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Critical collapse of a cylindrically symmetric scalar field in four-dimensional
Einstein’s theory of gravity
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Four-dimensional cylindrically symmetric spacetimes with homothetic self-similarity are studied in the
context of Einstein’s theory of gravity, and a class of exact solutions to the Einstein-massless scalar field
equations is found. Their local and global properties are investigated and it is found that they represent
gravitational collapse of a massless scalar field. In some cases the collapse forms black holes with cylindrical
symmetry, while in the other cases it does not. The linear perturbations of these solutions are also studied and
given in closed form. From the spectra of the unstable eigenmodes, it is found that there exists one solution that
has precisely one unstable mode, which may represent a critical solution, sitting on a boundary that separates
two different basins of attraction in the phase space.
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I. INTRODUCTION

The studies of nonlinearity of the Einstein field equatio
near the threshold of black hole formation reveal very r
phenomena@1#, which are quite similar to critical phenom
ena in statistical mechanics and quantum field theory@2#. In
particular, by numerically studying the gravitational collap
of a massless scalar field in (311)-dimensional spherically
symmetric spacetimes, Choptuik found that the mass of s
formed black holes takes the form

MBH5C~p!~p2p* !g, ~1.1!

whereC(p) is a constant and depends on the initial data, a
p parametrizes a family of initial data in such a way th
when p.p* black holes are formed, and whenp,p* no
black holes are formed. It was shown that, in contrast w
C(p), the exponentg is universalto all the families of initial
data studied, and was numerically determined asg;0.37.
The solution withp5p* , usually called the critical solution
is found also universal. Moreover, for the massless sc
field it is periodic, too. Universality of the critical solutio
and the exponentg as well as the power-law scaling of th
black hole mass all have given rise to the namecritical phe-
nomena in gravitational collapse.

Choptuik’s studies were soon generalized to other ma
fields@3#. From all the work done so far, the following seem
clear:

~a! There are two types of critical collapse, depending
whether or not the black hole mass takes the scaling f
~1.1!. When it takes the form, the corresponding collapse
called type II collapse, and when it does not it is called ty
I collapse. In the type II collapse, all the critical solutio
found so far have either discrete self-similarity~DSS! or ho-
mothetic self-similarity ~HSS!, depending on the matte
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fields. In the type I collapse, the critical solutions have n
ther DSS nor HSS. For certain matter fields, these two ty
of collapse can coexist.

~b! For the type II collapse, the corresponding exponen
universal only with respect to certain matter fields. Usua
different matter fields have different critical solutions a
different exponents. But for a given matter field the critic
solution and the exponent are universal.1

~c! A critical solution for both the two types hasone and
only one unstable mode. This now is considered as one of th
main criteria for a solution to be critical.

~d! The universality of the exponent is closely related
the number of unstable modes. In fact, the unstable mo
say,k1, of the critical solution is related to the exponentg
via the relationg5uk1u21, which can be obtained by usin
dimensional analysis@4#.

From the above, one can see that to study critical collap
one may first find some particular solutions by imposing c
tain symmetries, such as DSS or HSS. This can simplify
problem considerably. For example, in the spherically sy
metric case, by imposing HSS symmetry the Einstein fi
equations will be reduced from partial differential equatio
to ordinary differential equations. Once the particular so
tions are known, one can study their linear perturbations
find out the spectrum of the corresponding eigenmodes.
solution has precisely one unstable mode, it may represe
critical solution, sitting on a boundary that separates t
different basins of attraction in the phase space.

The studies of critical collapse have been mainly nume
cal so far, and analytical ones are still highly hindered by
complexity of the problem, even after imposing some sy
metries. Lately, some progress has been achieved in the
ies of critical collapse of a massless scalar field in an anti
Sitter background in (211)-dimensional spacetimes bot

i-

1So far, the studies have been mainly restricted to spherically s
metric cases and their nonspherical linear perturbations@3#. There-
fore, it is not really clear whether or not the critical solution a
exponent are universal with respect to different symmetries of
spacetimes.
©2003 The American Physical Society06-1
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ANZHONG WANG PHYSICAL REVIEW D 68, 064006 ~2003!
numerically@5,6# and analytically@7–9#. This serves as the
first analytical model in critical collapse.

In this paper, we shall present another analytical mo
that represents critical collapse of a massless scalar fie
four-dimensional Einstein’s theory of gravity with cylindrica
symmetry. Although spacetimes with cylindrical symme
do not represent realistical models, the studies of them
provide deep insight into the nonlinearity of the Einste
field equations. In particular, they may throw some light
the possible roles that gravitational radiation and angu
momentum may play in critical collapse. In fact, such stud
have already been shown to be very useful in probing n
spherical gravitational collapse@10#. In addition, they may
also provide a useful testbed for numerical relativity@11# and
quantum gravity@12#.

The rest of the paper is organized as follows. In Sec. II
first review the regularity conditions for a four-dimension
cylindrical spacetime, including the ones at the symme
axis. Then we introduce the notion of homothetic se
similarity with cylindrical symmetry. In Sec. III, a class o
exact solutions with such a symmetry to the Einste
massless scalar field equations is presented. It is shown
they represent gravitational collapse of a scalar field,
which black holes can be formed. In Sec. IV, the linear p
turbations of these solutions are studied and given in clo
form. After properly imposing boundary conditions, th
spectra of the unstable modes of the perturbations are d
mined. In particular, it is found that there exists a soluti
that has precisely one unstable mode, which may represe
critical solution, sitting on a boundary that separates t
different basins of attraction in the phase space. In Sec
the main results are summarized and some concluding
marks are given. There are also two appendixes, A and B
Appendix A, the Ricci tensor is given in terms of self-simil
variables. The linear terms of perturbations of the Ricci t
sor are also given there. In Appendix B, the expansions
the outgoing and ingoing radial null geodesics are calcula
from which trapped surfaces and apparent horizons are
fined.

