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Particle and light motion in a space-time of a five-dimensional rotating black hole

Valeri Frolov* and Dejan Stojkovic´†
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~Received 15 March 2003; published 18 September 2003!

We study the motion of particles and light in a space-time of a five-dimensional rotating black hole. We
demonstrate that the Myers-Perry metric describing such a black hole, in addition to three Killing vectors, also
possesses a Killing tensor. As a result, the Hamilton-Jacobi equations of motion allow a separation of variables.
Using first integrals we present the equations of motion in the first-order form. We describe different types of
motion of particles and light and study some interesting special cases. We prove that there are no stable circular
orbits in equatorial planes in the background of this metric.
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I. INTRODUCTION

Brane world models with large extra dimensions have
cently attracted a lot of interest@1#. An important generic
feature of these models is that the fundamental quan
gravity scale may be very low~of the order of TeV! and the
size of extra spatial dimensions may be much larger than
Planck length (;10233 cm). In the models with ‘‘large extra
dimensions’’ the minimal mass of a black hole can also
much smaller that the Planck mass (1016 GeV) and be of the
order TeV. Such mini black holes could be produced in p
ticle collisions in near future colliders and in cosmic r
experiments@2#. One can expect that the majority of blac
holes produced in such a way will be rotating@2,3#. Estima-
tions show that such higher dimensional mini black holes
be described within the classical solutions of vacuum E
stein equations. These mini black holes can be attache
the brane or, if the brane tension is small, can leave the b
and travel in the bulk space@3#. Recently, the problem o
higher dimensional black holes has attracted a lot of atten
@4,5#.

Higher dimensional black holes have also been studie
string theory. Motivated by ideas arising in various models
string theory a lot of work has been done studying supers
metric higher dimensional black holes especially in fiv
dimensional space-time. For example, supersymmetric ro
ing black holes were studied in@6# and @7#. The solution
analyzed there is not a vacuum solution of Einstein’s eq
tions and requires some special choice of parameters in o
to accommodate the supersymmetry. In@8#, rotating black
holes were studied in the context of string theory. Althou
the solution described there is very general~a boosted
vacuum solution of Einstein’s equations! the authors mainly
concentrate on scalar field gray body factors. In the previ
paper@9#, we studied some general geometrical properties
a five-dimensional rotating black hole and the propagation
a five-dimensional massless scalar field in the backgroun
such a black hole.

In this paper, we extend our analysis to properties of
motion of particles and light in the space-time of a fiv

*Email address: frolov@phys.ualberta.ca
†Email address: dstojkov@phys.ualberta.ca
0556-2821/2003/68~6!/064011~8!/$20.00 68 0640
-

m

e

e

r-

n
-
to
ne

n

in
n

-
-
t-

-
er

h

s
f
f

of

e

dimensional rotating black hole. We demonstrate the e
tence of a Killing tensor in such a space-time. We descr
different types of motion of particles and light and stu
some interesting special cases. The five-dimensional me
is algebraically special and allows two families of princip
null congruences. These congruences are geodesic bu
shear-free. We also show that there are no stable circ
orbits in equatorial planes in the background of this metr

II. MYERS-PERRY METRIC AND ITS PROPERTIES

The metric for a five-dimensional rotating black hole1 in
the Boyer-Lindquist coordinates is@10,12#

ds25
r2

4D
dx21r2 du22dt21~x1a2! sin2 udf2

1~x1b2! cos2 udc21
r 0

2

r2 @dt1a sin2 u df

1b cos2 udc#2. ~2.1!

Here,

r25x1a2 cos2 u1b2 sin2 u, ~2.2!

D5~x1a2!~x1b2!2r 0
2x. ~2.3!

The anglesf and c take values from the interval@0,2p#,
while angleu takes values from@0,p/2#. Note also that in-
stead of the ‘‘radius’’r we use the coordinatex5r 2. This
will allow us to simplify calculations and make many of th
expressions more compact.

