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The generalized covariant entropy bound is the conjecture that for any null hypersurface which is generated
by geodesics with nonpositive expansion starting from a spacelike 2-surfaceB and ending in a spacelike
2-surfaceB8, the matter entropy on that hypersurface will not exceed one quarter of the difference in areas, in
Planck units, of the two spacelike 2-surfaces. We show that this bound can be derived from the following
phenomenological assumptions:~i! matter entropy can be described in terms of an entropy currentsa ; ~ii ! the
gradient of the entropy current is bounded by the energy density, in the sense thatukakb¹asbu
<2pTabk

akb/\ for any null vectorka whereTab is the stress energy tensor; and~iii ! the entropy currentsa

vanishes on the initial 2-surfaceB. We also show that the generalized Bekenstein bound—the conjecture that
the entropy of a weakly gravitating isolated matter system will not exceed a constant times the product of its
mass and its width—can be derived from our assumptions. Though we note that any local description of
entropy has intrinsic limitations, we argue that our assumptions apply in a wide regime. We closely follow the
framework of an earlier derivation, but our assumptions take a simpler form, making their validity more
transparent in some examples.
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I. INTRODUCTION AND SUMMARY

The covariant entropy bound@1# is a conjecture relating
the area of two-dimensional spacelike surfaces to the ent
content of adjacent regions. Nonexpanding light rays em
nating orthogonally from a spacelike 2-surfaceB of areaA
generate a null hypersurfaceL called a light sheet.~The light
rays must be terminated before they begin to expand;
typically occurs when neighboring rays intersect.! The cova-
riant bound is the conjecture that the matter entropySL on
any such light sheetL satisfies1

SL<
A

4GN\
, ~1.1!

*On leave from the Department of Physics, University of Calif
nia, Berkeley, CA 94720.

1The conjecture requires that semiclassical corrections to gen
relativity are negligible in the construction ofL. Strominger and
Thompson@2# have recently proposed a modification to the cova
ant bound and conjectured that it accommodates one-loop qua
corrections to the geometry. Using suitable adaptations of the
sumptions and of the proof given here, this modified bound can
derived in the context of the Callan-Giddings-Harvey-Stromin
~CGHS! model @2#.
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whereGN is Newton’s constant.2

When gravity is weak, this bound reduces to some ear
more specialized proposals@3,4#, which originally arose in
attempts to allow the preservation of quantum-mechan
unitarity in the presence of black holes. It also generali
and refines a cosmological bound conjectured by Fisc
and Susskind@5#. No general derivation of the covarian
bound~or of the earlier bounds! has been given. However, n
realistic counterexamples have been constructed from kn
matter fields. Moreover, the bound has been verified exp
itly in a variety of examples, including both weakly gravita
ing and gravitationally collapsing thermodynamic system
as well as cosmological spacetimes. In addition, suffici
conditions for the bound have been identified which a
readily seen to hold in a wide class of situations@6#.

From a conceptual point of view, there is a tension b
tween the scaling of maximal entropy with area asserted
the conjecture and the extensivity of quantum field theo
The holographic principle proposes that quantum grav
contains features that resolve this tension and that give
to the covariant bound. Specifically, the holographic pr

ral
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2We use units withc5kB51, but we retain Newton’s constantGN

and Planck’s constant\. We use the (2,1,1,1) metric signature.
Also we work in four spacetime dimensions, although our analy
generalizes easily toD spacetime dimensions for allD>3.
©2003 The American Physical Society01-1
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ciple asserts that in the fundamental theory, all physics
light sheets that have maximal areaA can be described by
roughly A binary degrees of freedom~in Planck units!
@3,4,7#. A detailed review of the covariant entropy bound a
related issues can be found in Ref.@8#.

