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Massive scalar states localized on a de Sitter brane
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We consider a brane scenario with a massive scalar field in the five-dimensional bulk. We study the scalar
states that are localized on the brane, which is assumed to be a de Sitter brane. These localized scalar modes
are massive in general, their effective four-dimensional mass depending on the mass of the five-dimensional
scalar field, on the Hubble parameter in the brane and on the coupling between the brane tension and the bulk
scalar field. We then introduce a purely four-dimensional approach based on an effective potential for the
projection of the scalar field in the brane, and discuss its regime of validity. Finally, we explore the quasilo-
calized scalar states, which have a nonzero width that quantifies their probability of tunneling from the brane

into the bulk.
DOI: 10.1103/PhysRevD.68.064012 PACS nunider04.50+h, 98.80.Cq
[. INTRODUCTION pears and turns into a quasilocalized state with finite mass

and finite width, the latter quantifying the probability for the

A lot of attention has been recently devoted to the branestate to decay into the bu(i6].
world scenario, which provides an alternative to the standard The purpose of the present work is to study how these
Kaluza-Klein compactification. In fact, this idea was initiated properties of massive bulk scalar fields are modified when
a long time ago by the suggestifh| that particles could be the brane geometry is de Sitter instead of Minkowski. Mas-
localized on a defect embedded in a higher-dimensionadive scalar fields are of special interest for a bulk inflaton
space, the simplest example being the case of a domain wathodel of braneworld inflatiof7—9], where inflation in the
or three-brane, in a five-dimensional bulk spacetime. It wasrane is driven by a bulk scalar field, in contrast with a brane
then shown, ignoring gravity, that one could localize scalarsnflaton model, where inflation is driven by a four-
and fermions on the domain wall. dimensional field confined to the brapk0].

Recent progress was achieved on the gravitational aspect In the present work, we study in detail theund statesf
of the problem, by showing that it was possible to localizea massive bulk scalar field, localized orda Sitter brane
massless gravitong2], and thus to recover standard four- taking also into account the possibility otauplingbetween
dimensional gravity, on a brane with tension embedded in athe scalar field and the tension of the brane. We show that,
anti—de Sitter(AdS) bulk, with the appropriatdnegativé  depending on the range of values for the scalar field rivass
cosmological constant = —6/¢2, so that the brane is effec- and the coupling, one can find bound states, which can be
tively a Minkowski brane. In addition to the massless gravi-massless or massive.
tons, one finds a continuous spectrum of massive gravitons, We then consider and extend another approach, which
starting from zero mass but with a weak coupling to theconsists in determining an effective four-dimensional poten-
brane so that their contribution becomes important only ortial for the projection of the bulk scalar field in the brane,
scales of the order of or below. taking into account the five dimensional effects, via the ef-

The analysis of the graviton modes has also been exective four-dimensional Einstein equations. We are thus able
tended to the case of a brane whose effective geometry is de deduce an effective four-dimensional potential that com-
Sitter [3,4], which is the case when the brane tension morebines the five-dimensional potential and the coupling to the
than compensates the cosmological constant. The mod&ane. We then compare this approach with the mode ap-
analysis on this background yields a massless gravitorgroach and find surprisingly good agreement. Namely, given
analogous to the four-dimensional graviton, plus a conthe five-dimensional mass, both the critical coupling allow-
tinuum of massive modes, which starts at (Bi2)There is ing for a zero mode and that at which the bound-state ceases
thus a gap between the zero mode and the massive modest@\exist agree well with those obtained from the mode analy-
recent work[5] has generalized this treatment to the case ofis. ForH{ <1, one can intuitively expect an agreement be-
conformally flat cosmological geometries and showed thatween the effective 4D description and the exact 5D analysis
the minimum gap is/3/2H. since the effective size of the extra dimensidn,is much

Not surprisingly, massless bulk scalar fields have propersmaller than the characteristic cosmological length scale,
ties very similar to the gravitons. In the Randall-Sundrumhere the Hubble radiusl . In a sense, the theory is effec-
(RS background, it is easy to show that, as for gravitonstively 4-dimensional. We however did not expect the agree-
there exist a localized zero mode and a continuum of arbiment in the caséH¢>1, even if less precise than in the
trary light states. When one allows for a small but nonvanprevious case, and we have not found so far an explanation
ishing mass, it turns out that the massless bound state disafor it.
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Finally, we also explore some aspects of the quasibounchetric, about the brane, the junction conditions for the metric
states(or quasinormal modesn the range of parameters at the brane location yield the familiar brane Friedmann

where the bound states no longer exist. equation[11]
The plan of the paper is the following. In the next section,
we present the model and give the equation of motion for the , As k?\2 )
bulk scalar field. In Sec. lll, we discuss the existence of H :F+(§ Jp- (2.6)

bound states. Section IV is devoted to an alternative ap-

proach based on an effective four-dimensional potential. Fij, the present case, the Hubble parameter is constant, so that
nally, we explore, analytically and numerically, the quasilo-the prane geometry is de Sitter. The Hubble parameter is
calized scalar modes, which correspond to modes escaping|ated to the brane positian, which is fixed in the above

from the brane into the bulk. coordinate systen2.5), according to the expression
Il. DESCRIPTION OF THE MODEL 1
. . . . _ H=—————. 2.7
We consider a five-dimensional bulk scalar figtdand a €2sinkP(rq/€)
brane with a tensio coupled to this bulk scalar field. The
corresponding action is given by It is then convenient to rescale the time coordinate so that it
corresponds to the cosmic time in the brane. The metric now

reads

1 1
S=f dsxv—g“)(ﬁ(R—ZAs)—§(V¢)2—V(¢>)
ds?=dr?+H2¢2sintP(r/€)[ — dt*+H ™ 2e?Mdx?, .

