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T-duality and Penrose limits of spatially homogeneous and inhomogeneous cosmologies
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The Penrose limits of inhomogeneous cosmologies admitting two Abelian Killing vectors and their Abelian
T duals are found in general. The wave profiles of the resulting plane waves are given for particular solutions.
Abelian and non-AbelianT dualities are used as solution generating techniques. Furthermore, it is found that,
unlike the case of AbelianT duality, non-AbelianT duality and taking the Penrose limit are not commutative
procedures.
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I. INTRODUCTION

The low energy limit of string or M theory admits a va
riety of cosmological solutions. In four dimensions, the
string cosmologies differ from cosmologies derived fro
general relativity due to the presence of scalar fields
form fields ~see, for example@1#!. In analogy with standard
cosmology, string cosmologies, as well, generically have
initial space-time singularity. Close to any singularity t
low energy approximation breaks down and the full string
M theory is needed. However, in general it is not clear h
to relate the solutions of the low energy limit to exact stri
solutions and if this is at all possible. Plane waves are kno
examples of exact classical string vacua@2#. This means that
they are exact to all orders in the string tensiona8. Recent
developments in string or M theory have led to renew
interest in an argument by Penrose@3# showing that all
space-times, locally, in the neighborhood of a null geode
have a plane wave as a limit@4,5#. Therefore, in the Penros
limit, any space-time can be related to an exact class
string vacuum. For some of the plane wave backgrou
descriptions in terms of~solvable! conformal field theories
have been found, which determine the spectrum of str
excitations and their scattering amplitudes@6#. Recently, su-
perstrings in plane wave backgrounds have been also
cussed@7#.

Duality transformations relate different string bac
grounds. The new solution leads to consistent string pro
gation if conformal invariance is preserved. Here, dua
transformations to the lowest order ina8 will be used as a
generating technique to find new solutions to Einstein eq
tions coupled to a dilaton and antisymmetric tensor field.

AbelianT duality allows us to transform backgrounds a
mitting at least one Abelian isometry into another bac
ground of this type. The transformation changes the me
antisymmetric tensor field and the dilaton while keeping
Abelian isometry of the background@8–10#. Similarly, non-
Abelian T duality transforms backgrounds with non-Abelia
isometries. However, in this case the non-Abelian isome
might be lost during the transformation. Therefore ba
grounds without any kind of symmetry might be related

*Email address: Kerstin.Kunze@physik.uni-freiburg.de
0556-2821/2003/68~6!/063517~10!/$20.00 68 0635
d

n

r

n

d

c,

al
s

g

is-

a-

a-

-
c,
e

y
-

ones admitting non-Abelian isometries@11–13#. With the ex-
tra fields being constant~or zero! general relativity is a par-
ticular solution of low energy string theory. Most of the s
lutions of general relativity admit some kind of Abelian o
non-Abelian symmetries. Therefore using Abelian and
non-AbelianT duality new solutions to string cosmology ca
be found. This has led already to a multitude of solutions@1#.
However, in addition to finding new solutions of string co
mology it should be noted that these symmetries can also
used as solution generating techniques within standard
eral relativity.

Using T-duality transformations a given background c
be connected to a variety of different string cosmologies.
the Penrose limit all of these reduce to a plane wave sp
time. Therefore, it might be worthwhile to see if the resulti
plane waves are connected by aT-duality transformation, or
in other words, whether taking the Penrose limit and dua
ing are commutative.

In the following, the Penrose limiting procedure and Ab
lian and non-AbelianT dualities are briefly reviewed. Ac
cording to@3# anyD dimensional metric in the neighborhoo
of a segment of a null geodesic containing no conjug
points can be written as@5#

ds25dudv1adv21(
i

b idvdxi1Ci j dxidxj , ~1.1!

wherea, b i , and Ci j are functions of all coordinates an
i , j 51,2, . . . ,D22. Following Penrose the coordinates a
rescaled by a constant factorV.0,

u5ũ, v5V2ṽ, xi5V x̃i . ~1.2!

Taking the limitV→0 of ds̃2/V2 gives the behavior of the
metric in the neighborhood of a null geodesic. In this casũ
is an affine parameter. Gu¨ven@14# extended the Penrose lim
to include other fields, such as gauge and scalar fields
summary, for a scalar field, e.g., the dilatonf, the antisym-
metric tensor fieldB5BMNdXM`dXN, and the metric be-
havior in the Penrose limit is given by
©2003 The American Physical Society17-1
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f̂5 lim
V→0

f~V!,

B̂5 lim
V→0

V22B~V!,

dŝ25 lim
V→0

V22ds2~V!, ~1.3!

where the argumentV denotes the rescaling of variable
~1.2!.

