~3! may provide a physical realization o
Eq. ~2!. One can think of it as gravity coupled to a scalar th
gets a nonconstant vacuum expectation value, in the form
a topological defect~domain wall, string, monopole, etc.!.

This paper is organized as follows. In the first section
consider the scalar equivalent of the action Eq.~2!. We ana-
lytically calculate the scalar field resonances and show
they lead to the crossover distance between four-dimensi
and higher dimensional behavior for the force they media
We do that by studying the KK modes of the fields and pro
that their coupling to the ‘‘dielectric’’ is determined by the
wave function on the brane, for an appropriately chos
source. We will see that, generically, the coupling of hea
modes is strongly suppressed on the brane, and that the
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pling of the modes is sharply peaked around a valuemg that
is the mass of the effective four-dimensional scalar ‘‘gra
ton.’’

Next, we take a specific choice of a smooth brane and
that even there the scalar ‘‘graviton’’ is a massive resonan
Numerical results show that the behavior is the same as
the sharp-boundary dielectric. This shows that the regular
tion considered here is really shape independent.

In Sec. IV, we investigate the tensor structure of our re
larized theory. We show that in the model~2! the four-
dimensionalmassivegraviton propagates with the correct d
grees of freedom—i.e., the mass term generated in
theory has the Pauli-Fierz form. There are no ghost or tac
ons propagating in our system, unlike in the regularizat
proposed in@14#.

Section V summarizes the findings of this paper.
As we previously mentioned, it was pointed out in@8# and

@9# that the DGP theory suffers from strong-coupling pro
lems, as is typical for theories with massive gravitons@10#.
Our regularization, of course, does not cure that problem

II. A DIELECTRIC BRANE WITH A SHARP BOUNDARY

We start by looking at a model in which we imagine a th
‘‘dielectric’’ with a sharp boundary and dielectric consta
e@1 centered around the origin of the transver
N-dimensional space. The results are easily generalize
smooth branes~smooth variation of the ‘‘dielectric’’ con-
stant! by assuming thate changes in small steps. We a
interested in whether this system exhibits a four-dimensio
behavior in a certain region of distance~or energy! scales.

Let us analyze this system first for the simplest case
scalar field. Consider the following action (M50, . . . ,3
1N):

S

M
*
21N

5eE
r,D

d41Nx~]MF!21E
r.D

d41Nx~]MF!2,

~4!

where we define the dimensionless quantitye as follows:

eDN5M P
2 /M

*
21N , ~5!

a definition guaranteeing that in the limitD→0, eDN

5const, we approach the delta function limit.r is the radial
coordinate in the extraN-dimensional space. To find a solu
tion to this system, we solve the equation of motion in t
two different regions, and impose the matching conditions
the boundary of the sphere. One obtains

hF I50, r,D, ~6!

hFo50, r.D, ~7!

and the boundary condition

F I5Four5D ,

e]rF I5]rFour5D . ~8!
8-2
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REGULARIZATION OF BRANE INDUCED GRAVITY PHYSICAL REVIEW D68, 064018 ~2003!
If we decompose the field into Kaluza-Klein mode
F(x,Y)5(sm(x)fm(Y), h4sm5m2sm, the equations of
motion and the boundary condition on the sphere reduc
equations for each one of the modes:

e]rfm
I 5]rfm

o ur5D,

hNfm52m2fm. ~9!

We must make some important remarks at this point. We
interested in the coupling of the KK modes to the matter
the brane, which is given by the convolution of the wa
function and the matter profileC(y):

F̃m~0!5E
r,D

d41NYC~Y!Fm~Y!. ~10!

Now we can assume that the profile of the matter fields
spherically symmetric in the extra dimensions,C(Y)
5C(r). We can take it that the standard model matter
given by the zero modes of some fields with a characteri
scaleMSM@M* . These zero modes have spherically sy
metric profiles in theN transverse dimensions. The excite
states with nonzero angular momentuml have masses tha
are naturally of orderMSM , so that they decouple from low
energy physics. That is why we can assume that only
modes with l 50 couple to the ‘‘spherically’’ symmetric
brane matter. When calculating the tree level exchange,
are taking into account only a single tower of radial K
excitations.

Since we can assume that the matter profiles are sha
peaked around the origin, the coupling of the KK modes
approximately given byfm(0).

