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Relativistic theory of elastic deformable astronomical bodies:
Perturbation equations in rotating spherical coordinates and junction conditions
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In this paper, the dynamical equations and junction conditions at the interface between adjacent layers of
different elastic properties for an elastic deformable astronomical body in the first post-Newtonian approxima-
tion of Einstein theory of gravity are discussed in both rotating Cartesian coordinates and rotating spherical
coordinates. The unperturbed rotating bdthe ground stajeis described as a uniformly rotating, stationary
and axisymmetric configuration in an asymptotically flat space-time manifold. Deviations from the equilibrium
configuration are described by means of a displacement field. In terms of the formalism of relativistic celestial
mechanics developed by Damour, Soffel, and Xu, and the framework established by Carter and Quintana the
post-Newtonian equations of the displacement field and the symmetric trace-free shear tensor are obtained.
Corresponding post-Newtonian junction conditions at interfaces, also the outer surface boundary conditions are
presented, which is the extension of Wahr’s Newtonian junction conditions without rotating.
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I. INTRODUCTION on the basis of the Damour-Soffel-XIDSX) formalism as
the foundation of modern general relativistic celestial me-
The theory of elastic deformable bodies is of great imporchanics at the first post-Newtonian approximation of Ein-
tance for quantitative models for the free and forced motionstein’s theory of gravityf11-14. In [10] we discussed the
of astronomical bodieespecially for the EarfhHistorically ~ Post-Newtonian(PN) perturbations of a uniformly rotating,
the perturbed Newtonian Euler equation for an elastic deStationary, and axisymmetric elastic body in a rotating Car-
formable Earth was apparently first derived by Jeffreys andesian coordinate system. The general perturbations of such a
Vicente[1]. Some different forms of it have appeared later inponflguratlon are treated within the Carter—Qumtana} formal-
the literaturg2]. Such a local treatment of global geodynam-S™ [15,18. A central result was the post-Newtonian dy-
ics has been pursued especially by WEBE SchastoK4], nar_nlcal equation for the displacement fle'ld in Car_teS|an co-
and Dehant and Defraigii6] to describe the nutation of the ordinates representing the post-Newtonian version of the

Earth. Clearly all of these investigations just mentioned aré/vell-known Jeffreys-Vicente equatiof?]. However, for

o ) . ~ Ppractical applications, the common way of dealing with such
I‘u”ty V.V'th'ln Nefvx{tons ttheoryfof t%ra\_/lt:/. Thet t?eoryfo(; etlas perturbations is to go to sphericdl7,1§ instead of Carte-
'C'|Y |sfa S0 0 |31por abnce or elln e;‘pr_e ation o h ala '€ gjan coordinates and then to expand the relevant quantities in
sulting from modern observational techniques SUCh as Verye, ¢ of scalar, vector and tensor spherical harmonics or so-
long baseline interferometryVLBI), Lunar and Satellite

) ¢ called generalized spherical harmonics.
Laser RangindLLR and LSR), and all other kinds of obser- In this paper, we follow the route of our previous paper

vations where the positions of Earth-bound points should bf10] to deduce the post-Newtonian perturbed local evolution
described with high position. The normal modes quasi-  equations and the perturbed Eulerian equation for the dis-
normal modek of the Earth or other astronomical bodies, placement field of an elastic astronomical body in rotating
such as white dwarfs or neutron stars, are another field ofpherical coordinates. To this end the Eulerian variation of
important applicationg6—8], as is the calculation of the time Einstein’s energy-momentum conservation law is performed.
evolution of the(mass and currepmultipole moment§9] of ~ The Newtonian version of our resultseglecting all 1¢2
astronomical bodies. terms is in agreement with standard results from the litera-
Extending the Newtonian theory of motion of elastic de-ture (e.g., Ref.[17] after correction of a typographical mis-
formable bodies to include relativistic effects presents a newiake). Post-Newtonian junction conditions for the transition
and improved basis for further discussions of such problemgrom one layer to another with different elastic properties
Recently Xu, Wu and Soffdl10] developed such a general that were not treated if10,18 are also presented here. Gen-
relativistic theory of elastic deformable astronomical bodieseral relativistic junction conditions were discussed long ago
[19,20. As of now the problem of junction conditions is still
an active research aspect of general relativity, e.g. the slowly

*Electronic address: cmxu@njnu.edu.cn rotating interior solution to match the exterior Kerr solution
TElectronic address: xjwu@njnu.edu.cn [21], the junction conditions in existence of a shock wave
*Electronic address: soffel@rcs.urz.tu-dresden.de [22] or a thin shel[23] and so on. But we should emphasize
$Electronic address: klioner@rcs.urz.tu-dresden.de that in our paper the main discussion on the junction condi-
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tions is the physical quantities in the perturbed stdte  the results are summarized. The components of the metric
perturbed metric, the perturbed project tensor, the perturbegnsor in rotating Cartesian coordinates read
energy-momentum tensat al) and the equations of the o
post-Newtonian displacement field. Certainly we also need — 2W+ V?
to consider the junction conditions of the unperturbed state Goo= —exp( T2
(ground state, in DSX scheme the metric is presented by
potential W and vector potentialv?). We do not talk about V2, W
the shock wave or the thin shell, since for most of elastic Gpa=——
astronomical bodiege.g. Earth such discussion is unneces- ¢
sary. Therefore the junction conditions of Einstein field equa- p( —
2