- f d%V—g@ o (), 2.1) 29

It is also convenient to introduce, in addition to the AdS
where we have introduced a five-dimensiofragative cos-  length scalef, another length scale, defined from the brane

mological constant tensionar,
6 2 1
ASZ_E' (2.2) f0:(300) : (2.9
In this work, we will concentrate, for simplicity, on the case In the RS case{={,, whereasl,<¢ for a de Sitter brane.
of a quadratic bulk potential, The brane Hubble parameter is thus given by
v _ 1 M2 b2 2.3 - 1 1 )
0
and of a quadratic coupling, i.e. of the form Introducing the variable
a =
o(p)=0o+ 7¢2, (2.4) z=coshir/¢), (2.1

the Hubble parameter given in E.7) can be reexpressed

where « is a dimensionless parameter characterizing thas
“strength” of the coupling to the brane.

We will take as our background configuration, the solu- 1
tion of the above setup, with the usual cosmological symme- H(zg)= —=—= (2.12
tries (homogeneity and isotropy along the three ordinary spa- Nzg—1
tial dimensiong when the scalar field vanishes everywhere. _ _ _
In this case, the bulk is effectively empty of matter and,and the expression dfy in terms ofz, is therefore
owing to the cosmological symmetries we impose, its geom-

etry corresponds to AdS The metric can be written in the _ﬁ 7
form fo—zo\/zo 1. (2.13
ds?=dr2+¢2sinkt(r/€)[ —d 72+ GZTdX(Zg)], (2.9 Let us now turn to the scalar field, which will be consid-

ered as a test field on the background configuration previ-
where we have chosen, for simplicity, a flat slicing for the ously defined. In other words, we will ignore its backreaction
three-dimensional surfaces. on the geometry. In the bulk, the scalar field must satisfy the
It is possible to insert a brane in such a geometry. AssumKlein-Gordon equation, which is given, for the met(i.8)
ing as usual that the bulk &, symmetric, i.e. mirror sym- by
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1 The effective four-dimensional mass of the mode, which ap-
—2—2-—h2—e_3Ht(7t(63Ht0t¢>) pears clearly in the time-dependent equat{8®), is thus
H<€<sinhr(r/€) )

given by
. intt(r/¢ M2¢p=0
—War[sm (r )(9,(]5]4‘ gb— .

MZay=N2H?=(9/4— n?)H2. 3.7
(2.14

In addition to this bulk equation, the scalar field must also |, the rest of this section. we wish to investigate whether
satisfy the appropriate boundary condition due to the presmere exist bound state solutions. Bound states modes are

ence of the brane. It can be shown that, Zgrsymmetry, this  gefined as solutions which are normalizable, i.e., such that
boundary condition is given by

1do a o
‘9f¢|f=fo:_§@:_f‘f" (2.19 ZJ dr sinkfr u,,(r)u’(r)
0
It is clear from the two above equatioi®.14) and (2.15 2
that we chose to work with quadratic expressions both for =2f dz\/zz—luﬂ(z)u;(z)<oo. (3.8
1

the bulk potential and the brane coupling in order to get
linear equations for the scalar field, which greatly simplifies

h lysis. . . .
the analysis Since the behavior of the Legendre functions wheap-

proaches 1 is given by
I1l. EXISTENCE OF BOUND STATES

The purpose of this section is to solve explicitly the sys- o

tem of Egs.(2.14), (2.15. Since the bulk equation is sepa- wooN A\ -ul2 .
rable, it is natural to look for solutions of the form P.(2) M1—pw) (z=1) L 3.9

d=u(r)(t), (3.1
the integral in Eq(3.8) converges ifu is real and negative.
which leads to a separation of the bulk differential equationTherefore, a bound state exists if one can find a soluBds)
(2.14) into a radial equation and a time-dependent equationyith <0 that also satisfies the boundary conditi@),
which can be reexpressed in terms of the variades

{;(9,[sinrﬁ(r/€)ar] —M?