The black hole horizon is located atx5x1 , where

x65
1

2
@r 0

22a22b26A~r 0
22a22b2!224a2b2#. ~2.4!

The angular velocitiesVa andVb and the surface gravityk
are

1Note that the Myers-Perry solution is not the only black ho
solution of the five-dimensional vacuum Einstein equations.
example, see@11#.
©2003 The American Physical Society11-1
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Va5
a

x11a2 , Vb5
b

x11b2 , k5
]xP2r 0

2

r 0
2Ax

U
x5x1

.

~2.5!

For the metric~2.1!,

A2g5
1

2
sinu cosur2. ~2.6!

We shall also need the following expressions for the con
variant components of the metric:

gtt5
1

r2 F ~a22b2! sin2 u2
~x1a2!@D1r 0

2~x1b2!#

D G ,
gtf5

ar0
2~x1b2!

r2D
, gtc5

br0
2~x1a2!

r2D
,

gff5
1

r2 F 1

sin2 u
2

~a22b2!~x1b2!1b2r 0
2

D G ,
gcc5

1

r2 F 1

cos2 u
1

~a22b2!~x1a2!2a2r 0
2

D G ,
gfc52

abr0
2

r2D
, gxx54

D

r2
, guu5

1

r2
. ~2.7!

The metric~2.1! is invariant under the following transfor
mation:

a↔b, u↔S p

2
2u D f↔c. ~2.8!

It possesses three Killing vectors] t , ]f , and ]c . For a
5b the metric has two additional Killing vectors@9#:

cos]ū2 cotū sinf̄ ]f̄1
sinf̄

sinū
]c̄ ~2.9!

and

2 sinf̄ ]ū2 cotū cosf̄]f̄1
cosf̄

sinū
]c̄ , ~2.10!

wheref̄5c2f, c̄5c1f, and ū52u.
In the next section we shall demonstrate that in the g

eral case the metric~2.1! also has the Killing tensorKmn

satisfying the equation

K (mn;s)50. ~2.11!

III. EQUATIONS OF MOTION FOR PARTICLES
AND LIGHT: FIRST INTEGRALS

The equations of motion of a test particle of massm in a
curved space-time given by a metricgmn are
06401
-

-

D2xm

Dt2
50, ~3.1!

whereD/Dt denotes the covariant derivative with respect
proper timet. In this section we study these equations in t
Myers-Perry metric ~2.1! by using the Hamilton-Jacob
method. This consideration is similar to the approach dev
oped by Carter for the four-dimensional Kerr metric@13#
~see also@14#!.

Equations~3.1! can be derived from the Lagrangian

L5
1

2
gmnẋmẋn, ~3.2!

where an overdot denotes the partial derivative with resp
to an affine parameterl. For consistency, we chose

t5ml, ~3.3!

which is equivalent to

gmnẋmẋn52m2. ~3.4!

The conjugate momenta following from Eq.~3.2! are

pm5gmnẋn. ~3.5!

Thus, the Hamiltonian is

H5
1

2
gmnpmpn . ~3.6!

The momenta calculated for the metric~2.1! are

pt5S 211
r 0

2

r2D ṫ1
r 0

2

r2
ḟ1

r 0
2b cos2 u

r2
ċ,

pf5
r 0

2a sin2 u

r2
ṫ1S x1a21

r 0
2a2 sin2 u

r2 D sin2 uḟ

1
r 0

2ab sin2 u cos2 u

r2
ċ,

pc5
r 0

2b cos2 u

r2
ṫ1

r 0
2ab sin2 u cos2 u

r2
ḟ

1S x1b21
r 0

2b2 cos2 u

r2 D cos2 uċ,

px5
r2

4D
ẋ,

pu5r2u̇. ~3.7!

From the symmetries of the metric~2.1! it follows that at
least three constants of motion should exist. They corresp
to conservation of energyE and angular momenta in two
independent planes defined by the anglesf andc. Thus,
1-2
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pt52E, pf5F, and pc5C. ~3.8!

