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Four-dimensional cylindrically symmetric spacetimes with homothetic self-similarity are studied in the
context of Einstein's theory of gravity, and a class of exact solutions to the Einstein-massless scalar field
equations is found. Their local and global properties are investigated and it is found that they represent
gravitational collapse of a massless scalar field. In some cases the collapse forms black holes with cylindrical
symmetry, while in the other cases it does not. The linear perturbations of these solutions are also studied and
given in closed form. From the spectra of the unstable eigenmodes, it is found that there exists one solution that
has precisely one unstable mode, which may represent a critical solution, sitting on a boundary that separates
two different basins of attraction in the phase space.
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[. INTRODUCTION fields. In the type | collapse, the critical solutions have nei-
ther DSS nor HSS. For certain matter fields, these two types
The studies of nonlinearity of the Einstein field equationsof collapse can coexist.
near the threshold of black hole formation reveal very rich (D) For the type Il collapse, the corresponding exponent is
phenomend1], which are quite similar to critical phenom- universal only with respect to certain matter fields. Usually,
ena in statistical mechanics and quantum field thgatyin  different matter fields have different critical solutions and
particular, by numerically studying the gravitational Co||amsed|ffer_ent exponents. But for a given matter field the critical
of a massless scalar field in {3L)-dimensional spherically Selution and the exponent are universal.

symmetric spacetimes, Choptuik found that the mass of such (c) A critical solution fo.r both .the two types hame and
formed black holes takes the form only one unstable mod&his now is considered as one of the

main criteria for a solution to be critical.
(d) The universality of the exponent is closely related to
Mgu=C(p)(p—p*)?, (1.1)  the number of unstable modes. In fact, the unstable mode,
say, k,, of the critical solution is related to the exponent
Yia the relationy=|k,| "%, which can be obtained by using
dimensional analysig4].
From the above, one can see that to study critical collapse,

whereC(p) is a constant and depends on the initial data, an
p parametrizes a family of initial data in such a way that

when p>p* black holes are formed, and wher=p* 10 0 1y first find some particular solutions by imposing cer-
black holes are formed. It was shown that, in contrast with;, symmetries, such as DSS or HSS. This can simplify the
C(p), the exponeny is universalto all the families of initial - ,roplem considerably. For example, in the spherically sym-
data studied, and was numerically determinedyas0.37.  metric case, by imposing HSS symmetry the Einstein field
The solution withp=p*, usually called the critical solution, ~equations will be reduced from partial differential equations
is found also universal. Moreover, for the massless scalay, ordinary differential equations. Once the particular solu-
field it is periodic, too. Universality of the critical solution tions are known, one can study their linear perturbations and
and the exponeny as well as the power-law scaling of the find out the spectrum of the corresponding eigenmodes. If a
black hole mass all have given rise to the nasmigcal phe-  solution has precisely one unstable mode, it may represent a
nomena in gravitational collapse critical solution, sitting on a boundary that separates two
Choptuik’s studies were soon generalized to other mattegifferent basins of attraction in the phase space.
fields[3]. From all the work done so far, the following seems  The studies of critical collapse have been mainly numeri-
clear: cal so far, and analytical ones are still highly hindered by the
(a) There are two types of critical collapse, depending oncomplexity of the problem, even after imposing some sym-
whether or not the black hole mass takes the scaling formetries. Lately, some progress has been achieved in the stud-
(1.1. When it takes the form, the corresponding collapse ises of critical collapse of a massless scalar field in an anti—de

called type Il collapse, and when it does not it is called typesitter background in (2 1)-dimensional spacetimes both
| collapse. In the type Il collapse, all the critical solutions

found so far have either discrete self-similariySS or ho-
mothetic self-similarity (HSS, depending on the matter 1ig4 far, the studies have been mainly restricted to spherically sym-
metric cases and their nonspherical linear perturbafidhsThere-
fore, it is not really clear whether or not the critical solution and
*On leave from Department of Theoretical Physics, the State Uniexponent are universal with respect to different symmetries of the
versity of Rio de Janeiro, Brazil. spacetimes.
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numerically[5,6] and analytically{7—-9]. This serves as the singularity to be formed later on the axis is indeed due to the
first analytical model in critical collapse. collapse. Thus, followingi15] we impose the following con-
In this paper, we shall present another analytical modedlitions:
that represents critical collapse of a massless scalar field in (i) There must exist a symmetry axi$is can be written
four-dimensional Einstein’s theory of gravity with cylindrical as
symmetry. Although spacetimes with cylindrical symmetry
do not represent realistical models, the studies of them can X=|€(p€(59url =0, (2.2
provide deep insight into the nonlinearity of the Einstein
field equations. In particular, they may throw some light onas r—0", where we have chosen the radial coordinate
the possible roles that gravitational radiation and angulasuch that the axis is located 0.
momentum may play in critical collapse. In fact, such studies (i) The spacetime near the symmetry axis is locally flat
have already been shown to be very useful in probing nonThis can be expressed HE3]
spherical gravitational collapge0]. In addition, they may
also provide a useful testbed for numerical relatiyity] and X o X 59°° 1
quantum gravity12]. ax &
The rest of the paper is organized as follows. In Sec. Il we
first review the regularity conditions for a four-dimensional asr—0*, where (),=4d()/dx*. Note that solutions failing
cylindrical spacetime, including the ones at the symmetryto satisfy this condition it is sometimes acceptable, and are
axis. Then we introduce the notion of homothetic self-usually expected that the singularities located on the axis
similarity with cylindrical symmetry. In Sec. lll, a class of should be replaced by some kind of sources in more realistic
exact solutions with such a symmetry to the Einstein-models. A particular case of these is when the right-hand side
massless scalar field equations is presented. It is shown that the above equation approaches a finite constant, and the
they represent gravitational collapse of a scalar field, irsingularity now can be related to a linelike soufd®]. In
which black holes can be formed. In Sec. IV, the linear perthis paper, since we are mainly interested in gravitational
turbations of these solutions are studied and given in closedollapse, we shall not consider these possibilities and assume
form. After properly imposing boundary conditions, the that the above condition holds strictly at the initial of the
spectra of the unstable modes of the perturbations are detegellapse.
mined. In particular, it is found that there exists a solution (iii) No closed timelike curves (CTC'dh spacetimes with
that has precisely one unstable mode, which may representcylindrical symmetry, CTC’s can be easily introduced. To
critical solution, sitting on a boundary that separates twaguarantee their absence, we impose the condition
different basins of attraction in the phase space. In Sec. V,
the main results are summarized and some concluding re- §(96(99.,=<0, (2.9
marks are given. There are also two appendixes, A and B. In
Appendix A, the Ricci tensor is given in terms of self-similar in the whole spacetime.
variables. The linear terms of perturbations of the Ricci ten- In addition to these conditions, it is usually also required
sor are also given there. In Appendix B, the expansions ofhat the spacetime be asymptotically flat in the radial direc-
the outgoing and ingoing radial null geodesics are calculatedion. However, since we consider solutions with self-
from which trapped surfaces and apparent horizons are d&imilarity, this condition cannot be satisfied by such solu-

