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Massive scalar states localized on a de Sitter brane
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We consider a brane scenario with a massive scalar field in the five-dimensional bulk. We study the scalar
states that are localized on the brane, which is assumed to be a de Sitter brane. These localized scalar modes
are massive in general, their effective four-dimensional mass depending on the mass of the five-dimensional
scalar field, on the Hubble parameter in the brane and on the coupling between the brane tension and the bulk
scalar field. We then introduce a purely four-dimensional approach based on an effective potential for the
projection of the scalar field in the brane, and discuss its regime of validity. Finally, we explore the quasilo-
calized scalar states, which have a nonzero width that quantifies their probability of tunneling from the brane
into the bulk.
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I. INTRODUCTION

A lot of attention has been recently devoted to the bra
world scenario, which provides an alternative to the stand
Kaluza-Klein compactification. In fact, this idea was initiat
a long time ago by the suggestion@1# that particles could be
localized on a defect embedded in a higher-dimensio
space, the simplest example being the case of a domain
or three-brane, in a five-dimensional bulk spacetime. It w
then shown, ignoring gravity, that one could localize scal
and fermions on the domain wall.

Recent progress was achieved on the gravitational as
of the problem, by showing that it was possible to local
massless gravitons@2#, and thus to recover standard fou
dimensional gravity, on a brane with tension embedded in
anti–de Sitter~AdS! bulk, with the appropriate~negative!
cosmological constantL526/,2, so that the brane is effec
tively a Minkowski brane. In addition to the massless gra
tons, one finds a continuous spectrum of massive gravit
starting from zero mass but with a weak coupling to t
brane so that their contribution becomes important only
scales of the order of, or below.

The analysis of the graviton modes has also been
tended to the case of a brane whose effective geometry
Sitter @3,4#, which is the case when the brane tension m
than compensates the cosmological constant. The m
analysis on this background yields a massless gravi
analogous to the four-dimensional graviton, plus a c
tinuum of massive modes, which starts at (3/2)H. There is
thus a gap between the zero mode and the massive mod
recent work@5# has generalized this treatment to the case
conformally flat cosmological geometries and showed t
the minimum gap isA3/2H.

Not surprisingly, massless bulk scalar fields have prop
ties very similar to the gravitons. In the Randall-Sundru
~RS! background, it is easy to show that, as for gravito
there exist a localized zero mode and a continuum of a
trary light states. When one allows for a small but nonva
ishing mass, it turns out that the massless bound state d
0556-2821/2003/68~6!/064012~11!/$20.00 68 0640
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pears and turns into a quasilocalized state with finite m
and finite width, the latter quantifying the probability for th
state to decay into the bulk@6#.

The purpose of the present work is to study how the
properties of massive bulk scalar fields are modified wh
the brane geometry is de Sitter instead of Minkowski. Ma
sive scalar fields are of special interest for a bulk inflat
model of braneworld inflation@7–9#, where inflation in the
brane is driven by a bulk scalar field, in contrast with a bra
inflaton model, where inflation is driven by a fou
dimensional field confined to the brane@10#.

In the present work, we study in detail thebound statesof
a massive bulk scalar field, localized on ade Sitter brane,
taking also into account the possibility of acouplingbetween
the scalar field and the tension of the brane. We show t
depending on the range of values for the scalar field masM
and the coupling, one can find bound states, which can
massless or massive.

We then consider and extend another approach, wh
consists in determining an effective four-dimensional pot
tial for the projection of the bulk scalar field in the bran
taking into account the five dimensional effects, via the
fective four-dimensional Einstein equations. We are thus a
to deduce an effective four-dimensional potential that co
bines the five-dimensional potential and the coupling to
brane. We then compare this approach with the mode
proach and find surprisingly good agreement. Namely, gi
the five-dimensional mass, both the critical coupling allo
ing for a zero mode and that at which the bound-state ce
to exist agree well with those obtained from the mode ana
sis. ForH,!1, one can intuitively expect an agreement b
tween the effective 4D description and the exact 5D analy
since the effective size of the extra dimension,,, is much
smaller than the characteristic cosmological length sc
here the Hubble radiusH21. In a sense, the theory is effec
tively 4-dimensional. We however did not expect the agr
ment in the caseH,@1, even if less precise than in th
previous case, and we have not found so far an explana
for it.
©2003 The American Physical Society12-1
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Finally, we also explore some aspects of the quasibo
states~or quasinormal modes! in the range of parameter
where the bound states no longer exist.

The plan of the paper is the following. In the next sectio
we present the model and give the equation of motion for
bulk scalar field. In Sec. III, we discuss the existence
bound states. Section IV is devoted to an alternative
proach based on an effective four-dimensional potential.
nally, we explore, analytically and numerically, the quasi
calized scalar modes, which correspond to modes esca
from the brane into the bulk.

