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Relativistic theory of elastic deformable astronomical bodies:
Perturbation equations in rotating spherical coordinates and junction conditions
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In this paper, the dynamical equations and junction conditions at the interface between adjacent layers of
different elastic properties for an elastic deformable astronomical body in the first post-Newtonian approxima-
tion of Einstein theory of gravity are discussed in both rotating Cartesian coordinates and rotating spherical
coordinates. The unperturbed rotating body~the ground state! is described as a uniformly rotating, stationary
and axisymmetric configuration in an asymptotically flat space-time manifold. Deviations from the equilibrium
configuration are described by means of a displacement field. In terms of the formalism of relativistic celestial
mechanics developed by Damour, Soffel, and Xu, and the framework established by Carter and Quintana the
post-Newtonian equations of the displacement field and the symmetric trace-free shear tensor are obtained.
Corresponding post-Newtonian junction conditions at interfaces, also the outer surface boundary conditions are
presented, which is the extension of Wahr’s Newtonian junction conditions without rotating.
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I. INTRODUCTION

The theory of elastic deformable bodies is of great imp
tance for quantitative models for the free and forced moti
of astronomical bodies~especially for the Earth!. Historically
the perturbed Newtonian Euler equation for an elastic
formable Earth was apparently first derived by Jeffreys a
Vicente@1#. Some different forms of it have appeared later
the literature@2#. Such a local treatment of global geodynam
ics has been pursued especially by Wahr@3#, Schastok@4#,
and Dehant and Defraigne@5# to describe the nutation of th
Earth. Clearly all of these investigations just mentioned
fully within Newton’s theory of gravity. The theory of elas
ticity is also of importance for the interpretation of data r
sulting from modern observational techniques such as v
long baseline interferometry~VLBI !, Lunar and Satellite
Laser Ranging~LLR and LSR!, and all other kinds of obser
vations where the positions of Earth-bound points should
described with high position. The normal modes~or quasi-
normal modes! of the Earth or other astronomical bodie
such as white dwarfs or neutron stars, are another field
important applications@6–8#, as is the calculation of the tim
evolution of the~mass and current! multipole moments@9# of
astronomical bodies.

Extending the Newtonian theory of motion of elastic d
formable bodies to include relativistic effects presents a n
and improved basis for further discussions of such proble
Recently Xu, Wu and Soffel@10# developed such a gener
relativistic theory of elastic deformable astronomical bod
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on the basis of the Damour-Soffel-Xu~DSX! formalism as
the foundation of modern general relativistic celestial m
chanics at the first post-Newtonian approximation of E
stein’s theory of gravity@11–14#. In @10# we discussed the
post-Newtonian~PN! perturbations of a uniformly rotating
stationary, and axisymmetric elastic body in a rotating C
tesian coordinate system. The general perturbations of su
configuration are treated within the Carter-Quintana form
ism @15,16#. A central result was the post-Newtonian d
namical equation for the displacement field in Cartesian
ordinates representing the post-Newtonian version of
well-known Jeffreys-Vicente equation@2#. However, for
practical applications, the common way of dealing with su
perturbations is to go to spherical@17,18# instead of Carte-
sian coordinates and then to expand the relevant quantitie
terms of scalar, vector and tensor spherical harmonics or
called generalized spherical harmonics.

In this paper, we follow the route of our previous pap
@10# to deduce the post-Newtonian perturbed local evolut
equations and the perturbed Eulerian equation for the
placement field of an elastic astronomical body in rotat
spherical coordinates. To this end the Eulerian variation
Einstein’s energy-momentum conservation law is perform
The Newtonian version of our results~neglecting all 1/c2

terms! is in agreement with standard results from the lite
ture ~e.g., Ref.@17# after correction of a typographical mis
take!. Post-Newtonian junction conditions for the transitio
from one layer to another with different elastic properti
that were not treated in@10,18# are also presented here. Ge
eral relativistic junction conditions were discussed long a
@19,20#. As of now the problem of junction conditions is sti
an active research aspect of general relativity, e.g. the slo
rotating interior solution to match the exterior Kerr solutio
@21#, the junction conditions in existence of a shock wa
@22# or a thin shell@23# and so on. But we should emphasiz
that in our paper the main discussion on the junction con
©2003 The American Physical Society09-1
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XU et al. PHYSICAL REVIEW D 68, 064009 ~2003!
tions is the physical quantities in the perturbed state~the
perturbed metric, the perturbed project tensor, the pertur
energy-momentum tensoret al.! and the equations of th
post-Newtonian displacement field. Certainly we also ne
to consider the junction conditions of the unperturbed s
~ground state, in DSX scheme the metric is presented
potentialW and vector potentialWa). We do not talk about
the shock wave or the thin shell, since for most of elas
astronomical bodies~e.g. Earth! such discussion is unnece
sary. Therefore the junction conditions of Einstein field eq
tions for a ground state in our case are simple and w
known, the so-called admissible boundary layer in
classification by Gemelli@24#. However, the junction condi
tions to the perturbed metric and the post-Newtonian d
placement field presented here are new. Corresponding N
tonian junction conditions can e.g., be found in Wahr@3#.

The symbols and notation are taken from the DSX pap
@11–14#: the space-time signature is taken as2111,
space-time indices go from 0 to 3 and are denoted by Gr
indices, while spatial indices~1 to 3! are denoted by Latin
indices. We use Einstein’s summation convention for b
types of indices, whatever the position of repeated indic
We shall often abbreviate the order symbolO(c2n) simply
by O(n). Local coordinatesXa5(cT,Xa) are chosen in tha
reference system that moves with the body under consi
ation. The DSX scheme provides a description of the me
tensor Gab in a local system with two metric potentia
(W,Wa).