We look at the case of codimension 1 first. The DG
model is perfectly regular forN51, so we expect to dis
cover the same results as obtained in@1#. The general solu-
tion to the 5D equations of motion is~using plane wave
normalization!

fm
I 5Am cos~mr!, ~11!

fm
o 5cos~mr1wm!. ~12!

The odd modes do not couple significantly to matter loca
on the brane, as explained in the previous paragraph
straightforward calculation yields the following equation f
wm:

e tan~mD!5tan~mD1wm!. ~13!

On the other hand,Am is given by

Am cos~mD!5cos~mD1wm!. ~14!

Since we are interested in four-dimensional distances la
than the width of the brane, modes heavier than 1/D de-
couple. Later we will assume thatD;1/M* . SinceM* is
the cutoff of the effective field theory for the bulk gravity, w
take mD!1. Then we can approximate tan(mD)'mD, so
we find for Am
06401
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Am'
1

A11~emD!2
. ~15!

Using the definition ofe ~5!, we see thate5r c /D, where
r c5M P

2 /M
*
3 . As explained above, the coupling of th

Kaluza-Klein mode of massm to the brane matter is given b

ufm~r50!u2'
1

11~mrc!
2

. ~16!

We see that we get a resonance, and that form@r c
21 the

coupling is strongly suppressed. The result is independen
the shape of the brane@13# and it is exactly what is found in
the DGP model@1#, as we anticipated. In Ref.@1# it was
explained how this resonance leads to a 1/r potential for r
,r c and to a 1/r 2 potential forr .r c .

Now consider for instance the case of codimensionN
53. The theory with a delta function type brane is known
have singular behavior in this case. Let us apply our regu
ization prescription to this case. We expect a regularizat
(D) dependent result in this case. The solution in the t
regions is

fm
I 5Am

sin~mr!

r
,

fm
o 5

sin~mr1wm!

r
. ~17!

The fm
I solution is determined by asking for regularity atr

50. We keep only thel 50 terms in the expansion in spher
cal harmonics as explained before. The boundary conditi
give the following equations:

Am sin~mD!5sin~mD1wm!, ~18!

e@mD cot~mD!21#5mD cot~mD1wm!21. ~19!

Expanding the cotangent, we get

cot~mD1wm!'
1

mD
2

emD

3
. ~20!

We obtain for the amplitude

Am'
1

A122e~mD!2/31~e2/9!~mD!4
. ~21!

The amplitude squared is a sharply peaked function aro
its maximum, obtained ate(mD)2'3. This gives, using our
definition ofe, mg

2'M
*
5 D/M P

2 . The coupling of the modes
given by the wave function squared, is nowfm(0)2

'm2Am
2 . We must emphasize that the fact thatAm is singu-

lar at its maximum is due to our approximation. Indeed,
denominator receives corrections atO@(mD)2#, which gives
fm(mg)2'1/D2: a finite ande independent result. For KK
modes with mass larger thanmg , the coupling to the brane is
8-3
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heavily suppressed. In this case we find thatmg is D depen-
dent, as we anticipated before.

For D, one might take the natural valueD5M
*
21 , in

which case the crossover distance and the graviton w
become

r c[mg
21;

M P

M
*
2

, Gmg
;

M
*
3

M P
2

. ~22!

This is exactly what is found for the regularized delta fun
tion type brane theory regularized with higher derivative o
erators@12,14#. In Fig. 1 we show the value of the wav
functionfm(0) that is roughly the coupling of KK modes t
the brane matter.

In codimensionN53, the effective 4D ‘‘graviton’’ is a
very narrow resonance. The crossover from 4D to 7D beh
ior does not happen because of graviton ‘‘decay.’’ At lar
distances, the 4D ‘‘graviton’’ simply becomes too heavy
contribute to the tree-level exchange.

At large distancesr @r c we evaluate the potential from
the coupling of light KK modes to brane matter. Their co
pling is suppressed linearlyfm(0);m and the potential is

VNew~r !'E
0

` m2

M
*
5

exp~2mr!

r
dm;

1

M
*
5

1

r 4
, r @r c .

~23!

This is just the 7D potential that appears at distances la
than the crossover distance.

At short distances, the Newtonian potential between t
masses, due to exchange of KK modes,fm , is dominated by
the exchange of the lowest mass resonance. So we ca
proximate our integral by the area of the resonance pe
This gives

VNew~r !'E
mg2Gmg

mg1Gmgufm~0!u2

M
*
5

exp~2mr!

r
dm;

1

M P
2

1

r
,

r !r c . ~24!