+0(5), 2.1

c

+0O(5), (2.2

tions for a ground state in our case are simple and well- ~ _ i +0(4) 2.3
known, the so-called admissible boundary layer in the ' '
classification by Gemelli24]. However, the junction condi-
tions to the perturbed metric and the post-Newtonian diswhere
placement field presented here are new. Corresponding New- ° b 4
tonian junction conditions can e.g., be found in WHBI W=W-+ 2WV _ AWV i V_

The symbols and notation are taken from the DSX papers c? c2 4c2
[11-14: the space-time signature is taken as+ + +,
space-time indices go from 0 to 3 and are denoted by Gree&nd
indices, while spatial indice€l to 3 are denoted by Latin
indices. We use Einstein’s summation convention for both Waz Rab
types of indices, whatever the position of repeated indices.

) g

\é\)//eos(rae;l.l Egggl igg:?ji\g;i ;ﬂi?gqre;(%y r;rlgmc%os)eﬁlmptlgat A ba_r on top gf some qugﬂity indice_tte; tha_lt it refers to the
reference system that moves with the body under considefotating coordinate systeiX®, otherwise it will refer to the

ation. The DSX scheme provides a description of the metrichonrotating” local coordinate syste{®. WandW, are the
tensor G,z in a local system with two metric potentials scalar and vector potential which describe the metric in local

(W, W2, “nonrotating” coordinates. For the relaxed ground state of
In Sec. II, the post-Newtonian perturbation equations ofN€ body these potentials result entirely from the gravita-
elastic astronomical bodies both in Cartediz@] and spheri- tional action of the body itself. L:(-)r more deFalls the rfaader is
cal coordinates are presented. Special emphasis is given fgferred to Damouet al. [11]. Vb is the rotation velocity of
the new derivation in spherical coordinates. In Sec. IlI, wethe equilibrium configurationR® is a time-dependent rota-
discuss post-Newtonian junction and boundary conditions. Ition matrix [defined by Egs.(2.19, (2.16 of [10]], V2
the last section some conclusion can be found. =R, and QP=RP°Q°. Q° is the angular velocity with
respect to “nonrotating” coordinate®/f= e,, N°XC, €,pciS
the completely antisymmetric Levi-Civita symbol of rank 3
Il. POST-NEWTONIAN PERTURBATION EQUATIONS with €;05=+1). The perturbed energy balance equation af-
ter a first time integration readlsee Eqs(4.30 and(4.31) of

(2.9

2

1
W,— —vbw). (2.5

A. Perturbed equations in rotating Cartesian coordinates

10

The formalism starts by considering some isolated relaxe(g I 1
body that rotates uniformly with angular veloc€y about its _ _ aLa
symmetry axis with respect to some global nonrotating coor- op==V-(p9) 07['0\/ S+ (pS)
dinate system. Deviations from such an equilibrium configu- _ _
ration and the action of tidal forces in a gravitatiohabody +2W ;8% +3p W]+ 0(4)
system are then described by means of perturbation theory.
In that case one has to deal with at least three different co- =Pas'p"O+0(4), (2.6
ordinate systems: a global coordinate systefn=(ct,x')
like the barycentric celestial reference syst®CRS that
extends to infinity and where the dynamics of tRebody
system can be formulated, a local “nonrotating” syst&rh
=(cT,X?) like the geocentric celestial reference system

where p is the energy densityy* =p+ p/c? the chemical
potential per unit volumep is the isotropic pressure arsd

are the spatial components of the contravariant displacement
field. The volume dilatatio® is given by

(GCRS (e.g., kinematically nonrotating or at least slowly b 1 —bb —. b

rotating with an angular velocity of post-Newtonian order O=sp+ ;(V S*+ €pca(l°SV

with respect to the global systenand finally some local - -

coordinate systeriX®=(cT,X?) with T=T] whose spatial +3W s°+36W)+0(4). 2.7

coordinates corotate uniformly with the equilibrium configu- . o

ration. The post-Newtonian perturbation equations of arHere, SW is the Eulerian variation ofV in rotating coordi-
elastic deformable astronomical body in rotating Cartesiamates. The perturbed Eulerian equation takes the f&m
coordinates have been presented recday. Here, some of (4.32 of [10]]
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(Sat 2€ap2%%) + p* OWg 4 — p* S Wi p— p* (OWg) a— p* SPWe pa— (KO S+ 215P,) 4

2Wg
O:p* l+—2
C
1 e _ _ L
+ < {p*[VA(VPS®) + W VA= 2VPS"Wg 5+ (SW) 7V2+8S°Wip o — 4(SW,) 7]+ k(O Wg . — OV?)
C

+[ k(4WO +VPVCSS)] 1+ 0(4), (2.9

where the post-Newtonian geopotentid; is given by - - Ve
Gpa=Gao=Dac C 3 +0(5), (2.1)
2
WG:W+ 7 ~
~ 2W
Gab:DabeX[{ —2) +0(4), (2.12
c

The “dot” stands for the derivative with respect to the time
variable T=T and § indicates the Eulerian variation. The ca A ThTb oA s oAy T G <2
elastic modulik and x are the compression modulus and theWh_ereV = (X IXOYVP, WA= (aXTTOXD)WP, W=W, V

shear modulus respectively;, is the shear-stress tengar =V and

complete representation sfy, is given in Eq.(4.26 of [10]].

