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T-duality and Penrose limits of spatially homogeneous and inhomogeneous cosmologies
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The Penrose limits of inhomogeneous cosmologies admitting two Abelian Killing vectors and their Abelian
T duals are found in general. The wave profiles of the resulting plane waves are given for particular solutions.
Abelian and non-Abeliail dualities are used as solution generating techniques. Furthermore, it is found that,
unlike the case of Abeliaf duality, non-AbelianT duality and taking the Penrose limit are not commutative

procedures.
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I. INTRODUCTION ones admitting non-Abelian isometrigkl—13. With the ex-

tra fields being constarfor zerg general relativity is a par-
The low energy limit of string or M theory admits a va- ticular solution of low energy string theory. Most of the so-
riety of cosmological solutions. In four dimensions, theselutions of general relativity admit some kind of Abelian or
string cosmologies differ from cosmologies derived fromnon-Abelian symmetries. Therefore using Abelian and/or
general relativity due to the presence of scalar fields an@on-AbelianT duality new solutions to string cosmology can
form fields (see, for examplél]). In analogy with standard be found. This has led already to a multitude of solutidiis

cosmology, string cosmologies, as well, generically have a,!;loweve_r, in addition to finding new solutions pf string cos-
initial space-time singularity. Close to any singularity the M°l0gy it should be noted that these symmetries can also be

low energy approximation breaks down and the full string orused as solution generating techniques within standard gen-
eral relativity.

M theory is needed. However, in general it is not clear how ) . . .
y 9 Using T-duality transformations a given background can

to relate the solutions of the low energy limit to exact stringbe connected to a variety of different string cosmologies. In

solutions and if this is at.all pos_S|bIe. Plane waves are knowr,[lhe Penrose limit all of these reduce to a plane wave space-
examples of exact classical ;trlng va@é Thls.means that time. Therefore, it might be worthwhile to see if the resulting
they are exact to all orders in the string tensieh Recent  ,0h6 waves are connected byraluality transformation, or
developments in string or M theory have led to renewedy oiher words, whether taking the Penrose limit and dualiz-
interest in an argument by Penrof®| showing that all ing are commutative.
space-times, locally, in the neighborhood of a null geodesic, | the following, the Penrose limiting procedure and Abe-
have a plane wave as a linj¢,5]. Therefore, in the Penrose |ian and non-AbeliarT dualities are briefly reviewed. Ac-
limit, any space-time can be related to an exact classicalording to[3] any D dimensional metric in the neighborhood
string vacuum. For some of the plane wave backgroundsf a segment of a null geodesic containing no conjugate
descriptions in terms ofsolvable conformal field theories points can be written g$]
have been found, which determine the spectrum of string
excitations and their scattering amplitudé$. Recently, su-
perstrings in plane wave backgrounds have been also dis- ) i o
cussed7]. ds’=dudy +adv?+ >, gidvdx +Cydxdd, (1.0
Duality transformations relate different string back-
grounds. The new solution leads to consistent string propa-
gation if conformal invariance is preserved. Here, duality, nhara B,
transformations to the lowest order & will be used as a B
generating technique to find new solutions to Einstein equ
tions coupled to a dilaton and antisymmetric tensor field.
Abelian T duality allows us to transform backgrounds ad-
mitting at least one Abelian isometry into another back-
ground of this type. The transformation changes the metric,
antisymmetric tensor field and the dilaton while keeping the
Abelian isometry of the backgroud@&-210]. Similarly, non- -
Abelian T duality transforms backgrounds with non-Abelian Taking the limitQ—0 of ds*Q? gives the behavior of the
isometries. However, in this case the non-Abelian isometrymetric in the neighborhood of a null geodesic. In this case
might be lost during the transformation. Therefore back-is an affine parameter. @an[14] extended the Penrose limit
grounds without any kind of symmetry might be related toto include other fields, such as gauge and scalar fields. In
summary, for a scalar field, e.g., the dilatén the antisym-
metric tensor fieldB=ByydXMAdXN, and the metric be-
*Email address: Kerstin.Kunze@physik.uni-freiburg.de havior in the Penrose limit is given by

and Cj;; are functions of all coordinates and
i,j=1,2,...D—2. Following Penrose the coordinates are
Fescaled by a constant factOr>0,

u=u, v=0%, xX=0x. (1.2
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b= lim $(Q), In general, it is not possible to write explicitly the gauge
0-0 fixed action. Thus the dual fields cannot be presented in a
closed form as it was possible in the Abelian chsfe Egs.
é: lim 9728(9), (15) and(16)] [11]
0-0 In the following spatially homogeneous and simple inho-
mogeneous cosmologies will be investigated. The corre-
ds?= lim Q~2ds3(Q), (1.3y  sponding metrics admit three or two Killing vectors, respec-
Q-0 tively. Whereas the former admit non-Abelian isometries, the

latter are Abelian. Therefore the structure is rich enough to

where the argumenf) denotes the rescaling of variables apply Abelian and non-Abeliaif dualities. The observable
(1.2. universe on large scales is well described by a Friedmann-
Duality symmetries relate different string backgrounds.Robertson-Walker universe which is a particular case of a
Abelian T duality is a symmetry with respect to an Abelian spatially homogeneous universe. However, with a view to
Killing direction. T dualities are derived from the two- the question of initial conditions more general cosmologies

dimensionalo-model action given by deserve further study as well. The spatially homogeneous
1 models were first classified by Bianchi into nine different
S= _f dzz{ IXM[ Gy (X) + By (X) JoXN types (cf. [17]). Bianchi models I-VII, locally rotationally
4 symmetric (LRS) VIII and LRS IX have two-dimensional