We also have the constant of motion corresponding
conservation of rest mass which is given by Eq.~3.3!.

In order to solve the system of equations of motion co
pletely, we need one more constant of motion. This can
obtained using the Hamilton-Jacobi method of solving
equations of motion.

From the Hamiltonian~3.6! we have Hamilton-Jacob
equations in the form

2
]S

]l
5H5

1

2
gmn

]S

]xm

]S

]xn
~3.9!

whereS is the Hamilton-Jacobi action. Since it was proven
@9# that the equation of motion can be separated, the ac
must take the form

S5
1

2
m2l2Et1Ff1Cc1Su1Sx , ~3.10!

whereSu andSx are functions ofu andx, respectively. From
Eqs.~3.9! and ~3.10! we can conclude that

S ]Su

]u D 2

1~m22E2!~a2 cos2 u1b2 sin2 u!1
1

sin2 u
F2

1
1

cos2 u
C25K ~3.11!

and

4DS ]Sx

]x D 2

1~m22E2!x2
r 0

2~x1a2!~x1b2!

D
E 22~a22b2!

3S F2

~x1a2!
2

C2

~x1b2! D52K, ~3.12!

where

E5E1
aF

x1a2
1

bC

x1b2
. ~3.13!

HereK is a new constant of the motion. We used the freed
K→K1const~in this case const5a2E2) to obtain the equa-
tions in a form invariant under the transformation~2.8!. Us-
ing the relationspu5S,u and px5S,x we can replace (Su) ,u
and (Sx) ,x by pu andpx , respectively.

The conserved quantityK is of the second order in th
momentapm and it is related to the Killing tensorKmn as
follows:

Kmnpmpn5K. ~3.14!

By comparing Eq.~3.11! with Eq. ~3.14!, one obtains
06401
o

-
e
e

n

Kmn52~a2 cos2 u1b2 sin2 u!~gmn1d t
md t

n!1
1

sin2 u
df

mdf
n

1
1

cos2 u
dc

mdc
n 1du

mdu
n . ~3.15!

A similar result for the four-dimensional Kerr metric wa
obtained by Carter in 1968@13#. We used theGRTENSOR

program to check directly thatKmn does obey Eq.~2.11!.
Equations~3.11! and ~3.12! can be written in a compac

form:

]Su

]u
5suAQ,

]Sx

]x
5sxAX. ~3.16!

Here the functionsQ andX are given by

Q5~E22m2!~a2 cos2 u1b2 sin2 u!2
1

sin2 u
F2

2
1

cos2 u
C21K, ~3.17!

X5
X

4D2 , ~3.18!

X5DFx~E22m2!1~a22b2!S F2

~x1a2!
2

C2

~x1b2! D
2KG1r 0

2~x1a2!~x1b2!E 2. ~3.19!

The sign functionssu56 andsx56 in the right hand sides
of the two equations~3.16! are independent of one anothe
In each of the equations the change of sign occurs at a t
ing point where the expression in the right hand side v
ishes.

We can write the Hamilton-Jacobi action in terms of the
functions:

S5
1

2
m2l2Et1Ff1Cc1su Eu

AQdu1sx Ex
AXdx.

~3.20!

By differentiating with respect toK, m, E, F, andC, we
obtain the solution of the Hamiltonian-Jacobi equations a

Eu du

AQ
5Ex dx

4DAX
, ~3.21!

l5 Eu 1

AQ
~a2 cos2 u1b2 sin2 u!du

1 Ex 1

AX

x

4D
dx, ~3.22!
1-3
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t5 Eu 1

AQ
E~a2 cos2 u1b2 sin2 u!du

1 Ex 1

AX
F r 0

2~x1a2!~x1b2!

4D2
E1

xE

4DGdx, ~3.23!

f5 Eu 1

AQ

F

sin2 u
du2 Ex 1

AX
Far0

2~x1b2!