The term containing the shear-stress tensor réags also 10 0

Eq. (4.33 of [10]] Dgp=| 0 r? 0 _ (2.13

0 0 r?sirfe

2usPy). 5= (2uSpa) b+ —{— (AuWspa+ 2uS.aVEVP
(2152);5=(2102) p Ez{ (4 WSha+ 2418caV"V2) The corresponding inverse matri®?® satisfies D ,,D"°
= 6%. For the 3-dimension quantitié&* and W2 we define
Va=Dabvb, Wa:DabWb.

+ GachCdevd)}- (2.9 In the following we will chooseQ=Qe,, with ) being

constant, so that

Equation(2.8) is the post-Newtonian Euler equation for the - )
displacement fields, sometimes called the post-Newtonian V=V, =V’=V,=0,
Jeffreys-Vicente equation.

+ (ZMSab),TVb+ ZM(ZV_V,cSac

V=0, V,=QrZsirte (2.14
B. Perturbation equations in rotating spherical coordinates ~
and V2= 02r?sirf6. From these quantities the Christoffel
symbols and the orthogonal projection tengmojecting into
the 3-space of an observer that moves with the corresponding
The importance to formulate the perturbation equations inmaterial elementcan be derived. In Carter and Quintana’s
rotating spherical coordinates was already stressed in the Ifliermalism[15] a body is described by means of a bundle of
troduction. Note that both the Eulerian and the Lagrangiariime-like world-lines in a four-dimensional space-time mani-
variation of a tensor do not necessarily preserve the tensdold. A mapping into a three-dimensional manifold that is
character, whereas the difference between them, the Lie deomposed of the various material elements of the body iden-
rivative (L,= A — 6), does. This implies that one cannot sim- tifies the various “particles” of the body. The projection of
ply transform the variational equations from Cartesian toany tensor onto the local rest frame of matter is achieved
spherical coordinates. For that reason all derivations of th&ith the orthogonal projection tensor
perturbed energy equation and the post-Newtonian Jeffreys-
Vicente equation have to be repeated in spherical coordi- u.u,
nates. These rotating spherical coordinate®,() are de- Yur= Gt c? (2.19
fined by X=r sinfcos¢,Y=r sin §sin ¢,Z=r cosb).
The metric tensor in such rotating spherical coordinated his tensor acts as a positive metric tensor on the tangent
[X“=(cT,r,0,4) with T=T] takes the form _subspace or?hogonal tp the fIOV\_/ vectors.' The cprrespondlng
inverse metric tensor is given simply by its equivalent con-
- p( 2W+ V2
GOO: —eX - —2
c

1. Unperturbed and perturbed projection tensor
in rotating spherical coordinates

travariant form, since it satisfieg*”y,,=v5. U* is the
+0(5), (2.10 four-veloc_ity of some material element as tangent vector to
its world line andy,,,U"=0.
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In general relativity, the unperturbed and perturbed states 1
of a body are considered as two configurations in separate 87%= EDbcgc,T_l— 0(3), (2.29
four-dimensional space-time manifolds. Usually one starts
with canonical coordinateg” in both manifolds andx*
—x*+Ax* maps the coordinates of a material element in a__la

. 87%0=— & 7+0(3), (2.29

the reference state onto the coordinates of the same element c
in the perturbed state, whetex* is the position coordinate
displacement in 4-dimension space-time. The quantgies 1 ~
=Ax* are called the four-dimensional displacement field. 57ab:?§a'TDbCVC+O(4)'
The Lagrangian variation is the variation of the field in terms (2.26
of a coordinate system which is itself dragged along by the
displacementAx”; it is denoted by the symbal. The Eu- 2. Lagrangian strain tensor and shear tensor
lerian variation denoted by is the variation taken at a fixed For a perfect elastic body. the enerav-momentum tensor
point in 4-dimension space-time. The relation between thesgf the relgxed state is of they,form 9y
two kinds of variations is given by=A—L,, where L,
stands for the Lie derivative along the displacement f&ld
The displacement field, for obvious reasons, will be defined

in rotating coordinates, E is taken g¢=(04£7) (see[10]). wherep is the rest energy density andthe isotropic pres-
The Euler variation of5,, (denoted byh,,,) results from  gyre in the reference state. The perturbed configuration
Egs.(2.10-(2.12: changes the energy-momentum distribution and geometrical
shape with time and might experience tidal forces from other
astronomical objects. The Eulerian variation of the energy-
+0(5), (216  momentum tensor can be expressed as

TaB:pUaUB+p7aﬁv (227)

hoo= 56002

25\7v(1 2W+ V2

c? c?

~ 46\
hoa=6Goa=—Dac| —5— | +O(5), (2.17) + YapOPt POVap—21Sap,  (2.29
wheres, s is the shear tensor and is the shear modulus.
N The symmetric trace-free shear tensor is defined as
hab: 5Gab: Dab ? +O(4) (218)

1
Su=€,,~ §®yw, (2.29
Other important quantities are the Eulerian variations of the
4-velocity and the projection tensor. They take the form  \yhere the volume dilatation is given y=e",.