sintf(r/¢)
Ay 0 at (3.10
A2 d_Zu 2—1/2U: at z=12,. .
+—————|u(r)=0, 3.2 (z°-1)
€Zsinhz(r/€)1 L 32
d2 d Substituting the solutioii3.5), this gives the condition
—+3H——+H2\2|y(t)=0, (3.3
dt dt
where\? is a separation constant. And the boundary condi- d 3 2 a
tion (2.15 becomes d—ZP’:f, 12~ z ﬁ Pff, 12T (22_—1)1/2P’:f, 12
Lun=—2un at (3.4
—u(r)=——u(r) at r=rg. :
dr ¢ 0 =27 {l(r=2)z+ (- 1)Y7IPY_y,
The solution of the radial equatigB.2) can be expressed —(p+v—12)P~ k=0, (3.11)

in terms of associated Legendre functions. Using the variable
z defined in Eq(2.11), one finds

where the second expression is obtained by using the recur-

U.(2)= Pl-12(2) (3.5) rence relations satisfied by the associated Legendre func-
# (z2—1)%4 tions.
The bound states are delimited by two extreme cases: the
with massless modézero modg characterized by the value
° =—3/2, and the m<2)de at the top of the gap, characterized by
2.7 2 vy the mass-squarenh?,,=(3/2)H?, i.e., u=0, above which
m=y AL v=IMACTH 4 3.6 bound states cannét)exist. For each set of valuesl fa@r z)
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and M, one can thus define two critical values for the cou-
pling: the lower oneg,,,, corresponding to a bound state
that is also a zero mode and the upper omg, giving the
threshold above which bound states disappear.

Using the boundary conditio§3.11), one immediately
finds that the zero mode coupling, corresponding o
—3/2, is given by

—5/2
v—1/2

—-3/2
v—1/2

a,m(Z,M)=—M?¢? (3.12

PHYSICAL REVIEW D 68, 064012 (2003
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where we have used one of the recurrence relations for the FIG. 1. Range of coupling values that allow for the existence

Legendre functions and the definition ofin terms of M.
Note that, forM =0, one getsa,,=0: one recovers the

of a bound state, as a function pfand thus ofH¢) for the three
following casesM?2¢2=1 (long-dashed lings M?¢?=—1 (short-

usual zero mode of a massless bulk scalar field with no coudashed lings M2¢2=0 (continuous lines In each case the upper

pling to the brane. As soon as the bulk masss nonzero,
with M?>0, the zero mode coupling becomes negative

limit corresponds toap(z,M) and the lower limit toa,(z,M),

both values converging towards=2— 4+ M 2¢? at largez.

which means that one can find a zero mode localized on the o . . .
brane only with a negative coupling. The case opposite té\s before, it is interesting to consider the behavior of the

this occurs for an unstable potential, i.812<0 (for M?¢?
>—4, which we assume in the present paper

It is interesting to consider two limits concerning the

Hubble parameter of the dS brane: the limit where the

Hubble parameter is very smal{ <1, corresponding to
large values ofz, and, conversely, the limit wherd €>1,
corresponding to values dof very close to 1. For the first
limit, one can use the asymptotic behavior

1
I'f v+ =
P"(z)~2“77‘1’2—22” 1, (3.13
v rl+v—p) "’ ' '
which leads to the result
a,m=2—v=2—JM%¢?+4, H{<1l. (3.19

For the second limit, the expressidB.9) shows thata,,

maximal coupling in the two limitg—o andz—1. In the
first limit, one finds the same result as fey,,, hamely

ape=2—v=2—M2(2+4, (3.18

which means that a bound state exists only for a value of the
coupling very close to 2 v, i.e., negative foM?>0 (and
positive otherwisg In the second limit, one finds that, is
proportional toH,

H{<1,

3
C(bs:—Hg,

>1.
> H{>1

(3.19

In Fig. 1, we have plotted the critical couplings,,, and a

as a function ofz for three bulk massesM?¢?=1, M2¢?

=0, M2¢?=—1). This defines, for the three cases, the re-
gions in the coupling parameter space that allow for a bound
state. Outside these regions, there is no bound state and the
four-dimensional mass of the modes has an imaginary part,

behaves like the inverse of the Hubble parameter, more spgs will be discussed later. For largei.e. for smallH, the

cifically

(3.195

Similarly, one can define the largest coupling,, that

bound state regions become thinner and thinner bands
around the linex=2—v.

Note that, for a positive masd, the critical couplinge,s
is not always positive, but becomes negative Zo1z.(M).
This means that whereas faxz.(M), i.e., for a Hubble
parameter sufficiently high, one can always find a bound

allows for the existence of a bound state. Using the boundargtate with a vanishing coupling, it is no longer the case for

condition(3.11) with «=0, it is given by the expression

(v=112P, 3= (v—=2)ZP,_1p
apdZ,M)= > 1 -
(z=1)"P,—1p2

(3.16

When the mass of the bulk scalar field vanisiids; 0, then

z>7,(M) where a bound state can be found only with a
negative coupling.