In Ref. @6# a stronger form of the covariant bound w
suggested, which we call the generalized covariant entr
bound~GCEB!. Consider a light sheetL some of whose gen
erators are terminated prematurely~before they reach caus
tics!. The end points of these prematurely terminating g
erators form a second spacelike 2-surfaceB8 with
nonvanishing areaA8. The GCEB is the conjecture that th
matter entropySL on such a light sheet satisfies

SL<
A2A8

4GN\
. ~1.2!

This bound reduces to the original covariant bound in
special caseA850. A key motivation for considering this
generalization of the covariant entropy bound is that
GCEB, if true, would imply as a special case the generali
second law in classical regimes where the null energy c
dition is satisfied@6#.

Moreover, it has recently been shown@9# that the GCEB
implies a generalized version of Bekenstein’s bound@10,11#
on the entropyS of any weakly gravitating isolated matte
system of massM traversed by a light sheetL of initially
vanishing expansion:

S<pMx/\. ~1.3!

The widthx is defined as the longest distance~in the center
of mass frame! traveled by any of the generators ofL be-
tween entering and exiting the system. In the context of
original Bekenstein bound, one usually considers static, c
pact matter systems. For such systems,x is always smaller
than the diameterd of the smallest sphere circumscribing th
system. Moreover, if the GCEB holds for each light sh
traversing such a system along every spatial direction,x can
be minimized by judicious orientation of the system relat
to the light sheet. Therefore the bound~1.3! is stronger than
the original boundS<pMd/\ advocated by Bekenstei
@10#.

Since the GCEB also implies the original covariant bou
~1.1!, it is the strongest of the various conjectured bounds
have just reviewed. If entropy bounds are indeed related
fundamental theory, this primacy would suggest that
GCEB bears one of that theory’s more direct imprints. In a
case, it is important to investigate whether or not nat
obeys the GCEB.

The purpose of this paper is to establish the validity of
GCEB in a broad class of hydrodynamic regimes, that
regimes in which matter admits a description in terms
continuum variables.@Note that we do not exclude solids#
Specifically, we consider only regimes in which matter e
tropy can be described in terms of a local entropy curr
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sa.3 In such regimes, any appropriate fundamental definit
of the total matter entropySL on a light sheetL should, to a
good approximation, reduce to the integral

SL5E
L
saeabcd ~1.4!

of the entropy current overL.4 With entropy given by this
formula, we will show that the GCEB can be derived fro
two postulated properties of the entropy current@Eqs. ~3.5!
and ~3.6! below#. We will also argue that those assumptio
should be valid in a large class of hydrodynamic regim
Our approach is similar in spirit to that of Ref.@6#. However,
the assumptions used here are somewhat simpler than
assumption that was used in Ref.@6# to derive the GCEB.

Before attempting to prove the GCEB in hydrodynam
regimes, we must confront a crucial limitation of the entro
current description. In Sec. II we note that apparent vio
tions of the GCEB can be obtained by integrating any fin
entropy current over sufficiently small distances. Howeve
hydrodynamic description of matter entropy becomes inva
at sufficiently small scales. We analyze a cosmological
ample due to Guedens@12# in which the onset of apparen
violations of the GCEB is seen to coincide with the ultravi
let breakdown of the hydrodynamic description.

The analysis of Sec. II informs our choice of assumptio
concerning the behavior of the entropy currentsa, which we
present in Sec. III A. We argue that those assumptions sh
be valid in a large class of hydrodynamic regimes. Moreov
we note that the assumptions effectively impose an ultrav
let cutoff related to the local energy density. This effecti
cutoff allows our proof to evade the generic short-distan
problems of the hydrodynamic approximation. In Sec. III
we derive the GCEB from our assumptions. Finally, in S
III C, we give a direct, purely nongravitational derivation
the generalized Bekenstein bound~1.3! from the same as-
sumptions, without using the GCEB as an intermediate
sult.

We stress that this paper has nothing to say about
validity of the GCEB or of the generalized Bekenstein bou
in regimes where our assumptions are not satisfied. Mo
over, neither Ref.@8# ~which demonstrated that the GCE
implies Bekenstein’s bound! nor the present paper~which
shows that both bounds can be derived from plausible
sumptions in a hydrodynamic regime! bears on the much
debated question of whether any of the proposed entr
bounds follow from the generalized second law of therm
dynamics@13–16#.