The Lagrangian strain tensor is defined by

1 - -
SU°= —(8W+ V4™ 1) +0(3), (2.19 1 1
€ur =58 =5 (Y™ Vi) (2.30
Wg . . -
sud=¢ 1l 1+ — +0(4), (2.20 where v}, is the unstrained value. Restricting ourselves to
c linear perturbations, the strain tensor is given[b§]

1 1.
8Uo=_sW+0(3), (2.21) € =5 Va Vo (Napt 26(aip)- (2.31)

In the following we choose the displacement field in ro-

\7VG 1 - - ; ; ; B (0 &0 ¢ d
sU.=D b_| 14 =S|+ S 12Web -— 4500 tatlng sphencal coordinates §5=(0,£",£7,£%) and we use
2 ab{ & c2 2 [2We s the linear displacement
o D=D'e +D%,+ D% 2.3
V(S V82 )| +0(4) (2.22 GTDT D (232
with
and D'=¢, D’=ré&’, D%=rsin6e®, (233
1~ . . .
0 __ ~% s wheree, , e, ande, are unit vectors in the, ¢ and¢ direc-
07 0=~ @Vat Tt O(4), 2.23 tion respectively.
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The explicit calculation of the Lagrangian strain tensor 8T, )=0. (2.35
e,, and the shear tensagy,, is straightforward but cumber- v

Some. Re;ults foe,,, anq Su» 10 post-Newtonian accuracy For u=0 one derives the perturbed energy equation in the
are given in the Appendix. form

3. The post-Newtonian energy and Eulerian equations

1
The Eulerian variation of the pressuép can be derived op=—D-Vp—pO— ?p(a
similarly as in our previous paper dealing with Cartesian
coordinateg10]. In spherical coordinates it takes the form 1 .

— r e Y I oY)
o, - K L =Dt Dt PP
op=—p*D-VWg—«0 + —2[4®W+Q rsing
¢ —p*0+0(4). (2.36

X (D%+sinoD"+coseD?)]+O(4). (2.39 ,
’ The perturbed Euler equations correspond to the qase
Our main results concern the perturbed local evolution=a. As an intermediate result by using the expression for
equations V-D from the Appendix we get
|
V2D VD' 2Dr (sinoD?) (D?) 4|+ey V2D? b’ + 2 (D" 2COS0(D )
= —_ — — | — — — —
& r® r2sin6 7 r2sing S r2sirfe r? 7 r2sirte ?
¢

2
+ey| V2D~

+ D") 4+ 2.0 G(D“’)
r’sirfd r2siné 7 r2g ¢

(V-D),=D" —£D0+ED” +LD¢ — D¢+ED'—3Df+1cote ”—icoteD"
,r r r2 0 r ,or rsiné ,pr r25in0 [ T r2 r T r2 ’

DY,
r sinfe

(V-D) 4=D" +lpe s p ——D¢’+3Df+1cot0D9—
.0 ro r ,00 rsing L0 rsin20 N r 0 r 0

(V-D) ,=D" JFED‘9 +.LD¢ +EDr +Ecot0D9.
T T 00T pging T T8y #

Tedious calculations then lead to the explicit equationsuifera=r, 6, ¢ respectively.
The w=r equation reads

0=p*

2Wg _ - - -
1+ = )(DfTT—zn singD %) +p* OWg ,— p* (8Wg) ,— p* (D-VWg) ,— (k@) ,—2(usP,) .4

1 - 8 . . - - - - -
+ EZ{ p* {2WDfTT+ FD?TWM + ij&’rw[d),,] —2Qr sinWg, D %—4(6W") 1|+ kOWg , +4(kOW)

+| kQ?

1
Syt §®rzsin20)

}+0(4), (2.37)

,r
where

Z(Msﬁr);ﬁz ZM,BSBr + zﬂsﬁr;ﬁ
r D¢

Ko ¢ 0_ o e | Do ®
+—(D'+rD?-D%+ —"| —=+D%— —
r2 (Dy* 1D =D%) rsing\rsing  Dr

1 1
:M(g(V'D),r"'(VzD)r +2M,r( D,rr_ §V' D

~ 5 1 _ , Q2
W 4+20s, 47— 5 Q sin o(rD%) — §er sing cosoD |, — 7Df¢¢

~ 25 g~ 254
2s, W+ W ,+
T 2 TN g2

12
+?,u,
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2
— 34,2 sin 9(D%+D"Q sin6+D’Q cosh)

;
— 307’ 6(D"+ D “cot§) — O sin D,

+ 1 4Q(D'T— QD" [ +O(4). (2.39

Two indices enclosed in parentheses imply symmetrization ﬁ‘eé(;n,): (\7va,b+\7vb,a)/2, and two indices enclosed in square
brackets imply antisymmetrization as Wi, ;= (W, p— Wi, )/2.
The u= 6 equation takes the form

2W, ~ - -~
0=p*r| 1+ 2| (D%~ 20 cosoD%) + p* OWi ) p* (5Wo) ,— p* (D-Vig) )~ (kO) 4~ 2(ush)
Cc
1 b o~ ¢ ~ ~ ~
+ C 2I’WD -|—+8D TW[f 0]+ S|n0D'TW[¢'0]_ZQr SIin awagD‘T_4(5W0)YT +K®WG'0+4(K®W)'0
1 .
+| kQ?| 44+ §®r25|n20) +0(4), (2.39
0
where

