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Regularization of brane induced gravity
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We study the regularization of theories of “brane induced” gravity in codimenkiofl. The brane can be
interpreted as a thin dielectric with a large dielectric constant, embedded in a higher dimensional space. The
kinetic term for the higher dimensional graviton is enhanced over the brane. A four dimensional gravitation is
found on the brane at distances smaller than a critical distaxicg, and is due to the exchange of a massive
resonant graviton. The crossover scalés determined by the mass of the resonance. The suppression of the
couplings of light Kaluza-Klein modes to brane matter results in a higher dimensional force law at large
distances. We show that the resulting theory is free of ghosts or tachyons.
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[. INTRODUCTION Setting aside the strong-coupling problem just mentioned
here, brane induced gravity in five dimensions is compatible
Brane world theories with large or infinite extra dimen- with all present measurement and observatidtisand al-
sions provide insight into a number of problems of high en-lows the scale of 5D quantum graviy,, to be as low as
ergy physics, cosmology, and the possible relations betweekd ® eV [3]. Choosingr to be the horizon radiusvl,, is
them[1-5]. Those models may ultimately emerge as part ofinstead 18 eV. In higher codimensions, depends on the
a fundamental h|gher dimensional theory such as Strinéjv regularization Scale, i.e., on the thickness of the brane. It
theory* is natural to choose this thickness to ®¢1/M,); in this
The idea that our Universe may have infinite extra dimenaseM,, become<O(10"% eV). o _
sions was rejected for a long time as being incompatible with 1N€ investigation of brane induced gravity in a space with
the observed 4D nature of gravity. Since gravity probes al[°re than one infinite extra d|men3|9n is interesting becquse
dimensions, the force between objects localized on a ( hat framework may provide a solution to the cosmological

+1)-dimensional hypersurface would be higher dimen-cor|'3Stant prgblengs,ll]._t . N t di
sional. Nevertheless, it was pointed out[ih that, in the io n;air;edlgs ;ﬁf e dgt;a\/tlh)(/a '2 c?il())ice Wit transverse dimen-
presence of a brane in 5D space, the ordinary 5D action o? y

gravity is modified by a 4D Einstein-Hilbert action on the

brane. This term is compatible with all the symmetries of the S= M,%*NJ d*xdVY GR,.

theory and, therefore, can be generated by quantum correc-

tions. This model, also known as the DG®vali- 5 4 N <N
Gabadadze-Porratimodel, is an example of a theory of +MPJ d™xd7Y (YY) \/§R4, @
“brane induced gravity.” There, gravity is 4D below a cer-

tain scaler., ranging from galactic to horizon size. One whereY;, i=1,... N, are the coordinates of th¢ infinite

major problem of this scenario, related to the existence oéxtra dimensions, and the brane is taken to be infinitesimally
1/r2 singularities in off-shell trilinear interactions of longitu- thin and located at the origink,  is the (4+N)D curva-
dinal gravitons[7], was pointed out ir[8] (see alsg[9]). ture,Gyy is the (4+N)D metric, andR, is the 4D curva-
There, it was shown that radiative corrections to the DGRure constructed from the induced metric on the brgpe
model become uncontrollably large at a very low energyEGMN(y=0)5Z" 52‘. The philosophy behind brane induced
scale (_p|r§)*1’3. This scale is essentially a cutoff beyond gravity is that there are two scales in the theory, a scale for
which the DGP model needs a UV completion. A similar bulk gravityM, , and a much higher scaMp, which char-
problem should arise also in codimensions greater than 1, iacterizes the physics on the brane, i.e., the standard model
analogy with the UV behavior of massive grav[y0]. We  and possible extensions like supersymmetry and grand uni-
will not address this problem in this paper, but we will con- fied theories. In order to obtain the correct value of Newton’s
centrate on another, simpler one; namely, the proper definconstantMp is taken to be~10" GeV.
tion and regularization of induced gravity in codimension Calculating the Green’s function and Kaluza-KIgkK)
N>1. spectrum of Eq(1) for the caseN=1 is straightforward. The
task is less clear foN>1 due to singularities that appear
because of the zero thickness of the brane, and the resulting

*Email address: mk679@nyu.edu singularities in the Green’s functions foi>1 [12].