II. SPACETIMES WITH HOMOTHETIC
SELF-SIMILARITY

The general metric for cylindrical spacetimes with tw
hypersurface orthogonal Killing vectors takes the form@13#

ds25e2M (t,r )~dt22dr2!2r 2e2S(t,r )

3~eV(t,r )dw21e2V(t,r )du2!, ~2.1!

where xm5$t,r ,w,u% are the usual cylindrical coordinate
and the hypersurfacesu50,2p are identified. The two Kill-
ing vectors are given byj (w)5]w and j (u)5]u . To have
cylindrical symmetry, some physical and geometrical con
tions needed to be imposed. In general this is not trivial.
a matter of fact, when the symmetry axis is singular, it is s
an open question: which conditions should be imposed@14#.
Since in this paper we are mainly interested in gravitatio
collapse, we would like to have the axis regular in the b
ginning of the collapse. By this way, we are sure that
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singularity to be formed later on the axis is indeed due to
collapse. Thus, following@15# we impose the following con-
ditions:

~i! There must exist a symmetry axis. This can be written
as

X[uj (u)
m j (u)

n gmnu→0, ~2.2!

as r→01, where we have chosen the radial coordinater
such that the axis is located atr 50.

~ii ! The spacetime near the symmetry axis is locally fl.
This can be expressed as@13#

X,aX,bgab

4X
→21, ~2.3!

as r→01, where (),a[]()/]xa. Note that solutions failing
to satisfy this condition it is sometimes acceptable, and
usually expected that the singularities located on the a
should be replaced by some kind of sources in more real
models. A particular case of these is when the right-hand s
of the above equation approaches a finite constant, and
singularity now can be related to a linelike source@16#. In
this paper, since we are mainly interested in gravitatio
collapse, we shall not consider these possibilities and ass
that the above condition holds strictly at the initial of th
collapse.

~iii ! No closed timelike curves (CTC’s). In spacetimes with
cylindrical symmetry, CTC’s can be easily introduced.
guarantee their absence, we impose the condition

j (u)
m j (u)

n gmn,0, ~2.4!

in the whole spacetime.
In addition to these conditions, it is usually also requir

that the spacetime be asymptotically flat in the radial dir
tion. However, since we consider solutions with se
similarity, this condition cannot be satisfied by such so
tions, unless we restrict the validity of them only up to
maximal radius, say,r 5r 0(t), and then join the solutions
with others in the regionr .r 0(t), which are asymptotically
flat in the radial direction. In this paper, we shall not consid
such a possibility, and simply assume that the self-sim
solutions are valid in the whole spacetime.

Spacetimes with homothetic self-similarity ~or self-
similarity of the first kind! are usually defined by the exis
tence of a conform Killing vectorjm that satisfies the equa
tions @17#,

jm;n1jn;m52gmn , ~2.5!

where a semicolon ‘‘;’’ denotes the covariant derivative.
can be shown that for the spacetimes given by Eq.~2.1! the
conditions~2.5! imply that

M ~ t,r !5M ~z!, S~ t,r !5S~z!, V~ t,r !5V~z!,
~2.6!

where the self-similar variablez and the corresponding con
form Killing vector jm are given by
6-2
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jm]m5t] t1r ] r , z5
r

2t
. ~2.7!

It is interesting to note that under the coordinate transform
tions

t5a1 t̄ 1a2r̄ , r 5a3 t̄ 1a4r̄ , ~2.8!

the metric~2.1!, the regular conditions~2.2!–~2.4!, and the
self-similar conditions~2.6! and~2.7! are all invariant, where
ai ’s are real constants, subject toa1a22a3a450. Using this
gauge freedom, we shall assume that

M ~ t,0!50, ~2.9!

that is, the timelike coordinatet measures the proper time o
the axis.

III. SELF-SIMILAR SOLUTIONS OF MASSLESS
SCALAR FIELD

For a massless scalar field, the Einstein field equati
read

Rmn5kf ,mf ,n , ~3.1!

where k([8pG/c4) is the Einstein coupling constant. I
this paper we shall choose units such thatk51. The scalar
field satisfies the Klein-Gordon equation

gabf ;ab50. ~3.2!

However, this equation is not independent of the Einst
field equations~3.1! and can be obtained from the Biac
identitiesGma;bgab50.

On the other hand, it can be shown that a massless s
field f(t,r ) that is consistent with spacetimes with homoth
tic self-similarity must take the form

f~ t,r !52q ln~2t !1w~z!, ~3.3!

whereq is an arbitrary constant, andw(z) is a function ofz
only, which will be determined by the Einstein field equ
tions ~3.1!. Inserting Eqs.~A2! and ~3.3! into Eq. ~3.1! and
considering the self-similar conditions~2.6!, we find the fol-
lowing solutions:

M ~z!52q2ln~12z2!, S~z!5 ln~z!,

V~z!52 ln~z!, w~z!50. ~3.4!

Whenq50 the corresponding spacetime is flat. Thus, in
following we shall assume thatqÞ0. Then, it can be shown
that these solutions satisfy all the conditions~2.2!–~2.4! and
~2.9!, and the corresponding Ricci and Kretschmann sca
are given by

R5gabf ,af ,b54q2
~12z2!2q2

t2
,

06400
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I[RablsRabls548q4
~12z2!4q2

t4
. ~3.5!

From these expressions we can see that the spacetime is
gular on the hypersurfacet50. On the other hand, althoug
the metric is singular onz51, the spacetime is not. Thus, t
have a geodesically complete spacetime, we need to ex
the metric beyond this surface. In order to do so, it is fou
convenient to study the two cases 0,2q2,1 and 2q2>1
separately.