Our result that the GCEB is valid in hydrodynamic r
gimes, together with the results of Ref.@6#, eliminates a large

3We will use the term ‘‘current’’ for a flow in the time direction
For typical matter,sa will be a future-directed vector field. Fo
example, in the local comoving frame of a fluid, the time comp
nent ofsa is the usual entropy density, and the spatial compone
vanish.

4Here the orientation chosen forL is that which gives a positive
result for future-directed, timelikesa.
1-2
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SIMPLE SUFFICIENT CONDITIONS FOR THE . . . PHYSICAL REVIEW D 68, 064001 ~2003!
set of possible counterexamples to the GCEB. Howeve
entropy bounds really have the significance ascribed to th
by the holographic principle, one would expect the GCE
~or at least the original covariant bound! to apply more
broadly. If it does, a complete proof may not be possi
until the underlying quantum gravity theory is understood.
the meantime, further exploration of the bounds’ domain
validity remains an important task which may produce clu
about quantum gravity.

II. INTRINSIC LIMITATIONS OF A LOCAL DESCRIPTION
OF ENTROPY

On sufficiently large scales a description of entropy c
often be given in terms of a local entropy currentsa. In such
situations, the actual entropy contained in any spatial reg
R is, to a good approximation, given by the integral of t
entropy current overR, as long asR is much larger than
some microphysical length scaleL which is determined by
the physical system under consideration. For example, f
bath of thermal radiation,L is of order the wavelength of a
typical quantum of radiation. Thus the entropy currentsa

makes sense only when integrated over sufficiently large
gions. It is important not to take this local description
entropy too literally. Entropy is fundamentally nonlocal, a
there is no physical justification for computing an entropy
regions smaller thanL by integrating the entropy currentsa.

Indeed, if the entropy-current approximation for entro
could be extrapolated to arbitrarily short distances,
GCEB could clearly be violated. Consider an initi
2-surfaceB on which the expansionu vanishes everywhere
Construct a very short light sheetL, for which the final
2-surfaceB8 is allowed to approach the initial 2-surfaceB
arbitrarily closely, so that the affine parameter intervalDl
along the null generators goes to zero. Then the changA
2A8 in area is quadratic inDl, since the area of cros
sections ofL has a local maximum atB. But in the entropy-
current approximation, the total entropySL is given by the
integral ~1.4! and scales linearly withDl for small Dl:

SL}Dl. ~2.1!

Therefore the GCEB will be violated for sufficiently sma
Dl. It follows in particular that the GCEB cannot be derive
from any assumptions that permit the integration of a non
nishing entropy current over arbitrarily short light shee
with initially vanishing expansion.

An example of this type was first pointed out by R
Guedens@12#. Its original purpose was to show that th
GCEB cannot be derived from the second set of assumpt
~1.10! and~1.11! of Ref. @6#, as the example explicitly satis
fies those assumptions. It is instructive to review t
Guedens example before attempting to formulate more s
able assumptions.

Consider a closed, radiation-dominated Friedma
Robertson-Walker cosmological model, for which the met
is

ds25a~h!2@2dh21dx21sin2x~dq21sin2qdw2!#,
~2.2!
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with scale factor

a~h!5amsinh. ~2.3!

Heream is the radius of the spatial 3-sphere at the mom
h5p/2 of maximum expansion. Next, we choose a lig
sheetL and compute its area decrease,A2A8, and entropy,
SL . Let L begin on the 2-sphereB of maximum radius in the
spacetime, given byx5h5p/2, and let it end on the nearb
2-sphereB8 given byx5h5p/21Dx.

We shall work to leading order inDx, which means that
we can useDx as an affine parameter. The area decreas
quadratic:

A2A858pam
2 Dx2@11O~Dx!#. ~2.4!