TEmail address: mp9@SCIRES.ACF.nyu.edu In this paper we study a simple regularization of the ac-

*Email address: jwr218@nyu.edu tion Eg. (1). We propose to consider an action for

IA first attempt toward realizing them in string theory was pro- (4+ N)-dimensional gravity, reminiscent of the action for a
posed in[6]. dielectric in electrodynamics:
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pling of the modes is sharply peaked around a vahyehat

S ) . .
— N = ef <Ad4+Nx\/G4+NR4+N is the mass of the effective four-dimensional scalar “gravi-
* P ton.”
Next, we take a specific choice of a smooth brane and see
+ J d* " Nx G4 NRasn 2) that even there the scalar “graviton” is a massive resonance.
p>A Numerical results show that the behavior is the same as with

) ) ] ) ] the sharp-boundary dielectric. This shows that the regulariza-
with € a large dimensionless quantito be defined more ion considered here is really shape independent.
precisely in the tejt p the radial coordinate in thid trans- In Sec. IV, we investigate the tensor structure of our regu-
verse dimensions, anl the width of the brane. _ larized theory. We show that in the modé2) the four-
The brane in this theory is a thin “gravitational” dielec- gimensionamassivegraviton propagates with the correct de-
tric. We will prove that, at distances smaller than a certamgrees of freedom—i.e., the mass term generated in this
critical scaler; and forN>1, the gravitational interaction is  theory has the Pauli-Fierz form. There are no ghost or tachy-

mediated by a massive resonant graviton, whereas at largghs propagating in our system, unlike in the regularization
distances one rediscovers+{4)-dimensional gravitation.  proposed ir14].

We will also investigate smooth versions of this scenario.  Section V summarizes the findings of this paper.
This is achieved by taking a varying “dielectric constant.” A As we previously mentioned, it was pointed ouf&} and
scalar action of this kind was considered[it8], where it [9] that the DGP theory suffers from strong-coupling prob-
was pointed out that this kind of action can be realized physitems, as is typical for theories with massive gravitng].

cally in a dilaton gravity theory. _ ~ Our regularization, of course, does not cure that problem.
We thus consider the action §13] generalized to arbi-

trary codimensions: Il. ADIELECTRIC BRANE WITH A SHARP BOUNDARY
S iy /G We start by looking at a model in which we imagine a thin
M2TN d*xd"YVG[1+ eF(p/A)Rasn, 3 “dielectric” with a sharp boundary and dielectric constant
* e>1 centered around the origin of the transverse

where F(p/A) is the shape of the brane, which we take toN-dimensional space. The results are easily generalized to

depend only on the radial coordingteof the N transverse SMooth branegsmooth variation of the “dielectric” con-
dimensions. AgainA is the width of the brane and is a §tan) by assuming thak changes in small steps. We are
large, dimensionless parameter. The action &j.is ob- interested in whether this system exhibits a four-dimensional