2(psPp).p=2u %5+ 2us

L v.0) 4r(V%D 041070+ 2 o 20+ 2 - Ly p| 4 He (Do D%—D?
=p §( D) gtr( )o| T m (D y+rD=D")+2u 4 _+__§ rsm0 sm0+ cotd
1 2SSy~ 2s
+ 2| 2m 285 W, + rzaaw' +r SI?;QW s+2Q85, 1 Qr(smaD 50— QZrD" ¢+392r25|n00050Dr

1 2 1
- §er SinfoD’,— §er cos#D % —20r sing cosgD" + gﬂzrzsinzaDa— 20%r cogoD"’

2
— 3,60 sin6[D%+Q(D'sing+D’o0s6) ]+ 1 4Qr(DG—QD%) | +0(4). (2.40

Finally, the u= ¢ equation reads explicitly

2W, - - -
O=p*rsing| 1+ ?G [Df’STT+ZQ Sina(D]rT‘FCOtGD‘oT)]-Fp*@WG’¢—p*(5WG),¢—p*(D~VWG)'¢—(K®)’¢

1 ~ ~ ~ - 8,
—2(usPy) g+ 2 p*| 2r SiNOWGD G+ Qrsir? (D - VW) — 200 sin 6Wg, 4D 5+ 8D Wy, 4+ —D 1Wy, 4

- - - - 1
+Qr2sit 9(SW) 1—4(6Wy) 1| +4(kOW) 4+ k(OWg 45— 0O 1Qr?sin ) +| kQ?| 5,4+ §®r23inza)

]+O(4),
b

(2.41
where
2(nsy).p=2p 654t 205 4
D' D?

S +D
rsing !

D% DY D¢cote)

+u 4Sing -
ol ( r " rsing r

+ 1 sin 0(

1
=M(§(V~D),¢+r sing(V?D),,

D% D' Dfotd 1
—+ —+ -=V-D
rsing r r 3

2s 2s 1
~ d,g... ¢¢, 2 .
2s4, W, + W ,+ W ,+ =Qr2sirfg(V-D)

gritr r2 7 rZsirfe ¢ 6 T

1
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+E02r3sin30(V2D) +ZQr singD?, +2Qr sing(D" sin0+D90056)—£er sing(D",sin 6+ D’ cosb)
2 ¢ 6 ot T T 3 X T

192 : ifeD®—D¢ b _po Qr2sir?dl Or si Dl ¢ D?
+§ rsing(r sinfdD{—D?+2 cosoD—D ) | + p Qr=sin| Qr sin o rsin0+D'r_T

D% D% D%ots
ro_ r i i : v 0 _ 0

+D'T = QD |+ u 4Qr sir6| Qr sing PR —|+D5-QD],

4 . ,
+§M,¢Qrsma[oj§+morgne+ D%o0s6)] +O(4). (2.42

Equations(2.37), (2.39, and (2.41) together with Eq. hand, since only in nonrotating coordinates & and W2
(2.36 are the desired dynamical equations for the displacebe obtained from perturbed field equatidiiss. (4.17) and
ment field. They are valid up to terms of ordec/and  (4.18 of Ref.[10]]
second order in the displacements field itself. The Newtonian

limit of our results(neglecting all 1¢? termg agrees with , 1 52
standard results from textbooles.g., the ones frorfL 7] after Ve— 272 OW=—47G5x+0(4), (3.
correction of a typographical mistake J
V26We= — 417G 6323+ 0(2), (3.2
I1l. POST-NEWTONIAN JUNCTION CONDITIONS
In most cases such post-Newtonian dynamical equation&here
of elastic deformable bodies will be applied to astronomical  ea .
bodies composed of different layers. If the body has several 62 =—ps"—p* O

layers as e.g., the Earth that shows a solid inner core, a fluid

outer core, a mantle and a thin crust, we have to consider + [ 2p* (SW+2V3s?) — 2(p* 52+ p* @) (W+ V?)
corresponding junction conditions at the interface of two ad- c? @

jacent layers. First we consider such junction conditions in

Cartesian coordinates. For practical applications they are —2p*Wg "~ 3k01+0(4), (3.3
then also formulated in spherical coordinates where they can
be compared with well-known Newtonian resul. Junc-  ssa—Rba[ p* éb—vb(p*cs°+p*®)]+0(2). (3.9

tions conditions are formulated in rotating coordinates and to

have a well defined stationary and axisymmetric ground stat§\y; and sW? are solutions of Eqs(3.1), (3.2. They are

it is assumed that all layers rotate with the same angulatontinuous as the same discussionWrand W2, but their
velocity £, i.e. there is no relative motion between two lay- geriyatives are in different cases. The Eulerian variation of
ers in the ground state. The behavior of individual physicakhe syrface mass-density and Eulerian variation of the sur-
quantities and their corresponding perturbed quantities on thg,ce current mass-density do exist on the interface because
interface will be studied at first. . _ both 83 and 832 are dependent on the spatial coordinate
__The gravitational potential®/ andW*" are physical quan-  gerivatives ofp [see Eqs(3.3), (3.4]. Then on interfaces.
tities in the nonrotating ground state. For an isolated bady, .4 532 are divergent. ThereforesiV) , and (SW?) , are
andW? can be obtained as a solution of Eq8.4), (2.9 in finjte on the interface but not necessarily continuous across
[10]. They are inhomogeneous D'Alembert's and P0issonye interface. Through the coordinate transformation and ne-
differential equation respectively. Although the sour@s jecting all higher order terms, we get the representation of

a ) ; )
anad 3 may be dlscont|nupus across any mterfaWegnd SW and SWA by means oW and SW [see Eqs(4.22 and
W? (solutions of the equatiopsre continuous on the inter- %‘ 23 of [10]]

face. Since we do not consider the shock wave, the surfac
mass-density and surface current mass-density do not exist 1
g - _

anyvyhere. Therefgre derivatives WY a_nd'W haye to be SW= SW++ —2(25WV2—45Wbe)+O(4), (3.5
continuous on the interface alsd/ andW? in rotating coor- c
dinates differ from W, W?) simply by a nonsingular coordi-
nate transformationEgs. (2.4) and (2.5]. So W, W? and
their derivative are continuous on any interface as well.