Duality symmetries relate different string background
Abelian T duality is a symmetry with respect to an Abelia
Killing direction. T dualities are derived from the two
dimensionals-model action given by

S5
1

4pE d2zH ]XM@GMN~X!1BMN~X!#]̄XN

1
1

2
R(2)f~X!J , ~1.4!

whereM ,N50, . . . ,d, XM[(t,Xm) (m51, . . . ,d) are the
string coordinates,R(2) is the scalar curvature of the two
dimensional worldsheet, andGMN , BMN , and f are func-
tions ofX. Choosing coordinates$xm%5$x0,xa% such that the
Abelian isometry acts by translation ofx0[u and all back-
ground fields are independent ofu. The T-duality transfor-
mation is found by gauging the Abelian isometry and th
introducing Lagrangian multipliers in order to keep t
gauge connection flat. These Lagrangian multipliers are p
moted to coordinates in the dual space-time. Dual and or
nal quantities are related as follows@8,9#:

G008 5
1

G00
, G0a8 5

B0a

G00
, Gab8 5Gab2

Ga0G0b1Ba0B0b

G00

B0a8 5
G0a

G00
, Bab8 5Bab2

Ga0B0b1Ba0G0b

G00
. ~1.5!

The dilaton is shifted to

f85f2 logG00. ~1.6!

In @11# a T-duality transformation for backgrounds wit
non-Abelian isometries was proposed. However, in@12# an
example, namely, a Bianchi V cosmology was given
which this transformation does not lead to another consis
string background since the~low energy! b function equa-
tions are not satisfied. In@13# it was shown that in the cas
that the group of isometries of the background is not se
simple, which is the case for Bianchi V, a mixed gauge a
gravitational anomaly is present. However, in@15# it was
found that not all nonsemisimple groups lead to an anom
Non-Abelian duality transformations have been generali
to Poisson-LieT duality which allows to find dual space
times even with respect to the nonsemisimple groups
were excluded for non-AbelianT duality @16#. However, here
the focus will be on the standard non-AbelianT-duality pro-
cedure@11#.
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In general, it is not possible to write explicitly the gaug
fixed action. Thus the dual fields cannot be presented
closed form as it was possible in the Abelian case@cf. Eqs.
~1.5! and ~1.6!# @11#.

In the following spatially homogeneous and simple inh
mogeneous cosmologies will be investigated. The co
sponding metrics admit three or two Killing vectors, respe
tively. Whereas the former admit non-Abelian isometries,
latter are Abelian. Therefore the structure is rich enough
apply Abelian and non-AbelianT dualities. The observable
universe on large scales is well described by a Friedma
Robertson-Walker universe which is a particular case o
spatially homogeneous universe. However, with a view
the question of initial conditions more general cosmolog
deserve further study as well. The spatially homogene
models were first classified by Bianchi into nine differe
types ~cf. @17#!. Bianchi models I–VII, locally rotationally
symmetric ~LRS! VIII and LRS IX have two-dimensiona
Abelian subgroups. Therefore these can be described in
same fashion as spatially inhomogeneous space-times ad
ting two Abelian Killing vectors.

II. ABELIAN T DUALITY OF G2 COSMOLOGIES
AND THE RADIAL PENROSE LIMIT

G2 space-times admit two Abelian Killing vectors. Thu
spatial homogeneity is broken along one spatial direction
general these metrics can be written as@18#

ds252e2Mdudv2
2e2U

Z1Z̄
~dx1 iZdy!~dx2 i Z̄dy!,

~2.1!

whereM andU are real andZ is a complex function of the
two null coordinatesu and v. Therefore these space-time
~2.1! are conveniently described in terms of a null tetrad.

Introducing coordinatest5u2v,r 5u1v, say, makes the
line element~2.1! similar to that of a cylindrical space-time
In that case,r could be interpreted as the radius of the c
inder. Geodesics in cylindrical space-times have been inv
tigated in connection with nonsingular solutions in@19#. Al-
though due to the presence of two Abelian Killing vecto
there are two constants of motion in the set of geodesic eq
tions the general solution is not straightforward to find a
one has to specialize to certain types of geodesics. For ra
geodesics the constants of motion are zero and explicit s
tions can be found in closed form. Furthermore, the cha
to adapted null coordinates is not obvious. Therefore, in
following, only Penrose limits around radial null geodesi
will be investigated.

The limiting procedure of Penrose@3# can be applied
along a segment of a null geodesic without conjugate poi
This means that the expansion of a congruence of neigh
ing null geodesics has to be finite. For geodesics with tang
vector parallel tonm5eM /2]u the expansion is given bym
1m̄5eM /2(e2U)u /e2U and equivalently for those with tan
gent vector parallel tol m5eM /2]v the expansion is given by
r1 r̄52eM /2(e2U)v /e2U @18#. Herem andr are Newman-
7-2
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Penrose spin coefficients. Therefore assuming thateM /2 and
eU are bounded, the Penrose limit~1.3! of the metric~2.1!
leads to a plane wave space-time with all functions just
pending on one of the null coordinates, sayu. However, in
general the null coordinate will not be an affine parame
Therefore in the following it is assumed that after taking t
Penrose limit a new null coordinateu5*e2M (ũ)dũ has been
introduced. For plane waves, traveling inu direction, the
only nonvanishing null tetrad component of the Weyl ten
is given by@18#

C45
Zuu2UuZu

Z1Z̄
22

~Zu!2

~Z1Z̄!2
. ~2.2!

The only nonvanishing tetrad component of the Ricci ten
is given by

F225
1

4 F2Uuu2~Uu!224
ZuZ̄u

~Z1Z̄!2G . ~2.3!

