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Particle and light motion in a space-time of a five-dimensional rotating black hole
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We study the motion of particles and light in a space-time of a five-dimensional rotating black hole. We
demonstrate that the Myers-Perry metric describing such a black hole, in addition to three Killing vectors, also
possesses a Killing tensor. As a result, the Hamilton-Jacobi equations of motion allow a separation of variables.
Using first integrals we present the equations of motion in the first-order form. We describe different types of
motion of particles and light and study some interesting special cases. We prove that there are no stable circular
orbits in equatorial planes in the background of this metric.
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[. INTRODUCTION dimensional rotating black hole. We demonstrate the exis-
tence of a Killing tensor in such a space-time. We describe
Brane world models with large extra dimensions have redifferent types of motion of particles and light and study

cently attracted a lot of intere$fl]. An important generic Some interesting special cases. The five-dimensional metric
feature of these models is that the fundamental quanturi algebraically special and allows two families of principal
gravity scale may be very lovof the order of TeY and the  null congruences. These congruences are geodesic but not
size of extra spatial dimensions may be much larger than thghear-free. We also show that there are no stable circular
Planck length ¢ 1033 cm). In the models with “large extra Orbits in equatorial planes in the background of this metric.
dimensions” the minimal mass of a black hole can also be
much smaller that the Planck mass ¥8.GeV) and be of the Il. MYERS-PERRY METRIC AND ITS PROPERTIES
order TeV. Such mini black holes could be produced in par- _ . . . .
ticle collisions in near future colliders and in cosmic ray The metrl|c for.a f|ve—d|men5|onal rotating black hola
experimentd2]. One can expect that the majority of black the Boyer-Lindquist coordinates 40,12
holes produced in such a way will be rotatif®y3]. Estima- 2
tions show that such higher dimensional mini black holes can dSZZP_ dx®+ p? d6?— dt2+ (x+a?) sir? 0d ¢2
be described within the classical solutions of vacuum Ein- 4A
stein equations. These mini black holes can be attached to 2

the brane or, if the brane tension is small, can leave the brane +(x+b?) cog 6d P+ r—g[dt+asin2 6 d¢

and travel in the bulk spack8]. Recently, the problem of P

higher dimensional black holes has attracted a lot of attention +bco gdy]? 2.1)
[4,5]. ' '

Higher dimensional black holes have also been studied ipygre
string theory. Motivated by ideas arising in various models in

string theory a lot of work has been done studying supersym- p?=x+a?cog 6+ b?sir? 6, (2.2
metric higher dimensional black holes especially in five-
dimensional space-time. For example, supersymmetric rotat- A=(x+a?)(x+ b2)—r(2)x. (2.3

ing black holes were studied if6] and[7]. The solution
analyzed there is not a vacuum solution of Einstein’s equaThe angles¢ and ¢ take values from the intervdl0,2m],
tions and requires some special choice of parameters in ord@ile angled takes values fromi0,7/2]. Note also that in-
to accommodate the supersymmetry.[8], rotating black stead of the “radiusr we use the coordinate=r2. This
holes were studied in the context of string theory. Althoughwill allow us to simplify calculations and make many of the
the solution described there is very genefal boosted expressions more compact.
vacuum solution of Einstein’s equatiorthe authors mainly The black hole horizon is located atx. , where
concentrate on scalar field gray body factors. In the previous
paper 9], we studied some general geometrical properties of
a five-dimensional rotating black hole and the propagation of
a five-dimensional massless scalar field in the background of
such a black hole. The angular velocitie§), and(}, and the surface gravity
In this paper, we extend our analysis to properties of there
motion of particles and light in the space-time of a five-

1
X+ =5[rg—a?=bx\(rg—a’~b??—4a’b?]. (2.4

INote that the Myers-Perry solution is not the only black hole
*Email address: frolov@phys.ualberta.ca solution of the five-dimensional vacuum Einstein equations. For
TEmail address: dstojkov@phys.ualberta.ca example, se¢ll].
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a b &XH_rS DZX,u

=, W=——75, K=—FF—
a 2 b 21 .
X, t+a X++b r(z)\/; - D2
=Xt

=0, (3.2)

(2.9 whereD/D 7 denotes the covariant derivative with respect to
For the metrig(2.1), proper timer. In this section we study these equations in the
Myers-Perry metric(2.1) by using the Hamilton-Jacobi
1 method. This consideration is similar to the approach devel-
V-g= ESIHBCOSGPZ- (2.6)  oped by Carter for the four-dimensional Kerr metfi3]
(see alsd14]).