In the fluid approximation, the total entropySL is just the
product of the entropy density5 s and the volume 4pam

3 Dx
of the projection ofL onto theh5p/2 hypersurface. For a
radiation-dominated universe, standard thermodynamics
plies

s5
4r

3T
, ~2.5!

wherer53/(8pGNa2) is the energy density andT the tem-
perature. This yields

SL5
2amDx

GNT
@11O~Dx!#. ~2.6!

Comparison with the area change~2.4! shows that the bound
~1.2! is apparently violated when

amDx<
\

pT
. ~2.7!

Equation~2.7! says that the proper lengthamDx in the
cosmological rest frame of the light sheet is shorter than
thermal wavelength\/T. Therefore the light sheet is shorte
than even a single wavelength of the radiation filling t
Universe. In this regime it is clear that our computation
the entropy~2.6! is invalid.

Thus the onset of apparent violations of the GCEB co
cides in the Guedens example with the breakdown of
local description of entropy, namely when the condition~2.7!
holds. In the regime~2.7!, most of the occupied modes can
not be localized withinL but will spill over beyond the
boundaries of the light sheet. Thus we cannot conclude
the GCEB is violated in any physically meaningful sense

A number of questions arise concerning the applicabi
and precise formulation of the GCEB at short distances, s
as the regime~2.7! in the Guedens example. Is there a mea
ingful definition of entropy for such short light sheets? It
conceivable that the entropySL computed from a sufficiently

5We uses to denote an entropy density per unit affine parame
and per unit proper transverse area@see Eq.~3.2!#. Here it was
convenient to choose the normalization of the affine parameterDx
such thats coincides with the usual entropy per unit proper volum
~in the local rest frame of the cosmological fluid!. Note that this
choice differs from the normalization convention we will use in o
proof in Sec. III below.
1-3
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BOUSSO, FLANAGAN, AND MAROLF PHYSICAL REVIEW D68, 064001 ~2003!
general and fundamental prescription will satisfy the GC
at all scales. Alternatively, it is possible that the GCEB w
only apply to the statistical entropy of complete, isolat
systems. If this is true, one would need to supplement
statement of the GCEB with a suitable criterion defini
‘‘isolation.’’ Resolution of these issues would sharpen t
conjecture and may contribute to a deeper understandin
its meaning.

III. DERIVATION OF ENTROPY BOUNDS

In this section we will derive the GCEB and the gener
ized Bekenstein bound in the regime defined by Eq.~1.4!,
subject to two assumptions. We start by introducing so
notations to describe the integral~1.4! over the light sheetL.
The affine parameter,l, along any null generator ofL is
taken to run from 0 atB to 1 at B8.6 The null vectorka

[(d/dl)a is normal~and tangent! to L. We introduce a coor-
dinate systemx5(x1,x2) on the initial 2-surfaceB, and we
label the geodesic generators ofL with these coordinates
thereby defining a coordinate system (x1,x2,l) on L. We
denote byhAB(x,l) the two-dimensional induced metric o
the cross-sectionsl5const of L, and defineh5dethAB .
With these notations the integral~1.4! can be written as@6#

SL5E
B
d2xE

0

1

dlAh~x,l!s~x,l!. ~3.1!

Here s is the entropy density onL, or more precisely the
entropy per unit affine parameter and per unit cross-secti
area. It is given by

s56kasa , ~3.2!

where the minus sign applies for future directedka and the
plus sign for past directedka. The determinant factor in Eq
~3.1! can be written as@6#

Ah~x,l!5A~x,l!Ah~x,0!, ~3.3!

whereA is an area decrease factor associated with a g
generator given by

A~l![expF E
0

l

dl̄u~ l̄ !G . ~3.4!

Hereu5¹aka is the expansion of the generators ofL which
by assumption is nonpositive everywhere onL. A prime will
be used to denote the operatorka¹a5d/dl.

A. Assumptions

We assume that the entropy densitys on a light sheetL
satisfies two conditions.

