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Nonequilibrium Goldstone phenomenon in tachyonic preheating
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The dominance of the direct production of elementary Goldstone waves is demonstrated in tachyonic
preheating by numerically determining the evolution of the dispersion relation, the equation of state, and the
kinetic power spectra for the angular degree of freedom of the complex matter field. The importance of the
domain structure in the order parameter distribution for a quantitative understanding of the excitation mecha-
nism is emphasized. Evidence is presented for the very early decoupling of the low-momentum Goldstone
modes.
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I. INTRODUCTION gers the condensation of a complex scalar field thought to be
the matter field driving the grand unified the@®UT) phase
The aim of this investigation is to contribute to the sys-transition. The transition is accompanied by spindtathy-
tematic exploration of the transition from the inflationary onic) instabilities, which occur for the radigin the present
evolution of the Universe to the standard cosmological recase,O(2) invariani modes. Rising radia(Higgs modes
gime. The numerical analysis was performed in a simplexcite on their turn massless angul@oldstong modes. We
hybrid inflationary model, in which the inflaton is coupled to refer to this phenomenon as the nonequilibrium Goldstone
a complex scalar fiel@l1,2]. The equations of the fields and effect. It was tested by systematically varying the lattice
of the scale parameter of Friedmann-Robertson-Walkespacing that the excitation process is rather insensitive to the
(FRW) geometry were solved simultanously. The characterdetails of the discretization.
istics of the transition were studied for a range of couplings  After the tachyonic instability is stopped one observes an
and initial conditions. All choices satisfy the cosmological excess in the gradient energy density of the Goldstone degree
constraints entailing a sufficient number of e-foldings duringof freedom relative to the corresponding kinetic energy den-
inflation and the generation of density perturbations compatsity which is argued in Refl5] to be the signature for the
ible with the measured cosmic microwave background radiaeccurrence of finite density of global strings. Evidence will
tion (CMBR) anisotropy. be presented for the importance of topological configurations
The present investigation is focused on the excitation ofdomain walls and/or stringsin causing this difference,
Goldstone modes. In the literature the decay of global coswhich is sustained over a considerable time interval. Also, a
mic strings is advocated as the main source of these particlesean radiative equation of statgoS is found for the Gold-
[3—6]. It will be demonstrated that in the period of tachyonic stone degree of freedom after the virial equilibrium is
instability [7,8] a dominandirect Goldstone generation takes reached. After further evolution, however, a clear two-
place. The importance of Goldstone production was first emeomponent separation was observed in the Goldstone power
phasized by Boyanovsket al. [9,10] in a renormalized spectra. Lowccomoving-k modes decouple from the equili-
largeN approach to the quantum dynamics of the symmetrybration processes fairly early and expand further as a nonin-
breaking in theO(N) model. They have extended their in- teracting massless radiation with a frozen momentum distri-
vestigation to the FRW geometry in the framework of thebution. Highk modes interact with the massiykliggs and
new inflationary scenaripll]. The present investigation is inflaton) modes. In this range we observe quantitative lattice
an extension of our study of the classi€@(N) system in  spacing dependence, which does not challenge the qualita-
Minkowski metrics published in Ref.12] to the case of tive features of the emerging physical picture. The size of the
FRW geometry. In the present paper the period of instabilitydecoupled comoving interval of the Goldstone excitations
is also treated classically. Although the time interval of theincreases with time.
instability is rather short it is instructive to study the transi- In Sec. Il the model is presented and the setting of the
tion of the scale parameter of the Universe from the infladinitial conditions is discussed. Their choice is crucial to en-
tionary regime to a regime dominated by the mixture ofsure the minimal sensitivity of the results to the spatial dis-
weakly interacting species. We study the field dynamics uneretization. The most important features of the excitation
der continous variation of the power characterizing the timeprocess of Goldstone modes, shortly outlined in the previous
dependence of the cosmological scale factor. paragraph, are discussed in Sec. lll. A simple estimate will
In hybrid inflationary scenarios the rolling inflaton trig- also be given there for the ratio of the direct Goldstone pro-
duction relative to the energy contained in extended objects.
The features and the limitations of a semianalytical model

*Email address: mazsx@cleopatra.elte.hu for the excitation of the different modes is discussed in Sec.
"Email address: patkos@Iudens.elte.hu IV. Section V is devoted to the discussion of the late-time
*Email address: denes@achilles.elte.hu expansion. Conclusions are summarized in Sec. VI.
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II. SELECTION OF COUPLINGS AND INITIAL a dyy