In analogy with electromagnetism,C4 can be written as
C45Aeia, whereA is the amplitude anda is the polariza-
tion of the gravitational wave@18#. ThereforeC4 determines
the profile of the wave. It is interesting to note that the Brin
mann form of the metric can be read off fromC4 andF22.
The Brinkmann form is given by

ds252dudV1~h11X
212h12XY1h22Y

2!du22dX22dY2,
~2.4!

wherehi j are functions ofu only. The Weyl and Ricci tenso
components are given by@18#

C45 1
2 ~h112h2212ih12!, F225

1
2 ~h111h22!. ~2.5!

Therefore calculating these quantities for the Einstein-Ro
form ~2.1! allows to read off the profile of the gravitationa
wave,hi j , in the Brinkmann form.

Assuming that the metric~2.1! describes a vacuum spac
time, the following Brinkmann form for the resulting plan
wave in the Penrose limit is obtained:

h1152

F S 2e2U

Z1Z̄
D 1/2G

uu

S 2e2U

Z1Z̄
D 1/2 2

1

4

@~Z2Z̄!u#2

~Z1Z̄!2
, ~2.6!

h1252
i

2

~Z2Z̄!uu2Uu~Z2Z̄!u

Z1Z̄
1 i

~Zu!22~ Z̄u!2

~Z1Z̄!2
,

~2.7!

h2252

F S Z1Z̄

2
e2UD 1/2G

uu

S Z1Z̄

2
e2UD 1/2 1

3

4

@~Z2Z̄!u#2

~Z1Z̄!2
. ~2.8!
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Using thatF2250 in vacuum it follows thath1152h22.
The AbelianT-duality transformations~1.5! take a par-

ticularly simple form in terms of the functionsU andZ when
applied forf50 andBmn50. The functionM remains in-
variant under this duality transformation.T duality with re-
spect to the Killing vector]x results in

e2U85
Z1Z̄

2
, Z85e2U,

Bxy8 5
i

2
~Z2Z̄!, f852 ln

2e2U

Z1Z̄
. ~2.9!

The metric is diagonal and henceh115C41F22 and h22
5F222C4, which yields to

h1152

F S Z1Z̄

2
eUD 1/2G

uu

S Z1Z̄

2
eUD 1/2 , h2252

F S Z1Z̄

2
e2UD 1/2G

uu

S Z1Z̄

2
e2UD 1/2 .

~2.10!

Therefore if the seed metric~2.1! is diagonal then the wave
profile in the direction orthogonal to the Killing directio
along which theT-duality transformation is taken remain
invariant.

T duality with respect to the Killing vector]y results in

e2U85
Z1Z̄

2ZZ̄
, Z85eU

Bxy8 5
i

2

Z2Z̄

ZZ̄
, f852 lnS 2e2U

Z1Z̄
ZZ̄D . ~2.11!

The wave profile is given by

h1152

F S Z1Z̄

2ZZ̄
e2UD 1/2G

uu

S Z1Z̄

2ZZ̄
e2UD 1/2 h2252

F S Z1Z̄

2ZZ̄
eUD 1/2G

uu

S Z1Z̄

2ZZ̄
eUD 1/2 .

~2.12!

Again it is found that in the case of a diagonal seed me
the wave profile stays invariant in the direction orthogona
the Killing direction along which theT-duality transforma-
tion is taken.

The structure of the dual backgrounds~2.9! and ~2.11!
shows that the dual of a plane wave is again a plane wa
Since plane waves are exact classical string vacua this
plies that AbelianT duality relates in this case two exa
classical string vacua. Choosing a null geodesic in
(t,z)-plane whereu5t2z,v5t1z, with z a longitudinal co-
ordinate andt a timelike variable, the radial Penrose limit
found by the limiting procedure~1.3! for u→u,v→V2v, x
→Vx,y→Vy. Effectively this reduces all functions, i.e
7-3



anchi

ilar but

KERSTIN E. KUNZE PHYSICAL REVIEW D68, 063517 ~2003!
TABLE I. Bianchi backgrounds and their duals. The second and third column give the functionsU andZ
of the Bianchi model in the first column. The last column denotes to which Bianchi model a given Bi
model is related to using either theT-duality transformation~2.9! or ~2.11!. KS ~open/closed! denotes the
Kantowski-Sachs model with open or closed spatial sections. The last entry was already noted in@23#. Using
string cosmologies with a dilaton and antisymmetric tensor field strength as seed backgrounds sim
different relations were found in@24#.

Bianchi type e2U Z Relationship

II a1a2
a2

a1
1iz II →

(2.9)

I

IV a2a3e2x a2a3

a2
21a3

2~f1x!2
2i

a3
2~f1x!

a2
21a3

2~f1x!2 IV →
(2.11)

VI21

V a2a3e2x a3

a2
V →

(2.9)

VI21

V →
(2.11)

VI21

VI21 a1a2
a2

a1
e2x

VI21 →
(2.9)

V

LRS VIII a1a3 coshy
a1a3 coshy

a1
2 cosh2 y1a3

2 sinh2 y
2 i

a3
2 sinhy

a1
2 cosh2 y1a3

2 sinh2y
LRS VIII →

(2.11)

KS ~open!