tained from Eq(3) by choosing for the profile the step func- Pehavior in a certain region of distancer energy scales.
tion F=6(p—A). Let us analyze _thls system f|r§t for thg simplest case, a
The action Eq.(3) describes a smooth three-brane in gscalar field. Consider the following actiorM(=0,...,3
(4+N)-dimensional space. We will show that for suffi- +N):
ciently large values o€, the effect of this brane “dielectric” s
constant is to convert the higher dimensional laws of gravity _ 4+N 2 4+N 2
to four-dimensional laws at short distances. Mi+N_6L<Ad X(u®) +fp>Ad X(m®)*,
On physical grounds one does not expect that the intro- (4)
duction of a “medium”(i.e., a branginto the higher dimen-
sional vacuum will result in the appearance of ghosts or tawhere we define the dimensionless quantitgs follows:
chyons and make the theory inconsistent. We will explicitly
show this for the modelR). A brane with smoothly changing eAN=M2Z/M2*N (5)
permeability e 7 can be thought of as a sequence of small
regions of constan¢, and hence the proof should also hold a definition guaranteeing that in the limik—0, eAN
for smoothF. =const, we approach the delta function limitis the radial
The action Eq(3) may provide a physical realization of coordinate in the extr&l-dimensional space. To find a solu-
Eq. (2). One can think of it as gravity coupled to a scalar thattion to this system, we solve the equation of motion in the
gets a nonconstant vacuum expectation value, in the form afvo different regions, and impose the matching conditions at

a topological defectdomain wall, string, monopole, ejc. the boundary of the sphere. One obtains
This paper is organized as follows. In the first section we
consider the scalar equivalent of the action E). We ana- Od'=0, p<A, (6)
lytically calculate the scalar field resonances and show that
they lead to the crossover distance between four-dimensional Od°=0, p>A, (7)

and higher dimensional behavior for the force they mediate.
We do that by studying the KK modes of the fields and proveand the boundary condition
that their coupling to the “dielectric” is determined by their

wave function on the brane, for an appropriately chosen <I)'=<D°|p=A,
source. We will see that, generically, the coupling of heavy
modes is strongly suppressed on the brane, and that the cou- eé’p(l)l =3,0°,-4. (8
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If we decompose the field into Kaluza-Klein modes, 1
D(x,Y)=20"(X) pm(Y), O,0™=m?c™, the equations of Ay~ ——. (15)
motion and the boundary condition on the sphere reduce to V1+(emA)?

equations for each one of the modes: ) L
Using the definition ofe (5), we see thak=r /A, where

€0, = 0,02 - a. rC=M§,/Mi_. As explained above, the coupling of the
Kaluza-Klein mode of mass to the brane matter is given by

Undm= _m2¢m- 9

We must make some important remarks at this point. We are |pm(p=0)|?~
interested in the coupling of the KK modes to the matter on

the brane, which is given by the convolution of the wave\ya see that we
function and the matter profil@(y):

1+(mry)?’ (18

get a resonance, and thatnerr_ * the
coupling is strongly suppressed. The result is independent of
the shape of the brarj@3] and it is exactly what is found in

EISm(o): d*"NYW(Y)D(Y). (10) the DGP model1], as we anticipated. In Refl] it was

p<4 explained how this resonance leads to a ddtential forr
, ) _<r. and to a 1¢* potential forr >r..

Now we can assume that the profile of the matter fields is Now consider for instance the case of codimension
spherically symmetric in the extra dimension¥/(Y)  _3 The theory with a delta function type brane is known to
=W(p). We can take it that the standard model matter is,aye singular behavior in this case. Let us apply our regular-
given by the zero modes of some fields with a characteristi¢, ation prescription to this case. We expect a regularization

scaleMgsy>M, . These zero modes have spherically sym-(x) gependent result in this case. The solution in the two
metric profiles in theN transverse dimensions. The excited regions is

states with nonzero angular momentlrhave masses that
are naturally of ordeMg),, so that they decouple from low sin(mp)
energy physics. That is why we can assume that only KK ¢:n= m ;
modes withl=0 couple to the “spherically” symmetric P
brane matter. When calculating the tree level exchange, we . n
are taking into account only a single tower of radial KK %:M_
excitations. p
Since we can assume that the matter profiles are sharp[F/

peaked around the origin, the coupling of the KK modes isIhe ¢ solution is determined by asking for regularity at
approximately given byp,(0). =0. We keep only thé=0 terms in the expansion in spheri-