CONDITIONS dt=adnp=— .
Qinit My

©)

The system consists of the re@armonig inflaton field
o(x,1) and the complex matter fielgh(x,t), with negative A convenient choice is to sety=|m|. In the following, we
squared mass and a quartic stabilizi@g¢2)-invariant self- always use the powers ¢fn| as units of measurement. As

interaction. Their evolution is treated self-consistently as-gne can check. also in the scaled FRW equation ey,

suming a spatially f_Iat FRW space-Fime chara(_:terized by it%tppears, plus the ratio of the Planck mass andf2) mass
dynamically determined scale functiat). Metric fluctua- parameter. Therefore one can study the evolution of

t@ons are bgyond the' scope of t'he present study. The equg(t)/a,;, independently of the choice ofi,.
tions describing the field dynamics of the system are After this scaling, we discretized the equations of the

. . 5 quantities labeled by "lat” in a comoving volunfé./a(t) 3,
0=o0(x,t)+3Ho(x,t)—Ac(x,t) + mo(x,t) with L=Né&X,/|m| X a(t)/aj,i;, N=64,128,6x,,=1. Here
2 2 tinit IS the time instant where we start the numerical solution
Fgle(xHFa(x D), of Egs.(1) and(2), which has been conveniently choosen to
slightly preceed the exit point from the inflation. In the plots
to be presented below the time is measured relativig,{o
A The insensitivity of the results to the lattice spacing was
+g|¢(x,t)|2¢(x,t)+gzaz(x,t)¢(x,t). (1)  tested by also employingx,,=0.25, 0.5, 0.75. The confor-
mal time stepdn was chosen in proportion to the spatial
lattice spacingdsx in the range 1/16 1/64.
On the other hand, we find for the physical extent of our
8 systemN 6X,,/ My X a(t)/ai;<H (t). Therefore we actu-
2 0" , _ ally study only a small portion of the volume of the whole
H 'e,m;‘;,[pH'g@’S(x't)erGO'dsmnéx’t)er'”ﬂam”(x't):| 0 Universe. This is different than the choice of the lattice spac-
(2 ing in Ref.[13], where the system is at least as large as one
Hubble volume. Therefore we do not expect the string part of
In Egs.(1) and(2) the Hubble parameté =é1(t)/a(t) was the Goldstone dynamics to be described truly faithfully, but
introduced andn,, is the Planck mass. In the second term ofthe propagating quasiparticle excitations are well represented
the left hand side of Eq(2) the expression in the square in the simulations.
brackets represents the microscopical energy density of the We will be able to argue convincingly that in the investi-
physical decomposition of the fields, to be identified below.gation of the early appearance of Goldstone modes, the effect
The explicit expressions will appear in Eq8)—(10). of the spatial cutoff will not cause any finite lattice spacing
For the numerical simulation the field equations were redistortion. The choice of the lattice constant, however, is
written in conformal time. For instance, in ti@(2) sector significant for the decay of the Higgs waves into Goldstone
one has excitations. This process is energetically allowed as long as
its comoving massnya(t)/a;,; is smaller than twice the
" A maximal allowed comoving momentum for the Goldstone
Y-Ay— it m232¢+g|¢|2¢+ 9°2%y=0, (3)  waves on the latticl.,o. With increasing redshift one ar-
rives at an artificial stabilization of the Higgs waves. There-
fore, at best, qualitative features of the late time evolution of
the system are expected to be physical.

0=(x,t) +3HP(x,t) — A d(x,t) + mPeh

The FRW equation has the form

with ¢=a(t) ¢, 2 =a(t)o, and both time and space coordi-
nates are measured in proportion to the scale fajodoy . . . .
=dt/a(t),dx=dxyns/a(t)]. Finally, we scale all quantities | The _ma_ttter II?:]d sta_rted Itn thj\fYTrgg?"'C pthas% (;n the
once more with an appropriate power of the dimensionles§'0S€ Vicinity ot the po'_m‘ﬁf)(.i“")_ Jd™X (X, tinig) =0.
combinationmga;,;, Wheremy is an arbitrary mass unit and The initial Higgs velocity is¢o(tini) =0. For the homog-
a;,; equals to the scale factor at the beginning of the simu€nous inflaton mode the amplitude and velocity values in the