A. 0Ë2q2Ë1

In this case, introducing two null coordinatesu andv via
the relations

t52@~2u!n1~2v !n#[2 f 1~u,v !,

r 5~2u!n2~2v !n[ f 2~u,v !, ~3.6!

we find that in terms ofu and v the metric and massles
scalar field take the form

ds25n241/nf 1
2(n21)/ndudv2 f 1

2 dw22 f 2
2 du2,

f52q ln@ f 1~u,v !#, ~3.7!

where

n[
1

122q2
.1. ~3.8!

From Eq. ~3.6! we can see that the regiont<0, r>0, z
,1 in the (t,r ) plane is mapped into the regionu, v,0, v
>u, which will be referred to as region II@cf. Fig. 1#. The
half line z51, t<0 is mapped tov50, u<0. The region
v.0, u<0, which will be referred to as region I, is a

v

    r     =     0

r 
   

 =
   

   
0

φ ,u

v  =   0

  II

I

FIG. 1. The Penrose diagram for the solutions given by E
~3.6! and ~3.7! with n>2 being an integer. The cylinders of con
stant t and r are all trapped in region I whereQ l,0 and Q lQn

.0, but not in region II, whereQ l.0 andQ lQn,0. The dashed
line v50 represents the apparent horizon. Whenn is an odd integer,
the spacetime is singular on the horizontal double liner 50, and
whenn is an even integer, the spacetime has no curvature sing
ity there.
6-3
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extended region. Depending on the values ofn, the nature of
the extension is different. In particular, it is analytical on
for the case wheren is an integer. Otherwise, the extension
not analytical, and in some cases the metric and the sc
field even become not real in this extended region, as we
see from Eqs.~3.6! and~3.7!. To have the extension unique
in the following we shall consider only analytical extension
that is, the cases wheren is an integer. Then, from Eqs.~3.7!
and ~B7! we find that

f ,u522nq
~2u!n21

f 1
, f ,v522nq

~2v !n21

f 1
,

R5f ,af ,a5n4q24111/n
~uv !n21

f 1
2/n

,

I 5RablsRabls516221/nS n21

n D 2 ~uv !2(n21)

f 1
4(221/n)

,

Q l5
4121/n~2v !2n21

n f2 f 1
2(2n21)/n

, Qn52
4121/n~2u!2n21

n f2 f 1
2(2n21)/n

.

~3.9!

From these expressions we can see that the spacetim
regular on the symmetry axisv5u in region II, andf ,a is
always timelike. On the hypersurfacev50, we have

f ,v~u,0!50, ~3.10!

and the only non-vanishing component of the ener
momentum tensorTmn is given by

Tuu~u,0!5f ,u
2 ~u,0!Þ0, ~3.11!

which represents an energy flow, moving from region II in
region I along the null hypersurfacesu5const. The expan-
sion Q l of the null geodesics along the hypersurfacesu
5const is always positive in this region, while the expans
Qn of the null geodesics along the hypersurfacesv5const is
always negative. However,Q l becomes zero on the hype
surfacev50 and then negative in the extended regionI,
where v.0, while Qn is negative even in this extende
region. Thus, all the cylinders of constantt andr are trapped
in the extended region, but not in region II. Then, the hyp
surfacev50 defines an apparent horizon@18,19#.

It should be noted that the above analysis is very imp
tant when we consider boundary conditions on the appa
horizon in the next section, as it shows clearly that it is
componentf ,u that represents the energy flow of the sca
waves that moves from region II into region I, while th
componentf ,v represents the energy flow of the scalar fie
that moves in the opposite direction. Since now region I i
trapped region and no radiation is able to escape from
region. This can be seen clearly from Eq.~3.10!.

The singularity behavior in region I depends on the valu
of n. In particular, whenn is an odd integer, from Eq.~3.9!
we can see that the spacetime becomes singular on the
persurfacer 50 or u52v, which services as the up bound
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ary of the spacetime, and the corresponding Penrose diag
is that of Fig. 1. Thus, in this case region I can be conside
as the interior of a black hole, and the corresponding so
tions represent gravitational collapse of a massless sc
field in region II. The collapse always forms a black ho
Note that in this casef ,a is continuously timelike in the
trapped region,I, as we can see from Eq.~3.9!.

Whenn is an even integer, from Eq.~3.9! we can see tha
the Ricci and Kretschmann scalars are all finite atr 50 in
region I, but bothQ l and Qn become singular there. Thus
anything that moves along the null geodesics, defined byl m

or nm, will be crashed to zero volume by the infinitely larg
contraction. Then, the hypersurfacer 50 now represents a
topological boundary of the spacetime, and the correspo
ing Penrose diagram is also given in Fig. 1, but now
spacetime is free of curvature singularities on the dou
horizontal liner 50.

It should be noted that apparent horizons and black ho
are usually defined in asymptotically flat spacetimes@18#. To
be distinguishable, Hayward called such apparent horiz
as trapping horizons and defined black holes by the fut
outer trapping horizons@19#. For the sake of simplicity and
without causing any confusions, in this paper we shall c
tinuously use the notions of apparent horizons in the pla
of Hayward’s trapping horizons, and define black holes in
little bit more general sense than that of Hayward in no
asymptotically flat spacetimes.

B. 2q2Ð1

In this case, introducing the two null coordinatesu andv
via the relations

t5u1v, r 5v2u, ~3.12!

we find that the metric and scalar field are given by

ds254122q2F ~u1v !2

uv G2q2

dudv2~u1v !2dw2

2~u2v !2du2,

f52q ln@2~u1v !#. ~3.13!