LRS IX a1a3 cosy
a1a3 cosy

a1
2 cos2 y1a3

2 sin2 y
1i

a3
2 siny

a1
2 cos2 y1a3

2 sin2 y
LRS IX →

(2.11)

KS ~closed!
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M (u,v), Z(u,v), andU(u,v) to functions ofu only, which
is equivalent to considering the limitv→0 @20#. Hence ob-
taining first the radial Penrose limit and then applying Ab
lian T duality yields the same as dualizing first and th
obtaining the Penrose limit of the dual space-time.

Different spatially homogeneous backgrounds can be
lated to each other using the AbelianT-duality transforma-
tions~2.9! and~2.11!. Therefore the Penrose limits of variou
Bianchi cosmologies are related by duality.

Isometries of spatially homogeneous metrics in four
mensions are described by three spacelike Killing vec
that form an algebra. In total there are nine different typ
originally classified by Bianchi~cf., e.g.@17#!. They fall into
two classes, A and B, according to whether the trace of
group structure constants vanishes or not. Bianchi types
VI21 , VII 0, VIII, and IX are of class A whereas Bianch
types III, IV, V, VIh and VIIh are of class B.

Bianchi class A models can always be described b
diagonal metric in the invariant basis, i.e.,ds25dt2

2gi j (t)v
iv j , wherev i are the invariant basis one form

satisfyingdv i5 1
2 Cjk

i v j`vk andCjk
i are the group structure

constants. Furthermore the metric is assumed to be of
form gi j 5diag„a1

2(t),a2
2(t),a3

2(t)…. A Bianchi type-V back-
ground can also be described by a diagonal metric. Howe
for Bianchi type IV a nondiagonal metric is required. In o
der to investigate its behavior under the duality transform
tions~2.9! and~2.11! the ansatz of Harvey and Tsoubelis@21#
was used. Namely, s15a1v1,s25a2v2,s35a3f v2

1a3v3, whereai andf are functions of the timelike variabl
t only. s i are the basis one forms in the orthnormal fram
ds25hmnsmsn, with hmn the Minkowski metric. Harvey
06351
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and Tsoubelis found a solution, which, incidently, describe
plane wave, fora25a3 @21#. No spatially homogeneou
background was found when theT-duality transformations
~2.9! and~2.11! were applied to backgrounds of Bianchi typ
VIh /VII h , namely, to the Lukash-type metric@22#. Bianchi
models I–VII, LRS VIII, and LRS IX have two-dimensiona
Abelian subgroups. Therefore they can be written in the fo
of metric ~2.1!. The results are summarized in Table I.

Examples

The Kasner metric describes a homogeneous but an
tropic universe. Adapted to the G2 symmetry the Kasner
metric can be written as~see, for example@25#!

ds25t (p221)/2~dt22dz2!2t11pdx22t12pdy2,
~2.13!

where p is a constant. Close to the initial singularity th
metric ~2.1! is well approximated by a Kasner metric wit
space-dependent Kasner exponents. In this casep becomes a
function of z ~cf., e.g.@26#!. Introducing null coordinatesũ
5t2z,v5t1z, taking the radial Penrose limit and findin
an affine parameteru results in the following wave profiles

hmm5kmu22, ~2.14!

where m51,2 and km is constant, k152k252p(1
2p2)/(p211)2 for the seed metric~2.13!, k152(p
11)(p21p12)/(p211)2, k25k2

(seed) for the dual space-
time ~2.9!, and k15k1

(seed) , k25(p21)(p22p12)/(p2

11)2 for the dual space-time~2.11!. Hence in general, the
7-4
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wave profiles show au22 dependence. This was also foun
in the radial Penrose limit of the flat Friedmann-Roberts
Walker space-time and the near horizon limit of the fund
mental string@5#.

Models ~2.1! for which Z is real or the imaginary part is
subleading compared to the real one evolve at late times
the Doroshkevich-Zeldovich-Novikov~DZN! universe@27#.
This is an anisotropic spatially homogeneous backgro
with an effective null fluid due to gravitational waves. Th
DZN line element is given by

ds25e2t~dt22dx2!2tq11dy22t12qdz2, ~2.15!

whereq is a constant. Choosing null coordinatesũ5t2x,
v5t1x taking the radial Penrose limit, finding the affin
parameteru, the wave profileshmm are obtained as follows

hmm5amu22~ ln u!22@km1 ln u#, ~2.16!

wherem51,2 andam and km are constant,a15(q11)/2,
k15(12q)/2, and a25(12q)/2, k25(11q)/2 for the
seed metric~2.15!. a152(q11)/2, k15(q13)/2 anda2

5a2
(seed) , k25k2

(seed) for the dual space-time~2.9!. a1

5a1
(seed), k15k1

(seed) and a25(q21)/2,k25(32q)/2 for
the dual space-time~2.11!.

There are a few known nonsingular solutions with G2
symmetry ~cf. @19,28,29#!. Since in view of theT-duality
transformations nondiagonal solutions are of particular in
est, the nondiagonal solution given in@28,29# will be inves-
tigated. In the vacuum case, the line element can be wri
as, using the coordinates of@29#,

ds25ea2r 2
cosh~2at!~dt22dr2!2r 2 cosh~2at!dw2

2
1

cosh~2at!
~dz1ar2dw!2, ~2.17!

wherea is a constant. Whereas theT-duality transformation
with respect to]x leads to another nonsingular backgroun
the T-duality transformation with respect to]y leads to a
singular background. In particular, theT-duality transforma-
tion ~2.9! leads to

ds25cosh~2at!@ea2r 2
~dt22dr2!2dz22r 2dw2#,

f5 ln cosh~2at!, Bzw5ar2. ~2.18!