lation [ @, = a(t;,), see below momentt=t;,;; were drawn from the solution of the equa-
tions describing its roll down, started at the Planck scale:
a” mZaZ A O'OEfod3Xa'(X,t= 0): mp|-. . -
Wt — Ahiar— 5 Vet T¢Iat+g|¢lat|2¢lat Two important cosmological constraints are to be satis-
Mg &init fied. The first requires at leaM,,~60 e-foldings of the
+ 252 =0, @ scale factor before the critical inflaton field value is reached

which terminates inflation. The other constraint stems from
the relation of the quantum fluctuations of the inflationary
lb’eriod to the density fluctuations measured by the COBE
experimen{14]. The numerical method of selecting the cou-
d plings without relying on the slow-roll approximation was
_Y_ Binit g & Gt described in some detail in RgfL7].
d’ wlatmd ' prhys dxa ’ . . .
a a Qinit My In the present investigation the GUT scale was chosen for

lated on the lattice as follows:
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the scale of the end of inflation. Therefore for the quantity 20

mZ = —2m?, variation in the regiom,,~10*41% GeV was (tk=0) ——
allowed. The inflaton-Higgs coupling was varied in the inter- 15 |pCoidstone |
val g=0.01-0.1. The value of the Higgs self-coupling was Eadsione S—

kinetic

fixed with the relation\ =3g?, which is valid if the cou- owist R .

plings of the hybrid theory are derived from a superpotential 10 ¢
[15,16. The detailed numerical analysis was performed with
g=0.1m,=8.8x 10" GeV,m,=4.2x 10" GeV,N,=60, s |
and g=0.01my=5.5x 10" GeV,m,=1.4X 10" GeV N,y
=60.
The initial population of the inhomogenous modes imi- L ‘ ‘
tates the quantum vacuum. The variation of the lattice spac- 60 80 100 200 300
ing changes the size of the Brillouin zone, therefore under
such variation one would simulate systems with different £ 1. viralization of the Goldstone oscillations and the evo-
cosmological constants. Using for the Fourier mode funciytion of the average of the integrated twist gr{x,t), calculated
tions the complete orthonormal set Mixi,)*%™*, one  along straight lattice lines parallel to one of the axes. The oscilla-
finds nearly lattice spacing independent energy densities Kons of the radial field (x,t)¥ drive the variation of the gradient

modes with|k| <k are filled as follows: and kinetic energy densities of the Goldstone modgps @.1, \
=392, N=64).
1 . W, .
o (te) = \/ge'“k, o (te)=—i \/fe'ﬂk, after the spinodal instability is over, one can choose for the
g

three independent degrees of freedom the inflaton, the radial
O(2) invariant motion ofr (x,t) =|#(x,t)| and the angular
0> =k2+m? illati —ral ; ;
o o oscillations ¢(x,t), (¢=re'?). The time evolution of the
dispersion relation characterizing these degrees of freedom

1 ) oy s was calculated from the definition
¢k(te) = _el ykv ¢k(te) =1 _el k!

2 ip
w=——, Xe=0y, M, (e , /
2_k2 m2 g20,2(k_0’te). (6) k |Xk|2 k k k( )k ()

The initial phasesxy, By, k.5 Were chosen randomly. It and extrapolated tdk=0 _for finding the corresponding
was tested that our conclusions are not sensitive to the choid8@sses12,17. One obtains for the angular phase factor
of the maximal filled momentum states, e.gkn., Shortly after the spinodal instability mass values which are
€(2.0,3.0). In order to have very accurate equality of theqompan_ble with zero V\(lthl_n_the error of the mass determina-
initial energy densities in case of different lattice spacingsfion- This observation justifies the term “Goldstone” for the
the inhomogenous modes were filled only up to a |atticear_1gular modes. In the foIIowmg the radial degree of freedom
spacing dependent maximal comoving wave numbeill be simply referred to as Higgs, and the angular compo-
K OXa). FOT instance, when choosirg,,=2 for dx,  nentas Goldstone. . . _
—0.5,N=128, accurate matching of the initial energy den- The phase transition trlgger_ed by the inflaton field can be
sities was achieved fok,,=1.84 on the lattice oX glearly seen on the time evolution of the homogeneous mode
=1.0,N=64. The difference itk comes from the distor- r"(t) of the Higgs field(the overline with index “V” means
tion of the energy-momentum relation on lattifBe con-  spatial averaging The tachyonic instability leads to an al-
scious also of the other restriction that during inflation themost instantanous exponential switch into the symmetry bro-
energy content of the inhomogeneous modes should be mudgn regime as shown in Fig. 1. The Higgs field triggers the
smaller than the potential energy of tB%2) field, e.g., false rise of the gradient energy of the Goldstone component with
vacuum domination. a slight delay and the increase of the Goldstone kinetic en-
With this choice we have normalized the energy densityerdy starts with a further delay. The sharp increase in the
to the same value for any lattice spacing, which leads tdadial component is terminated by an oscillatory period,
finite final average energy densities whéx,, is diminished ~Whose frequency is determined by the sum of the classical
[18]. On the other hand, no further renormalization was necmass square around the minimugnof the potential and the

