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The generalized covariant entropy bound is the conjecture that for any null hypersurface which is generated
by geodesics with nonpositive expansion starting from a spacelike 2-suBfacel ending in a spacelike
2-surfaceB’, the matter entropy on that hypersurface will not exceed one quarter of the difference in areas, in
Planck units, of the two spacelike 2-surfaces. We show that this bound can be derived from the following
phenomenological assumptioris: matter entropy can be described in terms of an entropy cusgen(i) the
gradient of the entropy current is bounded by the energy density, in the senselkth&V,s,|
<27T,,k?®/#% for any null vectork® whereT,,, is the stress energy tensor; afiiil) the entropy currens,
vanishes on the initial 2-surfad® We also show that the generalized Bekenstein bound—the conjecture that
the entropy of a weakly gravitating isolated matter system will not exceed a constant times the product of its
mass and its width—can be derived from our assumptions. Though we note that any local description of
entropy has intrinsic limitations, we argue that our assumptions apply in a wide regime. We closely follow the
framework of an earlier derivation, but our assumptions take a simpler form, making their validity more
transparent in some examples.
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. INTRODUCTION AND SUMMARY whereG,, is Newton'’s constartt.
When gravity is weak, this bound reduces to some earlier,
The covariant entropy bourld] is a conjecture relating more specialized proposal8,4], which originally arose in
the area of two-dimensional spacelike surfaces to the entropsttempts to allow the preservation of quantum-mechanical
content of adjacent regions. Nonexpanding light rays emaanitarity in the presence of black holes. It also generalizes
nating orthogonally from a spacelike 2-surfa8eof areaA  and refines a cosmological bound conjectured by Fischler
generate a null hypersurfatecalled a light sheetThe light  and Susskind5]. No general derivation of the covariant
rays must be terminated before they begin to expand; thigound(or of the earlier boundsias been given. However, no
typically occurs when neighboring rays intersg@he cova-  egistic counterexamples have been constructed from known
riant bound is the conjecture that the matter entr8pyon  atter fields. Moreover, the bound has been verified explic-
any such light sheet satisfies itly in a variety of examples, including both weakly gravitat-
ing and gravitationally collapsing thermodynamic systems,
as well as cosmological spacetimes. In addition, sufficient
A conditions for the bound have been identified which are
SS<1c7 (1.1)  readily seen to hold in a wide class of situatid6
N From a conceptual point of view, there is a tension be-
tween the scaling of maximal entropy with area asserted by
*On leave from the Department of Physics, University of Califor- the conjecture _and _the_ extensivity of quantum field theo_ry.
nia, Berkeley, CA 94720. The holographic principle proposes that quantum gravity
'The conjecture requires that semiclassical corrections to genergPntains features that resolve this tension and that give rise
relativity are negligible in the construction af Strominger and t0 the covariant bound. Specifically, the holographic prin-
Thompson 2] have recently proposed a modification to the covari-
ant bound and conjectured that it accommodates one-loop quantum
corrections to the geometry. Using suitable adaptations of the as-?We use units witit=kg=1, but we retain Newton’s consta®t
sumptions and of the proof given here, this modified bound can band Planck’s constarit. We use the {-,+,+,+) metric signature.
derived in the context of the Callan-Giddings-Harvey-StromingerAlso we work in four spacetime dimensions, although our analysis
(CGHS model[2]. generalizes easily tB spacetime dimensions for dll=3.
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ciple asserts that in the fundamental theory, all physics os?.2 In such regimes, any appropriate fundamental definition
light sheets that have maximal ar@acan be described by of the total matter entrop§, on a light sheet. should, to a
roughly A binary degrees of freedoniin Planck unity  good approximation, reduce to the integral
[3,4,7). A detailed review of the covariant entropy bound and
related issues can be found in RES].