In Sec. II, the post-Newtonian perturbation equations
elastic astronomical bodies both in Cartesian@10# and spheri-
cal coordinates are presented. Special emphasis is give
the new derivation in spherical coordinates. In Sec. III,
discuss post-Newtonian junction and boundary conditions
the last section some conclusion can be found.

II. POST-NEWTONIAN PERTURBATION EQUATIONS

A. Perturbed equations in rotating Cartesian coordinates

The formalism starts by considering some isolated rela
body that rotates uniformly with angular velocityV about its
symmetry axis with respect to some global nonrotating co
dinate system. Deviations from such an equilibrium config
ration and the action of tidal forces in a gravitationalN-body
system are then described by means of perturbation the
In that case one has to deal with at least three different
ordinate systems: a global coordinate systemxm5(ct,xi)
like the barycentric celestial reference system~BCRS! that
extends to infinity and where the dynamics of theN-body
system can be formulated, a local ‘‘nonrotating’’ systemXa

5(cT,Xa) like the geocentric celestial reference syste
~GCRS! ~e.g., kinematically nonrotating or at least slow
rotating with an angular velocity of post-Newtonian ord
with respect to the global system! and finally some local
coordinate system@X̄a5(cT̄,X̄a) with T̄5T] whose spatial
coordinates corotate uniformly with the equilibrium config
ration. The post-Newtonian perturbation equations of
elastic deformable astronomical body in rotating Cartes
coordinates have been presented recently@10#. Here, some of
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the results are summarized. The components of the me
tensor in rotating Cartesian coordinates read

Ḡ0052expS 2
2W̄1V̄2

c2 D 1O~5!, ~2.1!

Ḡ0a5
V̄a

c
2

4W̄a

c3
1O~5!, ~2.2!

Ḡab5dabexpS 2W̄

c2 D 1O~4!, ~2.3!

where

W̄[W1
2WV2

c2
2

4WbVb

c2
1

V4

4c2
~2.4!

and

W̄a[RabS Wb2
1

2
VbWD . ~2.5!

A bar on top of some quantity indicates that it refers to t
rotating coordinate systemX̄a, otherwise it will refer to the
‘‘nonrotating’’ local coordinate systemXa. W andWa are the
scalar and vector potential which describe the metric in lo
‘‘nonrotating’’ coordinates. For the relaxed ground state
the body these potentials result entirely from the grav
tional action of the body itself. For more details the reade
referred to Damouret al. @11#. Vb is the rotation velocity of
the equilibrium configuration,Rab is a time-dependent rota
tion matrix @defined by Eqs.~2.15!, ~2.16! of @10##, V̄a

5RabVb and V̄b5RbcVc. Vc is the angular velocity with
respect to ‘‘nonrotating’’ coordinates (Va5eabcV

bXc, eabc is
the completely antisymmetric Levi-Civita symbol of rank
with e123511). The perturbed energy balance equation
ter a first time integration reads@see Eqs.~4.30! and~4.31! of
@10##

dr52¹•~rs!2
1

c2 @rV̄aṡa1~psa! ,a

12W̄,asar13rdW̄#1O~4!

52r ,asa2r* Q1O~4!, ~2.6!

where r is the energy density,r* 5r1p/c2 the chemical
potential per unit volume,p is the isotropic pressure andsa

are the spatial components of the contravariant displacem
field. The volume dilatationQ is given by

Q5sb
,b1

1

c2 ~V̄bṡb1ebcdV̄
csdV̄b

13W̄,cs
c13dW̄!1O~4!. ~2.7!

Here,dW̄ is the Eulerian variation ofW̄ in rotating coordi-
nates. The perturbed Eulerian equation takes the form@Eq.
~4.32! of @10##
9-2
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05r* S 11
2W̄G

c2 D ~ s̈a12eabcV̄
bṡc!1r* QW̄G,a2r* s,a

b W̄G,b2r* ~dW̄G! ,a2r* sbW̄G,ba2~kQdab12msb
a! ;b

1
1

c2
$r* @V̄a~V̄bs̈b!1W̄G,bṡbV̄a22V̄bṡbW̄G,a1~dW̄! ,T̄V̄a18ṡbW̄[b,a]24~dW̄a! ,T̄#1k~QW̄G,a2Q̇V̄a!

1@k~4W̄Q1V̄bV̄cs,c
b !# ,a%1O~4!, ~2.8!
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where the post-Newtonian geopotentialW̄G is given by

W̄G5W̄1
V̄2

2
.

The ‘‘dot’’ stands for the derivative with respect to the tim
variable T̄5T and d indicates the Eulerian variation. Th
elastic modulik andm are the compression modulus and t
shear modulus respectively;sab is the shear-stress tensor@a
complete representation ofsab is given in Eq.~4.26! of @10##.
The term containing the shear-stress tensor reads@see also
Eq. ~4.33! of @10##

~2msb
a! ;b5~2msba! ,b1

1

c2 $2~4mW̄sba12mscaV̄
cV̄b! ,b

1~2msab! ,TV̄b12m~2W̄,csac

1eacbV
csbdV̄

d!%. ~2.9!

Equation~2.8! is the post-Newtonian Euler equation for th
displacement fields, sometimes called the post-Newtonia
Jeffreys-Vicente equation.

B. Perturbation equations in rotating spherical coordinates

1. Unperturbed and perturbed projection tensor
in rotating spherical coordinates

The importance to formulate the perturbation equation
rotating spherical coordinates was already stressed in the
troduction. Note that both the Eulerian and the Lagrang
variation of a tensor do not necessarily preserve the te
character, whereas the difference between them, the Lie
rivative (Lj5D2d), does. This implies that one cannot sim
ply transform the variational equations from Cartesian
spherical coordinates. For that reason all derivations of
perturbed energy equation and the post-Newtonian Jeffr
Vicente equation have to be repeated in spherical coo
nates. These rotating spherical coordinates (r ,u,f) are de-
fined by (X̄5r sinu cosf,Ȳ5r sinu sinf,Z̄5r cosu).