It is interesting to note that the application of AbelianT
duality and theSL(2,R) invariance of the axion and dilato
@30# shows that the solution~2.17! can be generated from
diagonal solution with a stiff perfect fluid as matter sourc
namely@31#

(E)ds25ea2r 2
~dt22dr2!2dz22r 2dw2. ~2.19!

This metric is obtained from Eq.~2.17! by first applying the
T duality transformation~2.9! and then transforming to th
conformally related Einstein framegmn→ (E)gmn5e2fgmn .
The T duality transformation~2.9! also creates a nonvanish
ing antisymmetric tensor fieldBzw . However, using the
06351
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SL(2,R) invariance of the axion and dilaton@30# allows to
reduce this solution to a pure dilaton solution which h
effectively the energy-momentum tensor of a stiff perfe
fluid ~2.19!. In this case, the symmetries of string cosmolo
have been used as solution generating techniques in stan
relativity. This is possible due to the fact that a massl
scalar field behaves as a stiff perfect fluid.

The Penrose limit and the resulting plane waves are fo
by introducing the null coordinatesu5t2r ,v5t1r . The
final expressions are given in terms of the nonaffine para
eteru. For the solution~2.17! the amplitudes are given by

h115a2
e2(a2/2)u2

cosh4~au!

3@23 cosh2~au!2au sinh~au!cosh~au!16#,

h125a2
e2(a2/2)u2

cosh4~au!
@au cosh~au!16 sinh~au!#,

~2.20!

andh2252h11. The amplitudes are regular everywhere. T
radial Penrose limit of Eq.~2.18! results in a plane wave with
profile

h115a2
e2(a2/2)u2

cosh4~au!
@au sinh~au!cosh~au!1cosh2~au!23#,

h225a2
e2(a2/2)u2

cosh4~au!
@au cosh~au!13 sinh~au!#sinh~au!.

~2.21!

The wave profile is regular everywhere. The expressions
the amplitudes of the dual wave obtained from applying Ab
lian T duality with respect to]y ~2.11! are rather lengthy and
are given in the Appendix. The different wave profiles a
shown in Fig. 1. It is interesting to note that onlyh22 be-
comes singular foru→0 for the wave obtained from the
T-duality transformation~2.11!. Close to the singularity a
u50 h22 behaves ash22;u22. This causes a strong curva
ture singularity to develop. In the approach to the singula
the string couplingg25ef diverges asu22. Therefore the
expansion to lowest order in the string coupling is no long
valid.

III. NON-ABELIAN T DUALITY

The T dual with respect to a non-Abelian group of isom
etries is found by gauging the two-dimensionals-model ac-
tion, integrating over the introduced gauge fields, and ga
fixing the obtained action@11#. Before gauge-fixing this lead
to a dual action of the form@11# in the notation of@12#

S85S1
1

4pE d2z~Agūg1Ādud1AgmgdĀd!, ~3.1!

where
7-5
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FIG. 1. ~a! gives the wave profilesh11 ~thick line! andh12 ~thin line! of the plane wave in the radial Penrose limit of the nonsingu
nondiagonal metric~2.20!. ~b! is the wave profile of the plane wave found by duality with respect to]x ~2.21! @h11 ~thick line!, h22 ~thin
line!#. ~c! showsh11 and ~d! h22 of the wave profile of the plane wave found by duality with respect to]y as given in the Appendix~A1!.
a51 for all figures.
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to
ud52]X̃d1]XM~GMN1BMN!jd
N ,

ūg5 ]̄X̃g1jg
M~GMN1BMN!]̄XN,

mgd5Cgd
l X̃l1jg

M~GMN1BMN!jd
N , ~3.2!

where greek indices are group indices and latin indices
target space-time indices.GMN is the metric on the targe
space-time andBMN is the antisymmetric tensor field.S is
the originals-model action~1.4!. X̃l are Lagrange multipli-
ers introduced to keep the gauge connection flat. Depen
on the gauge fixing they can become coordinates in
T-dual background.

To investigate whether taking the Penrose limit and du
izing the background space-time are commuting proced
we need to find the non-AbelianT dual of a plane wave
background. The metric of a plane wave can always be w
ten in the following form:

ds252dudv2e2U~eV coshWdx222 sinhWdxdy

1e2V coshWdy2!, ~3.3!
e
in
g

n

o
r-

e
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whereU, V, andW are functions ofu only. This metric ad-
mits five Killing vectors@18#

j15]x , j25]y , j35]v ,

j45x]v1P2~u!]x1N~u!]y ,

j55y]v1P1~u!]y1N~u!]x , ~3.4!

where P6(u)5*eU6VcoshWdu, N(u)5*eUsinhWdu. All
commutators vanish except for@j1 ,j4#5j3 and @j2 ,j5#
5j3. With @ja ,jb#5Cab

m jm , the only nonvanishing group
structure constants are given byC14

3 515C25
3 . There are two

semisimple subgroups, G15$j1 ,j3 ,j4% and G2
5$j2 ,j3 ,j5%. In the following non-AbelianT duality with
respect to the subgroupG1 will be considered. Furthermore
it will be assumed that the dilaton and the antisymme
tensor field vanish, i.e.,f[0,BMN[0.