To discuss the continuity oW and sW? we have to
consider SW and SW? in nonrotating coordinates before- The inverse transformation takes the form

\\/2 — pab b_l b
SWR=RE| SWP— ZVPSW | +0(2). (3.6)
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_ 4 _ - -
SW= W+ VA SW+0(4), 3.7 53 ==V (p9)+ | 3pVas— (ps?) ,
C

~3pW ps°— poW—2V - [ pS(W+V?)]
+0(2). (3.9

1
SWe= Rb""( SWP+ VP oW

. (3.1)

1
+ EpVZ’bSb— 3KSb‘b

The transformation formulas are nonsingular, thus the behav- _ . _
ior of SW and 8W# is similar to SW and sW2. i.e. SW and  Fromnow on for convenience we omit the “bar” \ as we

SW2 are continuous across any interfadsV , and (SW?) , did in [10]. Substituting Eq(3.11) into Eq. (3.10, we get

are finite on the interface, but not necessarily continuous. V.A+B=0(4) (3.12
The first and second time derivatives 8%V and sW? are

continuous everywhere including in the interface since thewith

shock wave does not exist at anytime. Later when we con-

sider the junction condition, we can drop the continuous _ 1 b

terms on both sides of the interface. A=VoW—47Gp* s+ —[2VOWT+4V(V26W)
For the displacement fielslwe shall take a similar physi- ¢

cal consideration as ifB]. The fields is continuous across —\7(\7~V5V_V)—877Gp*s(v_\/+v2)]

any solid-solid interface. Its normal components is con-
tinuous across any interface. But its tangent component may,,q
not be continuous for a solid-liquid interface, since the tan-
gent interaction between a solid and a liquid is close to zero 1
in the absence of viscous forces. Alsd and s? are finite B= —2(12’7TGpS~V—127TGpS-VW—47TGp5W
across any interfaceu, , s;p and® are finite, but on dif- ¢
ferent sides of an interface they may be differémit con-
tinuoug. Thereforew 5, k 4, Spc,q @NAO , are not necessar-

:gyfelrrlger(?tgtfeh(\axv:?r:etrrl:zc;gse V;i&?;“ggﬁ) zg(ef;)éet,haall\% theAs the diS(_:ussion on the boundary condition problgm in .cIas—
= b _ ) sical physics, we now integrate E@.12 over an infinitesi-
and V3(V#=R"V") are continuous across the interface. naly small volumeAV such that an interface intersects this
V%, VP, and V2, =V? are continuous as well, volume. We choosAV as a cylinder. The surfad®) of AV
In Eq. (3.1) the D’Alembertian can be related to the non- encloses the interface of two different layers with the shape
rotating coordinates. A transformation to rotating coordinatesf a circular drum of a radius and a depth, whereh<r
yields andr is so small that the portion of the interface contained in
(S) can be taken as flat. Whdn—0 the integration divides
5 — into two parts: the first part of E43.12 becomes a surface
19 V24 2v: 4 integration by means of Gauss’ theorem, the second part
c? 472 c2 gX39T tends to zero with vanishindV because the terms B are
all continuous or finite. Hence,

+27Gps: VV2— 127Gk — SW,F)-

- c2 aYb&Ya_ ?ﬁ’ (3.9) n‘A||ay<-:*r1:n‘A|Iayer2a (3.13
i.e.
where we have used the relatioh®/9X2=0. Substituting 1
Egs.(3.9 and(3.7) into Eq.(3.1), we get n. V5W—477Gp* st —2[4V(Vb5V_\/b)—\7(\7~V5V_V)
c
I |0 — 2 — 4 9 _
e (?Yaé‘VV-f— ?V 5\N’-|-+g(??a(v SWP) —8wGp*(W+V2)]| +0(4)
Vavh gsw| 1 W — 4GS+ O(4) continuous across any interface. (3.149
- |~ = = — &7 .
2 oxP| & T

Here we have dropped the ternV@sW) ; since it is con-
(310 tinuous across the interface.
Substituting Egs(3.8) and (3.4) into Eq. (3.2) and con-

We also can rewrité?, [see Eqs(4.27), (4.31) and(4.40  sideringV?=V? and the rotation matrbR°® dependent on
of [10]] time only, we get
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valid only toO(2). Equation(3.16) can be written by means

J J _ 1 _ —
— T( SWA+ —vaaw) —47GLpV2 of the form of a parallel vector, i.e.
axXP| oxP 2
_ 1 _ _]
. bava n-| V| 6W+ —VéW)—47TGp*SV +0(2)
+47G| ps?+ps X =0(2). (3.19 2

continuous across any interface. (3.17
Performing a similar integration over an infinitesimal volume
as before, we find that Finally a similar integration of Eq(2.8) over an infini-
tesimal cylindrical volume on the interface leads to