We look at the case of codimension 1 first. The DGPcal harmonics as explained before. The boundary conditions
model is perfectly regular foN=1, so we expect to dis- 9ive the following equations:
cover the same results as obtaineddifh The general solu- . .
tion to the 5D equations of motion ising plane wave Amsin(mA) =sin(mA + ¢p,), (18)
normalization

(17)

e[mA cotmA)—1]=mA cotmA+¢,)—1. (19

|
=Ancogmp), 11
Pm=AmCOLMp) 1y Expanding the cotangent, we get

dh=cosmp+ ¢n). (12 .

emA
The odd modes do not couple significantly to matter located colmA+ ¢n) mA 3 20
on the brane, as explained in the previous paragraph. A ) )
straightforward calculation yields the following equation for We obtain for the amplitude
Pm:
1
etan(mA)=tanmA+ ¢p,). (13 Am~ T 2emd) 35 (29 (mA)* (21)

On the other handi, is given by The amplitude squared is a sharply peaked function around

A, cOgmA)=cogmA+ ). (14) its mg_ximum, ob;aineg aat(mZA)zw?:. This_ gives, using our
definition of e, mg=M;A/M3 . The coupling of the modes,
Since we are interested in four-dimensional distances largegiven by the wave function squared, is now,(0)?
than the width of the brane, modes heavier thaA tle- %mzAﬁ]. We must emphasize that the fact tigt is singu-
couple. Later we will assume that~1/M, . SinceM, is lar at its maximum is due to our approximation. Indeed, the
the cutoff of the effective field theory for the bulk gravity, we denominator receives corrections@ft(mA)?], which gives
takemA<1. Then we can approximate tand)~mA, so ¢m(mg)2~1/A2: a finite ande independent result. For KK
we find for A, modes with mass larger tham, the coupling to the brane is
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3 We see that the weak four-dimensional gravity is due to the
. exchange of a massive resonant “graviton.”
2 IIl. ASMOOTH DIELECTRIC BRANE
15 In this section we study the 4D effective field theory of a
' scalar system in which the kinetic term of a bulk field is not
1 homogeneous through the extra dimensions. We shall obtain
results qualitatively similar to the ones obtained in the pre-
0.5 vious section. As we remarked earlier, a smooth “dielectric”
constant may be achieved in dilaton gravity theories. The

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 reader not interested in the details of this regularization can
) skip this section and proceed to Sec. IV, where the sharp-
FIG. 1. Wave functions of KK modes on the brane fer boundary approximation is applied to true spin-2 gravity.

=1000. The scalar “graviton” is a very sharp massive resonance. The action that describes a scalar in a smoothly varying
Inset: light modes are suppressed as, giving rise to a 17 “dielectric” medium is

potential at large distances.
. , . _ L=MZNF(Y) 9D P D. (25

heavily suppressed. In this case we find timgtis A depen-
dent, as we anticipated before. We take the localizing profilé(Y;) to be a spherically sym-

For A, one might take the natural value=M_*, in  metric function of radial variable il extra dimensions. For
which case the crossover distance and the graviton widtthe system Eq(3) that we are studying the localizing profile
become fis
Mo Mi - f(plA)=1+€eF(plA). (26)
9 Mi T Mg Mﬁ,' (22 As before, we are interested in the four-dimensional spec-

trum of Eq. (25, and we decompose the fietll into its

This is exactly what is found for the regularized delta func-Kaluza-Klein modes,

tion type brane theory regularized with higher derivative op-

erators[12,14]. In Fig. 1 we show the value of the wave q)(xwyi)ZE DY) om(X,), Osom=mlPoy.