In Ref. [6] a stronger form of the covariant bound was S.= fLSaeabcd (1.4
suggested, which we call the generalized covariant entropy

bound(GCEB). Consider a light sheét some of whose gen- of the entropy current ovet.® With entropy given by this

erators are terminated prematurébefore they reach caus- . .
tics). The end points of these prematurely terminating gen{\?vr?ugzu\ﬁ':te\ﬂll fgogrtfzgtgptehggi?oCancgﬁéegvfgg;om
erators form a second spacelike 2-surfa@ with P prop Py gs. (3.

nonvanishing ared’. The GCEB is the conjecture that the and (3.6) below]. We will also argue that thase assumptions

; o should be valid in a large class of hydrodynamic regimes.
matter entropyS, on such a light sheet satisfies Our approach is similar in spirit to that of R¢€]. However,

the assumptions used here are somewhat simpler than the
A-A’ assumption that was used in RE8] to derive the GCEB.

|§m- (1.2 Before attempting to prove the GCEB in hydrodynamic

regimes, we must confront a crucial limitation of the entropy

current description. In Sec. Il we note that apparent viola-
This bound reduces to the original covariant bound in theions of the GCEB can be obtained by integrating any finite
special case\’=0. A key motivation for considering this €ntropy current over_SL_lff|C|entIy small distances. However, a
generalization of the covariant entropy bound is that thdydrodynamic description of matter entropy becomes invalid
GCEB, if true, would imply as a special case the generalize@! sufficiently small scales.. We gnalyze a cosmological ex-
second law in classical regimes where the null energy cor@mple due to Guederjd2] in which the onset of apparent

S

dition is satisfied6]. violations of the GCEB is seen to coincide with the ultravio-
Moreover, it has recently been sho@@i that the GCEB  let breakdown of the hydrodynamic description. _
implies a generalized version of Bekenstein’s bo{ibd, 11] The analysis of Sec. Il informs our choice of assumptions

on the entropyS of any weakly gravitating isolated matter concerning the behavior of the entropy currshtwhich we
system of mas#/ traversed by a light sheet of initially ~ Presentin Sec. lll A. We argue that those assumptions should
vanishing expansion: be valid in a large class of hydrodynamic regimes. Moreover,
we note that the assumptions effectively impose an ultravio-
let cutoff related to the local energy density. This effective
S<7Mx/h. (1.3 cutoff allows our proof to evade the generic short-distance
problems of the hydrodynamic approximation. In Sec. Il B
) . ) i . we derive the GCEB from our assumptions. Finally, in Sec.
The widthx is defined as the longest distan@e the center ||| ¢, we give a direct, purely nongravitational derivation of
of mass framptraveled by any of the generators bfbe-  the generalized Bekenstein bounti3) from the same as-
tween entering and exiting the system. In the context of thgymptions, without using the GCEB as an intermediate re-
original Bekenstein bound, one usually considers static, comgjt.
pact matter systems. For such systems always smaller We stress that this paper has nothing to say about the
than the diameted of the smallest sphere circumscribing the ya|idity of the GCEB or of the generalized Bekenstein bound
system. Moreover, if the GCEB holds for each light sheety, regimes where our assumptions are not satisfied. More-
traversing such a system along every spatial direc@an  oyer, neither Ref[8] (which demonstrated that the GCEB
to the light sheet. Therefore the bou(id3) is stronger than  shows that both bounds can be derived from plausible as-
the Original boundS<swMd/% advocated by Bekenstein Sumptions in a hydrodynamic regimbears on the much-
[10]. debated question of whether any of the proposed entropy
Since the GCEB also implies the original covariant boundyounds follow from the generalized second law of thermo-
(1.1), itis the strongest of the various conjectured bounds wWejynamics[13-16.
have just reviewed. If entropy bounds are indeed related to @ Qur result that the GCEB is valid in hydrodynamic re-

fundamental theory, this primacy would suggest that thgyimes, together with the results of RES], eliminates a large
GCEB bears one of that theory’s more direct imprints. In any

case, it is important to investigate whether or not nature———

obeys the GCEB. _ . . 3we will use the term “current” for a flow in the time direction.
The purpose of this paper is to establish the validity of the-o; typical matter,s* will be a future-directed vector field. For

GCEB in a broad class of hydrodynamic regimes, that iSexample, in the local comoving frame of a fluid, the time compo-
regimes in which matter admits a description in terms ofpent ofs? is the usual entropy density, and the spatial components
continuum variables|Note that we do not exclude solids. vanish.