essary to reach lattice spacing independent conclusions COBpace average of the Higgs fluctuatior2m?+ )\?V/zy

cerning the excitation process. which is often referred to as the Hartree mass. It is clear from
the figure that the oscillations in the Goldstone kinetic and
Ill. DIRECT GOLDSTONE EXCITATION gradient energies forcefully follow the same frequency.
VIA SPINODAL INSTABILITY In Fig. 2 we analyze the time dependence of the average

energy densities. The twin curves, which refer to solutions in
the same physical volume, but with different lattice spacings

The time evolution of the normalized cross-correlationillustrate to what extent the dynamics of different degrees of
matrix introduced in Ref12] presents evidence that directly freedom depends on the details of discretization during spin-

A. The independent degrees of freedom
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)\ngular ing (decoupledl gas, possessing its own equation of state.

9 Radial The local energy densities and pressures have the following
= expressions:
2 Inflaton
(]
S 1. , 1 , 3mt 1 )
= pHiggs(x,t)—Er(x,t) + E[Vr(x,t)] + > T+§m r(x,t)
E N n 4
s + 24r(x,t) .
3
0 b | | | 1. ,1 , 3m* 1
60 80 100 120 140 500 5000 Priggd X, 1) = ST (X, D)= [VI (X D) ]"= 5 == 5mT(x,1)
time
FIG. 2. Average comoving energy densities —lr(x,t)“,
{[a2(t)/ad,]1pi(t), i=G,H,inflator} of the independent degrees of 24
freedom [g=0.1)\=3g% N=64(5Xx=1),N=128,(8X5=0.5)]. 1 1
The figure represents the average of 8 runsNer64 and 4 forN X = —r(x.)20(x.1)24+ =[Vo(x.1)]12
=128, each starting with random initial phases. The evolution for PGoldstonéX,t) 2 (xD)7e(xD) 2[ e T

t>140 is plotted on a logarithmic time scale. The shorter curves

correspond to the solutions on finer spatial lattice. 1 : 1
P P Pcoldstoné X t) = EF(XJ)2<P(X,'[)2— EF(XJ)Z[VSD(X,U]Z,

odal instability. The Higgs component starts to vary first, ®
reflecting the instability. The inflaton and the Goldstone en- 1. 1
ergy densities follow it with approximately equal delay. pinf|aton(x,t)=§cr(x,t)2+ E[Vcr(x,t)]2
Clearly, the excitation of these modes is driven by the tem-
poral variation of the Higgs field(x,t) (see Sec. V. Figure 1, )
2 also suggests that fgr=0.1 the three motions are appar- +59%0(x.) r(xt)?, 9
ently decoupled from each other after the out-of-equilibrium
oscillations are damped, each having its own nearly constant 1. 1
density. Pinflator X, t) = EU(Xat)Z_g[VU(Xat)]Z

The Goldstone field reaches the highest energy density
~30m|*, which is slightly higher than the energy density 1, 5 5
corresponding to the one-loop estimate of the critical tem- - §g o(X,1)T(x,1)". (10
perature  for an O(Ngmg=2) model, that is
\/m|m|~23 m|, with A=0.03. The other two In the_ equations of state the space averages 01_‘ the ab_ove
degrees of freedom are much colder. Instant “freezing” char-expressions appear. Note that the Higgs-inflaton interaction
acterizes the behavior of the inflaton field. It obtains a rathef€™m is associated, with some arbitrariness, exclusively with
large squared mass, nearly equal to the Higgs mass, due tt_laellnflaton. It IS'jUStIerd by the realisation of the virial equ-
the supersymmetria. —g? relation (e.g., m2—6g?m?/\ ~ librium for this field.