(2.3

fined. tions, unless we restrict the validity of them only up to a
maximal radius, sayr =rq(t), and then join the solutions
Il. SPACETIMES WITH HOMOTHETIC with others in the regiom>r(t), which are asymptotically
SELE-SIMILARITY flat in the radial direction. In this paper, we shall not consider

such a possibility, and simply assume that the self-similar
The general metric for cylindrical spacetimes with two solutions are valid in the whole spacetime.

hypersurface orthogonal Killing vectors takes the fqi8] Spacetimes with homothetic self-similarity (or self-
Mt ) ) > st similarity of the first kingl are usually defined by the exis-
ds?=e M0D(dt?—dr?) —r%e S0 tence of a conform Killing vectog* that satisfies the equa-
X (et dw?+ eVt g g2), 2.1) tions[17],

wherex*={t,r,w, 8} are the usual cylindrical coordinates, Suivt =200, 2.5

and the hypersurface=0,2m are identified. The two Kill-  \hare 5 semicolon “” denotes the covariant derivative. It

ing vectors are given by, =ady, and £y)=dy. To have a0 e shown that for the spacetimes given by Bdl) the
cylindrical symmetry, some physical and geometrical condi-

tions needed to be imposed. In general this is not trivial. ASCOHdItIOﬂS(2.5) imply that

a matter of fact, when the symmetry axis is singular, it is still M(t,r)=M(z), S(t,"=z), V(t,r)=V(2),

an open question: which conditions should be impd<ged (2.6)
Since in this paper we are mainly interested in gravitational

collapse, we would like to have the axis regular in the beawhere the self-similar variableand the corresponding con-

ginning of the collapse. By this way, we are sure that theform Killing vector £&* are given by
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r r = 0
§”(9M=t(9t+ ro., z= __t (2.7

It is interesting to note that under the coordinate transforma-
tions o

t=ajt+a,r, r=agt+a,r, (2.9 1

the metric(2.1), the regular condition$2.2)—(2.4), and the
self-similar condition$2.6) and(2.7) are all invariant, where
a;’s are real constants, subjectdga, —aza,=0. Using this
gauge freedom, we shall assume that

M(t,0)=0, 2.9 FIG. 1. The Penrose diagram for the solutions given by Egs.
) ) _ _ ) (3.6) and (3.7) with n=2 being an integer. The cylinders of con-
that is, the timelike coordinatemeasures the proper time on stantt andr are all trapped in region | wher®,<0 and®,0,

the axis. >0, but not in region Il, wher®,>0 and®,0,<0. The dashed
line v =0 represents the apparent horizon. Whés an odd integer,
ll. SELF-SIMILAR SOLUTIONS OF MASSLESS the spacetime is singular on the horizontal double fired, and
SCALAR FIELD whenn is an even integer, the spacetime has no curvature singular-
ity there.
For a massless scalar field, the Einstein field equations
read _ o2\4¢?
|= R“B“’Ram(,:48q4%. (3.5
Ruv=x6 4.0, (3.1 t

where k(=87G/c?) is the Einstein coupling constant. In From these expressions we can see that the spacetime is sin-
this paper we shall choose units such tkat1. The scalar gular on the hypersurfade=0. On the other hand, although

field satisfies the Klein-Gordon equation the metric is singular om= 1, the spacetime is not. Thus, to
have a geodesically complete spacetime, we need to extend
9*f¢.,5=0. (3.2  the metric beyond this surface. In order to do so, it is found

convenient to study the two cases<Qq?<1 and =1
However, this equation is not independent of the Einsteirseparately.
field equations(3.1) and can be obtained from the Biachi
identitiesG , .. sg*#=0. A. 0<2qg’<1
On the other hand, it can be shown that a massless scalar
field ¢(t,r) that is consistent with spacetimes with homothe-
tic self-similarity must take the form