Specifically, we consider only regimes in which matter en- “Here the orientation chosen faris that which gives a positive
tropy can be described in terms of a local entropy currentesult for future-directed, timeliks®.
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set of possible counterexamples to the GCEB. However, ifvith scale factor
entropy bounds really have the significance ascribed to them B . 53
by the holographic principle, one would expect the GCEB a(n)=aysingn. (2.3

(or at least the original covariant bountb apply more Herea,, is the radius of the spatial 3-sphere at the moment
broadly. If it does, a complete proof may not be possible;;=7/2 of maximum expansion. Next, we choose a light
until the underlying quantum gravity theory is understood. Insheetl. and compute its area decrease; A’, and entropy,
the meantime, further exploration of the bounds’ domain ofS, . LetL begin on the 2-sphei® of maximum radius in the
validity remains an important task which may produce cluesspacetime, given by= »= /2, and let it end on the nearby

about quantum gravity. 2-sphereB’ given by y=n=m/2+Ay.
We shall work to leading order in y, which means that
II. INTRINSIC LIMITATIONS OF A LOCAL DESCRIPTION we can usely as an affine parameter. The area decrease is
OF ENTROPY quadratic:
A—A"=8maAx1+0(Ay)]. (2.9

On sufficiently large scales a description of entropy can
often be given in terms of a local entropy currefit In such  In the fluid approximation, the total entrogy is just the
situations, the actual entropy contained in any spatial regioproduct of the entropy denshys and the volume 4a>Ay
R is, to a good approximation, given by the integral of theof the projection ofL onto the »= /2 hypersurface. For a
entropy current ovefR, as long asR is much larger than radiation-dominated universe, standard thermodynamics im-
some microphysical length scale which is determined by plies
the physical system under consideration. For example, for a 4p
bath of thermal radiationA is of order the wavelength of a S= 37 (2.9
typical quantum of radiation. Thus the entropy curreht
makes sense only when integrated over sufficiently large rewherep=3/(87Gya?) is the energy density arifithe tem-
gions. It is important not to take this local description of perature. This yields
entropy too literally. Entropy is fundamentally nonlocal, and 22 A
there is no physical justification for computing an entropy for S =—0 X[1+O(AX)]. (2.6)
regions smaller tha by integrating the entropy currest. GnT

Indeed, if the entropy-current approximation for entropY o mnarison with the area chan@4) shows that the bound
could be extrapolated to a_rb|trar|Iy short_ dlstance_s,_ _theil.Z) is apparently violated when
GCEB could clearly be violated. Consider an initial
2-surfaceB on which the expansiofl vanishes everywhere. h
Construct a very short light sheét for which the final amAxgﬁ' 2.7
2-surfaceB’ is allowed to approach the initial 2-surfage _ )
arbitrarily closely, so that the affine parameter intenal Equation(2.7) says that the proper lengt,Ay in the
along the null generators goes to zero. Then the cha#nge cosmological rest frame of the light sh(_aet is short_er than the
—A’ in area is quadratic il\\, since the area of cross thermal wavele_ngtlﬁ/T. Therefore the light ;hget |s.s_horter
sections ofL has a local maximum a@. But in the entropy- than even a single wavelength of the radiation filling the

current approximation, the total entrofy is given by the Universe. In this regime it is clear that our computation of

integral (1.4) and scales linearly wit\ for small A\: the entropy(2.6) is invalid. o ,
Thus the onset of apparent violations of the GCEB coin-

