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First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are reviewed,
namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical
signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a
generic cosmological constantL are analyzed. A matching of an interior solution to the unique exterior
vacuum solution is done using directly the Einstein equations. The structure as well as several physical
properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied.
Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and
anti–de Sitter spacetimes the surface tangential pressureP of the thin shell, at the boundary of the interior and
exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one
would expect, being negative~tension! for relatively highL and high wormhole radius, positive for relatively
high mass and small wormhole radius, and zero in between. Finally, some specific solutions withL, based on
the Morris-Thorne solutions, are provided.
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I. REVIEW AND INTRODUCTION

It has now been 15 years since traversable wormh
theory started in earnest from the work of Morris and Tho
@1#. It was first introduced as a tool for teaching gene
relativity, as well as an attempt to attract young students
the field, for instance those who had readContact, a novel by
Carl Sagan that uses a wormhole to shortcut a large a
nomical distance, but it has rapidly spread into seve
branches. These developments culminated with the pub
tion of the bookLorentzian Wormholes: From Einstein t
Hawkingby Visser@2#, where a review on the subject up
1995, as well as new ideas, are developed and hinted at.
our intention in this Introduction to do a brief review on th
subject of wormholes. The subject has grown substantia
and it is now almost out of control. We will focus on th
work developed after Visser’s book was published~most of
the references prior to its releasing are in it!, paying attention
to the issues that branched out of@1#, such as energy condi
tions, wormhole construction, stability, time machines, a
astrophysical signatures.
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A. The beginning

It is true that Wheeler@3#, before the work of Morris and
Thorne @1#, had seen wormholes, such as Reissn
Nordström or Kerr wormholes, as objects of the quantu
foam connecting different regions of spacetime and ope
ing at the Planck scale, which were transformed later i
Euclidean wormholes by Hawking@4# and others, but these
Wheeler wormholes were not traversable, one could
cross them from one side to the other and back, and furt
more they would, in principle, develop some type of sing
larity @5#. Having been a student of Wheeler, and havi
further learned through Wheeler’s interaction wi
Zel’dovich on the trace energy condition~which statesr
>3p, with r being the energy density andp the pressure of
the fluid on its rest frame! that energy conditions are o
shaky ground@6,7#, Thorne together with his student Morri
@1# understood that wormholes, with two mouths and
throat, might be objects of nature, as stars and black h
are. Indeed, it is a basic fact for the construction of trave
able wormholes that the null energy condition, the weak
of the conditions, has to be violated.

B. Energy conditions

The weak energy condition says that the energy densit
any system at any point of spacetime for any timelike o
server is positive~in the frame of the matter this amounts
r.0 and r1p>0), and when the observer moves at t
speed of the light it has a well defined limit, called the n
energy condition (r1p>0). The weak and null energy con

ic
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ditions are the weakest of the energy conditions~the null
being even weaker than the weak!; their violation signals that
the other energy conditions are also violated. In Hawk
and Ellis’ book@8# the weak energy condition is considered
physically reasonable energy condition that at least all c
sical systems should obey. Afterwards it was found tha
could be violated for quantum systems, such as in the
simir effect and Hawking evaporation~see @9# for a short
review!. It was further found that for quantum systems
classical gravitational backgrounds the weak or null ene
conditions could only be violated in small amounts, and
violation at a given time through the appearance of a ne
tive energy state would be overcompensated for by the
pearance of a positive energy state soon after. This idea
rise to the averaged energy condition@10#, and to the quan-
tum inequalities which, being intermediate between
pointwise energy conditions and the averaged energy co
tions, limit the magnitude of the negative energy violatio
and the time for which they are allowed to exist, yieldin
information on the distribution of the negative energy dens
in a finite neighborhood@11–13#. It seems that the situatio
has changed drastically. It has been now shown that e
classical systems, such as those built from scalar fields n
minimally coupled to gravity, violate all the energy cond
tions @14# ~see also@15# for other violations of the energy
conditions!. Thus, gradually the weak and null energy co
ditions, and with it the other energy conditions, might
losing their status of a kind of law.

C. Wormhole construction: A synthesis

Surely, this has had implications on the construction
wormholes. First, in the original paper@1#, Morris and
Thorne constructed wormholes by hand, that is, one gives
geometry first, which was chosen as spherically symme
and then manufactures the exotic matter accordingly.
engineering work was left to an absurdly advanced civili
tion, which could manufacture such matter and constr
these wormholes. Then, once it was understood that quan
effects should enter in the stress-energy tensor, a s
consistent wormhole solution of semiclassical gravity w
found @16#, presumably obeying the quantum inequalitie
These quantum inequalities when applied to wormhole
ometries imply that the exotic matter is confined to an
tremely thin band of size only slightly larger than the Plan
length, in principle preventing traversability@12#. Finally
with the realization that nonminimal scalar fields violate t
weak energy condition, a set of self-consistent class
wormholes was found@17#. It is fair to say that, though out
side this mainstream, classical wormholes were found by
lis back in 1973@18#, and related self-consistent solution
were found by Bronnikov in 1973@19#, Kodama in 1978
@20#, and Clément in 1981@21#, these papers having bee
written much before the wormhole boom originated fro
Morris and Thorne’s work@1# ~see@22# for a short account of
these previous solutions!. A self-consistent Ellis wormhole
was found again by Harris@23# by solving, through an exotic
scalar field, an exercise for students posed in@1#.
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D. Further wormhole construction

Traversable wormhole theory achieved the end of its fi
stage after the writing of the monograph on the subject
Visser in 1995@2#. This monograph is fairly complete o
citations, so we refer the reader to it for a bibliograph
search up to 1995. We refer here to some developments
terwards, quoting older references when appropriate.

Further wormhole construction in general relativity.
Visser led the way through several works. Indeed, Vis

@24# constructed wormholes with polyhedrical symmetry
1989, generalized a suggestion of Roman for a configura
with two wormholes@1# into a Roman ring@25#, started a
study on generic dynamical traversable wormhole thro
@26# in 1997, found classically consistent solutions with sc
lar fields @14# in 1999, and also found self-dual solution
@27#. Other authors have also made interesting studies.
fore Visser’s book we can quote the paper by Frolov a
Novikov, where they mix wormhole and black hole physi
@28#. After the book, particularly interesting wormholes wi
toroidal symmetry were found by Gonza´lez-Dı́as @29#,
wormhole solutions inside cosmic strings were found
Clément@30# and Aros and Zamorano@31#, wormholes sup-
ported by strings by Schein, Aichelburg and Israel@32#, ro-
tating wormholes were found by Teo@33#, consistent solu-
tions of the Einstein–Yang-Mills theory in connection wi
primordial wormhole formation were found in@34#, theo-
rems for the impossibility of the existence of wormholes
some Einstein-scalar theories were discussed by Saa@35#,
wormholes with stress-energy tensors of massless neutr
and other massless fields were discussed by Krasnikov@36#,
wormholes made of a crossflow of dust null streams w
discussed by Hayward@37# and Gergely@38#, and self-
consistent charged solutions were found by Bronnikov a
Grinyok @39#.

Wormhole construction with arbitrarily small violation
of the energy conditions.