We shall also need the following expressions for the contra- Equations(3.1) can be derived from the Lagrangian

variant components of the metric: 1
L=-g,.x*x", 3.2
1 L (x+ad[A+r2(x+b?)] 2 v (32
g"=—| (a®~b?) sir’ 6— A ,
p where an overdot denotes the partial derivative with respect

to an affine parametex. For consistency, we chose

2 2 2 2
Jo_ 280 bricrat) . 53
p°A p°A
which is equivalent to
2_ K2 2 2.2 -
g¢¢:£ 1 (8" b%) (x+b%) +b’rg 0, XX = —m?, (3.9
p2|si 6 A :
The conjugate momenta following from E(R.2) are
2_ K2 2\ _ 2,2 .
got| L, @bl —ats Pu=0,,X". 3.5
p2| cos 6 A ’
Thus, the Hamiltonian is
abr3 A 1 1
9¥=-—=, g¥=4-, g"=—. 2.7 H=29""p,p,. (3.6
p?A p? p? 27

The metric(2.1) is invariant under the following transfor- The momenta calculated for the met(&.1) are
mation:

r3\. r3. ribcogé.
T p=| —1+ = |t+ S+ ———1,
acb, fo|5—0 P (2.8 P P P
. 2, o 2.2 o
It possesses three Killing vectorg, 7,4, andd,. Fora _ roasin 6. 5 rea’sifo| .
a . e I~ _ pg= ———t+| x+a?+ ———— sirf 6¢
=b the metric has two additional Killing vectof9]: p? p?
— _—  sing 21 i
cosd;— cotdsing d,+ .—ia; (2.9 n rgabsir? 6 cos’ 0ip
siné 2 '
p
and
B robcos 6. rgabsir? 6cos 6.
= —  _ cosé Py=—"> 2 ¢
— Sin¢g dy— cotf cos¢d,+ _—5(9;, (2.10 P p
s
, Tgb*cos 6 20
wherep=¢— ¢, y=y+ ¢, and 6=286. T x+bTE p? cos’ 64,
In the next section we shall demonstrate that in the gen-
eral case the metri€2.1) also has the Killing tensoK*” p?.
satisfying the equation pPx= a5
K(,LLV;(T):O' (21]) -
Pe=p~0. 3.7
I1l. EQUATIONS OF MOTION FOR PARTICLES . .
AND LIGHT: FIRST INTEGRALS From the symmetries of the metri2.1) it follows that at

least three constants of motion should exist. They correspond
The equations of motion of a test particle of mash a  to conservation of energf and angular momenta in two
curved space-time given by a metdg, are independent planes defined by the angleand ¢. Thus,
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pi=—E, pg=®, and p,=V. (3.8 1
K= —(a®cos 6+b?sin’ 6)(g""+ &' 6;) + preplL
We also have the constant of motion corresponding to sin” ¢
conservation of rest mass which is given by E3}3).

In order to solve the system of equations of motion com- +———68,6,1 5,5, (3.19
pletely, we need one more constant of motion. This can be cos' 6
obtained using the Hamilton-Jacobi method of solving the . ] )
equations of motion. A similar result for the four-dimensional Kerr metric was
From the Hamiltonian(3.6) we have Hamilton-Jacobi Obtained by Carter in 196813]. We used theGRTENSOR
equations in the form program to check directly tha¢#” does obey Eq(2.11).
Equations(3.11) and(3.12 can be written in a compact
0S_,, 1,075 29 form:
2\ 29 e oxr ' 39S, 39S,
(9_0:09‘/6' W:Ux\/i- (3.19

whereSis the Hamilton-Jacobi action. Since it was proven in
[9] that the equation of motion can be separated, the actiorlere the function® andX are given by
must take the form