function ¢,(0) that is roughly the coupling of KK modes to m

the brane matter. (27)
In codimensionN=3, the effective 4D “graviton” is a

very narrow resonance. The crossover from 4D to 7D beha

V‘[he differential equation for wave functiods,(Y;) is

ior does not happen because of graviton “decay.” At large F(D)V2D 4+ Vof(0)Vu® o+ F(0)m2d =0 28
distances, the 4D “graviton” simply becomes too heavy to (PIVA®mt Wi (p) WPt T(p) n=0. (28
contribute to the tree-level exchange. Let us look at the Schinger equation for wave functions

At large distances>r. we evaluate the potential from @, for a general profild (p) in the caseN=2. The Laplac-
the coupling of light KK modes to brane matter. Their cou-jan and gradient iN=2 have both radial and angular parts,
pling is suppressed linearly,(0)~m and the potential is g5 the solutions can be separated  aB,(p, 6)

=20 (p)O (), whered is the polar angle in the trans-
= m? exp(—mr) 11 verse plane. The scalar “graviton” couples to matter located

Viewl")= fo M5 fdm” M5 4 r>re. on the stringlike braneF(p). We assume, as explained in

* * (23) the previous section, that only the radial KK modaes an-
gular dependengef our scalar field couple to matter density

This is just the 7D potential that appears at distances Iargé?cal'zed on the solito¥" (p) T(x). If we substitute
than the crossover distance.
At short distances, the Newtonian potential between two ®

. . m(p)
masses, due to exchange of KK modgs,, is dominated by Vpf(p)
the exchange of the lowest mass resonance. So we can ap- )
proximate our integral by the area of the resonance peakyve obtain a Schiinger equation for mode#,,
This gives

¢m(p), (29

+5F P ¢m:m2¢m-

AP
(30)

1f 1f /1 f\2 1
- -

v _ (Mot Tl () expi—mn) 1 1
New(l) =~ I VE r mN—MZF,
9 My * P

The modes are orthogonal, and the normalization integrals
r<r.. (24 are
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f f(P)®n®mpdp_am5m,n- ,:' ,
10 ! -
l'
I p
/
" 55 L .

| 1010,00,0 0000

=m?. (31)
f f(p) PP mpdp )
2
The effective 4D action is o/
2 4 6 8 10
_ 2+N 2 2
L= EM* % (0 omd*om—moy) FIG. 2. Potential Eq(37) N=2 (solid line) together with poten-
tial Eq. (35) (dashed ling p is in units of A, the potentials are in
d (0) units of 1A2, while e=10000. The inset shows the log-log plot of
+Y — o, T(X). (32)  the integral in Eq(38) vs e.

m Mi vam
potential® The Schrdinger potential resulting from the pro-

Here®,(0) is the convolution of the wave functich,,(p) file (26) reads

and the matter profilé(p): exp(2p?) — 4e[2p° expl p?) + e(— 1+ p?)]
V= 4etpexpip?)I?
©p(0)= f pdp¥ (p)Dr(p). (33 (37)

where p is given in units of the brane thickness. This
As in the previous section, this represents the coupling opotential is shown in Fig. 2. The tunneling rate represents the
KK graviton modes of mass to brane-localized matter, and decay width of the resonance and can be calculated in the
we can approximate their couplings to #g,(0)~®d,(0). WKB approximation as
Let us illustrate the main properties of the smooth brane .
model inN=2 transverse dimensions. Consider the follow- Y2
ing profile: Lo~ Kex;{ —2 " \/de)’ (38)

exp(— p2/A?) wherey,,y, are the classical turning points. The width of the
=T A (34 potential well is~A. For large values ok, we are well
within the limit of validity of the WKB approximation,
_ _ o _ o namely, V'/(2V)%2<1. The integral in Eq.(38) can be
This profile multiplied by 1A% is a regularization of a delta  eyalyated numerically. The dependence of the integralisn
function inN=2 dimensions. It is instructive to see what the F§=2~1/Ae°-931 (shown in a log-log plot in the inset in Fig.