¢(t,r)=2qIn(—t) + ¢(2), 3.3

In this case, introducing two null coordinatesindv via
the relations

t=—[(—w"+(-v)" == (u,v),

. . . . =(—w"=(—v)"=f_(u,v), 3.6
whereq is an arbitrary constant, ang(z) is a function ofz r=(-u'-(-v) (u,v) (3.6

only, which will be determined by the Einstein field equa-ye find that in terms oy andv the metric and massless
tions (3.1). Inserting Eqs(A2) and (3.3) into Eq.(3.1) and  gcalar field take the form
considering the self-similar conditiori2.6), we find the fol-

lowing solutions: ds?=n24n§20=Digydy — £2 dw?— £2 d6?,
M(z)=2q2In(l—22), S(Z):m(Z), ¢=2q|n[f+(u,v)], (37)
V(z)=-In(z), ¢(2)=0. (3.4  where

Whenq=0 the corresponding spacetime is flat. Thus, in the

following we shall assume that# 0. Then, it can be shown n=
that these solutions satisfy all the conditid@s2)—(2.4) and
(2.9), and the corresponding Ricci and Kretschmann scalar
are given by

>1. 3.8
1= 20 3.9

Erom Eqg. (3.6) we can see that the regiar=0, r=0, z
<1 in the ¢,r) plane is mapped into the regianv <0, v
(1_22)2q2 =u, yvhich will be rc_eferred to as region [kf. Fig. 1. T_he
R=g%%¢ ,¢ B:4q2—- half line z=1, t<0 is mapped tw =0, u<0. The region
o 2 v>0, u<0, which will be referred to as region I, is an
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extended region. Depending on the values,ahe nature of ary of the spacetime, and the corresponding Penrose diagram
the extension is different. In particular, it is analytical only is that of Fig. 1. Thus, in this case region | can be considered
for the case wherm is an integer. Otherwise, the extension is as the interior of a black hole, and the corresponding solu-
not analytical, and in some cases the metric and the scaldions represent gravitational collapse of a massless scalar
field even become not real in this extended region, as we cdiield in region Il. The collapse always forms a black hole.
see from Eqgs(3.6) and(3.7). To have the extension unique, Note that in this casep , is continuously timelike in the

in the following we shall consider only analytical extensions,trapped regionl, as we can see from E¢3.9).

that is, the cases whereis an integer. Then, from Eq63.7) Whenn is an even integer, from E¢3.9) we can see that
and (B7) we find that the Ricci and Kretschmann scalars are all finiter at0 in
- - regior_1 I, but both®, and ®, become singul_ar therg. Thus,
b —2nq(_u) 6 ——2n (—v) anything that moves along the null geodesics, definet‘by
u fo v I fo or n*, will be crashed to zero volume by the infinitely large
contraction. Then, the hypersurface0 now represents a
(up)"? topological boundary of the spacetime, and the correspond-

_ o / . . . . . .
R=¢ ¢ “=n*g?4t "0 an ing Penrose diagram is also given in Fig. 1, but now the
+

spacetime is free of curvature singularities on the double
horizontal liner =0.

It should be noted that apparent horizons and black holes
are usually defined in asymptotically flat spacetifs. To
be distinguishable, Hayward called such apparent horizons
) g —yy2n-1 as trapping horizons and defined black holes by the future
1= 2@n-1n NS T T 1) outer trapping horizongl9]. For the sake of simplicity and

nf_fy nf_fy without causing any confusions, in this paper we shall con-
(3.9 tinuously use the notions of apparent horizons in the places

qf Hayward's trapping horizons, and define black holes in a
little bit more general sense than that of Hayward in non-
asymptotically flat spacetimes.

n—l)z(uv)z(”l)

— RaBro —1@2—1n
I=R RaBMT 16 ( n f+4(271/n)'

From these expressions we can see that the spacetime
regular on the symmetry axis=u in region Il, and¢ , is
always timelike. On the hypersurface=0, we have

(,stv(U,O):O, (31Q B. 2q2?l

and the only non-vanishing component of the energy- Ir;hth|s ::et_se, introducing the two null coordinateandv
momentum tensof ,,, is given by via the refations

Tuu(U,0)= ¢?,(u,0)#0, (3.10) t=u+v, r=v-u, (3.12

which represents an energy flow, moving from region || into /¢ find that the metric and scalar field are given by
region | along the null hypersurfaces=const. The expan-
sion ©, of the null geodesics along the hypersurfaces ds2=41-20
=const is always positive in this region, while the expansion
0, of the null geodesics along the hypersurfagesconst is
always negative. Howeve), becomes zero on the hyper-
surfacev =0 and then negative in the extended regibn,
where v>0, while ®, is negative even in this extended ¢=2qIn[—(u+v)]. (3.13
region. Thus, all the cylinders of constdrandr are trapped
in the extended region, but not in region Il. Then, the hyper-To study the physics of the spacetime near the hypersurface
surfacev =0 defines an apparent horizh8,19|. v=0 orz=1 in some details, let us consider the radial null

It should be noted that the above analysis is very imporgeodesics along the hypersurface const, sayu=uy,
tant when we consider boundary conditions on the apparent
horizon in the next section, as it shows clearly that it is the . , Uo—v -,
components , that represents the energy flow of the scalar v—29 v(uo—+v)v =0, (3.14
waves that moves from region Il into region I, while the

componenig , represents the energy flow of the scalar field\yhere an overdot denotes the ordinary differentiation with
that moves in the opposite direction. Since now region | is Jespect to the affine parameteralong the null geodesics.

trapped region and no radiation is able to escape from thighan near the hypersurface=0, Eq.(3.14 has the solu-
region. This can be seen clearly from Eg.10). tion '

on
The singularity behavior in region | depends on the values

of n. In particular, whem is an odd integer, from E¢3.9) —1(2q%-1) 2

we can see that the spacetime becomes singular on the hy- v(N) = (bah+by) MR (3.19

persurface =0 or u= —uv, which services as the up bound- ebih b2 2q°=1,

2q2

u+v)?
(uto) dudv — (u+v)2dw?