Com2=m2). O lculates th tential fthe | In Fig. 3 the EoS of all three degrees of freedom are
m _.mH.)' . ne ,(,:a culates the potential energy ot the N-gp 4,y 't is clear, that they possess an EoS from rather early
flaton with its “new” mass when checking the virial equilib-

times, promptly after the large amplitudét,x) oscillations
rium in this degree of freedom. The sudden increase of itg, o dar?wpedPT);]ey are nearl?/ Iinear? of tﬁte f)chan. The

full energy density can be semi-quantitatively understood tqooling pushes the system through the points of the EoS at
be the result of this mass chan@ee Sec. IV. ~ the pace of the expansion, therefore the different points can
On the right edge of Fig. 2 the effect of the late-time pe |abeled by the instant when the system passes through
expansion appears: the energy density of the inflaton field ighem.
hardly varying which corresponds to its nonrelativistic na-  The inflaton and the Higgs field have nearly the same
ture. On the other hand, the energy density ratio of the Higgsnass of the order of the GUT scale. Therefore we expect
and the Goldstone fields stays nearly constanttf86000. them (after the virial “equilibrium” is reacheyl to follow
We shall return to the discussion of the apparently coupledearly the samep-p smooth line, with the decrease of the
cooling of the radial and of the angul&(2) components in energy density due to the expansion. Since the inflaton is
Sec. V. almost decoupled one expects fowit=0, and finds at early
timesw~1/10. The Higgs field starts with a slightly larger
slope. We note, that the linear regime is reached the slowest
B. The equations of state(EoS) by the Higgs field, and also its trajectory in tipep plane

We observed that the system stays in a rather stable wai/SPlays noticeable quantitative lattice spacing dependence.
deep in the broken symmetry phase, despite the fact that tt}gcﬂ': diGa?ilx?;tl(Ejgg p?si"\'A‘I"‘t'o”SV\?b:{/gf)telr:\of'rr'gr'ggtrlfé?] ;gpe“
Goldstone “temperature” is high. One might attempt in suchd nsities po=18- 53) ?ﬁgt' isG for eérlier times (85t y

circumstances to characterize each Species as a nonlnteragzmo)’ one observes a S|Ight deviation from the slope 1/3.
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FIG. 3. Equations of statéEoS for the independent degrees of freedog=0.1)\ =3g?). Left, thep(p) trajectories are shown for the
three independent degrees of freedom. The moments of time, where the linear regime, characterized by theveophtasets in are
indicated next to the curves. The twin curves display results obtained on lattices of equal physical size, but of different latticENspacing
=64,6X,,=1 (open squane N= 128 6x,,= 0.5 (full square]. The curves represent the average of 20 rund\fei64 and 10 foN=128. In
the right figure the evolution of the; = p; /p; ratio for the different physical degrees of freedom is shownG,H,inflaton).