The metric tensor in such rotating spherical coordina

@X̃m5(cT̃,r ,u,f) with T̃5T] takes the form

G̃0052expS 2
2W̃1Ṽ2

c2 D 1O~5!, ~2.10!
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G̃0a5G̃a05DacS Ṽc

c
2

4W̃c

c3 D 1O~5!, ~2.11!

G̃ab5Dab expS 2W̃

c2 D 1O~4!, ~2.12!

where Ṽa5(]X̃a/]X̄b)V̄b, W̃a5(]X̃a/]X̄b)W̄b, W̃5W̄, Ṽ2

5V̄2 and

Dab[S 1 0 0

0 r 2 0

0 0 r 2 sin2u
D . ~2.13!

The corresponding inverse matrixDab satisfies DabD
bc

5da
c . For the 3-dimension quantitiesṼa andW̃a we define

Ṽa5DabṼ
b, W̃a5DabW̃

b.
In the following we will chooseV5Vez , with V being

constant, so that

Ṽr5Ṽr5Ṽu5Ṽu50,

Ṽf5V, Ṽf5Vr 2sin2u ~2.14!

and Ṽ25V2r 2sin2u. From these quantities the Christoffe
symbols and the orthogonal projection tensor~projecting into
the 3-space of an observer that moves with the correspon
material element! can be derived. In Carter and Quintana
formalism@15# a body is described by means of a bundle
time-like world-lines in a four-dimensional space-time ma
fold. A mapping into a three-dimensional manifold that
composed of the various material elements of the body id
tifies the various ‘‘particles’’ of the body. The projection o
any tensor onto the local rest frame of matter is achie
with the orthogonal projection tensor

gmn5Gmn1
UmUn

c2 . ~2.15!

This tensor acts as a positive metric tensor on the tang
subspace orthogonal to the flow vectors. The correspond
inverse metric tensor is given simply by its equivalent co
travariant form, since it satisfiesgmngns5gs

m . Um is the
four-velocity of some material element as tangent vector
its world line andgmnUn50.
9-3
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In general relativity, the unperturbed and perturbed sta
of a body are considered as two configurations in sepa
four-dimensional space-time manifolds. Usually one sta
with canonical coordinatesxm in both manifolds andxm

→xm1Dxm maps the coordinates of a material element
the reference state onto the coordinates of the same ele
in the perturbed state, whereDxm is the position coordinate
displacement in 4-dimension space-time. The quantitiesjm

[Dxm are called the four-dimensional displacement fie
The Lagrangian variation is the variation of the field in term
of a coordinate system which is itself dragged along by
displacementDxm; it is denoted by the symbolD. The Eu-
lerian variation denoted byd is the variation taken at a fixe
point in 4-dimension space-time. The relation between th
two kinds of variations is given byd5D2Lj , whereLj

stands for the Lie derivative along the displacement fieldjm.
The displacement field, for obvious reasons, will be defin
in rotating coordinates. It is taken asjm5(0,ja) ~see@10#!.

The Euler variation ofG̃mn ~denoted byhmn) results from
Eqs.~2.10!–~2.12!:

h005dG̃005
2dW̃

c2 S 12
2W̃1Ṽ2

c2 D 1O~5!, ~2.16!

h0a5dG̃0a52DacS 4dW̃c

c3 D 1O~5!, ~2.17!

hab5dG̃ab5DabS 2dW̃

c2 D 1O~4!. ~2.18!

Other important quantities are the Eulerian variations of
4-velocity and the projection tensor. They take the form

dU05
1

c
~dW̃1Ṽaja

,T!1O~3!, ~2.19!

dUa5ja
,TS 11

W̃G

c2 D 1O~4!, ~2.20!

dU05
1

c
dW̃1O~3!, ~2.21!

dUa5DabH jb
,TS 11

W̃G

c2 D 1
1

c2 @2W̃jb
,T24dW̃b

1Ṽb~dW̃1Ṽaja
,T!#J 1O~4! ~2.22!

and

dg0
052

1

c2Ṽaj ,T
a 1O~4!, ~2.23!
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dg0
b5

1

c
Dbcj

c
,T1O~3!, ~2.24!

dga
052

1

c
ja

,T1O~3!, ~2.25!

dga
b5

1

c2 ja
,TDbcṼ

c1O~4!.

~2.26!

2. Lagrangian strain tensor and shear tensor

For a perfect elastic body, the energy-momentum ten
of the relaxed state is of the form

Tab5rUaUb1pgab , ~2.27!

wherer is the rest energy density andp the isotropic pres-
sure in the reference state. The perturbed configura
changes the energy-momentum distribution and geomet
shape with time and might experience tidal forces from ot
astronomical objects. The Eulerian variation of the ener
momentum tensor can be expressed as

dTab5UaUbdr1rd~UaUb!

1gabdp1pdgab22msab , ~2.28!

wheresab is the shear tensor andm is the shear modulus
The symmetric trace-free shear tensor is defined as

smn[emn2
1

3
Qgmn , ~2.29!

where the volume dilatation is given byQ5em
m .

The Lagrangian strain tensor is defined by

emn5
1

2
Dgmn5

1

2
~gmn2gmn* !, ~2.30!

wheregmn* is the unstrained value. Restricting ourselves
linear perturbations, the strain tensor is given by@15#

emn5
1

2
gm

agn
b~hab12j (a;b)!. ~2.31!

In the following we choose the displacement field in r
tating spherical coordinates asjb5(0,j r ,ju,jf) and we use
the linear displacement

D[Drer1Dueu1Dfef ~2.32!

with

Dr5j r , Du5r ju, Df5r sinujf, ~2.33!

whereer , eu andef are unit vectors in ther , u andf direc-
tion respectively.
9-4
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The explicit calculation of the Lagrangian strain tens
emn and the shear tensorsmn is straightforward but cumber
some. Results foremn and smn to post-Newtonian accurac
are given in the Appendix.