S < AN. (2.1 cides in the Guedens example with the breakdown of the
local description of entropy, namely when the conditigrv)
Therefore the GCEB will be violated for sufficiently small holds. In the regimé2.7), most of the occupied modes can-
AN. It follows in particular that the GCEB cannot be derived not be localized withinL but will spill over beyond the
from any assumptions that permit the integration of a nonvaboundaries of the light sheet. Thus we cannot conclude that
nishing entropy current over arbitrarily short light sheetsthe GCEB is violated in any physically meaningful sense.
with initially vanishing expansion. A number of questions arise concerning the applicability
An example of this type was first pointed out by Raf and precise formulation of the GCEB at short distances, such
Guedens[12]. Its original purpose was to show that the as the regimé2.7) in the Guedens example. Is there a mean-
GCEB cannot be derived from the second set of assumptioriagful definition of entropy for such short light sheets? It is
(1.10 and(1.1)) of Ref.[6], as the example explicitly satis- conceivable that the entro® computed from a sufficiently
fies those assumptions. It is instructive to review the
Guedens example before attempting to formulate more suit——
able assumptions. SWe uses to denote an entropy density per unit affine parameter
Consider a closed, radiation-dominated Friedmannand per unit proper transverse ardee Eq.(3.2)]. Here it was
Robertson-Walker cosmological model, for which the metricconvenient to choose the normalization of the affine parameger
is such thas coincides with the usual entropy per unit proper volume
(in the local rest frame of the cosmological fluidNote that this
ds?=a(n) —d7n?+dy?+sirfy(d9?+sirfdde?)], choice differs from the normalization convention we will use in our
(2.2 proof in Sec. III below.
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general and fundamental prescription will satisfy the GCEB s'sZﬂ-Tabkakb/ﬁ (3.5
at all scales. Alternatively, it is possible that the GCEB wiill

only apply to the statistical entropy of complete, isolatedat every point orl., whereT,,, is the stress tensor.
systems. If this is true, one would need to supplement the

statement of the GCEB with a suitable criterion defining(2) The isolation assumptioh that the entropy density
“isolation.” Resolution of these issues would sharpen theshould vanish on the initial 2-surface:

conjecture and may contribute to a deeper understanding of

its meaning. S=0. (3.6
We now discuss the motivation for these assumptions.
Ill. DERIVATION OF ENTROPY BOUNDS The first assumption essentially states that the entropy gradi-

ent must be smaller than the energy density in natural units.
This holds for free Bose and Fermi gases in local thermal
equilibrium[6]. More generally, the assumption is plausible
& (i) both the entropy density and the stress tensor are
smearedin all spatial directionsover a distance\ set by

.6 > the largest wavelength of any of the modes that contribute
taken to run from 0 aB to 1 atB'".” The null vectork® g nhificantly to the entropy, and {fi) the effective number of
=(d/d\)* is normal(and tangentto L. We introduce a coor-  geaar fields in the Lagrangiai, is not very large. In this

dinate systenx=(x*,x) on the initial 2-surfaced, and we  case one can apply an estimate given in Réfwhich we
label the geodesic generators Iofwith these coordinates, |efine here.

In this section we will derive the GCEB and the general-
ized Bekenstein bound in the regime defined by Bag4),
subject to two assumptions. We start by introducing som
notations to describe the integidl.4) over the light sheet.
The affine parameteny, along any null generator df is

. - . 1 2
thereby defining a coordinate systen&“,\) on L. We We neglect factors of order unity. Because of the lack of
denote byhag(x,\) the two-dimensional induced metric on feapyres at distances smaller than the entropy gradient
the cross-sectiona =const of L, and defineh=dethas.  opheysVs=s/A. Now consider a sphere of radids Since