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.5

1

1.5

2

2.5

3

0 0.01 0.02 0.03 0.04

0.02

0.04

0.06

0.08

0.1

FIG. 1. Wave functions of KK modes on the brane fore
51000. The scalar ‘‘graviton’’ is a very sharp massive resonan
Inset: light modes are suppressed as;m, giving rise to a 1/r 4

potential at large distances.
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We see that the weak four-dimensional gravity is due to
exchange of a massive resonant ‘‘graviton.’’

III. A SMOOTH DIELECTRIC BRANE

In this section we study the 4D effective field theory of
scalar system in which the kinetic term of a bulk field is n
homogeneous through the extra dimensions. We shall ob
results qualitatively similar to the ones obtained in the p
vious section. As we remarked earlier, a smooth ‘‘dielectr
constant may be achieved in dilaton gravity theories. T
reader not interested in the details of this regularization
skip this section and proceed to Sec. IV, where the sha
boundary approximation is applied to true spin-2 gravity.

The action that describes a scalar in a smoothly vary
‘‘dielectric’’ medium is

L5M
*
21Nf ~Yi !]AF]AF. ~25!

We take the localizing profilef (Yi) to be a spherically sym-
metric function of radial variable inN extra dimensions. For
the system Eq.~3! that we are studying the localizing profil
f is

f ~r/D!511eF~r/D!. ~26!

As before, we are interested in the four-dimensional sp
trum of Eq. ~25!, and we decompose the fieldF into its
Kaluza-Klein modes,

F~xm ,Yi !5(
m

Fm~Yi !sm~xm!, h4sm5m2sm .

~27!

The differential equation for wave functionsFm(Yi) is

f ~r!¹N
2 Fm1¹Nf ~r!¹NFm1 f ~r!m2Fm50. ~28!

Let us look at the Schro¨dinger equation for wave function
Fm for a general profilef (r) in the caseN52. The Laplac-
ian and gradient inN52 have both radial and angular part
so the solutions can be separated asFm(r,u)
5(Fn(r)Qm(u), whereu is the polar angle in the trans
verse plane. The scalar ‘‘graviton’’ couples to matter loca
on the stringlike braneeF(r). We assume, as explained
the previous section, that only the radial KK modes~no an-
gular dependence! of our scalar field couple to matter densi
localized on the solitonC(r)T(x). If we substitute

Fm~r![
1

Ar f ~r!
fm~r!, ~29!

we obtain a Schro¨dinger equation for modesfm ,

2fm9 1F1

2

f 9

f
1

1

2

f 8

f S 1

r
2

f 8

2 f D
2

2
1

4r2Gfm5m2fm .

~30!

The modes are orthogonal, and the normalization integ
are

e.
8-4
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REGULARIZATION OF BRANE INDUCED GRAVITY PHYSICAL REVIEW D68, 064018 ~2003!
E f ~r!FnFmrdr5amdm,n ,

E f ~r!]rFn]rFmrdr

E f ~r!FnFmrdr

5m2. ~31!

The effective 4D action is

L5
1

2
M

*
21N(

m
~]msm]msm2m2sm

2 !

1(
m

F̃m~0!

M
*
2 Aam

smT~x!. ~32!

HereF̃m(0) is the convolution of the wave functionFm(r)
and the matter profileC(r):

F̃m~0!5E rdrC~r!Fm~r!. ~33!

As in the previous section, this represents the coupling
KK graviton modes of massm to brane-localized matter, an
we can approximate their couplings to beF̃m(0)'Fm(0).

Let us illustrate the main properties of the smooth bra
model inN52 transverse dimensions. Consider the follo
ing profile:

F5
exp~2r2/D2!

r/D
. ~34!

This profile multiplied by 1/D2 is a regularization of a delta
function inN52 dimensions. It is instructive to see what th
spectrum is when one neglects the constant 1 in Eq.~26!, and
then treats the problem in some approximation. This
equivalent to taking the limite→`. Taking f 511eF one
finds in Eq.~30! the Schro¨dinger potential

V~r!5~1/D!2@~r/D!221#. ~35!

This is the potential of a simple harmonic oscillator with t
spectrum

mn5A2n/D, n50,2,4, . . . . ~36!