The first step to find the non-Abelian dual with respect
the subgroupG1, following the procedure of@11#, is to cal-
culate the matrixm. It is found thatm is given by
m5S Gxx 0 X̃31GxxP21GxyN

0 0 0

2X̃31P2Gxx1NGxy 0 GxxP2
2 12NP2Gxy1GyyN

2
D . ~3.5!
s

tor
g

The null Killing vector j3 leads to a singular part in th
T-dual action. This yields a singular space-time that is s
gular everywhere if one tried to integrate over the gau
fields. Something similar happens in the case of AbeliaT
duality if the isometry has a fixed point@32#. In the case of
the Euclidean two-dimensional black hole the horizon,
which the timelike Killing vector becomes null, is inte
changed with a curvature singularity in theT-dual back-
ground@33#. It can also be seen in a straightforward mann
in the example of theT dual of a two-dimensional plane@34#,
-
e

n

r

ds25dr21r 2du2. ~3.6!

The T dual with respect to the isometryT5]u is given by

ds25dr21r 22du2. ~3.7!

The dilaton is given byf52 ln r2. The background become
singular atr 50 which is exactly the point at whichT250.
In the case of the plane wave space-time the Killing vec
j3 is null everywhere. Even though the other two Killin
7-6
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vectors ofG1 are not null, theT-dual space-time is singula
everywhere. Furthermore, theT-dual dilaton is given by
@11,12#

f85f2 log detm, ~3.8!

which is singular everywhere in theT-dual background since
detm50.

Both non-Abelian subgroups,G1 andG2, of the group of
motions of a simple plane wave space-time contain one
Killing vector. Therefore using the procedure of@11# to find
the non-AbelianT dual of a pure plane wave results in
singularT-dual background. Nevertheless, since the effec
metric is built out ofGMN andBMN , taking a nonvanishing
antisymmetric tensor fieldBMN into account might lead to a
T-dual background that is not singular everywhere. Howe
a constantB field is not enough since its Lie derivatives
the direction of the Killing vectors of the isometry group
general do not vanish. In that case, further terms have to
taken into account in theT-dual action~3.1! @35#.

Another possibility to find non-AbelianT duals of a plane
wave that are not singular everywhere arises if the pl
wave space-time admits additional~non-null! isometries. For
example, the WZW model of@36# admits an additional non
semisimple group. Non-AbelianT duals with respect to thes
group have been found in@37,15#. In both cases it was found
that non-AbelianT-duality transforms the original plan
wave space-time into a background that is not a plane w

Other examples, of plane wave space-times with ad
tional spacelike isometries are the solutions of@21# which
admit Bianchi type IV. However, since the Bianchi IV is
nonsemisimple group it is not possible to use the proced
of @11#. In that case one would have to apply Poisson-LieT
duality to find an equivalent solution@16#.

In the Penrose limit any space-time can be approxima
around a null geodesic by a plane wave metric. If the res
ing plane wave is such that it does not admit isometries
addition to the isometries of the plane wave@cf. Eq. ~3.4!#
then the non-AbelianT dual using the procedure of@11# is
singular everywhere. The structure of the resulting pla
wave depends on the particular null geodesic which w
taken to obtain the Penrose limit and the symmetries of
original space-time. As was shown in@5# the number of lin-
early independent Killing vectors of the Penrose limit spa
time is at least as large as max(n,2D23), wheren is the
number of linear independent Killing vectors of the origin
space-time andD is the space-time dimension.

On the other hand, the non-AbelianT dual using the pro-
cedure of@11# of a cosmological space-time admitting spac
like Killing vectors is in general not singular everywher
For spatially homogeneous backgrounds general express
have been given for the non-AbelianT dual @12#, as will be
discussed below. Thus, taking the Penrose limit of this n
AbelianT dual results in a plane wave. Therefore, compar
this with the resulting singular space-time obtained from
non-AbelianT dual of a plane wave without additional isom
etries, it can be concluded that in this case taking the Pen
limit and taking the non-AbelianT dual are not commutative
procedures.
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If the resulting plane wave space-time in the Penrose li
does admit additional Killing vectors then one might co
sider the non-AbelianT dual with respect to these. In prin
ciple, it might be possible that for a particular case the n
Abelian T dual is again a plane wave and furthermore th
taking the Penrose limit and taking the non-AbelianT-dual
commutes. However, as mentioned above, the examples
have been found so far are such that the non-AbelianT dual
of a plane wave is not a plane wave@37,15#. Assuming that
these plane wave space-times with additional symmetries
the result of taking a particular Penrose limit of some spa
time then this would be another example of the noncomm
tativity of taking the Penrose limit and taking the no
Abelian T dual.