II. DESCRIPTION OF THE MODEL

We consider a five-dimensional bulk scalar fieldf and a
brane with a tensions coupled to this bulk scalar field. Th
corresponding action is given by

S5E d5xA2g(5)S 1

2k2 ~R22L5!2
1

2
~¹f!22V~f! D

2E d4xA2g(4)s~f!, ~2.1!

where we have introduced a five-dimensional~negative! cos-
mological constant

L552
6

,2
. ~2.2!

In this work, we will concentrate, for simplicity, on the cas
of a quadratic bulk potential,

V~f!5
1

2
M2f2, ~2.3!

and of a quadratic coupling, i.e. of the form

s~f!5s01
a

,
f2, ~2.4!

where a is a dimensionless parameter characterizing
‘‘strength’’ of the coupling to the brane.

We will take as our background configuration, the so
tion of the above setup, with the usual cosmological symm
tries~homogeneity and isotropy along the three ordinary s
tial dimensions!, when the scalar field vanishes everywhe
In this case, the bulk is effectively empty of matter an
owing to the cosmological symmetries we impose, its geo
etry corresponds to AdS5. The metric can be written in the
form

ds25dr21,2sinh2~r /, !@2dt21e2tdx(3)
2 #, ~2.5!

where we have chosen, for simplicity, a flat slicing for t
three-dimensional surfaces.

It is possible to insert a brane in such a geometry. Assu
ing as usual that the bulk isZ2 symmetric, i.e. mirror sym-
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metric, about the brane, the junction conditions for the me
at the brane location yield the familiar brane Friedma
equation@11#

H25
L5

6
1S k2

6 D 2

s0
2 . ~2.6!

In the present case, the Hubble parameter is constant, so
the brane geometry is de Sitter. The Hubble paramete
related to the brane positionr 0, which is fixed in the above
coordinate system~2.5!, according to the expression

H25
1

,2sinh2~r 0 /, !
. ~2.7!

It is then convenient to rescale the time coordinate so tha
corresponds to the cosmic time in the brane. The metric n
reads

ds25dr21H2,2sinh2~r /, !@2dt21H22e2Htdx(3)
2 #.

~2.8!

It is also convenient to introduce, in addition to the Ad
length scale,, another length scale, defined from the bra
tensions0,

,05S k2

6
s0D 21

. ~2.9!

In the RS case,,5,0, whereas,0,, for a de Sitter brane.
The brane Hubble parameter is thus given by

H25
1

,0
2

2
1

,2
. ~2.10!

Introducing the variable

z5cosh~r /, !, ~2.11!

the Hubble parameter given in Eq.~2.7! can be reexpresse
as

H~z0!5
1

,Az0
221

~2.12!

and the expression of,0 in terms ofz0 is therefore

,05
,

z0
Az0

221. ~2.13!

Let us now turn to the scalar field, which will be consi
ered as a test field on the background configuration pr
ously defined. In other words, we will ignore its backreacti
on the geometry. In the bulk, the scalar field must satisfy
Klein-Gordon equation, which is given, for the metric~2.8!
by
2-2
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1

H2,2sinh2~r /, !
e23Ht] t~e3Ht] tf!

2
1

sinh4~r /, !
] r@sinh4~r /, !] rf#1M2f50.

~2.14!

In addition to this bulk equation, the scalar field must a
satisfy the appropriate boundary condition due to the p
ence of the brane. It can be shown that, forZ2 symmetry, this
boundary condition is given by

] rfur 5r 0
52

1

2

ds

df
52

a

,
f. ~2.15!

It is clear from the two above equations~2.14! and ~2.15!
that we chose to work with quadratic expressions both
the bulk potential and the brane coupling in order to
linear equations for the scalar field, which greatly simplifi
the analysis.

III. EXISTENCE OF BOUND STATES

The purpose of this section is to solve explicitly the sy
tem of Eqs.~2.14!, ~2.15!. Since the bulk equation is sepa
rable, it is natural to look for solutions of the form

f5u~r !c~ t !, ~3.1!

which leads to a separation of the bulk differential equat
~2.14! into a radial equation and a time-dependent equat

F 1

sinh4~r /, !
] r@sinh4~r /, !] r #2M2

1
l2

,2sinh2~r /, !
Gu~r !50, ~3.2!

F d2

dt2
13H

d

dt
1H2l2Gc~ t !50, ~3.3!

wherel2 is a separation constant. And the boundary con
tion ~2.15! becomes

d

dr
u~r !52

a

,
u~r ! at r 5r 0 . ~3.4!

The solution of the radial equation~3.2! can be expresse
in terms of associated Legendre functions. Using the varia
z defined in Eq.~2.11!, one finds

um~z!5
Pn21/2

m ~z!

~z221!3/4
~3.5!

with

m25
9

4
2l2, n5AM2,214. ~3.6!
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The effective four-dimensional mass of the mode, which
pears clearly in the time-dependent equation~3.3!, is thus
given by

m(4)
2 5l2H25~9/42m2!H2. ~3.7!