1 _
n- V(5W3+ Eva5w)—4wep*sva +0(2)
f (Apap+Ba)dV=0, (3.18
continuous across any interface, (3.16 Av
where p has been substituted y* since this equation is where
1 Y IVEVL W dvced
Apa=— kO 82— 2uSpat — (4uWspat 21ScaVVP+ 4k WO 8+ kVIVESLS,), (3.19

C2

. —. — b — _
Ba=p* (Sat 2€abcﬂbsc) +p*OWg 3~ p* SaWeh— p* (oWg) o= p* Sb\NG,ba

2W,
1+
C

1 e - _
+ g{ p*[VA(VPS?) + W psPVA—2VPSPW 5+ (SW) TVA+8SPWip, o — 4(SW,) 7]

~(2p8ap) TVP — 21(2W S+ o2 SpaV?) + k(O Wg o~ OVA)}. (3.20

All of the terms inB, are finite or continuous as we men- We should point out that the Newtonian part of £g§.23

tioned before. In terms of median method, we have kO 5,1 218, IS just the Newtonian stress tensdyy, in
[3], therefore EQ.(3.23 is an extended PN version of
Wabhr’s.
f B,dV=B,mr2h. (3.21) The PN junction conditions in Cartesian coordinates are
Av summarized as follows:
The first term of Eq.(3.18 can be deduced as a surface s continuous across any solid-solid interfa¢&.24)
integration
s-n  continuous across any interface (3.25
f Aba,de: Wrz(ngAab_ngAab). (322
av SW continuous across any interface (3.26

Cancelling 7r2 and neglecting the higher-order terﬁh,

_a . .
we get SW? continuous across any interface (3.27

_ 1 .
n-i VoW—4nGp* s+ ?{4V(Vb5\Nb)

1 _
n®! kO 8.+ 2uSa— ?[4Msta+2Mscav°vb

—~V[V-V(8W)]—87Gp*s(W+V?)}
+4KkWO 8+ kVIVES? (501 +0O(4)
+0(4) continuous across any interface

continuous across any interface. (3.23 (3.28
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n-

— 1 —
V(5W+ §V6W)—477Gp*sv +0(2)

continuous across any interface

(3.29
b 1 \\/ \/C\/b
N° kO S+ 2uSap— ?[4/.LWSab+ 218,V

+4KkWO 8, + Ka‘adeVCsd,C]

+0(4) continuous across any interfacé3.30

PHYSICAL REVIEW D 68, 064009 (2003

D-n continuous across any interface (3.37)
SW continuous across any interface (3.39

SW?2  continuous across any interface

(a=r,0,¢ respectively

(3.39

~ 1 o~
n-{ VéW—47Gp*D+ C7[4V(Qrzsm295W¢)

For the outer surface boundary conditions we only need sim-

ply take u= k= p=s=0 outside the elastic body, i.e.
5V_V|in: 5V—V|out (3.3)

é‘V_Valin:‘S\/_\lalout (3.32
_ 1 . _ _
n- [ VoW—47Gp* s+ ?{4V(Vb5Wb)—V[V- V(6W)]

in

- 87TGp*S(V_V+V2)}]

_ 1 _ _ _
= n-:vaw+ Ez{4V(Vb5v\/b)—V[v-V(5\N)]}}

out

+0(4) (3.33

s

=n-V

in

1 ]
SW + Ev(s‘vv) —477Gp*SV]

1
5\N+§V5\N) +0(2)

out

(3.39

1 — _
nb[ KO Sap+2uSap— ?[4,LLWSab+ 2S5 VeV,

+A4KkWO 8, + K5adeV°sd,c]] =0(4). (3.39

—87Gp* D(W+ Q?r?sir?§) — e, Q2r sin 4 5\7V),¢]]

+0(4) continuous across any interface (3.40

n-|v +0(2)

I -
SW+ §V5W)—477Gp*DV

(3.41

continuous across any interface

1l -
nb[ KkOD p+ 2uSqp— ?[4Mw$ab+ 211524QDyy

+4kWOD 4+ KDab( Q% singD? ,

+%D-V(erzsin20))”

continuous across any interface. (3.42
Sap IN EQ. (3.42 is the shear tensor in spherical coordinates,
which is shown in the Appendix, Eq6A10)—(A15).
For the outer surface boundary we take=«k=p=D
=0 outside the elastic body as before. When we neglect all

of the 1£2 terms and lev3=0 (nonrotating, our formulas
[Egs.(3.40 and (3.42] agree with Wahr’s resultésee Sec.

Il of Ref. [3]), i.e. our work is an extension of the Newton-
ian version to the rotating PN version. As for our formulas
[Egs.(3.29, (3.34 and(3.41)], since it is a purely PN junc-
tion condition, there is no corresponding Newtonian to be
compared.