With these notations the integrél.4) can be written a§6] 4 s the largest wavelength, particles can be considered lo-
1 calized on this scale, and we can defir® be the number of
SL:f dzxf d\ Vh(X,N)S(X, ). (3.1)  Pparticles inside the sphere. Since we assume that modes with
B 0 wavelengthA contribute significantly to the entropy, we can
obtain the order of magnitude of the entropy by considering
Here s is the entropy density oh, or more precisely the only such modes. Then the number of states will Ner(
entropy _per_unit affine parameter and per unit cross-sectional 1)Y[(N—=1)!n!] [or (N+n)!/(N!n!) if states with fewer
area. It is given by thann particles are also allow@dThe total entropys in the
o a sphere is the logarithm of this number and hence olfeys
s=K%,, (3.2 <nInN (saturation occurs for smafl). Unless the number
of fields is very large, ItN will be of order unity. The entropy
density therefore satisfiessn/AS3. On the other hand, the
energy density is bounded from belopen7/A*. It follows
that Vs<p/h.
ey o~ The gradient assumption is clearly closely related to Bek-
hOGA) =AXA)VR(X,0), (3.3 enstein’s bound. One might even interpret it as a kind of
H)cal formulation of Bekenstein’s bound, or at least as a first
step in that direction. The same may be said of the quasi-
local assumptiori1.9) of Ref.[6], which was shown in that
N reference to independently imply the GCEB.
A()\)Eex;{f dA 0()\)] (3.9 Consider now the second assumpti@®6). It is clearly
0 satisfied if the initial 2-surfac® is in a vacuum region out-
A ) ) side a compact matter system. If the initial 2-surface lies
Here §=V,k" is the expansion of the generatorslofvhich  jnstead inside the matter system so that the initial entropy

where the minus sign applies for future directédand the
plus sign for past directek. The determinant factor in Eq.
(3.1) can be written a$6]

where A is an area decrease factor associated with a give
generator given by

by assumption is nonpositive everywherelorA prime will currents,g is nonvanishing, then the assumption is violated.
be used to denote the operatdiv,=d/d\. However, we can imagine a slightly different matter system
in which the entropy current in a thin sliver near the initial

A. Assumptions 2-surfaceB has been modified to achiewgg=0 without

violating the gradient assumptio3.5). This will only re-

We assume that the entropy densitgpn a light sheet s . L
quire changing the entropy current within one or two wave-

satisfies two conditions.

(1) Thegradient assumptiotthat
strominger and Thompson have shown that this assumption can
be replaced with the requirement tha& —6/4 on the initial
5We neglect any generators bfwhose affine parameter length is 2-surface, which can be interpreted as demanding that the GCEB is
infinite; this is justified in Ref[6]. satisfied in an infinitesimal neighborhood Bf 2].
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lengths of the initial surface, and thus the change in the totdor each null generator df of finite affine parameter length,
integrated entropy will be negligibkso long as the extent of where A(\) is the area-decrease faci@:.4).
L is significantly larger than one wavelengtiBut the fluid The Raychaudhuri equation along the geodesic can be
approximation is in any case valid only for regions muchwritten in the form
larger than a typical wavelength. Hence, our second assump-
tion poses no significant additional restriction on the range of 87T kKDt . orab— —2G"(\)
: i TON | ap! tOap0" = )

applicability of our proof. G(\N)

In the previous section we pointed out that the hydrody- R
namic description of entropy breaks down at short distancesyhereG(\)= y.A(\) ando,y, is the shear tensor, and primes
where it would generically lead to violations of the GCEB. denote derivatives with respect xa Thus the gradient as-
These difficulties will not plague our derivations, as our twosumption(3.5) implies that
assumptions together exclude the arbitrarily short light sheets