1 Abelian subgroups. Therefore these can be described in the
+—R(2)¢>(X)} , (1.4  same fashion as spatially inhomogeneous space-times admit-
2 ting two Abelian Killing vectors.

whereM,N=0, ... d, XM=(t,X™ (m=1,... d) are the
string coordinatesR(®) is the scalar curvature of the two- Il. ABELIAN T DUALITY OF G, COSMOLOGIES
dimensional worldsheet, an@,,y, By, and ¢ are func- AND THE RADIAL PENROSE LIMIT

tions of X. Choosing coordinatgx*}={x°% x2} such that the
Abelian |.sometry qcts by translation af=¢ ar_1d all back- spatial homogeneity is broken along one spatial direction. In
ground fields are independent 6f The T-duality transfor- general these metrics can be written| 28]

mation is found by gauging the Abelian isometry and then
introducing Lagrangian multipliers in order to keep the

G, space-times admit two Abelian Killing vectors. Thus

gauge connection flat. These Lagrangian multipliers are pro- d=2=2e"Mdudy — i(dx+iZdy)(dx—ifdy)
moted to coordinates in the dual space-time. Dual and origi- Z+7 ’
nal quantities are related as folloys,9]: (2.1
P 1 2% r_ _ GaoGob+ BaoBob whereM andU are real andZ is a complex function of the
Goo » Goa , Gap=GCap . .
Goo Goo Goo two null coordinatesu andv. Therefore these space-times
(2.1) are conveniently described in terms of a null tetrad.
B/ _Goa B B ~ GaoBont BaoGob 15 Introducing coordinatet=u—uv,r =u+uv, say, makes the
0a™ G,,’ ab -ab Goo ' ' line element(2.1) similar to that of a cylindrical space-time.
In that caser could be interpreted as the radius of the cyl-
The dilaton is shifted to inder. Geodesics in cylindrical space-times have been inves-
, tigated in connection with nonsingular solutions[ir9]. Al-
¢'=¢—log Goo. (1.6 though due to the presence of two Abelian Killing vectors

there are two constants of motion in the set of geodesic equa-

tions the general solution is not straightforward to find and

one has to specialize to certain types of geodesics. For radial
eodesics the constants of motion are zero and explicit solu-

string background since théow energy 8 function equa- fons can be found in closed form. Furthermore, the change
9 9 g q to adapted null coordinates is not obvious. Therefore, in the

Pr?antstr?ée rr]c?ltj Sfﬁ‘;‘iﬁ;gﬁi'g}”&i Sg‘;éﬁnrghuegd'nisthneotcgz?nifollowing, only Penrose limits around radial null geodesics
group 9 ill be investigated.

simple, which is the case for Bianchi V, a mixed gauge and” The limiting procedure of Penrosk8] can be applied

gravitational anomaly s present. However, [it5] it was along a segment of a null geodesic without conjugate points.

found that not all nonsemisimple groups lead to an anomal hi hat th . f f neiahb
Non-Abelian duality transformations have been generalize 's means that the expansion of a congruence of neighbor-
ing null geodesics has to be finite. For geodesics with tangent

to Poisson-LieT duality which allows to find dual space- ector parallel ton“—=eM’2)  the exoansion is given b
times even with respect to the nonsemisimple groups thal <! 5/2 Y U v P 9 } W
were excluded for non-Abeliafi duality [16]. However, here +#=€"“(e" "), /e " and equivalently for those with tan-
the focus will be on the standard non-Abelifduality pro- ~ gent vector parallel to*=e"/, the expansion is given by

cedure[11]. p+p=—eV?eY) /e Y [18]. Herex andp are Newman-

In [11] a T-duality transformation for backgrounds with
non-Abelian isometries was proposed. However| 1i#]] an
example, namely, a Bianchi V cosmology was given for
which this transformation does not lead to another consiste
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Penrose spin coefficients. Therefore assuming éff&t and  Using that®,,=0 in vacuum it follows thah;= —h,,.

eV are bounded, the Penrose linfit.3) of the metric(2.1) The AbelianT-duality transformationg1.5 take a par-
leads to a plane wave space-time with all functions just deticularly simple form in terms of the functiong andZ when
pending on one of the null coordinates, sayHowever, in  applied for¢=0 andB,,=0. The functionM remains in-
general the null coordinate will not be an affine parametervariant under this duality transformatiom.duality with re-
Therefore in the following it is assumed that after taking thespect to the Killing vectos, results in