Here n is an even integer, since the wave function and
rivative at the origin must be continuous, and we restric
ourselves to modes with no angular dependence. As a
approximation, we can say that the spectrum of the mode
Eq. ~3! consists of a tower of metastable modes with
masses Eq.~36!. A metastable zero mode~with mass exactly
zero in the e→` limit ! will be responsible for the 1/r
06401
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potential.2 The Schro¨dinger potential resulting from the pro
file ~26! reads

V~r!5~1/D!2
exp~2r2!24e@2r3 exp~r2!1e~211r2!#

4@e1r exp~r2!#2
,

~37!

where r is given in units of the brane thicknessD. This
potential is shown in Fig. 2. The tunneling rate represents
decay width of the resonance and can be calculated in
WKB approximation as

G0;
1

D
expS 22E

y1

y2AVdyD , ~38!

wherey1 ,y2 are the classical turning points. The width of th
potential well is;D. For large values ofe, we are well
within the limit of validity of the WKB approximation,
namely, V8/(2V)3/2!1. The integral in Eq.~38! can be
evaluated numerically. The dependence of the integral one is
G0

N52;1/De0.931 ~shown in a log-log plot in the inset in Fig
2!.

Here, the difference from the expected resultG;1/e is
due to the WKB approximation. Assuming that the width
the zero mode is;1/e, and by knowing that the zero mod
is responsible for the 4D potential on the brane, we can
culate the value of the ‘‘Newton’’ constantG. The square of
the KK graviton coupling to matter~32! multiplied by the
width of the zero mode resonance gives the cumulative ef
of the tree-level exchange of continuum KK modes in t
resonance. The effective 4D Newton constant is thusGN52

;1/M P
2 for two choices of parameters:~1! D;1/M* ande

;(M P /M* )2; ~2! D;1/M P ande;(M P /M* )4.
Four-dimensional interactions between masses on

brane are mediated by the exchange of the zero mode r

2In fact, in the caseN51 @13# this is an exact picture. The meta
stable mode of mass zero has a width;1/e, which results in the
crossover distancer c5M P

2 /M
*
3 between four- and five-dimensiona

gravity.

2 4 6 8 10

0

2

4

6

8

10

12

12 13 14 15 16

5.5

6

6.5

7

FIG. 2. Potential Eq.~37! N52 ~solid line! together with poten-
tial Eq. ~35! ~dashed line!. r is in units ofD, the potentials are in
units of 1/D2, while e510000. The inset shows the log-log plot o
the integral in Eq.~38! vs e.
8-5
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KOLANOVIC, PORRATI, AND ROMBOUTS PHYSICAL REVIEW D68, 064018 ~2003!
nance, of width;1/De. The WKB approximation gives the
value of Newton’s constant; however, it misses most of
features of brane induced gravity inN52 transverse dimen
sions. In particular, it does not predict the transition betwe
the four-dimensional and the higher dimensional regime
it does not give the distance at which this transition happ
~crossover distance!. In the rest of this section, we will stud
the spectrum and the couplings of KK modes in brane
duced gravity. We will see that the graviton resonance ha
finite mass, and that its width is not;1/e. However, the
correct value of the Newton constant is obtained by
change of a massive graviton resonance.

The Schro¨dinger equation can be solved numerically, a
its solution can be used to find the convolution of the K
wave functions with the wave function of localized matt
We will investigate the couplings of different modes in ord
to determine how the transition between four-dimensio
gravity and higher dimensional gravity occurs and what
the crossover distance.

The suppression of the KK graviton couplings to bra
matter is shown in Fig. 3. We notice the peak position
close to zero mass that is responsible for 4D gravity, as w
as higher resonant modes at the positions of harmonic o
lator levels, with massesm52/D,A8/D, etc. Since we are
interested in the large distance behavior, we show a ma
fied picture of a graviton resonance on a log-log scale. T
behavior is as follows: for the mode of mass zero, the c
pling is zero. Then the coupling rises as;Am, with the peak
positioned atmg;1/DAe. To the right of the peak, the cou
pling dies off as;1/m.

We see that the graviton is a massive asymmetric re
nance. The mass and the width of the resonance are

mg;
1

DAe
, Gmg

;
1

DAe
. ~39!