One of the main areas in wormhole research is to try
avoid as much as possible the violation of the null ene
condition. For static wormholes the null energy condition
violated@1,2#. Several attempts have been made somehow
overcome this problem: Morris and Thorne had already tr
to minimize the violating region in the original paper@1#,
Visser @24# found solutions where observers can pass
throat without interacting with the exotic matter, which w
pushed to the corners, and Kuhfittig@40# found that the re-
gion made of exotic matter can be made arbitrarily small. F
dynamic wormholes, the violation of the weak energy co
dition can be avoided, but the null energy condition, mo
precisely the averaged null energy condition, is not preser
@26,41,42#, although in@43# it has been found that the quan
tity of violating matter can be made arbitrarily small, a res
in line with @40# for static wormholes.

Wormhole construction with a cosmological constantL.
Some papers have added a cosmological constant to

wormhole construction. Kim@44# found thin-shell solutions
in the spirit of Visser@2#, Roman@45# found a wormhole
solution inflating in time to test whether one could evade
violation of the energy conditions, Delgaty and Mann@46#
looked for new wormhole solutions withL, and DeBenedec-
4-2
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tis and Das@47# found a general class with a cosmologic
constant. Here, we will further study wormholes in a spa
time with a cosmological constant, as will be detailed belo

Wormhole construction in other theories of gravitation
In alternative theories to general relativity, wormhole s

lutions have been worked out. In higher dimensions soluti
have been found by Chodos and Detweiler@48#, Clément
@49#, and DeBenedictis and Das@50#, in Brans-Dicke theory
by Nandi and collaborators@51#, in Kaluza-Klein theory by
Shen and collaborators@52#, in Einstein-Gauss-Bonne
theory by Kar @53#, Anchordoqui and Bergliaffa found a
wormhole solution in a brane world scenario@54# further
examined by Barcelo´ and Visser@55#, and Koyama, Hayward
and Kim @56# examined a two-dimensional dilatonic theor

E. Stability

To know the stability of an object against several types
perturbation is always an important issue. Wormholes are
an exception. Not many works though are dedicated to
stability theory of wormholes, although the whole formalis
developed for relativistic stars and black holes could
readily used in wormholes. Visser@57#, Poisson and Visse
@58# and Ishak and Lake@59# studied the stability of worm-
holes made of thin shells and found, in the parameter sp
(P/S)3(throat radius/mass), whereS and P are, respec-
tively, the surface energy density and surface tangential p
sure, those wormholes for which there are stable solutio
For the Ellis drainhole@18#, Armendáriz-Picón @60# finds that
it is stable against linear perturbations, whereas Shinkai
Hayward@61# find this same class unstable to nonlinear p
turbations. Bronnikov and Grinyok@39,62# found that the
consistent wormholes of Barcelo´ and Visser@17# are un-
stable.

F. Wormholes as time machines

An important side effect of wormholes is that they can
converted into time machines, by performing a sufficient
lay to the time of one mouth in relation to the other. This c
be done either by the special relativistic twin parad
method@63# or by the general relativistic redshift way@64#.
The importance of wormholes in the study of time machin
is that they provide a noneternal time machine, where clo
timelike curves appear to the future of some hypersurfa
the chronology horizon~a special case of a Cauchy horizo!
which is generated in a compact region in this case. Si
time travel to the past is in general unwelcome, it is poss
to test whether classical or semiclassical effects will dest
the time machine. It is found that classically it can be eas
stabilized@2,63#. Semiclassically, there are calculations th
favor the destruction@65,66#, leading to chronology protec
tion @66#, and others that maintain the machine@25,67#.
Other simpler systems that simulate a wormhole, such
Misner spacetime which is a species of two-dimensio
wormhole, have been studied more thoroughly, with no c
clusive answer. For Misner spacetime the debate still g
on, favoring chronology protection@68#, disfavoring it@69#,
and favoring it again@70#. The upshot is that semiclassic
calculations will not settle the issue of chronology protect
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@71#; one needs a quantum gravity, as has been fores
sometime before by Thorne@72#.

G. Towards a unified view: From stars to wormholes

There is now a growing consensus that wormholes ar
the same chain of stars and black holes. For instan
González-Dı́as@29# understood that an enormous pressure
the center ultimately meant a negative energy density to o
up the tunnel, DeBenedectis and Das@47# mention that the
stress-energy supporting the structure consists of an an
tropic brown dwarf ‘‘star,’’ and the wormhole joining on
Friedmann-Robertson-Walker universe with Minkows
spacetime or joining two Friedmann-Robertson-Walker u
verses@26# could be interpreted, after further matchings, a
wormhole joining a collapsing~or expanding! star to
Minkowski spacetime or a wormhole joining two dynamic
stars, respectively. It has also been recognized, and em
sized by Hayward@73#, that wormholes and black holes ca
be treated in a unified way, the black hole being described
a null outer trapped surface, and the wormhole by a time
outer trapped surface, this surface being the throat wh
incoming null rays start to diverge@42,73#. Thus, it seems
there is a continuum of objects from stars to wormho
passing through black holes, where stars are made of no
matter, black holes of vacuum, and wormholes of exotic m
ter. Although not so appealing perhaps, wormholes could
called exotic stars.

H. Astrophysical signatures

Stars are common for everyone to see, black holes
inhabit the universe in billions, so one might tentative
guess that wormholes, formed or constructed one way
another, can also appear in large amounts. If they inhabit
cosmological space, they will produce microlensing effe
on point sources at noncosmological distances@74#, as well
as at cosmological distances; in this case gamma-ray bu
could be the objects microlensed@75,76#. If peculiarly large,
wormholes will produce macrolensing effects@77#.

I. Aim of this paper

In this paper we extend the Morris-Thorne wormhole s
lutions @1# by including a cosmological constantL. Morris-
Thorne wormholes, withL50, have two asymptotically fla
regions. By adding a positive cosmological constant,L.0,
the wormholes have two asymptotically de Sitter regio
and by adding a negative cosmological constant,L,0, the
wormholes have two asymptotically anti–de Sitter regio
There are a number of reasons to study wormholes with
nericL that a technologically absurdly advanced civilizatio
might construct. ForL.0, we know that an inflationary
phase of the ultra-early universe demands it, and moreo
from recent astronomical observations, it seems that we
now in a world withL.0. On the other hand,L,0 is the
vacuum state for extended theories of gravitation such
supergravity and superstring theories, and, in addition, e
within general relativity, a negative cosmological consta
permits solutions of black holes with horizons with topolo
4-3
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different from the usual spherical@78,79# ~see @80# for a
review!, which could be turned into wormhole solutions b
adding some exotic matter, although we do not attemp
here.