4D2
E

1
~a22b2!F

4D~x1a2!
Gdx, ~3.24!

c5 Eu 1

AQ

C

cos2 u
du2 Ex 1

AX
Fbr0

2~x1a2!

4D2
E

2
~a22b2!C

4D~x1b2!
Gdx. ~3.25!

Often it is more convenient to rewrite these equations
the form of the first-order differential equations

r2u̇5suAQ, ~3.26!

r2ẋ5sx2AX, ~3.27!

r2 ṫ5Er21
r 0

2~x1a2!~x1b2!

D
E, ~3.28!

r2ḟ5
F

sin2 u
2

ar0
2~x1b2!

D
E2

~a22b2!F

~x1a2!
, ~3.29!

r2ċ5
C

cos2 u
2

br0
2~x1a2!

D
E1

~a22b2!C

~x1b2!
. ~3.30!

These equations can be obtained from Eqs.~3.21! by direct
differentiation with respect to the affine parameterl.

IV. GENERAL TYPES OF MOTION AND SPECIAL CASES

A. Radial motion

The geodesic world line of a particle in the Myers-Pe
metric is completely determined by the first integrals of m
tion E, F, C, and K. We discuss the motion in the blac
hole exterior, so we assume thatD.0. ConsiderX given by
Eq. ~3.19! as a function ofx for fixed values of the othe
parameters. At large distances the leading term ofX contains
the factor E22m2. For E2,m2 the function X becomes
negative at largex. Hence only orbits withE2.m2 can ex-
tend to infinity. These orbits are calledunbounded. For E2

,m2 the orbit is alwaysbounded, that is, the particle canno
reach infinity.

To study qualitative characteristics of the motion of te
particles in the metric~2.1!, it is convenient to use theeffec-
tive potential. Let us writeX as
06401
n

-

t

X5aE222bE1g, ~4.1!

where

a5Dx1r 0
2~x1a2!~x1b2!, ~4.2!

b52r 0
2~x1a2!~x1b2!S aF

x1a2
1

bC

x1b2D , ~4.3!

g5DF2m2x1~a22b2!S F2

x1a2
2

C2

x1b2D 2KG1r 0
2~x1a2!

3~x1b2!F aF

x1a2
1

bC

x1b2G 2

. ~4.4!

The radial turning pointsX50 are defined by the condi
tion E5V6(x), where

V65
b6Ab22ag

a
. ~4.5!

The quantitiesV6 are called theeffective potentials. They
are functions ofx and the integrals of motionF, C, andK.

The limiting values of the effective potentialsV6 at in-
finity and at the horizon are

V6~x5`!56m, V6~x1!5FVa1CVb . ~4.6!

The motion of a particle with energyE is possible only in the
regions where eitherE>V1 or E<V2 . The expression~4.5!
remains invariant under the transformationsE→2E, F→
2F, C→2C relating these regions. In the absence of
tation,a5b50, the second regionE<V2 is excluded.

B. Motion in the u direction

Consider now motion in theu direction. SinceQ>0,
bounded motion withE2,m2 is possible only ifK>0. For
bounded motion andaÞ0, bÞ0, K.0. ForK.0 there ex-
ist both bounded and unbounded trajectories. A particle
reach the subspaceu50 only if F50 and the subspaceu
5p/2 only if C50. For C50 the orbit is in theu5p/2
plane ifK5F22(E22m2)b2. Similarly, for F50 the orbit
is in theu50 plane ifK5C22(E22m2)a2.

A special class of motion is the case when particles
moving quasiradially along trajectories on which the value
the angleu remains constant,u5u0. The relation between
the integrals of motion corresponding to this type of moti
can be found by solving simultaneously the equations

Q~u0!5
dQ

du U
u0

50. ~4.7!

These equations are of the form

~E22m2!~a2 cos2 u01b2 sin2 u0!2
F2

sin2 u0
2

C2

cos2 u0
1K

50, ~4.8!
1-4
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~E22m2!~b22a2!1
F2

sin4 u0
2

C2

cos4 u0
50. ~4.9!