—(u—v)%d6?,
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(0, 0) which is always positive fou, v<<0, and zero only when
v=0. That is, the scalar field is always timelike, except on
the hypersurface =0 where it becomes null. Thus, in this
case the corresponding solution can be considered as repre-
senting gravitational collapse of a massless scalar field. Al-
though now no black holes are formed, a pointlike spacetime
singularity is indeed developed at the point)=(0,0), as

we can see from Eq3.5). It is interesting to note that this
singularity is not naked, and an observer can see it only
when he/she arrives at that point.

IV. LINEAR PERTURBATIONS OF THE SELF-SIMILAR
SOLUTIONS

To see if the above solutions represent critical collapse,
we need to do their linear perturbations, because by defini-
tion a critical solution has one and only one unstable mode.
To study such perturbations, it is found convenient to use the
self-similar variablesr and z defined by Eq.(Al) but still

FIG. 2. The Penrose diagram for the solutions given by Eq_Work in th_e {,r) coordinates. Then, the linear perturbations
can be written as

(3.13 for 2g?>=1. The spacetime is geodesically maximal in the
whole regionu, v<0, v=u, and singular only atu,v)=(0,0).
The two surfaces of constah@andr are not trapped, because now

we always have®,>0 and®,<0. The only exception is on the . .
surfacep=0, u<0 where ©,(u,0)=0 and ©(u,0)<0. The whereF={M,S,V, ¢}, ande is a very small real constant.

dashed lines represent the hypersurfagés,v) = const, which are Quantiti?S with subscripts “1" denote pert_ur_bations, _and
always spacelike. those with “0” denote the background self-similar solutions

given by Eq.(3.4). It is understood that there may be many

whereb, andb, are the integration constants. Thus,as Perturbation modes for different valuggossibly complex
.0, we must haven— +o«. That is. the “distance” be- ©f the constank. Then, the general perturbations will be the

tween the point §,,0) and any of the other points, say, SUM of these individual ones. Modes with RE¢0 grow as
(u,0)=(Ug, v,<0), along the null geodesies=uy is infi- 7% and are referred to as unstable modes, and the ones
nite. Therefore, when@=1 the hypersurface=0 actually ~ With Re()<0 decay and are referred to as stable modes.
represents a natural boundary of the spacetime, and there is |t should be noted that in writing Ed4.1), we have al-

no need to extend the solutions beyond this surface, sind&ady used some of the gauge freedom to write the perturba-
now region Il is already geodesically maximal. It should belions such that they preserve the form of the metd).

noted that, although there is no spacetime singularity on thElowever, this does not completely fix the gauge. We shall
half line v=0u<0, the spacetime is singular at the point return to this point later when we consider the gauge modes.

F(7,2)=Fq(2)+ eF(2)€", 4.2

(u,0)=(0,0), as can be seen from E€B.9). The corre- To the first orde_r ofe, the Ricci tensor is given by E_qs.
sponding Penrose diagram is given in Fig. 2. (A4)—(A10). Applying them to the Iback.gro.und solutl_ons
On the other hand, from E@B7) we find that given by Eq.(3.4), and using the Einstein field equations
(3.1), we find that there are only four independent equations,
272q2 which can be cast in the form
® :_4172(12 (U+U) 1%
! uv Uz_l)z, 2
kM,(z)=22°S]+2zV;+ 2z (1+k)—4q21 5|Sitkv,
2 2q2 —Z
0, =412 (u+v) 2u - (3.16 2
uv ur—v +k(1—4q21 S| Sit4aze;, (4.2
A

Thus, in the whole spacetime now we always h&ye>0

and ®,<0, except on the half hypersurfagce=0, u<O0 and

where we have®,=0, ©,<0. That is, all the two surfaces - o o

of constantt andr are not trapped fou, v <0, and become z(1-2)Vi+[1-(1+2k)z°]V; —k“zV;
marginally trapped only on the half surface=0, u<0. In _ a4 e

addition, we have =kz§-(1-298;, 4.3

2(1-2%) @] +[1—(1+2k)Z*] 1 —K?z¢q

=2qz(zS +kS,), (4.9

(uv)2

_ o p1+2¢%2
R= .= 407

(3.17
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2 ’ ! —
TSRS 02820, (49 A@)=FP(2) LIFO@]-FO) o FP@].
where a prime denotes the ordinary differentiation with re- (4.12)
spect to the indicated argument. It can be shown that Eq.
(4.5 has the general solution,

To have physically acceptable perturbations, we need to
impose boundary conditions. In general relativity, this is a
very subtle problem and there are no fixed rules to follow. In
this paper we shall choose the axis 0 and the hypersur-
wherec; andc, are two integration constants. Substituting facez=1 as the places where we impose the boundary con-
the above solution into Eqé4.3) and(4.4) we find that these ditions.
two equations can be written in the form Since the axis for the background solutions is regular, and