In the rest of this section, we wish to investigate wheth
there exist bound state solutions. Bound states modes
defined as solutions which are normalizable, i.e., such th

2E
0

r 0
dr sinh2r um~r !um* ~r !

52E
1

z0
dzAz221um~z!um* ~z!,`. ~3.8!

Since the behavior of the Legendre functions whenz ap-
proaches 1 is given by

Pn
m~z!;

2m/2

G~12m!
~z21!2m/2, z→1, ~3.9!

the integral in Eq.~3.8! converges ifm is real and negative
Therefore, a bound state exists if one can find a solution~3.5!
with m,0 that also satisfies the boundary condition~3.4!,
which can be reexpressed in terms of the variablez as

d

dz
u1

a

~z221!1/2
u50 at z5z0 . ~3.10!

Substituting the solution~3.5!, this gives the condition

d

dz
Pn21/2

m 2
3

2

z

z221
Pn21/2

m 1
a

~z221!1/2
Pn21/2

m

5
1

z221
$@~n22!z1a~z221!1/2#Pn21/2

m

2~m1n21/2!Pn23/2
m %50, ~3.11!

where the second expression is obtained by using the re
rence relations satisfied by the associated Legendre f
tions.

The bound states are delimited by two extreme cases:
massless mode~zero mode!, characterized by the valuem
523/2, and the mode at the top of the gap, characterized
the mass-squaredm(4)

2 5(3/2)H2, i.e., m50, above which
bound states cannot exist. For each set of values forH ~or z)
2-3
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and M, one can thus define two critical values for the co
pling: the lower one,azm, corresponding to a bound sta
that is also a zero mode and the upper one,abs giving the
threshold above which bound states disappear.

Using the boundary condition~3.11!, one immediately
finds that the zero mode coupling, corresponding tom
523/2, is given by

azm~z,M !52M2,2
Pn21/2

25/2

Pn21/2
23/2

, ~3.12!

where we have used one of the recurrence relations for
Legendre functions and the definition ofn in terms of M.
Note that, for M50, one getsazm50: one recovers the
usual zero mode of a massless bulk scalar field with no c
pling to the brane. As soon as the bulk massM is nonzero,
with M2.0, the zero mode coupling becomes negati
which means that one can find a zero mode localized on
brane only with a negative coupling. The case opposite
this occurs for an unstable potential, i.e.,M2,0 ~for M2,2

.24, which we assume in the present paper!.
It is interesting to consider two limits concerning th

Hubble parameter of the dS brane: the limit where
Hubble parameter is very small,H,!1, corresponding to
large values ofz; and, conversely, the limit whereH,@1,
corresponding to values ofz very close to 1. For the firs
limit, one can use the asymptotic behavior

Pn
m~z!;2np21/2

GS n1
1

2D
G~11n2m!

zn, z@1, ~3.13!

which leads to the result

azm.22n522AM2,214, H,!1. ~3.14!

For the second limit, the expression~3.9! shows thatazm
behaves like the inverse of the Hubble parameter, more
cifically

azm.2
M2,

5H
, H,@1. ~3.15!

Similarly, one can define the largest coupling,abs, that
allows for the existence of a bound state. Using the bound
condition ~3.11! with m50, it is given by the expression

abs~z,M !5
~n21/2!Pn23/22~n22!zPn21/2

~z221!1/2Pn21/2

. ~3.16!

When the mass of the bulk scalar field vanishes,M50, then
n52 and the above expression for the critical coupling s
plifies and reads

abs~z,0!5
3

2

P1/2

~z221!1/2P3/2

. ~3.17!
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As before, it is interesting to consider the behavior of t
maximal coupling in the two limitsz→` andz→1. In the
first limit, one finds the same result as forazm, namely

abs.22n522AM2,214, H,!1, ~3.18!

which means that a bound state exists only for a value of
coupling very close to 22n, i.e., negative forM2.0 ~and
positive otherwise!. In the second limit, one finds thatabs is
proportional toH,

abs.
3

2
H,, H,@1. ~3.19!

In Fig. 1, we have plotted the critical couplingsazm andabs
as a function ofz for three bulk masses (M2,251, M2,2

50, M2,2521). This defines, for the three cases, the
gions in the coupling parameter space that allow for a bo
state. Outside these regions, there is no bound state an
four-dimensional mass of the modes has an imaginary p
as will be discussed later. For largez, i.e. for smallH, the
bound state regions become thinner and thinner ba
around the linea522n.

Note that, for a positive massM, the critical couplingabs
is not always positive, but becomes negative forz.zc(M ).
This means that whereas forz,zc(M ), i.e., for a Hubble
parameter sufficiently high, one can always find a bou
state with a vanishing coupling, it is no longer the case
z.zc(M ) where a bound state can be found only with
negative coupling.