3. The post-Newtonian energy and Eulerian equations

The Eulerian variation of the pressuredp can be derived
similarly as in our previous paper dealing with Cartes
coordinates@10#. In spherical coordinates it takes the form

dp52r* D•¹W̃G2kQ1
k

c2
@4QW̃1V2r sinu

3~D ,f
f 1sinuDr1cosuDu!#1O~4!. ~2.34!

Our main results concern the perturbed local evolut
equations
06400
r

n

d~ T̃n
m;n!50. ~2.35!

For m50 one derives the perturbed energy equation in
form

dr52D•¹r2rQ2
1

c2 pQ

52S Drr ,r1
1

r
Dur ,u1

1

r sinu
Dfr ,fD

2r* Q1O~4!. ~2.36!

The perturbed Euler equations correspond to the casm
5a. As an intermediate result by using the expression
¹•D from the Appendix we get
¹2D5erF¹2Dr2
2

r 2Dr2
2

r 2sinu
~sinuDu! ,u2

2

r 2sinu
~Df! ,fG1euF¹2Du2

Du

r 2sin2u
1

2

r 2
~Dr ! ,u2

2 cosu

r 2sin2u
~Df! ,fG

1efF¹2Df2
Df

r 2sin2u
1

2

r 2sinu
~Dr ! ,f1

2 cosu

r 2sin2u
~Du! ,fG ,

~¹•D! ,r5D ,rr
r 2

1

r 2D ,u
u 1

1

r
D ,ur

u 1
1

r sinu
D ,fr

f 2
1

r 2sinu
D ,f

f 1
2

r
D ,r

r 2
2

r 2 Dr1
1

r
cotuD ,r

u 2
1

r 2 cotuDu,

~¹•D! ,u5D ,ru
r 1

1

r
D ,uu

u 1
1

r sinu
D ,fu

f 2
cosu

r sin2u
D ,f

f 1
2

r
D ,u

r 1
1

r
cotuD ,u

u 2
1

r sin2u
Du,

~¹•D! ,f5D ,rf
r 1

1

r
D ,uf

u 1
1

r sinu
D ,ff

f 1
2

r
D ,f

r 1
1

r
cotuD ,f

u .

Tedious calculations then lead to the explicit equations form5a5r , u, f respectively.
The m5r equation reads

05r* S 11
2W̃G

c2 D ~D ,TT
r 22V sinuD ,T

f !1r* QW̃G,r2r* ~dW̃G! ,r2r* ~D•¹W̃G! ,r2~kQ! ,r22~msb
r ! ;b

1
1

c2 H r* F2W̃D ,TT
r 1

8

r
D ,T

u W̃[u,r ]1
8

r sinu
D ,T

f W̃[f,r ]22Vr sinuW̃G,rD ,T
f 24~dW̃r ! ,TG1kQW̃G,r14~kQW̃! ,r

1FkV2S sff1
1

3
Qr 2sin2u D G

,r
J 1O~4!, ~2.37!

where

2~msb
r ! ;b52m ,bsb

r12msb
r ;b

5mS 1

3
~¹•D! ,r1~¹2D!r D12m ,r S D ,r

r 2
1

3
¹•DD1

m ,u

r 2
~D ,u

r 1rD ,r
u 2Du!1

m ,f

r sinu S D ,f
r

r sinu
1D ,r

f2
Df

r D
1

1

c2 H 2mF2srr W̃,r1
2sru

r 2
W̃,u1

2srf

r 2sin2u
W̃,f12Vsrf,T2

5

6
V sinu~rD ,T

f ! ,r2
1

3
V2r sinu cosuD ,r

u 2
V2

2
D ,ff

r

9-5
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2
7

3
V2sin2u~Dr1Ducotu!2V2sinuD ,f

f G2
2

3
m ,rVr sinu~D ,T

f 1DrV sinu1DuV cosu!

1m ,fV~D ,T
r 2VD ,f

r !J 1O~4!. ~2.38!

Two indices enclosed in parentheses imply symmetrization as inW̃(a,b)5(W̃a,b1W̃b,a)/2, and two indices enclosed in squa
brackets imply antisymmetrization as inW̃[a,b]5(W̃a,b2W̃b,a)/2.

The m5u equation takes the form

05r* r S 11
2W̃G

c2 D ~D ,TT
u 22V cosuD ,T

f !1r* QW̃G,u2r* ~dW̃G! ,u2r* ~D•¹W̃G! ,u2~kQ! ,u22~msu
b! ;b

1
1

c2 H r* F2rW̃D ,TT
u 18D ,T

r W̃[ r ,u]1
8

r sinu
D ,T

f W̃[f,u]22Vr sinuW̃G,uD ,T
f 24~dW̃u! ,TG1kQW̃G,u14~kQW̃! ,u

1FkV2S sff1
1

3
Qr 2sin2u D G

,u
J 1O~4!, ~2.39!

where

2~msb
u! ;b52m ,bsb

u12msb
u;b

5mS 1

3
~¹•D! ,u1r ~¹2D!uD1m ,r~D ,u

r 1rD ,r
u 2Du!12m ,uS D ,u

u

r
1

Dr

r
2

1

3
¹•DD 1

m ,f

r sinu S D ,f
u

sinu
1D ,u

f 2Dfcotu D
1

1

c2 H 2mF2surW̃,r1
2suu

r 2
W̃,u1

2suf

r 2sin2u
W̃,f12Vsuf,T2

5

6
Vr ~sinuD ,T

f ! ,u2
1

2
V2rD ,ff

u 1
1

3
V2r 2sinu cosuD ,r

r

2
1

3
V2r sin2uD ,u

r 2
2

3
V2r cosuD ,f

f 22V2r sinu cosuDr1
1

3
V2r 2sin2uDu22V2r cos2uDuG

2
2

3
m ,uVr sinu@D ,T

f 1V~Drsinu1Ducosu!#1m ,fVr ~D ,T
u 2VD ,f

u !J 1O~4!. ~2.40!