1
1 0 =(E2-m?)(a?cos #+b?sir? 0)—m<1)2
Szzmz)\—Et+(I)¢+lP:,b+Sg+Sx, (3.10

~ o2 V24K, (3.17
whereS, andS, are functions o andx, respectively. From cos’ ¢
Egs.(3.9 and(3.10 we can conclude that v
7S 2+ 2—E?)(a?cog f+b?sirt 0 ! o2 as o
0 (m )(a® cos 6+ b-sirr 6) + 7
d2 P2
1 XZA X(Ez_m2)+(a2_b2) N 2
2_ (x+a°) (x+b?)
+ o2 0\If K (3.1)
and —K|+rd(x+a?)(x+b?)E2 (3.19
S\ 2 r2(x+a?)(x+b? The sign functionsr,= + ando,= = in the right hand sides
4A(W +(m?—E?)x— A £2—(a?—Db?  of the two equation$3.16 are independent of one another.
In each of the equations the change of sign occurs at a turn-
P2 P2 ing point where the expression in the right hand side van-
X >~ | =—K, (312  ishes.
(x+a%)  (x+b%) We can write the Hamilton-Jacobi action in terms of these
functions:
where
1 [ X
abd bW SZEmZ)\—Et'F(I)(ﬁ'F\Plﬂ‘f‘O'af \/6d9+axf JXdx.
E=E+ + ) 3.1
x+a® x+b? (3139 (3.20

HereK is a new constant of the motion. We used the freedon®y différentiating with respect (&, m, E, ®, and¥, we
K — K + const(in this case consta?E?2) to obtain the equa- obtain the solution of the Hamiltonian-Jacobi equations as

tions in a form invariant under the transformati¢h8). Us-

ing the relationp,=S , andp,=S, we can replace%,) , J"ﬂ: JX dx (3.2)
and S,) x by py andpy, r_esp_ectively. _ JO AAX '
The conserved quantitil is of the second order in the
momentap,, and it is related to the Killing tensdf,, as 0 1
follows: A= f —(a?co¢ 0+b?sir’ 9)do
Vo
K#Y =K. 3.1
PP (3.14 1 x .
+ | —=—dx, .
By comparing Eq(3.11) with Eq. (3.14), one obtains JX 4A
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01 X=aE?—2BE+1y, (4.1
t= j E(a?cog 6+b?sir? §)d6
where
x 1|r3(x+a?)(x+b?) xE =AX+r(x+a?)(x+b?), 4.2
+ f — | £+—|dx, (323 oAt (b 4.2
JX 4A? 4A -
_ 2 2 2
=—rg(x+a%)(x+b , 4.3
R fx 1 [ard(x+b?) B T D e T 43
= — —do— _
¢ S 0 x| aaz o
=A| —m?x+ (a%—b? ——— | =K |+r3(x+a?
(22— b?)d I ( N\ra2 xep? olx+a%)
+ ——|dx, (3.29
4A(x+a2) 2
bw
X (x+b?) 5+ 5 (4.4
01 v x 1 | br3(x+a?) x+a* x+b
U= | 75 2,90 f N T
cos 0 JX 4A The radial turning pointst=0 are defined by the condi-
tion E=V.(x), where
(a®—b% ¥ q (3.25
————|dx. . 2 -
4A(x+Db?) v;—ﬂi i @ 4.9
- o
Often it is more convenient to rewrite these equations in - _ _
the form of the first-order differential equations The quantitiesV. are called theeffective potentialsThey
are functions ok and the integrals of motio®, ¥, andK.
p20=0,\0, (3.26 The limiting values of the effective potentialé. at in-
finity and at the horizon are
2y
Px= 0,2\, (3.27) Ve(x=o)==m, V.(x,)=®Q+¥0Q,. (4.6
) r5(x+a?)(x+b?) The motion of a particle with enerdyis possible only in the

2% _
pL=Ep~+ A £ (329 regions where eithéE=V_ or E<V_ . The expressiom.5)

remains invariant under the transformatidas- —E, ®—
o ard(x+b%  (a2—b?d —®, ¥— -V relating these regions. In the absence of ro-

2= - 3.2 tation,a=b=0, the second regioB<V_ is excluded.
P e Sir? 6 A (x+a?) (329 g
- br2 ) 2oy B. Motion in the @ direction
) re(x+a —
p2¢,: — o )g (@ 2) ) (3.30 Consider now motion in thed direction. Since®=0,
cog 6 A (x+b?) bounded motion witlE2<m? is possible only ifK=0. For