Finally, a more general quantitative analysis is possible
the cases whereM2,2!1 anda!1. Indeed, by linearizing
the boundary condition~3.11! about the zero mode solutio
characterized bym523/2, M50 anda50, one can find
the linear deviationDm5m13/2 as a function of the smal
parametersM2,2 and a. ExpressingDm in terms of the
effective four-dimensional mass of the bound state, one g

m(4)
2 . f 1~H, !

M2

2
1 f 2~H, !

2a

,2
, ~3.20!

2 4 6 8 10

-0.2

0.2

0.4

0.6

0.8

1

α

FIG. 1. Range of coupling valuesa that allow for the existence
of a bound state, as a function ofz ~and thus ofH,) for the three
following cases:M2,251 ~long-dashed lines!; M2,2521 ~short-
dashed lines!; M2,250 ~continuous lines!. In each case the uppe
limit corresponds toabs(z,M ) and the lower limit toazm(z,M ),
both values converging towardsa522A41M2,2 at largez.
2-4
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with

f 1~H, !5
A11H2,2

R~H, !
2

3

2
H2,2, f 2~H, !5

1

R~H, !
,

~3.21!

and

R~H, !5
2Az221P1/2

23/2~z!

3P3/2
23/2~z!

5A11H2,22H2,2lnS 11A11H2,2

H, D .

~3.22!

The expression~3.20! shows that, in the linearized limit, th
~small! bulk mass-squared and brane coupling contribute
ditively to the effective four-dimensional mass-squared
the bound state. The coefficients in the linear combinat
depend onz, i.e. on the value of the Hubble parameter. In t
limit H,→0, i.e.,z→1`, one finds

m(4)
2 .

M2

2
12

a

,2
, H,!1, ~3.23!

whereas in the opposite limit one gets

m(4)
2 .

3

5
M213

H

,
a, H,@1. ~3.24!

The contribution from the coupling is thus proportional
the coupling parametera/, times the largest of the two mas
scalesH and,21. The contribution from the bulk scalar fiel
mass is essentially the same with a very small variation
the coefficient. Note also that the result~3.15! follows im-
mediately from Eq.~3.24! with m(4)

2 50.
In the case ofH,!1, it may be worth mentioning that th

coupling (a/,)f2 on the brane contributes to the effectiv
mass term as it is, if we rescalef asf→F5A,f by intro-
ducing an effective four-dimensional scalar fieldF of correct
dimensions, whereas the bulk mass-squaredM2 contributes
with a factor of 1/2.

IV. EFFECTIVE POTENTIAL APPROACH

In this section, we will use the four-dimensional proje
tion of the five-dimensional Einstein equations onto t
brane in order to establish an effective potential for the fo
dimensional projection of the scalar field on the brane. S
a procedure was successfully applied in the case of a
scalar field with quadratic potential but without coupling
the brane@7,8# and it was shown that the effective potent
is simply half the bulk potential whenH,!1. The purpose
of this section is to generalize this result to include the c
pling of the scalar field to the brane.
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A. General derivation

We will start by recalling some results derived in@12#
following the procedure of@13#. It was shown there in par
ticular that the effective four-dimensional Einstein equatio
for dilaton-vacuum configurations are given by

(4)Gmn5
2k5

2

3
T̂mn~f!2 (4)Lgmn2Emn , ~4.1!

with

T̂mn5DmfDnf2
5

8
gmn~Df!2, ~4.2!

(4)L5
(5)L

2
1

1

2
k5

2FV~f!1
1

6
k5

2s22
1

8S ds

df D 2G , ~4.3!

whereDm denotes the covariant differentiation with respe
to the metric on the brane. Using the four-dimensional Bia
chi identities, the covariant differentiation of Einstein’s equ
tions ~4.1! implies

DmEmn5
2

3
k5

2DmT̂mn2Dn
(4)L. ~4.4!

Specializing to a FLRW~Friedmann-Lemaıˆtre-Robertson-
Walker! geometry, one finds that the Friedmann equation
the brane, corresponding to the component~0-0! of Eq. ~4.1!
is given by

3H252
3

,2
1k5

2S 1

4
ḟ21

1

2
V1

k5
2

12
s22

1

16
s8 2D 1E,

~4.5!

whereE5E0
052E00. Equation~4.4! yields

Ė14HE5k5
2F2

1

2
f̈22Hḟ2

1

2
V82

k5
2

12
~s2!8

1
1

16
~s8 2!8G ḟ

5k5
2F1

2
~f̈12Hḟ !2~f̈13Hḟ !2

1

2
V8

2
k5

2

12
~s2!81

1

16
~s8 2!8G ḟ, ~4.6!

where we have rewritten the terms in the brackets involv
the first and second derivatives off, as two linear combina-
tions, one which will be easily integrated and the other o
corresponding to the familiar four-dimensional Klein
Gordon equation.