We follow the spirit of the Morris and Thorne paper@1#.
We analyze distributions of matter similar to@1# but now
with genericL, i.e., we analyze spherically symmetric an
static traversable Morris-Thorne wormholes in the prese
of a cosmological constant. The more complicated issue
the formalism of junction conditions, that Morris and Thor
so well evaded@1#, is here treated through the direct use
the Einstein field equation, and the matter content of
thin-shell separating the wormhole from the exterior spa
time is found. In this way, an equation connecting the rad
tension at the mouth with the tangential surface pressur
the thin-shell is derived. The structure as well as seve
physical properties and characteristics of traversable wo
holes due to the effects of the cosmological term are stud
We find that for asymptotically flat and anti–de Sitter spa
times the surface tangential pressureP of the thin-shell is
always strictly positive, whereas for de Sitter spacetime
can take either sign as one could expect, being negative~ten-
sion! for relatively highL and high wormhole radius, pos
tive for relatively high mass and small wormhole radius, a
zero in between. Finally, some specific solutions withL,
based on the Morris-Thorne solutions, are provided. In p
senting these solutions we dwell mostly on the caseL50,
and L.0, and comment briefly onL,0. The plan of the
paper is as follows: In Sec. II we present the Einstein fi
equation for a wormhole metric and perform the junction
an external asymptotically Minkowski, de Sitter, or anti–
Sitter spacetime. In Sec. III we give some wormhole geo
etries, analogous to@1# havingL50, L.0 andL,0, and
study some of their properties. In Sec. IV we conclude.

II. EINSTEIN FIELD EQUATION FOR WORMHOLES
WITH A GENERIC COSMOLOGICAL CONSTANT L

A. The Einstein field equation with genericL:
Setting the nomenclature

To set the nomenclature, the Einstein field equation wit
cosmological constant is given, in a coordinate basis,
Gmn1Lgmn58pGc24Tmn , in which Gmn is the Einstein
tensor, given byGmn5Rmn2 1

2 gmnR, Rmn is the Ricci tensor,
which is defined as a contraction of the Riemann~or curva-
ture! tensor,Rmn5Ra

man , andR is the scalar curvature de
fined as a contraction of the Ricci tensor,R5Ra

a . The Rie-
mann tensor is a function of the second order derivative
the metric componentsgmn . Tmn is the stress-energy tenso
of the matter, andL the cosmological constant@81#.

1. The spacetime metric

We will be interested in the spacetime metric, represe
ing a spherically symmetric and static wormhole, given
@1#

ds252e2F(r )c2dt21
dr2

12b~r !/r

1r 2~du21sin2udf2! ~1!
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where (ct,r ,u,f) are the usual spacetime spherical coor
nates, andF(r ) andb(r ) are arbitrary functions of the radia
coordinater. F(r ) is designated the redshift function, for
is related to the gravitational redshift, andb(r ) denotes the
shape function, because as can be shown by embedding
grams, it determines the shape of the wormhole@1#. The
radial coordinate has a range that increases from a minim
value atr o , corresponding to the wormhole throat, to a ma
mum a corresponding to the mouth. Atr o one has to join
smoothly this spherical volume to another spherical volu
copy with r ranging again fromr o to a. In addition, one has
then to join each copy to the external spacetime froma to `,
as will be done.

The mathematical analysis and the physical interpreta
will be simplified using a set of orthonormal basis vecto
These may be interpreted as the proper reference frame
set of observers who remain at rest in the coordinate sys
(ct,r ,u,f), with (r ,u,f) fixed. Denote the basis vectors i
the coordinate system aset , er , eu , andef . Then, using the
following transformation,em̂5Ln

m̂en , with

Ln
m̂5diag@e2F,~12b/r !1/2,r 21,~r sinu!21#, ~2!

where the notation means that the nondiagonal terms of
matrix are zero, one finds

et̂5e2Fet

er̂5~12b/r !1/2er

~3!

eû5r 21eu

ef̂5~r sinu!21ef .

In this basis the metric components assume th
Minkowskian form, given by,

gm̂n̂5hm̂n̂5diag~21,1,1,1!. ~4!

In the orthonormal reference frame, the Einstein field eq
tion with a generic cosmological constant is given by

Gm̂n̂1Lhm̂n̂5
8pG

c4
Tm̂n̂ . ~5!

The Einstein tensor, given in the orthonormal referen
frame byGm̂n̂5Rm̂n̂2 1

2 Rgm̂n̂ , yields for the metric~1! the
following nonzero components:

Gt̂ t̂5
b8

r 2
, ~6!

Gr̂ r̂52
b

r 3
12S 12

b

r D F8

r
, ~7!
4-4
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Gû û5S 12
b

r D FF91~F8!22
b8r 2b

2r ~r 2b!
F8

2
b8r 2b

2r 2~r 2b!
1

F8

r G , ~8!

Gf̂f̂5Gû û , ~9!

where a prime denotes a derivative with respect to the ra
coordinater.

2. The stress-energy tensor

The Einstein field equation requires that the Einstein t
sor be proportional to the stress-energy tensor. In the or
normal basis the stress-energy tensor,Tm̂n̂ , must have an
identical algebraic structure as the Einstein tensor com
nents,Gm̂n̂ , i.e., Eqs.~6!–~9!. Therefore, the only nonzer
components ofTm̂n̂ areTt̂ t̂ , Tr̂ r̂ , Tû û , andTf̂f̂ . These are
given an immediate physical interpretation,
th
rg
d

e

s.

s
,
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Tt̂ t̂5r~r !c2, Tr̂ r̂52t~r !,

Tû û5p~r !, Tf̂f̂5p~r !, ~10!

in which r(r ) is the energy density,t(r ) is the radial ten-
sion, witht(r )52pr(r ), i.e., it is the negative of the radia
pressure, andp(r ) is the pressure measured in the tangen
directions, orthogonal to the radial direction.Tm̂n̂ may in-
clude surface quantities as we will see.

3. The cosmological constant and the total stress-energy tens

To obtain a physical interpretation of the cosmologic
constant, one may write the Einstein field equation in
following manner:Gm̂n̂58pGc24(Tm̂n̂1Tm̂n̂

(vac)), in which

Tm̂n̂
(vac)

52gm̂n̂(Lc4/(8pG)) may be interpreted as the stres
energy tensor associated with the vacuum, and in the or
normal reference frame is given by
Tm̂n̂
(vac)

5diag@Lc4/~8pG!,2Lc4/~8pG!,2Lc4/~8pG!,2Lc4/~8pG!#. ~11!
-
he
tion

de-
to
We see it is thus possible to adopt the viewpoint that
cosmological term is an integral part of the stress-ene
tensor, being considered as a fluid. Accordingly, we can
fine the total stress-energy tensor,T̄m̂n̂ , as

T̄m̂n̂5Tm̂n̂1Tm̂n̂
(vac)

~12!

such thatGm̂n̂58pGc24T̄m̂n̂ . Thus, the components of th
total stress-energy tensor of the wormhole,r̄(r ), t̄(r ) and
p̄(r ), are given by the following functions:

r̄~r !5r~r !1
c2

8pG
L, ~13!

t̄~r !5t~r !1
c4

8pG
L, ~14!

p̄~r !5p~r !2
c4

8pG
L. ~15!