To study the physics of the spacetime near the hypersur
v50 or z51 in some details, let us consider the radial n
geodesics along the hypersurfaceu5const, say,u5u0,

v̈22q2
u02v

v~u01v !
v̇250, ~3.14!

where an overdot denotes the ordinary differentiation w
respect to the affine parameterl along the null geodesics
Then, near the hypersurfacev50, Eq. ~3.14! has the solu-
tion

v~l!5H ~b1l1b2!21/(2q221), 2q2.1

eb1l1b2, 2q251,
~3.15!
6-4
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where b1 and b2 are the integration constants. Thus, asv
→0, we must havel→6`. That is, the ‘‘distance’’ be-
tween the point (u0,0) and any of the other points, sa
(u,v)5(u0 , v0,0), along the null geodesicsu5u0 is infi-
nite. Therefore, when 2q2>1 the hypersurfacev50 actually
represents a natural boundary of the spacetime, and the
no need to extend the solutions beyond this surface, s
now region II is already geodesically maximal. It should
noted that, although there is no spacetime singularity on
half line v50,u,0, the spacetime is singular at the poi
(u,v)5(0,0), as can be seen from Eq.~3.9!. The corre-
sponding Penrose diagram is given in Fig. 2.

On the other hand, from Eq.~B7! we find that

Q l524122q2F ~u1v !2

uv G2q2
v

u22v2
,

Qn54122q2F ~u1v !2

uv G2q2
u

u22v2
. ~3.16!

Thus, in the whole spacetime now we always haveQ l.0
and Qn,0, except on the half hypersurfacev50, u,0
where we haveQ l50, Qn,0. That is, all the two surface
of constantt and r are not trapped foru, v,0, and become
marginally trapped only on the half surfacev50, u,0. In
addition, we have

R5f ,af ,a54112q2
q2

~uv !2q2

~u1v !2(112q2)
, ~3.17!

v

v     =     0

    

r 
   

   
=

   
   

 0

 (0, 0)

FIG. 2. The Penrose diagram for the solutions given by
~3.13! for 2q2>1. The spacetime is geodesically maximal in t
whole regionu, v,0, v>u, and singular only at (u,v)5(0,0).
The two surfaces of constantt and r are not trapped, because no
we always haveQ l.0 andQn,0. The only exception is on the
surface v50, u,0 where Q l(u,0)50 and Qn(u,0),0. The
dashed lines represent the hypersurfacesf(u,v)5const, which are
always spacelike.
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which is always positive foru, v,0, and zero only when
v50. That is, the scalar field is always timelike, except
the hypersurfacev50 where it becomes null. Thus, in thi
case the corresponding solution can be considered as re
senting gravitational collapse of a massless scalar field.
though now no black holes are formed, a pointlike spacet
singularity is indeed developed at the point (u,v)5(0,0), as
we can see from Eq.~3.5!. It is interesting to note that this
singularity is not naked, and an observer can see it o
when he/she arrives at that point.

IV. LINEAR PERTURBATIONS OF THE SELF-SIMILAR
SOLUTIONS

To see if the above solutions represent critical collap
we need to do their linear perturbations, because by de
tion a critical solution has one and only one unstable mo
To study such perturbations, it is found convenient to use
self-similar variablest and z defined by Eq.~A1! but still
work in the (t,r ) coordinates. Then, the linear perturbatio
can be written as

F~t,z!5F0~z!1eF1~z!ekt, ~4.1!

whereF[$M ,S,V,w%, ande is a very small real constant
Quantities with subscripts ‘‘1’’ denote perturbations, a
those with ‘‘0’’ denote the background self-similar solution
given by Eq.~3.4!. It is understood that there may be man
perturbation modes for different values~possibly complex!
of the constantk. Then, the general perturbations will be th
sum of these individual ones. Modes with Re(k).0 grow as
t→` and are referred to as unstable modes, and the o
with Re(k),0 decay and are referred to as stable modes

It should be noted that in writing Eq.~4.1!, we have al-
ready used some of the gauge freedom to write the pertu
tions such that they preserve the form of the metric~2.1!.
However, this does not completely fix the gauge. We sh
return to this point later when we consider the gauge mod

To the first order ofe, the Ricci tensor is given by Eqs
~A4!–~A10!. Applying them to the background solution
given by Eq.~3.4!, and using the Einstein field equation
~3.1!, we find that there are only four independent equatio
which can be cast in the form

kM1~z!52z2S1912zV1812zF ~11k!24q2
z2

12z2GS181kV1

1kS 124q2
z2

12z2D S114qzw18 , ~4.2!

and

z~12z2!V191@12~112k!z2#V182k2zV1

5kzS12~12z2!S18 , ~4.3!

z~12z2!w191@12~112k!z2#w182k2zw1

52qz~zS181kS1!, ~4.4!

.

6-5
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ANZHONG WANG PHYSICAL REVIEW D 68, 064006 ~2003!
z~12z2!S1912~12kz2!S181k~12k!zS150, ~4.5!

where a prime denotes the ordinary differentiation with
spect to the indicated argument. It can be shown that
~4.5! has the general solution,

S1~z!5
1

z
@c1~11z!22k1c2~12z!22k#, ~4.6!

wherec1 and c2 are two integration constants. Substitutin
the above solution into Eqs.~4.3! and~4.4! we find that these
two equations can be written in the form

y~12y!
d2Zi

dy2
1@e2~a1b11!y#

dZi

dy
2abZi5

1

4y1/2
f i~y!,

~4.7!

wherey[z2, $Zi%5$V1 ,w1%, a5b5k/2, e51, and

f 1~y![kzS12~12z2!S18

5
1

y
$c1@12~22k!y1/21y#~11y1/2!22k

1c2@11~22k!y1/21y#~12y1/2!22k%,

f 2~z![2qz~zS181kS1!

522q$c1@~12k!2y1/2#~11y1/2!12k

1c2@~12k!1y1/2#~12y1/2!12k%. ~4.8!