Finally, them5f equation reads explicitly

05r* r sinuS 11
2W̃G

c2 D @D ,TT
f 12V sinu~D ,T

r 1cotuD ,T
u !#1r* QW̃G,f2r* ~dW̃G! ,f2r* ~D•¹W̃G! ,f2~kQ! ,f

22~msb
f! ;b1

1

c2 H r* F2r sinuW̃GD ,TT
f 1Vr 2sin2u~D,T•¹W̃G!22Vr sinuW̃G,fD ,T

f 18D ,T
r W̃[ r ,f]1

8

r
D ,T

u W̃[u,f]

1Vr 2sin2u~dW̃! ,T24~dW̃f! ,TG14~kQW̃! ,f1k~QW̃G,f2Q ,TVr 2sin2u!1FkV2S sff1
1

3
Qr 2sin2u D G

,f
J 1O~4!,

~2.41!

where

2~msb
f! ;b52m ,bsb

f12msb
f;b

5mS 1

3
~¹•D! ,f1r sinu~¹2D!fD1m ,r r sinuS D ,f

r

r sinu
1D ,r

f2
Df

r D 1m ,usinuS D ,u
f

r
1

D ,u
u

r sinu
2

Dfcotu

r D
12m ,fS D ,f

f

r sinu
1

Dr

r
1

Ducotu

r
2

1

3
¹•DD 1

1

c2 H 2mF2sfrW̃,r1
2sfu

r 2
W̃,u1

2sff

r 2sin2u
W̃,f1

1

6
Vr 2sin2u~¹•D! ,T
064009-6
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1
1

2
V2r 3sin3u~¹2D!f1

7

6
Vr sinuD ,ft

f 12Vr sinu~D ,T
r sinu1D ,T

u cosu!2
1

3
V2r sinu~D ,f

r sinu1D ,f
u cosu!

1
1

2
V2r sinu~r sin2uD ,r

f2Df12 cosuD ,u
f 2D ,ff

f !G1m ,rVr 2sin2uFVr sinuS D ,f
r

r sinu
1D ,r

f2
Df

r D
1D ,T

r 2VD ,f
r G1m ,uVr sin2uFVr sinuS D ,u

f

r
1

D ,u
u

r sinu
2

Dfcotu

r D 1D ,T
u 2VD ,f

u G
1

4

3
m ,fVr sinu@D ,T

f 1V~Drsinu1Ducosu!#J 1O~4!. ~2.42!
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Equations~2.37!, ~2.39!, and ~2.41! together with Eq.
~2.36! are the desired dynamical equations for the displa
ment field. They are valid up to terms of order 1/c4 and
second order in the displacements field itself. The Newton
limit of our results~neglecting all 1/c2 terms! agrees with
standard results from textbooks~e.g., the ones from@17# after
correction of a typographical mistake!.

III. POST-NEWTONIAN JUNCTION CONDITIONS

In most cases such post-Newtonian dynamical equat
of elastic deformable bodies will be applied to astronomi
bodies composed of different layers. If the body has sev
layers as e.g., the Earth that shows a solid inner core, a
outer core, a mantle and a thin crust, we have to cons
corresponding junction conditions at the interface of two
jacent layers. First we consider such junction conditions
Cartesian coordinates. For practical applications they
then also formulated in spherical coordinates where they
be compared with well-known Newtonian results@3#. Junc-
tions conditions are formulated in rotating coordinates and
have a well defined stationary and axisymmetric ground s
it is assumed that all layers rotate with the same ang
velocity V, i.e. there is no relative motion between two la
ers in the ground state. The behavior of individual physi
quantities and their corresponding perturbed quantities on
interface will be studied at first.

The gravitational potentialsW andWa are physical quan-
tities in the nonrotating ground state. For an isolated bodyW
andWa can be obtained as a solution of Eqs.~2.4!, ~2.5! in
@10#. They are inhomogeneous D’Alembert’s and Poiss
differential equation respectively. Although the sourcesS
and Sa may be discontinuous across any interface,W and
Wa ~solutions of the equations! are continuous on the inter
face. Since we do not consider the shock wave, the sur
mass-density and surface current mass-density do not
anywhere. Therefore derivatives ofW and Wa have to be
continuous on the interface also.W̄ andW̄a in rotating coor-
dinates differ from (W,Wa) simply by a nonsingular coordi
nate transformation@Eqs. ~2.4! and ~2.5!#. So W̄, W̄a and
their derivative are continuous on any interface as well.

To discuss the continuity ofdW̄ and dW̄a we have to
considerdW and dWa in nonrotating coordinates before
06400
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hand, since only in nonrotating coordinates candW anddWa

be obtained from perturbed field equations@Eqs. ~4.17! and
~4.18! of Ref. @10##

S ¹22
1

c2

]2

]T2D dW524pGdS1O~4!, ~3.1!

¹2dWa524pGdSa1O~2!, ~3.2!

where

dS52r ,a* sa2r* Q

1
1

c2
@2r* ~dW̄12V̄aṡa!22~r ,a* sa1r* Q!~W̄1V̄2!