) ) ) bounded motion and#0, b#0, K>0. ForK>0 there ex-
These equations can be obtained from E§2)) by direct st poth bounded and unbounded trajectories. A particle can
differentiation with respect to the affine parameter reach the subspacg=0 only if =0 and the subspace
=/2 only if ¥=0. For¥=0 the orbit is in thef=7/2
IV. GENERAL TYPES OF MOTION AND SPECIAL CASES plane ifK=®2— (E2—m?)b2. Similarly, for ®=0 the orbit
is in the #=0 plane ifK=¥?—(E?>—m?)aZ.
A special class of motion is the case when patrticles are
The geodesic world line of a particle in the Myers-Perry moving quasiradially along trajectories on which the value of
metric is completely determined by the first integrals of mo-the angled remains constanty= ,. The relation between
tion E, ®, ¥, andK. We discuss the motion in the black the integrals of motion corresponding to this type of motion
hole exterior, so we assume thit-0. Considert' given by  can be found by solving simultaneously the equations
Eqg. (3.19 as a function ofx for fixed values of the other

A. Radial motion

parameters. At large distances the leading terrd obntains O(0y)= @ _o 4.7
the factor E°—~m?. For E2<m? the function X becomes 0" dg , - :
negative at large. Hence only orbits witlE?2>m? can ex- 0

tend to infinity. These orbits are callathbounded For E2
<m? the orbit is alwaysoundedthat is, the particle cannot
reach infinity. P2 P2

These equations are of the form

To study qualitative characteristics of the motion of test (E*—m?)(a*cos’ 6+ b? sirf 6) — 7o, coZao. K
. . . o . Sin 6, Ccos 6,
particles in the metri¢2.1), it is convenient to use theffec-
tive potential Let us write X as =0, (4.8
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2 2\ (h2_ A2 ®? w? 1

In the second equation we excluded the caggs0 and 12]
00:77/2

10

C. Circular orbits vs 8]

A characteristic property of the four-dimensional gravita-
tional field is the existence of bounded orbits located in the
exterior of the black hole. For such orbits there are two turn- 4]
ing points, corresponding to the minimum and maximum of
the radial coordinate for the particle trajectory. This means

that the lineE=const crosses the effective potentiAr)
curve at two pointsr, andr,. Between these pointE
>V(r). The functionV(r) has a minimum atr{<r i,
<r,. For the special case whé&= V(r,;,) the orbit is cir-

X

FIG. 1. The effective potentidlg for radial motion in the five-

cular. Thus the existence of stable circular orbits is a necestimensional Schwarzschild space-time for several values of the an-
sary condition for the existence of bounded orbits located imyular momentuni.. We setm=r,=1 and the four different curves

the exterior of the black hole.

correspond td.2=1, 10, 100, and 1000 from the bottom up.

It is well known that there are no stable circular orbits in

the Newtonian gravity in a space-time with more than thregy,ym in this interval without possibility of having a mini-
spatial dimensions. This is also true in general relativity. That,ym. The new variablg is a monotonic function of and

is, the Schwarzschild metric

dr2 r k+1
dSZZ—thz‘l' ?+r2dQE+2, F:]._(TO) )
(4.10

where dQ2, , is the metric on a unit K+ 2)-dimensional

sphere, does not allow stable circular orbits. The effectiv

potential for the radial motion of a particle with massin

this field is
L2
" m) |

(4.1

V4(r)=—F

the original functionvg(r) [and thereforeVg(r)] does not
have a minimum either. Thus, the potenti&l(r) does not
allow any motion that is confined in a finite interval of the
radial coordinate.

The other way to see that this potential does not support
any stable circular orbits is to note that the second derivative
e(4.13) is always negative foy>0 and arbitraryk. A similar
conclusion can be derived if we consider an effective poten-
tial for angular motion( 15].

Figure 1 shows a plot of the potentigls for the five-
dimensional Schwarzschild space-time for several values of
the angular momenturh.