Equation~4.7! is the inhomogeneous hypergeometric eq
tion @20#, and the general solution of the associated homo
neous equation is a linear combination of the two indep
dent solutions,F1

( i )(z), where

F1
(1)~z!5FS 1

2
k,

1

2
k;1;z2D ,

F1
(2)~z!5FS 1

2
k,

1

2
k;k;12z2D , ~4.9!

with F(a,b;e;z) denoting the hypergeometric function
From the above two independent solutions, we can const
particular solutions of the inhomogeneous equation~4.7!,
and then find that the general solutions forV1(z) andw1(z)
can be written as

V1~z!5@a1
(2)1A1

(2)~z!#F1
(1)~z!1@a1

(1)2A1
(1)~z!#F1

(2)~z!,

w1~z!5@a2
(2)1A2

(2)~z!#F1
(1)~z!1@a2

(1)2A2
(1)~z!#F1

(2)~z!,

~4.10!

whereaj
( i )’s are integration constants, and

Aj
( i )~z![Ez f j~z!F1

( i )~z!dz

z~12z2!D~z!
,

06400
-
q.

-
e-
-

ct

D~z![F1
(2)~z!

d

dz
@F1

(1)~z!#2F1
(1)~z!

d

dz
@F1

(2)~z!#.

~4.11!

To have physically acceptable perturbations, we need
impose boundary conditions. In general relativity, this is
very subtle problem and there are no fixed rules to follow.
this paper we shall choose the axisr 50 and the hypersur-
facez51 as the places where we impose the boundary c
ditions.

Since the axis for the background solutions is regular, a
the conditions~2.2!, ~2.3! and~2.9! are satisfied by them, we
would expect that the linear perturbations also satisfy th
conditions. In particular, it can be shown that the conditi
~2.9! requiresM1(0)50, and the ones~2.2! and ~2.3! re-
quire, respectively,G1(z)→0 and zG18(z)→0, as z→0,
whereG1(z)[S1(z)1V1(z). On the other hand, the cond
tion that R5f ,af ,a is regular on the axis further require

zw181kw1→0.2 In summary, on the axis we shall impose th
following conditions:

M1~z!→0,

G1~z!→0,

zG18~z!→0,

zw18~z!1kw1~z!→0, ~4.12!

asz→0.
On the other hand, when 0,2q2,1 the hypersurfacez

51 is an apparent horizon~cf. Fig. 1!, and we required tha
the background solutions be analytical across it with resp
to the null coordinatev. Otherwise, it was found that th
extension was not unique. Clearly, this condition should h
also for the perturbations. In addition, since the hypersurf
z51 represents an apparent horizon and region I is a trap
region, so nothing should be able to escape from it. In p
ticular, for the scalar field this impliesf ,v(u,0)50 @cf. Eq.
~3.11!#. On the other hand, as shown in@21#, the gravitational
wave component that moves out of region I is represented
C0, which is a function ofV,vv , V,v , M ,v and S,v . Then,
we can see that the condition that no gravitational wa
come out from region I requiresV,vv , V,v , S,v , M ,v , f ,v
→0 asv→0. Changing to the self-similar variablez, it can
be shown that these conditions are equivalent to

2It should be noted that this condition is not independent of
ones~2.2! and~2.3!. In fact, using the Einstein field equations~3.1!
we can deduce it from Eqs.~2.2! and ~2.3!. However, without loss
of generality, in this paper we shall impose it independently.
6-6
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F1~z!;analytical with respect tov,

~12z!(n21)/n
dF1~z!

dz
→0,

~12z!(n22)/n
dV1~z!

dz
→0, ~0,2q2,1!, ~4.13!

asz→1, whereF1(z)[$M1 ,S1 ,V1 ,w1%.
When 2q2>1 the hypersurfacez51 is a future null in-

finity of the spacetime and marginally trapped~cf. Fig. 2!.
Since it is the future null infinity, we would expect that th
perturbations be finite there. On the other hand, the hy
surfacez51 is also marginally trapped, so there we shou
have only outgoing scalar field and gravitational waves. N
that the amplitude of gravitational wave components is
ways proportional toeM0;(12z)2q2

@21#. Thus, now we
must require (12z)2q2

(V1,vv , V1,v , S1,v , M1,v) →0, asz
→1. On the other hand, using the Einstein field equati
we can show that these conditions also imply (12z)2q2

w1,v
→0. In terms of the self-similar variablez, and noticing that
now t and r are given by Eq.~3.12!, we find that these con
ditions can be written as

F1~z!→finite,

~12z!2q2 dF1~z!

dz
→0,

~12z!2q2 d2V1~z!

dz2
→0 ~2q2>1!, ~4.14!

asz→1.
Once we have the boundary conditions, let us first c

sider the gauge modes. We note that the metric~2.1! is in-
variant under the coordinate transformations

t5a~ t̄ 1 r̄ !1b~ t̄ 2 r̄ !,

r 5a~ t̄ 1 r̄ !2b~ t̄ 2 r̄ !, ~4.15!

wherea( t̄ 1 r̄ ) and b( t̄ 2 r̄ ) are arbitrary functions of thei
indicated arguments, subject toa8b8Þ0. Thus, let us con-
sider the gauge transformations

t→t1e@A~ t1r !1B~ t2r !#,

r→r 1e@A~ t1r !2B~ t2r !#, ~4.16!

where A(t1r ) and B(t2r ) are other arbitrary functions
Then, we find that under the above coordinate transfor
tions the resultant perturbations are given by

F~t,z!5F0~z!1dF~t,z!, ~4.17!

with
06400
r-

e
l-

s

-

a-

dM ~t,z!52~A81B8!2
4q2z

t~12z2!
@~A2B!1~A1B!z#,

dS~t,z!5
1

r
@~A2B!1~A1B!z#,

dV~t,z!52
1

r
@~A2B!1~A1B!z#,

dw~t,z!5
4q

t
~A1B!. ~4.18!