We are now going to assume that the brane value of
scalar field satisfies a Klein-Gordon equation that can
written in the form

f̈13Hḟ1Veff8 52J, ~4.7!
2-5
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whereVeff is an effective potential which we wish to dete
mine and whereJ stands for a possible energy leak out of t
brane into the bulk. Substituting this Klein-Gordon equati
in Eq. ~4.6! above, one finds

Ė14HE5
k5

2

2
~f̈12Hḟ !ḟ1k5

2FVeff8 2
1

2
V82

k5
2

12
~s2!8

1
1

16
~s8 2!81JG ḟ. ~4.8!

This strongly suggests that the effective potential, if it mak
sense, is of the form

Veff52
3

k5
2,2

1
1

2
V1

k5
2

12
s22

1

16
s8 2, ~4.9!

where the choice of the constant is for convenience as wil
seen very soon. Remarkably, this is the same combina
which appears in the Friedmann equation~4.5!. That is, if we
adopt this definition for the effective potential, and introdu
the quantityX defined by

E5
k5

2

4
ḟ21k5

2X, ~4.10!

the Friedmann equation~4.5! and Eq.~4.8! for E reduce to
the very simple system

3H25k5
2F1

2
ḟ21Veff1XG , ~4.11!

Ẋ14HX5Jḟ, ~4.12!

where one recognizes the standard four-dimensional Fr
mann equation with a scalar field and some extra compo
X. The second equation is a~non!conservation equation fo
the extra-componentX. Note thatX plays the role of the
Weyl, or dark radiation, which was identified in the simple
model of brane cosmology@11#. When the energy outflow is
zero, i.e.J50, one recovers the result

X5
C
a4

. ~4.13!

A nonzeroJ means that there is an energy outflow from t
brane into the bulk, which is going to feed the Weyl ener
density, as it has been recently worked out in@14# for bulk
inflation. This is also similar somehow to the growth ofC
induced by the gravitational wave emission from brane c
mological perturbations, which was recently analyzed
@15#. It should also be mentioned that we have not rea
proved the form~4.9! for the effective potential. We hav
simply shown that this form is consistent with the system
effective equations in the brane.
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B. Exact solutions

It is instructive at this stage to check the above appro
for known exact solutions. One of the simplest examples
the case of a bulk scalar field with the exponential poten
@16–20#

V~f!5V0expS 2
2

A3
lkf D . ~4.14!

One can find for the bulk with vanishing cosmological co
stant explicit static solutions, which read

ds252h~R!dT21
R2l2

h~R!
dR21R2dxW2, ~4.15!

for the metric, with

h~R!52
k2V0/6

12~l2/4!
R22CRl222, ~4.16!

C being an arbitrary constant, and

k

A3
f5l ln~R! ~4.17!

for the scalar field.
A brane with a tension

s~f!5s0expS 2
l

A3
kf D ~4.18!

will undergo a cosmological evolution governed by the ge
eralized Friedmann equation

H25Fk4

36
s0

21
k2V0/6

12~l2/4!GR22l2
1CR242l2

. ~4.19!

Since the bulk cosmological constant is zero, the effect
potential is here

Veff5
1

2
V1

k5
2

12
s22

1

16
s8 2

5FV0

2
1

k2

12S 12
l2

4 Ds0
2GexpS 2

2

A3
lkf D

[Veff,0expS 2
2

A3
lkf D . ~4.20!

It is not difficult to check thatf satisfies the effective Klein-
Gordon equation~4.7! with

J52S 12
l2

2 DHḟ. ~4.21!

The Friedmann equation~4.19! can also be written in the
effective form~4.11! with the energy densityX given by
2-6
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k2X53S 12
l2

4 D CR242l2
2

k2

4
ḟ2

53S 12
l2

2 D CR242l2
2

l2/4

12l2/4
Veff,0R

22l2
.

~4.22!

Thus, if we apply our interpretation ofJ that it describes
energy flow from the brane into the bulk, the above analy
implies that the energy is actually flowing onto the brane
l2,2 rather than flowing out of the brane. It is also wor
noting that, whereas the present example is an instruc
check, it is however not very useful in practice because
energy exchange between the brane and the bulk is impo
so that the choice between the variablesX andE is somewhat
arbitrary ~in fact, the expression forE in terms of the scale
factor is simpler!. It is really for the cases where the ener
leak J is small that the effective potential approach mak
sense physically.

C. Quadratic case

In the case of the quadratic bulk potential and brane c
pling, Eqs.~2.3!, ~2.4!, the effective potential suggested b
the above analysis reads@with Eq. ~2.9! in mind#

Veff5
3

k5
2 S 1

,0
2

2
1

,2D 1
1

2 S 1

2
M212

a

,,0
2

a2

2,2D f2

1
k5

2

12

a2

,2
f4. ~4.23!