Finally, a more general quantitative analysis is possible in
the cases wherb12¢2<1 anda<1. Indeed, by linearizing
the boundary conditio(3.11) about the zero mode solution
characterized byu=—3/2, M=0 and «=0, one can find
the linear deviatiom\ u= u+3/2 as a function of the small

v=2 and the above expression for the critical coupling Sim'parameterd\/l 2¢2 and «. ExpressingAgu in terms of the

plifies and reads

Pio

3
20 2 (2—1)Y2%Py,

(3.17

effective four-dimensional mass of the bound state, one gets

2 2a

M
m§4):f1(He)7+f2(H€)F, (3.20
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with A. General derivation
We will start by recalling some results derived [ib2]
IR A 1 following the procedure of13]. It was shown there in par-
fa(HE)= R(HE) EH €5, f(HO)= R(HC)’ ticular that the effective four-dimensional Einstein equations
(3.21) for dilaton-vacuum configurations are given by
2K2,
and @6,,= 5 Tul(d)~ DG~ 4D
2\Z7-1P3342) with
RHO=—F—— —
3P32 (2) 5
T4v=D,¢D,¢— 29,,(D¢)%, (4.2
1+ 1+H?¢? pr— BpPE @ g S
— 2p2_g2p2 _
={J1+H“¢“—H%“In ; )
(4)A—(5)A+ 2 V() + = w2o? L/ dor)? 4.3
(3.22 = T org V() + grso 8ldg) | (4.3

The expressioii3.20 shows that, in the linearized limit, the \vhereD, denotes the covariant differentiation with respect
(smal) bulk mass-squared and brane coupling contribute adr the metric on the brane. Using the four-dimensional Bian-

ditively to the effective four-dimensional mass-squared ofchj identities, the covariant differentiation of Einstein’s equa-
the bound state. The coefficients in the linear combinationjons (4.1) implies

depend orz, i.e. on the value of the Hubble parameter. In the

limit H¢—0, i.e.,z— +%, one finds 2 , s (a)
D”EMV:§K5D“TW—DV A. (4.4
M2
MEay= - t25, HE<1, (3.23 Specializing to a FLRWFriedmann-Lemare-Robertson-
¢ Walken geometry, one finds that the Friedmann equation on
the brane, corresponding to the compon@r0) of Eq. (4.1)
whereas in the opposite limit one gets is given by
3 H 3 1., 1«2 1
2 _ P2, a0 s 2_ 2 2|2, T 05 2 T g2
Mg)= 5M +3€ a, H{>1 (3.29 3H €2+K5 4</> + 2V+ 2% 167 +E,

(4.9
The contribution from the coupling is thus proportional to o ) )
the coupling parameter/¢ times the largest of the two mass WhereE=Eq=—Eq. Equation(4.4) yields
scalesH and¢ ~1. The contribution from the bulk scalar field 1 1 2
mass is essentially the same with a very small variation of : 2 T oy T 5 2y
the coefficient. Note also that the res(®15 follows im- E+aHE=13 2(1S 2H¢ 2V 12(0 )
mediately from Eq(3.24) with m¢,)=0. L

In the case oH{ <1, it may be worth mentioning that the +— (o’ 2)/} P

coupling (@/€) ¢? on the brane contributes to the effective 16
mass term as it is, if we rescafeas ¢— ® = /¢ ¢ by intro-
ducing an effective four-dimensional scalar fididof correct
dimensions, whereas the bulk mass-squavEdcontributes
with a factor of 1/2.

JL .o 1
K 5(d+2H@) ~(d+3HP) ~ 5V

K2 1 .
~15(0)) + 7500’ 2)'}¢. (4.6)

IV. EFFECTIVE POTENTIAL APPROACH

In this section, we will use the four-dimensional projec- Where we have rewritten the terms in the brackets involving
tion of the five-dimensional Einstein equations onto thethe first and second derivatives ¢f as two linear combina-
brane in order to establish an effective potential for the fourtions, one which will be easily integrated and the other one
dimensional projection of the scalar field on the brane. Sucorresponding to the familiar four-dimensional Kilein-
a procedure was successfully applied in the case of a bulfeordon equation.
scalar field with quadratic potential but without coupling to ~ \We are now going to assume that the brane value of the
the brang7,8] and it was shown that the effective potential Scalar field satisfies a Klein-Gordon equation that can be
is simply half the bulk potential wheH¢<1. The purpose Written in the form
of this section is to generalize this result to include the cou- . :
pling of the scalar field to the brane. ¢+3HP+Ver=—1J, 4.7)
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whereV is an effective potential which we wish to deter- B. Exact solutions

mine and wherd stands for a possible energy leak out of the ¢ i jnstructive at this stage to check the above approach
brane into the bulk. Substituting this Klein-Gordon equations,; known exact solutions. One of the simplest examples is

in Eq. (4.6) above, one finds the case of a bulk scalar field with the exponential potential

[16-20
5 2
. Kg . NS 2|\ 1 4 Xs 2y
E+4HE= —"(¢+2H¢) dt k5 Ver— 5 V' = 75(07) :
V(¢)=Voexp — =Akg|. @19
1 : \/§
NESIPN Y 4.8
16(0 ) ¢ (4.8 One can find for the bulk with vanishing cosmological con-

stant explicit static solutions, which read
This strongly suggests that the effective potential, if it makes

. 2
sense, is of the form 2N

ds?= —h(R)d T2+ dR2+R2dx2,  (4.19

h(R)
y 3 1, K, 1, 49 o
o= @JFE +1—20' 67 " (4.9  for the metric, with
R Nol6 o,
where the choice of the constant is for convenience as will be (R)=- 1—(\%/4) RT-CR ' (4.19

seen very soon. Remarkably, this is the same combination
which appears in the Friedmann equatidrd). Thatis, if we € being an arbitrary constant, and
adopt this definition for the effective potential, and introduce

the quantityX defined by K

J§¢:)\ In(R) (4.17)

2
_Ks- 2
E= 1 ¢+ ksX, (4.10 for the scalar field.