In order to have the above expressions in the form of
~4.1!, we must choose

A~ t1r !52c2t0S 2t

t0
D 12k

~12z!12k,

B~ t2r !5c1t0S 2t

t0
D 12k

~11z!12k, ~4.19!

for which Eq.~4.18! can be written as

dF~t,z!5F1~z!ekt, ~4.20!

with

M1~z!52$c1@~12k!12q2z#~11z!2k2c2@~12k!22q2z#

3~12z!2k%,

S1~z!5
1

z
@c1~11z!22k1c2~12z!22k#,

V1~z!5
12z2

z
@c1~11z!2k1c2~12z!2k#,

w1~z!522q@c1~11z!12k2c2~12z!12k#, ~4.21!

wherec1 andc2 are arbitrary constants. It can be shown th
the above perturbations do not satisfy the boundary co
tions ~4.12!–~4.14!, or in other words, the boundary cond
tions imposed in this paper limit all the gauge modes.

Now let us consider the above boundary conditions
the particular background given by Eq.~3.4!. We first con-
sider the conditions at the axis given by Eq.~4.12!. Let us
first note that

F1
(1)~z!511 1

4 k2z21O~z4!,

F1
(2)~z!5A2~k!$@A1~k!22 ln~z!#F1

(1)~z!1 1
2 k~k22!z2%,

~4.22!

asz→0, where
6-7
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A1~k!5 (
n50

`
2~22k!

~n11!~2n1k!
, A2[

G~k!

G2S 1

2
kD , ~4.23!

andG(k) denotes the Gamma function. Inserting Eqs.~4.22!
into Eqs.~4.11! and~4.10!, after tedious calculations we fin
that

zw18~z!1kw1~z!→22ka2
(1)A2~k!ln~z!1A0~k!,

~4.24!

as z→0, whereA0(k) is a finite constant. Thus, the la
condition of Eq.~4.12! requires

a2
(1)50. ~4.25!

Similarly, one can show that

G1~z![S1~z!1V1~z!

5
2~c11c2!

z
22a1

(1)A2~k!ln~z!1~22k!~c12c2!

1@a1
(1)A1~k!A2~k!1a1

(2)#1O~z!, ~4.26!

from which we can see that the second condition of E
~4.12! requires

c152c25c, a1
(1)50, a1

(2)52~k22!c. ~4.27!

Once Eq.~4.27! holds, it can be shown that

zG18~z!→O~z2!,

M1~z!→O~z2!, ~4.28!

asz→0. That is, the first and third conditions of Eq.~4.12!
do not impose further restrictions on the free parameters

Now let us turn to consider the boundary conditions az
51. It is found convenient to consider the cases 0,2q2

,1 and 2q2>1 separately.

A. 0Ë2q2Ë1

In this case we have 12z;(2v)n, as v→0. Then, we
find that

S1~z!;c@222k2~2v !(22k)n#, ~4.29!

as v→0. Thus, in order to haveS1(z) analytical, the con-
stantk has to take the values

k522
m

n
~m>1!, ~4.30!

wherem is a positive integer (m51,2,3, . . . ). Whenk,0
the corresponding modes are stable, which we are no
interested in. Thus, in the following we shall consider on
the case wherek.0, which together with Eq.~4.30! implies
2n.m>1. To study the boundary conditions atz51 fur-
ther, let us consider the caseskÞ1 andk51 separately.

Case A. kÞ1: In this case it can be shown that
06400
.

so

F1
(1)~z!5B1~k!F11

(1)~z!1B2~k!F12
(1)~z!x12k,

F1
(2)~z!5F11

(1)~z! ~kÞ1!, ~4.31!

where

F11
(1)~z![11 1

4 kx1D1~k!x21O~x3!,

F12
(1)~z![11 1

4 ~22k!x1D2~k!x21D3~k!x3

1O~x4!, ~4.32!

with x[12z2 and

B1~k!5
G~12k!

G2S 12
1

2
kD , B2~k!5

G~k21!

G2S 1

2
kD ,

D1~k!5
k~21k!2

32~11k!
, D2~k!5

~22k!~42k!2

32~32k!
,

D3~k!5
~22k!~42k!~62k!2

384~32k!
. ~4.33!

Inserting the above expressions into Eqs.~4.2!, ~4.10! and
~4.11! and after tedious calculations we find that

kM1~z!5
1

2
k$c~k22!~k2122q2!2k22B2~k!@~k21!a1

(2)

12kqa2
(2)#%x12k22$c~k22!~k2122q2!2k

12~12k!B2~k!@a1
(2)12qa2

(2)#%x2k1A3~c,k,q!

1O~xk!1O~x22k!, ~4.34!

w1~z!5a2
(2)@B2~k!x12k1B1~k!#1O~x!, ~4.35!

V1~z!5a1
(2)B2~k!x12k1O~x22k! ~kÞ1!, ~4.36!

as z→1, whereA3(c,k,q) is a finite constant, anda1
(2) is

given by Eq.~4.27!. From the last two equations we can s
that the analytical conditions ofV1(z) and w1(z) requirek
,1, which together with Eq.~4.30! implies

2n.m.n. ~4.37!

The condition thatM1(z) is analytical across the hypersu
facez51 requires

a2
(2)5

c~k22!

2 S ~k2122q2!2k

2~k21!B2~k!
22D . ~4.38!

On the other hand, it can be also shown that

x121/n
dM1~x!

dx
;

c~k22!

2
@~k2122q2!2k14~12k!

3B2~k!#x(m2n21)/n1O~x(n21)/n!,
6-8
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x121/n
dV1~x!

dx
;~12k!a1

(2)B2~k!x(m2n22)/n

1O~x122/n!1O~x(m22)/n!,

x121/n
dw1~x!

dx
;~12k!a2

(2)B2~k!x(m2n21)/n

1O~x(n21)/n!,

x121/n
dS1~x!

dx
;

ck

2k
x(n21)/n1O~x(m21)/n! ~kÞ1!,

~4.39!

asx→0. Thus, the last two conditions of Eq.~4.13! further
require

2n.m.n12 ~kÞ1!. ~4.40!