As an example a vacuum Bianchi II cosmology will b
considered. Its metric is given by

ds252dt21a1
2~dx2zdy!21a2

2dy21a3
2dz2, ~3.9!

whereai5ai(t) @38#. The only nonvanishing group structur
constant isC23

1 51 @17#.
In @12# the non-AbelianT duals of spatially homogeneou

backgrounds have been found. The transformed metric, a
symmetric tensor field, and shifted dilaton are given by

G̃5~g2b2k!21g~g1b1k!21,

B̃52~g2b2k!21~b1k!~g1b1k!21,

f̃5f2 log det~k1g1b!, ~3.10!

where k is an antisymmetric matrix defined bykab

[Cab
g X̃g . X̃l are coordinates in the dual space-time.gmn(t)

is the metric in the invariant basis on hypersurfaces of c
stant time,ds252dt21gmn(t)vmvn, andbmn(t) describes
the antisymmetric tensor field in the synchronous frameB
5bmn(t)vm`vn. Furthermore,dva5 1

2 Cmn
a vm`vn. For

Bianchi type-A modelsgmn(t) is diagonal, namely,gmn(t)
5diag„a1

2(t),a2
2(t),a3

2(t)….
Applying the non-AbelianT-duality transformation~3.10!

to the Bianchi II vacuum background~3.9! yields

ds252a1
22~dh22dx2!1t@~a2a3!21x2#21

3~a3
2dy21a2

2dz2!,

f52 ln@~a1a2a3!21a1
2x2#, Byz52

x

~a2a3!21x2
.

~3.11!

This metric is no longer of Bianchi type II. It admits tw
Abelian Killing vectors]y ,]z . Introducing null coordinates
u5h2x,v5h1x, the radial Penrose limit is found to be
7-7
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dŝ252
1

a1
2

dudv1F ~a2a3!21
u2

4 G21

~a3
2dy21a2

2dz2!,

f̂52 lnF ~a1a2a3!21a1
2u2

4 G , B̂yz5
u

2~a2a3!21
u2

2

,

~3.12!

whereai5ai(u).
Next we will consider the radial Penrose limit of the B

anchi II cosmology~3.9! written in the form~2.1!. The met-
ric ~3.9! admits the following three Killing vectors@17#:

j15]x , j25]y , j35]z1y]x . ~3.13!

Introducing null coordinatesu5h2z,v5h1z, rescaling
according to Eq. ~1.2! and finding the limit
lim

V→0
VDjja(V), where DjPR @5#, it turns out that,

whereasj1 andj2 stay unchanged,j3 becomes the null Kill-
ing vector]v . In addition, there are the two Killing vector
j4 and j5. Hence, there are no additional isometries to
pure plane wave isometries~3.4!. Therefore, the non-Abelian
T dual can only be found with respect to one of the su
groupsG1 or G2, respectively. As was shown above, th
leads to a dual background that is singular everywhere. H
ever, the Penrose limit of the non-AbelianT dual of the
vacuum Bianchi II cosmology~3.12! only becomes singula
locally. Thus, in this case, taking the Penrose limit and fin
ing the non-AbelianT dual are not commutative procedure

Finally, some comments on non-AbelianT duality as a
solution generating technique will be made. In the last s
tion it was shown that AbelianT duality can be used to
connect solutions to general relativity of varying degree
generality. Basically, starting with one solution a more ge
eral solution was found. In general relativity the approach
the initial singularity is still an open question~for a recent
account, see@39#! which is partly due to the fact that ther
are no known general solutions. The majority of known s
lutions admits some kind of symmetries. However, due to
nature of non-AbelianT duality most of the symmetries o
the original space-time will be broken in theT-dual back-
ground. Therefore, one might use these transformation
generate very general solutions which admit, if at all, o
few isometries. This will be discussed with the example
Bianchi VIII and IX as seed metrics. These are the m
general spatially homogeneous metrics. Furthermore, t
group structure is semisimple. The group structure const
are given byC23

1 561,C31
2 51,C12

3 51, where the upper sign
corresponds to Bianchi IX and the lower one to Bianchi VI
The non-AbelianT-duality transformation~3.10! yields to

G̃5~a1
2a2

2a3
21a1

2x21a2
2y21a3

2z2!21

3S a2
2a3

21x2 6xy 6xz

6xy a1
2a3

21y2 yz

6xz yz a1
2a2

21z2
D , ~3.14!
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B̃5~a1
2a2

2a3
21a1

2x21a2
2y21a3

2z2!21

3S 0 a3
2z22exy 2a2

2y22exz

2a3
2z12exy 0 6a1

2x

a2
2y12exz 7a1

2x 0
D ,

~3.15!

f̃52 log~a1
2a2

2a3
21a1

2x21a2
2y21a3

2z2!, ~3.16!

wheree51 for Bianchi IX ande50 for Bianchi VIII. This
background could be interpreted as an inhomogeneous
eralization of a Bianchi I background. For small values ofx,
y, and z the spatial part imposes a small perturbation on
Bianchi I background. The vacuum Bianchi IX metric wit
three different scale factors is the Mixmaster model wh
shows chaotic behavior. However, the evolution of the sca
factors can be approximately described by a successio
Kasner epochs, each of them determined by a set of Ka
exponents (a1 , a2 , a3) ~cf., e.g.@40#!. The Kasner metric is
given by ds252dt21t2a1dx21t2a2dy21t2a3dz2, and, in
vacuum, the exponents satisfy( ia i515( ia i

2 . Using such
a solution in the expressions for the scale factors of the s
vacuum Bianchi IX metric one finds that the initial singula
ity persists in theT-dual background. Furthermore the metr
is approximately diagonal, with the new scale factors be
1/ai . Hence there will be also Mixmaster oscillations in th
dual background, though due to the presence of the sc
field and the antisymmetric tensor field these will cease a
a finite number of oscillations@41#. Furthermore close to the
singularity theT-dual universe enters into a strongly coupl
regime, since the string couplingg25ef8 diverges for t
→0.