Penrose limit a new null coordinate= fe M du has been _

introduced. For plane waves, traveling indirection, the 7U,_Z+Z 2/ — U
only nonvanishing null tetrad component of the Weyl tensor e = 2 =€
is given by[18]
Zu—U,Z (Z,)? ! i(z 2), ¢'=-1 2e 7 (2.9
- =—(Z2-2), =—In——. .
—— 22— (2.2 V2 Z+7

Z+7Z (2+2)?
o o The metric is diagonal and hendg;=¥,+®,, and h,,
The only nonvanishing tetrad component of the Ricci tenso=¢,,— ¥, which yields to

is given by
z+z |\ z+z  \"?
! g Dl S } el }
¢'22:Z 2U = (Uy) _4(—— 2.3 _ _ uu __ _ uu
11 747 J 172 22 747 N 172
In analogy with electromagnetisri¥, can be written as 2 © 2 ©

¥,=A€, whereA is the amplitude and is the polariza- (2.10
tion of the gravitational wavgl8]. ThereforeW, determines _ . o
the profile of the wave. It is interesting to note that the Brink- | nerefore if the seed metri@.1) is diagonal then the wave

mann form of the metric can be read off fron, and®,,. profile in the direction orthogonal to the Killing direction
The Brinkmann form is given by along which theT-duality transformation is taken remains

invariant.
ds?=2dudV+ (hy X2+ 2h X Y+ hy,Y2) du?—d X2 —d Y?, T duality with respect to the Killing vectod, results in
(2.9 _
_y Z+Z LU
whereh;; are functions ofi only. The Weyl and Ricci tensor P— =
! . 277
components are given Ky 8]
. P77 -u
W,=3(hy—hypt2ihyy),  @5=73(hythy). (2.5 ;yzl__z _Z ¢>’=—In( 2e _77|. (.11
. iy o 2 77 Z+Z
Therefore calculating these quantities for the Einstein-Rosen
form (2.1) allows to read off the profile of the gravitational The wave profile is given by
wave, hjj, in the Brinkmann form.
Assuming that the metri2.1) describes a vacuum space- 747 12 747 \¥?
time, the following Brinkmann form for the resulting plane ——e Y ——eY
wave in the Penrose limit is obtained: 227 uu 227 wu
hyy=— = 172 hyo=— = 72 -
207V 2 Zr2 o 22
= — 277 277
_ h\2rz) ly 11Z-2)] (2.12
WS T e 02 4 (7572 (2.9
_ Again it is found that in the case of a diagonal seed metric
Z+Z the wave profile stays invariant in the direction orthogonal to
the Killing direction along which th&-duality transforma-
i (Z=2)yu—VUy(Z-2), (Zy)?—(Z,)? tion is taken.
hi=—5 o -, The structure of the dual backgrount&9) and (2.11)
Z+Z (Z+2) shows that the dual of a plane wave is again a plane wave.
20 Since plane waves are exact classical string vacua this im-
— 12 plies that AbelianT duality relates in this case two exact
Z+Ze, classical string vacua. Choosing a null geodesic in the
2 w3 [(Z—Z)u]z (t,2)-plane wherai=t—z,v =t +z, with za longitudinal co-
hoo=— — 77 1 = (2.8  ordinate and a timelike variable, the radial Penrose limit is
Z+Zeu) (2+2) found by the limiting procedurél.3) for u—u,v—Q%, x
2 —Qx,y—Qy. Effectively this reduces all functions, i.e.,
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TABLE I. Bianchi backgrounds and their duals. The second and third column give the functiamdZ
of the Bianchi model in the first column. The last column denotes to which Bianchi model a given Bianchi
model is related to using either tileduality transformation2.9) or (2.11). KS (open/closefldenotes the
Kantowski-Sachs model with open or closed spatial sections. The last entry was already fiagduising
string cosmologies with a dilaton and antisymmetric tensor field strength as seed backgrounds similar but
different relations were found if24].

Bianchi type eV z Relationship
aQ (2.9
1 aja, — +iz T
21
2
883 . ag(f+x) (219
[\ a,age® — STl > vV — VI_,;
astag(f+x)-  ay+as(f+x)
ag (2.9
\% a,aze’ =
233 2 Vo VI
(2.19
Vo VI,
ay @9
V|_1 ajan a—l V|,1*> Vv
2 .
a,a3 coshy ) agsinhy (2.19)
LRS Vil a,a; coshy —i -
aZcostty+aisintfy a2 coslf y+a3sinty LRS Vil KS (open
2 .
a,a; cosy . agsiny (219
LRS IX a;33 CoSy LRS IX — KS (closed

i
a’coSy+assirty acosy+assirty

M(u,v), Z(u,v), andU(u,v) to functions ofu only, which ~ and Tsoubelis found a solution, which, incidently, describes a
is equivalent to considering the limit—0 [20]. Hence ob- Plane wave, fora,=a; [21]. No spatially homogeneous
taining first the radial Penrose limit and then applying Abe-background was found when theduality transformations
lian T duality yields the same as dualizing first and then(2.9 and(2.11) were applied to backgrounds of Bianchi type
obtaining the Penrose limit of the dual space-time. VIV, namely, to the Lukash-type meti@2]. Bianchi

Different spatially homogeneous backgrounds can be reodels I-VIl, LRS VI, and LRS IX have two-dimensional
lated to each other using the Abelidnduality transforma- Abelian subgroups. Therefore they can be written in the form
tions(2.9) and(2.11). Therefore the Penrose limits of various ©f metric (2.1). The results are summarized in Table |.
Bianchi cosmologies are related by duality.