For most applications the use of spherical coordinates will

be advantageous. Corresponding boundary and junction con-

IV. CONCLUSION

ditions can be derived similarly to the case of Cartesian co-

ordinates. They read

D continuous across any solid-solid interface

(3.39

In this paper we present the perturbation equations for the
dynamical behavior of astronomical elastic bodies in the first
post-Newtonian approximation of Einstein theory of gravity
in rotating spherical coordinates. In comparison with our pre-
vious work in Cartesian coordinatg0], these equations in
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spherical coordinates are more useful for applications since
usually all relevant equations are expended in terms of sc&;,,=r?
lar, vector and tensor spherical harmonics. The equations and
relations such as junction conditions can e.g., be applied to
problems of geodynamidg.g., for the theory of nutatigror
seismology of compact star®.g. for the problem of the
normal modes of astronomical bodiealso the formulation

of post-Newtonian junction conditions at the interface of ad-
jacent layers of different elastic properties is presented here [

. 2W .
5W+TD'+D~VW

Y50 Ty 2
rf c?

2W_,
+-——D¢
r ,

] +0(4), (A4)

for the first time. A comparison reveals that the Newtonia@¢¢:rzsin20
limit agrees with well-known results from the literature. Here

it should be emphasized that the junction conditions can be
written very generally with ordinary Euclidean 3-vectors and
3-tensors so that they can be formulated for a broad class of
coordinate systems.

Our perturbation equations together with junctions condi- 2 _
tions can in principle be solved if the internal quantities of +Qr sin 0D75T+ F(W+ V2)(D"+D"ot#)
state(density, pressure ejand elastic moduli are given e.g.,
by some Earth’s moddl25]. However, these equations de- (A5)
scribing the free and forced motions of the body are compli-
cated partial differential equations. For that reason usually an
expansion of relevant quantities in terms of spherical har-
monics turns these equations into a set of coupled ordinar 1
differential equations. A different natural basis for such an ”’:r[E(Dr@HDﬂ_De) +0(4),
expansion is provided by the so-called generalized spherical (A6)
harmonics[26,27 that was employed by Wahr and other
authors. By using the generalized spherical harmonics to ex-
pand all functiongdisplacement vector, incremental Eulerian [

1 1
— D%+ D'+ -Dot¢
rsing - r r

SW+D-VW+

+ (2W+Vv?)DY,

rsing

+0(4),

1+ 2w
c2

gravitational potential energy, incremental elastic stress tenr . sin P
r¢—

1/ D' 1
¢ _Tpéyp?
2<rsin0 rD +DY

sor, applied forcdtidal forceet al)], the original partial dif-
ferential equations and boundary conditions are transformed

into a set of ordinary differential equations and scalar bound- 1] W D¢\ /_ 1
ary conditions for the unknowns functions. For a spherical + = — and,Jr Df’,?— — | W+ EVZ)
and nonrotating ground state these ordinary differential equa- cirsin r
tions are uncoupled, for an oblate, rotating body they are
coupled, the coupling parameter being given by the dimen- } . ;
sionless oblateness of the body. Such expansions together + zﬂr singD 1|1 +0O(4), (A7)
with applications for geodynamics will be published sepa-
rately.
oo |1[ DYy cotd 1,
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APPENDIX: EXPLICIT RESULTS FOR THE STRAIN . P

AND SHEAR TENSOR +5QrsingD x| +0(4) (A8)
From Eq.(2.31) one derives
where
eooz 0(4), (Al)
~ 1. ~
VW= 4= 0y — ¢,
€or =€0p=©€04=0(5), (A2) D-VW=W,D rWﬁD rsin HW'¢’D
1 = S o0 The volume dilatatior®, which is related with the expan-

—_ N = . r ’

€ =D+ z(OWHD-VW+2WD 1)+ O(4), A3 sion rates by 6=0 ,U*, reads
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=e*,=G"e,,=G¥e,,+0(4)

=N’ E 0 1 ¢ z r E 0
V.-D=D,+ -D"+ — D¢+ D'+ —coteD"?,
] r ] 1 r r

rsing
1 \A \A ; ) 1 2 ¢C 1 2 : :
=V-D+ | 30W+3D- VW+Qr sin gD+ 5V cé EV’C§°=QZr Sirf9&"+ 0%r2sin @ cosh&?
+0(4), (A9) =0?r sirf9(D"+cotoD?).
From this it is easy to derive the symmetric trace-free shear
where tensors,,,. One finds
Spo=O(4), (A10)
Sor = S0s=S0p=O(5), (A11)

1 1
5 =D}~ 3V-D+ +0(4), (A12)

3

~ 1) 1
2w( D'~ 5@) — 3[Qr singD %+ Q%r sin’6(D" +cotoD)]

2101r1 1~101r1 1 ineD %+ O2r sirk(D" 0
Sgo=" FD'0+FD_§V'D+? 2W FD'9+FD_§ —g[QrS|n0D’T+Qr3| O(D"+cotoD?) ]| +0O(4),

(A13)

Sye=Tr°SINr 0 D"’+EDV+}D"cot0—EV~D+ ! (2W+V?3) D¢+EDf+3D0cot0—3®

a4 rsing ¢ r r 3 c? rsing ¢ r r 3

2 1
+ersin20(Dr+cot0D")+§QrsinGDf’?r—§ersin26(Dr+cot6D") +0(4), (A14)
and

S16=€9:  Sip=Cr¢s  Sos™ €p¢ - (A15)

These are the post-Newtonian components of the Lagrangian strain and shear tensor in spherical coordinates. If all post-
Newtonian terms are neglectéie., for c— ), they reduce to the well known Newtonian results that can be found in the
standard literature.
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