We shall prove now that stable circular orbits do not exist
in the Myers-Perry metric, at least in the case when these

whereL is the total angular momentum. It is easy to see thaphits are in the “equatorial” planes)=0 and 8= /2. We
this potential does not have any minima in the intervalgive the proof for the casé= /2, and the other case is

(r01w)'
With a change of variableg=r2/r? (y goes from 0 to 1
we can write

VE(y)=(1-y92)| 1+

(4.12

L2
r2m? y) '
The second derivative of the functiM‘g(y) with respect toy
is
(k+3)(k+1)L?

(k=3)/2_
y
4r2m?

(k-1)/2.

P(VEy) k-1
a2 4
(4.13

This function is zero only foy<0, which means thav3
cannot have more than one extremum for positvéNote

also thatv(y) takes the value 1 at=0 and the value 0 at

similar.
Circular orbitsx=xy=const are defined by the equations

(4.19

where X is given by Eq.(3.18. For orbits in the plane
=7/2 one hasl =0 andK = ®?— (E?>—m?)b? (see the pre-
vious subsection Substituting these relations into Eq.
(4.14, we obtain a system of quadratic equatfofr the
variablesk and®. The solutions are

E,=cE ®,=0d, o==, (4.15

2This method of analyzing circular orbits is similar to the method

y=1. SinceV(y) is non-negative, we conclude that either it used by Bardeen, Press, and TeukolE§] for a four-dimensional
is a monotonically decreasing function or it has one maxiKerr metric.
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2 2
E y Y _(x+a)(x+b)[ B b
E:yz—_)lgl (4-16) Lia/"_ A [(gt X-I—{;I.Z(?‘ZS X+b2(9w
+2Xdy. (4.23
® (y+a?—b2—rd)r,
== ey , (4.17  The two different congruences differ by the choice of sign in
0

Eqg. (3.27). By analogy with similar congruences in the four-
dimensional Kerr geometry, we call the congruences gener-
ated byL% principal null congruences

y=XFroa+b?—r3, Yo=ToV(roxa)>—b2. By using t_hec_;RTENSORprogram one can chec!(_that both
(4.18 of the null principal congruences obey the condition

where

Since the constants and ® are to be real, the expres- L.[,CplydeL?LE =0, (4.29
sions under the square root in the denominators of Egs.

(4.16 and(4.17) are to be positive. This happens when ~ Where Cg,; is the Weyl tensor. In the four- dimensional
case, a similar condition means that the space-time is alge-

y2> yg_ (4.19 braically special and belongs to the Petrov clBs&r more
degenerate’®
But for these values of we haveE?>>m? and the potential One can check that the shear defined by Eq(A6) for

must allow unbounded motion. This means that if the mini-LY is
mum of the effective potential exists, there must also be at

least one maximum. But the equation for the second deriva- 2 (a®cog 9+ b?sir? 0)
tive 7==V3 5 : (4.29
p2\x
2
ﬂ:z[(EL m?)(3x+a2+2b?) — P2+r02m?]=0 and it does not vanishTo perform the calculation of we
ax? used theGRTENSOR program. Direct calculations based on

(4.20 relation (A5) of the Appendix result in very long expres-

) o , sions, so that the standa®RTENSOR simplification proce-
has only one solution fox, and this situation is impossible. qyre does not work. We found that calculations based on the
Thus, we conclude that there are no stable circular orbit§econd form of the expression for in Eq. (A6) are much
around the rotating five-dimensional Myers-Perry black holegnorter and allow one to arrive at the res(dt25 much
at least in the “equatorial” planes. faster.

Qne_ may conjecture that th_e a_bsence of _bounded stable The principal null geodesic congruendds23 were used
orbits in the black hole exterior is a generic property Ofjn [10] to establish relations between Boyer-Lindquist and

higher dimensional black holes. Kerr-Schild coordinates for the Myers-Perry metric.
Similarly to the four-dimensional Kerr metric both of the
D. Principal null congruences null principal vectorsL% are eigen vectors of the tensor
We consider now null rays moving alortty=const sur-  &(ty.;»» Wheregd, = d; is the Killing vector, which is time

faces. One can use the conditiofs8) and (4.9) (with m like at infinity. That is the following relations are valid:

=0) to determine two of the constants of motion. After this ,

a general solution is specified I®; K, 6y, andty, ¢q, . Sk x = Kby, (4.26

The last 3 constants are required as the initial data for three

Killing variablest, ¢, and#. Let us note that the parameter where

E is not important. It can be “gauged away” be rescaling of >

the affine parameter— EX. Thus, we have a five-parameter K== X ZO- (4.27)

family of null geodesics. In order to have a congruence of - P

null geodesics one needs to fix one more parameter. The
following special choice is very convenient:
Spetrov classification for five-dimensional metrics of Euclidean
®=—Easir’ §,, ¥=—Ebcos 6. (4.21) signature was given ifil7]. The classification of higher dimen-
sional space-times and its relation to the existence of principal null
For this choice, Eq(4.9) is automatically satisfied, while Eq. geodesics is an interesting problem. In our paper we use the term

(4.8) gives “algebraically special” only in the sense that the space-time allows
o 5 i principal null geodesics.
K =E?(a®~b?)(sir? 6o~ cos ;). (4.22 “In the four-dimensional case the following theorem proved by

Goldberg and SacH48] is valid: If a vacuum gravitational field is
The null geodesics from this congruence are uniquely speciigebraically special then principal null congruences must be shear-
fied by the parameter&y, tg, ¢o, andyg. The null vectors  free. The result4.25 indicates that this theorem might not be valid
tangent to the geodesics from this congruence are in the five-dimensional case.
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V. CONCLUSIONS choose another null vectar’, normalized by the condition
n#l,=—1, and denote by5 the (n—2)-dimensional sub-

We discussed the motion of particles and light in thes ace of2 formed by vectors that are orthogonal to both null
space-time of a five-dimensional rotating black hole. There is P y 9

an intriguing similarity of this problem with the case of the vectors. Denote bjr,,, a projector ontcd
four-dimensional Kerr metric. In both cases the Hamilton-

Jacobi equations for particles and light allow separation of Mur =Gt 2y (A2)
variables. This property follows from the existence of a Kill- gne has
ing tensor in addition to the Killing vectors.

We described different types of motion of particles and h 1”=h,n"=0, h“h,=h, . (A3)
light in the background of a five-dimensional rotating black * r gy
hole, including some interesting special caskiee radial As usual, let us decomposg., as follows:

motion and motion with constard). In many aspects the
qualitative properties of different types of motion are similar
in four and five dimensions. Both four- and five-dimensional L=l T ot ﬁﬁhw, (A4)
metrics are algebraically special and allow two families of
principal null congruences. In both cases these congruenc@ere
are geodesic. The principal null rays are also eigenvectors of
the tensoi .., . However, there are some differences. While
in four dimensions the principal null congruences are shear- ~ 9=1%,=h*?l .5, &,,=1(,.,)~ o N
free, in five dimensions this is not the case. Also, in four (A5)
dimensions there exist stable circular orbits around the rotat-
ing black hole, while for the five-dimensional Myers-Perry The parameters of twisfy, and shearg, are defined as
black hole they are absent, at least in the “equatorial” planestHOWS: ' '

It would be interesting to generalize these results to rotat-
ing black holes in arbitrary numbers of dimensions. ,32=|[ ]I[“;"]

wiv '
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APPENDIX: OPTICAL SCALARS FOR NULL from X. Under this transformatiorh,,—h,,+2l, z,),
CONGRUENCES IN A HIGHER DIMENSIONAL while the expansiond, twist p, and sheap remain invari-

SPACE-TIME ant.

In a space-time with two principal null geodesic congru-

Consider a congruence of null geodesics+dimensional i X ;
encesL% , the natural choice of the projectbr,, is

space-time and Id#* be a tangent vector, then
1#,=0, I“1"=0, I“],=0. (A1) h=0,,—2al, L ), a=(L,,L "~ (A7)

Denote byX the (n—1)-dimensional null plane which is For the five-dimensional metri€2.1) and the principal
spanned by vecto* obeying the conditioz”l ,=0. Letus  null vectors(4.23 one has

_ 2 A8
~ 2xp?’ (A8)
[ x(a?sir? 6+b%cof f)+a%h? 0 0 —a(x+b?) —b(x+a?) ]
0 0 O 0 0
0 0 x 0 0
h“"—ix x+b? sir? 6 (A9)
Xp? —a(x+b? 00 —— — ab '
+a’cos 6
—b(x+a?) 00 ab %

[The matrixh#” is written in the basist(x, 6, ®,).]
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