the conditiong2.2), (2.3) and(2.9) are satisfied by them, we

51(2)=%[01(1+Z)2_k+02(1—Z)z_k], (4.6

d?z, dz, 1 would expect that the linear perturbations also satisfy these
y(1—y)F+[e—(a+ b+ 1)Y]d—y—abzi=4—l,2fi()/), conditions. In particular, it can be shown that the condition
y y @.7) (2.9 requiresM(0)=0, and the ones2.2) and (2.3 re-
' quire, respectivelyG,(z)—0 and zG;(z)—0, asz—0,
wherey=22, {Z}=1V,,¢,}, a=b=k/2, e=1, and v_vhereGl(z)Esl(z)J_rvl(z). On the other hand, the cor_1di—
tion thatR=¢ ,¢'“ is regular on the axis further requires
fi(y)=kzS—(1-2)S; z¢;+ke;—0.2 In summary, on the axis we shall impose the
1 following conditions:
= y{cl[l—(2—k)yl’2+y](1+yl’2)2*k
M(z)—0,
ol 1+ (2— Ky HyI(1-y D2 K, 2
f2(2)=2q2(2S,+kS) G4(2)—0,
= —2q{ca[(1-k) —y*J(1+y*9)7k
+[ (1K) +y 2] (1—yM2)toky, (4.9 2G}(2)—0,
Equation(4.7) is the inhomogeneous hypergeometric equa-
tion [20], and the general solution of the associated homoge- '(7) 4+
neous equation is a linear combination of the two indepen- 2¢1(2) +ke1(2) =0, (4.12
dent solutionsF{’(z), where
1 1 asz—0.
F(z)=F —k,—k;l;zz), On the other hand, when<02g®><1 the hypersurface
272 =1 is an apparent horizoftf. Fig. 1), and we required that
the background solutions be analytical across it with respect
11 to the null coordinatey. Otherwise, it was found that the
) N—El Zk k-1 —52 )
F1"(2) F( 2 K, 2 kikil—z ) (4.9 extension was not unique. Clearly, this condition should hold

also for the perturbations. In addition, since the hypersurface
with F(a,b;e;z) denoting the hypergeometric function. z=1 represents an apparent horizon and region | is a trapped
From the above two independent solutions, we can construg¢egion, so nothing should be able to escape from it. In par-
particular solutions of the inhomogeneous equatidrv), ticular, for the scalar field this implieg ,(u,0)=0 [cf. Eq.
and then find that the general solutions Yoi(z) and@,(z)  (3.1D]. On the other hand, as shown[R1], the gravitational

can be written as wave component that moves out of region | is represented by
W, which is a function oV ,, V,, M, andS,. Then,
Vi(z)=[aP?+AP(2)]FP(z)+[aP - AP (2)1FP(2), we can see that the condition that no gravitational waves
come out from region | require¥ ,,, V,, S,, M,, ¢,
01(2)=[aP+ AP (2)IFV(2)+[asP - AP (2) IFP(2), —0 asy—0. Changing to the self-similar variabgit can
4.10 be shown that these conditions are equivalent to

Whereaj(i)’s are integration constants, and
2t should be noted that this condition is not independent of the

, f-(Z)F(i)(Z)dZ ones(2.2) and(2.3). In fact, using the Einstein field equatio(&1)
A}i)(z EJ ;, we can deduce it from Eq$2.2) and(2.3). However, without loss
2(1-7%)A(2) of generality, in this paper we shall impose it independently.

064006-6



CRITICAL COLLAPSE OF A CYLINDRICALLY ... PHYSICAL REVIEW D 68, 064006 (2003

F.(z)~analytical with respect tw, 49°%z
M(7,2)=2(A"+B’)— 5 [(A—B)+(A+B)z],
dF,(2) t(1=-29
_ 1
(1_2)(n 1)/n—HO,
dz 1
8S(7,z)=—[(A—B)+(A+B)z],
oy dVi(2) '
(1—2z)™ 2>’"T—>o, (0<2¢?<1), (4.13

1
asz—1, whereF(2)={M,S;,Vi,¢1}. V(r2)==l(A-B)*+(A+B)z],

When 29>=1 the hypersurface=1 is a future null in-
finity of the spacetime and marginally trappéd. Fig. 2. 4q
Since it is the future null infinity, we would expect that the ~ 6¢(7,2)=—(A+B). (4.18
perturbations be finite there. On the other hand, the hyper-
surfacez=1 is also marginally trapped, so there we ShOUIOIIn order to have the above expressions in the form of Eq
have only outgoing scalar field and gravitational waves. Not?4 1), we must choose '
that the amplitude of gravitational wave components is al- "™’

ways proportional teeMo~(1—2)29° [21]. Thus, now we _p1-k

must require (1—z)2q2(vllvv, Vi,, Sip, My,) —0, asz A(Hf):—Czto(t—) (1-2)*7K
—1. On the other hand, using the Einstein field equations 0

we can show that these conditions also impIy—(2|)2q2<p1,U

—0. In terms of the self-similar variable and noticing that B(t—r)=cyto

now t andr are given by Eq(3.12), we find that these con-
ditions can be written as

1-k
—) (1+2)17K, (4.19
to

for which Eq.(4.18 can be written as
F1(z)—finite,

S5F(7,2)=F4(2)e"", (4.20
dF,(2)
(1—2)2q2%—>0, with
2 M1(z)=2{cy[(1—K)+20%z](1+2) *—c,[ (1-k)—2¢%z]
1- 223 V1(2) 0 (202=1 4.1
(1-2) d—ZZH (29°=1), (4.19 X(1-2)74,

asz—1. 1 2—k 7—k
Once we have the boundary conditions, let us first con- S1(2)=—[€1(1+2)" "+ cy(1=2) 7],
sider the gauge modes. We note that the mégid) is in-

variant under the coordinate transformations 2
_ Vi(z)= [c1(1+2) F+cy(1-2)7K],
t=a(t+r)+b(t—r), z
r=a(t+r)—b(t—r), (4.15 e1(2)=—2q[cy(1+2)' F—cy(1-2)' K], (4.21

wherec, andc, are arbitrary constants. It can be shown that
the above perturbations do not satisfy the boundary condi-
tions (4.12—(4.14), or in other words, the boundary condi-
tions imposed in this paper limit all the gauge modes.