Case B. k51: In this case it can be shown that

F1
(1)~z!5F11

(1)~x!2F12
(1)~x!ln~x!,

F1
(2)~z!5pF12

(1)~x! ~k51!, ~4.41!

but now with

F11
(1)~x![

2

p FC01
1

4
~C021!x1

3

128
~6C027!x21O~x3!G ,

F12
(1)~x![

1

p F11
1

4
x1

9

64
x21O~x3!G ,

C0[ (
n50

`
1

~n11!~n12!
. ~4.42!

Then, it can be shown that

V1~z!→ 2c

p
ln~x!1O„x ln~x!… ~k51!, ~4.43!

asx→0. Thus, the analytical condition ofV1(z) across the
hypersurfacex50 (z51) requiresc50. It can be further
shown that

w1~z!→a2
(2)ln~x!1O„x ln~x!… ~k51!, ~4.44!

asx→0. Thus, the analytical condition ofw1(z) across the
hypersurfacex50 requiresa2

(2)50. Considering Eqs.~4.25!
and ~4.27! we find that the boundary conditions in th
present case limit all the perturbations, that is,

M1~z!5S1~z!5V1~z!5w1~z!50 ~k51!. ~4.45!

Therefore, from Eq.~4.40! we can see that for any givenn,
the solution has

N5n23 ~0,2q2,1! ~4.46!

unstable modes. In particular, the solution withn52 or n
53 has no unstable mode, and consequently is stable
06400
ith

respect to the linear perturbations. The solution withn54
has only one unstable mode, which may represent a crit
solution, sitting on a boundary that separates two attrac
basins in the phase space. All the solutions withn.4 have
more than one unstable modes and are not stable with res
to the linear perturbations.

B. 2q2Ð1

In this case the boundary conditions atz51 are those
given by Eq.~4.14!. From Eq.~4.6! we can see that to hav
S1(z) finite as z→1, we must assume that Re(z),2. To
study the boundary conditions further, let us first consider
casekÞ1.

WhenkÞ1, it can be shown that Eqs.~4.31!–~4.36! also
hold in the present case. Thus, the conditions thatV1(z) and
w1(z) are finite asz→1 require that

Re~k!,1, ~4.47!

while the condition thatM1(z) is finite further requires tha
the constanta2

(2) has to take the values given by Eq.~4.38!.
On the other hand, from Eqs.~4.34!–~4.36! we can see tha
the last two conditions of Eq.~4.14! require

Re~k!,2q221. ~4.48!

Whenk51, it can be shown that Eqs.~4.41!–~4.44! hold in
this case, too, and following the analysis given there we fi
that the boundary conditions atz51 limit all the perturba-
tions for k51.

Therefore, for any givenq with 2q2.1, Eqs.~4.47! and
~4.48! show that there always exists a continuous spectr
of k such that

0,Re~k!,Re~kmin! ~2q2.1!, ~4.49!

where

Re~kmin!5H 1, q2.1

2q221,
1

2
,q2,1.

~4.50!

That is, in the case 2q2.1, there are infinite numbers o
unstable modes. However, when 2q251, from Eq.~4.48! we
find that

Re~k!,0 ~2q251!. ~4.51!

Thus, the solution with 2q251 is stable against the linea
perturbations.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have first introduced the notion of hom
thetic self-similarity to four-dimensional spacetimes with c
lindrical symmetry, and then presented a class of exact s
tions to the Einstein-massless scalar field equations, whic
parametrized by a constantq. It has been shown that for 0
,2q2,1, the corresponding spacetimes have black h
structures but with cylindrical symmetry. These black ho
6-9
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are formed from the gravitational collapse of a massless
lar field. When 2q2>1 the corresponding solutions also re
resent gravitational collapse of the scalar field but no bl
holes are formed. Instead, a pointlike singularity is dev
oped, which is not naked and can be seen by an obse
only when he/she arrives at the singularity.

Then, the linear perturbations of all these solutions h
been given analytically in closed form in terms of hyperge
metric functions. After properly imposing boundary cond
tions at the axis and on the horizons, it has been shown
the solutions withn52,3 and the one with 2q251 are
stable, wheren is an integer and given byn[1/(122q2).
For any givenn>4, the corresponding solution hasN5n
23 unstable modes. In particular, the one withn54 has
precisely one unstable mode, which may represent a cri
solution sitting on a boundary that separates two attrac
basins in the phase space. The solution for any givenq with
2q2.0 has a continuous spectrum of unstable eigenmo
given by Eqs.~4.49! and ~4.50!.

It should be noted that in this paper we have shown t
black holes can be formed from gravitational collapse of
massless scalar field, and the ones withn52,3 are stable
against the linear perturbations. However, these spacet
are not asymptotically flat in the radial direction, and th
may not be considered as representing counterexample
the hoop conjecture@22#. To have an asymptotically fla
spacetime in the radial direction, we may restrict the dis
06400
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bution of the scalar field only to a finite region, say,r
<r 0(t), and then join it with an asymptotically flat region
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APPENDIX A: THE RICCI TENSOR AND ITS LINEAR
PERTURBATIONS IN TERMS OF SELF-SIMILAR

VARIABLES

The general metric for cylindrical spacetimes with tw
hypersurface orthogonal Killing vectors takes the form
Eq. ~2.1!. Introducing the self-similar dimensionless var
ablest andz via the relations

t52 lnS 2
t

t0
D , z5

r

~2t !
, ~A1!

where t0 is a dimensional constant, we find that the no
vanishing components of the Ricci tensor are given by
nts
Rtt5
e2t

2zt0
2 $2z3S,zz2~12z2!~zM,zz12M ,z!2z3~S,z

2 1V,z
2 !1z~11z2!M ,zS,z14z2S,z1z@2S,tt1M ,tt2~S,t

2 1V,t
2 !