This viewpoint may be interesting to adopt in some case

4. The Einstein equations

We are interested in matching the interior solution, who
metric is given by Eq.~1!, to an exterior vacuum solution
which will be considered below. Using Eq.~5! and equating
Eqs. ~6!–~8!, with Eq. ~10!, we obtain the following set of
equations:
e
y

e-

e

r~r !5
c2

8pG S b8

r 2
2L D , ~16!

t~r !5
c4

8pG F b

r 3
22S 12

b

r D F8

r
2LG , ~17!

p~r !5
c4

8pG H S 12
b

r D FF91~F8!22
b8r 2b

2r 2~12b/r !
F8

2
b8r 2b

2r 3~12b/r !
1

F8

r G1LJ . ~18!

By taking the derivative of Eq.~17! with respect to the
radial coordinater, and eliminatingb8 andF9, given in Eq.
~16! and Eq. ~18!, respectively, we obtain the following
equation:

t85~rc22t!F82
2

r
~p1t!. ~19!

Equation~19! is the relativistic Euler equation, or the hydro
static equation for equilibrium for the material threading t
wormhole, and can also be obtained using the conserva
of the stress-energy tensor,Tm̂n̂

; n̂50, putting m̂5r . The
conservation of the stress-energy tensor, in turn, can be
duced from the Bianchi identities, which are equivalent
Gm̂n̂

; n̂50.
4-5



ua

so
en
er
fie
im

n
a

ho
th
-
tri
lic
le

ee
n

e

r

in
h

al

p

pe

o-

e
null
any
to

r

ing

the
n

e

t,

nc-

f

LEMOS, LOBO, AND de OLIVEIRA PHYSICAL REVIEW D68, 064004 ~2003!
5. Method for solving the Einstein equations

The conventional approach to solving the Einstein eq
tions would be to assume a specific and plausible type
matter or fields for the source of the stress-energy ten
One would then derive equations of state for the radial t
sion and the tangential pressure, as functions of the en
density. These equations of state, together with the three
equations, would provide the geometry of the spacet
given in terms of the metric,gmn , as we would have five
equations for five unknown functions, i.e.,b(r ), F(r ), r, t
andp. Morris and Thorne’s approach@1#, which will be fol-
lowed in this paper, differs as they first fixed a convenie
geometry for a wormhole solution and then derived the m
ter distribution for the respective solution~see @47# for a
careful analysis of the various approaches!.

B. Construction of a wormhole with genericL.
I: General comments

1. The mathematics of embedding

We can use embedding diagrams to represent a worm
and extract some useful information for the choice of
shape function,b(r ), which will be used in the specific so
lutions considered below. Due to the spherically symme
nature of the problem, one may consider an equatorial s
u5p/2, without loss of generality. The respective line e
ment, considering a fixed moment of time,t5const, is given
by

ds25
dr2

12b~r !/r
1r 2df2. ~20!

To visualize this slice, one embeds this metric into thr
dimensional Euclidean space, whose metric can be writte
cylindrical coordinates, (r ,f,z), as

ds25dz21dr21r 2df2. ~21!

Now, in the three-dimensional Euclidean space the emb
ded surface has equationz5z(r ), and thus the metric of the
surface can be written as,

ds25F11S dz

dr D
2Gdr21r 2df2. ~22!

Comparing Eq.~22! with Eq. ~20! we have the equation fo
the embedding surface, given by

dz

dr
56S r

b~r !
21D 21/2

. ~23!

To be a solution of a wormhole, the geometry has a m
mum radius,r 5b(r )5r o , denoted as the throat, at whic
the embedded surface is vertical, i.e.,dz/dr→`. Outside the
wormhole, far from the mouth, space can be asymptotic
flat, de Sitter, or anti–de Sitter.

One can define the proper radial distance for the up
part of the wormholez.0 as
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l ~r !5E
r o

r dr

@12b~r !/r #1/2
, ~24!

and for the lower partz,0 as

l ~r !52E
r o

r dr

@12b~r !/r #1/2
. ~25!

The maximum upper limit of integration isa, the radius of
the wormhole mouth. One can also verify that the sha
function,b(r ), is positive in order thatAr /b21 is real. This
fact will play an important role for constructing specific s
lutions.

2. Exotic matter

Following @1# closely we will see that the wormhol
needs exotic matter, i.e., matter that does not obey the
energy condition, and thus does not obey the weak or
other energy condition. The null energy condition applied
the matter considered in Eqs.~13!, ~14! is r̄c22 t̄.0. Thus
a good way to define exoticity is through the parametej

defined as@1# j5( t̄2 r̄c2)/ur̄c2u. This parameterj is di-
mensionless, and when positive signals exotic matter. Us
Eqs.~16!, ~17! one finds

j5
t̄2 r̄c2

ur̄c2u
5

b/r 2b822r ~12b/r !F8

ub82Lr 2u
. ~26!

To be a solution of a wormhole, one needs to impose that
throat flares out. Mathematically, this flaring-out conditio
entails that the inverse of the embedding functionr (z) must
satisfy d2r /dz2.0 near the throatr o . Differentiating
dr/dz56@r /b(r )21#1/2 with respect to z, we have
d2r /dz25(b2b8r )/2b2.0. Combining this with Eq.~26!,
the exoticity function takes the form

j5
2b2

r ub82Lr 2u

d2r

dz2
22r S 12

b

r D F8

ub82Lr 2u
. ~27!

Considering the finite character ofr, and therefore ofb8,
and the fact that (12b/r )F8→0 at the throat, we have th
following relationship:

j~r o!5
t̄02 r̄0c2

ur̄0c2u
.0. ~28!

Thus matter at the throat is exotic~see@1,2,26# for a detailed
discussion!.

C. Construction of a wormhole with genericL.
II: Interior and exterior solutions, and junction conditions

We will distinguish the interior cosmological constan
L int , from the exterior one,Lext. Equations~16!–~18! dem-
onstrate that once the geometry is fixed by the redshift fu
tion F(r ), and the shape functionb(r ), the inclusion of the
cosmological constantL int will shift the respective values o
4-6
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r(r ), t(r ) and p(r ) and might help in minimizing the vio-
lation of the energy conditions.

1. Interior solution of the Einstein equations
with genericL int

To find an interior solution of the Einstein equations w
genericL, we combine the analysis developed in the pre
ous sections, taking into account the notation thatL int repre-
sents the cosmological constant associated with the inte
solution. The respective Einstein equations provide the
lowing relationships:

r~r !5
c2

8pG S b8

r 2
2L intD , ~29!

t~r !5
c4

8pG F b

r 3
22S 12

b

r D F8

r
2L intG , ~30!

p~r !5
c4

8pG H S 12
b

r D FF91~F8!22
b8r 2b

2r 2~12b/r !
F8

2
b8r 2b

2r 3~12b/r !
1

F8

r G1L intJ . ~31!

The metric quantities should carry a subscriptint , but we do
not include it in order to not overload the notation. It is
interest to find an expression for the radial tension at
throat. From Eq.~30! one finds that at the throat@b(r o)
5r o# the tension is

t~r o!5
c4

8pG S 1

r o
2

2L intD . ~32!

Thus the radial tension at the throat is positive for wor
holes whose structure yieldsL int,1/r o

2 ; this includes worm-
holes with negative and zero cosmological constant. The
dial tension is negative, i.e., it is a pressure, for wormho
with the cosmological constant obeyingL int.1/r o

2 . The total

radial tension,t̄(r o)5t(r o)1(c4/8pG)L int , is always posi-
tive, of course.