1 2 3 4 5

1

2

3

4

5

6

7

-8 -6 -4 -2 0

-3

-2

-1

0

1

0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

FIG. 3. Dependence of the coupling of a KK mode on its m
for e55000. Peaks are at the location of resonant states of a
monic oscillator with m50,2,A8, . . . . In the inset, a peak i
shown atmg;1/DAe, for e550000 on both normal~left! and log-
log ~right! scale. The ‘‘graviton’’ resonance is asymmetrical. To t
left of the peak, it grows as;Am, giving rise to a 6D potential a
large distances, while to the right it decays as;1/m. The solid lines
have coefficients 0.5 and21, respectively.
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Starting from zero mass, the resonance grows as

fm~0!;Aem. ~40!

Now we can choose two possible sets of values fore and
D in order to reproduce the correct 4D Newton constanD
;1/M* ,e;(M P /M* )2; or D;1/M P ,e;(M P /M* )4.
Both choices give, for the crossover distance~inverse gravi-
ton mass! and the resonance width,

r c
N52[mg

21;
M P

M
*
2

, Gmg
;

M
*
2

M P
. ~41!

In the case ofN52, the graviton mass is roughly the sam
as the resonance width. On the brane, at distancesr @r c , we
can evaluate the ‘‘Newtonian’’ potentialVNew from the cou-
pling given in Eq.~32!, and the shape of the peak’s left ridg
Eq. ~40!. The exchange of modes with massm.1/r contrib-
utes weakly, so one can integrate from zero to infinity. T
coupling of graviton KK modes is proportional to;Am, so
the potential is given by

V~r !'E
0

` m

M
*
4

exp~2mr!

r
dm5

1

M
*
4

1

r 3
, r @M P /M

*
2 .

~42!

This is just the 6D Newton’s potential that appears at d
tances larger than the crossover distance. At short distan
the exchange of a single massive-graviton resonance g
rise to the 4D Newton potential:

V~r !'
1

M P
2

1

r
, r !M P /M

*
2 . ~43!

Here we approximated the area under the square of the c
determining the coupling with twice the area on the left s
of the peak.

IV. THE SPIN-2 CASE

After having studied the scalar theory, in detail we c
proceed with a true gravitational theory. Although the sca
gravity example captures the main features of brane indu
gravity, it is crucial to show that our regularization gives
consistent~4D! spin-2 theory. In particular, we have to sho
that no tachyons or ghosts propagate in our framework
the effective 4D theory, the higher dimensional graviton
represented by four-dimensional spin-2 states and a se
scalars. We should check that the masses given to those fi
are not negative, and that the~massive! graviton propagates
with the right number of degrees of freedom, which is a
sured if the mass term is of the Pauli-Fierz form.

The action to be considered is

s
ar-
8-6
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S

M
*
21N

5eE
r,D

d41NxAG41NR41N

1E
r.D

d41NxAG41NR41N . ~44!

We can do an expansion in KK modes for the gravi
tional field, analogous to the scalar case:

GMN5(
m

GMN
m ~x!fm~Y!. ~45!

The boundary conditions now are the well-known Isra
matching conditions@15#, which give an equation for the
extrinsic curvature of the sphere which divides t
(41N)-dimensional space into two parts:

eKMN
I ~x,Y!5KMN

o ~x,Y!ur5D . ~46!

These equations become particularly simple when we
Gaussian normal coordinates, since then the extrinsic cu
ture is given byKMN5 1

2 ]GMN /]r. One sees that the bound
ary conditions for the KK modes are completely analogo
to the scalar case equations treated in the previous sec
This reduces the spin-2 case essentially to the spin-0 cas
the following equations we split the (41N)-dimensional in-
dicesM ,N, . . . into 4D indicesm50, . . . ,3, andtransverse
indicesi 54, . . . ,31N. gab are the fluctuations of the metri
around the flat background andg5g41gN is the trace of the
fluctuation. The Einstein tensor is denoted byGMN :

Gim5
1

2
]l] igml1

1

2
] j] igm j1

1

2
]l]mg il1

1

2
] j]mg i j

2
1

2
h4g im2

1

2
hNg im2

1

2
]m] ig, ~47!

Gmn5]l] (mgn)l2
1

2
h4gmn2

1

2
]m]n~g41gN!1] i] (mgn) i

2
1

2
hNgmn2

1

2
hmn@]l]rglr2~h41hN!g4#

2
1

2
hmn@] i] jg i j 12] i]mg im2~h41hN!gN#. ~48!