spectrum is when one neglects the constant 1 i &g, and

then treats the _problem_ ir_1 some approximation. This is .Here, the difference from the expected resiit 1/e is
equivalent to taking the limie—c. Takingf=1+eFone e 1o the WKB approximation. Assuming that the width of

finds in Eq.(30) the Schrdinger potential the zero mode is-1/e, and by knowing that the zero mode
is responsible for the 4D potential on the brane, we can cal-
V(p)= (1M (p/A)?>—1]. (35  culate the value of the “Newton” consta@. The square of

the KK graviton coupling to mattef32) multiplied by the
This is the potential of a simple harmonic oscillator with the Width of the zero mode resonance gives the cumulative effect
of the tree-level exchange of continuum KK modes in the
resonz;mce. The effective 4D Newton constant is tBys ,
~1/M7¢ for two choices of parameter§l) A~1/M, ande
my=\2n/A, n=024.... B8 (Mp/M,)Z (2) A~1Mp ande~(Mp/M,)*.
Four-dimensional interactions between masses on the
Heren is an even integer, since the wave function and deprane are mediated by the exchange of the zero mode reso-
rivative at the origin must be continuous, and we restricted
ourselves to modes with no angular dependence. As a first——
approximation, we can say that the spectrum of the model in 2 fact, in the casél= 1 [13] this is an exact picture. The meta-
Eq. (3) consists of a tower of metastable modes with thestable mode of mass zero has a width/e, which results in the
masses Eq.36). A metastable zero modgvith mass exactly crossover distanoe.=M3/M3 between four- and five-dimensional
zero in the e—« limit) will be responsible for the 1/  gravity.

spectrum
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7 Starting from zero mass, the resonance grows as
6 15|
o dm(0)~Jem. (40)
40 0 7T Now we can choose two possible sets of valuesefand
3 A in order to reproduce the correct 4D Newton constant
~1M, ,e~(Mp/M,)?% or A~1Mp,e~(Mp/M,)*
2 Both choices give, for the crossover distariceverse gravi-
. L ton mas$ and the resonance width,
1 2 3 4 5 Ne2 1 Mp M?
rc‘ EI"ng ~ FmgwM_' (41)
FIG. 3. Dependence of the coupling of a KK mode on its mass M3 P
for e=5000. Peaks are at the location of resonant states of a har-
monic oscillator withm=0,2,/8, ... . In the inset, a peak is In the case oN=2, the graviton mass is roughly the same

shown atmg~1/A /e, for e=50000 on both normaleft) and log-  as the resonance width. On the brane, at distarees, we

log (right) scale. The “graviton” resonance is asymmetrical. To the can evaluate the “Newtonian” potentidye,, from the cou-

left of the peak, it grows as-\/m, giving rise to a 6D potential at pling given in Eq.(32), and the shape of the peak’s left ridge

large distanc_es, while to the right it dgcaysal;/m. The solid lines Eq. (40). The exchange of modes with mass> 1/r contrib-

have coefficients 0.5 and 1, respectively. utes weakly, so one can integrate from zero to infinity. The
coupling of graviton KK modes is proportional te\/m, so

nance, of width~1/Ae. The WKB approximation gives the the potential is given by

value of Newton’s constant; however, it misses most of the

features of brane induced gravity M= 2 transverse dimen-

sions. In particular, it does not predict the transition between V(r)~ f” ‘m exp(—mr) dm= 11 r>Ma/M2
the four-dimensional and the higher dimensional regime and 0 Mi r o ' PI
it does not give the distance at which this transition happens (42)

(crossover distangeln the rest of this section, we will study
the spectrum and the couplings of KK modes in brane in-

) X , This is just the 6D Newton’s potential that appears at dis-
duced gravity. We will see that the graviton resonance has . .
e . . . ances larger than the crossover distance. At short distances,
finite mass, and that its width is net1l/e. However, the

correct value of the Newton constant is obtained by ex_the exchange of a single massive-graviton resonance gives