A brane with a tension
the Friedmann equatiof.5 and Eq.(4.8) for E reduce to

i A
the very simple system U(¢):erxp( _ —qu) 4.18
V3
1.
3H?=«g §¢2+Veff+x , (41D will undergo a cosmological evolution governed by the gen-
eralized Friedmann equation
X+4HX=J¢, (4.12 kL KPVl6

H2= R-2%4CR4V. (419

3670 T-(n\774)
where one recognizes the standard four-dimensional Fried-

mann equation with a scalar field and some extra componer8ince the bulk cosmological constant is zero, the effective
X. The second equation is(aonconservation equation for potential is here

the extra-componenX. Note thatX plays the role of the

Weyl, or dark radiation, which was identified in the simplest 1 K3 , 1

model of brane cosmologyl1]. When the energy outflow is
zero, i.e.J=0, one recovers the result

_[Vo, K? L N\, 2
c T2 |t g ooem T ghee
X=—. (4.13
a4
=V 2 A 4.2
A nonzeroJ means that there is an energy outflow from the = Vetf,0®X ﬁ Kb (4.20

brane into the bulk, which is going to feed the Weyl energy

density, as it has been recently worked ouf1d] for bulk It is not difficult to check thatp satisfies the effective Klein-
inflation. This is also similar somehow to the growth ®f Gordon equatiori4.7) with

induced by the gravitational wave emission from brane cos-

mological perturbations, which was recently analyzed in A2
[15]. It should also be mentioned that we have not really J= _(1_ 2 He. (4.2
proved the form(4.9) for the effective potential. We have

simply shown that this form is consistent with the system ofThe Friedmann equatiot¥.19 can also be written in the
effective equations in the brane. effective form(4.11) with the energy densitX given by
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A2 2 K2 2z 47°
2y_al1_ —4N2_ Ko ~ _ 2,2
K2X 3(1 4)CR T a2 M)= =t VM2 (426

2 2
= 3( 1— %) CR4M_ _/4/74\/eff R Similarly, _the bound state threshold is determined by solving
the equation
4.2
422 ,_2a o> M? 04
Thus, if we apply our interpretation af that it describes Meﬁ=€_€0_ 2_€2+ 2 ( -1)’ (4.27
energy flow from the brane into the bulk, the above analysis
|mpI|es that the energy is actually flowing onto the brane forwhich gives
\2< 2 rather than flowing out of the brane. It is also worth
noting that, whereas the present example is an instructive . 2z 47° - 9/2
check, it is however not very useful in practice because the apdz,M)= mi \/zz 1 U m
energy exchange between the brane and the bulk is important z 4.29

so that the choice between the variab¥esndE is somewhat

arbitrary (in fact, the expression fdE in terms of the scale | hoth cases, we will keep only the root with the minus sign

factor is simpley. It is really for the cases where the energy since it matches with the small coupling limit. In the small

leak J is small that the effective potential approach makesqupble parameter limit, i.e., in the largelimit, the two

sense physically. expressions converge towards the same valde 2s found
previously.

C. Quadratic case For small bulk mass and coupling, the effective potential
approach can provide a reasonable apprOX|mat|on even in
the caseH¢>1. Indeed, neglecting the? term in Eq.
(4.24), one gets

In the case of the quadratic bulk potential and brane cou;
pling, Egs.(2.3), (2.4), the effective potential suggested by
the above analysis reafiwith Eq. (2.9) in mind]

3/1 1) 1(1 a a? ~ 7,2 3
Veii=— -]+ —M2+2———2 #? Meﬁ M +2 \/1+H €c, (a<M{). (4.29
Ks\ €y € 2\2 o 2¢
K2 o2 Therefore, in the limitH¢ <1, one finds
55 g
+t 1 €2¢ . (4.23

1
Meﬁ— M?2 +2€—, He<1, (4.30
At the extremum¢=0, the effective mass-squared is thus

given by which is exactly the same result as in E@.23. This
strongly indicates the validity of the effective potential ap-
proach forH¢<<1, at least in the case of quadratic potential

M; :—M +2 V1+H2€2 Py (4.24  and brane-coupling. It is then tempting to conjecture that this

approach is valid for more general cases, including the case

when the backreaction of the scalar field dynamics to the

geometry is non-negligible.

Even in the opposite limiH¢>1, one finds

where we have replacett, by its expression in terms df

and H. It is interesting to note that this potential which is

quartic in ¢, takes a double-well form for12 #<0. If the

present approach is valid, this implies that we may describe a 1 H

situation of spontaneous symmetry breaking Vit . Meff— M? +t25a, HE>L (4.3
We now wish to compare the results of the mode analysis

with the effective potential approach, and in order to so, tayhich is qualitatively similar to Eq(3.24 although the nu-

compare the effective mass predicted by the two analyses. Iferical coefficients in the linear combination are now
the previous section, we have identified two critical casesgjightly different.