2. Exterior vacuum solution of the Einstein equations with
genericLext

The spacetime geometry for a vacuum exterior region
simply determined considering a null stress-energy ten
Tm̂n̂50, i.e., r(r )5t(r )5p(r )50. Note thatLext repre-
sents the cosmological constant associated with the ext
solution. In the most general case, the exterior radial coo
nate r̄ should be different from the interior oner. Here we
put them equal; both are denoted byr, since it simplifies the
junction and it gives interestingly enough results. The E
stein equations then reduce to

05
b8

r 2
2Lext, ~33!
06400
-

or
l-

e

-

a-
s

is
r,

ior
i-

-

05
b

r 3
22S 12

b

r DF8

r
2Lext, ~34!

05S 12
b

r D FF91~F8!22
b8r 2b

2r 2~12b/r !
F8

2
b8r 2b

2r 3~12b/r !
1

F8

r G1Lext. ~35!

The metric quantities should carry a subscriptext, but again
we have not included it so as to not overload the notati
Solving the system of differential equations of Eqs.~33!–
~35!, the exterior vacuum solution with a cosmological co
stant is given by

ds252S 12
2GM

c2r
2

Lext

3
r 2D c2dt2

1
dr2

S 12
2GM

c2r
2

Lext

3
r 2D 1r 2~du21sin2udf2!.

~36!

This metric is the unique solution to the vacuum Einste
equations for a static and spherically symmetric spacet
with a generic cosmological constant. The denominat
given to it depends on the sign ofLext. The Schwarzschild
solution, which is a particular case, is obtained by sett
Lext50. In the presence of a positive cosmological consta
Lext.0, the solution is designated by the Schwarzschild–
Sitter metric. ForLext,0, we have the Schwarzschild–an
de Sitter metric. ForLÞ0, note that this metric is not as
ymptotically flat asr→`; it is either asymptotically de Sitte
(Lext.0), or asymptotically anti–de Sitter (Lext,0). How-
ever, if Lext is extremely small, there is a range of the rad
coordinate, i.e., 1/ALext@r @GM/c2, for which the metric is
nearly flat. For values ofr below this range, the effect of th
massM dominates, whereas for values above this range,
effect of the cosmological term dominates, as for very la
values ofr the large-scale curvature of the spacetime mus
taken into account.

a. The Schwarzschild spacetime,Lext50. Equation~36!
with Lext50 is the Schwarzschild solution. The full vacuu
solution represents a black hole in an asymptotically
spacetime. The factorf (r )5@12(2GM/c2r )# is zero at

r b5
2GM

c2
, ~37!

the black hole event horizon. Since the wormhole matter w
fill the region up to a radiusa larger thanr b this radius does
not enter into the problem. It is important to have it in min
since if after construction one finds thatr b.a, then the ob-
ject constructed is a black hole rather than a wormhole.

b. The Schwarzschild–de Sitter spacetime,Lext.0. Equa-
tion ~36! with Lext.0 represents a black hole in asympto
4-7
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cally de Sitter space. If 0,9Lext(GMc22)2,1, the factor
f (r )5@12(2GM/c2r )2(Lext/3)r 2# is zero at two positive
values ofr, corresponding to two real positive roots. Defi
ing

A5S 3c4

8LextG
2M2D 1/3A3

211A12
c4

9LextG
2M2

,

~38!

B5S 3c4

8LextG
2M2D 1/3A3

212A12
c4

9LextG
2M2

,

~39!

the solutions are given by

r b5
2GM

c2 S 2
A1B

2
2

A2B

2
A23D , ~40!

r c5
2GM

c2
~A1B!. ~41!

WhenLext(GM/c2)2!1, one gets

r b5
2GM

c2 F11
4

3
LextS GM

c2 D 2G , ~42!

r c5A 3

Lext
S 12

GM

c2
ALext

3 D . ~43!

The smaller of the values, denoted byr 5r b , can be consid-
ered as the event horizon of the vacuum black hole solut
but since the wormhole matter will fill the region up to
radiusa superior thanr b this radius does not enter into th
problem. The larger value, denoted byr 5r c , can be re-
garded as the position of the cosmological event horizon
the de Sitter spacetime. KeepingLext constant, but increasing
M, r 5r b will increase and r 5r c will decrease. If
9Lext(GMc22)251, both horizons coincide and are situat
at r 5r b5r c53GM/c2. Thus we will consider
9Lext(GMc22)2,1. Particular cases areLext50 yielding
the Schwarzschild solution, andM50 yielding the de Sitter
solution. Whenr→` the metric tends to the de Sitter spac
time

ds252S 12
Lext

3
r 2D c2dt21

dr2

S 12
Lext

3
r 2D

1r 2~du21sin2udf2!. ~44!

For Lext→0, the de Sitter metric tends to the Minkowskia
spacetime. In the coordinates adopted above, the metr
the de Sitter spacetime will be singular ifr 5(3/Lext)

1/2, but
this is a mere coordinate singularity signaling the presenc
a cosmological event horizon.
06400
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c. The Schwarzschild–anti de Sitter spacetime,Lext,0.
For the Schwarzschild–anti de Sitter metric, withLext,0,
the equationf (r )5@12(2GM/c2r )1(uLextu/3)r 2#50 will
have only one real root, therefore implying the existence
one horizon. If one defines

A5S 3c4

8uLextuG2M2D 1/3

3A3
11A11

c4

9uLextuG2M2
, ~45!

B5S 3c4

8uLextuG2M2D 1/3

3A3
12A11

c4

9uLextuG2M2
, ~46!

then the solution is

r b5
2GM

c2
~A1B!. ~47!

For uLextu(GM/c2)2!1 one obtains

r b5
2GM

c2 F12
4

3
uLextuS GM

c2 D 2G . ~48!

Once again this event horizon is avoided by filling the spa
with exotic matter from the throat atr o up to the mouth ata,
wherea.r b in order that the wormhole is not a black hol
If Lext50, the metric is reduced to the Schwarzschild so
tion. If r→` the metric tends to the anti–de Sitter solutio

ds252S 11
uLextu

3
r 2D c2dt2

1
dr2

S 11
uLextu

3
r 2D 1r 2~du21sin2udf2!. ~49!

For uLextu→0, the anti–de Sitter metric tends to th
Minkowskian spacetime.