As one sees in the right hand plot of Fig. 3 the curvevgf  of the angular orientation of the complex field from one site
determined with help of the space averages over the Goldo the next one along straight lines parallel to the three axes.
stone densitieg8) approachesw,,;=1/3 rather smoothly. This integral is very large before the instability. After a sud-
Practically no dependence on the lattice spacing can be olslen drop suffered at the moment of the tachyonic instability,
served. it continues to decay gradually. This evolution goes parallel
This smooth functional form allows a simple quantitative with the disappearance of the gradient energy excess.
estimate for the composition of the “Goldstone gas,” if one  In order to deepen the understanding of the role played by
assumes that it consists of a noninteracting mixture of elthese topological objects we disentangle their contribution to
ementary gapless Goldstone waves and of nonrelativistithe energy density and the energy fraction carried by the
heavy objects composed of coherent configurations of théelementary” Goldstone quasiparticles. The topological ob-
angular degree of freedom of ti@(2) field. The measured jects contribute only in the low region of the Fourier space.
ratio p/p is given then by 3(%Y), Y=phean/Pelementary N Order to realize this idea, thle space of the Goldstone
This ratio smoothly approaches zero arotijrd| ~ 140, until  degrees of freedom was splitted into three characteristic re-
when the decay of the heavy extended objects will be comgions:k?/|m|2=[(0,0.25), (0.25,1)0(1.0k?,cn ] Separate
plete on both theN=64 and theN=128 lattices. The time Eo0S were fitted in the three regions. In Fig. 4 one sees that
dependence of the ratiPheavy/ prul oldstone IS COMpatible  the deviation from the radiative EoS is localized to the low-
with an exponential decay with a lattice spacing independergst k region. (The curve is rather insensitive to the exact
rate: 22(4)|m| 1. This fit was restricted to the range 100 choice of the values of the separating wave numb&rmm
<t|m| <200, where the EoS is already well defined and thea linear fit towg jo,, k() 0On the interval 88 |m|t<120, one
energy density of the heavy objects is above the noise levekxtrapolates for  t=70pnean(k?<0.29m|?)/pg(k?
We expect that these topological objects were created during 0.29m|?)~0.5.
the tachyonic instability, hence at the time the EoS is stabi-
lized some of them might have decayed already. As an esti- " 1P<0,25 ——
mate for the initial energy density confined to topological 05 0.25<k’<] = 4
objects we extrapolated the exponential time dependence
back to the moment of the instability~ 70) and found that
(for both lattice spacings realizing the lattice sikkSX,y
=64) slightly more than one third of the energy density of
the angular motion was concentrated in heavy objects and
two thirds were carried by massless quasiparticles. A poly-
nomial fit to wg(t) would give an even lower estimate for
y(t=70). This analysis substantiates our claim that direct
Goldstone production dominates in the tachyonic preheating.
One finds complementary information on the Goldstone
evolution from Fig. 1. The gradient energy density grows
higher than the kinetic energy as the Goldstone field gets FIG. 4. The evolution of the EoS of the Goldstone oscillators in
excited. This excess reflects the formation of topologicallythree different Fourier regions. The curves show the average over
characterizable extended objects. In Fig. 1 we also showegight runs foiN= 64, the calculated error of the average is signalled
the average of the integral dfe(x), which is the variation by the error bars.

0.55

w=p/p

A 100 120 140 160 180
time
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IV. ON THE MECHANISM OF TACHYONIC MODE principle account for the delay in the excitation of the Gold-
EXCITATION stone kinetic energysee Fig. 1 since the short but strong

In hybrid inflationary scenarios the possible mechanismSommon friction effect nearly stops the initially independent

for the Higgs field excitation were already discussed a@ngular oscillation modesA~0) in the same instant. When
length in the literaturg¢15,16,19. In this paper we concen- [n rV is stabilized, the friction disappears and all oscillators
trate on the angular component of the matter field and on th&tart to move with equal phase angle.
inflaton. Both the friction coefficient @/dt)Inr(x,t)¥ and the ini-
The excitation of the Goldstone and the inflaton field istial conditions fore, were taken from the numerical solution
driven by the Higgs field. It turns out that the gradient energyof the full dynamics. The energy density resulting from the
density ofr(x,t) is about five times smaller than its kinetic solution of Eq.(15) produced much less excitation in the
energy density during the instability interval, therefore it is Goldstone modes than one observes in the full solution of
reasonable to replace’(x,t) in the field equations of the Ed.(1). This forces us to conclude that the inhomogeneity of
Goldstone and of the inflaton fields by its spatial average (x,t) plays important role also in the Goldstone excitation.
?V This conclusion seems to depend rather sensitively on the
value of the couplings.,g2. The smaller is\ the more im-

The analysis is particularly simple for the inflaton, be- ortant is the inhomogenous contribution to the Higgs ki-
cause in this approximation the equations of its spatial FouPo" 9 ! S . 99
etic spectra already in the first oscillation period after the

rier components are linear. According to the proposed modél€! . o
the symmetry breaking simply increases the el‘fec'[iveSpmodal instability.
squared masses of these uncoupled oscillators

V. EXPANSION AND LATE-TIME COOLING

e+ 000y =0, wA(D)=kE+mZ+gZr? (1), (11) i i :
ok T o (Dog=U, oy «79 : The variation of the cosmological scale factor directly af-

er the instability reflects radiation domination. We find by a

Since we are interested in the excitation mechanism, Which. . . . . .
) ol igh quality power law fit to its numerical evolution the be-
is rather unaffected by the overall expansiom ( havior

> At eneating We dropped the derivatives of the scale factor in
these equations.