the case when the bound state is a zero mode,rhél.),

=0, and tf;e case when the bound state reaches the top of the V. QUASINORMAL MODES
gap, i.e.,m(4)=(9/4)H2. In the effective potential approach, _
the equation We have so far concentrated our attention on stable,
bound-state modes. It is however instructive to study as well
20 o M2 thg decaying, quasinormal modes in th_e case where there
Meﬁ ——+ —=0, (4.25 exists no bound-state _mode,_although thls is a more compli-
M 2¢ 2 cated problem. In particular, if the effective potential we de-
rived in the previous section is valid, the tedvwhich de-
is easily solved to yield scribes the possible energy leak to the bulk may be
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determined by studying the decay width of quasinormal

modes. Py (2)=A.F
Mathematically, quasinormal modes are defined as those

that satisfy the purely outgoing-wave boundary condition at 2 TR VR 7) 1

the future Cauchy horizon of A¢SA quasinormal mode can +A2F( oty Ty 5:1—2) , (5.

be found by solving Eq(3.11) for complexu with Re ]

>0, with Im[ 2] being related to the decay width of the

effective four-dimensional mass,y. Note that, ifu is a

solution to Eq.(3.11), so is its complex conjugate*. For 1

definiteness, let us reserve the terminology “quasi-bound- 2ylr( _ __V)

state modes” for those modes with a nonzero imaginary part, A= (2—1)~(+1)2

and call the modes with positive realthe “purely decaying 1 Jal (- v—p) ’

modes.”

+

+

7 w3 1
2 +§'”+§*—21—z)

N|
N <=

N
N[ =

with

A. Analytical approach zvp( % +yp

In the limit H2¢?2<1, one can obtain an analytic expres- Ap=———(Z2—1)"2 (5.2
sion for the quasi-bound-state modes with the least real part, Val (L+v—p)
i.e., the effective mass with the smallest decay width. In this
case, it is convenient to use one of the decompositions of th8ubstituting this expression into the junction condition
associated Legendre function into hypergeometric function$3.11), and usingz?—1=(H¢) 2, one finds, by expanding

[21]: in terms ofH?%¢2,

1
F(—V)F(E‘f'll_,u,)
H?¢2+ O(H* %) +27%"

(v—4+a)

1 1f{r \*
(v—=2+a)(v—1)+ 5(1/—2)(1/—1)+L—1 (E_V) —u

1
F(V)F(E—V—,U,)

X (1—v)(v+2—a)(H%€?)"+ O[(H2¢?)"*2]=0. (5.3

We stress that this expansion makes sense onlyfét>¢>  the minus sigri.e., ©<0) is just a bound-state solution in
<1. The dominant terms are the first two terms which givethe limit H¢ <1, given by Eq.3.23. On the other hand, if
the quantity inside the square root is negative, the dominant

(v=2+a)(v—-1) (5.4) term of u will become purely imaginary and a small real part
—4+a T will develop inw, as a result of the appearance of an imagi-

_ _ _ _ ~ nary part inu?. The imaginary part ofx?, however, cannot

For this equation to be consistent with the conditionpe determined from the first line of E€5.3) which contains

u?H2€?<1, one must assume—2+a<1, which means only polynomial functions ofu2. One must resort to the

that one must be very close to the bound state region defineskcond line to compute its imaginary part, which will be
before. In this case, the solutions are given by

=

In the more particular case where bokh?¢?<1 and «
<1, one finds L(—v)l

u2H2(2=

1 2
E—V) H2¢%+4

2_ (1-a)(v—2+a)

. (59 2272(1—p)(v+2—a)(HO)?
H2¢? -
H202Im[ u?]= (v—4+a)

1
5+v—,u

9 M%’+4a xim 1 69
m== Z—W (5.6 ryr E_V_M

It may be worth mentioning that this result is valid irrespec-

tive of the relative magnitudes ¢f¢, M{ anda, as long as where one can substitute the soluti@5) in the right hand
they are all small compared to unity. In particular, if the side. This expression agrees wjtf for «=0.

quantity inside the square root is positive, the solution with  In the limit H2¢?<M?2¢2<1 andH?¢?<a<1, one finds
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a
H2€2Im[,u2]:i1—6(M2€2+4a)2, (5.8

which agrees with the Minkowski limit of6] in the casex
=0.

Another case which may be studied analytically, though

only qualitatively, is wherw>1. In this case Eq(3.11) im-
plies that the terms proportional ta should become
O(1/a). Hence, in the limitoe—c, wu is given by a zero of
P%_,,,(z) on the complexu-plane (with Rg x«]>0 and
Im[ «]#0), which is independent af. Thusu converges to
a finite value in the limite— 0.

PHYSICAL REVIEW D 68, 064012 (2003

10 20 30 20 50

Let us next discuss the purely decaying modes for which FIG. 2. Evolution in the compley-plane of the quasinormal

w lies on the(positive) real axis, i.e., with no real part in the

modes when the madd varies(with =0, z=10). The highest

effective mass. They are usually subdominant in the seng@Pints for each branch correspondNot =10. The increment be-

that their decay widths are larger than the decay width of th

complex quasi-bound-state modes discussed aboveH Eor

<1, the asymptotic behavior of Legendre functions is given
in Eqg. (3.13 and one thus finds the zeros of the boundary

condition (3.12) when the common dominatd#(1— w) for
all terms goes to infinity, i.e. for

up=1+n, n=0,12.... (5.9

The other limitisH¢>1 and the Legendre functions behave

according to Eq(3.9). In the boundary conditio3.11), the
dominant terms, whez>1, are the terms proportional to
P%_ 4, and therefore the zeros of E(.11) are given by

1
Un==+ VA+M?+n,

5 n=0,1,2...