The T-dual background is very inhomogeneous though
is also rather special, since the spatial dependence is c
pletely fixed and does not allow for arbitrary constants, a
is the case for the scale factorsai(t).

IV. CONCLUSIONS

In the Penrose limit any space-time in the vicinity of
null geodesic can be approximated by a plane wave. S
plane waves are exact classical string vacua this might h
to connect cosmological solutions to an underlying str
vacuum. There are only very few known exact solutions t
have a cosmological interpretation and these are very
away from describing our observable universe. Since pl
waves are classical string vacua it makes sense to find a
quantized theory of a string propagating in these ba
grounds. This has been studied in particular for singu
backgrounds with wave profiles following a power law in th
null coordinate@42#. Here it was found that this type of wav
profile occurs for the radial Penrose limit of a Kasner u
verse, whose scale factors are following a power law in c
mic time. For space-times with more general functional b
havior different types of evolution were found. In particul
the wave profiles of the plane wave obtained in the rad
Penrose limit of a nonsingular cosmological solution we
7-8
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determined. Here it might be interesting to study the fi
quantization of a string propagating in this background.

Low energy string theory admits a number of symmetri
These have been used to find more exact solutions, t
corresponding Penrose limits and wave profiles. In addit
relationships between different spatially homogeneous ba
grounds have been found. This is interesting from the po
of view that AbelianT duality and taking the radial Penros
limit are commuting procedures. Furthermore using Abel
T duality and theSL(2,R) invariance of low energy string
theory it was found that the nonsingular nondiagonal so
tion @28,29# can be reduced to a diagonal static solution@31#.
This shows once more that the symmetries of low ene
string theory can be used to learn more about solution
general relativity.

The non-AbelianT dual of a vacuum plane wave spac
time has been investigated in detail. It was found that if th
are no additional isometries then dualizing with respect
one of the semisimple subgroups of isometries of the pl
wave leads to aT-dual background that is singular ever
where. The reason for that is the presence of a null Kill
vector in each subgroup. This is similar to what happens
Abelian T duality. If there are additional isometries on
might find non-AbelianT-dual backgrounds that are not si
gular everywhere. In principle, it might also be possible t
the non-AbelianT dual of a particular type of plane wave
again a plane wave and furthermore that, as in the Abe
case, taking the Penrose limit and taking the non-AbeliaT
dual do indeed commute. However, the examples known
06351
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far only relate plane wave space-times~with additional isom-
etries! with backgrounds that do not describe plane wav
Here it might also be interesting to discuss these issues in
context of Poisson-LieT duality.

The type of plane wave that is obtained in the Penr
limit depends on the null geodesic around which the Penr
limit is taken and on the isometries of the original spac
time. For the class of backgrounds that lead in the Penr
limit to plane wave space-times with no additional isometr
it was shown that the non-AbelianT dual is singular every-
where. Therefore for this class of solutions taking the P
rose limit and applying a non-AbelianT-duality transforma-
tion are not commutative procedures. This is in contras
the case of AbelianT-duality where it was found@14# that, in
general, the dualization procedure and taking the Pen
limit do commute.

Finally, the role of Abelian and non-AbelianT duality as
solution generating techniques has been discussed. In
ticular, non-AbelianT duality was used to find more gener
inhomogeneous solutions which can be interpreted as in
mogeneous generalizations of a Bianchi I cosmology.
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APPENDIX: THE PROFILE OF THE DUAL WAVE OBTAINED FROM EQ. „2.17… WITH EQ. „2.11…

The dual wave profile resulting from applying Eq.~2.11! to the background~2.17! is given by

h115a2e2(a2/2)u2Fa5u5 sinh~au!cosh~au!2a4u4@cosh2~au!13#116a2u2 cosh2~au!@2 cosh2~au!23#

cosh4~au!@4 cosh2~au!1a2u2#2

1
216au sinh~au!cosh3~au!@cosh2~au!16#148 cosh4~au!@22cosh2~au!#

cosh4~au!@4 cosh2~au!1a2u2#2 G
h225e2(a2/2)u2Fa7u7 sinh~au!cosh~au!23a6u6@cosh2~au!11#116a4u4 cosh2~au!@cosh2~au!24#

u2cosh4~au!@4cosh2~au!1a2u2#2

2
16a3u3 sinh~au!cosh3~au!@81cosh2~au!#80a2u2 cosh6~au!

u2cosh4~au!@4 cosh2~au!1a2u2#2
2

128au sinh~au!cosh5~au!1128 cosh6~au!

u2 cosh4~au!@4 cosh2~au!1a2u2#2 G .
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