One can construct the energy balance of each mode by
integrating the equation

a(t)~(t—cons)?, y=0.542), (16)

where the error is estimated from the standard deviation of
dE, 1 do? , the fitted y values when the time intervalm|= 100- 1000

—— =5 0k, (120  is splitted into several shorter intervals. One may note that
dt 2 dt the value ofy in the time interval100—2000 is reasonably
which yields independent of the lattice constant. The variation of the scale
factor is a(|m|t=2000)/a;,;~2.5. The lattice artifacts ap-
92 (t d?v(t’) pear for|m|t>2000. This exponent, however, shows a time
Ek(t)_Ek(o):?f dt/————o2(t"). (13 dependence on longer time scales as it approaghgge,
0 dt’ =2/3. This experience shows that special care must be taken

if one wishes to enforce a simple power law behavior for

If one sums up the equations for &l one finds a(t) over an extended time interval as it was done in Refs.

e 5619
E. o) — Eipfiaior( 0) = g—ftdt’dr (t o2 (1) If the equations of state are linear, then the actual rate of
inflato inflato 2 Jo dt’ ' expansion conforms to the equation of state of the mixture

(14)  system

This result may be easily compared to the full numerical
solution. The agreement is quite spectacular when one fills  Prun(t) =W (t) pran(t),  y(1)= AL W (O]’
the Brillouin-zone completely, and deteriorates whkep, is ful
decreased. The approximation based on homogenous Higgs

fluctuations is less appropriate for the lowerinflaton Ptul = Peoldstone” Priggs ™ Pinfiatons
modes.
A similar approximate construction might be attempted Piull = PGoldstonét PHiggs™ Pinflaton- (17)
for the Fourier transform of the angular variable, which leads_ L _ _ _
to the equation This wy, coefficient is a subject of continuous shift from

Wiy =~0.23(1) towards zero, which would mean the ideal
matter dominated EoS. For the time interval of the fit Eq.
(16) the time-averaged valuv,;=0.22(2) agrees well
with the fitted y exponent.

This is a set of equations for independent oscillators damped For completely decoupled field components one would
by a common friction. An equation such as E&5) could in  expect

. d— .
cpk(t)—i—Zalnr(x,t)V(pk-i— k%@, =0. (15)
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10000 (— sort of equipartition. This rise is apparently fed by the uni-