(5.10

dween two adjacent points is(M¢)=1.

Let us start our numerical exploration with the case of a
vanishing couplinga=0. In Fig. 2, we have plotted the
numerical solutions fop in the complex plane for various
values of the bulk masl. As can be seen in the figure, we
have obtained several branches of solutions which evolve
continuously asM ¢ varies. AsM{ increases, the modes on
these branches migrate away from the real axis. The branch
closest to the vertical axis is the most important dynamically
because its imaginary part is small.

This branch is connected to the origin of the complex
plane in the limitM € — 0 and the corresponding quasinormal
modes have been computed analytically just aboveHér
<1 andM?¢?<1. As a check, we can compare the analyti-
cal results given above with our numerical solutions. As
noted before, we perform our search in the first quadrant of
the complexu-plane, which means Ifm(24)]<0. First, we
have checked that the real partmf4) is indeed very close to
the analytical valueM?/2. For the imaginary part, we have
plotted in Fig. 3—Im[m¢,,1/(M*¢?) as a function oM ¢ in

wheren is a positive integer, corresponding to cases Whergyo casesz=50 andz=1000. In both cases, starting from

the Gamma function in the denominatorff_,,, blows up.
These zeros thus now dependMrbut not on the coupling:
or on z (provided however>1).

B. Numerical approach

In order to study the quasinormal modes in more details,
we have solved numerically the following equation for the

complex numbey:

o
PV*?)/Z

F(u;M,a,2)=—(pn+v—1/2)
v—1/2

+(v—2)z+a(*-1)¥?=0, (5.12)

for various values of the parametdvs o andz As men-
tioned earlier, ifu is a solution, so isu*. Hence, without
loss of generality, we may confine our search fowon the
first quadrant(i.e., R «]>0 and Infu]>0) on the com-
plex u-plane.

high values ofM €, one approaches the analytical value of
7/16 as M{ decreases, as suggested by E§8). But,
whereas in the case= 1000, the dots continue to approach
/16, there is a sudden change in the evolutionZer50.
This is simply due to the fact that, evenHf¢ <1, the small

0.18

0.16

0.14

0.12

0.05 0.1 0.15 0.2 0.25 0.3

FIG. 3. —Im[m,,]/(M*¢?) as a function oM ¢ (z=50 for the
lower points,z= 1000 for the upper pointsThe curves correspond
to the analytical estimatés.7).
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Im[ u] with increasing coupling, in the caséd{=5 where several
e . quasinormal modes are already known to exist in the com-
s plex w-plane for vanishing coupling. We have no analytic
) expression for this case, but one can observe that each of the
10 . . modes follows a curve analogous to thMef =0 case. We
) have also added the evolution corresponding to increasing
negative coupling. For the first branch, one finds that the
mode converges towards the origin of the complex plane,
which could be expected since at some critical value of the
coupling one will enter into the localized mode region. For
555 75 10 125 15 175~ RelH the second branch, one observes that the modes at large
negative couplings converge towards the modes of the pre-

FIG. 4. Evolution in the compleyu-plane of the quasinormal vious branch at I_arge positive couplings. The same behavior
occurs for the third branch.

modes when the coupling varies, in the clockwise direction, from 0
to 7 (with M€=0, z=10). The increment between two points is

Aa=0.2. VI. CONCLUSIONS

14
12

8
6
4
2

In the present work, we have studied the modes of a mas-
sive bulk scalar field that are localized (@uasilocalizegion
a brane with a de Sitter geometry, characterized by a Hubble
parameteH. We have allowed for a coupling between the
brane tension and the bulk scalar field, quantified by a di-

values ofM ¢ become of the same order of magnitude-as

and Eq.(5.8) is no longer a good approximation: one needs

the more general expressidB.7). The two curves in the

figure correspond to the analytical estimate given by Eq

(5.7 and one sees that the numerical values converge t%ensionless parameter

wards these curves for low masses. . . . Although the bound state of a massless bulk scalar field
Our numerical treatment allows us to continue this quasi-

normal branch bevond the reaime of validity of the anal ticalwithout coupling to the de Sitter brane is a zero mode, i.e. its
) y € reg y YUCAlor-dimensional effective mass)4, vanishes, this is no
calculations, and in particular for very high masses. More-

over, as mentioned before and as illustrated in Fig. 2 Wlonger the case for a nonzero bulk madsor a nonzero
’ . g. & oupling. One thus finds in generalnaassive bound state
have found other solutions fqe, away from the real axis,

which correspond to additional branches. Each of these newhose four-dimensional mass dependshona andH. We
P ) C e ave computed explicitly this dependence in the limit of a
branches starts from the real axis after a critical mass thresh:- :
all bulk mass and small coupling.
old has been reached and then evolves away from the rea 5 .
. ; The mass-squaret(,, of the bound state is always com-
axis asM ¢ increases.