22r* W̄G,bsb23kQ#1O~4!, ~3.3!

dSa5Rba@r* ṡb2V̄b~r ,c* sc1r* Q!#1O~2!. ~3.4!

dW and dWa are solutions of Eqs.~3.1!, ~3.2!. They are
continuous as the same discussion onW and Wa, but their
derivatives are in different cases. The Eulerian variation
the surface mass-density and Eulerian variation of the
face current mass-density do exist on the interface beca
both dS and dSa are dependent on the spatial coordina
derivatives ofr @see Eqs.~3.3!, ~3.4!#. Then on interfacedS
and dSa are divergent. Therefore (dW) ,a and (dWa) ,b are
finite on the interface but not necessarily continuous acr
the interface. Through the coordinate transformation and
glecting all higher order terms, we get the representation
dW̄ anddW̄a by means ofdW anddWa @see Eqs.~4.22! and
~4.23! of @10##

dW̄5dW1
1

c2
~2dWV224dWbVb!1O~4!, ~3.5!

dW̄a5RabS dWb2
1

2
VbdWD1O~2!. ~3.6!

The inverse transformation takes the form
9-7
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dW5dW̄1
4

c2V̄adW̄a1O~4!, ~3.7!

dWa5RbaS dW̄b1
1

2
V̄bdW̄D1O~2!. ~3.8!

The transformation formulas are nonsingular, thus the beh
ior of dW̄ anddW̄a is similar todW anddWa, i.e. dW̄ and
dW̄a are continuous across any interface.dW̄,a and (dW̄a) ,b
are finite on the interface, but not necessarily continuo
The first and second time derivatives ofdW̄ and dW̄a are
continuous everywhere including in the interface since
shock wave does not exist at anytime. Later when we c
sider the junction condition, we can drop the continuo
terms on both sides of the interface.

For the displacement fields we shall take a similar physi
cal consideration as in@3#. The fields is continuous across
any solid-solid interface. Its normal componentn•s is con-
tinuous across any interface. But its tangent component
not be continuous for a solid-liquid interface, since the ta
gent interaction between a solid and a liquid is close to z
in the absence of viscous forces. Alsoṡa and s̈a are finite
across any interface.m, k, sab andQ are finite, but on dif-
ferent sides of an interface they may be different~not con-
tinuous!. Thereforem ,a , k ,a , sbc,a andQ ,a are not necessar
ily finite on the interface. As we mentioned before, all of t
layers rotate with the same angular velocityV, so thatVa

and V̄a(V̄a5RabVb) are continuous across the interfac
V,a

b , V̄,a
b andV,a

2 5V̄,a
2 are continuous as well.

In Eq. ~3.1! the D’Alembertian can be related to the no
rotating coordinates. A transformation to rotating coordina
yields

¹22
1

c2

]2

]T2
5¹̄21

2V̄a

c2

]2

]X̄a]T̄

2
V̄aV̄b

c2

]2

]X̄b]X̄a
2

1

c2

]2

]T̄2
, ~3.9!

where we have used the relation]V̄a/]X̄a50. Substituting
Eqs.~3.9! and ~3.7! into Eq. ~3.1!, we get

]

]X̄a F ]

]X̄a
dW̄1

2

c2
V̄adW̄,T̄1

4

c2

]

]X̄a
~V̄bdW̄b!

2
V̄aV̄b

c2

]dW̄

]X̄b G2
1

c2
dW̄,T̄T̄524pGdS1O~4!.

~3.10!

We also can rewritedS @see Eqs.~4.27!, ~4.31! and~4.40!
of @10##
06400
v-

s.

e
n-
s

ay
-
o

.

s

dS52¹̄•~rs!1
1

c2 F3rV̄aṡa2~psa! ,a

23rW̄,bsb2rdW̄22¹̄•@rs~W̄1V̄2!#

1
1

2
rV̄2

,bsb23ksb
,bG . ~3.11!

From now on for convenience we omit the ‘‘bar’’ in¹̄ as we
did in @10#. Substituting Eq.~3.11! into Eq. ~3.10!, we get

¹•A1B5O~4! ~3.12!

with

A5¹dW̄24pGr* s1
1

c2
@2V̄dW̄8T̄ 14¹~V̄bdW̄b!

2V̄~V̄•¹dW̄!28pGr* s~W̄1V̄2!#

and

B5
1

c2
~12pGrs•V̄212pGrs•¹W̄24pGrdW̄

12pGrs•¹V̄2212pGkQ2dW̄,T̄T̄!.

As the discussion on the boundary condition problem in cl
sical physics, we now integrate Eq.~3.12! over an infinitesi-
mally small volumeDV such that an interface intersects th
volume. We chooseDV as a cylinder. The surface~S! of DV
encloses the interface of two different layers with the sha
of a circular drum of a radiusr and a depthh, whereh!r
andr is so small that the portion of the interface contained
~S! can be taken as flat. Whenh→0 the integration divides
into two parts: the first part of Eq.~3.12! becomes a surface
integration by means of Gauss’ theorem, the second
tends to zero with vanishingDV because the terms inB are
all continuous or finite. Hence,

n•Au layer15n•Au layer2, ~3.13!

i.e.

n•H ¹dW̄24pGr* s1
1

c2
@4¹~V̄bdW̄b!2V̄~V̄•¹dW̄!

28pGr* s~W̄1V̄2!#J 1O~4!

continuous across any interface. ~3.14!

Here we have dropped the term 2V̄(dW̄) ,T since it is con-
tinuous across the interface.

Substituting Eqs.~3.8! and ~3.4! into Eq. ~3.2! and con-

sidering ¹̄25¹2 and the rotation matrixRba dependent on
time only, we get
9-8
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]

]X̄b F ]

]X̄b S dW̄a1
1

2
V̄adW̄D24pGsbrV̄aG

14pGS r ṡa1rsb
]V̄a

]X̄bD 5O~2!. ~3.15!

Performing a similar integration over an infinitesimal volum
as before, we find that

n•F¹S dW̄a1
1

2
V̄adW̄D24pGr* sV̄aG1O~2!

continuous across any interface, ~3.16!

where r has been substituted byr* since this equation is
-

ce

06400
valid only toO(2). Equation~3.16! can be written by means
of the form of a parallel vector, i.e.

n•F¹S dW̄1
1

2
V̄dW̄D24pGr* sV̄G1O~2!

continuous across any interface. ~3.17!