Isometries of spatially homogeneous metrics in four di- Examples

mensions are described by three spacelike Killing vectors tha kasner metric describes a homogeneous but aniso-

thgt' form an a!gebra. In total there are nine different typegtropic universe. Adapted to the Gsymmetry the Kasner
originally classified by Bianchicf., e.g.[17]). They fall into metric can be written agsee, for examplé25])
two classes, A and B, according to whether the trace of the '

group structure constants vanishes or not. Bianchi types |, I, dSZZt(pz—l)/2(dt2_dZZ)_tl+ Pdx2—tLPdy?,
VI_q, Vllg, VI, and IX are of class A whereas Bianchi (2.13
types Ill, 1V, V, VI, and VI, are of class B.

Bianchi class A models can always be described by avhere p is a constant. Close to the initial singularity the
diagonal metric in the invariant basis, i.eds’=dt®  metric (2.1) is well approximated by a Kasner metric with
—gijj(t)w'w’, where ' are the invariant basis one forms, space-dependent Kasner exponents. In this pdseomes a
satisfyingde' = 5 Cj, 0!\ andC}, are the group structure function of z (cf., e.g.[26]). Introducing null coordinates
constants. Furthermore the metric is assumed to be of thet—z y=t+z, taking the radial Penrose limit and finding
form g;; = diag@?(t),a3(t),a3(t)). A Bianchi type-V back- an affine parametar results in the following wave profiles:
ground can also be described by a diagonal metric. However,
for Bianchi type IV a nondiagonal metric is required. In or- hmm= KmU ™2, (2.14
der to investigate its behavior under the duality transforma-
tions(2.9) and(2.11) the ansatz of Harvey and Tsoubdzd] ~ Where m=1,2 and «, is constant, x;=—«,=—p(1
was used. Namely, ol=a,0! 02=a,02,0°=asfw? —P?)/(p*+1)* for the seed metric(2.13, w;=—(p
+asw®, wherea; andf are functions of the timelike variable +1)(p?+p+2)/(p?+1)2, k,=«$* for the dual space-
t only. o' are the basis one forms in the orthnormal frametime (2.9, and x;=«{*®®, x,=(p—1)(p?—p+2)/(p?
ds?= N0t a”, with 7, the Minkowski metric. Harvey +1)? for the dual space-timé2.11). Hence in general, the
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wave profiles show a~* dependence. This was also found SL(2R) invariance of the axion and dilatdi30] allows to

in the radial Penrose limit of the flat Friedmann-Robertsonreduce this solution to a pure dilaton solution which has
Walker space-time and the near horizon limit of the fundaeffectively the energy-momentum tensor of a stiff perfect
mental string 5]. _ _ _ _ ~ fluid (2.19. In this case, the symmetries of string cosmology

Models (2.1) for which Z is real or the imaginary part is have been used as solution generating techniques in standard

subleading compared to the real one evolve at late times intelativity. This is possible due to the fact that a massless
the Doroshkevich-Zeldovich-Noviko¢DZN) universe[27]. scalar field behaves as a stiff perfect fluid.

This is an anisotropic spatially homogeneous background The Penrose limit and the resulting plane waves are found
with an effective null fluid due to gravitational waves. The py introducing the null coordinates=t—r,v=t+r. The

DZN line element is given by final expressions are given in terms of the nonaffine param-

eteru. For the solution2.17) the amplitudes are given b
ds?=e2(di2—dx2)— 19+ 1dy?~ 1192, (2.19 et P gren by

- —(a%/2)u?
whereq is a constant. Choosing null coordinatest—x, hy= aZe—
v=t+x taking the radial Penrose limit, finding the affine cosH(au)
parametewn, the wave profiled,,, are obtained as follows: [ -3 cosh(au)— ausinhau)coshau) + 6]

hmm= amu = 2(Inu) %[k +Inul, (2.16
—(a212)u?

wherem=1,2 anda,, and ,, are constante;=(q+1)/2, h,,=a? [aucoshau)+6 sinfau)],
Kki=(1-q)/2, and ap=(1-q)/2, r=(1+q)/2 for the costt(au)
seed metrid2.19. a;=—(q+1)/2, k;=(g+3)/2 anda, (2.20