Let us now consider the situation when the coupling is?r'ged betV\t/_een zer(];) ang (3%?/’ zri]valueb?bovg Wh'fh.t?nef
allowed to vary. We have plotted in Fig. 4 the evolution of INds a continuum of Modes. YVe have obtained explcitly, Tor

the quasinormal mode with the increasipgsitive) coupling ﬁ}ny valueiloﬂ\/l andH, thedl_owetr a?r?_ upper crltlfcal vaI%(Ias for
in the caseM ¢ =0. What can be observed is that the mode, € coupling corresponding o this range of possible zero

. . odes.
;f:/s;rgglir:g away from the real axis, tends to come bac Another approach consists in trying to find a purely four-
In Fig. 5, we have also plotted the same evolution, i‘e.dlmensmnal description of the sca_lar field |.nclud|ng the ef-
fect of the bulk. We have generalized previous such proce-

dures to take into account the coupling, and defined an

Im[ y] effective potential for the value on the brane of the scalar
e field. For smallM and«, the second derivative of the effec-
40 . : tive potential yields an effective mass-squared which is in
) excellent agreement with the rigorous mode approach for
301 smallH and in qualitative agreement for large We have
R also demonstrated that a class of known exact solutions with
20 3 a bulk scalar field indeed conforms to the effective potential
approach.
10 e Finally, when the three parametavk « andH are not in
: the region allowing for bound states, one finds modes whose
10 20 30 40 Rel Wl effective mass has an imaginary part. This means that the

corresponding states cannot stay localized on the brane but
FIG. 5. Variation in the complex:-plane of the quasinormal will escape into the bulk. We have explored numerically the
modes when the coupling changésr M¢=5, z=10). The incre- dependence of the real and imaginary part of the four-
ment between adjacent points As«=1. The three big dotsin dimensional mass on the values of the bulk mass and of the
black) correspond to the modes far=0. The points on the left of Ccoupling and we have given an analytical estimate of the
each black dot correspond to negative couplings and those on ttguasilocalized modes for small values of the Hubble param-
right to positive couplings. eter, i.e H{<1.

064012-10



MASSIVE SCALAR STATES LOCALIZED ON A ... PHYSICAL REVIEW D 68, 064012 (2003

ACKNOWLEDGMENTS work is supported in part by Monbukagaku-sho Grant-in-Aid
for Scientific ResearcliS), No. 14102004. This work was
) _ initiated when M.S. was visiting the gravitation and cosmol-
We would like to thank K. Koyama for useful communi- ogy group (GReCQ at IAP, Paris. M.S. is grateful to the
cations, in particular, for bringing our attention to exact so-Universite Paris 7-APC for financial support and to the
lutions that conform to the effective potential approach. ThisGReCO members for warm hospitality.

[1] V.A. Rubakov and M.E. Shaposhnikov, Phys. La25B, 136 Lett. B 477, 285(2000.

(1983; K. Akama, Lect. Notes Phy4.76, 267 (1982. [12] K.i. Maeda and D. Wands, Phys. Rev.@2, 124009(2000.
[2] L. Randall and R. Sundrum, Phys. Rev. L&8, 4690(1999. [13] T. Shiromizu, K.i. Maeda, and M. Sasaki, Phys. Rev6®)
[3] J. Garriga and M. Sasaki, Phys. Rev6R 043523(2000. 024012(2000.

[4] D. Langlois, R. Maartens, and D. Wands, Phys. Letd@,  [14] T. Tanaka and Y. Himemoto, Phys. Rev.63, 104007(2003.

259 (2000. [15] D. Langlois, L. Sorbo, and M. Rodriguez-Martinez, Phys. Rev.
[5] A.V. Frolov and L. Kofman, hep-th/0209133. Lett. 89, 171301(2002.

[6] S.L. Dubovsky, V.A. Rubakov, and P.G. Tinyakov, Phys. Rev. [16] R.G. Cai, J.Y. Ji, and K.S. Soh, Phys. Rev5D) 6547(1998.

D 62, 105011(2000. _ [17] H.A. Chamblin and H.S. Reall, Nucl. PhyB562, 133(1999.
[7]Y. Himemoto, T. Tanaka, and M. Sasaki, Phys. Rev6%) [18] D. Langlois and M. Rodriguez-Martinez, Phys. Rev. @3,

104020(2002. 123507(2001)

[8] N. Sago, Y. Himemoto, and M. Sasaki, Phys. Rev.6B .
024014(2002. [19] D. Langlois, Prog. Theor. Phys. Supfk8 181 (2003.

[9] Y. Himemoto and M. Sasaki, Phys. Rev.d3, 044015(2001). [20] K. Koyama and K. Takahashi, Phys. Rev. &, 103503

[10] R. Maartens, D. Wands, B.A. Bassett, and |. Heard, Phys. Rev, (2003. )
D 62, 041301R) (2000 [21] See, e.g., Sec. 3(21) of H. BatemanHigher Transcendental

[11] P. Binetruy, C. Deffayet, U. Ellwanger, and D. Langlois, Phys.  Functions(McGraw-Hill, New York, 1953, Vol. 1.

064012-11