Finally a similar integration of Eq.~2.8! over an infini-
tesimal cylindrical volume on the interface leads to

E
DV

~Aba,b1Ba!dV50, ~3.18!

where
Aba52kQdab22msba1
1

c2
~4mW̄sba12mscaV̄

cV̄b14kW̄Qdab1kV̄dV̄cs,c
d dab!, ~3.19!

Ba5r* S 11
2W̄G

c2 D ~ s̈a12eabcV̄
bṡc!1r* QW̄G,a2r* s,a

b W̄G,b2r* ~dW̄G! ,a2r* sbW̄G,ba

1
1

c2
$r* @V̄a~V̄bs̈b!1W̄G,bṡbV̄a22V̄bṡbW̄G,a1~dW̄! ,T̄V̄a18ṡbW̄[b,a]24~dW̄a! ,T̄#

2~2msab! ,T̄V̄b22m~2W̄,csac1eacbV
csbdV̄

d!1k~QW̄G,a2Q̇V̄a!%. ~3.20!
f

are
All of the terms inBa are finite or continuous as we men
tioned before. In terms of median method, we have

E
DV

BadV5B̄apr 2h. ~3.21!

The first term of Eq.~3.18! can be deduced as a surfa
integration

E
DV

Aba,bdV5pr 2~n1
bAab2n2

bAab!. ~3.22!

Cancellingpr 2 and neglecting the higher-order termB̄ah,
we get

nbH kQdab12msab2
1

c2
@4mW̄sba12mscaV̄

cV̄b

14kW̄Qdab1kV̄dV̄csd
,cdab#J 1O~4!

continuous across any interface. ~3.23!
We should point out that the Newtonian part of Eq.~3.23!
kQdab12msab is just the Newtonian stress tensorTab in
@3#, therefore Eq.~3.23! is an extended PN version o
Wahr’s.

The PN junction conditions in Cartesian coordinates
summarized as follows:

s continuous across any solid-solid interface~3.24!

s•n continuous across any interface ~3.25!

dW̄ continuous across any interface ~3.26!

dW̄a continuous across any interface ~3.27!

n•H ¹dW̄24pGr* s1
1

c2 $4¹~V̄bdW̄b!

2V̄@V̄•¹~dW̄!#28pGr* s~W̄1V̄2!%J
1O~4! continuous across any interface

~3.28!
9-9
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n•F¹S dW̄1
1

2
V̄dW̄D24pGr* sV̄G1O~2!

continuous across any interface ~3.29!

nbH kQdab12msab2
1

c2@4mW̄sab12msacV̄
cV̄b

14kW̄Qdab1kdabV̄
dV̄csd

,c#J
1O~4! continuous across any interface.~3.30!

For the outer surface boundary conditions we only need s
ply takem5k5r5s50 outside the elastic body, i.e.

dW̄u in5dW̄uout ~3.31!

dW̄au in5dW̄auout ~3.32!

n•H ¹dW̄24pGr* s1
1

c2 $4¹~V̄bdW̄b!2V̄@V̄•¹~dW̄!#

28pGr* s~W̄1V̄2!%J U in

5n•H ¹dW̄1
1

c2 $4¹~V̄bdW̄b!2V̄@V̄•¹~dW̄!#%J U
out

1O~4! ~3.33!

n•H ¹S dW̄1
1

2
V̄dW̄D24pGr* sV̄J U in

5n•¹S dW̄1
1

2
V̄dW̄DU

out

1O~2! ~3.34!

nbH kQdab12msab2
1

c2 @4mW̄sab12msacV̄
cV̄b

14kW̄Qdab1kdabV̄dV̄csd
,c#J 5O~4!. ~3.35!

For most applications the use of spherical coordinates
be advantageous. Corresponding boundary and junction
ditions can be derived similarly to the case of Cartesian
ordinates. They read

D continuous across any solid-solid interface
~3.36!
06400
-
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n-
-

D•n continuous across any interface ~3.37!

dW̃ continuous across any interface ~3.38!

dW̃a continuous across any interface

~a5r ,u,f respectively! ~3.39!

n•H ¹dW̃24pGr* D1
1

c2 @4¹~Vr 2sin2udW̃f!

28pGr* D~W̃1V2r 2sin2u!2efV2r sinu~dW̃! ,f#J
1O~4! continuous across any interface ~3.40!

n•F¹S dW̃1
1

2
ṼdW̃D24pGr* DṼG1O~2!

continuous across any interface ~3.41!

nbH kQDab12msab2
1

c2 F4mW̃sab12msafV2Dbf

14kW̃QDab1kDabS V2r sinuDf
,f

1
1

2
D•¹~V2r 2sin2u! D G J

continuous across any interface. ~3.42!

sab in Eq. ~3.42! is the shear tensor in spherical coordinat
which is shown in the Appendix, Eqs.~A10!–~A15!.

For the outer surface boundary we takem5k5r5D
50 outside the elastic body as before. When we neglec
of the 1/c2 terms and letV̄a50 ~nonrotating!, our formulas
@Eqs. ~3.40! and ~3.42!# agree with Wahr’s results~see Sec.
III of Ref. @3#!, i.e. our work is an extension of the Newton
ian version to the rotating PN version. As for our formul
@Eqs.~3.29!, ~3.34! and~3.41!#, since it is a purely PN junc-
tion condition, there is no corresponding Newtonian to
compared.