~1! The gradient assumptionthat

6We neglect any generators ofL whose affine parameter length
infinite; this is justified in Ref.@6#.
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s8<2pTabk
akb/\ ~3.5!

at every point onL, whereTab is the stress tensor.

~2! The isolation assumption7 that the entropy density
should vanish on the initial 2-surface:

suB50. ~3.6!
We now discuss the motivation for these assumptio

The first assumption essentially states that the entropy gr
ent must be smaller than the energy density in natural un
This holds for free Bose and Fermi gases in local therm
equilibrium @6#. More generally, the assumption is plausib
if ~i! both the entropy density and the stress tensor
smeared~in all spatial directions! over a distanceL set by
the largest wavelength of any of the modes that contrib
significantly to the entropy, and if~ii ! the effective number of
scalar fields in the Lagrangian,N, is not very large. In this
case, one can apply an estimate given in Ref.@6# which we
refine here.

We neglect factors of order unity. Because of the lack
features at distances smaller thanL, the entropy gradient
obeys¹s&s/L. Now consider a sphere of radiusL. Since
L is the largest wavelength, particles can be considered
calized on this scale, and we can definen to be the number of
particles inside the sphere. Since we assume that modes
wavelengthL contribute significantly to the entropy, we ca
obtain the order of magnitude of the entropy by consider
only such modes. Then the number of states will be (N1n
21)!/@(N21)!n! # @or (N1n)!/(N!n!) if states with fewer
thann particles are also allowed#. The total entropyS in the
sphere is the logarithm of this number and hence obeyS
<n ln N ~saturation occurs for smalln). Unless the number
of fields is very large, lnN will be of order unity. The entropy
density therefore satisfiess&n/L3. On the other hand, the
energy density is bounded from below:r*n\/L4. It follows
that ¹s&r/\.

The gradient assumption is clearly closely related to B
enstein’s bound. One might even interpret it as a kind
local formulation of Bekenstein’s bound, or at least as a fi
step in that direction. The same may be said of the qu
local assumption~1.9! of Ref. @6#, which was shown in that
reference to independently imply the GCEB.

Consider now the second assumption~3.6!. It is clearly
satisfied if the initial 2-surfaceB is in a vacuum region out-
side a compact matter system. If the initial 2-surface l
instead inside the matter system so that the initial entr
currentsauB is nonvanishing, then the assumption is violate
However, we can imagine a slightly different matter syste
in which the entropy current in a thin sliver near the initi
2-surfaceB has been modified to achievesauB50 without
violating the gradient assumption~3.5!. This will only re-
quire changing the entropy current within one or two wav

7Strominger and Thompson have shown that this assumption
be replaced with the requirement thats<2u/4 on the initial
2-surface, which can be interpreted as demanding that the GCE
satisfied in an infinitesimal neighborhood ofB @2#.
1-4
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lengths of the initial surface, and thus the change in the t
integrated entropy will be negligible~so long as the extent o
L is significantly larger than one wavelength!. But the fluid
approximation is in any case valid only for regions mu
larger than a typical wavelength. Hence, our second assu
tion poses no significant additional restriction on the range
applicability of our proof.

In the previous section we pointed out that the hydro
namic description of entropy breaks down at short distan
where it would generically lead to violations of the GCE
These difficulties will not plague our derivations, as our tw
assumptions together exclude the arbitrarily short light sh
with finite entropy density that led to the problematic scali
~2.1!. Namely, Eq.~3.6! ensures that the entropy density va
ishes on the initial surface, and Eq.~3.5! prevents it from
turning on too rapidly.

In this sense the second assumption~3.6! addresses the
uncertainty as to the formulation of the GCEB at short d
tances. It can be interpreted to do so via either of the
approaches to this formulation outlined at the end of Sec
Most straightforwardly, Eq.~3.6! may be regarded as ex
pressing the requirement that the matter on the light sheL
be isolated, in the sense that modes carrying signific
amounts of entropy should be fully contained onL and
should not spill over beyond the initial boundary ofL.