3. Junction conditions in wormholes with genericLext

To match the interior to the exterior, one needs to ap
the junction conditions that follow from the theory of gener
relativity. One of the conditions imposes the continuity of t
metric components,gmn , across a surface,S, i.e., gmn(int)uS
5gmn(ext)uS . This condition is not sufficient to join differen
spacetimes. One formalism of matching, that leads to no
rors in the calculation, uses the extrinsic curvature ofS ~or
second fundamental form of the surfaceS, the first funda-
mental form being the metric onS) see, e.g.,@82#. However,
for spacetimes with a good deal of symmetry, such as sph
4-8
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cal symmetry, one can use directly the field equations
make the match, see e.g.,@83# ~see also Taub@84#!. We fol-
low this latter approach. Indeed, due to the high symmet
of the solution, we can use the Einstein equations, Eqs.~16!–
~18!, to determine the energy density and stresses of the
face S necessary to have a match between the interior
exterior. If there are no surface stress-energy terms at
surfaceS, the junction is called a boundary surface. If, on t
other hand, surface stress-energy terms are present, the
tion is called a thin-shell.

a. Matching of the metric. As was mentioned above, th
unique vacuum static and spherically symmetric solution
the presence of a nonvanishing cosmological constan
given by Eq.~36!. A wormhole with finite dimensions, in
which the matter distribution extends from the throat,r
5r o , to a finite distancer 5a, obeys the condition that th
metric is continuous. Due to the spherical symmetry
componentsguu andgff are already continuous, and so o
is left with imposing the continuity ofgtt andgrr ,

gtt(int)5gtt(ext) , ~50!

grr (int)5grr (ext) , ~51!

at r 5a, with gtt(int) andgrr (int) being the metric component
for the interior region atr 5a, and gtt(ext) and grr (ext) the
exterior metric components for the vacuum solution ar
5a. For the sake of consistency in the notation this co
have been done in the orthonormal frame with the hat qu
tities gm̂n̂ , but in this case it is more direct to do with coo
dinate frame quantities. One can start the analysis by con
ering two general solutions of Eq.~1!, an interior solution
and an exterior solution matched at a surface,S. The conti-
nuity of the metric then gives genericallyF int(a)5Fext(a)
and bint(a)5bext(a). If one now uses, Eqs.~1!, ~36!, ~50!
and ~51!, one finds then e2F(a)5@122GM/(c2a)
2Lexta

2/3# and @12b(a)/a#5@122GM/(c2a)
2Lexta

2/3# which can be simplified to

F~a!5
1

2
lnS 12

2GM

c2a
2

Lext

3
a2D , ~52!

b~a!5
2GM

c2
1

Lext

3
a3. ~53!

From Eq.~53!, one deduces that the mass of the wormhole
given by

M5
c2

2G S b~a!2
Lext

3
a3D . ~54!

b. Matching of the equations I: The surface pressure. We
are going to consider the case where static interior obser
measure zero tidal forces, i.e.,F int5const,F int8 50. This is,
of course, a particular choice which simplifies the analy
As we have seen, the metric is continuous through the
faceS. However, their first and second derivatives might n
be. Since the metric is static and spherically symmetric
only derivatives that one needs to worry about are rad
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Now, second derivatives in the metric are related to the E
stein tensorGmn , or since we are working with hat quant
ties, to Gm̂n̂ . But Gm̂n̂ is proportional to the stress-energ
tensorTm̂n̂ . Thus, something in the stress-energy tensor
to reflect this discontinuity. Indeed, at the boundaryS, Tm̂n̂ is
proportional to a Diracd function, and we can writeTm̂n̂

5t m̂n̂d( r̂ 2â), where r̂ 5Agrr r means the proper distanc
through the thin-shell. To findt m̂n̂ one then uses*2

1Gm̂n̂dr̂

5(8pG/c4)*2
1t m̂n̂d( r̂ 2â)dr̂, where *2

1 means an infini-
tesimal integral through the shell. Using the property of thed
function d( f (x))5@1/u f 8(x)u#d(x), and *2

1g(x)d(x2x0)
5g(x0), one finds

t m̂n̂5
c4

8pGE
2

1

Gm̂n̂dr̂. ~55!

Since the shell is infinitesimally thin in the radial directio
there is no radial pressure, thus we are left with a surf
energy termS, and a surface tangential pressureP.

First we calculate the surface energy densityS. From Eq.
~6! we see thatGt̂ t̂ only depends on first derivatives of th
metric, so that when integrated through the shell it will gi
metric functions only, which by definition are continuou
Thus, since the integral gives the value of the metric on
exterior side (b1, say! minus the value of the metric on th
interior side (b2), it gives zero, and one finds

S50. ~56!

Now we find the surface tangential pressureP. From Eq.
~8! we see thatGû û has an important term@12(b/r )#F9.
The other terms depend at most on the first derivative an
before do no contribute to the integral. Thus, in this case
~55! gives 8pG/c2P5A12b(a)/aF82

1 . Now, F28 50
by assumption, and F815@GM/(c2a2)2Lexta/3#/@1
2b(a)/a#. Thus,

P5
c4

8pGa

GM/~c2a2!2Lexta/3

A12b~a!/a
,

or more explicitly,

P5
c4

8pGa

GM

c2a
2

Lext

3
a2

A12
2GM

c2a
2

Lext

3
a2

. ~57!

P is always positive for the Schwarzschild and t
Schwarzschild–anti de Sitter spacetime, i.e.,Lext<0. The
Schwarzschild–de Sitter spacetime,Lext.0, has to be ana-
lyzed more carefully. In Fig. 1, we plot in a grap
9Lext(GM/c2)232GM/(c2a) the regions whereP is nega-
tive, zero or positive. For highLext(GMc22)2 ~either Lext
big or M big! and at low 2GM/(c2a) ~either M small or a
big!, one needs a surface tension to support the structure
the other case one needs a surface pressure. This is exp
4-9
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in the sense that for a positiveLext one has an expandin
external de Sitter spacetime. Ifa is big @and so 2GM/(c2a)
small#, the wormhole boundary is participating somehow
the expansion, so one needs a tension to hold it. For sma
(2GM/c2a big!, the gravity wins over the expansion and
one needs a pressure to hold against collapse, a parti
case being the Schwarzschild caseLext50.

One can have a term of comparison for the surface
gential pressureP at the thin-shell. Assuming that the thin
shell has a width of approximatelyDr , one can consider a
volumetric tangential pressure, orthogonal to the radial co
dinate, given by

P̃5
P
Dr

. ~58!

Taking into account Eq.~31!, we see that the tangential pre
sure at the mouth, withF int8 50, is given by p̄(a)

5(c4/16pGa3)@b(a)2b8(a)a#. Estimates ofP̃ may be
given in terms ofp(a), by defining the following ratio:

P̃

p̄~a!
52

a

Dr

1

b

a
2b8

GM

c2a
2

Lext

3
a2

A12
2GM

c2
2

Lext

3
a3

. ~59!

It is also interesting to find the ratio top(r o), the maximum
pressure, given by

FIG. 1. The regions whereP is negative and positive in a plot o
9Lext(GM/c2)2 as a function of the inverse of the relative size
the wormhole, i.e., 2GM/c2a ~in the figure we have used geometr
cal unitsG515c) are given. Inside the solid line is the region
solutions. To the left of the dashed lineP is a negative pressure, i.e
a tension, to the rightP is a positive quantity, i.e., is a pressure, s
text for more details.
06400
l

lar

n-

r-

P̃

p~r o!
52

r o
2

aDr

1

12b8~r o!

GM

c2a
2

Lext

3
a2

A12
2GM

c2a
2

Lext

3
a2

.

~60!