) : rise to the 4D Newton potential:
change of a massive graviton resonance.
The Schrdinger equation can be solved numerically, and

its solution can be used to find the convolution of the KK 1 1 )
wave functions with the wave function of localized matter. V==, r<Mp/ML. (43)
We will investigate the couplings of different modes in order M5

to determine how the transition between four-dimensional

gravity and higher dimensional gravity occurs and what isHere we approximated the area under the square of the curve

the crossover distance. determining the coupling with twice the area on the left side
The suppression of the KK graviton couplings to braneof the peak.

matter is shown in Fig. 3. We notice the peak positioned
close to zero mass that is responsible for 4D gravity, as well
as higher resonant modes at the positions of harmonic oscil- IV. THE SPIN-2 CASE
lator levels, with massem=2/A,\/8/A, etc. Since we are

|_ntere_sted in the Iarg_e distance behavior, we show a MagNK oceed with a true gravitational theory. Although the scalar
fied picture of a graviton resonance on a log-log scale. Th

behavior is as follows: for the mode of mass zero, the cou ravity example captures the main features of brane induced

pling is zero. Then the coupling rises as/m, with the peak gravity, it is crucial to show that our regularization gives a

o ) consistent{4D) spin-2 theory. In particular, we have to show
positioned amg~1/A Ve. To the right of the peak, the cou- ¢hai o tachyons or ghosts propagate in our framework. In
pling dies off as~1/m.

) _ . . the effective 4D theory, the higher dimensional graviton is
We see that the graviton is a massive asymmetric resGgnresented by four-dimensional spin-2 states and a set of
nance. The mass and the width of the resonance are scalars. We should check that the masses given to those fields
are not negative, and that tiimassive graviton propagates
1 1 with the right number of degrees of freedom, which is as-
~_ ~ sured if the mass term is of the Pauli-Fierz form.
g v I - (39 . . .
Ae 9 Ae The action to be considered is

After having studied the scalar theory, in detail we can

m
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S 1 1 .
—TN_€ d**Nx\G i nRasn gw:a)\(g(ﬂywk_§D47M_§’?u‘9v74+‘7|‘9(u7wi
M§+N <t

1 1 A 2p
+J d4+NX‘/G4+NR4+N. (44) _EDNYMV_EﬂMV[a d YXp_(D4+DN)74]
p>A

1 o 1
=5 733y = (Oa+ O il + 5 a7, 00w -
We can do an expansion in KK modes for the gravita- 27k ! A7 TNIINE T T NN

tional field, analogous to the scalar case: (50)

Now we make the gauge choice

Gun=2 Giin(X) bm(Y). (45) | .
m J y,,i=0, ﬁﬂlyij_aDN’yN:O. (51)

The boundary conditions now are the well-known IsraelfOr &= — 2 e get the following equation of motion for the
matching conditiong15], which give an equation for the four-dimensional part of the metric:
extrinsic curvature of the sphere which divides the

s . . . 1 1
(4+N)-dimensional space into two parts: g:lw_ EDN?’,LNL 3 D Onya=T oo (52)

GKIMN(X’Y):K;J/IN(X’YHP:A' (46) We assume that the matter distribution is confined to the
brane, so only the 4D part of the energy-momentum tensor is

These equations become particularly simple when we usBOnZero- If we contract this equation witt, we get, by
Gaussian normal coordinates, since then the extrinsic curv&2NServation of the matter energy-momentum tensor, and
ture is given byK = 23Gyn/dp. One sees that the bound- 1anks to the Bianchi identities,
ary conditions for the KK modes are completely analogous
to the scalar case equations treated in the previous section. OINC Y v =9, 74)=0. (53)
This reduces the spin-2 case essentially to the spin-0 case. In

the following equations we split the ¢4N)-dimensional in-  ThiS equation gives us a constraint gp, . Indeed, remem-

dicesM,N, ... into 4D indicesu=0, . . .,3, andransverse bering thatlly applied to the fields gives theiinonzero
indicesi=4, .. .,3+N. y,, are the fluctuations of the metric Masses, we can conclude that

around the flat background and= y,+ vy is the trace of the

fluctuation. The Einstein tensor is denoted Gyy : Y= 39,74=0. (54)