The second interpretation is to regard Eq.~3.6! as an im-
print of a more general prescription for defining the entro
SL through L. By insisting on settings50 on the initial
boundaryB, and allowings to increase only at a rate limite
by Eq. ~3.5!, the contributions of ‘‘spill-over’’ modes are
effectively removed from the vicinity of the boundary. No
that under such a prescription,s could not be obtained as th
contractionkasa of ka with an absolute entropy currentsa

that is the same for all light sheets. Rather, such a presc
tion would entail light-sheet dependent entropy curren
However, in view of the nonlocal nature of entropy, som
kind of subadditive, light-sheet dependent prescription m
indeed be appropriate. Light-sheet dependent currents
previously been considered, with a similar motivation, in t
assumption~1.9! of Ref. @6#. Note that ifs does arise from a
global, absolute entropy current vector fieldsa, our second
condition ~3.6! will be satisfied for every light sheet in th
spacetime if and only if sa satisfies ukakb¹asbu
<2pTabk

akb/\ for all null vector fieldska ~the condition
cited in the abstract!. We stress, however, that our proof a
plies both to light-sheet dependent and absolute entropy
rents; as long ass satisfies the required conditions on som
light sheetL, we prove that the GCEB will hold onL.

B. Derivation of the generalized covariant bound

In Ref. @6# it was shown that, to prove the GCEB using
local entropy current, it is sufficient to focus on each in
vidual null generator of the light sheetL, one at a time.
Specifically, we need only show that

E
0

1

dls~l!A~l!<
1

4GN\
@12A~1!# ~3.7!
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for each null generator ofL of finite affine parameter length
whereA(l) is the area-decrease factor~3.4!.

The Raychaudhuri equation along the geodesic can
written in the form

8pGNTabk
akb1ŝabŝ

ab5
22G9~l!

G~l!
, ~3.8!

whereG(l)[AA(l) andŝab is the shear tensor, and prime
denote derivatives with respect tol. Thus the gradient as
sumption~3.5! implies that8

s8~l!<
21

2GN\

G9~l!

G~l!
. ~3.9!

Using our second assumption,s(0)50, we integrate this
expression to obtain a bound on the scalar entropy dens

s~l!5E
0

l

dl̄s8~ l̄ !

<
21

2GN\E0

l

dl̄
G9~ l̄ !

G~ l̄ !
.

~3.10!

Integration by parts now gives

s~l!<
1

2GN\ FG8~0!

G~0!
2

G8~l!

G~l!
2E

0

l

dl̄
G8~ l̄ !2

G~ l̄ !2 G .

~3.11!

The first term in the square brackets in Eq.~3.11! is non-
positive by the nonexpansion conditionu<0, sinceG8(0)
5u(0)/2. The last term in the square brackets is manifes
nonpositive. Hence both terms can be discarded, and we
tain

s~l!<
21

2GN\

G8~l!

G~l!
. ~3.12!

Inserting this into the left-hand side of Eq.~3.7! and using
A5G2 we obtain

E
0

1

dls~l!A~l!<
21

2GN\E0

1

dlG~l!G8~l!

5
1

4GN\
@G~0!22G~1!2#. ~3.13!

Finally usingG(0)51 andG(1)25A(1) yields Eq.~3.7!.
This completes the proof.

8Note that the corresponding Eq.~2.17! of Ref. @6# contains a
typographical error; the role of the barred and unbarred quant
should be interchanged.
1-5
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C. Derivation of the generalized Bekenstein bound

We have derived the GCEB for light sheets on which o
assumptions hold, and in Ref.@8# the GCEB was shown to
imply the generalized Bekenstein bound Eq.~1.3! for weakly
gravitating matter systems. Curiously, in this sequence
implications neither our assumptions nor the Bekens
bound contain Newton’s constant, whereas the GCEB d
It seems strange that we should have to go via a bound
volving gravity to derive the Bekenstein bound from o
assumptions, using the Raychaudhuri equation once in
~3.8! to introduceGN , and then a second time in Ref.@9# to
eliminate it. Here we point out that it is indeed possible
obtain the generalized Bekenstein bound directly from
assumptions, without using general relativity.