Now let us consider the above boundary conditions for
the particular background given by E@®.4). We first con-
sider the conditions at the axis given by Eq.12. Let us
first note that

wherea(t+r) andb(t—r) are arbitrary functions of their
indicated arguments, subject &b’ #0. Thus, let us con-
sider the gauge transformations

t—t+e[A(t+r)+B(t—r)],
r—r+eA(t+r)—B(t—r)], (4.19
where A(t+r) and B(t—r) are other arbitrary functions.

Then, we find that under the above coordinate transforma-
tions the resultant perturbations are given by

FN(z)=1+1k222+0(z%),

FP(2)=A(){[AL(k)—2 In(2)FM(2) + 3k(k—2)23},
F(7,2)=Fqy(2)+ 6F(7,2), (4.1 (4.22

with asz—0, where
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. - FN(2)=By(kFP(2)+By(k FH(2)x X,
Ag(k)= 20 (n+2§j(2:)+ o A= F(:) w23 1°(2)=B1(K)Fi1'(2) + Ba(K)F15(2)x
"~ F2(§k> FP(2=F(2) (k#1), (4.30)

andI' (k) denotes the Gamma function. Inserting E@s22
into Eqgs.(4.11) and(4.10), after tedious calculations we find

that
2¢}(2) +ke1(z)— — 2kaSPA,(K)In(z) + Ag(K),

(4.29

where
FO(z)=1+ Lkx+ Dy (k)x2+0(x%),

FP(2)=1+%(2—k)x+D,(k)x>*+ D3(k)x®

+0(x%), (4.32
as z—0, whereAy(k) is a finite constant. Thus, the last 5
condition of Eq.(4.12) requires with x=1-2° and
1)_
a;'=0. (4.29 I'(1-k) I'(k—1)
i B (k)= . Byk)=——=—,
Similarly, one can show that 1“2( 1— Ek) r2<§k)
G1(2)=S1(2) +V4(2) , ,
k(2+Kk) (2—k)(4—Kk)
2(cqtc - == 7 7
=(lTZ)—2a(11)A2(k)In(z)+(2—k)(cl—cz) D1(k) 32(1+k)’ Da(k) 32(3—-k)
+[aMAL(K)AL(K) +aP]+0(2), (4.26 (2—-k)(4—k)(6—k)?

from which we can see that the second condition
(4.12 requires

ci=—c,=c, aP=0, alP=2(k-2)c. (4.27

Once Eq.(4.27) holds, it can be shown that

Da(k)= (4.33

384(3—k)
of Eq.
Inserting the above expressions into E¢s2), (4.10 and

(4.11) and after tedious calculations we find that

kM (z)=£k{c(k—2)(k—1—2 2)2k—2B,(k)[(k—1)a{®
1 2 q 2 1

261(2)-0(2%), + 2kqa2)pxt 4 2{c(k—2) (k—1-202)2
M1(2)—0(z%), (4.28 +2(1- KBy [aP+2qaThx *+Ag(c,k,q)
asz—0. That is, the first and third conditions of E@.12 +O(x+0(x27ky, (4.34
do not impose further restrictions on the free parameters.
Now let us turn to consider the boundary conditiong at 01(2) = aP[B,(K)xt %+ B, (k) ]+ O(x), (4.35

=1. It is found convenient to consider the casesay?

<1 and 2°=1 separately.

A. 0<2g’<1

Vi(z)=aPB,(k)x* %+ 0(x?7%)  (k#1), (4.36

asz—1, whereA;(c,k,q) is a finite constant, and{? is

In this case we have-1z~(—v)", asv—0. Then, we given by Eq.(4.27). From the last two equations we can see

find that

that the analytical conditions of,(z) and ¢4(z) requirek
<1, which together with Eq4.30 implies

Si(2)~c[2%7 K= (—0v)@ 7, (4.29

2n>m>n. (4.37)

asv—0. Thus, in order to hav&,(z) analytical, the con-

stantk has to take the values

m
k=2-— (m=1), (4.30

The condition thatM ,(z) is analytical across the hypersur-

facez=1 requires

c(k—2) [ (k—1—2g?)2"
2 2(k—1)Bo(k)

aft)= 2]. (438

wherem is a positive integerrg=1,2,3...). Whenk<0

the corresponding modes are stable, which we are

Not sOn the other hand, it can be also shown that

interested in. Thus, in the following we shall consider only

the case wherk>0, which together with Eq4.30 implies

dM,(x) c(k—2)

1-1/n

2n>m=1. To study the boundary conditions at1 fur- X dx > [(k—1-29%)2"+4(1-k)

ther, let us consider the casks 1 andk=1 separately.
Case Ak#1: In this case it can be shown that

X BZ( k)]x(mfnfl)/n_,_ O(X(nfl)/n),
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x1-1n d\gl)((x) ~(1— k)a(l2)52( k)x(m—n—2)/n

+ O(X172/n) + O(X(m72)/n)’

11 de1(X)