_ _(seed _ (seed _ti .
- a(Zseeq KT 'igeed for the dual space-timé2.9. a, andh,,= —hy;. The amplitudes are regular everywhere. The
=ay 7, k=« and a;=(q-1)/2,k;=(3-Q)/2 for  y4dial Penrose limit of Eq2.18 results in a plane wave with

the dual space-timé.11). profile
There are a few known nonsingular solutions with G
symmetry (cf. [19,28,29). Since in view of theT-duality o~ (a%2)u?
transformations nondiagonal solutions are of particular intert,,=a?—————[ausinh(au)coshau) + costf(au) — 3],
est, the nondiagonal solution given[i28,29 will be inves- costf(au)
tigated. In the vacuum case, the line element can be written
as, using the coordinates [#9], e (%12
h,,=a?————[aucosiau) + 3 sinau)]sinhau).
ds?=e"’ cos{2at)(dt?—dr?)—r2 cos 2at)d 2 costf(au) 223
- m(dﬁ ar?de)?, (2.17  The wave profile is regular everywhere. The expressions for

the amplitudes of the dual wave obtained from applying Abe-

wherea is a constant. Whereas tieduality transformation !1an T duality with respect ta@, (2.11) are rather lengthy and
with respect tod, leads to another nonsingular background, &€ given in the Appendix. The different wave profiles are
the T-duality transformation with respect t@, leads to a SPOWn in Fig. 1. It is interesting to note that ority, be-
singular background. In particular, tHeduality transforma-  €OMes singular fou—0 for the wave obtained from the

tion (2.9) leads to T-duality transformation(2.11). Close to the singularity at
u=0 h,, behaves a#,,~u"2. This causes a strong curva-
d52=coshzat)[eazrz(dtz—drz)—dzz— r2de?], ture singularity to develop. In the approach to the singularity
the string couplingg®=e? diverges asu™?. Therefore the
#=Incosk2at), Bw:arz. (2.18 exlpgnsion to lowest order in the string coupling is no longer
valid.

It is interesting to note that the application of Abeli@n
duality and theSL(2,R) invariance of the axion and dilaton I1l. NON-ABELIAN T DUALITY
[30] shows that the solutiof2.17) can be generated from a

diagonal solution with a stiff perfect fluid as matter source, 1heT dual with respect to a non-Abelian group of isom-
namely[31] etries is found by gauging the two-dimensiowamodel ac-

tion, integrating over the introduced gauge fields, and gauge
(B)gg2= eazrz(dtZ_ dr?)—dZ2—r2de?. (2.19 fixing the obtained actiofiL1]. Before gauge-fixing this leads
to a dual action of the formil1] in the notation of12]
This metric is obtained from Eq2.17) by first applying the
T duality transformation(2.9) and then transforming to the
conformally related Einstein framg,,,— ®g,,=e %g,,,.
The T duality transformatior(2.9) also creates a nonvanish-
ing antisymmetric tensor field,,. However, using the where

1 _ _
S =S+ o f d?z(A7u,+Aus+A"m A%, (3.
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(@) (b) © (d)
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FIG. 1. () gives the wave profileb, (thick line) andh,, (thin line) of the plane wave in the radial Penrose limit of the nonsingular
nondiagonal metri¢2.20. (b) is the wave profile of the plane wave found by duality with respect,t¢2.21) [h4; (thick line), h,, (thin
line)]. (c) showsh,; and(d) h,, of the wave profile of the plane wave found by duality with respecitas given in the AppendixAl).
a=1 for all figures.

U= — X+ XM (Gun+B N whereU, V, andW are functions ofu only. This metric ad-
g 0 (Gunt Bun) &5 mits five Killing vectors[18]
Uy= X, + &Y (Gyn+Bun) aXN,
vy Sy MR N b=0y, &E=0y, &=0,,
M, 5= C Xy + eV (Gyn+ Bun) €Y, (3.2
R £4=Xd,+ P_(U)dy+N(U)d,
where greek indices are group indices and latin indices are
target space-time indice§y is the metric on the target Es=Y3d,+ P, (U)dy+N(U)d,, (3.9)
space-time andy,y is the antisymmetric tensor fiel& is

the originalo-model action(1.4). X, are Lagrange multipli- where P. (u)=feY"Vcoshwdu N(u)=feYsinhwdu All
ers introduced to keep the gauge connection flat. Dependingbmmutators vanish except fqr;,&,]=¢&; and [£,,&5]

on the gauge fixing they can become coordinates in the £;. With [fafﬁ]zcﬁgfw the only nonvanishing group
T-dua! background. : . structure constants are given 6y,=1=C3;. There are two
To investigate whether taking the Penrose limit and d”a"semisimple subgroups, G,={&;,&,&) and G,
izing the background space-time are commuting procedureg{gz,gsygs}. In the following non-AbelianT duality with

\Q’e l?eed tg fl'_rr]]d the r_lon]:Abelhaﬂi dual of a pllane V\E)ave _respect to the subgroup, will be considered. Furthermore,
ackground. The metric of a plane wave can always be Writy; i he assumed that the dilaton and the antisymmetric

ten in the following form: tensor field vanish, i.e¢p=0,B\,y=0.