In the second equation we excluded the casesu050 and
u05p/2.

C. Circular orbits

A characteristic property of the four-dimensional gravi
tional field is the existence of bounded orbits located in
exterior of the black hole. For such orbits there are two tu
ing points, corresponding to the minimum and maximum
the radial coordinate for the particle trajectory. This mea
that the lineE5const crosses the effective potentialV(r )
curve at two points,r 1 and r 2. Between these pointsE
.V(r ). The function V(r ) has a minimum atr 1,r min
,r 2. For the special case whenE5V(r min) the orbit is cir-
cular. Thus the existence of stable circular orbits is a nec
sary condition for the existence of bounded orbits located
the exterior of the black hole.

It is well known that there are no stable circular orbits
the Newtonian gravity in a space-time with more than th
spatial dimensions. This is also true in general relativity. T
is, the Schwarzschild metric

ds252Fdt21
dr2

F
1r 2dVk12

2 , F512S r 0

r D k11

,

~4.10!

where dVk12
2 is the metric on a unit (k12)-dimensional

sphere, does not allow stable circular orbits. The effec
potential for the radial motion of a particle with massm in
this field is

VS
2~r !52FS 11

L2

m2r 2D , ~4.11!

whereL is the total angular momentum. It is easy to see t
this potential does not have any minima in the inter
(r 0 ,`).

With a change of variablesy5r 0
2/r 2 (y goes from 0 to 1!

we can write

VS
2~y!5~12y(11k)/2!S 11

L2

r 0
2m2

yD . ~4.12!

The second derivative of the functionVS
2(y) with respect toy

is

]2
„VS

2~y!…

]y2
52

k221

4
y(k23)/22

~k13!~k11!L2

4r 0
2m2

y(k21)/2.

~4.13!

This function is zero only fory<0, which means thatVS
2

cannot have more than one extremum for positivey. Note
also thatVS

2(y) takes the value 1 aty50 and the value 0 a
y51. SinceVS

2(y) is non-negative, we conclude that either
is a monotonically decreasing function or it has one ma
06401
-
e
-
f
s

s-
n

e
t

e

t
l

i-

mum in this interval without possibility of having a mini
mum. The new variabley is a monotonic function ofr and
the original functionVS

2(r ) @and thereforeVS(r )] does not
have a minimum either. Thus, the potentialVS(r ) does not
allow any motion that is confined in a finite interval of th
radial coordinate.

The other way to see that this potential does not supp
any stable circular orbits is to note that the second deriva
~4.13! is always negative fory.0 and arbitraryk. A similar
conclusion can be derived if we consider an effective pot
tial for angular motion@15#.

Figure 1 shows a plot of the potentialVS for the five-
dimensional Schwarzschild space-time for several value
the angular momentumL.

We shall prove now that stable circular orbits do not ex
in the Myers-Perry metric, at least in the case when th
orbits are in the ‘‘equatorial’’ planes,u50 andu5p/2. We
give the proof for the caseu5p/2, and the other case i
similar.

Circular orbitsx5x05const are defined by the equation

X50,
]X
]x

50, ~4.14!

whereX is given by Eq.~3.18!. For orbits in the planeu
5p/2 one hasC50 andK5F22(E22m2)b2 ~see the pre-
vious subsection!. Substituting these relations into Eq
~4.14!, we obtain a system of quadratic equations2 for the
variablesE andF. The solutions are

Es5sE Fs5sF, s56, ~4.15!

2This method of analyzing circular orbits is similar to the meth
used by Bardeen, Press, and Teukolsky@16# for a four-dimensional
Kerr metric.

0

2

4

6

8

10

12

14

16

Vs

2 4 6 8 10

x

FIG. 1. The effective potentialVS for radial motion in the five-
dimensional Schwarzschild space-time for several values of the
gular momentumL. We setm5r 051 and the four different curves
correspond toL251, 10, 100, and 1000 from the bottom up.
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E

m
5

y

Ay22y0
2

, ~4.16!