T~ (1-kafB,(kxmmnmoin

+ O(X(nfl)/n),

lelln dSl(X)

ix N;_':X(nl)/n+o(x(ml)/n) (k# 1),

(4.39

asx—0. Thus, the last two conditions of EGt.13 further
require

2n>m>n+2 (k#1). (4.40
Case Bk=1: In this case it can be shown that
F@)=FP00-FE0In(x),
F@)=7FP00  (k=1), (4.41

but now with

C 1c 1 3 6C,— 7)X2+0O(x3
o+Z( 0~ )X+§8( 0— 7)X“+0O(x°) |,

2
FiP00= p

1 1 9203
+ZX+aX+ (x> |,

1
F(llZ)(X)E;

oo

1
Co= 2

& T Dnt2)" (442

Then, it can be shown that
2c
Vi(z)— ;In(x)+0(x|n(x)) (k=1), (4.43

asx—0. Thus, the analytical condition &f;(z) across the
hypersurfacex=0 (z=1) requiresc=0. It can be further
shown that

e1(2)—aPIn(x)+0(xIn(x)) (k=1), (4.49

asx—0. Thus, the analytical condition @f,(z) across the
hypersurface<=0 requiresa$?)=0. Considering Eq94.25

and (4.27) we find that the boundary conditions in the

present case limit all the perturbations, that is,
M1(2)=S1(2)=V1(2) = ¢1(2)=0 (k=1). (4.49

Therefore, from Eq(4.40 we can see that for any given
the solution has

N=n—-3 (0<2¢?<1) (4.46

unstable modes. In particular, the solution witk-2 or n

PHYSICAL REVIEW D 68, 064006 (2003

respect to the linear perturbations. The solution with4

has only one unstable mode, which may represent a critical
solution, sitting on a boundary that separates two attractive
basins in the phase space. All the solutions with4 have
more than one unstable modes and are not stable with respect
to the linear perturbations.

B. 2¢°=1

In this case the boundary conditions zt 1 are those
given by Eq.(4.14). From Eq.(4.6) we can see that to have
Si(2) finite asz—1, we must assume that R@K2. To
study the boundary conditions further, let us first consider the
casek+#1.

Whenk#1, it can be shown that Eq&t.31)—(4.36) also
hold in the present case. Thus, the conditions Yhdk) and
¢41(2) are finite asz— 1 require that

Rek)<1, (4.47
while the condition thaM ,(z) is finite further requires that
the constang?) has to take the values given by Hd.38.
On the other hand, from Eq&4.34—(4.36) we can see that
the last two conditions of Eq4.14) require
Re(k)<2qg®—1. (4.48

Whenk=1, it can be shown that Eq&4.41)—(4.44) hold in
this case, too, and following the analysis given there we find
that the boundary conditions at=1 limit all the perturba-
tions fork=1.

Therefore, for any given with 2g%>>1, Egs.(4.47) and
(4.48 show that there always exists a continuous spectrum
of k such that

0<Rek)<Rekmin) (29°>1), (4.49
where
1, q°>1
Y= 1 .
demm) 2q2_1, §<q2<1 (4 5@

That is, in the case @>1, there are infinite numbers of
unstable modes. However, wheg?=1, from Eq.(4.48 we
find that

Rek)<0 (29%=1). (4.5
Thus, the solution with §2=1 is stable against the linear
perturbations.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have first introduced the notion of homo-
thetic self-similarity to four-dimensional spacetimes with cy-
lindrical symmetry, and then presented a class of exact solu-
tions to the Einstein-massless scalar field equations, which is
parametrized by a constaqt It has been shown that for 0
<20g?<1, the corresponding spacetimes have black hole

=3 has no unstable mode, and consequently is stable witktructures but with cylindrical symmetry. These black holes
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are formed from the gravitational collapse of a massless scdution of the scalar field only to a finite region, say,
lar field. When 2)=1 the corresponding solutions also rep- <r(t), and then join it with an asymptotically flat region.
resent gravitational collapse of the scalar field but no black

holes are for_med. Instead, a pointlike singularity is devel- ACKNOWLEDGMENTS
oped, which is not naked and can be seen by an observer
only when he/she arrives at the singularity. The author would like to thank M. Choptuik and N. Gold-

Then, the linear perturbations of all these solutions havenfeld for their carefully reading the manuscript and valuable
been given analytically in closed form in terms of hypergeo-discussions and comments. He would also like to thank E.
metric functions. After properly imposing boundary condi- Hirschmann for delightful correspondence in critical col-
tions at the axis and on the horizons, it has been shown thdapse. The Department of Physics, UIUC, is also greatly ac-
the solutions withn=2,3 and the one with =1 are knowledged for their hospitality. The work is partially sup-
stable, wheren is an integer and given by=1/(1-2q%).  ported by CAPES, Brazil.

For any givenn=4, the corresponding solution h&s=n

—3 unstable modes. In particular, the one with-4 has APPENDIX A: THE RICCI TENSOR AND ITS LINEAR
precisely one unstable mode, which may represent a critical pPERTURBATIONS IN TERMS OF SELFE-SIMILAR

solution sitting on a boundary that separates two attractive VARIABLES

basins in the phase space. The solution for any giyeiith ) o ) )
2g%>0 has a continuous spectrum of unstable eigenmodes, The general metric for 9y_I|ndr|caI spacetimes with two
given by Eqs.(4.49 and (4.50. hypersurface orthogonal Killing vectors takes the form of

It should be noted that in this paper we have shown thaEd- (2.2). Intrqducmg thg self-similar dimensionless vari-
black holes can be formed from gravitational collapse of theables7 andz via the relations
massless scalar field, and the ones with 2,3 are stable
against the linear perturbations. However, these spacetimes e —In( _ l) S o (A1)
are not asymptotically flat in the radial direction, and thus to)’ '
may not be considered as representing counterexamples to
the hoop conjectur¢22]. To have an asymptotically flat wheret, is a dimensional constant, we find that the non-
spacetime in the radial direction, we may restrict the distri-vanishing components of the Ricci tensor are given by