d?=2dudv —eY(e¥ coshwdx— 2 sinhwdxdy The first step to find the non-Abelian dual with respect to
the subgrougs,, following the procedure of11], is to cal-
+e Vcoshwdy?), (3.3 culate the matrixm. It is found thatm is given by
|
Gy 0 X+ GyxP-+GyyN

~Xg+P_ Gyt NG,y 0 Gy P?+2NP_G,y+Gy N

The null Killing vector &5 leads to a singular part in the ds?=dr2+r2de>3. (3.6)
T-dual action. This yields a singular space-time that is sin-

gular everywhere if one tried to integrate over the gaugerhe T dual with respect to the isometily=d, is given by
fields. Something similar happens in the case of Abelian

duality if the isometry has a fixed poifi82]. In the case of ds®=dr2+r 2d6>. 3.7

the Euclidean two-dimensional black hole the horizon, on

which the timelike Killing vector becomes null, is inter- The dilaton is given byp= —Inr2 The background becomes
changed with a curvature singularity in thiedual back- singular atr =0 which is exactly the point at whicli?=0.
ground[33]. It can also be seen in a straightforward mannenn the case of the plane wave space-time the Killing vector
in the example of th& dual of a two-dimensional plari&4], &5 is null everywhere. Even though the other two Killing
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vectors ofG; are not null, theT-dual space-time is singular ~If the resulting plane wave space-time in the Penrose limit
everywhere. Furthermore, th&dual dilaton is given by does admit additional Killing vectors then one might con-
[11,17 sider the non-Abeliad dual with respect to these. In prin-
ciple, it might be possible that for a particular case the non-
¢'=¢p—logdetm, (3.8  AbelianT dual is again a plane wave and furthermore that
taking the Penrose limit and taking the non-AbeliBilual
which is singular everywhere in tiedual background since commutes. However, as mentioned above, the examples that
detm=0. have been found so far are such that the non-Abdliaal
Both non-Abelian subgroups;; andg,, of the group of of a plane wave is not a plane V\_/a[&7,15_|- Assuming th'at
motions of a simple plane wave space-time contain one nuiihese plane wave space-times with addltl_on_al symmetries are
Killing vector. Therefore using the procedure[dfl] to find the result of_taklng a particular Penrose limit of some space-
the non-AbelianT dual of a pure plane wave results in a fime then this would be another example of the noncommu-
singularT-dual background. Nevertheless, since the effectivdativity of taking the Penrose limit and taking the non-
metric is built out ofGy,y andBy,y, taking a nonvanishing AbPelianT dual. _ . _
antisymmetric tensor field,, into account might lead to a ~ AS an example a vacuum Bianchi Il cosmology will be
T-dual background that is not singular everywhere. Howeverconsidered. Its metric is given by
a constanB field is not enough since its Lie derivatives in
the direction of the Killing vectors of the isometry group in ds’=—dt?+a3(dx—zdy)®+asdy?*+a3dz, (3.9
general do not vanish. In that case, further terms have to be
taken into account in th&-dual action(3.1) [35]. o
Another possibility to find non-Abeliafl duals of a plane Wherea;=a; (1t) [38]. The only nonvanishing group structure
wave that are not singular everywhere arises if the plan€onstant isC3;=1 [17].
wave space-time admits additiorfabn-nul) isometries. For In [12] the non-AbelianT duals of spatially homogeneous
example, the WZW model d36] admits an additional non- backgrounds have been found. The transformed metric, anti-
semisimple group. Non-Abeliafi duals with respect to these Symmetric tensor field, and shifted dilaton are given by
group have been found [137,15. In both cases it was found
that non-AbelianT-duality transforms the original plane
wave space-time into a background that is not a plane wave.
Other examples, of plane wave space-times with addi-
tional spacelike isometries are the solutions[2£] which B=—(y—B—x) HB+r)(y+B+r) ],
admit Bianchi type IV. However, since the Bianchi IV is a
nonsemisimple group it is not possible to use the procedure
of [11]. In that case one would have to apply Poisson-Lie $=p—logdetk+ y+ ), (3.10
duality to find an equivalent solutigri6].
In the Penrose limit any space-time can be approximated h . i i trix _defined b
around a null geodesic by a plane wave metric. If the result/"€T€ « 1S an an 'SYmme r_'c matrix - define ) ¥ap
ing plane wave is such that it does not admit isometries ir=CapXy- X" are coordinates in the dual space-tinyg,(t)
addition to the isometries of the plane wajd. Eq. (3.4)] IS the metric in the invariant basis on hypersurfaces of con-
then the non-Abeliar dual using the procedure §11]is  Stant time,ds’=—dt*+y,,(t) 0*w", andB,,(t) describes
singular everywhere. The structure of the resulting plandhe antisymmetric tensor field in the synchronous frene
wave depends on the particular null geodesic which was=B,.(t)@*/\w”. Furthermore,dw®=3Cj, 0"/ \w”. For
taken to obtain the Penrose limit and the symmetries of th&ianchi type-A modelsy,,,(t) is diagonal, namelyy,,,(t)
original space-time. As was shown [if] the number of lin- =dia@a§(t),a§(t),a§(t)).
early independent Killing vectors of the Penrose limit space- Applying the non-AbelianT-duality transformatior{3.10
time is at least as large as may@D—3), wheren is the to the Bianchi Il vacuum backgroun@®.9) yields
number of linear independent Killing vectors of the original
space-time an@® is the space-time dimension. R S 2 2 o q
On the other hand, the non-Abelidhdual using the pro- ds’=—a, *(dy’~dx’) +1[(aa5) "+ x°]
cedure of 11] of a cosmological space-time admitting space- X (a2dy?+a2d ),
like Killing vectors is in general not singular everywhere.
For spatially homogeneous backgrounds general expressions
have been given for the non-Abelidndual [12], as will be X
discussed below. Thus, taking the Penrose limit of this non- ~ ¢=—In[(a;a,85)°+aix?], By,=— ———>——.
AbelianT dual results in a plane wave. Therefore, comparing (a83)"+X
this with the resulting singular space-time obtained from the (3.17
non-AbelianT dual of a plane wave without additional isom-
etries, it can be concluded that in this case taking the Penroséhis metric is no longer of Bianchi type Il. It admits two
limit and taking the non-Abeliaif dual are not commutative Abelian Killing vectorsd, ,d,. Introducing null coordinates
procedures. u=n—X,v=7n+X, the radial Penrose limit is found to be