t= 500 -

21000 v form decrease of the power of the radidiggs) motion. The

122800 kim value separating the region where the spectral power of

the Goldstone is already stationary from the part which is
still increasing is shifted gradually towards the cutoff. The
final uniform level of excitation in the higk-region is lower
for finer lattices of the same physical size. This is easy to
interpret by noticing that the same initial energy density is
now ditributed when equipartition is approached among dif-
ferent numbers of degrees of freedom.
‘ ‘ ‘ ‘ ‘ The synchronized variation in the Higgs and Goldstone
0 05 1 15 2 25 3 power spectra described above has a simple physical expla-
K nation. The massive Higgs waves can decay into energetic
pairs of elementary Goldstone modes irreversibly, even if
FIG. 5. Time evolution of the kinetic energy spectra of the their temperature is lower. In the language of conformally
Goldstone excitations di§played asa fungtion of the comoying wavgransformed variables the radial mass term scales aith
numbgr. Avferage ov;e:helght rutns with t)k/]plcal sTt%ndard d:ev&altl?nst_awe find kym(t)a;,:/a(t) to be approximately constant, and
Cronms e i e s soroson ey " Valie CoTesponds 1o e equathya(tamsa(n
e S ' ~my. The main distinction between the two regions of
which increases with timeg(=0.1N=64). Goldstone modes consists in the circumstance, that the low-
din pi (1) (comoving-k modes do not receive energy input from
__dinp; - . . Higgs-to-Goldstone pair creation. Ag,, sweeps through the
S[+wi(D]= dina(t)’ = Goldstone, Higgs, inflaton Brillouin-zone completely decoupled Goldstone modes are
(19 left behind. The physics of the system becomes seriously
distorted at times whemya(t)/a;,; approaches .., be-
with an (almos} time independentyv; value. They should yond which the Higgs waves will be artificially stabilized.
agree with the corresponding coefficients of the differentThis lattice spacing sensitivity is manifested in the level of
EoS, if the temporal evolution consists simply of the expan-excitation only for|k|>1.
sion of the noninteracting gas components. Indeed, this is the
case of the inflaton, but th@(2) sector shows rather large
deviations. From Eq(18) one finds that the Goldstone en-
ergy density on the average decreases more slowlyagith In this study we focused on the very early stage of the
than expected for a massless radiation. A similar comparisofield evolution following the tachyonic instability occuring in
reveals that the rate of cooling of the Higgs mode is fastesimple realizations of the hybrid inflationary scenario. The
than for a nonrelativistic gas. The poweyqt) vary with  results were shown overwhelmingly insensitive to the choice
time quite strongly. These tendencies indicate an energgf the lattice spacing if the inhomogenous modes were filled
transfer to the angular motion in tH@(2) configurational initially only up to a maximal wave number. Its value was
space from the radial one. The situation is puzzling, since thehosen so that the energy density of the system was kept the
average energy density of the Goldstone modes is highexame for different lattice spacings. Lattice spacing indepen-
than that of the radial oscillations. dence of the main observables was achieved without impos-
The investigation of the kinetic power spectra providesing any further normalization condition.
much more detailed information. One finds that the Higgs We found that the direct production of Goldstone excita-
and inflaton degrees of freedom quickly approach classicaions is very efficient. By a thorough analysis of the l&w-
equipartition as suggested by their E0S. The power spectra gfart of the Goldstone spectra and its contribution to the equa-
the Goldstone degree of freedom reveal interesting regulariion of state one can separate the elementary waves from the
ties. Figure 5 shows the Goldstone energy spectra multipliedxtended objectéstrings formed from coherent Goldstone
by a*(t) at late timegwell within the regime of virial equi- configurations. The decay of the strings can be followed
librium). The shape near the origin is very similar to whatthrough the temporal variation of the corresponding
was found in Minkowski metri¢12]. The durable deviation =pg/pg ratio. The smaller is the selfcoupling the longer
from equipartition appears as a result of anomalously slowhe string-network lives.
relaxation in the lowest comoving region, frozen in an The simple-minded model of the motion of Goldstone and
almost instant decoupling after the tachyonic instability. Thisinflaton modes, consisting of independent oscillators moving
is demonstrated by the fact that this part of the spectra showia the background of homogenous time-dependent Higgs
perfecta 4(t) scaling. The height and the width of this de- fluctuations provides a semiquantitative interpretation of the
coupled out-of-equilibrium spectra in the ldaregion is in-  excitation of these degrees of freeedom. Curiously, we also
variant under a factor-of-2 change of the lattice spacingfound an interesting mechanism for energetic reheating in
therefore the early decoupling is certainly a physical effect.our investigation which still avoids the restoration of the
The Goldstone energy density in the highregion is  symmetry. It might happen that some kind of strongly out-
much lower but it gradually increases and approaches son-equilibrium dynamicgin our case the tachyonic instabil-

1000

100 ¢

Goldstone power spectrum x a

10

VI. CONCLUSIONS
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ity) excites a certain degree of freedom much more effiinstant the equipartition rule, one conjectures the following

ciently (in our case the Goldstong'sthan the order kinetic equations:

parameter. If their interaction is weak relative to the Hubble q 1

expansion rate, decoupling occurs very early and the matter o 41— @ -

field cannot climb out from the symmetry breaking mini- dn[pG(k)a (t)]_(|k| 2mHa(t)

mum. The Fourier power spectra of the Goldstone mode is

frozen in a strongly out-of-equilibrium shape, displaying the % _11 1 4t

enhancement of low- modes. One has to question if the To4m 3 pra’(),

decoupling is sensitive to the choice of the lattice spacing. cutoft

We have checked that the efficient Goldstone excitation is d 1 (mya(t))?
; ; ; H

followed by quick decoupling preserving the same shape for —[p,a3(t)]=— ( -0 —5——

the power spectra in thelk|<1 region for &xp d7 8 &

) T tpuat(t)
cutoff

=0.25,0.5,0.75,1.0. (19
During the later transition period from radiation towards( 1 :
S ) . 7~ = is the decay rate of the Higgs wayes
matter domination the decay of the Higgs waves into G.Old' The next stage of our project is to extend the investigation
stone modes can be observed. The spectra did show ev'dent%ethe case of gauged models of hybrid inflatic®—21

for a lattice spacing dependence in ﬂk¢>1. region. which differs in very important aspects from the models
The features of the late time dynamics in tB€2) sector v¥here Goldstone modes appear
0

analyzed above can be summarized in a spectral variant
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