27

R.— e
tt ZZtg

+(2+M))S +M J+274S ,+2M ,—2(S,S,+V .V )+(M .S, +M S )1},

{22°S ,,— (1-2%)(zZM ,,;+ 2M ) —2%(S%+ Vo) + 2(1+ Z°)M S ,+42°S ,+2[2S ,,+ M ,,— (S’ +V?)

eZT

Rt,=22%{2228ﬂ— 22(S%+V2%) —22(1-2S)M ,+42S,+22S ,— (S ,S,+V..V )+ (M ,S,+M ,S )]
+2(S,T_M,T)}1
e27'

Ry =——{22S,,+2(1- )M ,,— 2(S%+ V%) + 2(1+Z°)M ,S,— 2(1+Z°)M ,+4S,— M ,,+(1-S )M .]

rr 22%
- 22[2M ,’TZ_(M ,TS,Z+ M ,zs,r)]}-
R22: %eM +V75{22(1_ 22)[(8,21_ V,zz) - S,Z(S,z_ V,z)] + 22( 1- 22)(5,2_ V,z) - 2(1_ ZS,Z) - ZS[Z(S,’TZ_ V,’TZ)
~2S,8,+(S, V. +SV )= 2[(S .~V ) +(1-S )(S,~V )1},
Reg=3€M V{22 (1-2))[(S 2tV 2) — SAS,+V ) 1422(1-2°)(S,+V ) —2(1-2S,) — Z°[2(S ,+V )
=25.8,~(S, V. +SV )= Z[(S+V ) +(1-S )(S,+V )]} (A2)
On the other hand, it can be shown that the Klein-Gordon equéligi=0 for the massless scalar field takes the form
2122 b 17222 oy~ 26 1+ [2(2S,~ 1)+ 28] ¢+ [(1-22)(2-2S,) +2°S ] ,=0. (A3)

Now let us consider the linear perturbations of Eq1). To first order ine, it can be shown that the non-vanishing components
of the Ricci tensor are given by
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e2+k)7
R(M= té{2z3sg—z(1—z2)|v|1—2z3vg)v;—[2—2(1+|<)z2—z(1+zz)s(g]lvlﬁz[4(1+|<)z+(1+z2)|v|g)—2225(3]31
z
—2kZ2V{V 1+ kzZ(1+k+2z2)M1+kZ 2(1+Kk) +z(M{—2S5) ]S4}, (A4)
(2+k)1
RD= v (222S] - 222V(V1+ 27 (2+K) + Z(M{— S5)1S; — 22(1— 2F)M | —kz VgV, —k(2—2S)M 4
z
+k[2+2z(M{—S) 1S4} (AB)
(2+K) 7

R§3>=Ttg{2zsl’+z(1—zz)M’l'—zzvg)v1+[4+z(1+z2)M(')—2zsg]s;—[(1+zz)(z—zs))+2kz2]|v|;

—kz(1+k—2zS)M+kZM(S,}, (A6)
RS = 7{(M+V, — SR+ LzeMo* Vo~ SR, (A7)
RE = e "((My—V;— S)RY + 3zeMo Vo SR}, (A9)

whereRYY andRY) are the corresponding components of the Ricci tensor for the background solution, and
RSy =2(1—2%)(S]—V}) +[2kZ+(1-22) (2§~ 2) Vi +[4—2(1+K) 22— 2(1— 22) (2S5~ V§) 1S + kZ(1+ k—2F)V;
—kZ (1+K)—2(25;—Vo)1S;, (A9)

RY=2(1-22)(S]+V)) —[ 2k +(1- 7)) (2~ 2) IV, +[4—2(1+K) 22— 2(1— 2?) (28, + V() 1S, — kz(1+k—2F)V;

—kZ (1+k)—2(2S)+V{)1S; . (A10)
|
APPENDIX B: APPARENT HORIZONS IN SPACETIMES ds2=2e27u)dudy —r2e~ S0 (VtNguR + e V(tNgg2),
WITH CYLINDRICAL SYMMETRY (B3)
In [23], the ingoing and outgoing radial null geodesics
were studied in double null coordinates, and the correspondwvhere
ing expansions of them were calculated. In this paper, we
shall define apparent horizons in spacetimes with cylindrical 1 L
symmetry, using those quantities. Before doing so, we would o(u,v)=3[In(2e’ ") =M]. (B4)
first like to note the difference between the double null co-
ordinates used in this paper and the ones usd@3h As a  |ntroducing two null vectors* andn* by
matter of fact, the roles ofi andv are exchanged in this
paper.
To write the metric(2.1) in the double null coordinates, _du v
let us first introduce the two null coordinatesandv via the h= %‘ o M= %‘ o (BS)
relations
we find that
t=a(u)+B(), r=a(u)—ABv), (B1)
l,.,1"=0=n,,n", (B6)

where «(u) and B(v) are two arbitrary functions of their
indicated arguments, subject to

which means that each of them defines an affinely param-

/ / etrized null geodesic congruence. In particulérdefines the
@' (WA (v)#0, (B2) one moving along the null hypersurfaaes const, whilen*
defines the one moving along the null hypersurfaces

where a prime denotes the ordinary differentiation. Then, in=const. Then, the expansions of these null geodesics are

terms ofu andv, the metric(2.1) takes the form defined as

064006-11



ANZHONG WANG

R

—20 v

0,=9""l . 5=e

20

R
Ry B7
o (B7)

0,=9"n,.z=€"

where
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R=0y: dull- 94 o =r%€™S. (B8)

We call the cylinders of constattandr trapped if©®,0,
>0, marginally trapped if®0,=0, and untrapped if
0,0,<0. An apparent horizon is defined as a hypersurface
foliated by marginally trapped surfacgss,19.
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