G=(y—B—x) Yy(y+B+Kx) ",
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- 1 u?]t B=(a%aZaZ+a’x?+aZy?+az?) !
ds’=— —dudv + (3233)2+Z (a2dy?+a2d2?), (@525 ag 2y asz)
1 0 asz—2exy —asy—2exz
2 y x| —adz+2exy 0 +a’x ,
d=—1In (a1a2a3)2+afz , I:’:yz=—uz, a2y +2exz Fa’x 0
24—
2(a2a3) + 2 (3_13
(312

$=—log(aza3a3+a’x?+asy’+a3z?), (3.16

wherea;=a;(u).
Next we will consider the radial Penrose limit of the Bi- \yharec=1 for Bianchi IX ande=0 for Bianchi VIII. This
anchi Il cosmology3.9) written in the form(2.1). The met-

. : ) o background could be interpreted as an inhomogeneous gen-
ric (3.9 admits the following three Killing vectorgl7]:

eralization of a Bianchi | background. For small valuexof
y, andz the spatial part imposes a small perturbation on a
§1=0x, &2=0dy, £3=0dTYox. (313  Bianchi | background. The vacuum Bianchi IX metric with
) ) ] three different scale factors is the Mixmaster model which
Introducing null coordinatesi=»—z,v=7y+z, rescaling  shows chaotic behavior. However, the evolution of the scale-
according to Eq. (1.2) and finding the limit actors can be approximately described by a succession of
lim,  Q%£,(Q), where A,eR [5], it turns out that, Kkasner epochs, each of them determined by a set of Kasner
whereast; andé¢, stay unchanged;; becomes the null Kill- ~ exponents &, , a,, a3) (cf., e.9.[40]). The Kasner metric is
ing vectord, . In addition, there are the two Killing vectors given by ds’= —dt?+t?*1dx?+t?*2dy*+t?*3dZ?, and, in
&, and &. Hence, there are no additional isometries to thevacuum, the exponents satismai=1=2iai2. Using such
pure plane wave isometri€3.4). Therefore, the non-Abelian a solution in the expressions for the scale factors of the seed
T dual can only be found with respect to one of the sub-vacuum Bianchi IX metric one finds that the initial singular-
groups G; or G,, respectively. As was shown above, this ity persists in thel-dual background. Furthermore the metric
leads to a dual background that is singular everywhere. Howis approximately diagonal, with the new scale factors being
ever, the Penrose limit of the non-Abelidn dual of the 1/a;. Hence there will be also Mixmaster oscillations in the
vacuum Bianchi Il cosmology3.12 only becomes singular dual background, though due to the presence of the scalar
locally. Thus, in this case, taking the Penrose limit and findfield and the antisymmetric tensor field these will cease after
ing the non-AbelianT dual are not commutative procedures. a finite number of oscillationgt1]. Furthermore close to the
Finally, some comments on non-Abelidhduality as a  singularity theT-dual universe enters into a strongly coupled
solution generating technique will be made. In the last secregime, since the string coupling?=e?" diverges fort
tion it was shown that Abeliad duality can be used to _. .
connect solutions to general relativity of varying degree of The T-dual background is very inhomogeneous though it
generality. Basically, starting with one solution a more genis also rather special, since the spatial dependence is com-
eral solution was found. In general relativity the approach topletely fixed and does not allow for arbitrary constants, as it
the initial singularity is still an open questidfor a recent s the case for the scale factagt).
account, se¢39]) which is partly due to the fact that there