(3.9

with finite entropy density that led to the problematic scaling s(n)= -1 G"(\) 3.9
(2.1). Namely, Eq.(3.6) ensures that the entropy density van- 2Gyh G(N) '
ishes on the initial surface, and E.5 prevents it from

turning on too rapidly. Using our second assumptiog(0)=0, we integrate this

In this sense the second assumpti@6) addresses the expression to obtain a bound on the scalar entropy density:
uncertainty as to the formulation of the GCEB at short dis- N
tances. It can be interpreted to do so via either of the two S(\)= f dysf(y)
approaches to this formulation outlined at the end of Sec. II. 0
Most straightforwardly, Eq(3.6) may be regarded as ex-
pres_,sing the r_equirement that the matter on th_e Iigh_t sl_h_eet —1 [ _G"(\)
be isolated, in the sense that modes carrying significant gZG ﬁf AN—.
amounts of entropy should be fully contained anand ntJo o G(\)
should not spill over beyond the initial boundary laf (3.10
The second interpretation is to regard E8,6) as an im-
print of a more general prescription for defining the entropy
S, through L. By insisting on settings=0 on the initial

Integration by parts now gives

boundaryB, and allowings to increase only at a rate limited s(\) <= 1 |G'(9) _ G'(\) _ f“ XG’Q)Z

by Eq. (3.5), the contributions of “spill-over” modes are 2G\h| G(O)  G(N)  Jo o G(N)?2 ]
effectively removed from the vicinity of the boundary. Note (3.11
that under such a prescriptioeicould not be obtained as the

contractionk®s, of k® with an absolute entropy currest The first term in the square brackets in E8.11) is non-

that is the same for all light sheets. Rather, such a prescrigositive by the nonexpansion conditi@gi=0, sinceG’(0)

tion would entail light-sheet dependent entropy currents=6(0)/2. The last term in the square brackets is manifestly
However, in view of the nonlocal nature of entropy, somenonpositive. Hence both terms can be discarded, and we ob-
kind of subadditive, light-sheet dependent prescription mayain

indeed be appropriate. Light-sheet dependent currents have

previously been considered, with a similar motivation, in the -1 G'(N)

assumption(1.9) of Ref.[6]. Note that ifs does arise from a s(M)= 2Gyh G(N) 312
global, absolute entropy current vector fieft] our second

condition (3.6) will be satisfied for every light sheet in the Inserting this into the left-hand side of E(.7) and using
spacetime if and only if s* satisfies |k?PV,s;| .A4=G?2 we obtain

<27T,,k3kP"/7 for all null vector fieldsk? (the condition
cited in the abstragtWe stress, however, that our proof ap-

plies both to light-sheet dependent and absolute entropy cur- J
rents; as long as satisfies the required conditions on some

light sheetlL, we prove that the GCEB will hold oh.

ld)\s()\)A()\)s

-1 1
) mfodxe(x)s \)

- [G(0)*—G(1)?] (3.13
AG\h ' )
B. Derivation of the generalized covariant bound

In Ref.[6] it was shown that, to prove the GCEB using a Finally usingG(0)=1 andG(1)2=.4(1) yields Eq.(3.7).
local entropy current, it is sufficient to focus on each indi-This completes the proof.
vidual null generator of the light sheét, one at a time.
Specifically, we need only show that

1 1 8Note that the corresponding E¢2.17 of Ref. [6] contains a
J dAs(M) AN < ——[1-A(1)] (3.7  typographical error; the role of the barred and unbarred quantities
0 4G\ should be interchanged.
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C. Derivation of the generalized Bekenstein bound parametei _ that varies from 0 aB’ to 1 atB’. The two
We have derived the GCEB for light sheets on which our@ffine parameters are related by
assumptions hold, and in Rg8] the GCEB was shown to N =1\ (3.14
- 4 .

imply the generalized Bekenstein bound Ef3) for weakly

gravitating matter systems. Curiously, in this sequence ofye require our two assumptions to hold in either case; in
implications neither our assumptions nor the Bekensteirbarticmar, the isolation conditiors=0, is assumed to hold
bound contain Newton’s constant, whereas the GCEB doeg, poth terminal 2-surfaces.

It seems strange that we should have to go via a bound in- The entropy densitg at any point orL can thus be com-

volving gravity to derive the Bekenstein bound from our pyted in two ways, by integrating starting from either end:
assumptions, using the Raychaudhuri equation once in Eq.