F

m
5

~y1a22b22r 0
2!r 0

Ay22y0
2

, ~4.17!

where

y5x7r 0a1b22r 0
2 , y05r 0A~r 06a!22b2.

~4.18!

Since the constantsE and F are to be real, the expres
sions under the square root in the denominators of E
~4.16! and ~4.17! are to be positive. This happens when

y2.y0
2 . ~4.19!

But for these values ofy we haveE2.m2 and the potential
must allow unbounded motion. This means that if the mi
mum of the effective potential exists, there must also be
least one maximum. But the equation for the second der
tive

]2X
]x2

52@~E22m2!~3x1a212b2!2F21r02m2#50

~4.20!

has only one solution forx, and this situation is impossible
Thus, we conclude that there are no stable circular or
around the rotating five-dimensional Myers-Perry black ho
at least in the ‘‘equatorial’’ planes.

One may conjecture that the absence of bounded st
orbits in the black hole exterior is a generic property
higher dimensional black holes.

D. Principal null congruences

We consider now null rays moving alongu05const sur-
faces. One can use the conditions~4.8! and ~4.9! ~with m
50) to determine two of the constants of motion. After th
a general solution is specified byE, K, u0, andt0 , f0 , c0.
The last 3 constants are required as the initial data for th
Killing variablest, f, andc. Let us note that the paramete
E is not important. It can be ‘‘gauged away’’ be rescaling
the affine parameterl→El. Thus, we have a five-paramet
family of null geodesics. In order to have a congruence
null geodesics one needs to fix one more parameter.
following special choice is very convenient:

F52Ea sin2 u0 , C52Eb cos2 u0 . ~4.21!

For this choice, Eq.~4.9! is automatically satisfied, while Eq
~4.8! gives

K5E2~a22b2!~sin2 u02 cos2 u0!. ~4.22!

The null geodesics from this congruence are uniquely sp
fied by the parametersu0 , t0 , f0, andc0. The null vectors
tangent to the geodesics from this congruence are
06401
s.

-
at
a-
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,

le
f

e

f

f
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i-

L6
m ]m5

~x1a2!~x1b2!

D F] t2
a

x1a2 ]f2
b

x1b2 ]cG
62Ax]x . ~4.23!

The two different congruences differ by the choice of sign
Eq. ~3.27!. By analogy with similar congruences in the fou
dimensional Kerr geometry, we call the congruences ge
ated byL6

m principal null congruences.
By using theGRTENSORprogram one can check that bo

of the null principal congruences obey the condition

L6[ aCb]gdeL6
g L6

d 50, ~4.24!

where Cbgde is the Weyl tensor. In the four- dimensiona
case, a similar condition means that the space-time is a
braically special and belongs to the Petrov classD ~or more
degenerate!.3

One can check that the shears6 defined by Eq.~A6! for
L6

g is

s65A2

3

~a2 cos2 u1b2 sin2 u!

r2Ax
, ~4.25!

and it does not vanish.4 To perform the calculation ofs we
used theGRTENSOR program. Direct calculations based o
relation ~A5! of the Appendix result in very long expres
sions, so that the standardGRTENSOR simplification proce-
dure does not work. We found that calculations based on
second form of the expression fors in Eq. ~A6! are much
shorter and allow one to arrive at the result~4.25! much
faster.

The principal null geodesic congruences~4.23! were used
in @10# to establish relations between Boyer-Lindquist a
Kerr-Schild coordinates for the Myers-Perry metric.

Similarly to the four-dimensional Kerr metric both of th
null principal vectorsL6

m are eigen vectors of the tenso
j (t)m;n , wherej (t)

m ]m5] t is the Killing vector, which is time
like at infinity. That is the following relations are valid:

j (t)m;nL6
n 5k6L6m , ~4.26!

where

k656Ax r0
2

r4 . ~4.27!