We now perform a shift ongmn :

gmn→gmn1ahmngN . ~49!

After some algebra we get
06401
-

l

se
a-

s
on.
. In

Gmn5]l] (mgn)l2
1

2
h4gmn2

1

2
]m]ng41] i] (mgn) i

2
1

2
hNgmn2

1

2
hmn@]l]rglr2~h41hN!g4#

2
1

2
hmn@] i] jg i j 2~h41hN!gN#1

1

2
ahmnhNgN .

~50!

Now we make the gauge choice

] ign i50, ] i] jg i j 2ahNgN50. ~51!

For a52 1
2 we get the following equation of motion for th

four-dimensional part of the metric:

G mn
4 2

1

2
hNgmn1

1

2
hmnhNg45Tmn . ~52!

We assume that the matter distribution is confined to
brane, so only the 4D part of the energy-momentum tenso
nonzero. If we contract this equation with]m, we get, by
conservation of the matter energy-momentum tensor,
thanks to the Bianchi identities,

hN~]mgmn2]ng4!50. ~53!

This equation gives us a constraint ongmn . Indeed, remem-
bering thathN applied to the fields gives their~nonzero!
masses, we can conclude that

]mgmn2]ng450. ~54!

On the other hand, if we take the trace of Eq.~52!, we get

3

2
hNg45T. ~55!

This means thatg4 is determined ‘‘algebraically’’ by T;g4
5(2/3hN)T. By ‘‘algebraically,’’ we mean that the equatio
for T is local in four dimensions. Next, after a short calcu
tion, the equations of motion forgm i become

1

2
]lFlm

i 1
1

2
hNgm i50, ~56!

whereFmn
i is the field strength of the four-dimensional ve

tors gm i . This equation describesN massive vector fields in
four dimensions.

We are left with the equations of motion of theN2 scalars
g i j . One obtains

h4g i j 1hNg i j 1] i] jg1h i j S 1

2
h4gN1

1

2
hNgN2hNg4D

50. ~57!
8-7
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Observe that the divergence ofGi j is identically zero by vir-
tue of the gauge choice] jg i j 1

1
2 ] igN50.3

Using Eq.~55! we finally obtain

h4S g i j 1
1

2
h i j gND1hNS g i j 1

1

2
h i j gND

5~h i j hN2] i] j !
2

3hN
T. ~58!

Looking at Eqs.~52! and ~58!, we see that all the mas
terms have the correct form, withm252hN . In particular,
the spin-2 mass terms have the Pauli-Fierz form. This is
course what we expect in a generic Kaluza-Klein reduct
@16#. We can thus be sure that in our regularization no gh
propagates.

V. CONCLUSIONS

In this paper we have proposed a well-defined regular
tion scheme for ‘‘brane induced’’ gravity in codimensionN
.1. At its simplest, the scheme replaces an infinitely t
brane with a ‘‘dielectric’’ sphere of radiusD in the transverse
space. This regularization allows for a simple analytic co
putation of the spectrum of massive resonances, and it
counts simply for the tensor structure of gravity. Unlike oth

3As it should be, using global energy-momentum conserva
and remembering that the energy-momentum tensor has only
components.
s

s

in
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regularizations already existing in the literature, ours int
duces neither ghosts nor tachyons. In this respect we m
notice an important point. Our definition of the 4D gravito
involves a shift@see Eq.~49!#, which is the linearized version
of a conformal rescaling. By doing this shift, we couple t
~scalar! internal components of the metric fluctuation to t
trace of the matter stress-energy tensor, even though it
only 4D components. In other words, extra scalar, dilatonl
degrees of freedom couple to matter. This is not a disa
per se, because, even in their absence, linearized mas
gravity propagates an extra spin-zero degree of freedom@17#.
Their presence only worsens the vDVZ discontinuity. In t
regularization of Ref.@14#, instead, when the regularizatio
parameter is removed, one recoversmassless4D gravity.
This is achieved at the price of introducing light ghosts in
the system.

We notice also that in codimensionN51 no extra scalars
propagate, as shown by Eq.~58!.

Finally, our ‘‘sharp’’ regularization can easily be extende
to cover the case of vector fields in 41N dimensions. The
smooth version of our regularization may also be realized
a physical setting by coupling (41N)-dimensional gravity to
a scalar field which admits a soliton solution~kink, etc.!.
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