One may find numerical estimates, considering vario
choices of the shape function,b(r ), which will be done
while considering specific solutions of traversable wor
holes.

c. Matching of the equations II: The radial pressure. To
construct specific solutions of wormholes with generic c
mological constant, one needs to know how the radial t
sion behaves across the junction boundary,S. The analysis is
simplified if we consider two general solutions of Eq.~1!, an
interior solution and an exterior solution matched at a s
face,S. The radial component of the Einstein equations, E
~17!, provides

bint

r 3
5

8pG

c4
t int~r !1L int12S 12

bint

r DF int8

r
, ~61!

bext

r 3
5

8pG

c4
text~r !1Lext12S 12

bext

r DFext8

r
.

~62!

Taking into account the continuity of the metric at the jun
tion boundary one has obtainedF int(a)5Fext(a) and
bint(a)5bext(a). For simplicity, we are consideringF int8 (a)
50. Using again the relation

Fext8 ~r !5S GM

c2r 2
2

Lext

3
r D Y S 12

2GM

c2r
2

Lext

3
r 2D ,

and taking into account Eq.~57!, we verify that Eqs.~61!,
~62! provide us with an equation which governs the behav
of the radial tension at the boundary, namely,

t int~a!1
c4

8pG
L int5text~a!1

c4

8pG
Lext1

2

a
PeF(a),

~63!

where we have puteF(a)5A122GM/(c2a)2Lexta
2/3.

Equation~63!, although not new in its most generic form@2#,
is a beautiful equation that relates the radial tension at
surface with the tangential pressure of the thin-shell. A p
ticularly interesting case is whenP50. In this situationM
5Lextc

2a3/(3G), and Fext8 (a)50. Since by our construc
tion F int8 (a)50, F8 is continuous across the surface and t
solution is reduced to a boundary surface. From Eq.~53! one
finds that the shape function at the junction is given
b(a)5Lexta

3. Thus, Eq. ~63! simplifies to, t int(a)
1(c4/8pG)L int5text(a)1(c4/8pG)Lext. If one considers
a matching of an interior solution of a wormhole with g
neric L, given by Eq.~1!, to an exterior Schwarzschild so
lution, with text50 andLext50, we simply have the condi
4-10
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FIG. 2. The spacetime diagram for the wormhole withLext

50, i.e., a wormhole in an asymptotically Minkowski spacetim
represented by two copies of the Minkowski diagram joined at
throat.

FIG. 3. The spacetime diagram for the wormhole withLext

.0, i.e., a wormhole in an asymptotically de Sitter spacetime, w
an infinite number of copies~only two are represented!.

FIG. 4. The spacetime diagram for the wormhole withLext

,0, i.e., a wormhole in an asymptotically anti–de Sitter spaceti
represented by two copies of the anti–de Sitter diagram joine
the throat.
06400
tion thatt int(a)1(c4/8pG)L int50 at the boundary surface
Matching an interior solution to an exterio
Schwarzschild–de Sitter or Schwarzschild–anti–de Sitter
lution, with text50 and LextÞ0, we have the relationship
t int(a)1(c4/8pG)L int5(c4/8pG)Lext at the boundary sur-
face. These solutions will be analyzed in the next section

D. Spacetime diagrams

We now draw the spacetime diagrams, i.e., the Car
Penrose diagrams, corresponding to wormholes in sp
times withLext50, Lext.0, andLext,0. They are easy to
sketch once one knows the corresponding diagrams for
solution with no wormhole, i.e., the Carter-Penrose diagra
for Minkowski spacetime, de Sitter spacetime and anti–
Sitter spacetime@8#, respectively. Each point in the diagra
represents a sphere. Since the wormhole creates an
asymptotic region one has to duplicate the original diagr
through the throat. In Figs. 2–4 the diagrams for a wormh
in an asymptotically flat spacetimeLext50, in an asymptoti-
cally de Sitter spacetimeLext.0, and in an asymptotically
anti–de Sitter spacetimeLext,0, respectively, are drawn
Note the duplication of the asymptotic regions.

III. SPECIFIC CONSTRUCTION OF WORMHOLES WITH
GENERIC L

We will give some simple examples of traversable wor
holes similar to those constructed in@1#. The difference from
the wormholes in that work is that the wormholes here
general have an infinitesimal thin-shell with a tangent
pressurePÞ0, and the exterior spacetime has a cosmolo
cal constant. We discuss briefly the three casesLext50,
Lext.0, andLext,0.

A. Specific solutions of traversable wormholes withLextÄ0
„asymptotically flat wormholes…

1. Matching to an exterior Schwarzschild solution, withPÄ0

Here we consider a matching of an interior solution w
an exterior Schwarzschild solution (text50 and Lext50),
and with the junction having zero tangential pressure,P
50. From Eq.~63! one has at the junction

t int~a!1
c4

8pG
L int50. ~64!

Then, from Eq.~30! ~with F850) one gets

05
c4

8pG

b~a!

a3
. ~65!

SincebÞ0, Eq.~65! is only satisfied ifa→`. This is one of
the cases considered by Morris and Thorne@1#, in which the
wormhole’s material extends from the throat all the way
infinity.

,
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,
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2. Matching to an exterior Schwarzschild solution, withPÅ0

Matching the interior solution to an exterior Schwarz
child solution (text50 and Lext50) but consideringPÞ0
provides some interesting results. The behavior of the ra
tension at the junction is given by Eq.~63! and taking into
account Eq.~53! one finds that the shape function at t
junction simply reduces tob(a)52GM/c2. We will next
consider various choices for the shape function,b(r ), which
will give different wormhole solutions.

a. b(r )5(r or )1/2. Consider the following functions:

F~r !5F0 , ~66!

b~r !5~r or !1/2, ~67!

where r o is the throat radius as before. Using the Einst
equations, Eqs.~29!–~31!, we have

r̄~r ![r~r !1
c2

8pG
L int5

c2

8pG

r o
1/2

2r 5/2
, ~68!

t̄~r ![t~r !1
c2

8pG
L int5

c4

8pG

r o
1/2

r 5/2
, ~69!

p̄~r ![p~r !1
c2

8pG
L int5

c4

8pG

r o
1/2

4r 5/2
. ~70!

To find an estimate of the surface pressure at the thin-s
one has P̃/p(r o)54r o

2GM/Drc2a2@12(2GM/c2a)#21/2

@see Eq.~60!#.
From b(a)52GM/c2 andb(a)5(r oa)1/2, one finds that

the matching occurs at

a5
~2GM/c2!2

r o
. ~71!

Now in order that the wormhole is not a black hole one h
to imposea.2GM/c2. Then, from Eq.~71! one findsr o
,2GM/c2. From Eq.~71!, we also extract the mass of th
wormhole, given byM5c2(r oa)1/2/(2G).

The interior metric,r o<r<a, is determined recalling tha
e2F(a)5@12Ar o /a#. It is given by

ds252S 12Ar o

a
D c2dt21

dr2

S 12Ar o

r
D

1r 2~du21sin2udf2!. ~72!

The exterior metric,a<r ,`, is given by

ds252S 12
Ar oa

r
D c2dt21

dr2

S 12
Ar oa

r
D

1r 2~du21sin2udf2!. ~73!
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The final metric of the whole spacetime is given by Eq
~72!, ~73!, which are joined smoothly, as we have carefu
worked out.