At the extremumf50, the effective mass-squared is th
given by

Meff
2 5

1

2
M212

a

,2
A11H2,22

a2

2,2
, ~4.24!

where we have replaced,0 by its expression in terms of,
and H. It is interesting to note that this potential, which
quartic in f, takes a double-well form forMeff

2 ,0. If the
present approach is valid, this implies that we may describ
situation of spontaneous symmetry breaking withVeff .

We now wish to compare the results of the mode analy
with the effective potential approach, and in order to so,
compare the effective mass predicted by the two analyse
the previous section, we have identified two critical cas
the case when the bound state is a zero mode, i.e.,m(4)

2

50, and the case when the bound state reaches the top o
gap, i.e.,m(4)

2 5(9/4)H2. In the effective potential approach
the equation

Meff
2 [

2a

,,0
2

a2

2,2
1

M2

2
50, ~4.25!

is easily solved to yield
06401
is
r

ve
e
nt

s

-

a

is
o
In

s:

the

âzm~z,M !5
2z

Az221
6A 4z2

z221
1M2,2. ~4.26!

Similarly, the bound state threshold is determined by solv
the equation

Meff
2 [

2a

,,0
2

a2

2,2
1

M2

2
5

9/4

,2~z221!
, ~4.27!

which gives

âbs~z,M !5
2z

Az221
6A 4z2

z221
1M2,22

9/2

~z221!
.

~4.28!

In both cases, we will keep only the root with the minus si
since it matches with the small coupling limit. In the sma
Hubble parameter limit, i.e., in the largez limit, the two
expressions converge towards the same value 22n as found
previously.

For small bulk mass and coupling, the effective poten
approach can provide a reasonable approximation, eve
the caseH,@1. Indeed, neglecting thea2 term in Eq.
~4.24!, one gets

Meff
2 .

1

2
M212

a

,2
A11H2,2, ~a!M, !. ~4.29!

Therefore, in the limitH,!1, one finds

Meff
2 .

1

2
M212

a

,2
, H,!1, ~4.30!

which is exactly the same result as in Eq.~3.23!. This
strongly indicates the validity of the effective potential a
proach forH,!1, at least in the case of quadratic potent
and brane-coupling. It is then tempting to conjecture that t
approach is valid for more general cases, including the c
when the backreaction of the scalar field dynamics to
geometry is non-negligible.

Even in the opposite limitH,@1, one finds

Meff
2 .

1

2
M212

H

,
a, H,@1, ~4.31!

which is qualitatively similar to Eq.~3.24! although the nu-
merical coefficients in the linear combination are no
slightly different.

V. QUASINORMAL MODES

We have so far concentrated our attention on sta
bound-state modes. It is however instructive to study as w
the decaying, quasinormal modes in the case where t
exists no bound-state mode, although this is a more com
cated problem. In particular, if the effective potential we d
rived in the previous section is valid, the termJ which de-
scribes the possible energy leak to the bulk may
2-7
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determined by studying the decay width of quasinorm
modes.

Mathematically, quasinormal modes are defined as th
that satisfy the purely outgoing-wave boundary condition
the future Cauchy horizon of AdS5. A quasinormal mode can
be found by solving Eq.~3.11! for complexm with Re@m#
.0, with Im@m2# being related to the decay width of th
effective four-dimensional massm(4) . Note that, if m is a
solution to Eq.~3.11!, so is its complex conjugatem* . For
definiteness, let us reserve the terminology ‘‘quasi-bou
state modes’’ for those modes with a nonzero imaginary p
and call the modes with positive realm the ‘‘purely decaying
modes.’’

A. Analytical approach

In the limit H2,2!1, one can obtain an analytic expre
sion for the quasi-bound-state modes with the least real p
i.e., the effective mass with the smallest decay width. In t
case, it is convenient to use one of the decompositions of
associated Legendre function into hypergeometric functi
@21#:
ive

on

n

c

e
it

06401
l

se
t

-
rt,

rt,
s
he
s

Pn
m~z!5A1FS 1

2
1

n

2
2

m

2
,
1

2
1

n

2
1

m

2
;n1

3

2
,

1

12z2D
1A2FS 2

n

2
1

m

2
,2

n

2
2

m

2
;2n1

1

2
,

1

12z2D , ~5.1!

with

A15

22n21GS 2
1

2
2n D

ApG~2n2m!
~z221!2(n11)/2,

A25

2nGS 1

2
1n D

ApG~11n2m!
~z221!n/2. ~5.2!

Substituting this expression into the junction conditi
~3.11!, and usingz2215(H,)22, one finds, by expanding
in terms ofH2,2,
~n221a!~n21!1H 1

2
~n22!~n21!1

1

4 F S 1

2
2n D 2

2m2G~n241a!J H2,21O~H4,4!1222n

G~2n!GS 1

2
1n2m D

G~n!GS 1

2
2n2m D

3~12n!~n122a!~H2,2!n1O@~H2,2!n12#50. ~5.3!
n

ant
rt
gi-

e

We stress that this expansion makes sense only form2H2,2

!1. The dominant terms are the first two terms which g

m2H2,2.S 1

2
2n D 2

H2,214
~n221a!~n21!

n241a
. ~5.4!