L . L 1 On the other hand, if we take the trace of E5Q), we get
Giu=5 Yt 59917, F 50t 599,

2 2 2 3
FUNYa=T. (55)
1 1 1
_ED47iM_EDN7i/¢_§(9u(9i’y' (47) ] ) ) )
This means thaty, is determined “algebraically” by T;y,
=(2/33y)T. By “algebraically,” we mean that the equation
1 1 _ for T is local in four dimensions. Next, after a short calcula-
g'u,,=r7)‘r9(lu'y,,))\— ED”W_ 5(?“(9”( Yat YN 39, V)i tion, the equations of motion foy,; become
! ! \ LR+ S Oya=0 56
_EDNYMV_EﬂMV[a apyhp_(D4+DN)74] 5{9 A E Ny/’«i_ ’ ( )

. o i hereF!  is the field strength of the four-dimensional vec-
— @Iy +20 9y, — (Ot O . (4g) Wnerer,, 1S Ine lield strengtr . na Ve
3 w97y Vip~ (BatOuod- (48 tors y,,; . This equation describds massive vector fields in
four dimensions.
We are left with the equations of motion of th& scalars

We now perform a shift ory,,, : ¥i . One obtains
]

y— ytan,, . 49 1 1
Yur™ Y Tuv N 49 Uayiy +Onyij T 9id; v+ EDAYNJFEDNVN_DN?%

After some algebra we get =0. (57)
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Observe that the divergence @f is identically zero by vir-  regularizations already existing in the literature, ours intro-

tue of the gauge choicé y;; + 19,yy=0.3 duces neither ghosts nor tachyons. In this respect we must
Using Eq.(55) we finally obtain notice an important point. Our definition of the 4D graviton
involves a shiff see Eq(49)], which is the linearized version
Ol vt 1 v Ol v+ 1 § of a conformal rescaling. By doing this shift, we couple the
4\ YiT g N N| i YN (scalay internal components of the metric fluctuation to the

trace of the matter stress-energy tensor, even though it has
only 4D components. In other words, extra scalar, dilatonlike
degrees of freedom couple to matter. This is not a disaster
_ per se because, even in their absence, linearized massive

Looking at Egs.(52) and (58)_, we see that all th_e mass gravity propagates an extra spin-zero degree of freddfin
terms have the correct form, with’= —Cy. In particular,  Their presence only worsens the vDVZ discontinuity. In the
the spin-2 mass terms have the Pauli-Fierz form. This is ofegularization of Ref[14], instead, when the regularization
course what we expect in a generic Kaluza-Klein redUCtiorbarameter is removed, one recovenasslessAD gravity.
[16]. We can thus be sure that in our regularization no ghostjs s achieved at the price of introducing light ghosts into
propagates. the system.

We notice also that in codimensidf= 1 no extra scalars
V. CONCLUSIONS propagate, as shown by EGS).

In this paber we have proposed a well-defined requlariza- Finally, our “sharp” regularization can easily be extended
. pap . - prop , o . 9t to cover the case of vector fields intN dimensions. The
tion scheme for “brane induced” gravity in codimensibh

. . L ._smooth version of our regularization may also be realized in
>1. At its simplest, the scheme replaces an infinitely thin g y

brane with a “dielectric” sphere of radius in the transverse a physical setting by coupling (4N)-dimensional gravity to

. S . : a scalar field which admits a soliton soluti¢kink, etc).
space. This regularization allows for a simple analytic com-

putation of the spectrum of massive resonances, and it ac-
counts simply for the tensor structure of gravity. Unlike other ACKNOWLEDGMENTS
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