It is also interesting to briefly consider the traversabil
conditions that the absurdly advanced civilization might
quire to cross the wormhole from one mouth to the other a
back@1#. One finds that for an observer traversing the wor
hole with a velocityv50.01c, the wormhole has a throa
radius given byr o>500 km. One can chooser o5500 km,
and assume that the traversal time done by the spacesh
approximately one year. Then, one finds that the matter
tribution extends from r o to a54.7431013 m'5
31023 light years, witha being the size of the wormhole. I
is supposed that the space stations are parked there. One
finds that the wormhole mass isM53.331036 kg, six orders
of magnitude superior to the Sun’s mass. One may also
an estimate for Eq.~60!, giving P̃/p(r o)'1024.

One may choose other parameters, for instance, so
the wormhole mass is of the same order of the Sun’s m
Considering a traversal with a velocityv55.43103 m/s, we
may choose that the wormhole throat is given byr o59
3102 m. If we consider an extremely fast trip, where th
traversal time is given byDt traveler53.7 s, the matter distri-
bution extends fromr o to a5104 m. In this case the mass o
the wormhole is given byM'231030 kg, which is the
Sun’s mass. From Eq.~60! an estimate toP̃ is P̃/p(r o)
'5.73103. We have an extremely large surface pressure.
the wormhole mass is decreased, one sees that a large
gential surface pressure is needed to support the structu

b. b(r )5r o
2/r . Consider now,

F~r !5F0 , ~74!

b~r !5r o
2/r . ~75!

One can use again the Einstein equations~29!–~31! to find
the properties of this wormhole. We will not do it here. Th
interior solution is the same as the one found by Ellis@18#.
The properties are commented on in@1,22#. Harris showed
further that it is a solution of the Einstein equations with
stress-energy tensor of a peculiar massless scalar field@23#.
From the traversability conditions one finds that this type
wormhole can have much lower masses than the prev
type. One can find wormholes about the Earth’s mass.

B. Specific solutions of traversable wormholes withLextÌ0
„asymptotically de Sitter wormholes…

1. Matching to an exterior Schwarzschild–de Sitter solution,
with PÄ0

In this section we will be interested in a matching of
interior solution with an exterior Schwarzschild–de Sitter s
lution, text50 andLext.0, at a boundary surface,P50. We
verify from Eq. ~63! that the following condition holds:

t int~a!1
c4

8pG
L int5

c4

8pG
Lext, ~76!
4-12
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at the surface boundary. Considering Eq.~30!, we have

b~a!5Lexta
3. ~77!

Substituting this value in Eq.~54!, one obtains the mass o
the wormhole, given by

M5
c2

3G
Lexta

3. ~78!

We shall next consider identical shape functions as in
above section.

a. b(r )5(r or )1/2. Consider the following functions:

F~r !5F0 , ~79!

b~r !5~r or !1/2. ~80!

From b(a)5Lexta
3 and b(a)5(r oa)1/2, one sees that the

matching occurs at

a[
r o

1/5

Lext
2/5

. ~81!

The mass can then be expressed asM5c2(r oa)1/2/(3G). It
can be shown that the interior solution,r o<r<a, is identical
to Eq. ~72!, i.e.,

ds252S 12Ar o

a
D c2dt21

dr2

S 12Ar o

r
D

1r 2~du21sin2udf2!. ~82!

The exterior solution,a<r ,`, is given by the following
metric:

ds252S 12
2~r oa!1/2

3r
2

r o
1/2r 2

3a5/2D c2dt2

1
dr2

S 12
2~r oa!1/2

3r
2

r o
1/2r 2

3a5/2D
1r 2~du21sin2udf2!.

~83!

The spacetime of the final solution is given by the metri
Eqs.~82!, ~83!, which have been smoothly joined ata.

The additional parameter now is the cosmological c
stant,Lext, given byLext5(r o /a5)1/2. For instance, conside
a traversal velocityv50.01c, so thatr o553105 m. If the
observer traverses through the wormhole comfortably du
a year,Dt traveler'3.163107 s, anda54.7431013 m. The
mass of the wormhole isM'2.231036 kg and the cosmo-
logical constant has the valueLext54.6310232 m22. The
cosmological event horizon is then situated atr c58.1
31015 m'200a.

b. b(r )5r o
2/r . Consider now the functions
06400
e

,

-

g

F~r !5F0 , ~84!

b~r !5r o
2/r . ~85!

One can use the same procedure to find the properties of
wormhole. In this case one can find a wormhole with t
mass of an asteroid (M.1.531019 Kg) for a cosmological
constant with a value equal to its present value (Lext
.10254 m22).

2. Matching to an exterior Schwarzschild–de Sitter solution,
with PÅ0

One can also match the interior solution with an exter
Schwarzschild–de Sitter solution (text50 and Lext.0) in
the presence of a thin-shell,PÞ0. From Eq.~63!, we have
the behavior of the radial tension at the thin-shell, given

t int~a!1
c4

8pG
L int5

c4

8pG
Lext1

2

a
PeF(a). ~86!

The shape function at the junction is given by Eq.~53!. From
Eq. ~54!, one verifies that the mass of the wormhole is ze
whenb(a)5Lexta

3/3, is positive whenb(a).Lexta
3/3, and

is negative whenb(a),Lexta
3/3. One can perform a simila

analysis as done for the previous examples.

C. Specific solutions of traversable wormholes withLextË0
„asymptotically anti–de Sitter wormholes…

1. Matching to an exterior Schwarzschild–anti–de Sitter
solution, withPÄ0

From Eq.~63!, matching an interior solution with an ex
terior given by the Schwarzschild–anti–de Sitter soluti
(text50 andLext,0), at a boundary surfaceP50, yields

t int~a!1
c4

8pG
L int52

c4

8pG
uLextu, ~87!

at the surface boundary. Considering Eq.~30!, we have

b~a!52uLextua3. ~88!

From Eq.~23!, we concluded that the shape function has
be positive to guarantee that the factorAr /b21 is real.
Therefore, for the anti–de Sitter exterior, i.e.,Lext,0, with
P50 there is no solution. This problem may be overcome
considering a matching to an exterior anti–de Sitter solut
with a thin-shell, i.e.,PÞ0.

2. Matching to an exterior Schwarzschild–anti–de Sitter
solution, withPÅ0

From Eq.~53!, one finds thatb(a) is positive if

2GM

c2
>

uLextu
3

a3. ~89!

Then one can construct easily wormholes in anti–de Si
spacetime, and again perform a similar analysis as done
the previous examples.
4-13
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IV. CONCLUSIONS

We have considered Morris-Thorne wormholes, i.e., st
and spherically symmetric traversable wormholes, in
presence of a nonvanishing cosmological constant. Match
the interior solution with a vacuum exterior solution, w
have deduced an equation for the tangential surface pres
and another one which governs the behavior of the ra
tension at the boundary.

Specific solutions with various choices of the shape fu
tion were briefly presented. Through the traversability co
ditions, we have obtained estimates for the matching bou
ary, a, the mass of the wormholeM, and the tangentia
g

er

,
-
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d
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surface pressureP, by imposing values for the traversal ve
locity and the traversal time.
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