The derivation of the generalized Bekenstein bound
volves two light sheetsL6 which nearly coincide with each
other but are oppositely directed@9#. Each has initially van-
ishing expansion, and each fully contains the matter syst
Specifically, one requires that the matter system occupie
world volumeW of compact spatial support in approximate
Minkowski space and that no world-line inW fails to inter-
sectL6 . As indicated in the Introduction, the width of th
system,x, is defined in terms of the light sheetsL6 . Thus
the light sheetsL6 are an integral part of the generalize
Bekenstein bound.@This was not the case for the origin
Bekenstein bound, which was formulated mainly for sta
systems and employs a different, more lenient definition
width.#

The GCEB had to be assumed to hold for bothL1 andL2

at the outset of the derivation in Ref.@9#. In order to give a
direct, nongravitational derivation of the generalized Bek
stein bound in the hydrodynamic regime~1.4!, we should
therefore assume that our conditions~3.6! and~3.6! hold for
L1 and L2 . In Ref. @9# the assumption of weak gravit
allowed the construction of nearly coinciding light sheetsL6

with small relative area decrease. In the limitG→0, the
same construction results in exactly coinciding light she
L15L25L with everywhere vanishing expansion, in fl
Minkowski space. For a direct nongravitational derivation
the generalized Bekenstein bound from our assumptions
will set GN to zero from the start and work with the simpl
objectL.

Let L be a congruence of future-directed parallel null ge
desics (u50) orthogonal to a compact 2-surfaceB. Let each
ray extend a finite spatial distance~in a fixed Lorentz frame!,
so that the congruence ends on a second 2-surfaceB8. All
cross sections of the congruence includingB andB8 have the
same areaA, since spacetime is flat. Thus we can regardL as
a light sheetL1 originating atB, with an affine parameterl1

that varies from 0 atB to 1 at B8. Alternatively, we can
regardL as a light sheetL2 originating atB8, with an affine
06400
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parameterl2 that varies from 0 atB8 to 1 atB8. The two
affine parameters are related by

l2512l1 . ~3.14!

We require our two assumptions to hold in either case;
particular, the isolation condition,s50, is assumed to hold
on both terminal 2-surfaces.

The entropy densitys at any point onL can thus be com-
puted in two ways, by integratings8 starting from either end:

s~l1!5E
0

l1

dl̄1

ds

dl̄1

5E
0

12l1

dl̄2

ds

dl̄2

. ~3.15!

By adding both expressions, applying the gradient assu
tion to each integrand, and usingl2512l1 , we find

2s~l1!<2pE
0

1

dl̄1Tabk
akb/\, ~3.16!

whereka5(d/dl1)a. Since the gradient assumption appli
with respect to both directions, andds/dl152ds/dl2 ,
the null energy condition must hold and hence the integr
is positive definite. By construction, the direction ofka is the
same for all light-rays, and we can only increase the rig
hand side by replacingkb with kmax

b , the null vector with the
largest time component in a fixed Lorentz frame, maximizi
over all the generators ofL. Hence

s~l1!<pE
0

1

dl1Tabk
akmax

b /\. ~3.17!

Further integration over the light sheetL then yields

S<pPbkmax
b /\, ~3.18!

wherePb5*B*dl1Tabk
a is the total four-momentum of the

matter present onL @8#. This inequality takes its simples
form in the rest frame of the matter system, for which t
spatial components ofPb vanish. ThenP0 is given by the
system’s rest mass,M, and kmax

0 is a proper length corre
sponding to the width of the system,x. ~Recall thatx is
defined as the greatest spatial distance traversed by an
the generators ofL, in the rest frame ofW.! Thus we obtain
the generalized Bekenstein bound~1.3!.
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