3Petrov classification for five-dimensional metrics of Euclide
signature was given in@17#. The classification of higher dimen
sional space-times and its relation to the existence of principal
geodesics is an interesting problem. In our paper we use the
‘‘algebraically special’’ only in the sense that the space-time allo
principal null geodesics.

4In the four-dimensional case the following theorem proved
Goldberg and Sachs@18# is valid: If a vacuum gravitational field is
algebraically special then principal null congruences must be sh
free. The result~4.25! indicates that this theorem might not be val
in the five-dimensional case.
1-6
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V. CONCLUSIONS

We discussed the motion of particles and light in t
space-time of a five-dimensional rotating black hole. Ther
an intriguing similarity of this problem with the case of th
four-dimensional Kerr metric. In both cases the Hamilto
Jacobi equations for particles and light allow separation
variables. This property follows from the existence of a Ki
ing tensor in addition to the Killing vectors.

We described different types of motion of particles a
light in the background of a five-dimensional rotating bla
hole, including some interesting special cases~like radial
motion and motion with constantu). In many aspects the
qualitative properties of different types of motion are simi
in four and five dimensions. Both four- and five-dimension
metrics are algebraically special and allow two families
principal null congruences. In both cases these congrue
are geodesic. The principal null rays are also eigenvector
the tensorjm;n . However, there are some differences. Wh
in four dimensions the principal null congruences are she
free, in five dimensions this is not the case. Also, in fo
dimensions there exist stable circular orbits around the ro
ing black hole, while for the five-dimensional Myers-Per
black hole they are absent, at least in the ‘‘equatorial’’ plan

It would be interesting to generalize these results to ro
ing black holes in arbitrary numbers of dimensions.
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APPENDIX: OPTICAL SCALARS FOR NULL
CONGRUENCES IN A HIGHER DIMENSIONAL

SPACE-TIME

Consider a congruence of null geodesics inn-dimensional
space-time and letl m be a tangent vector, then

l ml m50, l ;n
m l n50, l ;n

m l m50. ~A1!

Denote byS the (n21)-dimensional null plane which is
spanned by vectorszm obeying the conditionzml m50. Let us
06401
is

-
f

r
l
f
es
of

r-
r
t-

s.
t-

s
rs

choose another null vectornn, normalized by the condition
nml m521, and denote byS the (n22)-dimensional sub-
space ofS formed by vectors that are orthogonal to both n
vectors. Denote byhmn a projector ontoS:

hmn5gmn12l (mnn) . ~A2!

One has

hmnl n5hmnnn50, hm
ahan5hmn . ~A3!

As usual, let us decomposel m;n as follows:

l m;n5 l [m;n]1smn1
1

n22
qhmn , ~A4!

where

q5 l ;a
a 5habl a;b , smn5 l (m;n)2

1

n22
qhmn .

~A5!

The parameters of twist,r̂, and shear,s, are defined as
follows:

r̂25 l [m;n] l
[m;n] ,

s25smnsmn5hamhbn l (a;b)l (m;n)2
1

n22
q2. ~A6!

It should be emphasized that the choice of the null vectornm

Contains the ambiguitynm→nm1zm wherezm is any vector
from S. Under this transformationhmn→hmn12l (m zn) ,
while the expansionq, twist r̂, and shears remain invari-
ant.

In a space-time with two principal null geodesic congr
encesL6

m , the natural choice of the projectorhmn is

hmn5gmn22aL1(mL2n) , a5~L1mL2
m!21. ~A7!

For the five-dimensional metric~2.1! and the principal
null vectors~4.23! one has
a5
2D

2xr2 , ~A8!

hmn5
1

xr2
33

x~a2 sin2 u1b2 cos2 u!1a2b2 0 0 2a~x1b2! 2b~x1a2!

0 0 0 0 0

0 0 x 0 0

2a~x1b2! 0 0
x1b2 sin2 u

sin2 u
ab

2b~x1a2! 0 0 ab
x1a2 cos2 u

cos2 u

4 . ~A9!

@The matrixhmn is written in the basis (t,x,u,f,c).#
1-7
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