For this equation to be consistent with the conditi
m2H2,2!1, one must assumen221a!1, which means
that one must be very close to the bound state region defi
before. In this case, the solutions are

m.6AS a2
3

2D 2

22
~12a!~n221a!

H2,2
. ~5.5!

In the more particular case where bothM2,2!1 and a
!1, one finds

m.6A9

4
2

M2,214a

2H2,2
. ~5.6!

It may be worth mentioning that this result is valid irrespe
tive of the relative magnitudes ofH,, M, anda, as long as
they are all small compared to unity. In particular, if th
quantity inside the square root is positive, the solution w
ed

-

h

the minus sign~i.e., m,0) is just a bound-state solution i
the limit H,!1, given by Eq.~3.23!. On the other hand, if
the quantity inside the square root is negative, the domin
term ofm will become purely imaginary and a small real pa
will develop inm, as a result of the appearance of an ima
nary part inm2. The imaginary part ofm2, however, cannot
be determined from the first line of Eq.~5.3! which contains
only polynomial functions ofm2. One must resort to the
second line to compute its imaginary part, which will b
given by

H2,2Im@m2#.
2222n~12n!~n122a!~H, !2n

~n241a!

3ImF G~2n!GS 1

2
1n2m D

G~n!GS 1

2
2n2m D G , ~5.7!

where one can substitute the solution~5.5! in the right hand
side. This expression agrees with@7# for a50.

In the limit H2,2!M2,2!1 andH2,2!a!1, one finds
2-8
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H2,2Im@m2#.6
p

16
~M2,214a!2, ~5.8!

which agrees with the Minkowski limit of@6# in the casea
50.

Another case which may be studied analytically, thou
only qualitatively, is whena@1. In this case Eq.~3.11! im-
plies that the terms proportional toa should become
O(1/a). Hence, in the limita→`, m is given by a zero of
Pn21/2

m (z) on the complexm-plane ~with Re@m#.0 and
Im@m#Þ0), which is independent ofa. Thusm converges to
a finite value in the limita→`.

Let us next discuss the purely decaying modes for wh
m lies on the~positive! real axis, i.e., with no real part in th
effective mass. They are usually subdominant in the se
that their decay widths are larger than the decay width of
complex quasi-bound-state modes discussed above. FoH,
!1, the asymptotic behavior of Legendre functions is giv
in Eq. ~3.13! and one thus finds the zeros of the bound
condition ~3.11! when the common dominatorG(12m) for
all terms goes to infinity, i.e. for

mn511n, n50,1,2, . . . . ~5.9!

The other limit isH,@1 and the Legendre functions beha
according to Eq.~3.9!. In the boundary condition~3.11!, the
dominant terms, whenz@1, are the terms proportional t
Pn21/2

m and therefore the zeros of Eq.~3.11! are given by

mn5
1

2
1A41M21n, n50,1,2 . . . ~5.10!

wheren is a positive integer, corresponding to cases wh
the Gamma function in the denominator ofPn21/2

m blows up.
These zeros thus now depend onM but not on the couplinga
or on z ~provided howeverz@1).

B. Numerical approach

In order to study the quasinormal modes in more deta
we have solved numerically the following equation for t
complex numberm:

F~m;M ,a,z![2~m1n21/2!
Pn23/2

m

Pn21/2
m

1~n22!z1a~z221!1/250, ~5.11!

for various values of the parametersM, a and z. As men-
tioned earlier, ifm is a solution, so ism* . Hence, without
loss of generality, we may confine our search form on the
first quadrant~i.e., Re@m#.0 and Im@m#.0) on the com-
plex m-plane.
06401
h

h

se
e

n
y

e

s,

Let us start our numerical exploration with the case o
vanishing couplinga50. In Fig. 2, we have plotted the
numerical solutions form in the complex plane for various
values of the bulk massM. As can be seen in the figure, w
have obtained several branches of solutions which evo
continuously asM, varies. AsM, increases, the modes o
these branches migrate away from the real axis. The bra
closest to the vertical axis is the most important dynamica
because its imaginary part is small.

This branch is connected to the origin of the compl
plane in the limitM,→0 and the corresponding quasinorm
modes have been computed analytically just above forH,
!1 andM2,2!1. As a check, we can compare the analy
cal results given above with our numerical solutions.
noted before, we perform our search in the first quadran
the complexm-plane, which means Im@m(4)

2 #,0. First, we
have checked that the real part ofm(4)

2 is indeed very close to
the analytical valueM2/2. For the imaginary part, we hav
plotted in Fig. 32Im@m(4)

2 #/(M4,2) as a function ofM, in
two cases,z550 andz51000. In both cases, starting from
high values ofM,, one approaches the analytical value
p/16 as M, decreases, as suggested by Eq.~5.8!. But,
whereas in the casez51000, the dots continue to approac
p/16, there is a sudden change in the evolution forz550.
This is simply due to the fact that, even ifH,!1, the small

10 20 30 40 50

20

40

60

80

FIG. 2. Evolution in the complexm-plane of the quasinorma
modes when the massM varies ~with a50, z510). The highest
points for each branch correspond toM,510. The increment be-
tween two adjacent points isD(M,)51.