IV. CONCLUSION

In this paper we present the perturbation equations for
dynamical behavior of astronomical elastic bodies in the fi
post-Newtonian approximation of Einstein theory of grav
in rotating spherical coordinates. In comparison with our p
vious work in Cartesian coordinates@10#, these equations in
9-10
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spherical coordinates are more useful for applications s
usually all relevant equations are expended in terms of
lar, vector and tensor spherical harmonics. The equations
relations such as junction conditions can e.g., be applie
problems of geodynamics~e.g., for the theory of nutation! or
seismology of compact stars~e.g. for the problem of the
normal modes of astronomical bodies!. Also the formulation
of post-Newtonian junction conditions at the interface of a
jacent layers of different elastic properties is presented h
for the first time. A comparison reveals that the Newton
limit agrees with well-known results from the literature. He
it should be emphasized that the junction conditions can
written very generally with ordinary Euclidean 3-vectors a
3-tensors so that they can be formulated for a broad clas
coordinate systems.

Our perturbation equations together with junctions con
tions can in principle be solved if the internal quantities
state~density, pressure etc.! and elastic moduli are given e.g
by some Earth’s model@25#. However, these equations d
scribing the free and forced motions of the body are com
cated partial differential equations. For that reason usually
expansion of relevant quantities in terms of spherical h
monics turns these equations into a set of coupled ordin
differential equations. A different natural basis for such
expansion is provided by the so-called generalized sphe
harmonics@26,27# that was employed by Wahr and oth
authors. By using the generalized spherical harmonics to
pand all functions@displacement vector, incremental Euleria
gravitational potential energy, incremental elastic stress
sor, applied force~tidal forceet al.!#, the original partial dif-
ferential equations and boundary conditions are transform
into a set of ordinary differential equations and scalar bou
ary conditions for the unknowns functions. For a spheri
and nonrotating ground state these ordinary differential eq
tions are uncoupled, for an oblate, rotating body they
coupled, the coupling parameter being given by the dim
sionless oblateness of the body. Such expansions toge
with applications for geodynamics will be published sep
rately.
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APPENDIX: EXPLICIT RESULTS FOR THE STRAIN
AND SHEAR TENSOR

From Eq.~2.31! one derives

e005O~4!, ~A1!

e0r5e0u5e0f5O~5!, ~A2!

err 5D ,r
r 1

1

c2 ~dW̃1D•¹W̃12W̃D ,r
r !1O~4!, ~A3!
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e

euu5r 2H 1

r
D ,u

u 1
1

r
Dr1

1

c2S dW̃1
2W̃

r
Dr1D•¹W̃

1
2W̃

r
D ,u

u D J 1O~4!, ~A4!

eff5r 2sin2uH 1

r sinu
D ,f

f 1
1

r
Dr1

1

r
Ducotu

1
1

c2 FdW̃1D•¹W̃1
1

r sinu
~2W̃1V2!D ,f

f

1Vr sinuD ,T
f 1

2

r
~W̃1V2!~Dr1Ducotu!G J 1O~4!,

~A5!

eru5r H 1

2r
~D ,u

r 1rD ,r
u 2Du!S 11

2W̃

c2 D J 1O~4!,

~A6!

erf5r sinuH 1

2S D ,f
r

r sinu
2

1

r
Df1D ,r

f D
1

1

c2F W̃

r sinu
D ,f

r 1S D ,r
f2

Df

r D S W̃1
1

2
V2D

1
1

2
Vr sinuD ,T

r G J 1O~4!, ~A7!

euf5r 2sinuH 1

2 S D ,f
u

r sinu
2

cotu

r
Df1

1

r
D ,u

f D
1

1

c2 F W̃

r sinu
D ,f

u 1S W̃1
1

2
V2D S D ,u

f

r
2

cotu

r
DfD

1
1

2
Vr sinuD ,T

u G J 1O~4! ~A8!

where

D•¹W̃5W̃,rD
r1

1

r
W̃,uDu1

1

r sinu
W̃,fDf.

The volume dilatationQ, which is related with the expan
sion rateu by u5Q ,mUm, reads
9-11
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Q5em
m5G̃mnemn5G̃abeab1O~4!

5¹•D1
1

c2S 3dW̃13D•¹W̃1Vr sinuD ,T
f 1

1

2
V,c

2 jcD
1O~4!, ~A9!

where
-

06400
¹•D[D ,r
r 1

1

r
D ,u

u 1
1

r sinu
D ,f

f 1
2

r
Dr1

1

r
cotuDu,

1

2
V,c

2 jc5V2r sin2uj r1V2r 2sinu cosuju

5V2r sin2u~Dr1cotuDu!.

From this it is easy to derive the symmetric trace-free sh
tensorsmn . One finds
all post-
the
s005O~4!, ~A10!

s0r5s0u5s0f5O~5!, ~A11!
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r 2
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1
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1

3
Q D2

1
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@Vr sinuD ,T

f 1V2r sin2u~Dr1cotuDu!#J 1O~4!, ~A12!
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3
¹•D1

1

c2 F2W̃S 1

r
D ,u

u 1
1

r
Dr2

1

3
Q D2

1

3
@Vr sinuD ,T

f 1V2r sin2u~Dr1cotuDu!#G J 1O~4!,

~A13!

sff5r 2sin2uH 1

r sinu
D ,f

f 1
1

r
Dr1

1

r
Ducotu2

1

3
¹•D1

1

c2F ~2W̃1V2!S 1

r sinu
D ,f

f 1
1

r
Dr1

1

r
Ducotu2

1

3
Q D

1V2r sin2u~Dr1cotuDu!1
2

3
Vr sinuD ,T

f 2
1

3
V2r sin2u~Dr1cotuDu!G J 1O~4!, ~A14!

and

sru5eru , srf5erf , suf5euf . ~A15!

These are the post-Newtonian components of the Lagrangian strain and shear tensor in spherical coordinates. If
Newtonian terms are neglected~i.e., for c→`), they reduce to the well known Newtonian results that can be found in
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