1~21M t!S,t1M ,t#1z2@4S,tz12M ,tz22~S,tS,z1V,tV,z!1~M ,tS,z1M ,zS,t!#%,

Rtr5
e2t

2zt0
2 $2z2S,zz2z2~S,z

2 1V,z
2 !22z~12zS,z!M ,z14zS,z1z@2S,tz2~S,tS,z1V,tV,z!1~M ,tS,z1M ,zS,t!#

12~S,t2M ,t!%,

Rrr 5
e2t

2zt0
2 $2zS,zz1z~12z2!M ,zz2z~S,z

2 1V,z
2 !1z~11z2!M ,zS,z22~11z2!M ,z14S,z2z@M ,tt1~12S,t!M ,t#

2z2@2M ,tz2~M ,tS,z1M ,zS,t!#%,

R225
1
2 eM1V2S$z2~12z2!@~S,zz2V,zz!2S,z~S,z2V,z!#12z~12z2!~S,z2V,z!22~12zS,z!2z3@2~S,tz2V,tz!

22S,tS,z1~S,tV,z1S,zV,t!#2z2@~S,tt2V,tt!1~12S,t!~S,t2V,t!#%,

R335
1
2 eM2V2S$z2~12z2!@~S,zz1V,zz!2S,z~S,z1V,z!#12z~12z2!~S,z1V,z!22~12zS,z!2z3@2~S,tz1V,tz!

22S,tS,z2~S,tV,z1S,zV,t!#2z2@~S,tt1V,tt!1~12S,t!~S,t1V,t!#%. ~A2!

On the other hand, it can be shown that the Klein-Gordon equationhf50 for the massless scalar field takes the form

z~12z2!f ,zz22z2f ,tz2zf ,tt1@z~zS,z21!1zS,t#f ,t1@~12z2!~22zS,z!1z2S,t#f ,z50. ~A3!

Now let us consider the linear perturbations of Eq.~4.1!. To first order ine, it can be shown that the non-vanishing compone
of the Ricci tensor are given by
6-10
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Rtt
(1)5

e(21k)t

2zt0
2 $2z3S192z~12z2!M1922z3V08V182@222~11k!z22z~11z2!S08#M181z@4~11k!z1~11z2!M0822z2S08#S18

22kz2V08V11kz~11k1zS08!M11kz@2~11k!1z~M0822S08!#S1%, ~A4!

Rtr
(1)5

e(21k)t

2zt0
2 $2z2S1922z2V08V1812z@~21k!1z~M082S08!#S1822z~12zS08!M182kzV08V12k~22zS08!M1

1k@21z~M082S08!#S1%, ~A5!

Rrr
(1)5

e(21k)t

2zt0
2 $2zS191z~12z2!M1922zV08V181@41z~11z2!M0822zS08#S182@~11z2!~22zS08!12kz2#M18

2kz~11k2zS08!M11kz2M08S1%, ~A6!

R22
(1)5ekt$~M11V12S1!R22

(0)1 1
2 zeM01V02S0R̄22

(1)%, ~A7!

R33
(1)5ekt$~M12V12S1!R33

(0)1 1
2 zeM02V02S0R̄33

(1)%, ~A8!

whereR22
(0) andR33

(0) are the corresponding components of the Ricci tensor for the background solution, and

R̄22
(1)5z~12z2!~S192V19!1@2kz21~12z2!~zS0822!#V181@422~11k!z22z~12z2!~2S082V08!#S181kz~11k2zS08!V1

2kz@~11k!2z~2S082V08!#S1 , ~A9!

R̄33
(1)5z~12z2!~S191V19!2@2kz21~12z2!~zS0822!#V181@422~11k!z22z~12z2!~2S081V08!#S182kz~11k2zS08!V1

2kz@~11k!2z~2S081V08!#S1 . ~A10!
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APPENDIX B: APPARENT HORIZONS IN SPACETIMES
WITH CYLINDRICAL SYMMETRY

In @23#, the ingoing and outgoing radial null geodesi
were studied in double null coordinates, and the correspo
ing expansions of them were calculated. In this paper,
shall define apparent horizons in spacetimes with cylindr
symmetry, using those quantities. Before doing so, we wo
first like to note the difference between the double null c
ordinates used in this paper and the ones used in@23#. As a
matter of fact, the roles ofu and v are exchanged in this
paper.

To write the metric~2.1! in the double null coordinates
let us first introduce the two null coordinatesu andv via the
relations

t5a~u!1b~v !, r 5a~u!2b~v !, ~B1!

where a(u) and b(v) are two arbitrary functions of thei
indicated arguments, subject to

a8~u!b8~v !Þ0, ~B2!

where a prime denotes the ordinary differentiation. Then
terms ofu andv, the metric~2.1! takes the form
06400
d-
e
l

ld
-

n

ds252e2s(u,v)dudv2r 2e2S(t,r )~eV(t,r )dw21e2V(t,r )du2!,

~B3!

where

s~u,v !5 1
2 @ ln~2a8b8!2M #. ~B4!

Introducing two null vectorsl l andnl by

l l[
]u

]xl
5dl

u , nl[
]v

]xl
5dl

v , ~B5!

we find that

l m;nl n505nm;nnn, ~B6!

which means that each of them defines an affinely par
etrized null geodesic congruence. In particular,l m defines the
one moving along the null hypersurfacesu5const, whilenm

defines the one moving along the null hypersurfacesv
5const. Then, the expansions of these null geodesics
defined as
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Q l[gabl a;b5e22s
R,v

R ,

Qn[gabna;b5e22s
R,u

R , ~B7!

where
l
te
e,

e

io

e

a-

.
D

f
.

al

-

06400
R[i]w•]wi•i]u•]ui5r 2e2S. ~B8!

We call the cylinders of constantt and r trapped if Q lQn

.0, marginally trapped ifQ lQn50, and untrapped if
Q lQn,0. An apparent horizon is defined as a hypersurfa
foliated by marginally trapped surfaces@18,19#.
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