0.05 0.1 0.15 0.2 0.25 0.3

0.12

0.14

0.16

0.18

FIG. 3. 2Im@m(4)
2 #/(M4,2) as a function ofM, (z550 for the

lower points,z51000 for the upper points!. The curves correspond
to the analytical estimate~5.7!.
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values ofM, become of the same order of magnitude asH,
and Eq.~5.8! is no longer a good approximation: one nee
the more general expression~5.7!. The two curves in the
figure correspond to the analytical estimate given by
~5.7! and one sees that the numerical values converge
wards these curves for low masses.

Our numerical treatment allows us to continue this qua
normal branch beyond the regime of validity of the analyti
calculations, and in particular for very high masses. Mo
over, as mentioned before and as illustrated in Fig. 2,
have found other solutions form, away from the real axis
which correspond to additional branches. Each of these
branches starts from the real axis after a critical mass thr
old has been reached and then evolves away from the
axis asM, increases.

Let us now consider the situation when the coupling
allowed to vary. We have plotted in Fig. 4 the evolution
the quasinormal mode with the increasing~positive! coupling
in the caseM,50. What can be observed is that the mod
after going away from the real axis, tends to come ba
towards it.

In Fig. 5, we have also plotted the same evolution,

2.5 5 7.5 10 12.5 15 17.5
Re[ µ]

2

4

6

8

10

12

14

Im[ µ]

FIG. 4. Evolution in the complexm-plane of the quasinorma
modes when the coupling varies, in the clockwise direction, from
to 7 ~with M,50, z510). The increment between two points
Da50.2.

10 20 30 40
Re[ µ]

10

20

30

40

Im[ µ]

FIG. 5. Variation in the complexm-plane of the quasinorma
modes when the coupling changes~for M,55, z510). The incre-
ment between adjacent points isDa51. The three big dots~in
black! correspond to the modes fora50. The points on the left of
each black dot correspond to negative couplings and those on
right to positive couplings.
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with increasing coupling, in the caseM,55 where several
quasinormal modes are already known to exist in the co
plex m-plane for vanishing coupling. We have no analy
expression for this case, but one can observe that each o
modes follows a curve analogous to theM,50 case. We
have also added the evolution corresponding to increa
negative coupling. For the first branch, one finds that
mode converges towards the origin of the complex pla
which could be expected since at some critical value of
coupling one will enter into the localized mode region. F
the second branch, one observes that the modes at
negative couplings converge towards the modes of the
vious branch at large positive couplings. The same beha
occurs for the third branch.

VI. CONCLUSIONS

In the present work, we have studied the modes of a m
sive bulk scalar field that are localized or~quasilocalized! on
a brane with a de Sitter geometry, characterized by a Hub
parameterH. We have allowed for a coupling between th
brane tension and the bulk scalar field, quantified by a
mensionless parametera.

Although the bound state of a massless bulk scalar fi
without coupling to the de Sitter brane is a zero mode, i.e.
four-dimensional effective massm(4) vanishes, this is no
longer the case for a nonzero bulk massM or a nonzero
coupling. One thus finds in general amassive bound state,
whose four-dimensional mass depends onM, a and H. We
have computed explicitly this dependence in the limit of
small bulk mass and small coupling.

The mass-squaredm(4)
2 of the bound state is always com

prised between zero and (3/2)H2, a value above which one
finds a continuum of modes. We have obtained explicitly,
any value ofM andH, the lower and upper critical values fo
the coupling corresponding to this range of possible z
modes.

Another approach consists in trying to find a purely fou
dimensional description of the scalar field including the
fect of the bulk. We have generalized previous such pro
dures to take into account the coupling, and defined
effective potential for the value on the brane of the sca
field. For smallM anda, the second derivative of the effec
tive potential yields an effective mass-squared which is
excellent agreement with the rigorous mode approach
small H and in qualitative agreement for largeH. We have
also demonstrated that a class of known exact solutions
a bulk scalar field indeed conforms to the effective poten
approach.

Finally, when the three parametersM, a andH are not in
the region allowing for bound states, one finds modes wh
effective mass has an imaginary part. This means that
corresponding states cannot stay localized on the brane
will escape into the bulk. We have explored numerically t
dependence of the real and imaginary part of the fo
dimensional mass on the values of the bulk mass and of
coupling and we have given an analytical estimate of
quasilocalized modes for small values of the Hubble para
eter, i.e.H,!1.
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