are no known general solutions. The majority of known so-

lutions admits some kind of symmetries. However, due to the IV. CONCLUSIONS

nature of non-AbeliarT duality most of the symmetries of In the Penrose limit any space-time in the vicinity of a
the original space-time will be broken in thedual back-  nyll geodesic can be approximated by a plane wave. Since
ground. Therefore, one might use these transformations tgjane waves are exact classical string vacua this might help
generate very general solutions which admit, if at all, onlyto connect cosmological solutions to an underlying string
few isometries. This will be discussed with the example Ofvacuum_ There are On|y very few known exact solutions that
Bianchi VIII and IX as seed metrics. These are the moshave a cosmological interpretation and these are very far
general spatially homogeneous metrics. Furthermore, thefway from describing our observable universe. Since plane
group structure is semisimple. The group structure constantgaves are classical string vacua it makes sense to find a first
are given byC3,= +1,C5,=1,C3,=1, where the upper sign quantized theory of a string propagating in these back-
corresponds to Bianchi IX and the lower one to Bianchi VIII. grounds. This has been studied in particular for singular

The non-AbelianT-duality transformatior{3.10 yields to backgrounds with wave profiles following a power law in the
null coordinatd42]. Here it was found that this type of wave
G=(a%a3a3+aix’+azy’+a3z%) ! profile occurs for the radial Penrose limit of a Kasner uni-
22 o verse, whose scale factors are following a power law in cos-
azazt+Xx Xy *xz mic time. For space-times with more general functional be-
5 +xy a§a§+y2 yz ’ (3.14) havior different types of evolution were found. In particular

> the wave profiles of the plane wave obtained in the radial
*Xz yz §a2+z Penrose limit of a nonsingular cosmological solution were
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determined. Here it might be interesting to study the firstfar only relate plane wave space-tim@sth additional isom-
quantization of a string propagating in this background.  etrieg with backgrounds that do not describe plane waves.
Low energy string theory admits a number of symmetriesHere it might also be interesting to discuss these issues in the
These have been used to find more exact solutions, thedontext of Poisson-Lid duality.
corresponding Penrose limits and wave profiles. In addition The type of p|ane wave that is obtained in the Penrose
relationships between different spatially homogeneous backimit depends on the null geodesic around which the Penrose
grounds have been found. This is interesting from the poinfimit is taken and on the isometries of the original space-
of view that AbelianT duality and taking the radial Penrose time. For the class of backgrounds that lead in the Penrose
limit are commuting procedures. Furthermore using Abelianjmit to plane wave space-times with no additional isometries
T duality and theSL(2,R) invariance of low energy string it was shown that the non-Abelighdual is singular every-
theory it was found that the nonsingular nondiagonal soluwhere. Therefore for this class of solutions taking the Pen-
tion [28,29 can be reduced to a diagonal static solufi8hl.  rose limit and applying a non-Abeliaf-duality transforma-
This shows once more that the symmetries of low energ¥ion are not commutative procedures. This is in contrast to
string theory can be used to learn more about solutions ifhe case of Abeliai-duality where it was founfil4] that, in

general relativity. general, the dualization procedure and taking the Penrose
The non-AbelianT dual of a vacuum plane wave space- |imit do commute.

time has been investigated in detail. It was found that if there  Finally, the role of Abelian and non-Abeliah duality as

are no additional isometries then duaIiZing with reSpeCt t050|ution generating techniques has been discussed. In par-
one of the semisimple subgroups of isometries of the plan@cular, non-AbelianT duality was used to find more general
wave leads to a-dual background that is singular every- jnhomogeneous solutions which can be interpreted as inho-

where. The reason for that is the presence of a null Ki”ingmogeneous genera“zations of a Bianchi | Cosmo|0gy'
vector in each subgroup. This is similar to what happens in

Abelian T duality. If there are additional isometries one

might find non-AbelianT-dual backgrounds that are not sin- ACKNOWLEDGMENTS
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APPENDIX: THE PROFILE OF THE DUAL WAVE OBTAINED FROM EQ. (2.17 WITH EQ. (2.1)
The dual wave profile resulting from applying E@.11) to the background2.17) is given by
a®u® sinh(au)coshiau) — a*u*[cost(au) + 3]+ 16a%u? cosi(au)[ 2 cosK(au)—3]

e—(azlz)u2
cost(au)[ 4 cosi(au) + a?u?]?

hll: 8.2

L 16ausinh(au)cost(au)[ costf(au)+ 6]+ 48 cosi(au)[2— costf(au)]

cost(au)[ 4 cosi(au) + a?u?]?

a’u’ sinh(au)coshau) — 3a®u[ costt(au) + 1]+ 16a*u’ cost(au)[ cost(au) — 4]

u’cost(au)[4cosh(au)+a?u?]?

hpy= e—(azlz)u2

- 16a%u® sinh(au)cosk(au)[ 8+ costf(au)]80au? costf(au) _ 128u sinh(au)cosit(au)+ 128 cosfi(au)

u’cost(au)[ 4 cosK(au) +a?u?]? u® cost(au)[4 costf(au)+au?]?
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