(3.9) to introduceGy, and then a second time in R¢®] to . _ ds 1-x, _ ds
eliminate it. Here we point out that it is indeed possible to S(Ay)= d\ | — =J d\_—. (3.1
obtain the generalized Bekenstein bound directly from our 0 dn, Jo dn -

assumptions, without using general relativity. . . . . i
The derivation of the generalized Bekenstein bound in—By adding both expressions, applying the gradient assump

volves two light sheett . which nearly coincide with each tion to each integrand, and using. =1-\.., we find
other but are oppositely direct¢@l]. Each has initially van- 1

ishing expansion, and each fully contains the matter system. 25()\+)s27rJ dn , Tapk3KP/ 7, (3.16
Specifically, one requires that the matter system occupies a 0

world volumeW of compact spatial support in approximately
Minkowski space and that no world-line W fails to inter-
sectL. . As indicated in the Introduction, the width of the
system,x, is defined in terms of the light shedts . Thus

the light sheetd... are an integral part of the generalized same for all light-rays, and we can only increase the right-

Bekenstein bound.This was not the case for the original : 2y b :
Bekenstein bound, which was formulated mainly for statichand s:?e by replacmgt W'thf!(maé’l_the ntullfvector W'th. th_e_
systems and employs a different, more lenient definition O]larges Ime componentn a fixed Lorentz frame, maximizing

wherek?= (d/d\,)?. Since the gradient assumption applies
with respect to both directions, ardis/d\ = —ds/d\_,

the null energy condition must hold and hence the integrand
is positive definite. By construction, the directionldfis the

width ] over all the generators df. Hence
The GCEB had to be assumed to hold for bbthandL _ 1
at the outset of the derivation in R¢8]. In order to give a s()\+)s7rf d)\+TabkakE’na)Jﬁ. (3.17
0

direct, nongravitational derivation of the generalized Beken-
stein bound in the hydrodynamic regini&.4), we should
therefore assume that our conditiai3s6) and (3.6) hold for
L, andL_. In Ref. [9] the assumptlo.n_of \_Neak gravity SSWPbkernaJﬁ, (3.18
allowed the construction of nearly coinciding light shelets

with small relat_ive area d_ecrease. In t_he_ Ii_rﬁ}t—_>0, the  whereP,=[gfd\ . T,,k? is the total four-momentum of the
same ConStrU(..:“Oﬂ results in exaC.tly.CO”"ICldlng ||ght .SheetSmatter present ol [8] This inequa“ty takes its Simp|est
L,=L_=L with everywhere vanishing expansion, in flat form in the rest frame of the matter system, for which the
Minkowski space. For a direct nongravitational derivation ofspatial components d®,, vanish. ThenP, is given by the

the generalized Bekenstein bound from our assumptions, Wgystem’s rest massy, and kS, is a proper length corre-

will set Gy to zero from the start and work with the simpler sponding to the width of the syster, (Recall thatx is
objectL. defined as the greatest spatial distance traversed by any of

LetL be a congruence of future-directed parallel null geo-he generators df, in the rest frame ofV.) Thus we obtain
desics ¢=0) orthogonal to a compact 2-surfaBelLet each  ne generalized Bekenstein boufid3).

ray extend a finite spatial distan@e a fixed Lorentz framg
so that the congruence ends on a second 2-suBacll
cross sections of the congruence includihgndB’ have the
same ared, since spacetime is flat. Thus we can redawb We thank A. Strominger and D. Thompson for useful con-
a light sheet. , originating atB, with an affine parameter, versations. This research was supported in part by the Rad-
that varies from 0 aB to 1 atB’. Alternatively, we can cliffe Institute, by NSF grants PHY00-98747 and PHY-
regardL as a light sheet _ originating atB’, with an affine 0140209, and by funds from Syracuse University.

Further integration over the light sheethen yields
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